
QUANTtJ!v! THEO~Y PROJECT
FOR RESEARCH IN ATO~HC, MOLECULAR, AND SOLID STATE

CHE~,~ISTRY AND PHYSICS
UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA

INTEGER ARITH~1ETIC FUNCTIONS IN
MBLISP

PROGIW~ NOTE # 6

15 July 1963

ABSTRACT

In addition to the primitive functions contained in MBLISP
which perform operations on integers in the range 0-2**15, a number
of LISP functions are described by which simple arithmetic operations
belonging to a number of systems, such as complex numbers, matrices and
vectors, may be performed.

ACKNOWLEDGE;·1ENTS

The coding for the arithmetic functions was mostly done while
I was a guest, first of the Yale Computer Center, and then the Computer
Center of the Applied Physics Laboratory of Johns Hopkins University ..
During a two month neriod since then, they have been in continual use
by the students of my LISP programming seminar, and thus appear to be
substantially debugged.

Since LISP was conceived as a list processing language, one has
to follow drastic techniques, reaching back to the Paeno postulates, to
employ the natural numbers. In spite of this limitation, one can
accomplish quite useful calculations from such first principles. Yet
one can quickly reach a state of considerable aggrevation with primarily
numerical operations, and some machine language arithmetical capability
is essential. The functions described in this report do not yet allow
the full flexibility possible with the computer's vocabulary of floating
point operations, but alleviate the problem considerably.

The style employed here was chosen deliberately, for it allows
us to have arithmetic operations with a minimum of disturbance to the
LISP machinery. The reason is that the data linkages used by the list
structure are employed in an immediate Manner, so indicated with the aid
of a flag bit, as data rather than linkages. Experience with such
functions has the further advantage that were it possible to think of
machine deSign, one would have s~e idea of the utility of non-arithmetic
flag bits, or of an arithmetic unit which performed its arithmetic
operations on only part of a word, leaving the remainder for control
purposes.

Most of the development of MBLISP was completed while I worked
at RIASj it is assuredly a pleasure to acknowledge the interest and
wholehearted cooperation of the Digital Computations Section of ~~RTIN
Baltimore, as well as Mr. Welcome W. Bender, the Director of RIAS.
Continued development has taken place with the support of the Computer
Center of the University of Florida, to the direction, management and
operating staff of which we are indebted for their never failing
interest and attention.

Harold V. McIntosh

Gainesville, 15 July 1963

ARITHr'1!TIC-l

ARITHMETIC FUNCTIONS

Since most of the computers on which one would wish to implement
LISP lack a non-arithmetical flag bit, the introduction of arithmetical
data words on the same par with list linkages causes no small amount of
inconvenience. The functions described here use the 15 bit decrement
of the IBH 709 as a binary number. with a prefix 2 (PTI'J) to indicate
that the number is not a data linkage. Nevertheless they are described
in a thoroughly hardware-independent fashion so that when flag bits
become very co~~on, no change in existing LISP programs will be required
to increase the number of figures handled as a unit.

The arithmetic functions themselves each have two values rather
than one. In this way none of the information concerning the operation
is lost, although it can be discarded by the appropriate auxiliary
functions. For example, since the product of two 15 bit numbers is a
30 bit number, the two values of the product yield respectively the high
and low order bits of the product. The functions produce two values
rather than a list of their tt~O values in order not to place the
burden of constructing a list upon purely arithmetic functions, as well
as to yield a slight improvement in their operating efficiency.

The auxilh,ry functions to be used to select one of the two
values are:

lost.
write:

(ISTVAL (G X V»~ which selects the first value of the
two-valued function G.

(2NDVAL (G X V»~ which selects the second value of
the two-valued function G.

Under the action of ISTVAL or 2NDVAL the value not selected is
If one wishes to use both values of such a function he should

((LAHBDA (U V) ,(•••)) (G X V))

whereupon U will become the first value of G, V the second.
Being operators rather than functions, lSTVAL and 2NDVAL

may be written anywhere in a pro~rarn, even as functions of no
variables. Good coding practice, ho~ever, demands that they enclose
their tl'm-valued function as an argument so that the time of their
operation "dll be 'Precisely known.

