A LISP PROCESSOR FOR THE 1BM 1620

T. A. Brody

Instituto de Flsica, UNAM
Asesor Técnico, CNEN

Centro Nacional de Célculo, Instituto Politécnico Nacional, Unidad Zacatenco
México, D.F.
1965

Preface

The iresent attempt to oreate a symbol ma.nipulation language
processor Ifor a relatively small oompute_r was made because of the
possibility it would offer to open up the field of symbol manipu-
lation to the many groups who do mot have a large computer at their
disposal. This is the case, for instance, in Latin America and in
several Buropean countries. The resulting processor has proved use-
ful both in the teaching of symbol manipulation techniques and for
several applications of a not too extensive oharaoter. Of these,
the simulation of a Turing machine in LISPITO has proved pedagogi-
cally useful.

The author would like to acknowledge the help he has received
from Mr Harold V. MocIntosh, who introduced him to the pleasures of
LISP and to whom are 4ue many of the ideas incorporated in LISPITO.
He would also like to express his thanks to the Centro Naoional de
Cédlculo of Mexico, which put its IBH 1620 computer et his disposal
and whose members helped in more than one way towards the completion
‘of the processor.

Note on Machine Reguirements

The processor desoribed in this manual will run on an IBN 1620
machine equipped with the following additional features ¢
1622 card reader/punch
1623 storage unit to expand core memory to at least 40 000
positions
indireot addressing feature
automatic division feature
floating point arithmetic feature
speocial instructions 71 (move flag)
72 (transmit numerioal strip)
73 (transmit numerioal £il1)

If more than 40 000 positions of core s'ﬁorngo are availadle, the
card deck may be modified to make use of the additional memary.

1. Introduction : The LISP Language

LISP, originally developed by McCarthy’, may be characterised as
a language for applying recursive functions to list structures.

A recursive function (for the theory see, e.g. Davisz, Péter3) is
one which is used within its ‘own definition, though with different argu—
ments. Thus n! may be defined recursively as follows 3

1, if n = 0

+ nte= n(n - 1)! otherwise

Thus 2! = 2 x 1%, vhich in turn = 2 x 1 x 0! = 2 x 1 x 1 = 2.

It will be seen that it is necessary that for some values of the
argument the function be defined non-recursively j; otherwise the re-
oursion Wwill not end, and its value (if it exists) could not be obtained
in a finite number of steps. The non-recursive part of the definition is
known as the terminal condition.

The recursion may be more complicated ;3 the function may have
several arguments, in its definition several terminal conditions and
several recursive elements may occur § the recursion may also be indi-
rect, as when a function f calls another function g , which in turn

calls h , in whose definition f is used.

For the machine realisation of a recursive function it is evidently
necessary to save the values of its arguments and intermediate results
so that, directly or indirectly, it may be called again. There are
various methods of dealing with this problem, all making use of a push-
down list or stack j anything s'l;ored in such a list does not erase the
previously stored information, but pushes it down, so that on calling the
push-down list the last element stored is recovered and removed, so that
the next call will produce the preceding element. In LISP, the arguments
are placed on a push-down list, and if the function is called recursively
the old values are pushed down, only to pop up again when the routine is
carried out.

There are variants of this method ; in the one adopted in LISPITO,
the current values of arguments are placed under the variable names, and
the old values are placed on a push-down list from which they are resto-—
red at the end of the function execution.

List struoctures, to which recursive funoctions are applied in LISP,
provide a technique both for eliminating all storage assignment problems
as far as the user is concerned and a flexible means of specifying the
structural relations between the elements which form the field of interest
of LISP. Since essentially these elements are not further analysed in
LISP (except under special oiroumstances j see e.g. the LISP 1.5 Manual®),
they are known as "atoms". A linear list is an ordered set of atoms
it may be empty. A non-linear list, or list structure, is a list whose
elements are in turn lists or list structures.

The machine representation of alist is simple § an atom ie an
address at which the name and other properties of the atom are stored,
and when an atom occurs in a list, it is represented by this address to
which that of the next list element is adjoined. The last element of the
list carries a suitable indication. This type of representation was
developed by Newell, Simon and Shaw5 and is used in several list manipu-
lating languages.

