
September 1974 

Department of Computer Science 

UNIVERSITY OF BRITISH COLUMBIA 

07-2.3-76 

~""vtd C Ct.1- ~ .. e.e~ 
), '(f ~..tU) l(t:uJ>t ~I c, fv....u; 

pmcjones
Sticky Note
Page 49 is missing.



> 

, 

I. 
II. 

III. 

IV. 

I 
i 
I 

A. 

A." 
B. 
c. 
D. 

A. 

B. 

c. 

Lisp/MTS 
Table of contents 

Introduction •••••••••• . . . . . . . ............ . • • 1 
The LISP Language •••••••••••••••••••••••••••••••• 2 

Atoms, Buffers, And Arrays ••••••••••••••••••••• 2 
1." 
2. 

PNAME Of An Atom ••••• ..........2 
3. 
4. 
5. 

Types Of Atoms · ....................... . 
Valus Of An Atom ••••••• · ........... . · ............................. . 

............•...... 

•• 2 
• .3 
... 3 
." • 4 

6. 

Special Atoms 
Property Lists ••• 
Buffers •••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • .4 

7. Arrays · . · . · .. · . . . . . . . . •• 4 
Running The LISP Interpreter • ................... " ........ "5 

.. . . . The PAR= Run Field 
Input To LISP ••••• 
Operation Of EVAL ••••• 
Output And Termination 

· . . . . . . . . . . ......... 5 
· . . . .... 6 · . . . • .................. 7 · . . . . . . . . . ....... . 

Basic LISP Functions · .. · . . . .. .............. . 
1. QUOTE •••••••••••• · ......................... .. 
Basic LISP Predicates ••••••• · .. . .. . . . . . . .. .. . 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
List 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

ATOM ••••• .. .. .. . . .. .. . . . . . . .. . . . . . . .. . . . . . . . . . 
.. . . . . . .. . .. . . . . . . . . . . · ... NOT •• 

NULL 
EQUAL •• 

· ... · ........................... . . . . . . . • •••••••••••••••••••••••• 
EQ ••• · ...... . 
NEQ •••••••• 
EQNAME ••••••••• 
NUMBERP •••••••• 

· . .. . .. .. . . . . .. · ........ . · . · .... · ... . ... · ............... . · ................ . . . 
SORTP •••••••••••••••••••••• 
LISTP •• . ............. . · ..... · ..... 

"UNDEFP •••••••• ~ · ..... · ............ . 

· . 

· .. 
TAILP · ........................................ . 
Searching operations ••• · .................. . 
CAR 
CDR •• 

· ........ . · ........... . .... ' ............. .. . . · . . . . . . . . . . . . . . . . . . . ~ . . .. . 
R · .~ ....... . . . . · . . . . . . . . . . . . . · ........................ . ................................ · ..................................... . 

C 
MEMBER 
MEMQ 
ASSOC 
ASSQ 
FIND 
NTH 
LAST 

........................................ · . . . . . .. . . . . . . . . . · ........... . · ......................................... . 

........................................ 
Functions That create New LISP structures . ... 
1. CONS · . . . . . 
2. LIST . . . 
3. EVLIS 
4. 
5. 

APPEND ••••• 
APPEND 1 •••• 

· ................................ . 
· .. · . · . . . . . .. . . . . . . . . .. . . . . . 
· .. · ................ . 
· . · ..... .. ................ . · . . . . . . . . . . . . 

6. APPEND· •••••••••••••••• · ................. . 

8 
9 
9 
10 
10 
10 
10 
10 
10 
'1 
11 
11 
11 
11 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
14 
14 
14 
15 
15 
15 
15 
15 
15 
16 

i 

I 
f 
\ 
! 

t 
! 

! 
t 



/ 

D. 

E. 

F. 

G. 

7. 
8. 
9. 

10. 
11 • 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Lisp/l'fTS 
Table of Contents 

REVERSE ••••••••••••••••••••••••••••••••••••• 16 
DREVERSE ••••••••• 
COpy ••••••••••• 

• •••••••••••••••••••••••• 16 · ........................ . 16 
DSUBST · ...... . • •••••••••••••••••••••••••• 17 
GENSYM ••••••••• • •••••••••••••••••••••••••• 17 ...................................... 17 

• • 18 · . . . . . · ..... · ............ . · . . . . . . . . . . . . . · .. ••••••••••••••• 18 . . . . . . . . . . . . . . . . . . . . . . . . ........... 
· ~ .... · .... · .... 

• •••••••••••••••••••••••••••••••• 

18 
19 
19 

MKATOM 
EXPLODE 
LDIFF 
UNION 
UNIONQ 
INTERSECT 
INTERSECTQ 
EXCLUDE 

• ••••••••••••••••••••••••••••••••• 19 · ..................................... . 19 
EXCLUDEQ ••••••••••••••• • •••••••••••• 19 
SORT ........................................... 20 

22. MZRGE • • 20 
That Modify Existing LISP structures ••• 20 

· . . . . . .. . . . . . . . . · .......... . 
Functions 
1. SET · . . . . . . · . . . . . . . . . .. · .... .20 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

· .. . . . . • •••••••••••••••••••••••• 21 SETQ 
SETA · .................................... . • • 21 

• 21 UNCONS ••••••••• . .... · ..... 
Rp·LACA ••••• • • • .• • • • • • • • • • • • • •• • • •• • • • • • • • • • 22 
RPLACD 
DELETE 
REMOVE 

· ..... .. • •••••••••••••••••••••••••• 22 
...................................... ....................................... 22 

22 
DELQ ••••••••••• • • • • · ..... • •••••••••••• 23 

10. NCONC 
operations 

· ...................................... . • • 23 
art Property Lists ••••••••••••••••••••• 23 

1 • PUT •••••••••••• · ........ . • •••••••••••••• 23 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

PUTL · .................. ~ ................... . 
DEFPROP •••••••••••••••••••••• • •••• • • • 

..24 
24 

.24 ADDPROP •••••• 
GET •••••••••••• 
GETL .•••••••••.•• 
GETFN 
REM •• 

· . . . . . .. . · ..... . 

· . · ...... . 
••••••••••••••••••••••••• 24 

• ........................... 25 
· . . . • ..................... 25 

• •••••••••••••••••••••••• 26 
Basic Numeric Predicates • •••••••••••••••••••••••• 26 

• •••••••••••••••••••••• 26 1 • 
2. 
3. 
4. 
5. 

GREATERP ••••••••• 
LESSP 
ZEROP 
EVENP 

· ...................................... . 26 

· ... 
MINUSP ••••• 

......... " .................. . • 26 · .................... .. • ••••••• 26 
••••••••••••••••••••••••••• 26 

Basic Numeric Operations ••••• · . . . . . · ..... .27 
1 • 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11 • 

LENGTH · .. . . . . . 
· ...... . · . . · . . . 

.........•....... · ............... . • • 27 
..27 

• ........ • 27 
PLEN 
ADD1 
SUB1 
MINUS 
ABS 

· ..... . · ... . ................... . ..27 
27 

FIX 
FLOAT 
MAX 
MIN 
PLUS 

· . . · .... · . . · ...... . · ...... . ••••••••••• 27 
,. . . ... • ................. 27 · . . . . . . . . . . . . . . . . . . · . .. ......... 27 . . . . . . . . . . . . .. . .. . . . . . ... • • 27 

.. . . . . . · . · ••••••• • 28 · . . . . . . . . . . . . . . . · . ,. ,. 28 

ii 



v. 

H. 

I. 

J. 

A. 
B. 
C. 
D. 
E. 
F. 

12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

Lisp/MTS 
Table of contents 

DIFFERENCE ... · ....... · . . . . . . .. . . .. . . .. .. . . . . 28 
.28 TIr1ES 

DIVIDE 
REMAIN 

· ..................................... . · . . . . . . . . . . . . . . . . .. . . . . . . . . . .. .. . . .. . . • .28 ................................. • ••• 28 
ADDRESS ........ . • ........................... 28 
SHIFT · . . .. ............................. 28 
LA ND .................. . • ..................... 28 
LOR •• · ....... . · . .. . . . • ................. 29 

20. LXOR · .... ••••••••••••• 4 ••••••••••••• 29 
Control Functions . .. · . . . . . .. . . . . . . . ••••••••• 2<:1 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
, 1. 
12. 
13. 
14. 

EVAL 
PROG 

............................................. • • 29 
..29 ............................................ 

RETURN . . . . . . . . . · . 
GO .... . .. . . . . . . . . . . 
PROGN · . . . . . · . . . 

· . . . .. . . .. .. . .. .. . . • ......... 30 

· . • •••••••••••••••• 30 
• ••••••••••••••••••• • 31 

REPEAT •• • ............................... 31 
.. . .. · . . . . . • .............. 31 DO 

APPLY 
APPLY1 

.............................................. 31 

· . 
MAP •••••••• 
MAPC •••• 

· . . . . · ... · . . . . . . . . . . . ... . . . . . . . . . . . • .32 
32 

• ..................... 32 
MAPLIST ••••••••••••••••••••••••••••••••••••• 32 
MAPCAR ••••••••••• ••••••••••••••••••• 32 
MAPCON . . . · . · . . . ................ 33· 

15. 11.A PC.AN · ... · ... · . . . . . · ... . .. . 33 
33 OBJECT List" Functions . . . • • · ... · ......... . 

1. OBLIST · . . . . . . . . · . · ... • ................. 34 
2. REMOB .......................................... 34 
3. PUTOB • .................................. 34 
4. MAPOB •••••••••• . . . . .. . .. .. .. . ........... . .34 
~onditional Functions •••• · . . . • •••• 35 
1. AND •••• . . . . . . . . . . · ....... . 
2. OR .. . . . . . . . . . . .. . .. . .. . . . .. . . . . . .. . . . . . . . . . . . . . .. . . 35 

35 · ... · .. . . . . · ....... . • .36 3. 
4. 
5. 

COND ••••••• 
SELECT ••••••••••• 
SELECTQ •••••••• 

••••••••••••••••••••••••• 37 

6. 
7. 
8. 
9. 

10. 
11. 

· . . . . . . . . . . . • .......... 37 
TIMER •••••••••••••••••••••• 
TIME •••• 
MTS 
UNTIL 

· . . . . . · . . . ... . 
. .......... . • .38 

· . .39 
• ................... 39 · ..... • .. 40 

WHIL E ........ . · . ••••••••••••••••••••••••• 40 
STOP ............... . . .. • ..... 40 

Function Definition ••••• • •••••••••••••••••••• 41 
Lambda-Expressions ••••••••••••••••••••••••••••••• 41 
No-Spread LAMBDAs ••••••••• ••• • ••••••••••••• 42 
PLAMBDA And NLAMBDA Expressions ••••••••••••••• ~43 
Named LAMBDA-expressions (LABEL-expressions) •• 44 
Accessing Defined Functions ••• ..~ ....... 45 
Defining New Functions In LISP ••••••••••••• 46 
1. DEFUN ••••••••••••••••••••••••••••••••• 46 
2. DEFINE. • • • • • • • • • • • • • • ••• 46 

i. 
ii. 

iii. 

BUGs • ........ • 47 
Arrays .......... • •• • • • •• • .. ... • • • • • • • 49 
Calling External Routines From LISP ••• 50 

iii 



" / 

VI. 

VII. 

A. 
B. 

c. 
D. 
E. 
F. 

G. 
H. 

A. 
B. 
c. 

D. 
VIII. 

A. 

B. 

c. 

D. 

E. 

Lisp/tiTS 
Table of contents 

Input/Output ••••••••••••••••••••••••••••••••••••••• 52 
Default -I/O operations •••• 
I/O Data Types •••••••••••• 

••••••••••••••••••••• 52 · . . . . · ......... . ..53 
•• 53 1. I/O Destination Atoms ••••••••••••••••••••• 

2. Buffers ................................. • ••• _.53 
•• 54 3. Files ........................ . ... 

•••••••••••••••• 55 Buffer And File Prefix Characters 
Buffer Overflow Interception ••••• • •••••••••••• 56 

••••••••••••••••••••••••••• 56 End-of-file processing 
READMACRO And PRINTMACRO 

Imm~diate READMACRO 
Functions ••••••••••••••• 57 
Atoms ••••••••••••••• 57 1 • 

2. 
3. 

Delayed READMACRO Atoms ••••••••••••••••••••• 58 
PRINTMACRO Atoms ••••••••••• • ••• ..58 
The READMACRO 

The FLAGS Argument Of 
4. Character Characteristic •••••• 59 

I/O Functions •••••••••• .60 
Input/Output Function Descriptions _ •••••••••••• 60 
1. OPEN · ...... . · .................... . • •• 60 
2. EOF · .............................. . • •••• 61 
3. READ · ...... . . .... • ••• 61 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

........................... -- ....... . READCH 
READLINE 
PRINT 
PRIN1 

• • 61 . . . . · ... · . -- ..... -- . • • 62 ....... • ............. 62 
• •••••••••••••••••••••••••••••••••••••• .62 

TEEPRI ••••••••• ••••••••••••• • •••••••••••• 63 
TAB •••••••••••• •••••• • •••••••••••••••• 63 
SKIP ••••••••••• · ................ . • ..... 63 

Error And Debugging Functions ~................ ..65 
Error Atoms, Forms, And Expressions •••••••••••••• 65 
System Error IOABGs 
Error Functions ••••• 

• •••••••••••••••••••••••• 66 
..66 

1. BREAK ..................................... ..66 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

DUMP 
UNEVAL 
DISPLAY 
MODIFY 
ERR •• 
RES 
TRACE •• 

• ............ • 67 
•••••••••••••••••••••••••••••••••••••• 68 

. . . . . . . · ......... . 
••••••••••••••••••••••••••••••••••••• 69 -.......................... _ ........ . .70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . • • 70 ............................ • ••.••••••••• • 71 . . . . . . . . . . . . . . . . . .. . . . . . . . . • •••• 71 

UNTRACE •••••••••• • • • • • • • • • • • • •• • • • • • • • • • 71 
STEP •••••••••••••••••••••••• · ... • •••• 72 

Error Messag~s •••••• 
Special System Functions 

· . . . . . . . . . . · .... . ............... . . . . . • •••• 72 
• •••• 75 

The STATUS Function . ........................... . •• 75 , . 
2. 
3. 
The 

I STATUS Codes •••••••• 
II 

Type 
Type 
Direct 

STATUS Codes 
• ••••••••••. • 76 

•••••••••••••••••••••••• 79 
Core Modification •••• • •••••••••••• 81 

Garbage Collector . ........................ . 
,. RECLAIM 

• • 82 
.82 • ..................................... '!' 

CHECKPOINT And RESTORE •••••••••• . .......... . 82 , . CHECKPOINT ••••••• · . . . · .... • •••• 82 
2. RESTO.RE · ..................................... . 
Miscellaneous Functions ••••••••••••• 
1. LTR ........................................... 
Undoable Functions The Transport System . ... 

.82 
• 84 
.84 
• 85 

iv 



/" 

1. 
" ~. 
3. 

IX. Index 

Lisp/MTS 
Table of contents 

NEWWORLD . . . · . · . . . . . . . . . . . . . . . . . · ... · . . . . 
GETIJORLD · . . . . . .... it . ... . . . . . .. • • • • • REALWORLD · . . . · . . . . . . . . . · .... . . . . . .. . . . . . . . . . . · . . . · . . . . . . . . . . . .. . . . . · ... · . . . . 

v 

86 
86 
86 
87 



, 
/ Lisp/MTS 

In traduction 
, 

Welcome to the wonderful vorld of LISP/MTS. LISP is not 
like any other programming language. It combines a very simple 
syntactic structure with an extremely powerful and flexible 
semantic structure. This combination of characteristics puts a 
great burden on the programmer to use the language carefully. 
You should think of learning LISP as an adventure in the use of 
computers, and an exercise in logical thinking. Althouqh you may 
have difficulty with the language at first, you will probably 
find that once you are accustomed to LISP, other programminq 
languages will seem very cumbersome and restrictive. 

