
l s p T 0

A LISP PROCESSOR fOR 'fHE IBM 1620

T. A. Brody

lnstituto de Frsica, UNAM
Asesor Tecnico, CNEN

Centro Nacional de Calculo, lnstituto Politecnico Nacional, Unidad Zacatenco

Mexico, D.F.

1 9 6 5

Preface

The ~resent attempt to oreate a symbol manipulation language

processor for a relative~ small 00111puter waa made beoauae of' the

possibility it would offer to open up the field of symbol manipu­

lation to the IIUllq' groups who do not ban a large OOllputer at their

diaposal. This is the oase, for instance, in Latin Amerioa and in

aeveral European ooUDtriea. The resulting prooeasor has proved use­

ful both in the teaching of symbol manipulation technique• An.d for

several applications of a not too extensive oharaoter. Of the•••

the simulation of a Turing machine in LISPITO has proved :pedagogi­

cal~ uaeful.

The author would like to aolmovledge the help he has reoeiwd

from Mr Harold V. Jlointoah, who introduoed hi.Ill to the pleasure■ of

LISP and to whca are d,- aiarq ot the ideas 1ncarparated in LISPI'l'O.

Be would also like to u;press hia thanks to tlle Centro li'aoional de

Ca.ioulo of' Mexioo, whioh put its IllM 1620 oomputer at hia diaposal

and whose members helped in more than one w,q towards the OOllpleticm

of the prooeaso.r.

Tl:18 prooeasor described in thia aanual will .run on an IBK 1620

11&ohille equipped 11:ith t:be i'ollowing a4dit1Clll&l i'eatu:re■ •
1622 ca.rd read.er/punch

1623 storage 1mit to e:a;pand oore -•0117 to at least 40 000

poaitiona

indirect addressing i'eat\lN

autC1111&tio divisiaa i'eature

floating point &l'itluutio i'eature

epeoial instrWJtion■ 71 (aow i'lag)

72 (transmit 11\IINrioal ■trip)

73 (traDS111it n11111erictal .till)

It aore than 40 000 positiOlUI of core atorap are a'ftilable, the

card deck ma;y- be modii'ied to make uae of tl:18 additional _.0117.

- l -

I. Introduction I The LISP Language

LISP, originally developed by McCa.rt]Qr1 , ~ be oharaoterised as

a language for applying recursive functions to list structures.

A recursive function (for the theory see, e.g. Davis2 , Peter3) is

one which is used within its ·own definition, tho1.1&h with different argu­

ments. Thus n! may be defined reoursively as follows 1

nl • 1, if n • 0
n(n - l)L otherwise

Thus 2L • 2 x 1L, which in turn • 2 x 1 x 01 • 2 x 1 x 1 • 2.

It will be seen that it is necessary that for s0111e values of the

argument the function be defined non-recursively J othenise the re­

cursion will :uot end, and its value (if it exists) could not be obtained

in a finite number of steps. The non-recursive part of the definition is

known as the terminal condition.

The recursion may be more 00111pli:oated the function ~ have

several arguments, in its definition several terminal conditions and

several recursive elements ~ occur j the recursion may also be indi­

rect, as whe11- a function f calls another function g , whioh in turn

oalls h , in whose definition f is used.

For the mao)line realisation of a recursive function it is tjvidently

necessary to save the values of its arguments and intermediate results

so that, directly or indireoti.y, it may be called again. There are

various methode of dealing with this problem, all making use of a push­

down list or stack ; anything stored in au.oh a list 'does not erase the

previously stored information,· but pusbss it down, so that on calling tbs

push-down list the last element stored is recovered and removed, so that

the next call will produce tbs preceding element. In LISP, the arguments

are placed on a push-down list, and if the function is called recursively

the old values are pusbsd down, only to pop up again when tbs routine is

carried out.

- 2 -

There are variants of this -thod ; in the 011e adopted in LISPITO,

the ourrent values of arguments are placed under the variable names, and

the old values are placed on a puah-down list from which they are resto­

red at the end of the function execution.

List structures, to which recursive functions are applied in LISP,

provide a teohnique both for eliminating all atorage aaaiglllll8nt problems

as far as the uaer is oonoerned and a flelCible means of speoif'ying the

structural relations between the element• which form the field of intereat

of LISP. Sinoe essentially these elements are not further analyaed in

LISP (except under special oiroumatanoes I see e.g. the LISP 1.5 llanua1'1),

they are known as "atoms". A linear list is an ordered _set of atOIIIB 1

it may be empty. A non-linear list, or list structure, is a. list whose

elements are in turn lists or list structures.

The machine representation of aliat is simple an atom is an

address at whioh the name and other properties of the atom are stared,

and when an at0111 oocura in a list, it is represented by this add.re•• to

whioh that of the next list element is adjoined. The last element of the

list carries a suitable indication. Thia type o:r representation waa

dewloped by Newell, Simon and Shaw5 and is used in aewral list manipu­

lating languages.