Outside the machine, LISP represents a list simply by enclosing the
sequence of elements composing it in parentheses. Thus an empty list is
(), and the list containing a and b is (a b) § blank spaces are
used in LISPITO to separate the names of atoms which follow each other,
but they are not required if there are parentheses (LISP 1.5 uses a diff-
erent technique4). A list structure will then appear as follows 3

((this is a (1list) structure in) lisp)

Its representation in the machine would be

Here arrows indicate the elements referred by the addresses at the
starting point of the arrows, and O in the right-hand part of a rect-
angle representing a list element indicates that it is the last one
in the list or sublist.

Clearly list structures lend themselves to recursive handling
in a straightforward manner, provided that any newly constructed lists
never overwrite earlier lisés which may still be required. For this
purpose the memery space available for list building is organised as a
single linear list of unused elements, - the so-—called vacuum. Whenever
a new element is required, it is taken off ‘this list and never made from
an earlier list. However, the vacuum may come to an end before pro-
cessing is ended j; since at this point there will generally be a large
number of list structures and fragments of structures in memory which
can no longer be referred to, these may be recombined to form a new
vacuum. This is carried out by a special routine called the "garbage
collector". Its calling is automatic and need not worry the user.

II. The Primitive Functions in LISPITO

LISP has five basic functionas, the most important amang the prim-
itive or machine ﬁmotim- 3 all other functions may be defined in
terms of them by means of the recursion and funotion defining symbolw
However, it is very convenient to have some further primitives avai.i-
able, both for ease of programming and for running speed.

Of the five primitives that are basioc, two permit the analysis of
a list

(car x)® evaluates x aud if it is & liet, the result is the first
element of the list, whether this be an atom or a& sublist. If x is not
a list, (car x) is undefined.

(edr x) evaluates the argument x and if it is & 14at, gives all dut
the first element of it 3§ the result is thus salways a list. If x
contains only one element, (cdr x) = () 3 if x is an empty list, the
odr of it is undefined.

Another function synthesises a list 3

(oons x y) evaluates both x and y and then oreates a list the first
element of which is x, while the others are those of ¥y § X may be any-
thing, but y must be a list, which may be empty. Evidently

(cons (car L) (odr L)) = L
is an identity for any 1list L.

Two further functions are predicates, i.e. they take only the values
1t (for "true") or £ (for "false") 3

(atom x)evaluates x, and if it is an atom, the result is t § if it

is a list, the answer is f.

‘Atom names will ococasionally be underlined for readability, or written in
capitals. Since the IBM 1620, like most machines, accepts only capitals
letters, no semantic difference will be implied by these variationas.

-5 -

{eg x y) evaluates both x and y 3 if they both refer to the same
atom, the result is $; if they refer to different atoms, or if ome of

them is a list, the answer is £ j; if both are lists, the function is
undefined.

From these basic functions it is possible to build up more complex
ones, since all of them evaluate their arguments : if an argument is in
turn a function - written, as has been seen, as a list which may be hand-
led by LISP - it is, of oourse, evaluated by carrying out the function
in question. However, more symbols are needed in order to express the
logical relations of the oonriitions for a recursion 3 this is the main
(though not the only) purpose of the sygbols cond and if .

Of the three arguments of (if p e 32), the first is a predicate }
if its value is i, then the expression ey is evaluated and its value is
that of the if-expression j otherwise the expression e, is evaluated and
taken as the result. In either case the other expression is not evaluated
and may oontain elements which under these conditions are undefined, e.g.
the cdr of an empty list.

(cond (pl el) (p2 32) eee (pn en)) is used for more complicated
cases 3 it has any nuaber of arguments, each of which is a pair of ex-
pressions, the first a predicate and the second any kind of expression §
the predicates are evaluated in turn until a true one is found, when the
value of the cond becomes that of the associated expression ey Nq succeed-
ing predicate or other expression is evaluated. If no predicate is true,
oond is undefined ; it is therefore often convenient to have a last pred-
icate which is always true. Such ;. predicate is written (g_ng) in LISPITO,
as will be seen below. ‘

Certain otler functions are frequently useful and are therefore pro-
vided as machine functions :

(_q_ggig x) = x. This fuaction prevents the evaluation of the expression
x, which may be anything. Thié ig used when it is necessary to provide a
oonstant, i.e. a quantity whose value is ite name. The distinction between
a quantity and its name, though not often made clearly in ordinary dis-
course, is fundamental in symbolic logic, where the device of quoting orig-
inates : thus the name of x is "x". V

(null L) is a predicake which is true if L is an empty list, false if

the list L contains elements. Note that (()) is not null, since it con-
tains the element ().