In designing LISP/MTS we have attempted to embody the 
logical power of LISP in a language economical enough to be 
useful to many pe6ple. We have also added many of the user 
options, input/output capabilities, and de-bugging f~atures that 
programm~rs expect to find in any programming language. 

Throughout this manual, we have used mnemonics to represent 
LISP elements in concise representations of the formats of basic 
LISP operations. A, A1, A2 represent atoms; N, Nl, N2 represent 
numeric atoms; L, L1", L2 represent lists. S, 51, S2 represent 
any LISP structure, LA, LA1, LA2 represent lists vhose elements 
are atoms; and FN, FN1, FN2 represent function specifications. 
By 51 ••• Sn we mean that any number of expressions of that 
type may be given, by <5> we mean that an expression of that type 
is optional, and by <A, LA> we mean that the user has a choice "of 
one or the other. 

Good Luck. We hope you will enjoy using LISP/MTS. Any 
comments, questions, or bugs ~hould be reported to the authors at 
2028 Mental Health Research Institute, Ann Arbor, Mich. Tel: 
313-764-4220. 

BRUCE WILCOX CAROLE HAFNER 

Note: For a formal definition of the original LISP languaqe, 
see MCCarthy et. al., LISP 1.5 PROGRAMMERS GUIDE, M. I. T. 
Press, 1962. 

The development and implementation of LISP/~TS was supported 
in part by National Science Foundation Grant Number GJ-31339X. 

This document was converted into Format source by Mark 
DUMont and Vincent Manis, OBC Department of Computar Science. 
Furthur rev~s~on and modification was done by Paul Friedman, 
Wayne Hall, David McDonald, and Jim Davidson. 



/ 
Lisp/MTS 2 

The LISP Language 

The primitive data structures of LISP, called ATOMS, .are 
similar in form to variables in other languaqes. 

1. PNAME of an atom 

Atoms are created implicitly and referenced throuqh their 
PNAMEs, or print namas. The PNAME of an atom may be any 
character string up to 255 characters long. 

When an atom name, say BOOK, first appears ~n the input 
stream, an atomic structure with the PNAME "BOOK" 1S 
automatically created. Any future references ~o the atom BOOK 
will reference the same structure. The system OBJECT LIST 
maintains pointers to all atomic structures, and each atomic 
string which appears in the input stream is checked aqainst this 
1 is ':. 

2. Types of atoms 

There are two types of atoms in LISP, literal atoms and 
numeric atoms. When an atom name appears in the input stream, 
th~ form of the name, and the current input number base determine 
th~ type of the atom. 

If the input number base is 10 (the default case), than 
FORTRAN type integers and floating point numbers will be treated 
as decimal numbers, and will become numeric a~oms. All other 
character strings will become literal atoms. 

If the input number base is 16 (the user may change the 
number base by calling the STATUS function), FORTRAN type 
floating point numbers will still be treated as decimal numbers, 
and will become numeric atoms. However, any character string 
bgginning with a decimal diqit (0 9) and cODtaininq only 
hexadecimal digits (0 9, A F) will be treat~d. as a 
hexadecimal number, and will become a numeric atom with the value 
of that hexadecimal number. 

If the input number base is 0, then all character strings 
will be interpreted as literal atom names, and no numeric atoms 

Atoms, Bufters, and Arrays I 

\ 

s 

* 
JI. 

~.~-,-



will be created. 

Lisp/MTS 
ThgLISP Language 

3 

Unlike literal atoms, numeric atoms are not stored on the 
OBLIST; instead a new atom is created each time a number appears 
in the input stream or when a new value is calculated. Thus, two 
occurrences of the number 17 will produce references to two 
distinct structures. 

Note The interpreter recognizes two numbers as beinq 
EQUAL if their values are equal; they will also DS EQ for "all 
functions which use EQ tests, ie MEMQ, DELQ, etc. 

3. Value of an atom 

Atoms can have VALUEs, which may be any LISP structure. The 
VALOE "of a literal atom is undefined until a value is given to 
it. All numeric atoms, by convention, have themselves as their 
VALUEs. 

4. Special atoms 

There are several special atoms in LISP, with pre-defiried 
VALUEs. One is NIL , used throughout the system to indicate a 
null list, or a truth value of false. The VALUE of NIL is NIL. 
Another special atom is the atom T, used throughout the system to 
indicate a truth value of true. The VALUE of T is T. 

Although the user can change the value of any atom, in 
gen~ral he should not alter the VALUEs of numeric atoms. 

The VALUE" of NIL must always remain NIL. 

The pre-defined atoms 
significance) "is as follows: 

NIL (PLogram Logic) = NIL 
T (Program Logic) = T 

of LISP, (and the~r general 

LISPIN (Input/Output) = (Input Buffer • SCARDS) 
LISPOUT (Input/Output) = (Output Buffer • SPRIN~ 
ERRIN (Input/Output) = (Error Input Buffer • GUSER) 
BRRGUT (Input/Output) = (Error Output Buffer • 'S~RCOM) 
*ERR* (Error Processing) = (DUMP) 
*ATTN* (Error Processinq) = (DUMP) 
*PGNT* (Error processing) = (DUMP) 
*UNDEF* (VALUE of undefined atoms) = error 16 if EVALed 
*FNS* (list of DEFUN'd functions) = NIL 
All numeric atoms = themselves 

Atoms, Buffers, and Arrays 

I 
1 

I 
I 
! 



/ Lisp/MTS 4 
The LISP language 

5. Property lists 

Besides a VALUE, an atom can have any number of properties, 
and ~ach property has a property-value. For example, the atom 
BOOK may have a property COLOR with property-value BLUE, and· a 
property PAGES with property-value 367. The name of a property 
is referred to as the property indicator, or IND, and the 
property-value is referred to as the PVAL. 

Associated with 
indicators and values. 
PLIST is NIL. 

each atom is a property-list (PLIST) of 
If an atom has no properties, then its 

The property list of the atom NIL is NIL, and may not be 
altered. Thus, NIL is always guaranteed to have a NIL value and 
a NIL PLIST. 

Numeric atoms may not have property lists. 

6. Buffers 

LISP/MTS supports a data type ca~led BUFFERS. Althouqh 
buffers are not truly atoms (they may not be given VALUEs), they 
a-Qlike atoms in that they have PNAMEs. The PNAME of a buffer 
is the current contents of the buffer. The PNAHEs of atoms and 
list representations of LISP structure~ can be placed in a buffer 
by calling the system print functions. New atoms can be created 
whose PNAMEs are the contents of a buffer by calling the READ 
function. All input/output in the system takes place by printinq 
the contents of a buffer on an MTS device, and by reading a 
record from an MTS device into a buffer. Buffer contents can be 
compared ane tran~lated by system functions. 

Whenever a buffer is passed as an argument to a function, it 
is actually a buffer pointer structure (called an IOARG) which is 
passed, rather than the· buffer itself. A full description of 
buffers may be found in the section on Input/output in LISP/MTS. 

7. Arrays 

LISP/MTS also supports arraysl where the value of an array 
elament can be any LISP structure. For a descrip~ion of the 
d~finition and use of arrays, see the DEFINE function. 

Atoms, Buffers# and Arrays 



Lisp/Mrs 5 
Running the LISP Interpreter 

LISP is an interpretive language. The system will read ,one 
s-expression from its input stream, evaluate it, and print out 
the value computed, then read another S-expression, etc. Since 
the ~op-level controller calls READ to get an s-expression, EVAL 
to evaluate it, and PRINT to print out the result, the top level 
function of LISP is often referred to as a READ-EvAL-PRINT loop • 

. LISP, like many other MTS programs, accepts various control 
parameters via the PAR= field of the $RUN command. The keyword 
p~rameters may appear in any order, and there may be any number 
of keywords given, e.g. "PAR=FCS=3,PDS=2,MAX=8". The keyword 
parameters recognized by LISP, and their significance are 
d-2scribed below. 

1. PAR=FCS= 

2. PAR=MAX= 

3. PAR=ERR= 

4. PAR=Get= 

5. PAR=INT= 

Indicates the number of pages of initial 
freespace. Default value is 3 pages. 

Indicates the limit on the number of pages of 
freespace which will be allocated by the 
system. If this limit is allocated and more 
space is needed, the user will be prompted in 
interactive mode; and execution will be 
terminated in batch mode. Default value is 
15 pages. 

Indicates the initial status of interrupt 
traps. 

o = program and attention interrupt traps 
enabled. 

1 = attention interrupt trap disabled. 
2 = program interrupt trap disabled. 
4 = both traps disabled. 
Default value is o. 

Number of cells of freespace which must be 
reclaimed during a qarbage collection in 
order to suppress allocation of more space. 
initially set to 500. 

Allows numbers to be made common and placed 
on the OBLIST. All positive numbers less 
than this number will be made unique. 
initial value is o. 

The PAR= Run Field 



/ 

6. PAR=PDS= 

7. PAR=OBJ= 

Lisp/MTS 6 
Running the LISP Interpreter 

Sets the initial number of pages of Stack 
space. Lisp/MTS will ask the user for 
confirmation of Stack extents beyond this 
limit in interactive mode. Batch runs will 
stop after this limit is reached. The 
d~fault is 1 page. 

Indicat~s the number of hash bUckets for the 
literal atom OBJECT LIST. The greater the 
number of buckets, the fast~r the resolution· 
of atomic references should be. An odd 
number is recommended. Default is 69. 

"Input to LISP is free format, with blanks, commas, periods, 
parentheses, and ends-of-line acting as separators. Any time a 
s~parator appears, it may be surrounded by any nuwber of blanks. 
Extra right parentheses may be inserted at the beginninq or the 
end of a top-level form, and they will be ignored. For example: 
) (A BCD»}) = (A BCD) at the top level. 

If a semi-colon (;) appears anywhere in an input line, the 
system will ignore everything else that appears in the line, and 
will skip to the next line. Thus, the semi-colon is equivalent 
to an end-of-line. This allows the user to put comments in his 
input file without the expense of making an atom from every word. 

***warning: The semi-colon is an MTS carriage control 
character which will cause a line printer to skip to a new page 
if it is thg first character in an output line. At the presen~ 
time this warning does not seem to apply to MTS at UBC, but users 
should take note anyway. 

Note: An exception is made to the treatment of the period as 
a separator when it occurs in a legal floating-point number. In 
that case, the period will be interpre.ted as part of the number. 
To make a dotted-pair of two numbers, merely surround the period 
with blanks. For example, "(123..456) is a list of a sinqle 
num8ric atom, while (123 456) is a dotted-pair of two 
integers. 

In order to allow the incorporation of separator characters 
into atom PNAMEs, LISP/HTS defines a special input convention. 
If a double-quote character (") occurs at the beginning an4 the 
gnd of an atom name, then all characters which occur between the 
doubl~-quotes will be treated as the PNA~E of a single atom. The 
closing double-quotes must be part of the same input line as the 
opening double-quotes, and the double-quotes will not be part of 
the PNAME of the atom. For example, if the input stream contains 

Input to LISP 



• 
/ Lisp/MTS 7 

Running the LISP Interpreter 

the atom name: 

"AB CD.EF" 
an atom with the PNAME: AB CD.EP will be created. 

If two double-quotes in a row appear within a double-quoted 
string, they will be interpreted as a literal double-quote~ For 
9xample, if "ABC""DE" is read in, the literal atom ABC"DE will be 
created. 

Double-quotes which appear strictly within an atom name have 
no special significance, and are treated liKe any other 
character. If two douhle- quotes appear at the beginning of an 
atom name, however, this will generate a syntax error. 

TO insure balancing of parentheses, the characters < and > 
act as super parentheses. Upon reading a right super parenthesis 
(a », enough right parentheses will be added to balance the s­
expression begun with the most recent left super parenthesis. If 
there is no left super parenthesis, then enough right parenthes~s 
are added to finish off the entire expression. Extra right super 
brackets are ignored. A' maximum of 100 pairs of super 
parentheses are allowed. For example 

< ( ( {{A B> is read -as 

(COND «NULL (CDR X> 
(CAR {CONS X X> 

<T {CAR (eADR X» 
• { ( «A B> 

( ( ( ({A B»»)) 

{COND (NULL (CDR X) 
is read as {CAR (CONS X X») 

(T {CAR (CADR X»» 
(Q UO T E {( ( (A B»))) 

Evaluation of LISP expressions is done by the function EVAt. 
When LISP reads a form and sends it to EVAL, the "first thinq EVAL 
does is check to see if the form is a single atom. If so, then 
the value of the form is the VALUE. of the atom. 

If the form is not an atom, it must be a list. The first 
element, or the CAR of the list specifies a function to be 
called. The rema~n~ng elements of the list, or the CDR, 
rgpresent the arguments of the function. If the CAR of the form 
is an atom, then LISP interprets it as the name of a function, 
and calls that function (We will see later that thera are ways of 
invoking functions other than a direct call) • For example, if 
the form read by LISP is (ADD X Y), then the function ADD will be 
called with the VALUE of X as its first argument, and the VALUE 
of Y as its second argument. 

Notice that, as in other languages, it is no& the name of 

Operation of EVAL 

i 

t 

1 
I 
\ 
j 

1 
t 
j 

I 

1 
1 
! 



/ Lis'p/MTS 8 
Running the LISP Interpreter 

the argument which is passed to the function, but its value. For 
this reason, we refer to the elements which actually appear in 
the form as argument-designators, and reserve the term ·"argument .. 
for the values which are actually passed to the function. 

Since EVAL calls itself in order to determine the values of 
th.? argument-designators, the argument-designa tors do not have to 
be atoms, but can be any LISP form which will evaluate to the 
d~sired argument. For example, if the VALUE of X is 2 and the 
VALUE of Y is 3, then EVALing the form {ADD X (ADD Y. 1) will" 
cause the function ADD to be invoked twice - the first time with 
arguments 3 and 1, and the final time with arguments 2· and 4. 
Naturally, the VALUEs of X and Yare not altered by this 
operation. 

There are a number of built-in LISP functions which are 
invoked by a direct call as described above. In addition, the 
user can define new functions by composing these built-in 
functions in various ways, and then the user-defined functions 
can also be invoked by name. 

Whenever a LISP form is EVALed. I a resulting value is 
returned. When the system reads and EVlLs a form, it then prints 
out its (top-level) value before reading the next form. When we 
say only the top-level value is printed, this means that the 
evaluation of arguments, which may involve intermediate function 
calls, does not cause anything to be printed • 

. For example, if a user types in th~ form~ (ADD X (ADD Y 1) 
where the VALUE of X is 2 and the VALUE of Y is 3, the system 
will EVAL this entire expression and print the resulting value: 
6 •. 

Evaluating the form (STOP) at any level· will terminate 
execution of LISP. Evaluating the form (MTS) will cause a return 
to MTS from which the user may restart. 

output and Termination 

,.. 

-----~ .. -



/ Lisp/MTS 9 
Basic LISP Functions 

1. (QUOTE S) 

It is important to remember that when a LISP form 
appears as an argument in a function call, this 
signifies that the value of the form is to be the 
argument of the function. However, many times LISP 
users wish to specify directly what an arqument to a 
function should be. In order to facilitate this 
proc~ss, the function QUOTE is available. 

The value of (QUOTE A) is the atom A. The value of 
(QUOTE (CAR (A B C») is the list (CAR (A B C». 