Outside the machine, LISP represents a list simply by enclosing the

sequence of elements composing it in parentheses. Thua an empty list is

() , and the list containing a and b is (a b) J blank spaces are

used in LISPI~l.'0 to separate the names of atoms which follow each other,

but they are not required if thRre are parentheses (LISP 1.5 uses a diff­

erent technique 4). A list structure will then appear as follows 1

((this is a (list) structure in) lisp)

Its representation in the machine would be

list

- 3 -

0

Here arrows indicate the elements referred by the addresses at the

starting point of the arrows, and O in the right-hand pa.rt of a rect­

angle representing a list element indicates that it is the last one

in the list or sublist •

Clearly list structures lend themselves to recursiw handling

in a straightforward manner, provided that any newly conatruoted lists

newr owrvrite earlier lists which may still be reqUU'Bd. For this

purpose the ,aemory space available for list building is organised as a

single linear list of unused elements, - the so-called vacuum. ihenewr

a new element is required, it is taken off -this list and newr made from

an earlier list, However, the vacuum may come to an end before pro-

cessing is ended since at this point there will generally be a large

number of list structures and fragments of struoturea in memory which

oan no longer be referred to, these may be recombined to form a new

vacuum. Thia is carried -out by a special routine called the "garbage

oollector". Its calling is automatic and need not worry the user,

- 4 -

n. The Pdm.Un l'unC'UOPII in J.ISPl'l'O

LISP has fin baa1o .funot10118, the moet ia.Portant -•g the pria­

i ti w or machine .funot1011a , all other tunoti.ona aq be defined. in

terma of them by 1D.eana of the reouraion and tunotion detinins aymbola

Rovewr, it is very oonftllient to have soae further prilllitiws &Vail.·

able, both for eue of progr111111111ng and for running apeed.

Of the tiva primiti-..s thet are baaio, t-.o permit tu uaqaia of

a list 1

(.!!,!£ lt)• evaluate• &: u4:1f it ia a liet, the Nault ia tJae finrt

element of the list, whether this be an atom or a aubliat. U lt ia no1i

a list, {oar x) is undefined.

(2S. lt) evalua,ea the argument x and if it ia a ~t, gifts -11 but

the first element of it J the re■ult 1a tbue &1""'1• a liat. U JE
contains only one element, {odr x) • () f if x is an empty liatt the

~ of it is undefined.

Another function synthesises a liat 1

(~ x y) evaluates both x and y and then create■ a list the firat

element of which is x, while the others a.re those of y J x aq be any­

thing, but y must be a list, which m~ be empty. Bvident ly

{cons (oar L) {odr L)) • L

is an identity for arq list L.

Two further .functions are predicates, i.e. they take only the values

.i (for "true") or.!'., (for "false") a

(atom x)evaluates x, and if it is an atom, the result is .1 J if' it

is a list, the answer is 1.•

•Atom names will occasionally be underlined for readability, or .written in
capitals. Since the IBM 1620, like moat 11aohines, accepts only capitals
letters, no semantic difference will be implied by theae variations.

- 5 -

{!,9. x y) evaluates both x and 7 J if they both refer to the same

atom, the result is 1 , if they refer to different atoms, or if one of

them is a list, the answer is 1. J if both are lists, the i"unotiOD is

undefined.

From these basio functions it is possible to build up more 0011plex

ones, since all of them evaluate their arguments I if an argument is in

turn a function - written,. as has been seen I as a list which may be hand­

led by LISP - it is, of course, evaluated by carrying out the :tunotiOD

in question. Howenr, more symbols are needed in order to e:z;press the

logioal relations of the conditions tor a recursion a this is the main

(though not the only) purpose of the s;yipbole ~ and .U, .•

Of the three arguments of (if p e1 e 2), the first is a predicate

if its value is 1, then the expression e1 is evaluated and its value is

that of the .U,-expresaion J otherwise the ex:pressicm e 2 is evaluated and

taken as the result. In either oase the other expressicm is not evaluated

and may oontain elements which under these conditions are undefined, e.g.

the .2S:, of an empty list.

(oond (p1 e 1) (p2 e 2) ••• (pn en)} is used for more oomplioated

oases ; it baa any nwnber of arguments, each of whioh is a pair of ex­

pressions, the first a predicate and the seoond any kind of expression J

the predicates are evaluated in turn until a true one is found, when the

value of the ~ becomes that of the associated e:z;pression e1 • Jfo succeed­

ing predicate or other expression is evaluated. If no predicate is true,

~ is undefined ; it is therefore often convenient to have a last pred­

icate which is alwa;ys true. Such~ predicate is written (and) in LISPITO,

as will be seen below.

Certain ot~r functions are frequently useful and are therefore pro­

vided as machine functions 1

(quote x) • x. This function prevents the evaluation of the expression

x, which may be anything. Thia is used when it is necessary to provide a

oQDStant, i.e. a quantity whose ~ is its !!!:!!!!.• The distinction between

a quantity and its name, though not often ma.de clearly in ordinary dis­

course, is fundamental in symbolic logic, where the device of quoting orig­

inates: thus the name of x is "x".

(null L) is a predicate which is true if Lis.an empty list, false if

- 6 -

the list L oontaina eleaenta. Jfote that (()) ia not null, ainoe it con­

tains the e le-nt () •

(list ab o •••) ,valuate• a, b, o, ••• , and then fo~•• a liat ot
the reaulta, in the order of the arguaenta. The number of a.rg1menta ~

.be arq, including none, in which oase the result ia ().

