
Introduction to NIL 

March 1983 

Glenn Burke 

This repon describes research done at the Laboratory for Compu~cr Science of the ivlassachusetts 
Institute of Technology. Support for this research was provided in part by the National Institutes 
of Health grant no. 1 POI LM 03374-04 from the National Library of Medicine, the U. S. Air 
Force under grant F49620-79-C-020, the National Aeronautics and Space ~~dministration under 
grant NSG 1323, the U. S. Department of Energy under grant ET-78-C-02-4687, and the Digital 
Equipment Corporation of Maynard, Massachusetts, with grants of equipment. 

CAMBRIDGE 

MASSACHlJSEITS INSTITUTE OF TECHNOLOGY 
LABORATORY FOR COMPUTER SCIENCE 

MASSACHUSETTS 02139 





Abstract 

This document is a primer for NIL, a New Implementation of Lisp. It is not a description or 
overview of the language, but rather documentation of some of the "ordinary" facilities available, 
so that those with some small LISP experience can use NIL in a basic way. 

Acknowledg ments 

Most of the NIL system development for the past year has been performed by myself and 
George Carrette, who is also the primary source of VMS expertise within Tech Square. The 
implementation· of the NIL editor is solely the result of the efforts of Christopher Eliot, who is 
also responsible for much of the numerical (especially bignum) code now available in NIL. 

Inaccuracies in the over-simplified documentation of the editor here, however, are totally the fault 
of GSB. 

The AI Lab Roboties Group deserves credit for just "being there" as potential NIL users. In 
particular, Patrie Sobalvarro has been extremely helpful with both NIL implementation, and 
documentation writing and proofreading. 

Peter Szolovits has been (and will continue to be) a sounding board for problems of all sorts, 
and additionally deserves credit, along with Michael Dertouzos, Al Vezza, and Joel Moses, for 
continuing support of the project. 

The NIL language is being converted to conform to the (as yet not officially complete) 
COMMON LISP standard. This effort is the result of the work of a great many people (see [2]). 

Note 

This document should be considered an informal paper for internal use. It is not intended for 
formal distribution or reference in its current form. 

c Copyright by the Massachusetts Institute of Technology; Cambridge; Mass. 02139 
. All ·rights reserved. 

-~ 



.. 



NIL Primer 

Table of Contents 

l. Introduction ....... . 

2. Style, Conventions, Etc.. . . . . 
2.l Documentation Conventions . 
2.2 Major Implementation Points. 
2.3 NIL and T . . . . . . 
2.4 Syntax and Symbols . . . . . 

3. NIL and VMS . . . . . . . . . 
3.1 Getting In.and Out of NIL .. 
3.2 Terminal Interrupts. 
3.3 Other Perversities. 

4. Data Type Overview 
4.1 Conses .... 
4.2 Symbols . . . 
4.3 Numbers. . . 

4.3.1 Rationals . 
4.3.2 Floating Point Numbers. . 
4.3.3 Contagion and Conversion. 

4.4 Characters . . . . . . . . . . 
4.5 Arrays.' .... ' ...... . 
4.6 Packag~s and Readtables. . . 
4.6.1 Readtables 
4.6.2 Packages . . .'. . . 

5. Interpretation. . . . . . 
5.1 Binding and Scoping . 

6. Variables and Definitions . 
6.l Lambda List Interpretation. . 
6.2 Defining Functions. . 
6.3 Defining Variables .. 

7. Predicates .. 
7.l Equality . . . . . . . 
7.2 Type~ ... ~ ..... 

8. Control and Program Structure. 
8.l Binding . . . . . 
'8.2 Flow of Con trot . . . 
8.3 Iteration. . . . . .. 
8.4 Block and Tagbody. . . 
8.5 Generalized Variables 

9. List Manipulation .. 
9.l Using Lists as Sets .. 

10. Symbols. . . . . . 

. .' ... 

Table of Contents 

1 

2 
2 
3 
3 
4 

5 
5 
5 
6 

8 
8 
8 
8 
8 

. '9 

... '. 9 

. .. '. 9 
.10 
.11 
.11 
.11 

.13 

.13 

.15 

.15 

.16 

.16 

.18 

.18 
. .19 

.20 

.20 

.20 

.21 

.23 

.24 

.25 

.26 

.27 

11-APR-83 



Table of Contents ii • NIL Primer 

11. Numbers. 28 
11.1 Logical Operations. 30 
11.2 Conversions. 31 

12. Characters. .. ' ... --. .. · ~ 32 

13. Sequences~ Strings, and Arrays. 33 
13.1 Sequences. . . .• • 33 
13.2 Strings. 36' 
13.3 Arrays. '0 • 36 

14. Input and Output 38 
14.1 Streams. 38 
14.2 Basic I/O 39 
14.2.1 Input. . .. . .. . .• 39 
14.2.2 Output. 39 

14.3 Interacting with the User. 41 

15. Running and Debugging Programs. 43 
IS.1 LoadingPrograms. . 43 
IS.2 The Interactive Debugger .. 43 
15.3 Stepping. .. 44 
IS.4 Tracing and Breaking . . 44 
15.5 Exhibiting. . 45 
lS.6 Printing Definitions . 45 

16. Steve, the Editor. . · .. 46 
16.1 Files and Duffers. 47 
16.2 Arguments. . .. 47 
16.3 Movement Commands. · .. 48 
16.4 Deleting Text . 49 
16.5 Searching . . . .• .. . . . 50 
16.6 Other Stuff 50 
16.7 Interacting with NIL. 50 

References. 51 

Index 52 

11-APR-:i3 



NIl. Primer 1 Introduct.ion 

1. Introduction 
NIL is a dialect of LISP which runs on DEC VAXes under the VMS operating system. It is 

destined to be compatible with COMMON LISP [2]. COMMON LISP is a sufficiently complete 
specification of Lisp that many programs should be able to be written conforming to that 
standard, and thus be able to be transported to other COMMON LISP implementations. At this 
time, the "final draft" of the COMMON LISP manual has not been published, and also certain fine 
points are not finalized. NIL, although not nearly complete, conforms closely to much of the 
existing and known COMMON LISP functionality. 

The NIL system provides a lexical interpreter complete with closures, a compiler; a pnmluve 
interactive debugger, and (under development now) an editor (written in NIL). NIL is compatible 
with MACLISP to whatever extent is possible, given that the interpreter uses lexical scoping rules, 
and that certain fine incompatibility points· between COMMON LISP and MACLISP exist. Certain of 
these will be described later. 

This document is oriented towards someone who has some knowledge of LISP, such as LISP 1.5 

or (even better) MACLISP. It is not in itself a LISP primer. It deliberately ignores or downplays 
many complicated and esoteric features. In other areas, the documentation is simply abbreviated 
to what are (hopefully) the more useful points. Neither should this document be considered to be 
an "overview" of NIL; there are many facilities which are totally omitted, yet which are integral 
parts of the NIL language. Rather, it is both a primer and reference source with which someone 
with some minor LISP experience should be able to derive what knowledge is needed to do a fair 
amount of programming using the NIL interpreter. The hordes of special-case· functions which are 
used to produce efficient production systems, have all been overlooked here. The compiler has 
been overlooked also, partly for simplicity, and partly because it is not capable of handling all of 
the control and binding constmcts which the interpreter does. Highly sophisticated LISP users, or 
those familiar with a large and complex system such as LISP MACHINE LISP, may ,still find some 
things here useful (although perhaps tedious reading) because of incompatibilities. 

The NIL system is still incomplete and under active development. It does not yet have a 
garbage collector. It has a compiler which produces pretty good VAX code directly, and which is 
expected to be eventually replaced by an even better one ··which will handle both more 
complicated lexical control and binding constmcts, and type declarations for better numeric and 
string crunching. Eventually, NIL will support at least four different floating-pOint formats to allow· 
numeric crunching of various flavors, and more sophisticated handling of complex numbers than it 
does now. It is expected to be able to talk to the CHAOS network itself, allowing it to directly 
access files on other hosts the way a Lisp Machine does. The editor in NIL is still fairly new, 
having only recently been released for use within the MIT community. 

ML:XNILMA;PRIMER 109 11-APR-83 



Style, Conventions, Etc. 2 NIL Primer 

2. Style, Conventions, Etc. 

2.1 Documentation Conventions ! 

The conventions used in this manual are essentially the same as those used in the Lisp 
Machine Manual [3]. 

In this document, all numbers are decimal. In this it differs from both the Lisp Machine 
Manual, and the Maclisp Reference Manual [6]~ 

In lisp code examples; the symbol =) should be read as "evaluates to", and = =) as 
"macroexpands to". The latter should usually be taken as a paraphrase (or functional equivalence) 
rather than a literal expansion, as the actual expansion will usually be' something more obscure 
and implementation-dependent 

Function documentation typically looks like 

samp 1 e-funct ion string &optional (stream standard-output) &rest other-things 
sample-function takes one or more arguments. The first should be a string. The second, 
if it is supplied, should be a stream;, if it is not supplied, the value of the variable 
standard-output is used instead. It outputs the characters of string to stream, 
immediately followed by, the number of other-things supplied, .in hexidecimal. Thus, the 
call 

(sample-function "foo" terminal-io 'a'b t>c) 

would produce the output 
foo3 

In function documentation, the lambda-list keywords such as &optional, & rest, and &key are 
used, similar to the way they are used in defun. The exact .meaning of them is described in 
section 6.1, page 15. 

Variable definition looks like 

*samp 1 Q-variab 1e* Variable 
The value of this variable is the number of times the NIL language has broken due to 
DEC field service modifying the VMS system parameters. 

Special forms and macros are sometimes documented using lambda-list keyworqs like function 
documentation, but more often using a slightly different description of how they expect their 
forms: 

sample-specform (var fonn) {declaralio:n}* forms .. ~ Special Form 
The special form sample-specform binds var to a stream which will broadcast its output 
to both the terminal and the stream which fonn evaluates to. The declarations are used 
just as with lambda or let It· evaluates fonns in this environment Thus, 

MI ,:XNILMA;PRIMER 109 11-APR-8J 



Nil. Primer 3 

(sample-specform (*stream* *disk-file*) 
(declare (special *stream*» 
(princ "The findings are:" *stream*) 
(display~findings» 

Major Implementation Points 

prints "The findings are:" to both the terminal and the stream which is the value of' 
*disk-file*. Presumably, display-findings uses the variable *stream* free, and prints 
the findings to that stream. 

The format ifoo} * means any number of foos; {foo} + means one or more foos. [(00] means 
an optional foo, and foo ... is the same as ifoo}*. 

2.2 lVIajor Implementation Points 

NIL, like LISP MACHINE LISP, utilizes a function cell in which to define functions and macros. 
It does not use the property list the way MACLISP does. Interpretation of whether a name is a 
function or a variable is done purely syntactically; in, for example, 

(fact number) 
fact is interpreted as a function, and number as a variable. Doing a setq of fact will not affect 
this interpretation, and neither will doing a defun of number. 

NIL is one of the few "production" Lisps around now which utilize lexical scoping rules in the 
interpreter, as opposed to that only being the default interpretation when the code is compiled (as 
is the case in MACLISP and LISP MACl-IINE LISP). The NIL interpreter thus behaves somewhat like 
the compiler, and _ heeds variable declarations. This also has an impact on the efficiency of 
interpreted code, but no comparisons of its speed have been made with any comparable Lisp 
implementations. The lexical scoping (which is discussed in section 5.1, page 13) also affects the 
ways in which one must debug interpreted code. This is because lexically scoped variables may 
only be validly referenced from within the lexical (textual) scope where they were bound. As a 
result, it is difficult (if not impossible) to find their values from "outside" of the function' they are 
bound in. The debugger (page 43) and exhibitor (page 45) are capable of compensating for this 
somewhat. 

2.3 NIL and-T 

In NIL, the canonical objects for representing boolean true and false are atomic symbols, just 
as they are in MACLISP, LISP MACHINE LISP, and as specified by COMMON LISP. (This differs from 
earlier implementations of NIL including the one, made in December 1982, which is being 
distributed as Release 0.) One may not bind or setq these symbols. They do, however, have 
values and potenti~ny functions associated with them, just as all other symbols do. The 
mechanism by which they have values which are not allowed to be modified is available to the 
user by use of the defconstant special form (page 17). 

ML:XN1LMA;PR1MER 109 II-APR-83 



Syntax and Symhols . 4. t Nil, Primer 

2.4 Syntax and Symbols 

NIL by default "comes up" using the reader syntax specified by COMMON LISP~ T'hc primary 
diffcrence of note involves the: / and \ characters:. the "quoting'!- or "slashificatiQn~' character in 
COMMON LISP is backslash (\), rather than slasb: (/) as· it is, in MACLISP and: LISP. MACH.INE LISP. 
Thus, the division function whose print name consists, of the single, character / may he typed, in 
as just that single character, unlike (for instance) MACLISP where the slashes· n~ded to be 
doubled; conversely, the function in NIL which performs ,the, gcd operation on fixnums only (for 
MACLlSP compatibility), and which has a print name consisting of two backslashcs: (\\), must be 
typed in as \ \ \ \. In documentation, symbols arc displayed without the (back)slashes, which may 
be necessary for them to be typed in. Within lisp examplcs~ lisp expressions are displayed. with 
the necessary slashification, utilizing COMMON LISP syntax. 

One other syntax difference is that NIL has a special data type, to' reprcsent characters. Those 
who usc the sharpsign (#) reader macro should. note that in COMMON LISP; syntax, tbeI'~ is no 
# / syntax, only # \ which can accept both character names and single characters, and. that the 
object represented is a character, not the fixnum representation of the character. 