(1ist a b c ...) svaluates a, b, ©, ..., and then forms & list of
the results, in the order of the arguments. The number of arguments may
_be any, including none, in which case the result is ().

Finally, composites of oar and cdr are frequently needed, often to
considerable depth 3 in view of the sise of the IBM 1620, it has been
possible to include only four of these composites @

(caar L) = (car (car L))
(cadr L) = (car (odr L))
(edar L) = (odr (ear L))
(oddr L) = (odr (odr L))

These are, of oourse, only defined if their arguments fulfil the
appropiate conditions 3§ thus for odar, the argument L must be a list
whose first element is itself a non-empty list, etc.

EXAMPLES 3

If the 1ist L = ({a) b o), then
(car L) = (a) (odr-L) = (b o)
(caar L) = & (cedr L) = b
(odar L) = () (odar L) = (o)

(cons (caar 1) (cddr L)) = (a o)
(cons (car L) (cdar L))= ((a))
(cons (oar L) (eddr (cdr L))) = ((a))
(1ist (car L) (cddr (cdr L))) = ((a) ())
(atom (cdr L)) = £ (atom (cadr L)) = t
(eq (caar L) (quote b)) = £
(eq (caar L) (quote a)) = T
(eq (caar L) (quote (a))) = £
(null (car L)) = F (null (cdar L)) = t
(if (null (cdar L)) (quote (empty list)) L) = (empty list)
(cond ((null (cddr L)) {(ocaar L))
((atom (ear L)) (odr L))
((eq (quote a) (caar L)) L)
((and) (quote error))) = ((a) b o)

-7 -

1II. Logical Primitives in LISPITO

Logical funotions differ from the predicates previously desoribed
in that not only their values but also their arguments take only the two
possible values "true" or "false". Theyr are also called Boolean funotiomns.
In LISP, one of their prinocipal uses is to combine predicates of various
kinds into more powerful ones for use with if or gond.

The three logical primitives included in LISPITO are and, or and not.
Of these, the last presents no diffioculty. It has one argument, a pred-

icate, whose value is found and converted into the opposite.

(and P Py oeee pn) has wy‘number of arguments, which it proceeds to
evaluate in the order given, until it either encounters a predicate whose
value is £ or comes to the end of the arguments. In the first case the
value of the function is £, and no further argument is evaluated § in the
second case, when no false argument has been found, the value of and is t.
This last ic always the case when and has no arguments at all : because
of this, (and) is used to generate the value t for use in, say, cond, and
it is not therefore necessary to reserve the symbols t and f for apeoiﬁl
use as logical values 3 they may be freely used as function or variable

names. In the output, however, the truthvalues appear as T and F.

Similarly, (or Py Py oo pn) has any number of arguments and is . .true
if an argument is found which evaluates to t 3 if all arguments evaluate
to £, or if there are none, the value of or is f. After a first true argu-
ment is found, no further ones are evaluated. (&r_) is used to generate the
truthvalue f.

It is occasionally useful to be able to handle functions whose values
may be either truthvalues or anything else. For-this purpose, the logical
primitives in LISPITO funotion as "semi-predicates", in the following
sense 3 and takes the value of ;ahe first argument which differs from 1t ;3
or takes the valus of the first argument which differs from f 3 and not
takes the value f£ if its argument is t and vice-versa, but takes the value
of its argument if this is anything but t or £. If this feature is used

in cond or if, it should be noted that these functions discriminate only

- 8 -

between t — true for the purpose of the desoription given above -, on the
one hand, and anything else (including f£), taken as false, on the other.

EXAMPLES 1

let L= ((a) bc)y, = (ad) s then

(and (not (nwll L))
(eq (caar L) (car X))) -t

(and (or (null L)
(null ¥)
(not (atom (car L)))
{atom (ocar ¥)))
(eq (cadr L) (cadr X))
(null (ocddr X))) -t

(and (atom (car L))
(atom (caar M))) = £, even though in this ocase
the second argument of and could not be .oarried out.

IV. Arithmetic Funotions in LISPITO

It is, in principle, possible to define all arithmetical operatiomns
by means of the basic LISP functions, for instance by using Peano's post-
ulates on a list of symbols whioch function as the names of the successive
integers (and would, of course, be the conventional numerical symbols).
However, this is extreméely slow and uses up much memory, so that because
of its frequent usefulness integer arithmetic has been incorporated in
LISPITO. Larger processors often allow floating point numbers as well,
but the size limitations of the IBM 1620 have made this impossible.