Fi.Dally, oompositea of .2!I. and~ are freql.18ntl7 aeeded, often to
considerable depth J in view of the aise of the IBJI 1620, it ha.a been
possible to include only four of thaae composites 1

(oaar L) • (.!!E, (~ L))
(~ L) • (.!!E, (odr L))
(.22£. L) • (~ (,2£ L))

(~L) • (~ (~L))

These are, of course, onl.¥ defined it their arg1m911ta fulfil the
appropiate conditions J thus for .22£_, the argument L auat k a liat
vhose first element is itself a non-empty liat, ato.

EXAMPLES a

If the list L • ((a) b o), than
{ca.r L) • (a)
(oaar L) • a.

(odar L) • ()
(cons {oaar 1) (.oddr L)) • (a o)
(oons (oar L) (odar L))• ((a))

(odr,L) • (b o)
(oadr L) • b

(oddr L) • (o)

{cons (oar L) (oddr (odr L))) • ((a))

(list (oa.r L) (oddr (odr L))) • {{a) ())

(atom (odr L)) • f {atom {oadr L)) • t
(eq {oaar L) (quote b)) • f
{eq {oaar L) (quote a))• T
(eq (oaar L) (quote (a)))• f
(null {car L)) • F (null (odar L)) • t
(if (null (odar L)) (quote (empty list)) L) • (empty list)
(oond ((null (oddr L)) {oaar L))

((atom (aar L)) (odr L))
{(eq (quote a) (oaar L)) L)

((and) {quote error))) • {(a) b o)

- 7 -

lII. Logical Primitives in LISPITO

Logical functions differ from the predicates previously described

in that not only their values but also their arguments take only the two

possible values "true" or 11:f'alse 11 • Theyr are also called Boolean :functions.

In LISP, one of their principal uses is to combine predicates of various

kinde into more powerful ones for use with ll or~-

The three logical primiti:ves included in LISPITO are ~, .!?£ and .e.21•

Of these, the last presents no difficulty. It has one argument, a pred­

icate, whose value is found and connrted into the opposite.

(!:!!A Pi P2 • • • pn) baa any 'number of' arguments, which it proceeds to

evaluate in the order given, until it eJ.ther encounters a predicate whose

value is ! or comes to the end of the arguments. In the first case the

value of' the function is !, and no further argument is evaluated ; in the

■econd case, when no false argument has been found, the value of e is .1.•
This last b always the case when ~ has no arguments at all because

of this, (and) is used to generate the value ,1 for use in, say, ~, and

it is not therefore necessary to reserve the symbols ,1 and! for special

use a.s logical values ; they may be freely used as function or variable

names. In the output, however, the truthvalues appear as · T' and F.

Similarly, (-5!!:. p1 p2 ••• pn) has any number of arguments and is. true

if an argument is found which evaluates to .!. ; if all arguments evaluate

to !, or if' there are none, the value of -2!:. is .!'..• After a first true argu­

ment is found, no further ones are evaluated. (.2£.) is used to generate the

truthvalue :! •

It is occasionally useful to be able to handle functions whose values

may be either truthvalues or anything else. For---1.his purpose, the logical

primitiws in LISPITO function as "semi-predicates", in the :following

sense 1 .!!:!'.!2:. takes the value of the :first argument which differs from .! ;
s:, takes the value of the first argument which differs from ! ; and a,21

takes the value ! if its argument is.!. and vice-versa, but takes the value

of its argument if this is anything but ,1 or!• If this feature is used

in ~ or ll, it should ·be noted that these functions discriminate only

- 8 -

between .i - true for the purpo■e of the desoril)tion giftn above -, on th&

one hand, and ~thing else (including L), taken aa t'alse, on the other.

BXAJlPLES I

Let L • ((a) b o), X •(ab) t tlseA

(and (not (null L))

(eq (oaar L) (oar K))) • t

{and (or {null L)

(null K)
(not (atca (oar L)))
(atca (oar K))}

(eq (oadr L) (oadr X))
(null (oddr K))) • t

(and (at0111 (oar L))
{atOlll (oaar K))) • t, ewn though in this oue

the second e.rsuaent of and oould not be oarried out.

- 9 -

IV. Arithlletio Functions in LISPITO

It is, in principle, poasible to define all ,arithmetical operationa

by means of the basic LISP functions, for instance by uaing Pe11110 1 a post­

ulates on a list of symbols vhioh function as the names of the auooessift

integers (and would, of course, be the conventional numerical symbols).

However, this is extremely slov and uses up much memory, ao that beoauae

of its frequent usefulness integer arithmetic has been incorporated in

LISPITO. Larger proceBBors often allow floating point numbers as well,

but the size limi tationa of the IBM 1620 have made this impoaaible.

For LISPITO, a number is defined as an integer of u;p to three digits,

vith an optional sign in front. The processor vill treat a n1.111ber as an

atom vhose value is its name. No other value may therefore be assigned

to it, vhioh means that a number 0!1lUlot be the name of a function or of

a variable J it may, of course, be the value of a function or a variable.

Aa a result, vhen a number occurs as a constant vithin a function definiticm,

it is not neoeBBa:.'ry to quote it. This conforms to the usual practise in

algebra. An integer of more than t~e ciigits ia treated as an ordinary

atom and no fi:md value is therefore associated with it.