MI ,:XNILMA;PR1MER 109. 1 1,. APR .. 83 



NIL Primer 5 Nil, and VMS 

3. NIL and VMS 

NIL runs as a separate process under VMS. In TOPS-20 terminology, it "keeps"; it does not 
disappear when exited the way many other programs do. 

3.1 Getting In and Out of NIL 

The ni 1 command to the command language interpreter (eLI) runs a program which 
"manages" the NIL. Essentially, saying nil with no options resume an existing NtL if there is 
one, or create and start one if there is not. If one is "in" NIL, control-Y (the sort of general 
VMS "interrupt process" command) will suspend the execution of the NIL, and return to the 
command language interpreter. 

There is some (probably timing) bug such that occasionally after a control- Y is typed, the 
NIL gets suspended but the command interpreter does not return and prompt. When this 
happens, the next line of input may "get lost". If the "$" prompt does not appear in 
reasonable time after typing of control- Y, then a couple more control- Ys and maybe a 
carriage- return .01' two will get it,. and avoid having the next· line of input get ignored. If 
this does not work, then something more serious is wrong. 

The nil command may be given other arguments which are only meaningful if there is a NIL 

process around already: 

nil/kill 
TIlis kills the NIL. It is the same as executing. (quit) from within the NIL. 

nil/proceed 
Resumes the NIL process, but docs not enable the NIL to perfOlm tenninal input and 
output. If the NIL attempts to do them, it will wait until it is resumed. Similarly, if any 
of the NIL functions which interact with the superior are called while the NIL is 
proceeded, it will wait· until it is resumed. 

3.2 Ternlinal Interrupts 

VMS does not provide a very genera] mechanism for receiving interrupts by typing a character 
on the terminal. The only available option is to get an interrupt when control-C is typed. So, 
what NIL does is to handle control-C interrupts, and then prompt for input: you type a character 
to teU it what interrupt function to perform. Some ·of the more interesting characters are 

conlrol-G 
Quit to top-level Lisp. Aborts whatever was running. 

B Enters a break loop (see break, page 44). When the break loop is exited, program 
execution resumes. 

o Enters the Lisp debugger. The stack and program environment can then be examined. If 
the debugger is exited with the Q command, then program execution resumes as before. 

? Lists the characters available and what they do. 

ML:XNILMA;PRIMER 109 ll-APR-83 



Other Perversities 6 NIl, Primer 

N Ignore the interrupt and continue whatever was happening before. 

X Also control-X but you probably can't type that (as explained below). Modeled after the·, 
MACLISP control-X interrupt, this, quits somewhat less fataUy than. control-G: it aborts' 
back to the most recently established errset (therefore break loop), or to top-level. 

It should be noted that the control-C interrupt is handled by NIL at Lisp-level. If the NIL is busy 
doing something uninterruptibly, it will ignore the control-C until it is done. Typing multiple 
control-Cs will only make the NIL think that it is broken, and' call up the VMS debugger, which 
is generally fatal to the NIL. 

VflrfS does not provide a notion of "which job is using the tennina!". Because of this, often 
a NIL which is not running will have its control-C interrupt triggered when control-Cis 
typed at some' other program. This generally does not happen to a NIL which is. running 
without-fhe-tenninal (as by ni l/proceed)~ however. All that can be done is to type N at 
the "INTE RRUPT>" prompt when it occurs. This will be fixed when the interrupt system is. 
revamped. 

3.3 Other Perversities 

There are several o¢er characters which VMS places special interpretations on. 

xon/xo!! 
Control-S and control-Q block and continue output from VMS, respectively. This is 
allegedly for "flow control", even though it is impossible for it to work in all but the 
simplest cases. Supposedly your terminal sends control-S when it is getting too much 
output from the host, which then shuts up for a while (until control-Q is sent). More 
conveniently, it is something you can type to stop the output in its tracks, so you can 
read it; you can then type control-Q to get output to resume. NIL nonnally does not 
disable this, except when within the· editor. 

Control-T 
This displays some information about what is running, similar to the TOPS-20 control-
T. Unfortunately, VMS does not handle cursor control itself (forcing NIL to), and 
prints out this infonnation causing NIL to get confused about where the cursor is. 
You will also note that VMS prefers not to clear lines it types on before it types there. 

control-O 
This aborts output. It causes output to the terminal to be discarded, until some input 
is perform~d (or certain other exceptional conditions occur like a control-C interrupt). 
NIL does not recognize this condition, and VMS again types somethign which confuses 
NIL about where the cursor is. If you wish to abort output, it is probably (depending 
on the context) better to use control-C and type "X" at the interrupt prompt; this 
will abort back to the most recently established break loop, or to top-level. 

control-U 
When standard buffered input is being done (as when you are typing at the command 
interpreter), control-U flushes the input buffer. 11le NIL input processor uses this -to 
delete a" line of input (not the whole expression). 

control-R 
When standard buffered input is being done (as when you are typing at the command 
interpreter), control-R reprompts and retypes the buffered input. 

ML:XNILMA;PRIMER 109 ll-APR-83 



NIl. Primer 7 Other Perversities 

conlro/-X 
To the VMS buffered input reader, this means both control-U, and flush typeahead 
(the characters which have been typed but not read yet). In order that this 
functionality be implemented in a completely general way, the VMS terminal' input 
driver is kind enough to translate this chaiacter into control-U. Thus, when you type 
control-X at NIL, it sees control-V. 

VMS offers a way around all of the above randomness, known as passall mode. This mode 
disables eyerylhing, including both control-Y and control-C. It also apparently disables "broadcast 
messages", such as announcements that the system is about to go down. When the NIL editor is 
entered, it enters this mode. It leaves it temporarily at certain strategic points, but not too 
frequently. What this means is that if the editor gets into an infinite loop, you get totally 
wedged, and will probably need external help (with privileges) to even be able to log out. Maybe 
DEC can get it right next time. 

ML:XNILMA;PRIMER 109 ll-APR-83 



Data Type Overview 8 Nil, Prinlcr· . 

4. Data Type::Overvicw 

4.1 Conses 

The data type list is called cons in' NIL, to distinguish it from the meaning'oLlist in. which 
nil is the empty list. Other than that, all is ordinary. 

4.2 Symbols 

Symbols serve as names for variables, functions, or simply as keywords. Every symbol has a 
properly list or plist, a list of alternating property indicators and values. It has a print name or 
pname, which is a string that "is" the printed representation of the . symbol. It can have both a 
value and a function associated with it. It also has a package (section 4.6.2, page, 11). 

The symbol nil is somewhat special. It has the data type null (asubtype.oLsymbof);aIld:':<i~"'"'' 
the only object of that type. Otherwise, it is treated the same. 

4.3. Numbers 

NIL provides representations for and operations on both rational and floating-point numbers. 
It also provides a complex number representation,but only the simpler arithmetic operations 
knowhow to deal with it right now.' Similarly, many operations on non-:integer rational numbers 
are. deficient. 

4.3.1 Rationals 

An integer is a rational number whose denominator.is 1. If an integer' is within a particular 
range (is representable in twos-complernent notation in 30 bits), then it is the special typefixnum, 
otherwise it is abignum. Conversion between .the two IS automatically performed by the 
arithmetic functions. 

Non-integer rational numbers are 6Lthe type ratio. The "top" and "bottom" oLa ratio are its 
numerator and denominator, and may be accessed with the numerator and .. denominator 
functions, which work on integers also. . (The numerator of. an integer is itself, and its 
denominator is 1.) The numerator and 'denomimator of a ratio will always be returned in reduced 
form,andthedenomimator wi1l always 'be positive. Ratios are notated by typing the- (possibly 
signed) numerator, a slash, and the (unsigned) " denominator, as in -4/3. 

Ratios are typically created by. rational number.division. This can occur when integer division 
is being perform cd using the COMMON LISP I function, and the dividend is not an . exact multiple 
of the .divisor. Thus, 

(/.86) => 4/3 
To get truncation, theMACLlspcompatible~"quotientfunctioncan' be used; it wi1~ produce a ratio 
only if one or the inputs is a ratio . 

. M! ~'XNILMA;PRIMER 109' 11-APR-83 



Nil. Primer 9 Characters 

4.3.2 Floating Point NUlllbers 

NIL currently offers one floating-point format, which is double-precision, having an 8-bit 
exponent and 56-bit Inantissa (significand) (including the hidden bit). This type is double -float. 
For various historical reasons, it is also called flonum (from Maclisp). Note that in NIL (as in all . 
MIT lisp dialects), suffixing a sequence of digits by a decimal point does not produce a floating­
point number, but rather forces the integer to read in in radix 10; to force floating-point, the 
decimal point must be followed by digits. Thus, "10." is the fixnum ten, but "10.0" is floating­
point ten. The other syntax is to use exponential notation, as in 1.0e + 10. In this too, in NIL, 

at least one digit is required after the decimal point, although none are required before the 
decimal point. 

4.3.3 Contagion and Conversion 

Most of the standard arithmetic functions operate on any/all numeric types, and convert from 
one to another as necessary. In general, rationals convert to floating-point, and non-complex to 
complex. Note that it is not significant to talk about interconversion of ratios, integers, and 
fixnums; an integer is just a special case of a rational number, as is a ratio. 

Unlike with rationals, complex numbers with imaginary parts are never reduced back to non­
complex numbers. Otherwise, the operations on the real and imaginary parts undergo contagious 
conversion in the same way. 

For example: 
(+ 2 3.0) 
(+ 2 3) 
(/ 2 3) 
(/ 2 3.0) 

4.4 Characters 

=> 5.0 
=> 5 
=> 2/3 
=> 0.6666666666666667 

NIL provides a data type for representing characters. Characters are the things one 
manipulates when doing "character 110" on streams. They are the things one gets out of, and 
puts into, strings. Having a separate data type allows them to maintain their identity within the 
lisp (as opposed to being an interpretation placed on fixnums, for instance). 

Characters in NIL have three different attributes: their code, their bits, and their font. The 
code defines the basic ("rootn

) character. The bits are used as modifiers. Typically, an input 
processor (such as ilie editor, or even the prescan for the toplevel Lisp read-eval-print loop) will 
treat a character without any bits as "ordinary" and assume it is part of the text being typed in, 
but treat a character with some bits as being a command. Four of the . special bits are named: 
they are control, meta, super, and hyper. The font is not used for anything by NIL right now, 
but the information can be there if anyone wants to make use of it. 

Characters in NIL use # \ syntax for input and output, as shown below. Note that if the 
character after the # \ stands alone, It is taken literally. If it occurs after a prefix such .as 
"control-", then it will be treated like an ordinary token, so may need to have a preceding 
backslash to inhibit case translatjon or just to allow proper token parsing. 

ML:XNILMA;PRIMER 109 l1-APR-83 



Arrays 

#\a 
#\A 

#\Control-a 
#\Meta-\a 

Some characters have names, 
#\Rubout 
#\Hyper-Space 

lOt 

; Lowercase U aU . 
; Uppercase "a" . 
; Uppercase "a", with the control bit. 
; Lowercase "a''', with the meta bit. 

which may be used in place of the character itseff: 
; Thettrubout" or "delete" character 
; The "space" character with the hyper bit. 

NJL . Pri:lnc;r . 

Only a subset of ,all possible characters are allowed to be contained in strings. These comprise 
the string -char data type. It happens that in NIL these are those characters which have no font· 
or bits attributes (both are 0). 

The NIL character set has not yet been cleaned up with respect to the confusiohbetweenthe 
ASCII control characters and the characters. it uses with the control bit. The Ascucontrol 
characters read from files or the terminal are not mapped into characters ·with the control bit, 
except in special situations (like by the editor itselt). They are left as-is, and in principle these 
characters would make up an extended graphic character set like LISP MACI nNE LISP uses. These 
characters however do not have printed representations on standard ASCII terminals, so they have 
their own naming syntax: the character object for ASCII control-A, for instance, will display as 
# \ A A, and may be typed in as such .. Essentially, this "uparrow" syntax docs a logical xor of 
the following character (code) with 100 octal. 

4.5 Arrays 

Most of the remaining types of interest in NIL are various sorts of array. Arrays in NIL may 
have any rank from 0 to (about) 250. The indexing is always zero-origined. Arrays specialize in 
various ways. One-dimensional arrays are also of type vector, and may be used (interchangeably 
with lists) as sequences with various sequence operations. Arrays also specialize .according to what 
types of data may be stored in them. In particular, there are special array types which can only 
hold the fixnums 0 and 1, known as bit-arrays, and some which can only store ,objects of type 
string -char: one-dimensional arrays (i.e., vectors) with this element-type restriction are strings. 

Vectors which can hold objects of any types, called general vectors, maybe typed in by 
starting the sequence of objects with # ( and ending it with). For instance, 

#(foo (bar) #\A) 
is a vector with three clements: the symbol faa, a list of the symbolbar,and the character 
uppercase a. Such a vector may be empty (have zero length): 

#( ) 

Strings are typed in and printed out byenc10sing the characters of the string with 
. doublequotes. If the string is to contain doublequote or backslash characters, they must be 

preceded bya backslash character. The syntax 
"foo\\\"" 

is the printed representation for a ,string with five characters: f,'O, 0, bacKslaSh, and 
doublequote. 

'ML:XNILMA;PlUMER 109 ll-AP.R~83 



N II. Primer 11 Packages and Readtablcs 

Bit vectors are displayed as the characters # * followed by a sequence of 1 and 0 characters. 
Thus 

#*001110 
is a bit-vector of length 6~ its clements numbered zero to five arc 0, 0, 1, 1, 1, and O. 

NIL arrays can support various hair dealing with indirection, sharing, overlaying of 
datastructures, and adjustable sizes. Some of these are incomplete or undebugged, others are in 
usc, but none will be discussed further in this document. 