If a user enters (CONS X Y) from the input stream, 
the 'system will call the function CONS with the 
respective VALUEs of X and Y as arguments. . If the user 
enters (QUOTE (CONS X Y», the system will merely type 
back (CONS X Y), since that structure is the value of 
the input form. If the user enters (CONS (QUOTE~) 
(QUOTE Y», the system will execute CONS, but its 
arguments will be the atoms X and Y rather than their. 
respective VALUEs. To make QUOTEinq more convenient, a 
shorter notation for QUOTE is defined in the system. 
This is the t character. . 

f A is equi valent to (QUOTE A). I (A (8 C) D) is 
equivalent to {QUOTE (A (B C) D». 



/ Lisp/MTS 10 
Basic LISP Functions 

1. (ATOM 5) 
returns T if its argument is an atom, NIL otherwise. 

Ex: (ATOM 'A) = T 
(A TOM '( A B C» = NIL 

2. (NOT S) 
returns T if its argument is NIL, NIL otherwise. 

Ex: (NOT (CAR '(A NIL B») = NIL 
{NOT (CAR (CDR • (A NIL B»» :: T 

3 •. (NULL 5) 
Same as (NOT 5); return~ T if its argument is NIL, 

and NIL otherwise. 

4. (EQUAL 51 52) 
returns T if its arguments have the same LISP 

structure. NIL otherwise. 

Ex. (EQUAL I (A B C) '(A .A B C» = NIL 
(EQU AL 1 (A B C) (CDR '(A A B C») = T 
(EQUAL 8 (TIMES 2 4» = T 

5. (EQ 51 52) 
, rettirns T if its arguments are the same LISP 
structure. NIL otherwise. 

Numeric atom~ are exceptions in that there values 
are compared instead of their address. 

Since there are frequently multiple structures 
which represent the same S-expression, not every pair of 
elements which are EQUAL are EQ. EQ is almost always 
used with atomic arguments, since there is only one copy 
of each atomic name on the OBJECT LIST. 

Ex: CEQ I.A -, A) = T 
(E Q '( A B) '(A B» = NIL 

Basic LISP Predicates 



-------------------------------------------~-~ 

• 

6. 

Lisp/MTS 
Basic LISP Functions 

(NEQ S1 S2) 
returns T 

otherwise. This 
(NOT CEQ S1 52» 
See EQ above. 

if its arguments are not 
function is equivalent to 

11 

EQ, NIL 

7. (EQNAME A 1 A2) 

8. 

returns T if its arguments are literal atoms or" 
buffer atoms which have the same PNAME. NIL otherwi~e. 

EQNAME will be equivalent to EQ for normal atoms 
which are on the OBJECT LIST. "However, for BUFFER atoms 
(see Section on I/O), and atoms created by GENSYM, 
EQNAME provides a new and useful function~ 

Ex: (EQNAME 'TEST 'TEST) = T 
(EQNAME 'ANINPUTLINE IOARG) = T if the buff~r associated 
with IOARG has as its contents "ANINPUTLINE". 

(NUMBERP A) 
returns T 

otherwise. 

Ex: (NUMBERP 3) = T 

. ~ 
1...L. its argument is a numeric atom NIL 

9. (SORTP A 1 A2) 
returns T if the PNAME of its first argument is less 

tha~ or equal to its second argument in standard EBCDIC 
collating sequence. NIL otherwise. A1 and A2 must be 
literal atoms or IOARGs. 

Ex: (SORTP • ABC 'ABB) = NIL 
(SORTP 'ABB lABB) = T 
(SORTP 'AB 'ABB) = T 

10. (lISTP S) 
Returns T if S is a CONS-cell, and NIL otherwise. 

Basic LISP Predicates 



, 
• Lisp/MTS 12 

Basic LISP Functions 

11. (UNDEFP A <5» 
Returns T if A is an undefined atom, and NIL 

otherwise. 

If S is given, and A is undefined, the value of S 
is assigned to A. 

Ex: (UNDEFP 'X) = T (if X is unbound) 
(UNDEFP 'X 3) = 3 (X is SETQ I d to 3) 
(UNDEFP 'X) = NIL (X is now bound.) 

12. (TAILP L1 L2) 
Returns L1 if L1 is a tail (i.e. 

CDRs ~ 0) of L2, and NIL otherwise. 

Ex: if X has the value (A B C) 
(TAILP '(B C) X) = NIL 
(TAILP (CDR Xl X) = T 

soma number of 

The functions in this section enable th~ user to break down 
LISP structures into component structures in various ways. The 
result will frequently depend on finding some particular 
substructure. 

1 • (CAR L) 
returns the CAR of any structure (i.e., the first 

~lement of any list or the VALUE of an a~om). 

Ex: (CAR '( (B C) D (E F») = (B C) 

2. (CDR L) 
returns the CDR of any structure (i.e., the list of 

remaining elements of any list or the PLIST of a non­
numeric atom). The CDR of a numeric atom is an error. 

Ex: (CD R t ( (B C) D (E F») = (0 (E F» 

List Searching Opgrations 

3. 

4. 

5. 

6. 

7. 



Lisp/MT5 13 
Basic LISP Functions 

3. (C.. • .R L) 
These 28 functions perform all compositions of up to 

4 instances of CARs and CDRs. 

Ex: (CAAR L) = {CAR (CAR L» 
(CAAAAR L) = (CAR (CAR (CAR (CAR L)))) 
(CADADR L) = (CAR (CDR (CAR (CDR L»)} 
(CDDDR L) = (CDR {CDR (CDR L») 

4. (MEMBER 51 L (52)) 
The list L is searched to see if 51 is an element. 

If so, then the rest of the list L, starting with 51, is 
returned. 

If S1 is not an element of L, and no third argument 
is given, NIL is returned. If a third argumen~ is 
given, it is EVALed and that result is returned~ 

Ex: (MEMBER fA • ({A B) C (D E) G» = NIL 
(Ii EM B E R 'A f ( (A B) C (D E) G) • (A D D 1 3» = 4 
(MEMBER '(D E) I ({A B) C (D E) G» = «D E) G) 

5. (MEMQ 51 L <52» 
Same as KEMBER, but USgS an EQ test instead of an 

EQUAL test. 

6. (A5S0C 51 L <52» 
The list L is searched to see if Sl is the CAR of 

any element. If so, then that element is returned. If 
51 is not the CAR of any element, and no third argument 
is given, NIL is returned. If a third argument is 
given, it is EVALed and that result is returned. 

Ex: (ASSOC 'A t «A B) 
(ASSOC I (A B) '( (A B) 

7. (ASSQ 51 1 <52» 

(C .D) 
(C D) 

(E G»)) = (A B) 
(E G» ,t FAI.L) = FAIL 

Same as ASSOC, but uses an EQ test ins~ead of an 
EQUAL test. 

List Searching Operations 



• 
, Lisp/MTS 14 

Basic LISP Functions 

8. (FIND S1 S2 <N» 
The structure S2 is searched for any substructure 

(subtree) whose CAR is EQUAL to 51. If N is" given, the 
Nth such substructure is returned. If N is not given, 
the first such substructure is returned. If the 
substructure specified is not found, FIND returns NIL. 

Ex: (FIND 'B I (A B C» = (B C) 
(F IN D • A t (A { B (A C) D»)) = (A ( B (A C) D») 
(FIND 'A '(A(B (A C) D» 2) = (A C) 
(FIND '(A C) '(A (8 (A C) D») = «A C) D) 
(FIN D t (A C) '{A (B (A C) D» 2) = NIL 

9. (NTH L N) 
returns the sublist of L beginn~ng with the Nth 

element of L. If N is zero or negative, NTH ~ill return 
the last cell of L. If N is greater than the number of 
elements at L, NTH will return NIL. 

Ex: (NTH I (A B C) 1} :: (A B C) 
(NTH '(A BCD) 3) = (C D) 
(NTH I (A BCD) 0) = CD) 
(NTH' (A BCD) 100) :: NIL 

10. (LAST S) 
Returns the last top-level CONS-cell of a list. 

Ex: (LAST' (A B C» = (C) 
(LAST I (A B C (D E» = 1 (CD E» 

List Searching Operations 



Lisp/MT5 15 
Basic LISP Functions 

This section includes functions that, besides returninq a 
value, create new LISP structures. Frequently, the value 
returned from a function in this section is precisely the new 
LISP structur~ which was created. 

1. (CONS S1 52) 
returns the dotted-pair of 51 and 52. 

Ex: (CONS 'A 'B) :: (A. B) 
(CONS I (A B C) • CD EF» = «A B C). (D .E F») :: «A B C) 
D E F) 
(CON S 'A • (B C CD E») :: (A B C (D E» 

2. (LIST 51 ••• Sn) 
returns the list of 51 throuqh Sn. 

Ex: (LIST fA 'B) :: (A B) 
(L I S T I (A B C) • (D E F» :: « ABC) ( D E P) 
(LIST 'A '(B CD}) = (.A (B CD}) 

3. (EVLIS L) 
evaluat~s each element of L and returns a list of 

these values. 

Ex: (EVLIS • «ADD 3 1) (ADD 5 6») = (4 11) 

4. (APPEND L1 • Ln) 
returns a concatenated list of copies of lists L1 

through Ln. 

Ex: (APPEND '(A B C) '(D E .F» = (A BCD E F) 
(APPEND '(A B C) NIL • (D E F») = (A BCD E F) 

5. (APPEND1 L 51 ••• Sn) 
returns a copy of the list L, with S1 through Sn 

appanded as elements to the end. 

Ex: (APPEND1 • (A B C) • D IE IF) = fA BCD E F) 
{APPEND1 '(A B C) '(D E) 'F) = (A B C (D E) F) 
(APPEND1 NIL 'C 'D IE) = (C .D E) 

Functions that Create New LISP Structures 



Lisp/MTS 16 
Basic LISP Functions 

6. (APPEND* L1 ••• LN) 

7. 

returns copies of L1 ••• LN-1, appended to the 
original list (not a copy) LN. 

EX: (A P PEND* • (A B C) • (D E) '(F G H» = (A B C DE F G H) 

(REVERSE L) 

returns a list of the (top-level) elements of L, iti 
reverse order. 

Ex: {REVERSE 1 (A B (C CD E)} F» = (F (C (D E)) B A) 

8. (DREVERSE L) 
returns a list of the (top level) elements of L, in 

reverse order. The original list is destroyed in the 
process. 

EX: Suppose X has the value (A B (C D) E n then:" 

(DREVERSE X) = (F E (C D) B A) 

and X = CA). 

9. (COpy 51 <52 <53») 
returns a copy of structure 51. 

If arguments 52 and 53 are given, each occurrence 
of S2 °in the original structure (S 1) will be replaced by 
53 in the copy. 52 need not be a "top-level fl element, 
but may be an element at any level. If 52 appears 
without 53, then all occurrences of S2 in the oriqinal 
structure (except as the CDR of a dot tad- pair) wi1l be 
deleted in the copy. 

If the first argument to COpy is a literal atom, 
the value of COpy will be a new atom, not on the OBJECT 
LIST, with the same PNAME as the original atom. 

Ex: {COpy • (A B C» = (1\ B C) 
(EQUAL L (COpy L» = T 
(EQ L (COPY L» = NIL 
(COPY I (A (B) C) 'B) = (1 NIL C) 
(COpy • (A B C (D B) E) 'B) = (A C (D) E) 
{ COP Y '( ABC ( DB) E) 'D t (L K» = (A B C ({ L K) B) E) 
(COP'/ 'A) = A 
(EQ !'".)py I A) 'A) = NIL 

Functions that Create New LISP Structures 

11 

" 

1 



·f Lisp/MTS 17 
Basic LISP Functions 

10. (DSUBST L S1 S2) 
returns L ~ith all occurences of S1 replaced by 52. 

The list L is physically changed. 

EX: Suppose X has thg value (A BCD) then: 
(DSUBST X 'C • (D» = (A B CD) D) 
and X has the value (A B (D) D). 

11. (GENSYM <A» 
returns a unique atom. .If no argument is given, 

GENSYM creates atoms Gl, G2, ••• etc. Every time 
GENSYM is called, the GENSYM counter is incremented by 
one. If a literal atom or an IOARG is given to GENSYM, 
the PNAME of that atom, or of the buffer associated with 
the IOARG will be used, followed by tha current GENSYM 
counter. If the buffer portion of the IOARG is NIL, the 
current system output buffer will be used. 

The GENSYM counter can be re-set by using the 
STATUS function. 

Note: An atom created by GENSYM is not placed in 
the system OBJECT LIST. Thus, if an atom with the sa.e 
PNAME is created dQring a READ, it will not refer to the 
same atom which was created by GENSYM. The user may 
remove any atom from the OBJECT LIST by calling the 
function REMOB (See the section on OBLIST function~. 

Ex: (SET 'GENSET (GENSYM 'ATOM» = ATOM1 
(EQ GENSET 'ATO~1) = NIL 
(EQNAME GENSET 'ATOM1) = T 

12·. (MKATO~ A 1 ••• An) 
The function MKATOM returns an atom whose PNAeE is 

the string of all the PNAMES of its arguments. Each 
argument must EVAL to a literal atom. 

EX: (MKATO M • ABC • DE • FGHI) = ABCDEFGHI 
{MKATOf\! (CAR • (THIS IS IT) (eADR' (SO IS THIS») 
= THISIS 

Functions that Create New LISP structures 

I 
! 
t 
\ , 



Lisp/MTS 18 
Basic LISP Functions 

13. (EX PLODE A) 
Returns a· list of the single-character a toms of the 

PNAME of A. 

A must be a literal atom, or an IOARG, in which 
case the PNAME of its associated buffe~ will be used. 
If the buffer portion of an IOARG is NIL, the system. 
output buffer will be used. 

14. (LDIFF L1 L2 (L3» 
L2 must be a tail of the list L1. i.e. EQ to the 

result of applying some number of cdr's to L1. 
LDIFF (L1,L2) returns a list of all elements of L1 up to 
L2, i.e. the list difference of L1 and L2. The value 
af LDIFF is always a new list structure unless L2 = NIL, 
in which case the value is L1 itself. If L3 is included 
as a parameter, then the value of tDIFF is effectively: 

(NeONC L3 (LDIFF L1 L2) 
i.e. the list difference is added at tha end of list 
L.3. 

EX: Suppose X has the ~alue (A BCD E F) then: 

(LOlEF X (MEMQ • D X» = (A B C) 

(LDlFF X NIL) = X = (A BCD E F) 

(LDIFF X (MEMQ 'D X) X) = (A BCD E F A B C) 

15. (UNION Ll L2) 
returns a list which represents the set union of. 

lists L 1 and L2. 

The members of L1 and L2 are treated· as the 
elements of a set, and elements which are EQUAL will not 
be duplicated in the resulting list. 

Ex : (UNION I( A ( B C) ( D E» • ( ( B C) D» = (A ( B C) ( D E) D) 
(UNION 1(1 2 3) t (3 4 5» = (1 2 3 4 5) 

Functions that Create New LISP structures 

1 f 

18. 

19. 

20. 



Lisp/MTS 19 
Basic LISP Functions 

16. (UNIONQ L 1 L2) 
same as UNION, but uses an EQ tast instead. 

Note Du~ to the way this function is 
implemented, numbers are nQ~ recognized as neing EQ. 

EX: (UNIONQ '(A BCD) f (E F B D G» = (G D B FEe A) 

17. (INTERSECT L 1 L2) 
Returns a list of all elements of L1 which are also 

elements of L2. The test used to compara elements is 
the EQUAL test. 

Ex: { I NT E R 5 E CT • (A ( B C) (F G) D) • { (B C) DE» = ({ B C) D) 

18. (INTERSECTQ L1 L2) 
same as INTERSECT, but uses an EQ test. 

Note Due to the way this function is 
implemented, numbers are n2i recoqnized as being EQ. 

EX: (INTERSECTQ • (A B 1 2) 1 (1 2 C B A» = (A B) 

19. (EXCLUDE L1 L2) 
Returns a list of all elements of L2 which are not 

elements of L1. The test used is EQUAL. 