For LISPITO, a number is defined as an integer of up to three digits,
with an optional sign in front. The processor will treat a number as an
atom whose value is its name. ‘No other value may therefore be assigned
to it, which means that a& number ~annot be the name of a function or of
a variable j it may, of course, be the value of a funciion or a variable.
As a result, when a number occurs as a oconstant within a function definitiom,
it is not necessary to quote it. This conforms to the usual practise in
algebra. An integer of more than thrge digits is treated as an ordinary
atom and no fixed value is therefore associated with it.

To handle numbers, five functions are available. Except for num,
their arguments must be numbers § the result of the arithmetic operations
will also be a number which must be less than 1000 in magnitude, or else
an error stop is caused. The functions are :

(add n m), which caloulates the algebraic sum n + m

(sub n m), which caloulates the algebraic difference n - m

(mult n m), which gives the product nm

(sl n n); a predicate which is true if n < m j; the abbreviation is
"gtrictly less"; and

(nun x), a predicate which is true if x has a number as its value and
false otherwise.

Numbers may oocur, like other elements, within list structures, and the
five functions just mentioned may be used in recursive function definitions.

- 10 -

For all other LISPITO functions, numbers behave like atoms. In particular
the predicate atom of a number is true, and g may be used to determi:us the
equality of two numbers. +0 and -0 are equivalent, i.e. {(8q +0 =0) = &.

BXAMPLES

(add +5 17) = 23 (add 5 -17) = 12

(suwb 11 49) = 2 (sud -5 -T) = 2

(mult -9 3) = 27 {mult 20 50) causes an error atop
(num -3) = ¢

{num -003) = t

(num -0003) = £

(num xyz) = £, if xy2 = @, but = ¢t if xys = 36
(81 36) = ¢

{81 <6 -3) = ¢

(s163) ¢

(81 77 77) = ¢

- 11 -

V. Defining and Using a Function

By means of the primitives introduced in the previous sections, it
is possible to give a function description, in the sense that for instance
ax2 + bx5 + ¢ is one ;3 however, it is not possible as yet to associate
& name with such a description, nor to indicate precisely what are the
variables and therefore to give them values. ' Hence such a description
cannot be recursive. In the example given, x is conventionally consid-
ered the variable ; but no value can be found for the expression until
a, b, ¢ also have numerical values assigned them : +they may therefore
also be considered variables, at least in some connections. A precise
and generally applicable indication of which are to be considered the
variables in a particular case of function description (i.e. what is
known as a _for_m) is achieved in LISP by means of the A -symbolism intro-
duced by Church6 3

(lambda (v cee vn) form)

-

172
Here "form" is the description of the operations to be carried out, and
Vis Vo3 eeey V are the variables to which values must be assigned. This
may be done directly following the) -expression, by enclosing it together
with the values of the variables in parenthesis. Thus the k—expression
becomes a function, and the values of the variables its arguments, accord-
ing to the rules of LISP notation :

((lambda (v1 Vy eee vn) form) a) 8, eee a.n)

Of course the arguments may, in turn, be expressions of an appropriate
kind, which will be evaluated and assigned as values to the variables

during the evaluation of the form.

The variables Vis ¥ ceey Vo need not necessarily all occur within

b
the form, and there may ilso be other variables in it. The variables in
the list following the A are said to be bound by it : that is to say,
the values they have throughout the pair of parenthesis beginning just
before the N\ are fixed by the pairing with the arguments this \ oarries

out. Any other variables occurring within the form are free variables j

before evaluating the form, their values must, of course, have been fixed }
this will have occurred at a higher level lambda, whioh bound them.

This mechanism does not yet provide for giving a functional descrip-
tion a name to be used within its own definition, recursively. For this
purpose LISPITO has & more general function, which defines funotions non-
réoursively by associating their desoriptions as values with their names :

(define
(f1 (lambda (vl) farml))
(£, (lambda (vl v2) fo:mé))
(f3 (lambda (v3 v2) fomns))
cee)

Thus define ha.s‘a.ny number of arguments, each of which is a two-element
ligt in which the first is a function name - which must be gn atom, of
course, - and the second the definition of the function. Within the
corresponding forms any function names may now occur, provided that at
the time of execution they have already been defined. Moreover, the names
of the variables, being only dummy variables to be substituted for at
exeoution time, need not all be distinct in different l-oxpreuiﬂns,
though they must, of course, be so within one and the same). However,
care must be taken that free variables to be used at some level do not
coincide with variable names used at an intermediate level, since the A
at this level will then bind them to new values, which will be the ones
used at the lower level rather than the intended ones, which have now
been stored away on the push-down list.