4.6 Packages and Readtables 

Details of these are not fit for this document. However, they need to be mentioned, because 
they will probably be encountered in some context or another. 

4.6.1 Readtables 

A readtable is the datastructure which defines the syntax used by read. The NIL environment 
contains a few for various purposes. Two in particular are of interest: these are the COMMON 

LISP readtable, and the NIL readtable. The default readtable used by NIL is the COMMON LISP 
readtable. The NIL readtable is the one utilizing the syntax designed for NIL several years ago, 
which is incompatible with COMMON LISP syntax. The irony here is that the NIL readtable is more 
compatible with the default MACLlSP and LISP MACHINE LISP reader syntax than the COMMON LISP 

readtable is, due to the interchange of slash and backslash for character quoting within tokens. 
For this . reason, certain otherwise-vanilla source files will sometimes explicitly specify the NIL 

read table. There are other disparities having to do with the reading, of characters as both fixnums 
and as character objects, but the point is to note why a specification of the readtable might be 
necessary. 

4.6.2 Packages 

In NIL, as in LISP MACHINE LISP, not all symbols share the same "name space". They are 
organized into packages, which are a structured organization of symbol tables. (This is like 
having multiple obarrays (of MACLISP) or oblists (of LISP 1.5), but there is more structure imposed 
on it.) Packages will not be documented here, other than what their existence may imply even 
when they are not used. Knowledge of interning (at least in the LISP 1.5 sense) is assumed. 

The colon (:) character is reserved for specifying the package into which the following symbol 
is to be interned. In fact, the package system provides inheritance, so the symbol may actually 
be inherited from some "superior" package. There is a "root" package, called global, which the 
symbols which are for use by everyone are inherited, for instance. It contains the symbols which 
name system functions (like car), variables (like the constants most-positive-fixnum and pi), and 
some just used as symbols (like the type name double-float). The syntax si:internal-eval means 
"the symbol internal-eval read in (as if from) within the package named si". (si is the short 
name for system-internals, where most of the random innards of NIL reside.) 

ML:XNILMA;PRIMER 109 ll-APR-83 



Packages and Rcadtables 12 . ,-:NILBrimer 

There is a special package which is referred to with an empty "package' prefix"; this is used 
for keywords, those symbols which are tested for equality with eqand must remain so no matter. 
which package they are read into. Many functions take arguments "by keyword" sa' tha~ there, is 
less confusion about which arguments go in which position. For convenience, these k:ey\yords self­
evaluate (and are constants). Thus~ one can type both 

(fill frobozz something :start 4 :end 51 
or 

(fill frobozz somethtni :end 5 :start 4) 
equivalently. 

For simple applications, it is usually not necessary to interact with the package system. other 
than to usc colons to type "keywords (as above), and to avoid them in other contexts.. NIL starts 
up in the user package, which is itself empty but provides access tOi aU the globally defined 
symbols. Restricted applications can usually function entirely from one package and not refer to 
any others. For instance, when MYCIN is loaded with (load.-mycin)}, it creates the mycin 
package, loads up the MYCIN files into it, and makes that the current. package. From then on, 
all interactions can be performed from there; all of the functions and variables of MYCIN are 
available. 

Mt:-,:XNILMA;'PRIMER 109, ll-APR-8J 



N II. Primer 13 Interpretation 

5. Interpretation 

5.1 Binding and Scoping 

The NIL interpreter uses lexical scoping. What this means, simply, is that variable references 
which are "textually within" the code which binds them, are valid. Those references which are 
not "textually within" the binding form are not, and will (typically) cause unbound-variable errors. 
Consider the definition " 

(~efun make-associations (keys single-value) 
(mapcar #'(lambda (key) (cons key single-value» keys» 

which takes a list of keys (perhaps for use by assoc), and returns an association list associating 
all of those keys with the same single value. The first argument to mapcar, the lambda 
expression, is technically a function. (The #' construct is explained below.) It is, however, 
textually within the binding of the argument single-value, so that variable reference is lexical, 
and that function works in NIL as desired. Consider the alternative form 

(defun make-associations (keys single-value) 
(mapcar #'make-one-association keys» 

(defun make-one-association (key) 
(cons key single-value» 

which might appear to be equivalent. The reference to single-value in the definition of make­
one-association is not textually within the binding of that variable, hence appears "free". 
Although this function (in the absence of extra declarations, as described below) would function 
"properly" in the MACLISP or LISP MACHINE LISP interpreters, it will not in NIL. It is interesting 
to note that (again without special declarative information) both the MACLISP and LlSPMACHINE 

LISP compilers will treat the second example as an error (or at least produce incorrect code), 
because although the interpreters do not enforce lexical scoping rules, code is compiled that way. 

A short note may be in order on the # ' construct which· appeared. above. # ' is an 
abbreviation for (function ... ), just as ' is an abbreviation for (quote ... ). In MACLISP, the two 
are equivalent. However, in NIL (and to some extent in LISP MACHINE LISP too), use of this 
special form is necessary to cause the proper (functional) interpretation of the form being 
evaluated. In fact, in the make-associations example, it is that special interpretation which 
makes the lexical reference to single-value "work". If quote was used instead of function, the 
example would not work as desired. function (or # ') need not just be used around lambda 
expressions. It may also be used around function names (as in the second make-associations 
example). The effect of evaluating (function name) is equivalent to what the interpreter does 
when it "evaluates" name in the function position of a list being evaluated. 

NIL does not restrict one to using only lexical scopingrules. It is possible to declare to NIL 

that a variable is special, and should be able to be referenced by code not textually within the 
binding constructOr, perhaps a variable should have a global toplevel value and not be bound 
anywhere, or maybe even have a toplevel value, and be bound in some places. This is the 
purpose of the special declaration, which NIL implements compatibly with COMMON LISP, and 
which is about the same as it is in LISP MACHINE LISP and MACLISP. 

ML:XNILMA;PRIMER 109 11-APR-83 



Binding and Scoping ]4 Nil. Primer 
I 

Most of the time, special variables arc declared to be special globally. 'Ibis means that the 
NIL interpreter (and compiler) will always treat the variable as being special, even if, there is no' 
declaration for it at the place it is bound. As a matter of style, variables declared special are 
usually given names which begin and end with the character * so that they can be' visually 
distinguished from more "ordinary" lexically scoped variables. One way - to globally declare a 
variable special is with defvar (page 17). For instance, 

(defvar *leaves*) 
(defun find-all-leaves (tree) 

(let ({*leaves* nil» 
(find-all-leaves-l tree) 
*leaves* 
) ) 

{defun find-all-leaves-l (tree) 
{cond ({atom tree) 

'; Empty set of leaves 
; Grovel over the tree 
; And return the leaves found 

(cond «not (memq tree *leaves*» 
(setq *leaves* (cons tree *leaves*»») 

(t (find-all-leaves-l (car tree» 
(find-all-leaves-l (cdr tre~»») 

There are more esoteric (or SCHEME-like) ways in which the ab~ve could have been performed, 
without the use of the special variable *Ieaves*, but the above is fairly straightforward, fairly 
efficient, and will run (both interpreted and compiled) compatibly in MACLISP and LISP MACHINE 
LISP. 

The above intuitive (or, if you prefer, hand-waving and vague) description can now be used 
to more fonnally define the terms of scope and extent which are used to'describe the accessibility 
and lifetimes of things, of which variable bindings are one instance. The scope of something tells 
where it may' be validly referred to. To say that something has lexical scope then means that it 
may be used anywhere "textuallytl within the construct which "creates" the object (e.g., the 
lambda-expression which binds a variable). Note that this does not in itself imply that the 
reference becomes invalid if that construct is exited. That dimension is the extent of the object, 
which tells the time during which the object \ (e.g., variable binding) is valid. dynamic extent 
means that the object (reference) is only valid during the execution of the construct indefinite 
extent means that there is no such limitation. Variable bindings in the NIL interpreter (which are 
not special) have lexical scope and indefinite extent. This means upward funarg capability. 

indefinite scope means that there is no restriction on where a valid reference may occur from. 
This is the case with special variables; the "free" references may be made from' any piece of 
code. The bindings of such variables, however, have only dynamic extent; they become invalid 
(are "unbound") when the binding construct is exited. This combination of scope and extent, 
which is quite common, is referred to as dynamic scope. 

ML:XNII ,MA ;PRIMER 109 ll-APR-83 

· , 



NIL Primer 15 Variables and Definitions 

6. Variables and Definitions 

. 6.1 Lambda List Interpretation 

Application of a lambda expression in NIL is much like that of LISP MACHINE LISP. A lambda 
expression is of the general form 

( 1 am b d a lambda-list {declaration} * {fonn} * ) 
In the simplest case, lambda-list is a (possibly empty) list of variable names, which are the formal 
parameters to the lambda expression when it is treated as a function. There must be as many 
arguments to the lambda-expression as there are variables. Thus, 

(lambda (a b c) -<list a b c» 12 (+ 3 4» 

=> (1 2 7) 

The lambda-list may also contain special keywords which begin with the character &. They 
are typically used to drive the matching of the fonnal parameters (variables) in the lambda list 
with the values they should be bound to. There are basically just four such keywords, each of 
which is optional, and which should appear in the order they are shown in: 

&optional 
The items from the &optional to the next &-keyword (or end of the lambda-list) describe 
optional arguments to the function. Each such item may be of one of the following 
forms: 

& rest 

variable 
If a corresponding argument is supplied, then variable will be bound to that. 
Otherwise, it will be bound to nil. 

(variable) 
Same as an isolated variable. 

(variable init-fonn) 
If there is a corresponding argument, then variable is bound to that. If not, then 
init-form is evaluated, and variable bound to that result. The evaluation of init­
form is performed in an environment where all of the variables in the lambda list 
to the left of this one have been bound already. 

. (variable init-fonn init-p-var) 
Just like the previous format. Additionally, init-p-var will be bound to t if there 
was an argument sup.plied, nil if not. 

There must be exactly one item between an &rest keyword and the next &-keyword (or 
the end of the lambda-list). This variable is bound to a list of all the remaining 
arguments to the function. 

&key 
The . items between &key and either &aux' or the end of the lambda-list describe 
keyworded arguments to the function. These are arguments which are passed by keyword 
rather than by position: when given, it must be preceded by the keyword naming which 
argument it is. For example, the calls 

ML:XNILMA;PRIMER 109 11-APR-83 



Defining Functions 16 

(fill sequence new-item :start start:end end) . 
(fill sequence n·ew:-item :endend :startstart) 

NIL. Primer 

are effectively the same. All :keyworded ar.guments . are by default ,optionaL.· The 
specification of a keyworded argument in.the lambda list·isnoririally the··· sam.eas that of 
an optional argument. The name of the variable is used to generate the 'keyword which 
flags that particular parameter. For instance, 'fill is defined with the lambda-list 

(sequence item &key (start 0) end) 
Additionally, with the non-atomic forms of optional parameter specification, a list of the 
actual keyword which should be used and the variable to bind the argument to may be 
used instead. For example, if it were desired that thekeyword:startheused .toflag the 
starting index, but .that the formal parameter be named i,then the lambda-list could have 
been written as 

(sequence item &key ((:start i) 0) eod) 
It is important .. to note that if both & key and &rest are given, then ,the 1ist the· &rest 
variable is bound· to is the same list from whichthekeywordcd arguments .areextracted. 
This is sometimes useful if the arguments are goiI}g to be passed en~mass tOSOlne other 
function using apply, and is rarely used. 

6.2 Defining Functions 

defun name lambda-list {declarations}- fonns... Special Form 
defun is pretty much like a MACLISPor LISP MACI-IINE LISP defun. In NIL, ~h case you 
arc interested, a defun in the interpreter globally defines the function name asa closure 
over the lexical environment in which thedefun is .performed. The lambda-list is a 
COMMON LISP compatible lambda-list, which is mostly the same as that used by USP 
MACHINE LISP; the special keywords &optional, & rest, &aux, and &keyare interpreted 
accordingly, as described above; defun simply associates the function name with a 

, corresponding lambda-expression constructed ·from the lambda-list, declarations,and forms. 

defmacroname pattern forms... Macro 
defmacro is used for defining macros... It is described in the . Mac1isp Extensions Manual 
[5]. 

6.3 Defining Variables 

Because of the lexical nature of the NIL interpreter,thosevariables which are going to be 
used "free" from functions, or which are going to be ·globallyassigned values, areusuaHy best 
"defined" at top·Jevcl. Globalflec1aration that a variable with a particular name will be special 
avoids problems with subtleties of 10caldec1arations. For the same reason, it is conventional for 
special variables (which are not constants defined with defconstant) to begin and end with the 
character,. . (Note that most NIL system variables do not obey this convention, mainly because 
they ,have not been converted yet.) 

MI.:XNILMA ;/PRIMER 109 11:-APR.,,83 



Nil. Primer 17 Droning Variahles 

defvar variable [in it] [documentation] Alaero 
defvarisused for "defining" variables. It should only bc lIsed "at top level" in a source 
filc,not from within code. If thcre is no init· form spccificd, then it simply globally 
declares variable to be speciaL I f there is an inil fOfm specified, then, if variable does not 
have a value already, the illit form will be evaluated and variable set to that. 
documentation;. if present, should be a string which "documents" the variable. It will be 
remembered somewhere where no one is likely to find it. 

defparameter variable in it [documentation] . Alaero 
'nlis is likedefvar,exccpt that variable is unconditionally set to the value of inil. Thus, 
the. init form must always be specified. 