The purely arithmetical functions have beeR introduced within
the system with the character $ appearing as a prefix to their name.
The purpose of this is to render these names unusual, so that they
will clearly be understood to be system functions, not ordinarily
used by a programmer. They would be embedded in more sophisticated
arithmetic functions having more universally accepted naMes.
Observation of this convention will permit definitive versions of
functions using arithmetic operations to be written, while still
a11m,Ting a certain freedom for experimetlietiim in the actual
constitution of the primitive arithmetic functions.

ARITH~'ETIC-2

The arithmetical functions are:

($PLUS X Y) The first value is a predicate assuring
us that overflow has not occurred in the sum;
its value is F for overflow, T for no overflow.
TIle second value is the actual nUMerical sum,
modulo overflow. Both X and Yare assumed to
be positive.

($MINUS X Y) The first value is a predicate telling
whether the difference X-Y is positive, for
which it is T; if negative F. The second value
is the absolute value of the difference. Both
X and Yare assumed to be nositive.

($THmS X Y) The first value is a numeral, the first
15 bits of the product, or more generally the
hi~hest order bits of the product. The second
value, also numerical, yields the last 15, or the
low order bits of the product. If X and Yare
interpreted as integers, 2NDVAL would normally
be used to select their product, while if they
were regarded as fractions, ISTVAL would be used.
Since the representation of the numeral is
binary, only· octal or binary fractions may be
used conveniently, which somewhat limits the
usefulness of the latter represnetation.

($DIVIDE X Y) The first value is the quotient; the
second value the remainder. The latter can be
used in calculating a number modulo a base.

Certain words of caution apply to the use of these functions.
First, they aSSUMe that their arguments are positive integers, so
that one must already write a composite LISP function to deal with
signed integers. This restriction is partially an artifact of the
details of construction of the MBLISP processor, which reserves the
sign bit of a memory cell as a flag for the garbage collector. The
ability to deal directly with signed integers is sufficiently valuable
that the processor will probably be reorganized accordingly.

Secondly, al ~hough ,"e speak of the arguments of the arithmetical
functions and certain of their values as being numerical, these
functions make no effort to make any identification of their arguments.
If the arguments are numerical, the values will result properly, but
the addition, for instance, of two non-numerical arguments will result
in a non-numerical second value. The difference of non-numerical
arguments presents a particular hazard to the unwary programmer, for
MBLISP detects atoms by a test of numerical magnitude, NIL, which
terminates lists, being the lowest atom. Thus the ALIST may appear
to be prematurely terminated by such a difference.

Some static test is necessary to distinguish numbers from
addresses at least in that part of the memory store which contains
the list structure. For instance, the garbage collector must be
restrained from confusing the two cases; by either attempting to
save spurious list structure, or falsely interpreting an end of list
and neglecting to save the remainder. Likewise, since lists and
numbers may be passed back and forth between pro~rams which have no
dynamic ability to make the distinction, it must be made statically.

••

L

ARITHMETIC-3

For example, PRINT must ba forewarned whether to make an ocol or
decimal conversion before attempting to deliver its ar~ent to the
output tape.

For these reasons, a predicate is provided to sense the prefix
which denotes a number.

(NUM X) is true if its argument is a numeral, false
otherwise.

This flag is presumed set by the conversion routine which first
creates the numeral; all functions having a numeri~al value (or values)
will automatically preserve· the flag. The functions CAR, CDR, CONS
will automatically copy the numerical. flag when it is_attatched to their
arguments.

Two functions allow us to make comparisons of numerals:

(EQ X Y) takes the value T if its arguments are both
numerals and both equal. It will take the value
F if either argument is a numeral and the other
not. In addition it has its usual significance
for atoms and lists.

(SL X Y) is true if its first argument, X, is strictly
less than its second argument, Y; otherwise it is
false. It ignores the numeral flag, so that it
may also be used to compare an absolute core
address (which is the way atoms and lists both are
actually represented in the memory store) to a
numeral.

