
The views, conclusions, or recommendations expressed in this document do not neces­
sarily reflect the official views or policies of agencies of the United States Government.

Th~ research reported in this paper was sponsored by the
Advanced-Research Projects Agency Information Processing
Techniques Office and was monitored by the Electronic
Systems Division, Air Force Systems Command under contract
F1962867coo04 with the System Development Corporation.

System Development Corporation / 2500 Colorado Avenue / Santa Monica, California 90406

Intonnation International Inc./1l161 Pico Boulevard / Los Angeles, California 90064

Operating Instructions for the LISP 2

Supervisor in the LISP 2 Core Image

ABSTRACT

'-;;'vU
M.V~C

RELEASE .~ <.v~d~~
. ~~ ,awklf,$Qn, III

; '.' ... '" J{)/ ,./" /F" • ,.., ,-"""-

"'C'. Weissman, SDC

for J. I. Schwart z , SDC

DATE 10/14/66 PAGE 1 OF_5_PAGES

This Tech Memo contains operating instructions for the
LISP 2 Supervisor in the LISP 2 Core Image.

1. INTRODUCTION

The LISP 2 Supervisor is an interactive aid available in the LISP 2 system
for controlling input/output operations and for directing the compilation
process.

* 2. THE function LISP

The LISP 2 Supervisor is a function named LISP in section LISP. The
dummy:JUnction:decZaration is

(FUNCTION((LISP . LISP)NOVALUE)
((INFlLE SYMBOL)(OUTFILE SYMBOL)(FORMAT SYMBOL)))

where INFILE is the name of an opened file from which the Supervisor takes
its inputs. OUTFlLE is the name of an opened file on which the Supervisor
prints the LAP code for instructions:definitions, routine:definitions,
macpo:definitions and JUnction:definitions that are compiled. Lap: definitions
are duplicated on OUTFILE. The printing is controlled by (PRNLAP . LISP), a FLUID,
BOOLEAN variable, and is done only if PRNLAP is TRUE. FORMAT, the third
argument, indicates whether the inputs are Intermediate or Source Language,
etc. The alternatives are described in Section 4.

* Italicized words are part of the meta-language of the LISP 2 Intermediate
Language~ ~ee TM-2710/220/01, dated 7 July 1966.

<E) Copyright System Development Corporation and
Information International Incorporated 1966.

14 October 1966 2 TM-27l0/5l0/00

The function LISP operates on the specifi~d files until a tePminator is encoun­
tered. A terminator is one of the following:

STOP
(STOP)
END (Not to be used with Source Language Input.)
end-of-file character
end-of-media character

The Supervisor accepts all operations specified in the Intermediate Language
document. Declaratives are absorbed and expressions are evaluated to produce
a value. For each operation the value or variable name is printed on the user's
teletypewriter (file OTTY).

Function:definitions; routine:definitions; macro:definitions and instructions:
:definitions are compiled into equivalent lap:definitions. Lap:definitions are
assembled in core ~f the BOOLEAN, FLUID variable (BINLAP • LISP) is TRUE, other­
wise the LAP code is not assembled. This option is useful when compiling for
diagnostic purposes only, or when building a library for future use (with PRNLAP
set TRUE). If an error is encountered, a diagnostic is output on OTTY and the
LAP is discarded. If an error occurs while evaluating an expres8ion, the process
ceases.

Unlike LISP 1.5, the LISP 2 Supervisor does not quote arguments. Expre8sions
at any "level" are evaluated in an identical manner. The value of

(CAR(CONS(QUOTE A)(QUOTE B»)

is A, not CONS.

When entering the function LISP, the message LISPENTRY is output on OTTY. When
a terminator is input, the message LISPEXIT is output on OTTY and LISP executes
a return:statement.

3. SUPERVISOR VARIABLES

3.1 THE KEEP LIST

Garbage collection may occur at any time. Variable structures that are created
may be reclaimed unless referenced. Therefore, a list of pointers is main­
tained to prevent garbage collection of variable structures created by free:
:declarations or dummy:declaration8. This list of pointers is known as the
KEEP list. The KEEP list is updated each time a new declarative is processed
so that subsequent compilations and evaluations may still reference that declared
variable. The maintenance of the KEEP list is described in Section 4.

14 October 1966 3 TM-2710/510/00

3.2 (GNLIST • SYS)

(GNLIST SYS), a SYMBOL, FLUID vapiabZe, is maintained by the supdrvisor as an
aid to the read program (see description of LISP 2 I/O, TM-27l0/240/0l for more
information). Section 4 explains the binding points for GNLIST.

4. FORMATS

FORMAT, the third argument of the function LISP, specifies the form of the in­
put in INFILE. The four allowable formats are described below.

4.1 ED2

Format ED2 specifies an INFILE consisting of a. series of edZisp:fiZes. An
edZisp:fiZe has the following definition:

edZisp:fiZe = (atom opepation*)

where the openations are in Intermediate Language.