. . . 

defconstsl1t vdriabl~ in it [dOCl,II1ZelUation] Alaero 
This is likedefpararneter,but additiorial1ystatcs thatvatiable is a constant. It is an error 
to bind otsetq that. variable. ,Sometirncsthc NIL com.piler ll1ay take advantage of this 
information,' If; ·.when ad~fconstantformisevalt1ated, variable already has a value 
which is different from what inil evahtates to. a correctablcetror is signalled. 

defconstant will fail to make' variable truly constant if it already has a value not assigned 
by defconstant; or even if there is compiled code which references variable. 

ML:XNILMI\;PR IMERt09 ll-APR-83 



I >red ic a tes 18 

7. Predicates 

7~ 1 Equality 

eq objectl object2 
Returns t if object! and object2 are "the same". In general, 

(setq x (compute-something» 
(eq x x) 

;;> t· 

Nil, Primer 

Equal numbers are not necessarily eq, however. For numeric equality, one should use 
eql, or, if arithmetic equality irrespective of type is desired (i.e., conversion from integer 
to floating may be needed), = (page 28) should be used. 

aq 1 objectl object2 
This predicate is a slight extension of eq. It is used as the default equality predicate by 
many NIL functions. Essentially, it is equal for non-stnlctured objects: two numbers are 
eql if they are of the same type and numerically equal, character objects are eql if they 
represent the same characters, etc. However, stnlctured objects, such as lists, strings, 
vectors. and arrays, are eql only if they are eq. Thus, 

(eql (addl (subl 0.0» 0.0) => t 
(eq (add1 (sub1 0.0» 0.0) => nil 
(eql (cons 'a 'b) (cons 'a 'b» => nil 

aqua 1 objectl object2 
This is the more traditional (and more general, in some sense) equality predicate. If 
object I and object2 are not structured, then they are compared like eql (above) does. 
Two lists are equal if their cars and cdrs are respectively equal. Otherwise, if they ate 
both arrays (which includes strings, vectors, and bit-vectors), they are equal if they have 
the same rank and dimensions, the same clement types (a string cannot be equal to a 
non-string array of characters), and equal elements. 

Note that in MACLISP and LISP MACHINE LISP, equal never· descends into arrays other 
than strings. In NIL, it is more consistent in its handling of the various types of array. 
Note also that in LISP M:\CHINE LISP, the special treatment of strings is different in that it 
performs a case independent comparison, which is inconsistent with both the ideas of 
simply recursively descending into the object and performing recursive equal tests, and 
the heuristic that two objects are equal if the "print" the same. 

Ml.:XNILMA:PRlMER 109 11-APR-83 
: .... :.: ..... 



Nil. Primer 19 Types 

7.2 Types 

null x 
Returns t if x is nil, nil otherwise. 

not x 
Same as null. not implies that nil is representing boolean false, null implies that it 
represents the empty list. 

atom x 
t if x is not a cons, nil if it is. Note that arrays (and strings and vectors) are all atoms, 
even though they have structure (which may be descended by such functions as equal). 

l1stp x 
t if x is a cons or nil (the empty list), nil otherwise. Note that listp does not examine 
anything but the type of the object; it does not verify that x is actually a "proper list", 
one whose last cdr is nil. 

Note that in LISP MACHINE Ll.SP, listp is false for nil. NIL is compatible with MACLISP 

(and COMMON LISP) here. 

consp x 
t if x is a cons, nil otherwise. 

integerp x 
fixp x 

t if x is an integer, nil otherwise. fixp is provided for MACLISP compatibility. It is 
entirely identical to integerp. 

floatp x' 
tif x is any kind of floating-point number, nil otherwise. 

numberp x 
arrayp x 
vectorp x 
stringp x 

The list goes on and on. 

typep object &optional type 
If no type argument is supplied, this returns the name of the type of object. This 
returned result is almost always something much too internal for practical use, and is 
certainly not compatible with MACLISP. In this case typep isn't even a predicate. 

If. the type argu~ent is supplied, then typep returns t if object is of the type type, nil 
otherwise. type may be a general COMMON LISP type specifier. Typically it is a symbol 
which names a type. An exhaustive list of the allowable types is not provided here (and 
is, in fact, extensible anyway). It includes such type names as nUll. cons, list, integer, 
rational, number, character, string, array, closure, vector, function, hash-table, 
and stream. typep will complain if type is not a valid type specifier. 

ML:XNILMA;PRIMER 109 II-APR-S3 



Control and Program Structur~ 20 . NlI. Primer 

8.ControiandPro.gram ,Stru'cture 

8.1 Binding 

1 at letlist {declaration}* forms... SpecialFonn 
let binds the variables to the values specified in letlist, and .evaluates forms in that 
environment, returning the value(s} .resulting from the evaluation of the last form. The 
Ie/list is a list of the form 

( {variable ;1 (variable)l( variable .init-fonn) }*) 
In the first two variants, the variable wiUbebound to nil; in the' last, to the evaluation 
of init-jonn. All of the init-forms in the le.tlist are evaluated· hefore any.ofthe variables 
are bound. For example, 

( 1 e t( (x 1)( y2 J ) 
(let {{x y) {y xl) 

(list x y») 
= => (2 1) 

That form is equivalent to 
«(lambda (x y) 

( (1 ambda(x y) 
(list xy» 

y x») 
1 2) 

1 at * letlist {declaration} * forms... Special Form 
let* is like let syntactically, but the variables are bound sequentially rather than in 
parallel. That is, first the first init-form is evaluated and the first variable bound to that, 
then the second init-form is evaluated in that new environment, etc. So, 

( 1 e t * (.( x 1)( y2 ) ) 
( 1 e t * « x y )(yx) ) 

(list x y») 
=>( 22) 

8.2 Flow of Control 

cond {(predicate-form {consequen/}*)}* SpecialForm 
Ordinary everyday LIsPcond. Each "Clause" is ·examined in succession; the predicate­
form is evaluated, and if the result is not illil, then the consequents of that clause are 
evaluated, and the value(s)of the last .are returned as the value(s) of thecond, without 
further examination of any other clauses. If there are no consequents in tbeclause, the 
value the predicate form returned is returned instead. If no predicate-fonn "succeeds", 
cond returns nil. 

(defun fact (n) 
{e,ond «= nO) 1) 

(t (times n (fact (su:blnl);))) 

Ml ~:XNILMA;PRIMER 109' 11-I\PR.,R3 



NIL Primer 

1 f predicate-form then-form [else-fonn] 
A simpler binary condo 

(defun fact (n) 

21 

(if (= n O) 1 (times n (fact (subl n))}}} 

Iteration 

Special Form 

case item {(keyspec {consequent} +)}* Special Form 
This is similar to, but somewhat more general than, the caseq and selectq macros of 
MACLISP and LISP MACHINE LISP (which NIL define in tenns of case). The item is 
evaluated, then is matched against keyspec of each clause in turn. If it matches, then the 
consequents of that clause are evaluated, and the value(s) of the last returned as the value 
of the case; if none match, the case fonn evaluates to nil. 

A keyspec may be an atom or a list. The key matches if keyspec is a list and the value 
of item is a member (using the predicate eql-see page 18) of that list, or if keyspec is 
the atom t (allowing an "otherwise" clause), or if keyspec is an atom and is eql to the 
value of item. 

8.3 Iteration 

(defun integer-description (n) 
(case n 

(0 "none at all") 
(1 "just one") 
{2 "a couple"} 
«3 4) "a few") 
«5 6 7) "several") 
(t "many")}} 

map 1 function &rest lists 
mapc function &rest lists 
map 11 s t jUnction &rest lists 
mapcar function &rest lists 
mapcon jUnction &rest lists 
map can function &rest lists 

These are the "traditional" functions for iteration down lists. There must be at least one 
list specified; the iteration terminates when any list "runs out". The function is called on 
as .many arguments as there are lists. mapl, maplist, and mapcon apply the function to 
successive sublists of the lists; mapc,mapcar, and mapcan to successive elements. 

mapl and mapc are primarily for effect; they both return the first list argument given to 

them. 

maplist and mapcar return a new list, the elements of which are the results of 
applications of jUnction. That list will thus have as many clements as the shortest of the 

lists. 

mapcon and mapcan "splice together" the results of the applications of jUnction, (as if) 
by nconc. This allows multiple new clements (or none) to be returned. 

ML:XNILMA;PRIMER 109 Il-APR-83 



Iteration 

(mapc #'print '{a be}} 
prints 
a 
b 
e 
and returns 
(a b c) 
(mapl #'print '{a be}} 
prin~ 

(a b e) 
(b c) 
(e) 
and returns 
(a b e) 

22' 

(mapcar #'(lambda (x y) {plus (times x 2) y» 
'(1 2 3) '(4 56}) 

=> (6 9 12) 
(defun odd-ones {l} 

{mapcan #'(lambda (x) {and (oddp x) (list x») 1}} 
(odd-ones '(I 2 3 4» 

=> (I 3) 
(defun destructively-remove-duplicates (1) 

{mapl H'(lambda (sublist) 
(rplaed sublist 

NIL PrilTlqr ... ;:. -

{delq (car sublist) (cdr sublist}») 
1 } ) \ 

(destructively-remove-duplieates '(a b b c b dee}) 
=> {a bed e} 

Note that mapl is the same as the MACLISP a,nd LISP MACHINE LISP function map. In 
NIL, the function map is a more general sequence iteration function, which takes different 
arguments. 

dot imes (var count) {declaration}· body... Special Form 
Evaluates the fonns in body in an environment wherevar is stepped from ,0 up to (but 
not including) the value of -count. body is actually a tagbody body, and dotimes 
establishes an implicit block named nil,thus 'returnmay be used to return a value f"om 
the dotimes before the iteration terminates; see section 8.4, page 23. 

dol ist(var list} {declaration}· body... Special Fonn 
body is evaluated with var bound to the successive elements of the value of the form !isle 
body is actually a tagbody body, and dolistestablishes .an implicit h,locknamcd ,nU,thus 
return may he used to retur~ .a value from the dolist before :the iteration terminates; see 
section -8.4, page 23. 



NIL Primer 23 Block and Taghody 

dovector (var vee lor) {declaration}* body ... Special F ortn 
Similar to dolist, but for vectors. 

8.4 Block and Tagbody 

block and tagbody together implement the flow-of-control functionality provided by standard 
prog. prog could have been implemented as a macro in terms of these and let, and in fact is 
described in that fashion by COMMON LISP. 

block name {declaration}* lfonn}* Special Fonn 
block evaluates the forms. If a lexically apparent return-from is evaluated with a tag of 
name (or name is niland a return is evaluated), then the value(s) of the form given to 
return or return -from are returned as the value of the block form. Otherwise, the block 
fonn returns the value(s) of the evaluation of the last form. 

return form Special Fonn 
Evaluates form, and returns the value(s) it returns from the nearest lexically apparent 
block with a name of nil. Many special forms implicitly establish blocks named nil, such 
as do, dolist, dotimes, dovector. 

Note that this differs subtly from LISP MACHINE LISP. In LISP MACHINE LISP, return 
returns from the innermost prog (Le., block) which is 110t named t. In NIL (and COMMON 
LISP), a return to a block name of nil only matches a block name of nil, and the block 
name t is not distinguished in any way. 

return-from name /01111 Special Form 
Evaluates form, and returns the value(s) it returns from the nearest lexically apparent 
block with a name of name. name is not evaluated. 

tagbody {tag I form}* Special Form 
The body of a tagbody is examined sequentially. If a form is atomic, then it is a tag and 
is ignored, otherwise it is evaluated. If during the evaluation a lexically apparent call to 
go is evaluated with an argument of one of the tags, then control is returned to that 
point within the tagbody form, which resumes its interpretation. If the interpretation 
reaches the end of the tag body, the result is niL 

go tag Special Form 
tag is not evaluated. Control is returned to the nearest lexically apparent tag body form 
with a tag name of tag, which resumes interpretation of the tagbody at the form 
following that tag. 

. prog varUst {declaration} * {tag I form}* 
Standard prog. varUst . may be a list of variables, 
initial values. They will be bound· in parallel. 
primitives: 

Special Fonn 
or a list of lists of variables and their 
prog can be built from the above 

ML:XNILMA;PRIMER 109 l1-APR-83 



Generalized Variables 

( 1 e t varlist 
the declarations 
(block nil 

24 

(tagbody the tags imdfomls) ) ) 

NIL Primer 

For compatibility with LISP MACHINE LISP, if the first "argument" to prog is a non-null 
atom, then that is used as the name of the block, with the varlist following. 

loop gubbish... Macro 
loop is described in another document [4]. It is noted here because it deals correctly with 
the incompatibilities between LISP MACHINE' LISP and COMMON LISP blocks and returns. 

8.5 Generalized Variables 

set f place value ,.,1 acro 
setf is a general macro which is used to modify things. place is a form which describes 
the place to be modified; it may be something like x, a variable, (car something), or 
even a user-defined structure reference. It expands into code which will modify that place, 
to be value, additionally guaranteeing that the return value of the setf form is that value. 
Thus, one may use 

(setf (car 1) 'fool 
instead of 

(rplaca 1 'fool 
The utility of this is that the special functions (if indeed there are any) necessary to 
perfonn the specified updating need not' be known about. In fact, COMMON LISP does not 
even define most updating functions, only that the referencing functions may be used with 
setf. 

If place is a variable, then setf is equivalent to setq. place may also be any car/cdr 
function, sequence function (such as nth, elt, vref, and bit), Of any structure accessor 
defined by eith,er defflavor (which is not described here) or defstruct (in the Maclisp 
Extensions Manual, [5]). 