To illustrate this, consider & function which determines whether a
certain atom occurs in a list 3

(define
(member (lambda (x L) (cond ((null L) (or))
((eq (car L) x) (and))
((and) (member x (cdr L))))))
)
Observing that the recursion condition binds the variable x to the
same value as it previously had, one can eliminate thie variable by using
an auxiliary function which is called by member but has only one variable.
The definition then runs

(define
(member (lambda (x L) (member+ L)))
(member+ (lambda (L) (cond ((null L) (or))
((eq (car L) x) (and))
((and) (member+ (cdr L))))))
)

Another way of solving the same problem is by using two interlaced
funotions 3

(define
(member (lambda {x L) (if (null L) (or) (member++))))
(member++ (lambda () (if (eq (car L) x) (and)
(member x (cdr L)))))

)

Here both variables in member++ are free.

In many cases it is convenient to be able to use a variable number
of arguments with a function. Since the pairing-off mechanism iill not
work here, the solution is to place the name of a single variable after
the but without enclosing it in parenthssiﬁ. The arguments, whatever
their number, are then evaluated and formed into a list which will be the
value of the variable at execution time. Thus a function to determine
simply the number of arguments given it might be written

(number (lambda m (cond ((null m) (quote none))
((null (cdr m)) {quote one))
((null (cddr m)) (qQuote two))

((and) (quote more)))))
and given to define as an argument.

It is occasionally necessary to suppress the evaluation ot the argu=
ments, i.e. to let the names of the arguments be their values. This is
achieved by using lambda+ in place of lambda, in either of the two types
of uses mentioned above. This is equivalent to quoting all the arguments.-
(lambda+ () e) is of course the same function as (lambda () e).

It should be noticed that in LISP, contrary to algebraic practice,
a function - either the name or the lambda expression - and its arguments
are enclosed in parenthes@s to form a list. Thus (f x) rather than f£(x)

- 14 -

is used.

The funotion define permits also the redefinition of funotions j; for
instance, if it is wished to use + and - for the arithmetic funotions, one
can, add

(+ add)

(- sud)
to the funotions defined. In the same manner the valuwes of variables ama
be set initially ; if a variable of the same name ocours later, this later
value will take precedence, while the initially set value is placed on the
push-down list and restored from it in due course.

A funotion defined as described may now be applied to values of its
arguments by means of two functions belonging to the same class of general-—
ity as define § the statements take the form

(apply £ 8, &, ««c a)

(Mf &1 .2 cee ‘n)

The difference between them is that apply takes the names 81y 8oy coep B
as its arguments, i.e. it quotes them, and then gives them to the fumotion
£ to carry out, while eval does not quote them but evaluates them. Henoe

(eval £ (quotg .1) (quote 0.2') ees (quote a.n))

is equivalent to the apply statement above. Of ocourse any functions named
in eval or apply and any functions used directly or indirectly by them must
have occurred previously in define statements.

EXAMPLES 3

(define
(equal (lambda (x y) (cond ((atom x) (eq x y))
((atom y) (or))
((audl x) (null y))
((nu1l y) (ar))
((equal (car x) (car y))
(equal (ecdr x) (odr y)))
((and) (or)))))
)
‘(apply equal (a b) (a b))

(apply equal (a (b ¢)) ((a d) o))
(apply equal (a (b o)) (& (b ())))

This funotion determines whether two list structures are the same § the.
three cases given it here to work om will produce, respectively, the
answers t, £, £.

(define
(reverse (lambda (L) (rev+ L (list))))
(rev+ (lambda (L m) (if (null L) m
(rev+ (odr L) (cons (car L) m)))))

(apply reverse (a b o))

answer will be (c b a).

- 16 -

VI. Debugging in LISPITO

By far the most frequent error in a LISP programme is an unbalzuosd
parenthesis. The first step in debugging a new set of functions should
therefore be a careful check of all parentheses. The input routine will
detect an unpaired parenthesis, but will not, of oourse, deteoct an impro-
perly placed one.

As a second step, particularly if some of the functions are complex
in logioal structure, it is recommended to try each function out individ-
ually. First those which require no auxiliary funotions in their defin-
itions should be tested, and if they involve conds or ifs, all possible
paths through the functions should receive a try-out. Building up from
tested functions step by step, one finally arrives at the tests for the
complete set. Of course, some functions may have to be tested jointly.