Ex: (EXCLUDE ,f (A (B C) . D E) • ({X Y) (B C) A Z») = 
(X Y)' Z) 

20. (EXC1UDEQ L 1 L2) 
same as EXCLUDE, but uses an EQ test. 

Note Due to the way this function is 
implemented, numbers are nQ~ recoqnized as being EQ. 

EX: {EXCLUDEQ • ( ABC 1 2) '(0 E A B 2»= ·(2 E D) 

Functions that Creat~ New LISP Structures 

\ , 
\ 

\ 
! 

I 
\ 



21. 

22. 

1 • 

Lisp/tiTS 20 
Basic LISP Functions 

(SORT L <SP» 
Returns list L sorted according to the function SP. 

SP should be a pradicate of two arguments, if the first 
argument should be ahead of the second argument in the 
sort~d list SP should return a NON-NIL value, otherw~se 
SP should return NIL. SP defaults to the system 
function "50RTP". 

Note -- SORT destructively sorts list L. 

EX: (SORT '(B C A» = (A B C) 
(SORT' {4 2 1 3} 'LESSP) = (1 23 4) 

(MERGE L1 L2 <SP» 
Returns a merged list of th~ two sor~ed lists L1 and 

L2 according to SP. SP should be a predicate of two 
arguments. The next element of the first list is passed 
as the first argument to SP and the next element of the 
second.list is passed as the second'argumant to SP~ SP 
should return a NON-NIL value it tha first argument 
should be ahead of the second argument, otherwise it 
should return NIL. SP defaults to the system function 
f1S0RTP". 

Note -- MERGE destructively merges ~he two lists. 

EX: (M ERG E I (A C E) • (B D F G» = (A BCD E F G) 
(MERGE '(1 3 5) '(2 4) 'LESSP) = (1 2 3 4 5) 

(;SET A1 S1 • • . An Sn) 
The VALUE of Ai is set to 5i for each i, and the 

value r8turned from SET is the last 5i. 

Ex: (SET 'X 'A 'Y • (B e)} = (B C) , and the VALUE of X is 
set to A, 
the VALUE of Y to (8 C) • 

Functions That Modify Existinq LISP structures 

1 
! 
J 

2 

N: 

ar. 
Sf 

ar. 
aT. 

, 3. 

4. 



"" Lisp/MTS 21 
Basic LISP Functions 

2 • ( S ET Q A 1 s 1 • • • A n S n) 
Sets arguments A1 •• • An to the values of 

arguments S1 ••• Sn, respectively. 

The value returned from SETQ is the value of SN. 

Ex: (SETQ X (CAR '(8 C» Y • A) :; A, and the VALUE of X 
becomes B, 

Note: Suppose the VALUE of X is VALX. Then 
(SET 'X • (B C) 'Y X) = VALX, 

and X is set to (B C) I Y is set to VALX, since the arquments to 
SET are EVALed before SET is called. Hovever, 

{SETQ X '(B C) Y X) .: (B C), 
and X is set to (B C), Y is set to (B e), since the SETQ performs 
an EVAL-SET-EVAL-SET loop. 

3. (SETA ARR-ELT S) 
sets the array element specified by ARR-ELT to the 

value of S. ARR-ELT is an array element specification 
of the same form used to get an array elem~nt. 

SETA returns the value of s. 

Ex: {SETA (B 3 4) t eX Y» = (X Y) I and the array element (B 
3 4) is set to (X Y). 
(SETA (B (ADD 2 2) (SOB1 5» (B (ADD 1 1) 3») will return 
the value of (B 2 3), 
and the array element (B 4 ·4) will be 
set to this value 

4. (UNCONS L A) 
returns the CAR of L, and, as a side effect, sets 

the VALUE of A to the CDR of L. Note that A, the second 
argument, is not evaled. 

Ex: (UNCONS' (A B C) X) = A, and the VALUE of X becomes (B 
C) • 

If the VALUE of L is (A B C), then: 
(SET 1M (UNCONS L L» = A, and the VALUE of L hecomes (B 

C) , 
and the VALUE of M becomes A. 

Functions That Modify Existing LISP structures 



I 

5. 

Lisp/MTS 22 
Basic LISP Functions 

(RPLACA 51 52) 

replace~ the CAR of 51 with 52 and returns the new 
structure. 

Ex: (RPLAC A t (A B C) t (E P») = {{E F) B C) 

6. (RPLACD 51 S2) 
replaces the CDR of 51 with S2 and returns the new 

structure 

Ex: (RPLACD '(A B C) '(D E» = (A D E) 

Note: RPLACA and RPLACD actually modify the structures sent 
to them as arguments, unlike functions such as APPEND, APPEND1, 
and COPY, which create entirely new structures with the desired 
properties. Because of this, RPLACA and RPLACD should be used 
with great caution. It is very easy to create circular LISP 
structures using these functions, and attempts to process such 
structures can become very expensi ve by the time' the user 
discovers his program is in an infinite loop. 

7. (DELETE S L <N» 
Deletes up to N occurrences of expression S from the 

list L. If "no N is given, all occurrences are deleted. 
S must occur as atop-level element of the list L. 
DELETE returns the new list L. 

Ex: (DELETE Ie '(A BCD CDC D) 2) = (A B D D C D) 
{DELETE • C • (A BCD ( C D) C D)} = (A B DC C D) D) 

If the VALUE of L is (A B C), then (DELETE 'B L) ; (A e), 
and the VALUE of L is (A C). However, (DELETE 'A L) = (B e), but 
the VALUE of L is still (A B C). Thus, DELETEing the CAR of a 
list L is merely equivalent to taking the CDR of L, but DELETEinq 
any other element will cause an ,actual change in the list 
structure. 

8. (REMOVE S L <N» 

Same as DELETE, but the original structure is not 
changed. 

EX: Suppose X has th'3 value (A (A B) (C D) (A 13») then: 
(REMOVE • (A B) X) = (A (C D)} 

and X still will ha ve the value (A (A B) (C D) (A B». 

Functions That Modify Existing LISP structures 

9. 

1( 

ap; 

uno 
1.n 

(IN 
new 
fro: 

1 • 



, 
; / 

1 Lisp/fiTS 23 
Basic LISP Functions 

9. (DELQ S L <N» 
Same as DELETE, but uses an EQ test instead of 

EQUAL. 

10. (NeONe L1 ••• Ln) 
creates a concatenated list of L1 throuqh Ln by 

actually modifying list Li so that it becomes Li 
• • • Ln. Thus, list LN is "grafted" onto the end of 
list L(n-1), and then list L(n-1) is grafted onto "the 
end of list L(n-2), etc. 

Ex: If the VALUE of X is (A B), and the VALUE of Y is (C D) 
and the VALUE of Z is (E F), then: 

(NCONC X Y Z) = (A BCD E F), and the VALUE of Z is (E F), 
and the VALUE of Y is (C D E F), 
and the VALUE of X is (A BCD E F) 

Note: The same warnings given for RPLACA and RPLACD also 
apply to NCONC. 

Although the property list of an atom is often treated as an 
unordered collection of property indicators and prope~ty-values, 
in fact the PLIST of an atom is a normal LISP list of the form 
(IND1 PJAL1 ••• INDN PVALN). with a few special exceptions, 
new proper~y indicat~rs and . property-values are added at the 
front of the PLIST; 

1. (PUT <A,LA> IND <PVAL» 
gives the atom A, or all the atoms in the list LA, 

the property IND with property value PVAL. 

If PVAL is omitted, a system default of T is used. 
(This system default may be changed D1 calling the 
STATUS function). 

If an atom already has property IND on its PLIST, 
then the previous PVAL associated with property IND is 
replaced by the new PVAL. 

The value returned from PUT is PVAL. 

Ex: (PUT' (I B) 'INCL 'X) == X, 
and the property INCL with property-value X 
is put on the PLIST of A and B. 

Operations on Property Lists 

iff 

I 
\ 



2. 

Lisp/l1TS 24 
Basic LISP Functions 

(PUTL LIND <PVAL» 
is like POT execpt that it operates directly on the 

list it is given (i. e. as if it were a property ,list). 
The value returned is the new list. 

Ex: (PUTL '(A INCL B RLUE) 'A 'EXCL) 
= (A EXCL B BLU E) 

(PUTL t (A EXCL B BLUE) 'e 'GREEN) 
= (C,GREEN A EXCL B BLUE) 

3. (DEFPROP <A,LA> IND <PVAL» 

4. 

DEPPROP is the NEXPB version of PUT. It returns its 
first argument. 

(ADDPROP <A, LA) IND <PVAL» 
works just like PUT except a new instance of IND is 

always put on the PLIST of A, or of the atoms in LA. 
Thus, using ADDPROP, it is possible to have duplicate 
instances of one property on the PLIST of'an atom. 
using ADDPROP in conjunction with (REM A IND 1), the 
user may operate a push-down stack of property-values 
for a particular property. 

Ex: (PUT 'A' 'INCL 'X) = X 
(ADDPROP 'A 'INCL 'Y) = Y 
(GET fA 'INCL) = Y 
(REM 'A IINeL 1) :: NIL 
(GET 'A tINCL) = X 

5. (GET <A,L) IND <S» 
returns the property-value associated with the 

indicator IND on, the PLIST of A. If A does not have 
property IND, and S is not given, then GET returns NIL. 

If the third argument S ,is gi ven, then S is a form 
to be EVALed if A does not have property IND. If S is 
EVALed, the value of S will be the value returned from 
GET. 

Ex! (PUT 'A tINCL I (X Y» = (X Y) 
(GET fA 'INCL) = (X Y) 
(GET 'I ,tNOTON) = NIL, assuming NOTON is not on the PLIST 
of A. 
(G ET 'A 'NOTON 1 (GET 'A 'INCL» = (X Y) 

If the first argument is a list, it will be searched 
dir~ctly, rather than having its P-list taken. 

Operations on Property Lists 

1 
; 

6 .. 

dir 

7. 

--



q 

lisp/MTS 25 
Basic LISP Functions 

Ex: (GET • (A BCD) 'C) = D 

6. (GETL <A,L> L <5» 
finds the first indicator on the PLIST 6f A which is 

a member of the list L. Returns the rast of the PLIST 
of A, starting with the indicator which was found. 

lfno indicator on the PLIST of A is a member ofoL, 
then if S is not given, GETL returns NIL. If 5 1S 
given, it will be EVALed and this value will be returned 
from GETL. 

Ex: If the PLIST of BOOK is (COLOR BLUE SIZE 367 TOPIC 
MATH), then 
(GETL 'BOOK '(WEIGHT TOPIC SIZE» = (SIZE 367 TOPIC MATH) 
(GETL t BOOK • (TOPIC) '(GET 'BOOK • COLOR») :::: (TOPIC MATH) 
{GETL 'BOOK t (WEIGHT) '(GET I BOOK I COLOR»= BLUE ' 

If the first argument is a list, it will 'be searched 
directly, rather than having its P-list taken. 

Ex: (GETL • (A BCD), • (X C» = (C D) 

7. (G ETFN ,FN) 
GETFN allows the user to inspect the function 

definition associated with a form. GETFN vill consider 
its argument as a function specification, and will 
simulate the action of EVAL in determining how to apply 
it. If FN is a LAMBDA or LABEL expression, then the 
value returned from GETFN is just FN itself. If ,FN is 
an atom which is currently defined as a SUBR, FSUBR, or 
NSUBR, then the PVAL associated with theSUBR, FSUBR, or 
NSUBR indicator is r~turned as the value of GETFN. 
(This PVAL will generally be a SUBR or ARRAY type atom.) 

If FN is an atom which is currently defined as an 
EXPR and the PVAL associated with the EXPR property is a 
LAMBDA-expression, then the LAMBDA-expression is the 
value returned from GETFN. 

GETFN generates an error if it encounters an atom 
with no function definition whose VALUE is itself or 
*UNDEF*. 

EX: (G ETFN • (LAMBDA (X) X) = (LA11 BOA (X) X) 
(GETFN 'CAR) = * 

The SUBR atom will be printed as an Asterisk, but 

operations on Property Lists 



"Lisp/MTS 26 
Basic LISP Functions 

it may be Dumped, compared to other addresses, or 
transfered to the PLISTs of other atoms. 

8. (REM <A,LA> IND <N» 

1 • 

2. 

3. 

4. 

5. 

removes up to N occurrences of the property IND from 
the PLIST of the atom A, or all the atoms in the list 
LA. If N is not given, all occurrences are removed. 

The value of REM is NIL. 

Ex: (PUT' A 'INCL t (X Y» = (X Y) 
(GET 'A tINCL) = (X Y) 
(REM t A 'INCL) = NIL 
(GET 'A I INCL) = NI.L 

(GREATERP N1 • • • Nn) 
returns T if N1 • 

sequence of numbers. 

(LESSP N1 • • • Nn) 

Nn is a strictly 
NIL otherwisa. 

decreasing 

returns T if N1 ." •• Nn is a strictly increasing 
sequence of numbers. NIL otherwise. 

(ZEROP tI) 
returns T if integer N=O. NIL otherwise 

(EVENP N) 
returns T if N is an even integer. ~"IL otherwise. 

(MINUSP N) 
returns T if N is a negative number. NIL otherwise. 

Basic Numeric Predicates 

1 • , 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

_.._._���. 



q 

Lisp/MTS 27 
Basic LISP Functions 

1. (LENGTH L) 

returns the 19n9th of the list L. LENGTH of an atom 
is o. 

2. (PLEN A) 
returns th~ length of the PNAME of tne atom A.· A 

must be a literal atom or ioarg. 

3. (ADD1 N) 
r9turns integgr N+1 

4. (SUB 1 N) 
returns integer N-1. 

5. (MINUS N) 
returns number -N. 

6. (ABS N) 
returns the absolute value of number N. 

7. (FIX N) 
returns the integral (truncated) part of N. 

Ex: (FIX 3.91) :: 3 

8. (FLOAT N) 
returns the floating point equivalent of N. 

9. (MAX N1 • • • Nn) 
returns 

• • • Nn. 
the . algebraic maximum of numbers N1 

Basic Numeric Operations 



10. 

11. 

12. 

Lisp/MTS 
Basic LISP Functions 

(MIN N1 • • • Nn) 
returns the algebraic minimum of 

• Nn. 

(PLUS N1 • • • NN) 

28 

numbers N1 

returns the sum of N1 ••• NN. The function ADD 
has the same effect. 

(DIFFERENCE N1 N2) 
returns N1-N2. 

effect. 
The function SUB has the same 

13. (TIMES ti1 ••• Nn) 

14. 

15. 

returns the product of N1 ••• Nn. 

(DIVIDE N1 N2) 
returns the quotient of N1 and N2. Floating point 

division. 

(REMAIN N 1 N2) 
N1 and N2 must be integers. Returns the remainder 

of N1/N2. 

16. (ADDRESS 5) 

17. 

returns a numeric atom equal to the address of the 
LISP structure S. 

(SHIFT N1 N2) 
N1 and N2 must be integers. 

shifted N2 bits to the left. 
effect is a shift to the right. 

Returns the number N1, 
If N2 ~s negative, the 

18. (LAND N1 ••• Nn) 
N1 ••• Nn must be integers. Returns the result of 

a bitwise logical AND of N1 ••• Nn. 

Basic Numeric Operations 

2C 

tl.:. 

ar~ 

EVA 
of 

, . 

2. 



Lisp/MTS 29 
Basic LISP Functions 

19. (LOR N1 ••• Nn) 
N1 ~ • • ·Nn must be integers. Returns the result of 

a bitwise logical OR of N1 ••• Nn. 

20. (LXOR N1 • • • Nn) 
N1 ••• Nn must be integers. Returns the result of 

a bitwise logical EXCLUSIVE-OR of N1 ••• Nn. 