ML:XNILMA;PRIMER 109 11-APR-83 



NIL Primer 

9. List Manipulation 

car 
cdr 
c****r 

25 

car and cdr combinations to 4 deep, as in MACLISP. 

cons x y 
ncons x. 
xcons x y 
1 is t* el e2 e3 ... en last· cdr 
11 s t ei e2 e3 ... en 

append (list)* 
{append '(a b c) '(d e f» => (a b cd e f) 

All but the last or'the lists are copied . 

. nconc (list)* 

List Manipulation 

Concaten tates the lists, destructively; the last cdr of each is bashed to point to the 
following list 

{setq a '( a b c» 
(setq b nil ) 
{setq c t (d e f» 
(nconc a b c) 

=> (a b c d e f) 
a => (a b c d e f) 
b => nil 
c => (d e f) 

nth index list 
Returns the indexth element of list, zero-origined. nth is compatible with the nth of . 
MACLISP and LISP MACHINE LISP, and differs from that of INTERLISP. Note that the 
argument order differs from that used for most other sequence-accessing functions defined 
by NIL and COMMON LISP. 

nthcdr index list 
Returns the result of cdring list index times. 

last list 
Returns the last cons of list, unless list is nil in which case nil is returned. 

nreconc list other 
This destructively reverses list and bashes its last cdr to be other; that is, it is like doing 

{nconc (nreverse list) other) 

Certain other list operations, such as reverse and nreverse, are actually generic sequence 
operations, described in section 13.1, p~ge 33. 

ML:XNILMA;PRIMER 109 11-APR-83 



Using Lists as Sets 26 . NIL Primer 

9.1 Using Lists as Sets 

One common use of lists is as sets of objects. NIL (and COMMON LISP) provide a complement 
of functions for doing this. 

All of the functions take similar arguments. Normally, they use eql as their predicate, so that 
they work on numbers properly also. If this is not suitable for the purpose, then a predicate may 
be specified by giving it as the :te5t keyworded argument. For instanc'e~ . 

(union '«a b) (b) (el) '«d) (e) (a b) (b» :test #'equal) 
=> «a b) (b) (c) {d) (e» 

The sense of the predicate can be reversed by using :test~ not instead of :test. 

Sometimes the elements of the set are datastructures of some sort, and one desires to only 
compare one part of the datastructure, but not write a predicate to compare things. If the :key 
keyworded argument is used, then that is a function which win. be applied to each clement as it 
is tested, and the resul~ of that will be given to the equality predicate, rather than the elements 
themselves. For example, 

(union '«a) (b) (e» '«d) (e) {a) (b)) :key #'car} 
=> «a) (b) (e) (d) (e» 

The ordering of the result may not be depended on; neither may the result if either of the inputs 
contains duplicate elements (as defined by the predicate). 

un i on listl list2 &key :te5t :te5t-not :key 
Returns the union of listl and list2. 

intersection listl list2 &key :te5t :te5t-not :key 
Returns the intersection of listl and list2. 

set-difference listl list2 &key :test :test-not :key 
Returns the set difference o.f list! and list2 (a list of the elements of listJ which are not 
present in list2, according to. the predicate). 

set-exclusive-or list! list2 &key :test :te5t-not :key 
Returns a list of the elements which occur in either listl or list2, but not both, according 
to. the predicate. 

subsetp listl list] &key :test :test-not 
Returns t if listl is a subset of (but not necessarily a proper subset of) list2, nil otherwise. 

ML:XNILMA;Pl~TM.ER 109 ll-APR-83 



Nil, Primer 27 Symbols 

10. Symbols 
ge t symbol indicator 

Although get works ori "disembodied property lists" for MACLISP and LISP MACHINE LISP 
compatibility, it treats a first argument which is neither a symbol nor a list as an error. . 
(MACLISP get will return nil for other objects.) 

putprop symbol value indicator 
As in MACLlSP, works on both symbols and disembodied property lists. 

remprop symbol indicator 
MACLISP-compatible remprop. If symbol (which may also be a disembodied property list) 
has an indicator property, it is spliced out of the property list, and the subpart of the 
property list whose car is (was) the value for that indicator is returned. If there is none, 
nil is returned. 

P 11 s t symbol 
Returns the propertly list of symbol. Does not work on disembodied property lists. 

setpl1 st . symbol new-plist 
Bashes the property list of symbol to be new-plist. Does not work on disembodied 
property lists. Use of this should normally be left to only those functions which carefully 
interlock addition and deletion from the property list, to avoid both timing screws and 
elimination of properties needed by "someone else" . 

. '~ ' ...... ~ 

ML:XNILMA;PRIMER 109 Il-APR-83 



Numbers 28 

11. NUll1bers 
NIL numbers may be integers, floating· point, ratios, or even complex. Most arithmetic 

functions operate on any types, and convert as necessary; in general, contagion proceeds from 
integer -) ratio -) float -) complex. For the operations performed on the real and imaginary parts 
of complex numbers, the conversion is similar. 

.S 

Complex numbers in NIL arc on the order of days old. Although they exist, they\Vill not be 
supported by most functions in NIL for some time. 

= number &rest· more-numbers 
/ = number &rest more-numbers 

Return t if all of the numbers (in all palrWise combinations) are equal or not-equal 
respectively. Performs type conversions as necessary to do the comparisons. 

< number &rest more-numbers 
< = number &rest more-numbers 
)= number &rest more-numbers 
) number &rest more-numbers 

The numbers must all be real numbers. Each function returns t if all consequetive pairs 
of arguments satisfy the appropriate comparison. Type conversions are performed as 
necessary to do the comparisons. 

zerop number 
t if number is integer, floating, or complex 0, nil otherwise. 

P 1 usp real-number 
min u sp real-number 

1+ number 
add1 number 

Adds one to number. 

1- number 
sub1 number 

Subtracts one from number. 

+ &rest numbers 
plus numbers 

Adds together the numbers. 

- number &rest more-numbers 
( - number) performs unary negation on n.umber. With more than one .argument, it 
subtracts the sum of the rest from the first 

M f ,:XNILMA ;PRIMER 109 l1-APR-83 



NIL Primer 29 Numhers 

d i ffe renee &rest numbers 
Subtly different from -; difference is MACLISP compatible. If there are no numbers, 0 
(the identity) is returneQ: Otherwise, the sum of all the numbers but the first is 
subtracted from the first. That is, (difference x) =) x, not (- x). 

* &rest numbers 
t 1 me s &rest numbers 

Returns the product of all the numbers. If none are given, * returns 1, the multiplicative 
identity. 

I number &rest more-numbers 
(/ number) returns the inverse of number. Otherwise, / divides the first by the product 
of the rest. If all of the involved quantities are integers, then / will produce a ratio 
rather than truncating the answer (as Quotient does). 

quot i ent &rest numbers 
If there are no numbers,. then quotient returns 1, the multiplicative identity. Otherwise, it 
divides the first by the product of the rest; with exactly one argument, that argument is 
returned. If all of the involved quantities are integers, then quotient will return a 
truncated integer result, rather than convert to either a ratio or a floating result. This is 
compatible with MACLISP. 

rama i nder integerl· integer2 
(remainder n/ n2) =) r, such that 

(plus (times (quotient nl n2) n2) r) => nl 
This is MACLISP compatible. 

expt base power 
Raises base to the power power. If both are integers the result will be an integer. If 
either are floating, then the result will be floating, computed by logarithms. 

exp number 
Raises e, the base of natural logarithms, to the power number. This currently always uses 
floating point, and nurnber must be real. 

log number &optional base 
Returns the logarithm of number in base, which defaults to e. This currently always uses 
floating point, so number and base must be real numbers. 

sqrt number 
Returns the (principal) square root of number. This currently uses only floating point, so 
number must be real although the result may be complex. 

1 sqrt integer 
Integer square root. Returns an integer (truncates). 

ML:XNJI.MA;PRIMER 109 ll-APR-83 



I.ogical Operations 

s 1 n radians 
cos radians 
tan radians 

. s 1 nh radians 
cosh radians' 
tan h radians 
as 1 n real 
acos real 

30' 

Standard trig., Only deal with floating point, hence the arguments must be real. 

at an x &optional y 

11.1 Logical Operations 

NIL Primer 

Integers in NIL are all represented in twos-complement notation. They may be viewed as a 
vector of bits extended infinitely; a negative integer extended with ones, a non-negative integer 
extended with zeros. 

log bit p bit-number integer 
Returns t if the bit at position bit-number is on in integer, nil otherwise. bit-number is 
zero-ori~ined, with 0 being the least significant bit. Thus, 

(logbitp 0 1) => t 
(logbitp 0 -2) => nil 
(logbitp 1 1) => nil 
(logbitp 259259259 15) => nil 
(logbitp 259259259 -2) => t 

10gand &rest integers 
log 1 0 r &rest integers 
10gxor &rest integers 
logeqv &rest integers 
10gnand integer] integer2 
1 ogno r integer} integer2 
logan dcl integer] integer2 
10gandc2 integer] integer2 
logorcl integer] integer2 
10gorc2 integer] integer2 
10gnot integer 

These routines supercede the use of the boole function, providing more mnemonic names. 
"cl" and "c2" suffixes can be read as it-complement-first-arg" and "·complement-second­
arg"; thus, logandc2 is logical and of the first argument with the complement of the 
second argument. 

.-
:ML:XNILMA;PRIMER 109 11-APR-83 



NIL Primer 31 Conversions 

i nteger-1 ength iilteger 
This returns the size of integer. This is defined such that integer in twos-complement 
notation can fit in a field that long plus one. 

(integer-length 0) => 0 
(integer-length -1) => 0 
(integer-length 1) => 1 
(integer-length -2) => 1 

11.2 Conversions 

float number 
Converts number to floating-point. 

fix number 
Converts number to an integer, by flooring (rounding towards negative infinity). This is 
compatible with MACLISP. 

ML:XNILMA;PRIMER 109 ll-APR-83 



Characters 32 NIl, Primer 

12. Characters 
Here are some of the functions on characters which may be useful. 

char-equal characterl character2 
Returns t if characterl and character2 are the same character, ignoring case, font, and 
bits, nil otherwise. 

char-greaterp characterl character2 
Returns t if cha'racterl is "strictly less than" character2, ignoring case, font, and bits. All 
alphabetic characters, and all digits, collate in the obvious way with respect to one 
another. 

character Jrobozz 
Coerces Jrobozz into a character. 

char-code character 
char-bits character 
char-font character 

'nlese functions: return the code, bits, and font attributes of their argument, as an integer. 

code-char code &optional bits font 
Returns a character with· code attribute code, bits attribute bits, and font attribute font. 
bits and font default to O. If it is not possible to construct such a character (possibly 
because NIL docs not support code, bits, or font attributes of the' values given) then nil is 
returned; 

make-char character &optional bits font 
Just like 

(code-char (char-code character) bits font) 

All characters have unique integer representations. The following two functions convert back 
and forth from integers. to characters .. They are what arc used to provide that mapping for the 
MACLISP 110 functions which deal with integers· rather than characters. 

char- i nt character 
Converts character to its integer representation. By definition, if character has no (Le.,O) 
bits and font attributes, then char-int is the same as char-code. char-int can be used 
as a fast hash function on characters. 

i nt-char integer 
This is the inverse of char-int. If integer is in the range which might be returned by 
char-int on some character, then that character is returned; otherwise, nil is returned. 

There is also a large number of predicates on characters for testing such things as alphabetic­
ness, digit-ness, and for converting back and forth from digits to integer-weights. These are all 
documented in the NIL release notes and the COMMON LISP manual [1]. 

tv1I.,:XNILMA;PRIMER 109 11-APR~83 



NIl, Primer 33 Sequences, Strings, and Arrays 

13. Sequences, Strings, and Arrays 
The parts of NIL dealing with sequences, strings, and arrays, are gradually being brought up 

to COMMON LISP specifications. If more information is needed than is presented here, either the 
NIL Release Notes or a bootleg Common Lisp Manuai should be consulted. 

13.1 Sequences 

A . sequence is considered to be either a list or a vector (which is by definition a one­
dimensional array). A few functions which might be useful are presented here. 

Many sequence function take start and end arguments to delimit some subpart of the sequence 
being operated on. As a general rule, the start is inclusive, and the end is exclusive; thus the 
length of the subsequence is the difference of the end and the start. The start typically defaults 
to 0, and· the end to the length of the sequence. Also, the end, where it is an optional 
argument, may be explicitly specifie~ as nil, and will still default to the length of the sequence. 

e 1 t sequence index 
This is the general sequence access function. It returns the indexth element of sequence; 
the index is taken to be zero-origined. This will work generally on lists, vectors, strings 
(which are by definition vectors anyway), etc. One may modify an element of a sequence 
by using setf. For instance, 

(setq v (make-vector 10» 
=> #(ni1 nil nil nil nil nil nil nil nil nil) 

(setf{e1t v 5) 'fool 
=> foo 

And now, 
v => #(ni1 nil nil nil nil foo nil nil nil nil) 

1 ength sequence 
Returns the "length of sequence. 

sub seq sequence start &optional end 
Returns a sequence of the same type as sequence, containing elements from start up to 
(but not including) end. 

(subseq "foo on you" 4) => "on you" 
( sub seq " f 0 0 0 n .y 0 u " 4 6) = > tt 0 n " 
(subseq "foo on you" 4 3) => is an error 
(subseq '(a b c d) 1 3) =>' (b c) 

Note that the result of subseq never shares with the original sequence. Thus, (subseq 
list 5) is not the same as (nthcdr 5 list). In fact, subseq would signal an error in this 
case if the list did not have at least 5 elements. 