A function involving free variables may be tested separately by
setting these to appropriate values with a define statement, as described
in the previous section. Such a statement will override preceding
define statements 3§ it is therefore possible to alternate a series of
define statements, setting free variables, with apply statements testing
thg funoction under varying conditions.

In a complicated recursion it is often helpful to be informed of inter-
mediate values. This may be achieved with a special primitive functiom 3

(print x) has its value the value of x j but before proceeding
with the evaluation of the function in which this ppimitive oocours, the .7
value of X is printed by the output routine. (print x) thus has the same
effect a8 x. A useful trick in debugging is to place variables or fumo-
tions whose value might Be of interest at intermediate points on separate
cards, placed between one card in .vhioh “(print" is punched and another with
only ")". These two cards can then be removed at will.

Care must be taken in the use of print, sinoce too free a use of it
will give rise to very large quantities of output whose utility is doubt-
ful. Usually not more than one print per funotion should be used.

The last — and least desirable - debugging aids are the error s%tops.
Of these, the following three may arise dus to an incorrectly structured

- 17 -

function :

UAMB signals an undefined atom. It is due either to a missing
function definition (& misplaced parenthesis can cause an atom to look
like a function to the processor) or to & variable which has not been
assigned a value.

PL® indicates that the push-down list is full. This is usually
caused by a recursion which is infinite. However, it is possible to
write & perfectly valid funotion with an excessive recursion depth
such a funotion should be rewritten so as to use less push—down depth.

NV@® means "no vaouum" s the garbage collector has been unable
to find sufficient free storage to allow the programme to carry on. Again
this is usually a sign of an infinite recursion whose terminal condition
cannot be reached, but may be due to a correct function which requires
too many elements off the vacuum. The remedy is to rewrite the function.

A fourth error etop; usually caused by incorrect data, may also be
due to a wrongly written function. This is the overflow stop in the
arithmetic functions, signalled by OV@.

A frequent error is attempting to take the car of an atom or the
cdr of an empty list. These will cause the machine to halt with the
check-stop light on.

Other error stops are disoussed in the following section.

For debugging purposes it is in general useful to punch the functions
with few symbols per card, indented so as to make a readable listing.
Once they work, they may be condansed into a minimum of card space by
placing them within a single define statement and giving this as argument
to a function

(condense (lambda(x) x))

which will eliminate all superfluous blank columns and moreover number
the cards in sequence.

VII. Implementation in the 1620

LISPITO is an interpreter of the LISP language, i.e. the translation
into machine language is carried out just prior to exscution. A ocompiler
would first produce & complete translation and then proceed to exscutiom ;
this has considerable advantage in that a set of functions, onoce compiled,
runs much faster, but on the other hand the oomplete generality of LISP
can only be achieved by an interpreter.

The 1620 is a variable word-length machine 3 however, for the pur-
pose pf oreating iist structures it is necessary to introduce a standard
oellfnise, which is that of the list element. Sinoe addresses in the 1620
are five digits long, & ten-digit cell size was chosen to hold two addresses
All pointers to list elements therefore have the same units digit, whioh
was chosen to be 9. The left-hand pointer in each cell gives the next
eloment on the list (i.e. the cdr), the right-hand one the contents of
the 1ist element (i.e. the oar) ; this arrangement is the mirror image
of that desoribed in section I. In the last cell of a list the umits
digit of the left-hand pointer is O. The region from 20000 to 39999 is
available for the construction of lists, i.e. forms the vacwuum.

An atom in LISPITO is formed of two parts : its value - a pointer
to the function definition if ,it‘/t]he name of a funotion, or the argument
value if it is a variable - and its print name, i.e. the string of char-
acters which is read or printed out. There are 100 five~digit cells for
the atom values, from 07901 to 08400 3 the print names are stored in’
variable-length fields, from 08401 to 09999.

The first part of the print-name table, up to 08887, contains the
names of the machine funotions. It should be noted that no value cells
correspond to these names, so that, like numbers, they cannot be used as

variable names nor can new function definitions be assoociated with them.

They may, however, be renamed. Thus (ocar (lambda (L) e)), where & is an
expression, will not work, though (car+ (lambda (L) e)) and (newcar oar)
are both valid definitions.

The last region whioch is needed in the system is the push-down list.