To handle numbers, five functions are available. EJCOept for .!E!!,,

their arguments must be numbers J the result of the arithmetic operations

vill also be a number vhich must be less than 1000 in magnitude, or else

an error stop is caused. The functions are 1

{~ n m), vhich calculates the algebraic sum n + m
(.!.!!!, n m), vhioh calculates the algebraic difference n - m

{mult n m), which gives the product nm

(!.l n m), a predicate whioh is true if n (m J the abbreviation is

"strictly less"; and

(~ x), a predicate whioh is true if x has a number as its value and

false otherwise .

Numbers may ooour, like other elements, within list structures, and the

fi-ve functions just mentioned may be used in recursive function definitions.

- 10

-

For all otber LISPITO :runotions, nU111bers beh&n like atoms. In partioular

the predioate .!!.2!!!. of a number is true, and li ma,y be used to determ~,;,. the

equality of two D\llllbers. +o and -0 are equivalent, i.e. { eq +O -0) .. ~

BXdPLES 1

(add +5 17) • 23

{sub 11 '*9) • 2

{11ult -9 3) - 27

(nUIII -3) • t
{num -003) • t

(DUIII -0003) • f

(add 5 -17) • -12

(aub -5 -7) • 2

{mult 20 50) oauses an errar atop

(nUIII :z;yz} • f, if :z;yz • a, but • t if :ir;yz • 36

(al 3 6) • t

(el -6 -3) • t
{el 6 3) • f

(el 11 11) • f

- 11 -

V. Defining a.nd Using a. Function

By means of the primitives introduced in the previous sections, it

is possible to give a. function description, in the sense that for instance

ax2 + b:i2 + c is one however, it is not possible as yet to a.ssooiate

a name with suoh a description, nor to indicate precisely what are the

varia.bles and therefore to give them va.lues. • Hence such a description

cannot be recursive. In the e.xample given, x is oonventiona.lly consid­

ered the variable ; but no value ca.n be found for the expression until

a, b, c a.lso have numerical va.luas assigned them : they ma,y therefore

a.lso be considered variables, at lea.st in some connections. A precise

and genera.lly applicable indication of which a.re to be considered the

variables in a particular case of function description (i.e. what is

known as a form) is achieved in LISP by means of the ~-symbolism intro-
--6

duced by Church

Here "form" is the description of the operations to be carried out, a.nd

v1, v 2 , • ••• vn are the variables to which values must be assigned. This

ma,y be done directly following the A,--expression, by enclosing it toa,e:ther

with the values of the variables in parenthesis. Thus the ~ --expression

becomes a function, a.nd the values of the variables its arguments, accord­

ing to the rules of LISP notation:

Of course the arguments ma.y, in turn, be expressions of an appropriate

kind, which will be eva.lua.ted and assigned as va.lues to the variables

during the evaluation of the form.

The variables v1 , v 2 , •• .,. vn need not necessarily all occur within

the form, and there ma.y also be other variables in it. 'I'he variables in

the list following the A are said to be ~ by it : that is to sa,y,

the values they have throughout the pair of parenthesis beginning just

before the A. are fi:z:ed by the pa.iring with the arguments this ~ carries

out. Any other variables occurring within the form are ~ variables J

12

be:tcrre eval\l&ting tb. :f'01'11, their value• ■wat, of oourae, , haw been :tixad

thia will liaw occurred at a higl»r leftl lambda, which bound t•••

Thia •ohaniaa doea not 79t provide :tor giving a tunotiOl'l&l deaorip­

tion a name to be used w11ihin its OIRl definition, :rec1.ll'■ift]¥. 1or tlu.8

purpose LISPITO baa ,a mare general :tunoticm, whioh define■ tunotiO&III non­

recursivaly by -•ooiating their desc:riptiona u values with tb.ir naaae 1

(define

(f1 (1-bda (v1) fC11'1111))

(f2 (laabda (v1 v2) formi)

(f3 (lambda (v3 v2) f0l'lll3))
)

1'h1¥' define bas, &rJ7 number of a.r,amants, each of •hi.oh is a two-elemant

list in which t.he first is a. function n.aae - which must h tJA atam, o#

course, - and the second the definition of the Cunction. lfi thin tb.

corresponding for- any function naaea aay now oocUJ', provided that at

the tilN of execution they have already been defined. tloreowr, tba naaea

of the variables,· being anly d~ va.riablu to be aubatituted :tor at

execution time, need not all be distinct in _different l-expreaaiaaa,
thowdt they ■t.1at, of course, be so within one and the same).. Honwr,

care must be taken that free variables to be uaed at some levwl do not

coincide with variable names uaed at an inte1"1118diate lewl, since the A
at this level will then bind them to new '9'11luea, which will he the OD4J•

used at the lover level rather than the intended' ones, vhi,ch bave now
been stored awa;y on the push-dovn list.