ML:XNILMA;PRIMER 109 11-APR-83 



Sequences 34 N 11 .Pri.lller 

copy - seq sequence 
Copies the sequence sequence. This might be necessary if the result is going to be 
modified, for instance. 

reverse sequence 
Returns a copy of sequence, with the. elements in the opposite order. 

nreverse sequence 
Reverses sequence, destructively; it does not create a copy. Note that if sequence is a list, 
one should always use the return value of nreverse; that is, do something like 

(setq 1 (nreverse 1» , 
rather than just 

(nreverse 1) 
This is in general true for all destructive list operations, such as sort and delq. The 
reason is that although the cons cells of the input list are reused, the pointer returned is 
not necessarily the same as the original "first" cons of the list 

make - sequence type size &key :initial-element 
Makes a sequence of the given type and size. The types of most interest are list, . string, 
vector, and bit-vector. If the :initial-element keyworded argument is given, then the 
. sequence is initialized with that element. Otherwise, the .initialization depends on the type 
of the sequence. For instance, 

(make-sequence 'list 5 :initial-element t) 
=> (t t. t t t) 

(make-sequence 'string 5 :initial-element #\*) 
=> "*****" 

concatenate result-type &rest sequences 
Creates a sequence of type result-type (as might be given to make-sequence), and stores 
in it the concatenation of all the elements of sequences. For instance, 

(concatentate 'strin'g "faa" "bar" "baz") 
=> "foobarbaz" 

(concatenate 'list "foo" "bar" '(1 2» 
=> (#\f #\0 #\0 #\b #\a #\rl 2) 

map result-type function &rest sequences 
This is the general sequence mapping function. Nqte that this is different from the 
MACLISP and LISP MACHINE LISP map function, which is renamed to mapl by . COMMON 
LISP. 

The result is a new sequence of type resu!t-type(cf. make-sequence), containing the 
results of applying function to the elements of sequences. There must be at least one 
sequence specified; function gets as many arguments as there are sequences~first it gets 
called on all of the first (index 0) clements, then on all the second elements, etc. The 
iteration terminates when the end of any of the sequences is reached. so the result will 
have the same length as the shortest input sequence. 

(map 'list #'cons "abc" rea be» 
=> «(#\a . a) (#\b·. b) (#\c . e» 

ML:XNILMA;PRIMER 109 ll-AVR-83 



NIL Primer 35 Sequences 

some predicate &rcst sequences 
If the result of applying predicate to the corresponding clements of sequences is not nil, 
that value is returned; otherwise, nil is returned. The predicate is called with as many 
arguments as there are sequences; first on all of the first (index 0) clements, etc. Only 
the parts of the sequences up to the length of the shortest are considered. 

every predicate &rest sequences 
Like some, but returns t if the result of applying predicate to the elements of sequences is 
never nil, nil otherwise. 

notany predicate &rest sequences 
Returns· t if the result of applying predicate to the corresponding elements of sequences is 
always nil, nil otherwise. 

notevery predicate &rest sequences 

fill sequence element &key :start :end 
Replaces the elements of sequence with element, from start (default 0) up to end (default 
length of the sequence). 

(setq a '(O 1 2 3 4 5 6» 
(fill a nil :start 2 :end 4) 

=>. (0 1 .ni1 nil 4 5 6) 
And now, 

a => (O 1 n; 1 nil 4 5 6) 

re place sequencel sequence2 &key :start :end :start1 :end 1 :start2 :end2 
Replaces the elements of the specified subsequence of sequencel by the elements of the 
specified subsequence of sequence2. 

(setq v (make-sequence 'vector 10» 
=> #(ni1 nil n;l nil nil nil nil nil nil nil) 

(replace v t{l 2 3 4 5 6» 
=> #(1 2 3 4 5 6 nil nil nil nil) 

v => #(1 2 3 456 nil nil nil nil) 

start and end are used as defaults for start!, endl, start2, and end2, which otherwise 
default to 0 and the lengths of the corresponding sequences. 'Ine number of elements 
transferred is the length of the. shorter subsequence. 

ML:XNILMA;PRIMER 109 l1-APR-83 



Strings 36 NIL Primer·· 

11.2 Strings 

There is a large complement of string functions in NIL, only a few of which will be 
mentioned here. Mostly they are like those used in LISP MACHINE LISP~ 

str 1 ng-equa 1 string! string2 &optional start! start2 end! end2 
This routine is the basic routine for doing case-independent string equality tests. That is, 

(string-equal "foo" "Foo") => t 
(equal "foo" "Foo") => nil 

As usual, the starts default to 0, and the ends to the lengths of the strings. If the lengths 
of the specified substrings differ, then the strings are not string-equal. Note that this 
function takes positional rather than key worded optional arguments, for historical reasons. 

s t r 1 n 9 -18 ssp string! string2 &optional start! start2 end! end2 
Returns t if the specified substring of string! is "less than" that of string2. The 
comparison is case-independent; effectively, lowercase characters are compared as if they 
were uppercase. If the first substring is a prefix of the second, then it is "lcssp". 

sub s t r 1 n 9 string start &optional end 
Like subseq (page 33). If the specified range is the entire string, the string may not be 
copied. 

str1ng-upcase string 
Returns a copy of string, with all lowercase characters converted to uppercase. 

str 1 ng-downcase string 
Returns a copy of string, with all uppercase characters converted· to lowercase. 

13.3 Arrays 

NIL supports a large portion of the COMMON LISP array specification currently. The MACLISP 
compatible array routines have been lost during the conversion, and have not been re­
implemented yet. What is described here is a simple subset of what is offered. 

In NIL, a one-dimensional array is a vector. Some types of arrays have restrictions on the 
types of objects which can be stored in them. For example, arrays which can only hold string 
characters are string-char arrays, and if they are one-dimensional (and hence vectors), they are 
strings. An array which can hold any type of object is termed a general array. At· this time, 
that is the most useful type of array (other than the very common special types string and bit­
vector), so that is all that will be discussed here. Also, obscure, esoteric, and non-working 
features have been omitted. 

In NIL, an array is an object all its own. They do not need to be associated with symbols or 
treated as functions in any strange way (as had been the case in MACLISP in the past). 

ML:XNILMA~PRIMER 109 11-APR-S3 



NIL Primer 37 Arrays 

rna k e -a r r ay dimensions 
This- creates an array with the specified dimensions. dimensions may be either a single 
non-negative -fixnum, or a list of dimensions~ If it is a fixnum, then a one-dimensional 
array (vector) is created; otherwise, the created array will have a rank of the number of 
dimensions specified. Thus, a lOxlO array could be created with 

(make-array '(10 10)) 

aref array &rest indices 
Returns the element of array selected by the indices. The number of indices must equal 
the rank of the array, and each index must be a non-negative fixnum less than the size of 
the corresponding dimension. 

To update an element of an array, use setf with aref: 
(setf (aref a i j) new-value) 

array- rank array 
Returns the rank (number of dimensions) of array. 

a r ray - dime n s ion array dimension-number 
Returns the size of the dirnension-number dimension of array. The dinlensions are 
numbered zero-origined; dimension-nmnber must be non-negative, and less than the rank 
of array. If an array had been created by (make-array '(2 3 4», then its 0 dimension is 
2, its 1 dimension 3, etc. 

array-d1mens ions array 
Returns a list of the dimensions of array. This could then be given to make-array to 
make another array with the same dimensionality. 

.ML:XNILMA;PRIMER 109 ll-APR-83 



I nput and Output 38 NIL Primer 

14. Input and Output 

14.1 Streams 

I/O in NIL uses streams. The operations perfOimed are implemented by sending messages to 
these streams; there are various levels of protocol involved, and it sometimes' gets quite 
complicated. However, for most ordinary applications, there are functions which may be used 
instead, providing a simpler interface, and some argument defaulting. 

There are several variables whose values are the streams used as the defaults in various 
contexts. If the name of the variable ends with "-input", then it is only expected to be used for 
input; "-output", then only for output; and "-io", then both. 

terminal-io '\ Variable 
This is the stream which reads from and writ~s to the terminal. 

standard .... 1 nput Variable 
This is the "default input stream", used as a default by functions which can default a 
stream argument and expect to use it for input. Normally, it is bound to a stream which 
indirects to the value of ·terminal-io. Some contexts may bind it, however; when one is 
compiling a file, or loading an interpreted lisp file, it will be bound to a stream which 
reads from that file. 

standard-output Variable 
This is the "default output stream", used similarly to standard-input, but for output. 
Normally, it is bound to a stream which indirects to the value of terminal-to; it may 
sometimes be bound to something else, however, potentially even .a· stream which 
"broadcasts" to multiple other streams. 

query-10 Variable 
This is a stream used by functions which query the user, such as yes-or-no-p (page 41)~. 

Normallyitindirects to the value of terminal-io, although it could conceivably by a 
stream which logs the interaction. 

Most of the stream functions (with a couple exceptions) also allow the stream to be one of 
the symbols t or nil. t is taken to mean the value of terminal-io, and nil the default stream for 
the operation; the value of either standard-input or standard-output, depending on whether an 
input or output operation is implied. The main exceptions are the (MACLISP compatible) 
cursorpos function (which is not described here), which defaults to using terminal...;io, and the 
format function (page 41). Also, some operations do not inherently have any directionality, so 
cannot detennine the meaning of nil as a stream (none of them are described here anyway). . 

ML:XNILMA;PRIMER 109 ll-APR-83 



NIL Primer 39 Basic I/O 

14.2 Basic liD 

14.2.1 Input 

Most input functions take (possibly in addition to some other arguments) optional stream and 
eofvalue arguments. If the stream argument is null or not supplied, the value of standard-input 
is used; if it is t, the value of terminal-io is used. The eofvalue argument detennines the 
behavior of the function if it is reading from a stream which can run out of data, as a disk file 
might wHen the end of the file is reached. If no eofvalue argument is supplied, then the 
function does not handle the end-of-file condition: an error is signalled. Otherwise, that value is 
returned by the function, in place of whatever object it would have read. Note, however, that 
end-of-file detected after the start of an object is always an error; thus, read will always error if 
there are (say) too few close-parentheses in the expression, but will return its eofvalue if end-of­
file is detected before the next LISP expression starts. 

read-char &optional (stream standard-input) eofvalue 
Reads one character from stream. 

ty1 &optional (stream standard-input) eofvalue 
Reads one character from stream, and returns its integer representation. This is provided 
only for MACLISP compatibility . 

. peek -char &optional (stream standard-input) eofvalue 
Returns the next character to be read from stream, but does not "advance the pointer". 
That is, repeated calls to peek -char with no intervening cal1s to read -char will return 
the same result, as will a single following call to read -char. 

ty1peek etc etc etc 
Tries hard to simulate MACLIsP-compatible tyipeek. May not always succeed. 

read &optional stream eofvalue 
Reads one LISP expression from stream. 

readl1 ne &optional stream eofvalue 
Reads one line of text from stream, and returns it as a string. The newline is passed 
over, but is not part of the returned string. 

14.2.2 Output 

For these functions, a stream argument of nil is the same as specifying the value of 
standard-output, and a stream argument of t the same as specifying the value of terminal-ie. 
This provides some semblance of MACLISP compatibility. (Also a nice abbreviation over using 
terminal- ie.) 

ML:XN]LMA;P~UMER 109 ll-APR-83 



Basic 'I/O 40 NIL Primer. . 

w r ; te - c h a r character &option~ll' (stream standard-outpU/) 
Writes character to stream. This must be an object of type character; a fixnum or a 
string are not acceptable. 

tyo integer-character &optional (stream standard-outpUll 
This is provided for MACLISP compatibility. integer-character must be the integer 
representation of a character (see int-char, page 32); it is converted to a character and 
given to write-char. 

pr 1 nc object &optional(stream standard-output) 
Prints object to stream. If object is a string, then only the characters contained in the 
string are output; if it is a symbol, then only the characters of the print name are output. 

p r 1 n 1 object &optional (stream standard-output) 
r-nlis is the basic entry to print a LISP object in such a way that it can be read back in 
again, hopeful1y. For the most part, this means that strings have doublequotes put 
around . them, and maybe have backslashes preceding contained doublequotes and 
backslashes, and symbols have their package printed as a prefix and in~y have vertical 
bars surrounding them if there are any characters in the print name which' would cause 
the symbol to not beread in as such. 

p r i n t object &optional stream 
(defun print (object &nptional (stream standard-output» 

(prog2 (terpri stream) 
(print object stream) 
(write-char #\space st~eam») 

terpr 1&optional stream 
Does a newline on stream. 

fresh-line &optional stream 
If the "cursor" of stream is not at the beginning of a line, this does a terpri. Thus, it 
can be used to guarantee that subsequent output starts at the beginning of a line, while 
not producing superfluous blank lines. 

pretty-pr i n1 object &optional stream 
"Pretty-prints" the object. The object is assumed to be LISP code; i.e., lists which start 
with special function names like defun, let, and cond are treated specially, and quote 
and function forms arc inverted to print out using the ' and #' prefixes. Note" that this 
does not start the output on a new line; this allows one to print a prefix first. 

l11is pretty-printer goes over the structure· it is printing to detect circularities, and displays 
them using COMMON LISP labelling syntax (which should be fairly obvious when seen). 
This labelling is not understood by the reader, but stops the printer from dying. 

Mt.:XNILMA;PIUMER 109 ll-APR-83 



NIL Primer 

pretty-pr i nt object &optional stream 
pretty-prin1, with a terpri first. 