- 19 -

LISPITO uges a single push-down list on which both operations still to

be carried out and previous values of ~a::gum;mts are placed 3 for the
latter it therefore functions as a restoration list, from which the previous
values are restored to the value cells of the wariable names whenever the
exoowltion of a);—daﬁned funotion is completed.

The push-down list ocoupies the region 10000 to 19999_and oan hold
1000 elements. Processing a function is carried out as a double inter-
pretation. On going down the push-down list the function names encoun-
tered are analysed sufficiently far to determine how their arguments are
to be evaluated, and at the n:mo time a digii indiocating the kind of pro-
ocessing to be done on returning is placed into the units position. This
process ig ocarried forward until either an atom value is brought onto the
push-down list from a value cell - i.e. the ocurrent value of a variable -
or a guote is exeouted, in which case the argument is used the value. The
second interpretation them begins s the units digit in the preceding elem-
ent indiocates to the processor the operation to be carried on the valus,.
and the result overwrites the funotion ; the prooessor then goes back one
element and repeats this. The two phases may alternate any number of times,
of course, for instance in the successive evaluation of the arguments of
a function which has more than one, also in carrying out and, or, or cond.

The input rou‘i;i.qe works on a different principle. It must establish
the list gtructure and also build up the atom table. For the second punw
pose & linear search of the atom table is made, which is a little slow but
saves programme space. If the atom has not yet been entered, an entry is
made at the end of the iable. Whenever a left parenthesis is encountered,
a new,subliat must be opened, but the place at which the list on the previous
level continues must be kept available j; this may recur to any depth.
LISPITO carries along this return address at the end of each list, in the
last created element. This structure is essentially that of a "threaded
list" (Pgrlis7). Once the input is complete, these return address are
simply ignored by the prooessor,‘ except for their units digit which is
made ;0 at the end of a list.

The output routine uses the push-down list. Whenevr the car of a
list element points to a list, the odr is placed on the push-down list
and a left parenthesis placed in the output region 3 otherwise the print
name of the atom is found by a double linear search of the atom table and
the next list element found. At the end of a list a right parenthesis is

- 20 -

written and the preceding element on the push-down list picked up for
continuation. Only one output region is used, since in the 1620 input-
output is not simultaneous and so nothing is gained from buffering.

The garbage collector is composed of two passes through the vacuum.
The first follows down through the list structure whioch hangs from the
atoms with a value and from the elements waiting in the push-down list.
The mechanism is similar to that employed by the output routine and uses
the push-down list. A flag is set on all list elements which are reached.
The second pass then goes linearly through the vacuum, removes the flags
from the marked elements and combines the ummarked ones into a single
linear list which constitutes the new vacuum. A garbage collection takes
approximately six seconds.

Errors in the input will cause the machins to stop when they are
discovered. Certain of these will also print out an error message

AT@® - the atom table is full s if names are long, there may be few

EA@® - excessively long atom 3 no more than 30 characters are allowed

EP@ - error in the parenthesis count

NV@® - the garbage collector can find no more wvaouum

OV@® - overflow in the arithmetic routines

PL® - the push-down list is exhausted

UA@ undefined atom 3 a function has no definition or an atom no
value .

The machine will halt with the check-stop light on if an illicit argu-
ment has been given to a primitive function, such as an atom to gar or an
empty list to cdr.

The remedy in the first three cases is obvious § the others are
disoussed in the preceding section.

VIII. Operating Instructions

551.322 _hhg_ggg Tamme « A LISPITO programme consists of three kinds
of statements s define sta.tementé which define functions or set variables,
evaluation statements beginning with apply or eval, and commentary state-
ments of the form (comment ...). The first two types are disoussed in
seotion V ; the last is simply reproduced in the output without any pro-

cessing.

The three kinds of statements may ocour in any number and order,
with the sole limitation that any function name called, directly or in-
directly, by an evaluation statement must have been defined already. All
machine functions are, of course, oconsidered as defined.

LISPITO uses input lines of 72 characters, either in cols. 1 to 72
of cards or in a typewriter line. There is no particular format to be
observed, since the parentheses will indicate everything that is needed
to the processor. Henoce a programme may be punched with as many or as
few symbols per card as desired j§ indenting successive lines in accord
with the logical structure - as has been done in many of the examples
given in earlier sections - helps towards understanding a programme 3
blank cards may be interspersed to make a readable listing.

The choice of atom names is restricted by the following consider-
ations 3

1. All characters except the record mark, the two parenthesis, and
the blank space may be used. The first may not be used at all, the other
three serve to separate atoms and indicate the list structure.