Two passes are performed on each edZisp:fiZe. During the first pass the series
of opepations is scanned and decZaPative information absorbed by the system.
During the second pass, exppessions are evaluated, vaPiables in fpee:decZapations
are preset, and all necessary compilations and assemblies are performed. The
two-pass scheme avoids the necessity of using dummy:decZapations for intra­
edZisp:fiZe communication. Entrance to LISP with this format causes KEEP and
GNLIST to be rebound. The series of edZisp:files in INFILE is processed until
a tePminatop is input. Note that the degenerate edZisp:file, (STOP) ,is a
tePminatop.

4.2 EDl

Use of format EDl is the same as use of ED2 except that only the first pass
(the declarative scan) is performed and neither KEEP nor GNLIST is rebound.

4.3 IL

Format IL specifies that INFILE consists of a series of opepations written in
LISP 2 Intermediate Language. The opepations are processed, one at a time,
until a tepminatop is encountered. Entrance to the function LISP with this
format causes KEEP and GNLIST to be rebound. This is useful for direct inter­
action with the system. However, dummy:declarations may be necessary.

4.4 SL

A variety of SL formats will be included for working with Source Language.
However, as of this date, the syntax translator is not a part of the LISP 2
core image.

14 October 1966 4 TM-27l0/5l0/00

5. Seotion:name AND De[ault:type

Whenever LISP is called, the seotion:name:list is initialized to (USER LISP) and
the de[ault:type to SYMBOL. The seotion:name:list remains unchanged until a
seotion:deolaration is encountered by LISP. At this point, if the new seotion:
:name:list does not include LISP, LISP will be attached, e.g., if the Supervisor
encounters

(SECTION NEW INTEGER)

then seotion:name:list becomes (NEW LISP) and de[ault:type is INTEGER. If a
de[ault:deolaration is processed, the de[ault:type changes without changing the
seotion:name:list. Whenever a terminator is encountered, LISP exits and re­
stores the seotion:name:list and de[ault:type that were active when the [unotion
LISP was called. FLUID variables are used to maintain seotion:name:li8t and
de[ault:type. These variables are bound by each call to LISP. (For more
information and examples, see TM-27l0/220/0l.)

6. SYSTEM INITIALIZATION

When the GO command is given to TSS. the following form is evaluated:

(LISP(QUOTE ITTY)(QUOTE OTTY)(QUOTE IL))

This [unotion:oall is embodied in a trY:Btatement so that any unwrap returns
~o make a similar call (see Section 7 for more information on try:statementB).
LISP behaves as an ordinary [unotion in that it may be called from any place at
any time. The normal use of LISP is to allow input of data from a file other
than ITTY.

7. AUXILIARY FUNCTIONS

The [unotion8 described below may be used to aid debugging in the LISP 2 system.

7.1 (FINDEC • LISP,)

'rhe dummy:[unotion:deolaration is:

(FUNCTION«FINDEC • LISP)SYMBOL)
«NAME SYMBOL)(SECTION SYMBOL)))

The two arguments are an [:name and a seotion:name that correspond to the two
parts of a tailed:variable. The value is NIL if a deolaration does not exist
for the variable, otherwise the value is a list of (1) the address of the
variable's triple cell, (2) the contents of the first word of the triple cell,
and (3) the deolaration for the variable.

14 October 1966

7.2 (EVAL • LISP)

The dummy:function:declaration is:

5
(last page)

(FUNCTION«EVAL . LISP)SYMBOL)
«SLIST SYMBOL) (DTYPE SYMBOL)(EXP SYMBOL)))

TM-2710/510/00

The three arguments are a section:name:list, a default:type and an Intermediate
Language exppession to be operated. The value of EVAL is the value of EXP
evaluated with the given section:name:list and default: type in effect. Neither
KEEP nor GNLIST is rebound.

7.3 (ERROR • LISP)

The dummy:function:declapation is:

(FUNCTION«ERROR . LISP)SYMBOL)«M SYMBOL))

ERROR prints its argument M on OTTY if the BOOLEAN, FLUID vaPiable (PRNERR . LISP)
is TRUE. ERROR then calls EXIT with the argument M. All system execution-time
errors use this mechanism. PRNERR initially has value TRUE. Compiler diagnostics
are printed regardless of the setting of PRNERR. (The compiler does not call
ERROR.)

7.4 (EXIT . LISP)

The dummy:function:declapation is:

(FUNCTION«EXIT . LISP)SYMBOL)«M SYMBOL»))

EXIT causes the system to unwrap to the innermost tpy:statement. The argument
of EXIT, M, is planted in the locative specified by the try:statement. As the
unwrap proceeds, the name of each function (a dotted pair) is CONS'ed onto
the SYMBOL, FLUID vaPiable (BACTRC . LISP). The name of the function containing
the try:statement does not appear on this list. If the try:statement unwraps
to the one embodying the "top-level" call to LISP, the Supervisor sets the
SYMBOL, OWN vaPiable (BACKTRACE . LISP) to the value of BACTRC. BACTRC is
then rebound to NIL. The argument of EXIT is then printed along with the most
recursive function names on BACKTRACE regardless of the setting of PRNERR. The
INTEGER, OWN vapiable (PRNMAX . LISP) specifies the maximum number of function:
:names to be printed.