Four functions may be used to convert an atomic symbol to the
number which it represents, or back again:

(DEC N) The value of this function is the binary
equivalent of the atomic symbol N which is
supposed to be a string of not more than 5
decimal die-its.

(OCT N) makes the cor~esponding octal conversion
of the atomic symbol N, which is a string of
not more than 5 octal digits. In both cases the
capacity of the conversion is 3276810 = 777778

(UNDEC Xl converts the number X into the atomic
symbol representing the decimal equivalent of X.
No checking is performed to ensure that X is in
fact a numeral, so that if it is a list connector
which appears as the argument X, the result will
be the decimal address of the referenced
exPression in the memory store.

(UNOCT X) makes the analogous conversion of X into
its octal equivalent as an atomic symbol.

l

ARITHMETIC-4

For the present, no conversion of floating point numbers
or of exponential notation is attempted. Thus, only integers can
be dealt with directly.

There is some question whether the conversion of a numerical
atomic symbol into its binary equivalent should be explicitly commanded
or not. Often, one adopts the convention that any string of numerals
is to be converted upon initial readin, and any string containing
other markings, such as decimal points or E's should be dealt with
accordingly. Such a decision presents the difficulty that one cannot
use numerals to designate variables, at least in the present
constitution of the porcessor, for instance. Admittedly such practices
are rare, but they do occur. Also, the automatic conversion releives
the programmer of the corresponding responsibility. l'!e nevertheless
prefer to order the explicit conversion as necessary.

Continual conversion is wasteful and time consuming, so that
in those contexts where it is known that all arpuments of a series
of functions are numerical, it is preferable to make an initial
numerical conversion, and a final conversion to allow the printing
of the functionvalues. This precaution, of converting the arguments
must also be followed in tracing, or in printing intermediate results.

While numerals may easily enou!!h be located in output by the
aid of the predicate NUH, one r.rust establish conventions concerining
input expressions. Rather than disintegrate each atom, to see whether
it is a digit-string, it is more convenient to let context determine
numerical arguments. In that case, the a~gument is automatically
converted, whether or not its constituent atoms are numerical, and it
is the responsibility of the proerammer to follow the proper format for
such expressions.

The format in question is the following: All atoms are presumed
to represent numbers save the minus sip,n, -. A positive number is a
single atom, as ~, 1, 3, 967, etc. A ne~ative number is written as
a list of two atoms, the first a minus sign, as (- 1), {- 911), etc.
Other quantities, such as vectors, complex numbers and the like, are
expressions having these former quantities as elements. For example,
we write the complex number x + iy as (x y) j instances of '''hich
would be 1 = (1 0), i = (0 1), 3 - 2i = (3 (- 2)), and so on.

The following three functions are useful for ~erforwing
conversions:

(NUMBE1HERE (LAMBDA (L) (COND
((EO L (OUOTE -)) L)
((ft.TOH L) (DEC L))
((NULL L) L)
((AND) (CONS (NUt-ABE11iEPE (CAR L): ;,

(NUMBETlIERE (CDR L)))))))

(NUMBEGONE (LAMBDA (L) (COND
((NUH L) (UNDEC L))
((ATm.,' L) L)
(NULL L) L)
((AND) (CONS (NUHBEGONE (CAR L))

(NUNBEGONE (CDR L)))))))

ARrrmffiTIC-S

(PRINT* (LNTBDA (L) «LAHBDA (X) L)(PRINT (NUMBEGONE L»)))

This last function avoids a repetitous conversion at the price
of an additional LAMBD!.; for short expressions one might also write
an alternatitive definition,

(PRINT* (LN4BDA (L) (NU~1BETHERE CPPINT (NUlvlBEGONE L)))))

The configuration, ••• (NUMBEGONE C ••• (NUHBETHERE L))) ••• must occur
at some level of any LISP function handling numerical quantities.