2. An atom name may not exceed 30 characters in length.

3. 7The names of the machine functions must not be used as variable
or defined function names.

4. A symbol of three or less digits beginning with a numeral (or
of four or less digits beginning with an algebraic sign and a numeral)
will be treated as a number (see section IV). Thus +71, 419, —6AA are
all numbers (the last will be interpreted as -611), while .71, #5%, 1234,
-1234 are non-numerical atoms.

- 22 -

Loa.dix;g the processor. 'To load the prooassor,'aet the console
switches as follows 1 parity STOP, input/output STOP, overflow
PROGRAM, programme switches as desired vfor the input and output (see
below). Then place the card deck into the reader hopper, press RESET
on the console and the LOAD button on the card reader. The processor
does all neoessary memory clearing. If the input is from cards, these
should follow the processor deck immediately, and they will be read aa
soon as the processor is loaded § ‘there is no intermediate machine halt.
Otherwise operation follows the IBM manual.

-IJ.IREI . The input is controlled by console switch #1 s turn it
off for card input, on for input from the typewriter. Anything punched
or written beyond column 72 will be ignored, and column 1 of the next
card or line is congidered to follow immediately upon column 72. If
input is from the typewriter, the MAR display will show the address into
which the last character has gone ; more than 00999 in MAR means that
column 72 has been passed. If input from the typewriter goes to 01015
or beyond, the processor must be reloaded. Any other error made in
typing may be corrected by turning console switch # 3 gn, pressing
RELEASE and SZART (or the RS key on the typewriter), returning the
carriage and turning switch # 3 off. This will cancel the line just
written. For card input console switch # 3 3hould be off.

Console switch # 1 may be turned on or off at any time and will
change the input mode starting with the next line or card.

Input will be immediately converted into list structure, but pro-
cessing will not start until a special symbol FINENT), is encountered,
which must always end the input 3§ the right parenthesis following it
is unpaired. At this point the ‘prooessbr checks whether all other
parentheses are properly paired, emits an error message if not, and
otherwise starts processing, first setting up the vacuum. FINENT) is
usefully placed on a separate card.

93223.3. The output routine is entered automatically by the pro-
cessor, but the output medium is under control of programme switch # 2 3
if it is off, the output is punched on cards, if it is on, it is written
on the typewriter. In both cases only 72 columns are occupied 3 the
card output is successively numbered in the last five columns, as a help
in keeping the cards in order. The format is the same as for input,

except that a single blank space is used between atoms or between a right

- 23 -

and following left parenthesis. For this reason the function condense,
described in section VI, will reduce the number of cards to a mimimum.
Atoms are not divided between successive cards.

92‘52252 oolloo;t_g_r. The processor enters and leaves the garbage
colleotor automatically as required. It is, however, sometimes useful
to know how many garbage colieotions have taken place. If this is
desired, turn console switoh # 4 on 1 for each garbage oolleotion
the processor will then write the single symbol @ on the typewriter.

Like the error messages, this is independent of the setting of switch 2.

References

lJ. MoCarthy, "Recursive Functions of Symbolic Expressions and Their

Computation by Machine", Comm. ACM, 3 (1960), 184.

zllrtin Davis, Computability and Unsolvability, MoGraw-Hill, New York
1958.

3Réssa PSter, Rekursive Funktionen, 2. Aufl., Akadémiai Kiad6, Buda-
pest 1957.

4LISP 1.5, Programmer's Manual, Massacbhusetts Institute of Technology
Computation Center and Research Laboratory of Electromics, Cambridge,
Mass., 1962.

5800 e .g. Information Frocessing Language-V lManual, ed. Allen Newell,,
Prentice-Hall, Englewood Cliffs, N.J. 1961, and references given
there .

6110::.0 Church, The Calouli of Lambda-Conversion, Annals of Mathematios

Studies No. 6, Princeton University Press, Princeton, N.J., second
printing 1951.

7L.J «Porlis and C. Tharnton, "Symbol Manipulation by Threaded Lists",
Comm. ACM, 3 (1960), 195.

	I. Introduction: The LISP Language
	Preface
	Note on Machine Requirements
	II. The Primitive Functions in LISPITO
	III. Logical Primitives in LISPITO
	IV. Arithmetic Functions in LISPITO
	V. Defining and Using a Function
	VI. Debugging in LISPITO
	VII. Implementation on the 1620
	VIII. Operating Instructions
	References