Ex: (LAND 3 5) = 1 
(LOR 3 5) = 7 
(LXOR 3 5) .: 6 
(LXOR -1 3) = -4 
(SHIFT 32 -1) .: 16 
(SHIFT 3 2) = 12 

H~ £Qn~~Ql f~ll£!iQn~ 

This section includes the functionals, which take as their. 
arguments definitions of functions to be invoked;, as well as 
EVAL, PROG, REPEAT, DO, and PBOGN, which control the evaluation 
of forms in LISP. 

1. (EVAL S) 
Evaluates its argument and returns the result. 

Ex: If the VALUE of X is (A B C), and tne VALUE of A is 
VALA, then 
:EVAL (CAR X) = VALA 

2-. (PROG LA S 1 • • • Sn) 
The PROG function, along with GO and RETURN, allows 

the LISP user to write subroutine-like ~equences of LISP 
code, with branching, and with the ability to exit and 
return a value at any point. 

LA is a list of local or PROG varianles. The PROG 
variables are bound to NIL upon entry to the PROG, and 
unbound to their previous values upon exit from the 
PROG. Thus, the PROG variables may be used within ·a 
PROG as though they were distinct variables from any 
outside the PROG. Note that this "protection".of PROG 
variables applies only to their VALUEs. If the property 
list of a PROG variable is changed within a PROG, the 
change will not be undone upon exit from the PROG. 

The PROG variable list may be NIL, but it may not 

control Functions 



3. 

'tisp/MTS 30 
. Basic LISP Functions 

be omitted. 

S1 • • • Sn are a sequence of forms to be evaluated 
in order. However, if any of these forms are atoms, 
they are not evaluated, but rather ara interpreted as 
statement labels. If a form (GO A) appears in 'the PROG, 
and A is used as a statement label in the PROG, then 
evaluating (GO A) causes the flow-oi-control to be 
transfered to the form which appears after the label A. 

If the flow-of-control "drops through" the last 
form of the PROG, then the value of tnat form will be 
returned as the value of the PROG. However, if the last 
form of the PROG is an atom, then the atom itself, 
rather than its VALUE is returned as the value of the 
PROG. 

(RETURN S <LEVEL» 
If at any point within a PROG, a form (RETtrRN S) is 

evaluated, then PROG immediately exits, and returns the 
value of S. RETURN takes an optional second 'argument, 
which is the level to be RETURNed from. Tbis argument 
is a stack pointer and is specified in the same way as 
in UNEVlL, DISPLAY, and RES. If the second argument to 
RETURN is omitted, the return will be from the current 
dominating PROG. 

(RETURN (CAR X» returns to the closest enclosinq PROG. 
(RETURN (CAR X) 'FOO) returns from the closest enclosing 
call to FOC. 

4. (GO A) 
GO is used within the PROG function to branch to the 

PROG label A. GO is, like PROG , an N-type function. 
Thus, (GO A) will cause a branch to the torm labelled by 
the atom A. However, if GO is given a non-atomic 
argument, it will EVAL this argument, and then attempt 
to "go" to the result. Ex: (GO (CAR ~) will evaluate 
(CAR A), and if the result is an atom, will branch 
accordingly. If the result is not an atom, GO will EVlL 
it in turn, and continue the pro~ess until an atom is 
found. I fn3(PROG1,S1,' ••• Sn) returns S1, or its 
first argument. This function is useful when the user 
wants to do several different things in one step, and 
~ants only the fist value to be returned. 

(PROG1 'DONE 52 ••• Sn) = DONE 

Control Functions 

5. 

6. 

7. 

8. 



Lisp/MTS 
Basic LISP Functions 

31 

5. (PROGN S1 • • • Sn) 
returns Sn, or its last argument. This function is 

useful when the user wants to do several different 
things in one step, and want only the last result 
returned. The argument designators will be EVILed as a 
side effect of calling PRO~N. For example, at the top 
level, the user may wish to embed a number of forms in a 
PROGN in order to suppress printing of all but the last 
result. 

Ex: (PROGN S 1 -. • • Sn 'DONE) = DONE 

6. (REPEAT S N <EQUFAIL» 

Evaluates form S N times,·or until the value of S is 
EQUAL to EQUFAIL. REPEAT returns the last computed 
value of S. If N is negative, an error results. 

Ex: (SETQ N 1) 
(REPEAT I {SETQ N (ADD1 N» 12) = 13, and N = 13 
(REPEAT' (SETQ N (ADD1 N» 12 2) = 2, and N = 2 

7. (DO VAR INITIAL INCR TEST 51 ••• Sn) 
This function can be useful for wrir.ing FORTRAN or 

ALGOL like loops. It can be best explained with the 
following equivalent PROG. 

{PROG (I) 
(SETQ I (INITIAL» 

LOOP {COND ({TEST) (RETURN .I»)) 
S1 

8. (APPLY FN L) 

52 
• 

SN 
(SETQ I (INCR» 
(GO LOOP» 

Causes the function FN to be invoked, where L is a 
list of its argumants. FN may be any LISP function 
specification. 

(APPLY 'CAR' ( (A B C) ) ::: A 
-: :' L Y I CO N S • (X Y) ) = ( X Y) 

Control Functions 



9. 

Lisp/MTS 
Basic LISP Functions 

(APPLY1FN 51 ••• Sn) 
Causes the function FN to be 

• • • Sn are the arguments of FN. 
function specification. 

Ex: {APPLY1'CAR • (A B C» = A 
. (APPLY1 'CONS • X 'Y) = (X. Y) 

32 

invoked, where 51 
FN may De any LISP 

10. (MAP FN L1 ••• Ln) 
Causes the function FN to be called, with L1 

• • • Ln as its arguments, and then to be called again 
with (CDR L1) ••• (CDR Ln) as its arguments, and then 
to be called again with (CDDR L1) ••• (CDUR Ln) as its 
arguments, etc., until the shortest list is exhausted. 
Thus, when MAP is used, the arguments of FN will always 
be lists, never atoms. 

MAP re turns NIL. 

11. CHAPC FN L1 ••• Ln) 

12. 

13. 

Works like MAP, except the CAR of each successive 
list is used as the argument to IN. Thus, MAPC calls FN 
with (CAR L1) ••• (CAR L.n) as its arguments, and then 
with (CADE L1) ••• (CADR Ln), etc. 

MAPC returns NIL. 

(MAPLIST FH L1 • • • Ln) 
Causes the function PN to be called with L1 • • • Ln 

as its' arguments, and then with (CDR L1) • • • (CD.R Ln), 
etc, just as in MAP. However, the value returned from 
MAPLIST is the ·list of all the successive values 
returned from FN. 

(MAPCAR FN L 1 ••• Ln) 
Works just like MAPLIST except that the CAR of each 

successive list is used as the argument to FN. MAPCAR 
returns a list of all the successive values returned 
from FN. 

Control Functions 

15. 

LIST .. 
atoms 
compa 
match 
alrea! 
is n( 
LIST. 

'1 
LIST. 
uniqu'2 
PNAME 
atom b 
not bE: 



14. 

15. 

Lisp/MTS 33 
Basic LISP Functions 

(MAPCON FN L 1 • • • Ln) 
Causes th~ function FN to be called with "L1 • • • Ln 

as its arguments, and then with (CDR L 1) • • • (CDR Ln), 
just as in MAP. However, the value returned from MAPCON 
is a concatenated list of all the values returned from 
FN. 

***NOTE: The user should be aware that the values 
returned from FN when called via MAPCON or MAPCAN must 
be lists, or an error will result. 

***warning: The user should be aware that MAPCON 
and MAPCAN call NCONe to create the concatenated list of 
values returned from FN. Thus, the actual structures 
returned from PN will be modified by MAPCON and MAPCAN. 
The possibilities for creating circular lists are the 
same as for NeONe, RPlACA, etc. 

(MAPCAN FN L1 ••• Ln) 
Works just like MAPCON, except the CAR of each 

successive list is" used as the argument tOo FN. MAPCAN 
returns a concatenated list of all the values returned 
from FN. 

Ex: Let the VALUE of X be «D 7) (A 6) (N 5) 
(MAPLIST 'REVERSE X) = ( (eN 5) "(A 6) (D 7) (N 5) (A 6) ) 
«N 5») 
(MAPCAR 'REVERSE X) :: «7 D)" (6 A) (5 N) ) 
(MAPCCN I REVERSE X) .: «N 5) (A 6) (D 7) (N 5) (A 6) eN 5» 
(MAPCAN 'REVERSE X) .: (7 D 6 A 5 N) 

LISP maintains a system list of atoms called the OBJECT 
"LIST. The purpose of the OBJECT LIST is to allow references to 
atoms by name on input. Thus, whenever READ reads an atom, it 
compares the atom with the atoms on the OBJECT LIST. If they 
match, then the pointer created references the atom which vas 
already on the OBJECT LIST, and no new atom is created. If there 
is no match, a new atom is created, and placed on the OBJECT 
LIST. 

There may be atoms in the system which are not on the OBJECT 
LIST. lor example, atoms created by GENSYM are guaranteed to be 
unique since they are not on the OBJECT LIST. A reference by 
PNAME to an atom which is not on the OBJECT LIST will cause a new 
atom be created with the same FNAME, and the original atom will 
not be referenced. 

OBJECT List Functions 

\ 

\ 

I 
\ 



Lisp/MTS 34 
Basic LISP Functions 

Atoms on the OBJECT LIST are consid~red active structure by 
the garbage collector,' and are preserved. 

1. (OBLIST) 

2. 

3. 

4. 

The function (OBLIST) of zero arguments returns a 
(long) list of all the atoms which are on th~ OBJECT 
LIST. 

(REMOB A 1 • • • An) 
The function REMOB removes literal atoms from the 

OBJECT LIST. Once an atom is REMOBed, it may no longer 
be referenced by PNAME, and will be destroyed during the 
next garbage collection, if it is not referenced by any 
active LISP structures. 

(.PUTOB A 1 • • • An) 
The function PUTOB puts literal atoms on the OBJECT 

LIST. If an argument to PUTOB is already on the OBJECT 
LIST, then PUTOB has no effect on that atom.' If PUTOB 
finds an atom on the OBJECT LIST with the same PNAME as 
one of its arguments, the PUTOB argument is put on the' 
OBJECT LIST "in front of" the other atom, but the other 
atom is not rem6bed. Thus, the most recent atom with a 
particular PNAME is the one which will be found by READ, 
but" if the most recent atom with a particular PNAME is 
REMOBed, then a previous atom with the same PNA~E will 
become "active" (from the point of vie~ of the READ 
function) • 

(M APO B r'N) 
Maps the function FN 

function OBLIST, MAPOB does 
the atom *UNDEF* to PN. 
function of 1 argument. 

onto the OBLIST. Unlike the 
no CONSes and will not pass 

The function EN must be a 

OBJECT List Functions 

1. (A 

I 

c 

0", 

2. (OR 

Ex 
th 

If 

Ot. 
A 

If 
DO 

y , 



.. 
Lisp/MTS 35 

Basic LISP Functions 

1 • ( AND S 1 • • • Sn ) 

evaluates the .arguments S1 throuqh Sn in turn until 
some si has a value of NIL. AND then stops evaluating 
and returns NIL. 

If none of the Si has a value of NIL, AND returns 
the value of Sn. 

Ex: {AND (CAR Z) 
following effect: 

(SETQ Z A) (SETQ X 'DONE» has the 

If (CAR Z) is NIL, merely returns NIL. 

Otherwise, Z is set to the VALUE of A, and if the VALUE of 
A is NIL, then returns NIL. 

Otherwise, X is set to DONE, and DONE is re~urnad~ 

2. (OR S1 ••• Sn) 
Evaluates its arquments S1 ••• Sn until it finds 

one with a value which is not NIL. OR then returns that 
value. If all of the arguments evaluate to NIL, then OR 
returns NIL. 

Ex: (OR (CAR Z) (SETQ Z A) (SETQ X 'DONE) (SETQ Y NIL» has 
the following effectQ! 

If (CAR Z) is non-NIL, returns CAR Z. 

Otherwise, sets Z to the VALUE of A. If the VALUE of 
A is non-NIL, then returns that value. 

If the VALUE of A is NIL, then sets X to DONE, and returns 
DONE. 

Ywill never be set to NIL. 

Conditional Functions 



3. 

Lisp/MTS 36 
Basic LISP Functions 

(COND 
(P1 <S1 
(P2 <T1 

• SN» 
• • • TN» 

(PN <01 • UN») 
is the basic conditional execution format for LISP. 

The arguments to COND are one or more COND-expressions 
of the form: (P <51 • • • Sn». 

COND starts with the first COND-expression, and 
evaluates P, which may be any LISP form. if the value 
of P is NIL, then COND will go on to ~he next COND­
expression and repeat the process. Ii the value of P 
for the last COND-expression is NIL, then COND returns 
NIL. 

If the value of P is non-NIL, then COND does not go 
on to the next COND-expression. COND will evaluate 51 

• Sn successively, and the value returned from COND 
will be the value of Sn. If no 5i are given, COND 
merely. returns the value of P. 

Ex: We can see that the functions AND and OR are merely 
sub-cases of COND. 

(AND S 1 • • • Sn) = (COND 

or: (AND 51 ••• Sn) = 

«(NOT 51) NIL) 
«(NOT 52) NIL) 

• 
«(NOT S(n-1» NIL) 
( (Sn) ) ) 

(CON.D 
(S1 {COND 

(S2 (C0ND • • • 

Ex: (OR 51 ••• 5n) = (COND 
(51) 
(52) 

• 

(Sn) ) 

• 
(COND 

(S (n-1) Sn) 
} ••• »))) 

Conditional Functions 

4. 

5. ( 



Lisp/M~[S 37 
Basic LISP Functions 

4. (SELECT EQUTHING 

5. 

(E1 <51 • 'SN» 
(E2 <T1 • • • TN» 

• • 
(EN <U1 
FAIL) 

. . . UN» 

is similar to COND, except the values of E1 ••• En 
ar~ tested to see if they are EQUAL to the value of 
EQOTHING. If so, then S1 through Sn are evaluated, and 
the valu~ of Sn is returned. as the value of SELECT. 

If E1 does not match EQUTHING, then SELECT goes on 
to (E2 T1 ••• TN), etc. If E1 matches E\jUTHING, and 
no si are given, then SELECT merely returns the value of 
E1. 

If none of the Ei match EQUTHING, then FAIL is 
evaluated, and its value is returned. It is important 
to understand that th~ last argument of SELECT is always 
treated as a form to evaluate in case of failure, and 
never as a (E1 51 ••• Sn) type of exprassion. Thus, a 
FAIL expression must be given. 

Ex: {S EL ECT (G ET I BOOK • COLOR) 
('BLUE (BLUEFN 'BOOK» 
('RED (REDFN 'BOOK» 
{'GREEN (GREENFN 'BOOK» 

(PROGN (PRINT' (ERROR: BOOK ILLEGAL COLOR) 
(ERRCOLOR 'BOOK») 

(SELECTQ EQUTHING 
«A 1 , LA 1 > <51 • 
«A2,LA2> <S1 • • 

SN» 
• S.M» 

«AN,LAN) <51 ••• SI» 
FAIL) 

is similar to SELECT, 
conditions, if atoms, are 
lists, with MEMQ. 

except that 
compared with 

the test 
EQ, and if 

EQUTHING is EVALed. If the first test condition is 
an atom (A1), then an EQ test is performed, and if 
successful, then the corresponding (51 ••• Sn) are 
EVALed. If the first test condition is an atom and not 
EQ to EQUTHING, then the next clause is examined. If 
the first test condition is not an atom, it must be" a 
list of atoms (LA1) and a MEMQ test is performed between 
EQUTHING and the list of atoms. If EQUTHING is an 
element of the list of atoms (the MEMQ returns a non NIL 
value), then the corresponding (S1 ••• Sn) are EVALed. 
If the MEMO fails, the next clause is examined. If all 

Conditional Functions 



Lisp/MTS 
Basic LISP Functions 

clauses fail, then the FAIL condition is EVALed. 