It is not difficult to systematically produce a series of
compound functions designed to perform arithmetic operations upon
specialized sorts of numbers. Since the addition of positive integers,
for instance, is different from that for siRned integers, vectors,
complex numbers, and other quantities, it is convenient to give the
particular operations systematic names which denote the type of
quantity to which they are to be applied. The unadornec symbols,
+ - * I ** and so on, are preferably reserved to have anpronriate meanings
for a definite problem area in which a series of functions are applied.

Toward this end, the following system of prefixes may be
used to designate different classes of operations:

I operations on positive integers
G operations on signed integers
R operations on rational numbers
K operations on complex numbers
V operations on vectors
M operations on matrices
Q operations on quaternions
S scalar operations on vectors and matrices

I operati ons The arithmetic functions, $PLUS, $r.~INUS, $TUtES,
$DIVIDE are designed to treat their arguments as positive integers
(or zero). However, they possess t''10 values, to alloW the possibility
of writing multiple precision functions using a list of integers in
the range 0-777778, or to allow the detection of overflow and the
like. If one assumes that he is dealing with small positive integers
always, this additional information can be neglected, and it is only
necessary to comnose each of the functions with 2NDVAL in order to
discard it. Thus we define:

(1+ (LMlBDA (X Y) (2NDVAL ($PLUS X Y))))

(1- (Uu~IBDA (X Y) «LA~:BDA (X Y) (IF X Y
(LIST (QUOTE -) V»~) (%HINUS X V»)))

(1* (LA~.1BDA (X Y) C2NDVAL (%TIHES X V))))

(II (LA~fBDA (X Y) (lSTVAL ($DIVIDE X Y))))

(REH (LAMBDA (X Y) (2NDVAL (%DIVIDE X Y))))

All these functions yield positive values save 1-, which
will yield a negativl> Integer, represented as (- n), if its second
argument is la!g~r than the first, so that x-y is actually negative.
II yields th~ Integral part of the qu~tient x/y; REM the remainder.

ARITHMETIC-6

G operations To represent signed integers. we adopt the
convention that an isolated numeral is to renresent a positive
number, while the list (- n). in which n is a numeral, represents
the negative nu.'Tlber -no Consequently the predicate NUM may be
used as the test for positiveness of a number. All the signed
operations procede by an enumeration of the four possible sign
combinations of the two arguMents.

(NEG (LAMBDA (X) (IF (NUM X) (LIST (QUOTE -) X)
(CADR X))))

(G+ (LAMBDA (X Y) (IF (NUH X) (IF (NUN Y) (1+ X Y)
(I- X (CADR V»~) (IF (NUH Y) (1- Y (CADR Xl)
(LIST (QUOTE -) (1+ (CADR X) (CADR V»~»~ »)

(G- (LM1BDA (X Y) (G+ X (NEG V»~»~

(G* (LAMBDA eX Y) (IF (NUH X) (IF (Nt»1 Y) (1* X Y)
(LIST (QUOTE -) (1* X (CADR V»~))
(IF (NUM Y) (LIST (QUOTE -) (1* (CADR X) Y»
(r* (CADR X) (CADR V»~) »)

(GI (LM,mDA (X Y) (IF (Nm1 X) (IF (NUV Y) (II X Y)
(LIST (0UOTE -) {II X (CADR V»~))
(IF (NUM Y) (LIST (QUOTE -) (II (CADR X) V»~)
(1/ (CADR X) (CADR V»~) »)

(GREM (LArvffiDA (X Y) (IF (NmI X) (IF (NUH Y) (REH X Y)
(REM X (CADR Y») (IF (NUM Y) (LIST (QUOTE -)
(REi'l (CADR X) Y» (LIST (QUOTE -) (REt" (CADR X)
(C.~R V»~)) »)

K operations Complex numbers are conveniently represented as
a list consisting of their real part followed by their imaginary
part. Both real and imaginary parts may be presumed to be signed
integers; thus one would represent 3-5i as (3 (- 5». One Must observe
the precautionthat com~lex numbers with imaginary part zero are only
isomorphic to the signed integers and not identical to them, as may
be seen by contrasting I with (1 0).