41 

fo rma t destination control-string &rest arguments 

Interacting with the User 

format provides ways to produce simple to fancy text output. A simple call might look . 
like 

(format t n .... &The ,."A count was -0 ..... %" 'cat 10) 
The t tells format its text to the default output stream Gust like giving print no stream 
argument). Within the control-string, a tilde introduces a format directive. The directives 
in the above string mean (respectively) go to a new line if needed, prine an argument 
(taken from the arguments), print an argument as a decimal number, and output a 
newline' (terpri). The output from that thus looks like 

The CAT count was 10. 
format differs from the other output functions in how it interprets its destination 
argument; t means use the value of standard -output, and nil means collect the output 
and return it as a string. 

format is almost entirely compatible with the format used in MACLISP and LISP MACI-IlNE 

LISP. In fact, it uses the same source as the one used in both PDP-lO and MULTleS 

MACLISP (and has some of the same bugs). The only things missing in the NIL version 
are the operations which deal with floating-point numbers. More details on format may 
be found in either the Mac1isp Extensions Manual [5] or the Lisp Machine Manual; the 
fonner documents this version of format more accurately. 

14.3 Interacting with the User 

Some functions of potential interest. 

y - 0 r - n - p &optional message stream 
Prints the string message to the stream, which defaults to the value of query-io, and then 
reads a character. y-or-n-p requires that the character be either y or n, and returns t if 
it is y or nil if it is n. It is unusual to specify the stream argument to y-or-n-p, as the 
default will almost always suffice. 

yes-or-no-p &optional message stream 
Somewhat like y-or-n-p. The input, however, is an entire line, which must be either 
yes or no. yes-or-no-p is oriented towards unexpected questions which may have 
Significant consequences or require thought: it flushes all typeahead, and beeps. 

format-y-or:-n-p' format-string &rest format-args 
Like y-or-n-p, but uses format to display format-string with arguments fonnat-args. 

forma t -ye s - 0 r - no - p format-string &rest format-args 
Like yes-or-no-p, but uses format like format-y-or-n-p. 

ML:XNILMA;PRIMER 109 ll-APR-83 



Interacting with the User NIL'Primer 

. . :- ~"' ... 

rea d 1 i a:l e -wit h - pr omp t prompt-string &rest read-·args·· 
This is a convenient way to rcad a line of text from the termillal~ "with a'prompt string. 
It is bettcr than printing the prompt yourself and calling read line, because the· input 
processor knows about the prompt string and can reprint it as necessary. read-args are 
interpreted like read does; typically, none need to be given. 

read-with-prompt prompt-string &rest read-args 
Similar to readline-with -prompt, but uses read. 

ML:XNILMA;PRIMER 109· ll-APR-83 



NIL Primer 43 Running and Debugging Programs 

15. Running· and Debugging Programs 

15.1 Loading Programs 

load palhname & rest hairy-options 
load is the general function for loading a file of either LISP source or compiled LISP code 
into NIL. Jf no file-type (extension) is specified in pathname, then a file type of vas 1 
(VMS extension vas) is looked for first, and if that is not found, a file type of 1 i s P 
(VMS extension 1 s p) is tried. The manner of loading the file is determined from the file 
itself, as are various attributes about the file (such as its readtable and package). 

load sets the default pathname it uses every time it is called. Therefore, (load "") 
effectively repeats the. previous caB to load. 

15.2 The Interactive Debugger 

Generally when errors are detected, the error message is printed out, and the interactive 
debugger is entered. This is a program which takes (mostly) single-character commands, and can 
be used to poke around the LISP stack and execution environment. You can reconize this, 
because it always prompts with )n)dbg>, where 11 is the recursion-level of the debugger. The? 
command prints what other commands are available, and a brief description of what they do. 
The debugger has a "current frame" which it displays. Many commands, such as those to display 
local variables and arguments, operate with respect to that. frame. Commands may be given 
arguments by typing the decimal digits before the command character. The most useful 
commands are 

I 

o Examine the next frame down (less recent invocation). 

U Examine the next frame up (more recent invocation) . 

. A Print an argument (these are zero-origined). Because the arguments are printed with the 
.. ·frame, this is only really useful if the argument desired was not ·printed due to tnmcation 

of the printout. 

E Evaluate an expression (which is prompted for). If the expression is a symbol, then it is 
not actually evaluated; rather, some information about it is printed, which includes its 
current value. The subtle difference is to aid in debugging in a lexical environment. If E 
is given a numeric argument, then it will give a more· detailed analysis of the variable. 

R Prompts for and reads a form, evaluates that in the current lexicill environment, and 
returns that value as the value of the error function call (that is, the call to error, ferror, 
or cerror). 

debug 
The debugger maybe entered directly from code by evaluating (debug). 

It is worth noting that the debugger's idea of "down" and "up" is different from the nonnal 
interpretations of stac~ direction. This will someday be fixed, and confuse everybody. 

M~:XNILMA;PRIMER 109 11-APR-83 



Stepping 44 NIL, Primer 

15.3 Stepping 

The NIL evaluator contains a hook with which every call into the evaluator may be trapped. 
Stepping is when one gets to interact with' each such call, to follow what is happening during the 
evaluation process. 

step form Macro 
This evaluates form with stepping turned on. At each internal' eval call, control returns to 
the stepper; typically, the stepper then prompts for a command, ,and continues (or not) 
depending on that command. There are some heuristics for handling certain fonns which 
cause certain actions, including not waiting for a command. The most useful commands 
are 

C Continue stepping (steps into the current form, if that is possible). 

V Don't step "into" this form, just evaluate it and show the resulting value (and 
then continue as before). 

N Don't step "into" this fonn, don't even show its value~ just evaluate it and 
continue. 

B Like V; and then enters a break loop. This is not so useful in a lexical 
environment; it is inherited from a MACLISP stepper. 

? Lists all the defined stepper commands. 

15.4 Tracing and Breaking 

break tag &optional (predicate-form t) Macro 
break evaluates predicate-form, which defaults to t. If the result of this evaluation is not 
nil, then it enters a "break loop". ";bkpt tag" is printed out, and a recursive read-eval­
print loop is entered. The prolnpt for reading says n)break), where n is the' number' of 
nested break loops currently in force. Note that tag is not evaluated. 

break is one of the older debugging tools around. It is not nearly as useful as it had 
once been,· because in a LISP with lexically scoped variables, those values are not apparent 
from the break loop. In NIL what is probably more useful would be to insert explicit 
calls to (debug) in ones code, rather than to break. 

* b re ak value tag 
This is the internal version of break which evaluates both of its arguments normally. This 
is also how you can give. a non-constant tag argument to the break loop. 

trace &rest trace-specs Alacro 
With no arguments, trace returns a Jist of all currently traced functions. Otherwise, it 
traces each of the functions in the manner specified by trace-specs. In the simp1estcase, 
a trace-spec. is simply the name of a function. Tracing then will show the function and 
the arguments it receives when it is called, and the value(s) it returns when it returns. 

MI.I:XNILMA;PRIMER 109 ll-APR"'83 



NIL Primer 45 Exhibiting 

. A trace-spec may also be a list of a function name, and options. For instance, 
(trace (fact :break» 

will trace the function fact, and enter a break loop when entering and exiting each call to 
fact. On entrance, in this break loop, the variable *trace-break -args* is set to the list 
of arguments given to the function; on exit, to the list of returned value(s). Each option 
may also be a list of the option, and a predicate; the predicate receives arguments about 
the call, and determines what happens with that option. This is not developed here. 

untrace. &rest fns Macro 
With no arguments, this undoes tracing on all traced functions. Otherwise, it untraces 
only those functions specified. The function names are not evaluated. 

*trace-break~args* Variable 
When a break loop is entered during function tracing due to the :break option, this 
holds a list of the arguments to the function being traced (if the break was on entrance), 
or the list of value(s) returned (if the break was on exit). Changing this list will change 
the arguments given or values returned. 

15.5 Exhibiting 

exhibit object 
, Runs an interactive structure editor on object. "?" gives a list of single-character 

commands. 

15.6 Printing Definitions 

PP &optional name Speci{11 Form 
If name is defined as a function, then this pretty-prints the form used to define it. If it 
has a (dynamic) value, then a setq fmID for that assignment is pretty-printed. If flame is 
not supplied, then it defaults to the name given to the previous call to pp. 

gr 1 ndef &optional name 
Same as pp. 

ML:XNILMA;PJUMER 109 

Special Form 

1l;.APR-83 



Steve, the Editor 46 NIL Primer 

16. Steve, the Editor 
ad &optional something 

Enters the editor. Currently, something may only be a pathname; that file will be read 
into a buffer (if that has not been done already), and that blJffcr selected. ted) simply 
enters the editor, with the same current buffer as the last titne it was used.' 

The NIL editor (which is named STEVE for a not particularly convoluted reason that will not 
be explained here) is mostly modeled after ITS/TOPS-20 EMACS [ref], To the extent possible in the 
differing programming and operating system environment, it attempts to be compatible with the 
EMACS provided on TOPS-20. (For those familiar with the ITS emacs, this is; to allow control-C to 
be reserved for interrupt usage under VMS; control-Z is used as the control-meta· prefix,) People 
familiar with this EMACS should be able to skip the remainder of this chapter except for section 
16.7: we arc attempting to be compatible, but it is still experimental. 

When STEVE is entered, it turns on passall mode, effectively disabling aU special 
interpretations of input characters by VMS (see chapter 3, page 5, in particu~arpage 7). This 
allows it to make as full use of the limited characters available with an ASCII keyboard as possible. 

STEVE is a realtime editor. 'I11at is, inserts text into the buffer, and updates the display of the 
buffer contents, as it is entered! Most "normal" ASCII characters are set to simply insert 
themselves into the buffer; most "control" characters are set to do something other operation. 

The commands to STEVE are based on an extended character set, similar to the virtual 
extended character set in EMACS. That is, in principal there may be different commands on each 
of the characters control-A, meta-A, super-A, hyper-A, control;.meta-: A, etc. Because practically 
none of these characters can be typed on a normal ASCII keyboard (the exceptions being only the 
subset of the control characters which get specially mapped into the extended character set as it 
is), STEVE defines certain of the simple control characters to be prefixes which add the extra bits 
to the following character. The character # \altmode (escape), for example, is prefix meta; 
typing the sequence altmode a is the same as typing meta-a. Note that . the case of the basic 
character is irrelevant. 

Here are the prefix and dispatch characters defined: 

Control-f 
This is prefix control. It can be use(i to type in a control character which is not part of 
the ASCII character set, such as control-spat;e . 

Altmode 
Prefix meta. rIlle next character is interpreted with the meta bit added. Thus, altmode 
altmode is like typing meta-altrnode (which is the command to enter the minibuffer). 

Control-Z 
Prefix control meta. The next character is interpreted with both the control and. meta bits 
added. 

Control-X 
This prompts for another character and dispatches off of it, as opposed to being a bit .. 
prefix. . 

ML:XNJLMA;PRIMER 109' 



NIL Primer 47 Files and Buffers 

There are no prefix characters defined for the super or hyper bits yet, nor arc there any 
commands defined on such characters. 

16.1 Files and Buffers 

STEVE is capable of editing multiple files "at the same tinle"; that is, of maintaing the state 
of several editors at once. Each file being edited is in a buffer of its own, independent of all the 
others. The most common commands needed to edit and save files are: 

C-X C-F - Find File 
This co~mand prompts for a filename. If STEVE already has a buffer with a pathnatne 
which matches the pathname you specify, that is selected (it becomes the "current buffer", 
the one you are editing). If not, a buffer name is generated from the pathname, that 
buffer is created (you are asked whether to reuse one if a buffer with that name already 
exists), and the file is read into that buffer. 

C-X C-S - Save File 
This writes the file to the buffer filename, iff the buffer has been modified. There is a 
little "*" which appears as the rightmost piece of information in the modeline, if the 
buffer has changed since it was last read or written. 

C-X B - Select Buffer 
Prompts for a buffer name (displaying the default, which is what a null line' will select), 
and selects that buffer, creating it if it does not exist already. 

C-X C-B - List Buffers· 
Displays a list of all the buffers STEVE knows about, and some information about them. 

The above are usually all that are needed as file commands for simple editing uses. 

16.2 Arguments 

Many commands take signed numeric arguments. Typically (but not always) they are used as 
repeat cOUlits for searches, kills, movement, etc. There are a few different ways in which in 
which arguments may be accumlated for commands. 

Standard argument commands accumulate when used consequetively, and give the following 
command an argument of the "decimal" representation of the accumlated characters. Both contra/­
and colllrot-meta- digits and hyphen (minus sign) are assigned this way. Thus, the sequence C-M- ;~ 

2 C-M-3 C-N runs the control-N command with an argument of 23; presumably, this will move 
the cursor down· 23 lines. C-M-8 '" will insert "********" into the buffer, and C-5 5 will insert 
"55555". 

auto argument commands are a slight extension. They allow multiple-digit arguments to be 
typed without having to use argument commands for any digits but the first. The meta digits and 
hyphen (minus sign) are all auto-arguments. Thus, to give C-N an argument of 23, only M-2 3 
C-N need be typed. The effect of this is that one only needs to type altmode (Le., escape), then 
the digits, then the command (or character to be repeated). 

ML:XNILMA;PRIMER 109 11-APR-83 



Movement Commands 48 • 

l11e univt;rsal argument, which is assigned to C-U; is like auto~argument, and then some. -A 
numeric argument 23 could be typed as C .. lj 2 3. With no digits (or minus sign), C-U is an 
argument of 4; with or without, subsequent consequetive C-Us multiply the argument by 4. 
Thus C-U C-U COoN gives C-N an argument of 16, C-U C .. U C .. U C-N gives it an argument of 
64, etc. 

16.3 Movement Commands 

C-A - Beginning a/Line 
Goes to the beginning of the line. 

C-E- End of Line 
Goes to the end of the line. 

C-F - Forward Character 
Moves forward one character (or atgumefzl characters). 

C-B - Backup Character 
Backspace - Backup Character 

Moves backwards one character (or argument characters). 