(SELECTQ (GET 'BOCK 'COLOR) 
(BLUE (BLUEFN 'BOOK» 
{RED (REDFN 'BOOK» 
«GREEN BLACK) (ODDCOLOR 'BOOK) 

(PROGN (PRINT • (ERROR: BOOK ILLEGAL COLOR» 
(ERRORCOLOR 'BOOK)}) 

38 

6.. (TIMER. ID N) 
The TIMER function allows the user to set up his own 

interrupts after a specified amount of CPU time has 
elapsed. The ID argument allows different timer 
interrupts to be distinguished. ID may be any LISP 
atom. 

The following table indicates the various uses of the TIMER 
arguments: 

non-NIL O<n<1001 

non-NIL N>1000 

non-NIL T 

NIL NIL 

non-NIL NIL 

S~t up an interrupt iden~ified by ID, to 
generate a timer interrupt error in N 
seconds of real time. When· the timer 
error occurs, the error form which will 
be printed is ID. ~he value returned is 
ID. 

Set up an interrupt identified by ID, to 
generate a timer interrupt error in N 
microseconds of CPU time. When the 
timer error occurs, the error form which 
will be printed is ID. The value 
returned is ID. 

If there is an outstanding request with 
an ID which is EQ to ID, then TIMER 
returns the clock time remaining (in 
microseconds) in . that request. 
Otherwise TIMER returns NIL. 

Cancel all outstandinq TIMER req~ests. 
The value of TIMER is NIL. 

Cancels the pending interrupt 
if any, associated witn ID. 

request, 
The value 

Conditional Functions 

7. 

the 
i.e. 
the 

argu! 

8. 



Lisp/MTS 39 
Basic LISP Functions 

of TIMER is the remaining clock time (in 
microseconds) in that request. 

7. (TIME TIMEX (TIMEN <TIMETYPE») 
TIME is an NLAMBDA function, which executes TIMEX 

TIMEN times and prints out statistics about the 
computation. TIME returns as value the last value of 
the evaluation of timex. 

TIMETYPE is used 
which will be produced. 
and their meanings are: 

to specify the type of output 
the possible values of TIMETYPE 

1 Print number of cons cells created. 

2 Print CPU time used for the computation in seconds, 
garbage collection time is subtracted out. 

4 Print CPU time used for garbage collection in seconds. 

8 Print real time used for the computation in· seconds. 

To obtain more than one statistic pass to TlflE the sum of 
the numbers of the statistics wanted. TIMETYPE defaults to 3~ 
~.e. the number of cons cells created and the CPU time used for 
the computation is printed. 

TIMEN defaults to 1. If TIMEN is negative a bad integer 
argum~nt error will be produced. 

Note -- TIME may be be called recursively. 

8. (MTS (A,IOARG» 
The MTS function, besides allowing the user to 

return to MTS with the option to restart by callinq 
(MTS) ,. also allows execution of a single MTS command, 
with an automatic restart. This allows the LISP 
programmer (as distinct f~om the user of the program) to 
execute MTS commands without the user's knowledge. 

The PNAME of the atom A, or the contents of the 
buffer associated with IOARG, is executed as an ~TS 
command, and an automatic restart is performed. 

MTS always returns NIL. 

Condi~ional Functions 



Lisp/MTS 
Basic LISP Functions 

40 

-
9. (UNTIL PRED 51 52 ••• Sn) 

An UNTIL loop. The forms PRED, 51, 52, ••• Sn are 
EVALed repeatedly until PRED EVALs to a non-NIL value. 
This value is then returned from the UNTIL function. 

10. (WHILE PRED 51 52 • • • Sn) 
A WHILE loop. the forms PRED, 51, 52, ••• Sn are 

EVALed repeatedly until PRED EVILs to NIL. The value 
returned is NIL. 

Ex: (SETQ X 1) 
{WHILE (LESSP X 10) {SETQ X (ADD1 X) (PRIN1 X») 

will print the line 
2 3 4 5 6 7 8 9 10 

11. (STOP) 
This function will cause execution of LISP to 

terminat~. 

Conditional Functions 

int 
sit 
inti 

spec 
the 
The 
are 
turn, 

spec~ 
APPLl 

mean 
value, 
Withi: 
as thl 
withiJ 

1 
any q 
argum1 
be NIl! 

I 

not b, 



!.!. .t~!!.Qg~-EXE~§.§iQ!l.§ 

Lisp/MTS 
Function Definition 

41 

As we noted in previously, the CAR of a form being EVALed is 
interpreted as a function specification. We described the 
situation when this CAB is an atom. In that case, the atom is 
interpreted as the name of a function to be called. 

However, the CAR of a form to be EVALad need not ~e an atom. 
It can be an explicit function specification, called a LAMBDA­
expression. The basic form of a LAMBDA-expression is: 

(LAMBDA (A1 • • • An) S 1 • • • Sn) 

When a LAMBDA-expression appears as a function 
specification, it is treated as a function where A1 ••• An are 
the dummy arguments, and S1 ••• Sn is the body of the function. 
The dummy arguments A1 •• ~ An are bound to the arguments which 
are passed to the function, and then S1 ••• Sn are EVALed in 
turn. Finally, A1 ••• An are unbound to their original VALUEs. 

The value of the LAMBDA-expression is the value of Sn. 

A LAMBDA-expression may appear any time a function 
specification is required, for example, as the first arqument of 
APPLY, MAP, MAPLIST,etc. 

Ex: ({LAMBDA (X) (CDR X» '(A B C» -= (B C) 

Note: when we say that an atom is bound to some value, we 
mean that its present VALOE is saved, and it is 'set to the new 
value.. When the atom is' unbound, .its previous VALUE is restored. 
Within the scope of a LAMBDA-expression, the dummy arguments have 
as their VALUEs the arguments of the function. For example, 
within the LAMBDA-expression above, the VALUE of X is (A B C). 

~~te: The number of arguments to a LAMBDA-expression, as for 
any ~er function, must be the same as the number of dummy 
1rgu~ s, or an error will result. The dummy argument list may 

in which case the function takes no arguments, but it may 
itted. 

Lambda-Exp~essions 



Lisp/MTS 
Function Definition 

42 

Another form of LAMBDA-expression may be defined which takes 
an indefinite number of arguments. The basic form of the no­
spread LAMBDA-expression is: 

(LAMBDA A 51 • • • Sn) 

Here the dummy argument list is replaced by a single non-NIL 
atom. When a no-spread LAMBDA is executed, the dummy argument A 
is bound to the number of arguments which were given. 

The value of any particular argument may be obtained by 
calling the function ABG, with the number of the desired 
argument. Thus (IRG 1) returns the first argument, (IRG 3) the 
third argument, etc. calling ARG with a number greater than the 
number of arguments given will generate an errbr. 

Because a no-spread LAMBDA-expression may occur within the 
scope of another no-spread LAMBDA-expression, the funttion lRG 
takes an optional second argument, which, if given, must be EQ to 
the dummy argument of a dominating no-spread LAMBDA. For 
example, {(LAMBDA A (ARG 1.' A» I (C D) = (C D) • If no second 
argument is given to ARG, then the immediately dominating no­
spread LAMBDA is implied. 

Ex: (L AMBDA C 
(PROG (X N) 

(SETQ N 1) 
A (COND {(GREATERP N C) (RETURN X») 

({SETQ X (APPEND1 X (CAR (ARG N)))} 
(SETQ N (ADD1 N» 
(GO A») 

This function will return a list of the CARs of all of its 
arguments. 

No-Spread LAMBDAs 

al: 
Th.:: 
and 

-;'Xc 
th'2. 

slig 
FLAM 
whic 
all 
FLAM 
the 
desij 

thr8€ 
alwaj 
will 
diffe 
Howev 
into 
the c 
are g 
examp 



Lisp/MTS 
Function Definition 

43 

There are two alternate forms of LAMBDA-expressions, which 
allow the user to give explicit definitions of N-typ~ functions. 
The first of these is the NLAMBDA-axpression. The basic spread 
and no-spread forms of NLAMBDA-expresssions are as follows: 

(NLAMBDA (A 1 ••• An) 51 • • • Sn) 
(NLAMBDA A S 1 • • • Sn) 

The NLAMBDA-expression operates like an ordinary LAMBDA, 
except that the argument-designators themselves, rather than 
their values, are used as the arguments to the NLAMBDA. 

Ex: {(NLAMBDA (X) (CDR X) (A B C» = (B C) 
({NLAMBDA A (CAR (ARG 1») • (A B C) = QUOTE 

The third and last form of LA~BDA-expression is' the FLAMBD!. 
The basic forms of PLAMBDA- expression are as follows: 

(FLAMBDA (A) 51 ••• Sn) 
(FLAMBDA A S 1 • • • Sn) 

The argument-passing conventions for FLAMBDA-functions are 
slightly different than for LAMBDA and NLAMBDA-expressions. The 
FLAMBDA-expression must always have exactly one dummy argument. 
which in the case of a spread type FLAMBDA is bound ~o a list of 
all the argument-designators. In the case of a no-spread type 
FLAMBDA, the dum~y a~gument is always bound to the number 1, and 
the function (ARG 1) will return the list of all the argument­
designators. 

Ex: «.FLAMBDA (A) A) X Y Z) = (X y Z) 
«(FLAMBDA A (IRG A» X Y Z)= (1 Y Z) 

It is important to be aware of the effect of APPLying the 
three types of functions. The arguments to APPLY and APPLY1 are 
always EVALed before being passed to these functions, and they 
will not be EVALed again. Thus, for the purposes of APPLY, the 
diffeT~nce between LAMBDA and NLAMBDA-functions disappears. 
Howev • for FLAMBDA-type functions, the arguments given are made 
into \ list in the case of APPLY1, or left in their list fotm in 
the of APPLY, and thus when these functions are APPLYed they 
are . ~~'r.\ nteed to receive a single argument. The followinq 
'Xct f, ..:".i C; ", ;'..llustrate the process: 

FLAMBD! and NLAMBDA Expressions 



Lisp/MTS 
Function Definition 

(APPLY '(LAMBDA (X Y Z) (LIST X Y Z» I (A B C» = (A B C) 
(APPLY '(NLAMBDA (X Y Z) (LIS'T X Y Z» • (A B C») = (A B C) 
(APPLY I (FLAMBDA (X) (LIST X») '(A B C» =: {(A B C» 

44 

Note! In general, the term "LAMBDA-expression" is a generic 
term including the NLAMBDA and FLAMBDA-expressions. 

2.!.. li~1!lgQ LA!1!l!t~=§'~Er~2.§iQ!!'§ j1A~£;.t=g!.2f:sH~2iQn§1 

LIsP·traditionally provides a special syntax for writinq 
LAMBDA-expressions which can call them- selves. This is the 
LABEL-expression. The basic form of a LABEL-expression is: 

(LABEL NAME LA~BDA-EXP) 

NAME may be any atom. First NAME is bound to the LAMBDA­
expression which is the second argument of the LABEL-expression, 
and the evaluati6n continues as though the LAMBDA-expre~sion had 
been given. The effect is to temporarily define NAME as the 
LAMBDA-expression, provided that NAME is not already defined as a 
function within the system. 

Thus, within the LAMBDA-expression, explicit calls to NAME 
may be made, which will invoke ~h9 LAMBDA-expression recursively. 

EX: ({LABEL COUNT (LAMBDA (L N) 
(COND ({NULL L) N) 

«COUNT (CDR L) (ADD1 N»»» 
1 (A BCD E) 0) 5 

The effect of this LABEL-expression is to temporarily define 
a function COUNT, which will return the sum of its second 
argument and th~ number of ~lements in its first argument. 

Named LAMBDA-expressions (LABEL-expressions) 

.. 

f 
a 
f 

tl 
EV 
un 
in 
as 
fo 
wi. 

us~ 

EX! 
nee 
" pa 

d"8s' 
In I 

use, 
fre 
fun 
LIS .. 



Lisp/MTS 
Function Definition 

45 

When an atom is to be used as a function name, a link to the 
function definition is maintained on the property list of that 
a tom. The fol10win.q special system indicators are used to mark 
function definitions: 

SITBR 
NSUBR 
FSUBR 
EXPR 
BUG 

SUBR, NSUBR, and FSUBR are indicators which mark the three 
types of built-in LISP functions. SUBRs take their arguments 
EVALed, like LAMBDA-functions; NSUBRs take their arguments 
unEVALed like NLAMBDA-functions, and FSUBRs take their arguments 
in a list, like FLIMBDA-functions. The property-values 
associated with these indicators are pointers to the machine code 
for those functions. An attempt to print out one of these links 
will merely cause an asterisk (*) to be printed. 

EXPR and BUG are the indicators used to mark the 2 types of 
user-defined functions. The property-value associated with an 
EXPR indicator will be a function specification (usually but not 
necessarily a LAMBDA-expression) which will be invoked when the 
"parent" atom is used as a function name. 

If several special system indicators are on the property 
list of the same atom, the first (and most recent) one will be 
used as the function definition for that atom. 

Note: There is nothing to stop the user from modifyinq or 
destroying the special systam properties on the PLIST of an atom. 
In fact, since the 'PLIST of an atom is t he CDR of the atom, the 
user may access this list like any other list. This may 
frequently be a good way to. mak~ corrections to a user-defined 
function. However, modifying or destroying the links to built-in 
LISP functions should be done carefully, if at all. 

***5ee the description the tha GETFN function. 

Accessing Defined Functions 

---~=-.----.-" .. ,. 



Lisp/MTS 
Function Definition 

46 

1. (DEFUN NAME <TYPE'> ARGLIST S1 • • • Sn) 
DEFUN is an N-type function which providas an easy 

way for the user to define one new LISP function by the 
usual method of putting a LAMBDA-expression on its 
property list. NAME is· the name of tha function being 
defined. TYPE must be EX PR, NEXPR, or FEXPR. If TYPE 
is omittedi EXPR is assumed. ARGLIST is a list of dummf 
argtiments, or NIL, for a spread type function; or a 
single atom for a no-spread type function. 51 ••• Sn 
is the body of th3 function. 

If TYPE is EXPR, a LAMBDA-expression is created. 
If TYPE is HEXPR, an NLAMBDA-expression is created. 
If TYPE is FEXPR, an FLAMBDA-expression is created. 

DEFUN always puts the LA~BDA-expression created on 
the property list of NAME under the indicator EXPR. The 
value returned from DEFUN is tha atom NAME. 

Note: If TYPE is omitted, then ARGLIST may not be 
EXPR, NEXPR, or FEXPR. 

Ex: (DEFUN SAMPLE C 
(PROG (X N) 

(SETQ N 1) 
A (COND «GREATERP N C) (RETURN X» 

(SE"rQ X (APPEND X (CAR (ARG N»))) 
(SETQ N (ADD1 N») 
(GO A») 

This creates a function called SIMPLE, which returns a list 
of the CARs of all' of its arguments. SA~PLE takes an indefinite 
number of arguments - including none. 

2. 

(SAMPLE) = NIL 
( SAM P LEI (S R T) J (P .Q) I (R}) = ( S P Ii ) 

(DEFINE (NAME <TYPE> DEPN) ••• (NAME <TYPE> DEFli» 
DEFINE is the basic function for defining and naming 

new LISP functions. DEFINE is an N-type function which 
takes an indefinite number of definitions as arguments. 
NAME is always an atom, which is the nama of the entity 
being defined. TYPE may be EXPR, MACR01 BUG, ARRAY, or 
SUBR, or may be omitted, in which case EXPR is asstimed. 