(KCON..T (LM'<BDA (Z) (LIST (CAR Z) (NEG (CADR Z)))))

(K+ (LN:lSD!. O~1 Z) (LIST (G+ (CAR W) (OR Z»
(G+ (CADR ~'J) (CADR Z)))))

(K- (LN,1BDA e'T Z) (LIST (G- (CAR 'tJ) (CAR Z))
(G- (CADR \41) (CADR Z)))))

(K* (LA1\1BDA (W Z) (LIST (G- (G* (CAR W) (CAR Z»
(G* (CADR W) (CADR Z»)) (G+ (G* (CAR to,,) (CADR Z))
(G* (CADR l'J) (CAR Z») »}

(5/ (LAHSnA (A Z) (IF (NULL Z) Z {CONS (GI (CAR Z) A)
(SI A (COR Z») »)

(K/ (LA~1BDA (W Z) (5/ (CAR (K* Z (KCONJ Z»))
(K* \1 (KCONJ Z)) »)

ARITHMETIC-7

V operations Vectors, being n-tuples of numbers, are readily
represented as lists, upon which appropriate operations may be defined.
In fact, one such operation, 5/, was included in the definitions for
complex operations in a sufficiently general form to be useful for
dividing each elenent of a vector by a certain scalar.

(V+ (LM1BDA (X Y) (IF (NULL X) Y (CONS
(G+ (CAR X) (CAR V»~ (V+ (CDR X) (CDR V»~) »)

(V- (LAHBDA (X 'I) (IF (NULL X) Y (CONS
(G- (CAR X) (CARY» (V- (CDR X) (CDR V»~) »)

(5* (LN~BDA (A X) (IF (NULL X) X (CONS
(G* A (CAR X» (5* A (CDR X») »)

(IP (LAMBDA (X 'I) (IF (NULL X) (DEC (QUOTE 0»
(G+ {G* (CAR X) (CARY» (IP (CDR X) (CDR V»~) »)

For testing purooses, it is convenient to have a way of applying
an arithmetic function to atomic arguments, without having to continually
write DEC and UNDEC in the program. The style of the control function
used for such purposes may be varied according to the number of arguments
expected by the function to be applied.

(OPER (LAMBDA (O X Y) (NUMBEGONE (0 (NUMBETHER.E X)
(NUMBETHERE V»~ »)

A general purpose function of this nature, which will apply a
function irrespective of the number of its arguments, can be written
using the functions EVAL and ALIST, which give direct access to the
corresponding portions of the interpreter:

{OPTEST (LAHBDA L {NUr-mEGONE (EVAL {CONS (CAR L)
(APPo. (NUMBETHERE (CDR L»» (CDDR (ALIST») »)

where we have

{APPQ (LAMBDA (L) (IF (~~LL L) L (CONS (LIST (QUOTE QUOTE)
(CAR L» {APPo. (CDR L») »)

To illustrate the use of OPTEST, we might write

(OPTEST V+ (1 (- 3) 2) (0 2 (- 1»)

which will result in the vector sum (1 (- 1) 1) of the last two arguments.

Many specialized representations of numbers may readily be devised
in LISP; for instance wh-n one is dealing with the complex nth roots of
unity, it is more natural to represent exp(2pi i kIn) as the]pair (K N)
with the rule that

(Kl N1).(K2 N2) = «KI.N2+K2.Nl) Nl.N2),

the left hand sum being reduced modulo N1.N2.

ARITHf,ffiTI C-8

The following function will perform such a calculation f

(KE* (LAMBDA (X Y) (IF (EQ {CADR X) (CADR V))
(LIST (REt,,, (1+ (CAR X) (CAR Y)) (CADR X))
(CADR X))) (LIST (REt1 (1+ (1* (CAR X) (CADR V))
(1* (CADR X) (CAR V))) (I* (CADR X) (CADR V)))
(1* (CADR X) (CADR V))))))

It is likewise possible to devise functions which will handle
integers represented as a list of exponents of their prime factors,
or other specialized representations.

4/27/63
7/15/63