AI-F - Forward Word 
Moves forward one "word" (or argument words). 

A1-B -'- Backward Word 
Moves backward one "word" (or argument words). 

C-N -' Down Real Line 
Moves down a line (or argument lines). 

C-p- Up Real Line 
Moves up a line (or argument lines) . 

. C-Nf-S - forward S-Expression 
Moves forward one (or argument) LISP expressions. 

C-M-P---'- Backward S"Expression 
Moves backwards one (or argument) LISP expressions. 

C-AI-A ~ Beginning o/De/un 
Moves to the beginning of the current Hdefun~l (top}evel s-expression). 

C-M .. E ~ End o/Defun 
Moves to the end of the current ttdefullU (toplevel s-.. expression). 

A1-( ~ GolO Beginning 
Goes to the beginning of the buffer. 

A1-) ~ GolO End 
Goes to the end of the buffer~ 

Movement by screen: 

c- V ~ Next Screen 
Goes forward one (visual) scrcenful. A couple lines -of context are left. Giving an 
argument to -this command makes Sl'EVE adjust the displayed portion or the buffer forward 

ML:XNILMA;PIHMER 109 



NIL Primer 49 Deleting Text 

. that many lines. 

M- V - Previous Screen 
Similar, only in the other direction. 

C-L - New Window 
Clears and completely redisplays the screen. 

16.4 Deleting Text 

Rubout - Backward Delete Hacking Tabs 
Deletes one (or argument) character backwards. Tabs are treated as if they were spaces, 
so you don't have to know which were in the buffer. 

C:'Rubout - Backward Delete Character 
Deletes one (or argument) character backwards. Tabs are not turned into spaces before 
being deleted. 

C-D - Delete Character 
Deletes on (or argument) character forwards. 

M-Rubout - Kill Word Backward 
Deletes one (or argument) word, backwards. 

M-D - Kill Word 
Deletes on (or argument) word, forwards. 

C-M-Rubout - Backward Kill S-expression 
Deletes one (or argument) LISP expressions, backwards. 

C-M-K - Kill S-expression 
Deletes one (or argument) LISP expressions, forwards. 

C-K - Kill Lines' 
. Deletes lines .. " . ·With 'no argument, kills from the cursor to the end of the line, unless the 
cursor 1s at' the . end of the line, in which case the newline itself is killed. With an 
argument, kills that many whole lines. 

When text (other than single characters) is deleted, it is saved on a kill ring. Consequetive 
deletion commands (no other intervening commands) are saved together, as if only one kill had 
been performed. 

C-Y - Unkill 
Restores the text most recently killed. 

M- Y - Un-Kill Pop 
If what you restored with C-Y was not what you wanted, M-Y will replace it with the 
previous block of text killed. This may be repeated some number of times. 

ML:XNILMA;PRIMER 109 11-APR-83 



Searching 50 NIL Prim~r 

16.5 Searching. 

C-S - Incremental Search 
Reads text. from the terminal, and' searches for it and updates thedisplay.,.as· you type'in 
the text. The search may be repeated by re-typing C-S,or reversed .by typing C-R. 
RuboUI may be used to delete characters being searched for; the search then backtracks. 
Altmode exits the search, leaving the cursor where it was last 'shown. Any . "command" 
character also exits the search, then executes that command. 

C-R - Reverse Incremental Search 
Do the same, only backwards. 

16.6 Other Stuff 

Regions, marking, transpos~tion, appending kills, etc, etc. etc. See [ref) ... 

16.7 Interacting with NIL 

C-A,f-Z - Exit Editor 
C-X C-Z - Exit Editor 

'1 : ) 

Return from the editor (to its caller). This is currently always the caner of 00; one of 
these commands, or some oilier, should eventually be usurped to return directly to the 
VMS CLI. 

A/-Z - Zap to Lisp 
The current defun (actually, toplevel s-expression' the cursor is contained within d~ 
immediately after) is evaluated. This is convenient to selectively evaluate a fixed-up fonh. 
in a file which has already been loaded. ';'011 [9 

Af;.X Compile-Sexp 
:1 

Similar to M-Z, but compiles the fonn instead. 

Af-X Compile-This-File 
Compiles the file being edited (offering to save it first if necessary). 

ML:XNILMA;PRIMER 109 11-APR-83 



NIL Primer 51 Interacting with NIL 

References 
1. Steele, G. L., Common Lisp Reference Manual, Carnegie-Mellon University Department 

of Computer Science Spice Project, (in preparation). 

2. Steele, G. L., et aI., An Overview of Common LISP, paper presented at 1982 ACM 
symposium on LISP and Functional Programming. 1982 ACM 0-89791-082-6/82/008/0098. 
This can be copied for the curious. 

3. Weinreb, D., and Moon, D., Lisp Machine Afanual, M[T Artificial Intelligence 
Laboratory, Cambridge, Mass., (July 1981). A newer edition of this is available from the 
AI Publications Office. 

4. Burke, O. S. ,and Moon, D., Loop Iteration Macro, TM-169, MIT Laboratory for 
Computer Science, Cambridge, Mass., (January 1981). Available from the LCS 
Publications Office. 

5. Bawden, A., Burke, O. S., and Hoffman, C. W., Afaclisp Extensions, MIT Laboratory 
for Computer Science, Cambridge, Mass. TM~203, July 1981. Available from the LCS 
Publications Office. 

6. Moon, D. A., MACLISP Reference Manual, MIT Laboratory for Computer Science, 
Cambridge, Mass., (1974). Reprints of portions of this are available from the LCS 
Publications Office. 

7. Burke, G. S., Carrette, O. J., and Eliot, C. It, NIL Notes for Release 0.5, MIT 
Artificial Intelligence Laboratory, Cambridge, Mass.,. Working Paper, in preparation. 

" .. -:. 

'·;1·. 

I • ; t~" 

ML:XNILMA;PRIMER 109 11-APR-83 



Index 52 

'Index 
• Function . ••••••• 
·break Function. • • . •• 
·sample-variable* Variable. 
·trace-break -args* Variable. 
+ Function 
- Function . .• 
/ Function . .• 
/ = Function. • 
1 + Function. 
1- Function . • 
< Function •. 
< = Function. • 
= Function • 
) . Function. . • 
) = Function. . .. ',. 
acos Function. • i ,.1 

add1 Function • J .. : .'-. 
.II! ..... 

1 •• 

append Function . • ' , '; ) r, I:', 
aref .function. • • . • " 
array . • . . . • . . . • . 

29 
44 
• 2 

..45 
.• "." .28 

28 
29 
28 
28 
28 . ';j . 28 

28 
28 
28 
28 
30 
28 
25 
37 
10 

••• :ll.:;i. ") • 37 array-dimension Function. ' 
array - dimensions Function 
array-rank Function. . 

• ' i ~ n. : i~ : !. . ~ ~ .. ; , i ~ .. i ~ "; ~ ! 37 

arrayp Function. I 0,' • 

asia Function. ~ .. , 
atan Function. 
atom Function 

:-; ... \ 

37 
19 
30 

•. '''',:,;~fdf''f}:'~:-:' • 30 
:!" . ~ . i .. ': .• 

... Ii "'. 

auto argument • l'~ ..' "-. ';, '\ • • • " • 
block' Special Form • . • • • . . • 

19 
47 
23 
44, break Macro. -... ! ::.c '.( ~.:r\~C.i.[ i{.Ji~. • 

c****r Function. .' ." ~ '. '01'. ". 
car Function • • • 
case Special Form • 

, caseq Function • • 
cdr Function. .• 
char-bits Function. 
char-code Function 
char-equal Function •• 
char- font Function • • 
char-greaterp Function. 
char-int Function • . : 
character Function. 
character bits. • . • . • • 
character code. 
character font. 
characters . • . 
code-char Function • 
concatenate Function. . 
cond Special Form. 
cons function. • • 
consp Function. • 
copy-seq Function. 
cos Function. • • • • • • 
cosh Function.. • 

25, 
25 
21 

• '.' .11. 21 
25 
32 
32 
32 
32 

• • . • • 32 

. . '. 

32 
32 
.9 
.9 
.9 

•. 4 
32 
34 
20 
25 
JJ) 
'34 
30 
30 

cursorpos Functicm •••••••• 
debug Functio(l • ", .. ' • ,i • 

defconstant Macro' r • • • 

defmacro Macro .• 
defparameter Macro .• 
dcfun Special Form. • 
defvar Macro '.. • • 
denominator. • .'. • 
denominator Function • 
difference Function •. 
dolist Special Form . • 
dotimes Special Form • 
dovector Special Form. 
dynamic .•.. 
dynamic extent . 
dynamic scope. 
ed Function • 
elt Function. • 
eq Function. • 
eql Function. 
equal Function. 
every Function. 
exhibit Function 
exp Function 
expt Function • 
extent • .'. 
fill Function • 
fix FUTJction • 
fixp Function 

. " ... 

." 

float Function· .' ...... 
floatp Function. 
format Function • 
fonnat-y-or-n-p Function. • 
format-yes -or-no-p . Function 
fresh -line Function • 
general ••.•. 
get Function. • .'. 
go Special Form • • . 
grindef Special Form 
if Special Form • 
indefinite • • • • 
indefinite scope. • 
jnt-char Function. 
integer-length Function 
integcrp Function. • 
interactive debugger " • 
interning ...•. 
intersection Function 
isqrt Function • •• 
,keyworded arguments . 
last Function. • 
length Function • 
let Special Form • 
let* Special Form • 

NILPrlmet 

." ... 

· .38 
.43 

· .17 
.16 

· .17 
.. 16' 

· .17 
· .8 
.8 

· .29 
.22 

· .22 
.23 

· .14 
.14 

' ..• 14 
.46 

· .33 
· .18 

.18 

.18 

.35 

.45 
· .29 

••. 29 
.14 
.35 

.. 31 
· .19 

•.•.•.• ' •• 31 
..... :.- .19 

.41 

.41 

.41 
· .40 
· .10 

.27 
· .23 
· .45 
· .21 
· .14 

.14 
. .. 32 

· .31 
.19 

· .43 
. •. 11 
· .26 
· .'29 
· .15 

.25 
..33 
• .20 
· .20 

I 

t! 

Ii 

U 
I ~ 



NIL Primer 53 Index 

lexical .14 prine Function. .40 
list Function • .25 print Function. .40 
list· Function .25 print name 8 

listp Function .19 prog Special Form • 23 
load Function .43 property list . 8 
log Function. .29 putprop Function · 27 
logand Function .30 query-io Variable · 38 
logandc1" Function .30 quotient Function · 29 
logandc2 Function .30 read Function • • · 39 
logbitp Function .30 read - char Function. · 39 
logeqv Function .30 read-with-prompt Function .42 

logior Function. .30 readline Function · 39 
lognand Function. .30 readline-with-prompt Function. .42 

lognor Function .30 readtable . .11 
lognot Function. .30 realtime editor . · 46 
logorc1 Function • .30 remainder Function. · 29 
logorc2 Function • .30 remprop Function · " . · 27 
logxor Function. . 30 replace Function. ,,. • 35 
loop Macro. .24 return Special Form. " 

! t 

• 23 
make-array Function . .,!r; "e_ • . 37 return-from Special Form • • ~~ 5· , 23 

make-char Function~" • .32 reverse" Function , " ~ ~. .25,34 

make~sequence Function. . ,34 sample-function Function • , 2 

map Function .34 sample-specfonn Special Form . .. ) 2 . 
mapc Function. .21 scope u • 14 . · ' . 
mapcan Function • . 21 selectq Function. · , · 21 · ~ . 
mapcar Function • . 21 sequences. t;· · 33 
mapoon Function. ~ 21 set - difference Function • ~..: . • 26 
mapl Function • . 21 set-exclusive-or Function • • 26 
maplist Function • . 21 setf Macro it)· • 24 
minusp Function • .28 setplist Function • p' • 27 
noonc Function. .25 sin Function. 

- I 
.30 

noons Function. .25 sinh Function • 
... ! .30 

not Function-. .- ..... .19 - some Function.- , -};~. • 3S 
notany Function .35 special. ~ ~'). .13 
notevery Function. .35 special variables ~li· • 14 
nreconc Function • .25 sq rt Function • 29 
nreverse Function. 25,34 standard-input Variable. · 38 
nth Function. .25 standard-output Variable · 38 
nthcdr Function" • .25 step Macro. .44 
null Function . .19 Stepping .44 
numberp Function .19 stream . • 38 
numerator. 8 string • 10 
numerator Function . 8 string-downcase Function. .36 
obarrays. .11 string-equal Function. • 36 
oblists . .11 string-Iessp Function. .36 

packages . .11 string-upcase Function • 36 
passall mode , .7,46 stringp Function , ' 19 
peek-char Function, .39 subl Function. .28 
plist 8 su bseq Function , ' 33 

plist Function .27 subsctp Function. ' 26 
plus Function .28 substring Function. • 36 
plusp Function • .28 tagbody Special Form • • 23 
pname 8 tan- Function .30 

pp- Special Form .45 tanh Function . . • 30 
pretty-prinl Function • . 40 tenninal-io Variable • ~ • 38 
pretty-print Function • .41 terpri Fimction .40 

prin1 Function • .40 times Function. . • 29 

ll-APR-83 



Index 54 NIL Primer 

trace Macro 44 unttace Macro • .45 
tyi Function 39 vectorp Function • . • .19 
tyipeek Function • 39 write-char Functioil. • .40 
tyo Function • . 40 xeans Fun~tion. .25 
typep Function· • 19 y.o;or-n-p Function. .41 
union Function • 26 yes-or-no"'p FuitCtiolt. 38,41 
universal argument. 48 zerop Function. .28 

11"APR·83 