For an EXPR or BUG, the DEFN given ~s put on the 
PLIST of NAME exactly as it appears. Thus, to DEFINE an 
EXPR, the entire LAMBDA-expression must be written out. 

Defining New Functions in LISP 

of a 1 

curr: 
indic 
t.ha t 
curr 
is m 
the m 
one. 

l...:.. IE 

LISP, 
BUG 

1 

proper 
will c 
The u 
other 
and al 
form 0 

D 
expresE 
same nt 
ca·ll 1.;-
FLAI1hC:ii 
the a~. 



Lisp/MTS 
Function Definition 47 

The form and meaning of BUG definitions will be 
explained in the "two sections to follow. 

The ARRAY and SUBR definitions require special 
parameters which define LISP arrays, and which create 
linkage to external subroutines, respectively. The form 
and meaning of these definitions will be explained in 
sections H and I to follow. 

The value returned from DEFINE is t:he name defined 
if only one definition was given, or a l~st of the names 
defined if more than one was given. 

Ex: (DEFINE (TEST EXPR (LAMBDA CY) (PRINT Y»» = TEST 

This defines a function TEST which merely prints its argument. 

Note: DEFUN and DEFINE, which put properties on the PLISTs 
of atoms, do not work in the same way as PUT. They compare the 
current indicator being placed on the PLIST with the first 
indicator which is there, and if they are the same, the PVAL of 
that indicator is replaced with the new definition. If the 
current indicator does not match the first one on the PLIST, it 
is merely placed in front of it. This process quarantees that 
the most recent function definition of an "atom will be the active one. 

i~ lHH~.2 

In order to facilitate the writing of de-bugqinq routines in 
LISP~ a new facility called a BUG has been added to LISP/MTS. A 
BUG is a pseudo-function definition which can be placed on the 
property list of an atom already defined as a function. lrhe BUG 
will cause an interception of the function on entry and on exit. 
The user can display the arguments sent to the function, or any 
other LISP structures, can test"entry conditions, and can display 
and alter the value being returned from the function. The basic 
form of a BUG d~finition is as follows: 

(DEFINE (A BUG (DEFN1 • DEFN2») 

DEFN1 is a function specification (usually a LAMBDA­
expression) which must either be an FLAMBDA-function or have the 
same number of arguments as the function A. Immediately prior to 
calling the function A, DEFN1 will be called. If it is an 
FLAMBDA-function, its dummy argument will be bound to a list of 
the arguments of A. If i~ is a LAMBDA or NLAMBDA function, its 

Defining New Functions in LISP 



Lisp/MTS 48 
Function Definition 

dummy arguments will be bound to the arguments of A. For the 
purposes of BUGs, LAMBDA and NLAMBDA functions are identical. 

After DEFN1 is called, A will be invoked as if the BUG were 
not present. DEFN1 does not have the power to alter the 
arguments sent to A (except, of course, by physical modification 
of the argument structures), but it does have the power to abort 
the call entirely. (see section IV of this manual on Debugging 
Features) • 

Upon returning from the function A, DEFN2 is called. DEFN2 
may be a LAMBDA or NLAMBDA function of one argument, in which 
case that argument will be bound to the value returned from A. 
If DEFN2 is an FLAMBDA, its dummy argument will be bound to a 
lis~ of the value returned from A. The value returned from DEPN2 
will replace the value actually returned from the function A, as 
the final result of calling A. Thus the writer of BUGs who 
wishes to pass along the value returned from A must be certain to 
define DEFN2 to accomplish this. 

Note 1: When a BUG is placed on the property list of an 
atom, and then a new function definition (EXPR OR" MACRO) is 
placed on the same property list, the BUG will be ignored. In 
other words, BUGs must be the first indicator on a property list 
in order to be effective. Thus, in a call to DEFINE which 
defines a function· and a BUG for tha same atom, the function 
definition must precede the BUG definition. 

Note 2: One or more BUGs appearing vi~h no function 
definition on the property list of an atom A will generate an. 
error if A is invoked as a function. 

Note 3: Multiple BUGs appearing on the property-list of an 
atom, followed by a function definition, will be treated as 
"stacked" and invoked in order. The input-bug-functions will be 
executed from first to last, followed by the function itself, 
followed by the output-bug-functions, from last to first. The 
dummy argument of each output-bug-function will be Dound to the 
value returned from the one following it on the p'roperty list. 

Note 4: If either DEFN1 or DEFN2 is NIL. then that portion 
of the BUG will be ignored and the function A will be invoked or 
exited without intervention. 

Example: A bug is put on the function COUNT, to trace the 
entry and exit, and to print out the arguments. 

(DEFUN COUNT (L N) {COND «NOT L) N) 
«COUNT (CDR L) (ADD1 N»))) 

(DEFINE (COUNT BUG {(FLAMBDA (ARGS) 
(PRINT 'ENTRY-TO-COUNT) 

Defining New Functions in LISP 

CC' 

ii. ---

will 
with 
appBa: 
eleme,­
each 

funct.: 
access 
indicc 
invoki 
argume 

E: 
elemen· 

I­
a func~ 
negate 
.A as a 

To 
used: 

(SE 

an· 
D) • 

Th1 
The limj 
number c 

Not 
own hash 
(DEFINE 

To obt.2:.:' 
To set 
VALUE) 



Lisp/MTS 
Function Definition 

50 

HASHFN may be any LISP function which returns a numeric atom 
as its value, or roay be'an external routine called from LISP. 

LISP/MTS provides the option of calling user-written ot 
library subroutines. The major purpose of this feature is to 
allow the use of complex numeric function, hash func~ions, etc., 
which would be extremely slow if written in LISP. 

The basic form used to define external subrou~ines in LISP 
is: 

(DEFINE (FN SUBR (N FILENAME <ENTRY-NAME»}} 

FN is an atom which will become the LISP name of the 
ext~rnal function. 

FILENAME is the name of an MTS file from which the external 
code is to be loaded. 

ENTRY-NAME specifies which entry point in an object file, or 
which subroutine in a library file is to be associated with the 
LISP function name IN. If no ENTRY-NAME is given for an obj~ct 
file, the default MTS entry point will bg used. If no ENTRY-NAME 
is given for a library file, an error will be generated. 

If the ENTRY-NAME given is already in core, then nothing 
will be loaded, and the LISP function FN,will be defined to be 
the ENTRY-NAME function. This means that ENTRi-NAME must be 
unique, not only within its own file, but within the entire set 
of files used in DEFINE statements. 

Nspecifies the type of calling conventions to be used, and 
must be 0,1,2, or 3. 

N=O 

N=1 

signifies that LISP internal SUBR calling conventions will be 
used. Any number of arguments may be given, and these may be 
any LISP structures. This external mode is for the use of 
systems programmers who might wish to write extensions of the 
LISP interpreter, and requires familiarity with the internal 
structures of LISP. 

signifies FORTRAN function calling conventions, with a 
floatinq point return value. Any number of argumants may be 
given, and they must be numeric atoms. If an argument is a 
floating-point numeric atom, it will be passed to the function 
as a doubla-precision floating point number. (This allows the 

Defining New Functions in LISP 

N=2 

T .. 

r 

S~ 

0, 

Vi 

C :. 
L 

r -_'C. 

CC 
v;::. 
Nc 
ar 
0 ,... .. 

wL 
wh: 
in ~ 
nun 



N=2 

N=3 

Lisp/tiTS 
Function Definition 

51 

user to call both single and double precision functions, 
although LISP numb~rs have only single precision 
significance.) If the argument is an integer numeric atom, it 
will be passed to the function as a full word inteqer. (Note 
tha t the numeric value of the atom will b9 passed', and not the 
atomic structure). 

upon return from the function, Floating Point Register 0 
will be treated as a single-precision numeric return value 
from the function, and a numeric atom will be created with 
that value, and returned as the value of the external 
function. 

signifies FORTRAN function calling conventions, with an 
INTEGER return value. Any number of arguments may be given, 
and their interpretation will be the same as the N=1 case. 

upon return from the function, General Reyister 0 will be 
treated as an integer return value from the function, and a 
numeric atom will be created with that value, and will be 
returned as the value of the extern~l function. 

signifies FORTRAN subroutine calling conventions. Any number 
of numeric arguments may be given, and their interpretation 
will be the same as the .N= 1 and N=2 cases. For this type of 
external £unction, the arguments may be modified by the 
function, just as if they were the values of FORTRAN 
variables. 

Upon return from the subroutine, General Register 15 is 
checked first. If the return code is non-zero, then the value 
returned from the LISP function will be NIL.. If the return 
code is zero, then a list of the (possibly modified) argument 
values will be returned as the value of the LISP function. 
Note that a FORTRAN program which modifies the values of its 
~rguments doas not alter the value of any LISP structure •. The 
orily effect of the modification is to return some new numeric 
atom as part of the returned value of the LISP function. 

An argument which was oriqi.nally passed as an integer 
will be interpreted upon return as an integer. An argument 
which was originally passed as a floating point number will be 
interpreted upon return as a single-precision floating point 
number. 

Ex: (DEFINE {DEXP SUBR (1 *LIBRARY DEXP»)) 

Defining New Functions in LISP 

I I 

\ 

\ 
I 



Lisp/MTS 
Input/Output 

52 

In the simplest application of LISP input-output, all input" 
is read from the system input device (SCARDS), and all output is 
directed to the system output device (SPRINT). 1/0 is always 
treated as a stream, with the syntactic boundaries ~etween s­
expressions constituting the divisions between I/O operations, 
rather than physical records. Thus. several s-expressions may be 
read from one input line or one S-expression may span several 
input lin9s. Similarly, the basic print function PRIN1 will 
"stream" output s-expressions into a single output buffer until 
it overflows. Then it will be printed, and the current 
expression being PRI~1ed will be continued as the sta~t of a new 
buffer. 
EX: 

(PROGN 
(PRIN1 'TEllS) 
(PRIN1 'IS) 
(PRIN 1 'A) 
(PRIN1 'TEST:) 
(TAB 35) 
(PRIN1 '"THAT'S ALL") 
(TERPRI» ) 

~s NIL, and the following line 
THIS IS A TEST: 

will be printed: 
THAT'S ALL 

Default I/O Operations 

com 
aho 
IIO 

1 • 

buft 
func 
an 
spec 
pair 

spec 
buff 
than 
spec. 
over: 
prin' 

a~om) 

dire,. 
point 
eith,­
buffE 
atom 
and 
LISPC 
and 
butfe 
read 
origi 

2. Bli 

1 
is ace 
crea t~ 
routir 
vie wed 



Lisp/MTS 
Input/Output 

53 

LISP/MTS provides the option of a more flexible (and more 
complicated) input/output scheme than the defaults described 
above. The basic data structures involved in the scheme are: the 
I/O destination atom, the buffer, and the file. 

1. I/O Destination Atoms 

An I/O destination atom is a pointer atom whose VALUE is a 
buffer/file pair to bg used in an I/O operation. All of the I/O 
functions described in th~ previous section accept such a pair as 
an optional argument, and if given, the ,buffer/file pair 
specified will be used for that operation. Such a buffer/file 
pair is called an IIO argument, or IOARG. 

If an IOARG is given on input, data is read from the 
specified (rather than the system input) buffer, and if the 
buffer is used up, a new line is read from the speciried (rather 
than the system input) file. On output, data is printed into the 
specified (rather than the system output) buffer, and if an 
overflow occurs (or the operation is a PRINT), data will be 
printed on the specified (rather than the system output) file. 

specifically, an IOARG (the VALUE of an IIO destination 
atom) is a dotted-pair (BUPFER. FILE), which may be used to 
direct input/output operations, and may also be used as a buffer 
pointer for performing operations on buffers (EXPLODE, etc.). If 
either component of an IOARG is NIL, then the appropriate system 
buffer or file will be used. The VALUE of the I/O destination 
atom LISPIN is the dotted-pair of the default system input buffer 
aHd system input file. The VALUE of the I/O d.estination atom 
LISPOUT is the dotted-pair of the default system output buffer 
~nd system output file. If the user changes the system default 
buffers or files using the STATUS function (the equivalent of a 
read or write select operation), he may still have access to the 

'original syst~m IOARGs through LISPIN and LISPOUT. 

2. Buffers 

A buffer is an atomic structure with a variable PNAME, which­
is accessed through one or more IOARGs. New buffers may be 
creat~d and linked to I/O destination atoms by call~ng the OPEN 
routine. Buffers are used for input/output, and may also be 
viewed as charact~r strings. 

The maximum size of a buffer is 255 characters. 

Any PRINT operation into a buffer will cause a 

I/O Data Types 



LisP/MTS 
Input/Output 

54 

representation of the argument to be placed in the buffer. Any 
READ operation from a buffer will create and return the LISP 
structure represented by the next S-axpression in th~ buffer. 
Options available through the STATUS function allow the user to 
suppress the insertion of blanks between printed S-expressions~ 
or to intercept the performance of physical liD when a buffer 
overflows, and execute some user-written routine instead. The 
user may also define Read-Macro and Print-Macro atoms. 

When a buffer is passed as an argument to a function, itO 
will always be the IOARG whose CAR is the buffer, rather than the 
buffer its~lf, which is passed. For example, functions such as 
EXPLODE, which forms a list of one-characteL atoms from the 
characters in a buffer, or GENSYM, which will created an atom 
whose PNAME is the current contents of the buffer, expect an 
IOARG, rather than the buffer itself to be passed. The FILE 
portion of the IOARG will be ignored. Thus, tue IOARG also 
s~rves as a buffer pointer throughout the system. However, when 
functions such as READLINE, TAB, and SKIP return buffer pointers,. 
it is the actual' buffer structure and not the IOARG which is 
returned. 

The atomic structure of a buffer extends only to its PNAME. 
Buffers may not be given VALUEs and PLISTs by the user. However, 
a buffer may be part (or all) of the list-structure argument to 
PRINT or PRIN1. For priiting purposes, a buffer is treated like 
any other atom, and its PNAME viII be inserted into the output 
buffer. 

Ex: 
If (PRIN1 (CAR LISPIN) BUF1) appears as an input line under 
normal conditions of operation, the character s~rinq tt (PRIN1 
(CAR LISPIN) BUF1)" will be placed in the buffer associated 
with I/O Destination Atom BUF1. 

3. Files 

The FILE is an internal LISP. structure which has no 
significance to the user except that it serves to direct input 
and output calls to MTS files and devices. A FILE may reference 
any HTS file name (MYFILE), device name (*T*, *SINK*), logical 
unit name (SCARDS), or logical unit number (0 - 9). 

Several files can be attached to a sinqle buffer, by 
creating several IOARGs with the same buffer component. If these 
IOARGs are used for output, data printed will all go t.o t;he same 
buffer, but if the buffer overflows, the file for that I/O 
operation will be used as the output file. Similarly, several 
buffers can be attached to the same file by creat~nq several 
IOARGs with the same file component. In that case, output from 
all the attached buffers will be interleaved in the file •. 

I/O Data· Types 

wh 
pu 
pr 
SK 

be 
of 

pr 
wil 

cal 
the 
to 
cha 

a p 
Lin' 

* { 

> 
* (E 

TH 
> 

) 

* (T: 

> 
* (Pl 

Tf 
> 
* (51 
> 
* (PF 

PF 
) 



Lisp/MTS 
Input/Output 

55 

Any LISP buffer may have a prefix of up to 255 characters, 
which may be set and unset by calling the STATUS ~ function. The 
purpose of the buffer prefix is to allow prefix strings to 
precede output lines. All PRINT operations, including TAB and 
SKIP, will treat a buffer with an active prefix as though it 
begins after the prefix. 