To illustrate this, consider a fllDction which de'termines whether •

certain atom occurs in a list 1

{define

(member (lambda (x L) (cond ((null L) (or))

((eq (car L) x){and))

((and) (member x (cdr L))))))

Observing that the recursion condition binds the variable x to the

same value as it previously had, one oan eliminate this variable by using

an auxiliary function which is called by member but has only one variable •

The definition then runs 1

- 13 -

(define

(member (lambda (x L) (member+ L)))

(member+ (lambda (L) (cond ((null L) (or))

((eq (oar L)-x) (and))
((~d) (member+ (cdr L))))))

Another •~ of solving the same problem is b;y- using two interlaced

functions 1

(define

(member (lambda (x L} (if (null L) (or) (member++))))

(member++ (lambda (} (if (eq (car L) x} (and)

(member x (odr L))}))

Here both variables in member++ are tree.

In 11.mq caaea it 1• convenient to be able to use a variable number

of arguments with a function. Since the pairing-off mechanism will not

work here, the solution is to place the name of a single variable after

the but without enclosing it in parenthesis. The arguments, whatever

their number, are then evaluated and formed into a list which will be the

value of the variable at e:ucution time. 'l'hus a .function to determine

simply the number. of arguments given it might be written

(number (lambda m (oond ((null m} (quote none))

((null {odr m)) {quote one})

{(null (oddr m)) (quote two})

((and) (quote more)}) })

and giwn to ~ aa an argument.

It is occasionally necesaar;y- to au;ppresa the evaluation 01· the argu­

ments, i.e. to let the names of the arguments be their values. This is

achieved by using lambda+ in plape of lambda, in e:i:lrher of the two types

of uses mentioned above. Thia is equivalent to quoting all the arguments.·

{lambda+ () e) is of course the same function as (lambda () e).

It should be noticed that in LISP, contrary to algebraic practice,

a function - either the name or the lambda eXPreBsion - and its arguments

a.re enclosed in parenthe8*a to form a list. Thus (f x) rather tha.li f(x)

- 14 -

1a ll&ed.

'1'lMt :tunot1011. de:r'..ne Pffllita alao t.be redetilliUcm ot :tunotiona tor

inatanoe, 1t it ia wiahltd to UN + and - tor tha ar1"lllletio tunoUcma, wie
oan,add

(+ add)

(- aull)

to the tunotiona defined.. In Ula aue ll&Dner the valuea ot va.ria'blaa ._

be aet 1Ditialq , 1t a va.ria'ble of the aau nue oooura later, thia later

value will tab preoedenoe, while the 1Ditiall,1' aet val• ia pJ.aeed. OD. the

puah-dovn li■t and re■tored from it 111 due OOU1'118.

A tunoticm defiDad aa desoribed mq now be applied. to value■ of its

a:i:>gumenta b7 aeana of two tunotions belcmgiDg to. the ■- olu■ of pnu-&1-

it7 aa define t the statements tab tile fOl"II

(~t •1 a2 ••• an)

(.!Dl, t •1 a2 • • • •n)

The differenoe between them is that ~ tab■ the n■aea a1 , ~2 , ,. • •, -_

&a its a:i:>gumenta, i.e_. it quotes them, and then gift■ them to tba :tunoUaa

f to oarry out, while .!:!!l!, does not quote them but evaluate■ thaa. Benoe

(eval f (quot~ -i> (quote a2) ••• (quote an))

is equivalent to tbe appq atatement aboV9. Of oourae a.rq :f'unoticm■ named.

in !!.!.!, or ~ and a.icy- ,tunoti~ used direotl7 or indireotl.7 b;r tliea auat
haw ooourred previoua}T in ~ statements.

(define

(equal (l-bda (x 7) (oond ((atom x) (eq x7))

((ataa 7) (or))

((null x) (null 7))

({null 7) (or))

)

(appl7 equal (a b) (ab))

((equal (oa:i:> x) (oa:i:> 7))

(equal (odr x) (odr 7)))

((ua4) (or)))))

- 15 -

(apply equal (a (b o)) ((ab) o))

(apply equal (a (b o)) (a (b (.))))

This function determines whether two list structures are the •-e J the

three oases given it here to work on will produce, respeotinq, the

answers .1, 1., ! •

(define
(reverse (lambda {L) {rev+ L (list))))

(rev+ (lambda (La) (if (null L) a

(apply reverse (ab o))

!I.Ilsver will be (o b a).

(rev+ (odr L) (oons (oar L) m)))))

- 16 -

VI. Debuging in LISl'ITO

By fa;r the most frequent error in a LISP programme is an unbale.noed

p&'l'enthesis. The first step in debugging a new set of function■ should

therefore be a careful check of all parentheaaa. The input routine will

detect an unpaired parenthesis, but will not, of oourse, detect an impro••·

perly placed one.

As a second step, particularly if some of the functions &1'e c0111plex

in logical structure, it is recommended to try each function out indivici­

ually. First those which require no auxiliary functions in their defin­

itions should be tested, and if they involve~ or g,s, all possible

pathe th.rough the functions should receive a try-out. Building up from

tested functions step by step, one finally arrives at the tests for the

complete set. Of course, some functions ma,y have to be tested jointly.

A function involving free variables may be tested separately by

setting these to appropriate values with a define statement, as deac11i'Nd

in the previous section. Suoh a statement will override preoeding

~ statements J it is therefore possible to alternate a aerie■ of

~ statements, setting free variables, vi th ~ stateMnts test in&

t~ function under varying conditions.

In a complicated recursion it is often helpful to be informed of inter­

mediate values. This may be achieved with a special primitive function a

(print x) has its value the value of x J but before proceeding

with the evaluaUon of the function in which this pi>imitive occurs, the J

value of x is printed by the output routine. (print x) thus has the sam

effect as ,x. A useful trick in debugging is to place variables or func­

tions whose value. might be of interest at intermediate points on separate

cards, placed between one oard in whioh "(print" is punched and anqtber with

only ")" • These two cards can then be removed at will.

Care must be taken in the use of print, since too free a use of it

will give rise to very large quantities of output whose utility is doubt­

ful. Usually not more than one print per funotion should be used.

The last - and least desirable - debugging aids are the error stops.

Of these, the following three may arise due to an incorrectly struotured

- 17 -

f'unotion 1

UJA sign&l.s an undef:illed ataa. It is due either to a llissi.Dg

function definition (a misplaced. pu-enthesis 01111 cause an atom to look

like a function to the processor) or to a V&l'iable which haa not been
assigned a value.

PI.e indicates that the)lush-down list is full. This is usual~

• caused by a recursion which is infinite. Ronftr, it is possible to

write a perfect~ valid function with an excessive recursion depth,

suoh a funotion should be reWJ,"itten so as to_ us_e less push-down depth.

n• means "no vaoU\111" 1 the garbasa collector haa been unable

to find suf'fiQient :tree storasa to allow the progra111111e to carry on. Again

this ill usual~ a sign of an infinite recursion whose terminal oondition

oamiot be reached, but ~ be due to a correct function which requires

too mazcy elements off the vaou1a. The remedy is to rewrite the function.

A fourth error stop, usual~ cauaed by incorrect data, ~ also be

due to a wrong~ vri tten function. This is the 0'99rflow stop in the

arithmetic functions, signalled by OVl!J.

A frequent error is attempting to take the .2!£ of an atom or the

odr of an empty list. These will cause the machine to halt with the

oheolt-atop light on.

Other error stops are discussed in the following section,

For debugging purposes it is in general useful to punch the functions

with few symbols per card, indented so as to make a readable listing.

Once they work, they •~ be condensed into a minimum of' oard space by

placing them within a, single def'ine statement and giving this as argument

to a function

(condense (l.amlida(:z:) x))

which will eliminate all su;perfl.uous blank: columns and moreover number

the cards in sequence.

- 18 -

!II• Illple•11.taUm 1p tbe 1620

I.ISPl'l'O ia &D illte~ter of tbe LISP 1&11811&P, i.e. tbe trualaticm

illto maohiDe J.anguap ia oarried om ;juat p.rior to eaou.uaa • .&. ocapiler

would tint p.roduoe a- oaplete tN.D11laUcm and tlleD p.rooeed to exeouticm t

this baa oonsiderable adftllt&&9 ill th&:' a Ht of f'lmoUma, onoe oom.piled,

runa muoh taater, but cm the other hand the ooaplete paeralit7 of LISP

oa.n ODl.7 be aohin•d b7 an iDterp.reter •

The 1620 is a TU'iable word-length maohiDe f honnr, for tbe P'ID.'­

poae of oreating A.1st atructurea it ia neoeHary to illtrodll08 a atanclal'4
r- ,

oell siae, whioh iB that of the list eleae11.t. Silloe addreuea ill tbe 1620

are fift digit■ lC111g, a ten-digit oell &iH vaa ohoae11. to hold two &44Naua

ill pouter• to list ele111eJ1ts therefore haft the sue W11ta digit, vhiola

vu ohoaen to be 9 • The left-hand poillter in each oell gift■ tha ae:a

eleaent OD the list (1.e. the odr), the right-hand Ol18 tbe oonte11.ta ot

tha list elelll8Jlt (i.e. the ou) 1 thia arran.pNDt ia tlle airror. 1up

of that deaoribed 1D seotion I. In the lut oell of a list the Ullita

digit of the left-hand pointer ia o. The region f:rca 20000 to 39999 iB

available tor the oonstruotion of lists, i .e • toru the vacn.ma.

An at0111 in LISPIT0 is f01'1118d of tvo part■ a its value - a pointer
•.Ji

to the funotion definition if it the name of a f'lmoti0Z1, or the argument

value if it is a variable - and its print Dame, i.e. the ·string of ohu­

aoters vhioh is read or printed out. There are 100 five~igit oelle fe

the at0111 values, from 07901 to 0840() J the pr1Dt namea are atared ill'
• I

variable-length fielde, from 08401 to 09999•

The first part of the print-name table, u;p to 08887, oontains the

names of tbe maoh1De funoti0Ds. It should be noted that no value oella

oorrespond to these names, so that, like numbers, they opnot be uaed y

variable names nor oan new function definitions be aasooiated with thell.

The:,~, however, be renamed. Thu (oar (laabcla (L) e)), wbe1'e • is &.1

ex,prea~ion, will not work, though (oar+ (lambda (L) e)) and (newoar Qar)

are both valid definitions.

The last region whioh 1• needed in the qstem is the puah-down list.

- 19 -

LISPIT0 uses a single push-down list on which both operations still to

be carried out and previous values of ·arguments are placed J for the

latter it therefore f'lmotions as . a rest oration list, from which the previoua

values are restored to the value oella of the 1E&l'iable :names whene'99r the

eaou,UQJl of a);.-defined· f'lmotion is completed.
I .

The push-down list c:loc~ea the regi01l 10000 to 19999_and oan hold

1000 elements. Prooessing a f'lmotion is carried out - a double inter­

pretation. On 'going doim the puah-doim list the f'lmotion names enooun-:­

tered are anal;yaed auf'fioientl;y far to determine how their arguments are

to be •valuated~ al1d at the aame time a digit indicating the kind of pro­

cessing to be d01,19 on returning is placed into the wiits position. Thia

process is oarrie4 forward witil. either an atom val-.. 1:s brought OD.to the

push-down list from 11, ,q1lue cell ~ 1.e. the current value of a variable -

or a quote is eacuted, in which cue the argument is used the value. The

aeoond interpretation the• begins , the units digit in the p;reoeding el .. -

ent inllioates to the processor the operation to be carried on the value,

and the result 0'99rWritea tha f'lmotiOD J the prooeBBor then goes back one

eleaent and repeats this. The two phases m!Q' alternate 111:lY number of times.,

of oourse, for instance in the .suooessiw evaluation of the arguments of

a function which has more than one, also 1n carrying out e, .s,, or~•

The input routillie worka on a different prino-iple. It must establish

the list structure and alao build u,p the atom table. For the second pma-.

pose a linear search of the at011 table is made, which is a little slow but

sane programme apace. If the atom has not ;yet been entered, an entry is

made at the end of the table • Whenewr a left parenthesia is encountered,

a new sublist must be opened, but the place at which the list on the previous

level continues must be kept available J this ~ recur to ~ depth.

LISPIT0 carries along this return add.re BB at the end of each list, 1n the

last created element. This structure is esaentiall;y that of a "threaded

list" (;p~rlis7). Once the input is complete, these return address are

simpl;y ignored b;y the prooesaor, except for their unita digit which is

made ,0 at the end of a list.

The output routine usea the push-down list. Whenevr the .2!:!. of a

list element points to a list, the ·ss. is placed on the push-down list

and a left parenthesis placed. in the output region ·1 otherwise the print

name of the atom is found b;y a double linear search .of the atom table and

the next list element found. At the end of a list a right parenthesis is

- 20 -

written and the preceding element on the push--down list picked up for

continuation. Only one output region is used, since in the 1620 inp1.1.t­

output is not simultaneous and so nothing is gained from buffering.

The garbage collector is composed o:f tvo passes thro\.18h the vaoUUIII.

The first follows down through the list structure which hangs trom the

atOIIIS vith a value and trom the elements waiting in the push-down list.

The mechanism is similar to that employed by the output routine and ues

the push-down list. A flag is set on all list elements which are reached.

The second pass then goes linearly through the vacuum, removaa the flaga

trom the .marked elements and combines the U111Darked ones into a single

linear list which constitutes the new vacuum. A garb&B9' collection takes

approximately six seconds,

Errors in the :i.nput will cause the machine to atop when they az,e

discovered. Certain of these will also print out an error meuap a

AT9 - the atom table is full I if names are l0llg, there Ila,}" be few

EA• - exoessivel.y l0llg atom a no more than 30 oharaoters are al.1--4

EPO - error in the parenthesis count

NVO - the garbage oolleotor can find no more vaoUUII

ov• - overflow in the arithmetic routines

PL@ - the push-down list is exhausted

UA• - undefined atOll I a function has no definition Gr an at0111 no

val\111.

The machine will halt with the oheck-etop li&ht on 1:f an illicit argu­

ment has been given to a primitive :function, such as an atom to .2!£ or an

empty list to .!!S!:•

The remedy in the first three oases is obvious J the others a.re

discussed in the preceding section.

- 21 -

VIII. Operating Instructions

!;t~!~i-~.i!:.21::== • A LISPITO progi-amme oonsists of three kinds
of statements , ~ statements which define fwlotions or set variables,

evaluation statements beginning with .!:Rl!k or .!:!!!,, and oommenta:ey state­

ments of the fora (OOllllll8nt • • •) • The first two tn,es are diaousaed in

section V

oessing.

the last is sim~ly reproduced in the output without ,my- pro-

The three kinds of statements may ooour in llllY number and ordsr,

with the sole limitation that llllY fwlotion name called, directly or in­

directly, by an evaluation statement must have been dsfined alread,y. All

machine functions are, of course, considered as dsfined.

LISPITO uses input lines of 72 oharaoters, either in cola. 1 to 72

of cards or in a typewriter line. There is no particular_ format to be

observed, since the parentheses will indicate everything that is needed

to the processor. Benoe a progi-amme ma;y be punched with as ~ or aa

few symbols per oard as dssired , indenting successive lines in accord

with the logical structure - as has been done in many-of the examples

given in earlier sections - helps towards understanding a progi-amme

blank cards ma;y be interspersed to make a rea.dable listing.

The choice of atom names is restricted by the following c~sider­

ations 1

l. All characters e:xoept the record mark, the two parenthesis, and

the blank space may be used. 'l'he first may not be used at all, the other

three serve to separate atoms and indicate the list structure.

2. An atom name micy not exceed 30 characters in length.

3. i'he names of the machine functions must not be used as variable

or defined function names.

4. A symbol of three or less digits beginning vi th a numeral (or

of four or less digits .beginning with an algebraic sign and a numeral)

will be treated as a number (see section IV). Thus +71, 419, -6AA. are

all numbers (the last will be interpreted as -611), while • 71, ,5$, 1234,

-1234 are non-numerical atoms.

- 22 -


~~~i.:~~!~ • ' To load the :prooeasar, set t,he oonsole 

nitches as follovs I parity STOP, input/output STOP, overflow 

PROGRAM, progi.-&llllll8 switches as desired for the input and output (see 
belov). Then plaoe the oard deok into the reader hopper, preBS RES.Ill' 

on the console and the LOAD 1>utton on the oa.rd reader. The prooe■ao.r 

does all neoessary memory clearing. If the input is from oarda, these 

should follow the prooeasar deok imaediately, and they will be read u 

soon as the processor is loaded , 'there is no intermediate maohine halt. 

otherwise operation follovs the IBJI manual• 

!!R~. The input is controlled by oonaole swi toh # 1 a turn it 

,2U. for oard input, .2e, for input from the typewriter. Anything punched 

or written beyond column 72 will be ipared, and o.olumn l of the next 

oard or line is considered to follow immediately upon column 72. If 

input is from the typewriter, the 111B. displa_y will show the addresa into 

whioh the last oharao1;er has gone f 11m. thaa 00999 in ll1R mean■ tha\ 

column 72 has been passed. If input from the typeffiter goes to 01015 

or beyond, the processor must be reloaded. J;n,y other error ma.de in 

typing may be oarreoted by turning console switch# 3 a, pressing 

RELEASE and SURT ( or the BS key on the typewriter), re1;urning the 

ca;rriage and turning switch# 3 off. This will cancel the line just 

written. For card input console switch # 3 'Jhould be .!ll:!• 

Console switch# l ma;y be turned on or off at any time and will 

change the input mode starting with the next line or ca.rd. 

Input will be i.Jnmediatel;y converted into list structure, but pro­

cessing will not start until a special symbol FINENT), is encountered, 

which must alwa;ys end the input J the right parenthesis following it 

is unpaired• At this point the processor checks whet.her all other 

parentheses are properly paired, emits an error message if' not, and 

otherwise starts processing, first setting up the vacuum. FINENT) is 

usef'ull;y placed on a separate card. 

~!i~:. The output routine is entered automatically by the pro­

cessor, but the output medium is i.mder control of progr&llllll8 switch# 2 1 

if it is .91,!_, the output is punched on cards, U it is .e, it is written 

on the typewriter. In both oases onl;y 72 columns are occupied J the 

card output is suocessiwl;y numbered in the last five columns, as a help 

in keeping the oarda in order. The format is the same as for input, 

except that a single blank.space is used between atoms or between a right 

- 23 -



and following le:f't parenthesis. For this reaaon the tunotion conderaae, 

described in section VI, will reduoe the number of cards to a 1111.aiawa. 

Atoms are not dividad between suoceslliiva cards. 

2~:l?!e~~~ • The prooesscr enters and leans the garbage 

collector automatically as required. It is, howewr, sometimes useful 

to know how many garbage collections haft taken place. It this is 

desired, turn console switch# 4 .2!!. a for eaoh garbage collecticm 

the processor will then write the single symbol • on the typewriter. 

Like the error messages, this is independent of the setting of switch 2. 

- 24 -



Bef'erenoea 

1J. aocart~, "Rec11raiw Functiona of S7111bolio Expressions and Their 

Coaputati011 b7 llaohi.De", COlllll. ACJl, ,l ( 1960), 184. 

2-.rtin Dana, Coapu.tabilit7 and Unaolffl>ility, .McGraw-Hill, Bew York 

1958. 

3a6saa Nter, Rekm-aiw J\mktionen, 2. Au:fl., Akademia.i Kiad.6, .Buda­

pest 1957. 

4i.ISP 1.5, Prograaaer•a Manual, Naasaohuaetta Institute of Teohnology 

Coa~:t.0111 Center and Reaearoh L&borator;r of Eleotronios, Cambridge, 

Naas., 1962. 

5see • •B• Inforaation Processing Langua&a-V Manual, ed. Allen Hewell,. 

Prentice-Hall, Englewood Cliff'■, Ji .J. 1961, and references given 

than. 

6 Al011110 Churoh, Tm Calouli of Laabda-Conversicm, .Annals of Mathematica 

Studies lll'o. 6, Prinoeton Uniwrsity Press, Prinoeton, N.J., seoond 

printing 1951. 

7 A .J .Perlia and C •. 'l'harnton, "Symbol Kanipulation by Threaded Lists 11 , 

C0a11. ACII, .l ( 1960), 195 • 

- 25 -


	I. Introduction: The LISP Language
	Preface
	Note on Machine Requirements
	II. The Primitive Functions in LISPITO
	III. Logical Primitives in LISPITO
	IV. Arithmetic Functions in LISPITO
	V. Defining and Using a Function
	VI. Debugging in LISPITO
	VII. Implementation on the 1620
	VIII. Operating Instructions
	References