Note: Prefix. characters use up character positions at "the 
beginning of a buffer, and are included in the buffe~ size limit 
of :255 characters. 

Warning: since READ operations do not recognize buffer 
prefixes, a physical read operation into a buffer with a prefix 
will destroy or replace the prefix. 

A file prefix character may b~ attached to any LISP file by 
calling the STATUS 14 function. This ·has the affect of callinq 
the MTS function SETPFX which will cause any input from or output 
to the terminal or line printer to be prefixed by the prefix 
character. 

Ex: Here is a sample run in which a buffer is created, given 
~ prefix, the prefix is used, and then the prefix is turned 6ff. 
Lines which are not indented are typed in by the user. 

~ (OPEN (ABUF 132» 

> NIL 
ic (READ ABUF) 

;a buffer is created with length 132. 
;ABUF is the I/O destination atom. 
;The file portion of the rOARG 
;creatad will be NIL. 

jcauses a line to be read 
. ;from the system input device into ABUF, 
;and the first S-expression found 

THIS IS A TEST 
> THIS 
~ {STATUS (10 ABUF T» 

o 
~ (TERPRI ABUP) 

NIL 
~ (PRINT 'PRINT2 ABtJF) 

THIS IS A TEST PRINT2 
PRINT2 

ito be returned as the value of READ. 
;here is.the input line. 

;makes the current contents 
jof ABUF a .prefix. 

;this has·no effect, since the prefix 
;i5 not treated as buffer contents. 

(STATUS (10 ABUF NIL» ;turns off the prefix. 
14 

(P RI NT f PRINT3 ABU F) 
THIS IS A TEST 
PRINT3 

PRINT3 

Buffer and File Prefix Characters 



* (PRINT • PRINT2 ABU F) 
PRINT2 

) PRINT2 

Lisp/MTS 
Input/Ou·tput 

56 

The user may, by including an optional argument, attach ~ 
rgad intercept function or a print intercept func~ion to an I/O 
call. The argument must have as its value a function which takes 
one argument. If a read intercept function is includad, on any 
attempt to do a physical read into that buffer, tha intercept 
function will be called first. The IOARG for that READ will be 
passed to the intercept function as its argument. If a write 
intercept function is specifed in a PRINT 1 PRIN1, or TERPRI call, 
on any· attempt to do a physical write from the Duffer, the 
intercept function will be called first. The IOARG for that 
PRINT operation is passed as the argument to the intercept 
function. 

Upon return from an intercept function, the LISP system will 
complete the I/O operation. 

Each file has an EOF function, which wiLl be called 
end-of-file is encountered while reading from that file. 
function may be attached to a file by calling STATUS 12. 

if an 
An EOP 

An EOF fun~tion must be a function of one argument. When 
the function is called, the IOARG for the READ operation will be 
passed to it. 

All files initially use the system default EOF function, 
called EOl, which causes the file to .be closed. Whenever a file 
is closed, it is changed to reference *MSOURCE*. An end-oi-file 
encountered on *MSOURCE* ·will cause the user to be asked if he 
wishes to continue if the run is interactive. In batch mode, an 
end-of-file on *MSQURCE* causes immediate termination of 
execution. The value of the function EOP is NIL. 

The action which will be taken on return from an EOF 
function is determined by the value returned. If the value is 
non-NIL, the READ is aborted, and that value is rdturned as the 
value of READ. If the value returned from the BOP function is 
NIL, the READ will be tried again. 

. End-of-file processing 

w:. 
en. 
ap; 
mu; 
as 
4 I 

1 • 

Rea 
REA 
imm 

, (th 

be 

the 
stre 

Ex 
* 
* ( 

* 
* 
* 
* 
* > 
* > 
* t 

> 
* , ( > 
* 



Lisp/MTS 
Input/Output 

57 

It is possible for the LISP user to define functions which 
viII be called whenever a particular atom or character is 
encountered in the input stream, or whenever a particular atom 
appears in the output stream. A Readmacro or Printmacro function 
must be a function with one dummy argument. An atom is defined 
as a Readmacro or Print macro by calling STATUS functions 2, 3, or 
4 with the appropriate arguments. 

1. Immediate READMACRO Atoms 

(STATUS (2 HIT T» defines the atom HIT as an immediate 
Readmacro. If HIT is encountered in the input stream during a 
READ op~ration, the function associated with HIT will be invoked 
imm~diately. The function HIT must be a function of 1 argument 
(the IOARG). 

Upon return from the HIT function, the followinq action will 
be taken: 

If the value return~d from HIT is an atom, then HIT 
will simply be "spliced out" of the input stream, and the 
READ will continue. 

If the value returned from HIT is a list, then the 
elements of that list will be "spliced ~nU to the input 
stream in place of HIT, and the READ will continue. 

The Readmacro function may itself call READ, in which case 
the S-expression immediately following the atom HIT in the input 
stream will be 'returned~ 

* (DEFUN HIT (X) 

* (COND ( (ATOM (SETQ X (READ) ) ) 

* (LIST (LIST X I HI T) ) . 

* ( (LIST (MAPCAN ' (LAMB!:A (A) 

* (LIST A • HI T) ) 
* X> 
)- HIT 
.... (STATUS (2 HIT T)} 'l" 

.~ NIL 
'(A B C HIT (D E F) G) 

(A B C (D HIT E HIT F HIT) G) 
.J fA B C HIT D E F) 

(A B C CD HIT) EF) 

READMACRO and PRINTMACRO Functions 



Lisp/MTS 
Input/Output 

2. Delayed READMACRO Atoms 

58 

(STATUS (3 HIT T~) defines the atom HIT as a delayed 
Readmacro. If HIT 1S encountered in the input stream during a 
READ operation, the function associated with HIT will be invoked, 
but not until after the current READ has been completed. 

Thus, if the HIT function calls READ, it cannot read part of 
the "current" S-expression, but will return tne s-expression 
following it. 

upon return from the HIT function, the 
is a list) will be ftspliced in"to the 
which was read, at the point where the 
encountered. If the value returned is 
Readmacro atom will merely be "spliced out" 
expression. 

value returned (if it 
original S-expression 

Readmacro atom was 
an atom, then the 

of the original 5-

Ex: Using the same definition of the Readmacro HIT: 
* (STATUS (3 HIT T» 
> NIL 
* , (A B C HI T D E F) 
* (SPLICE THIS) 
> (A B C (SPLICE HIT THIS HIT) D E F} 

Note for Readmacro Users: The t feature in LISP/MTS is a 
substitution (not a Readmacro), and does not involve ~n extra 
call to READ. 

3. PRINTMACRO Atoms 

print macros have been implemented sliqhtly differently from 
. Readmacros. (STATUS (4 ATM T») will define ATM as a Printmacro 
atom. Whenever an attempt is made to print a !!2! whose CAR is 
iTM, the Printmacro function will be invoked. Upon return from 
the printmacro function, its value will determine what action is 
to be taken. If the value returned is NIL, the l~st (whose CAR 
is ATM), will be printed normally, as if no Printmacro were 
there. If the value returned is non-NIL, printing resumes, 
ignoring the list passed to the Printmacro function. (It is 
assumed that the Printmacro function printed the list.) 

Printmacros are not defined as Exprs, but as PMACROs. They 
must be functions of 1 argument which will be bound to a CO~S 
cell whose CAR is the list which was to bg printed, and whose CDR 
is the IOARG. 

Ex: To re-insert the character' for the QUOTE function, 

* * (DEPPROP QUOTE PMACRO 
(LAMBDA (X) 

READMACRO and PRINTMACRO Functions 

* 
* 
* > 
* 
> 
* > 
* 
> 
* 

4. 

be 
alt 
Cod 
ato 
HO\r,r. 

ate· 
r'·~c; 

equ 



* 
* 
'* 
* > QUOTE 

Lisp/MTS 
Input/Output 

(COND «EQ (LENGTH (CAR X}) 2) 
(PRTN1 ,n, .. (CDR X) 2) 
(PRIN1 (CADAR X) (CDR X) 2) 
T) 

* (STATUS (4 QUOTE T» 
> NIL 
* t (X t Y I (A B) (QUOTE) QUOTE t QUOTE) 
> {X' Y '(A B) (QUOTE) QUOTE I QUOTE) 
* 1 ( (QUOTE) (QUOTE A) (QUOTE A B) I" D) 
> «QUOTE) I A (QUOTE A B) '" D) 

* 

4. The READMACRO Character Characteristic 

59 

A single-character immediate or delayed Readmacro atom may 
be given the additional effect of a READMACRO character by 
altering its disposi tion in the READ scan tabla. (See STATUS 
Cod~ 5 description). A READMACRO character need not occur as an 
atom, but may occur at the beginning of any of any S~expression. 
However, a READMACRO character which is strictly embedded in" an 
atom, or which occurs at the end of an atom, will not be 
r~cognized. Ex: Re-define the character Q as a Readmacro 
9quivalent to the system t sribstitution function. 

(DEFUN Q (X) (LIST" (LIST I QUOTE (READ»)) 
(STATUS (5 Q 28) " (2 Q T)") 
QA = A 
Q (A B C) = ( A B C) 
QQ(A B C) = (QUOTE (A B C» 

READM1CRO and PRINTMACRO Functions 



Lisp/MTS 
Input/Output 

60 

Many of the I/O functions contain a FLAGS argument which 
specifies certain conditions on the operation. This arqument is 
an integer which is the sum of all specifications. If a buffer 
intercept function is to be included, then this number must be 
present (if no special processing is to take place, then 0 should 
b~ used). 

The FLAGS specifications have the following meaning: 

1 
2 
4 
8 

No Readmacro Processing 
No spacing Between s-expressions On Ou~put 
Place Double Quotes Around Special Atoms 
Output In Terse Mode (one line only) 

The FLAGS argument will have as it value the sum of the 
d9sired specificaions. For example, if No Macro processing and 
Double Quoting is desired, then the value if FLAGS will be 1 + 4 
or 5. 

1. (OPEN (IODA BUFFER <FILE» • • • (IODA BOF.FER <FILE») 
Establishes any number of new I/O destination atoms. 

IODA must be an atom, and its VALUE will oeset to the 
new buffer-file pair which is creatad. BUFFER must be 
an integer between 1 and 255, or a previously defined 
I/O destination atom, or NIL. If it is an integer, a 
new buffer will be created with that initial size. If 
it is an I/O destination atom, the buffer attached to 
that atom will be used. If it is NIL, then the buffer 
portion of the IOARG created will be NIL, and the system 
input and output buffers will be used whenever that 
IOARG is specified in an I/O call. 

FILE must be an atom, a list of a single atom, or a 
previously defined IIO destination atom. If it is a 
(non rODA) atom, then that atom is interpreted as an MTS 
file or device name, e. g. MYFILE, *T*. If it is a 
list of a single atom, then that atom is interpreted as 
a loqical uni t number or name, e. g. (3), (!lCARDS). If 
FILE is a previously created 110 d·estination a tom, ·hen 
the FILE portion ~f that atom will be used •. (This 
feature allows the user to associate multiple buffers 
with one file). If the FILE argument is omitted, then 
the FILE portion of the IOARG will be NIL. when the 
IOARG is specified in an I/O call, the sys~em default 
file will be used. 

Input/Output Function Descriptions 

2. 

3. 

4. ( 



Lisp/MTS 
Input/Output 

OPEN is a special-form type function 
which takes its arguments unevaluated. 
returned from OPEN is NIL. 

2. (EOl"' IOARG) 

61 

(an FSUBR), 
The value 

closes the file associated with its argument and re­
associates it to *MSQURCE*. An end-oi-file on *MSOURCE* 
will cause a CONTINUE? prompt in interactive mode, "and 
termination of execution in batch mode. 

The function CLOSE has the same effect. 

3. (READ <IOARG (FLAGS <INTERCEPT»>) 

The READ function takes a numbar 
arguments. If any optional argument is 
preceding ones must also be given. 

of optional 
qiven, all 

READ causes the next S-expression in the current 
buffer to be read (b3ginning with the next atom or left 
parenthesis), and the corresponding LISP structure to be 
returned as the valua of READ~ If the current buffer is 
exhausted, a new line is read from the current iile,and 
the operation continues. 

IOARG identifies the buffer-file pair to be used 
for the READ. If IOARG is not given, or is NIL, the 
system input buffer-file pair will be used., 

FLAGS, if included" specifies the special operation 
(possible disabling of Readmacros). 

INTERCEPT must evaluate to a function of one 
argument which is the buffer inter~ept function. 

(READeH <IOARG <FLAGS (INTERCEPT»» 

READCH works just like READ, except that each 
character in the buffer is treated as a ~eparate s­
expression, and is returned as a one-character atom. 
Commas, parentheses, periods, double-quotes, blanks, and 
other special characters are treated ·like any other' 
characters, and simply formed into single-character 
atoms. 

WARNING: The user should beware of single-character 
Read-Macros which will be activated Dy READeR if the 

Input/Output Function Descriptions 



Lisp./MTS 
Input/Output 

character appears, even incorporated in 
string. Similarly, multiple-character 
cannot be activated by READCH. 

5. (READLINE <IOARG <FLAGS (INTERCEPT»» 

62 

a character 
Read-Macros 

READLINE causes a new line to be read into the 
current buffer. The previous contents of the BUFFER ARE 
DESTROYED. 

IOARG, if given, identifies the buffer-file pair to 
be used for the READ. If IOARG is not qiven or is NIL, 
the system input buffer-file pair will b~ used. 

6. (PRI NT S (10 ARG <FLAGS <INTERCEPT»» 

PRINT takes three optional arguments. If an 
optional argument is given, the preceding argtiments must 
also be given. 

S is' the S-expression which is to be printed. 
PRINT will perform a TERPRI, will print the expression 
into the current buffer, and will TERPRI again. The 
value returned from PRINT is S. 

IOARG identifies the buffer-file pair for the print 
operations. If IOARG is not given, or is NIL, the 
system output buffer-file pair will be used. 

FLA~S specifies what type of special processing is 
to take'place. 

INTERCEPT is,the optional buffer intercept fuction. 
INTERCEPT must evaluate to a function of one argument. 

7. (PRIN1 S (IOARG (FLAGS <INTERCEPT»» 

PRIN1 simply places the print-name of 5 in the 
current buffer, after any previous contents of the 
buffer. If the buffer overflows, ~ts contents are 
printed on the current file, and the operation 
continues. The arguments of PRIN1 have the same meaning 
as those of PRINT. 

Input/Outp~t Function Descriptions 

8. 

9. 

10. 

zr 



Lisp/MTS 
Input/Output 

8. (TER PRI <IOARG <FLAGS <INTERCEPT»» 

63 

TERPRI causes the contents (if any) of the current 
buffer to be printed out in the current file. If the 
buffer is empty, TERPRI does nothing. The value of 
TERPRI is normally NIL, however, if the print operation 
is intercepted, the value returned irom the intercept 
function will be passed back as the value of TERPRI. 

The IOARG and FLAGS arguments have the same meaning 
as they do for PRINT. 

9. (TAB N <IOARG <FILL») 

TAB causes a tab operation to position N in the 
-current buffer. - {The first position in a buffer is 1; 
thus (TAB 1) is a way to clear a buffer without printinq 
it). If the huffer has a prefix, TAB operates relative 
to the prefix. If N is non-positive, or latger than the 
buffer size, an 9rror is generated. 

IOARG identifies the current buffer for the TAB 
operation. If IOARG is not given, or is NIL, then the 
system output buffer is used. The file portion of IOARG 
is ignored. 

FILL, if given, must be an atom or a buffer pointer 
(IOARG). The PNAME of FILL will he used as a filler for 
any positions skipped during a TAB op~ration to the 
right. 

10. (SKIP N <IOARG <FILL») 

SKIP causes a skip operation N spaces to the right. 
If N is negative, the. skip will be ~o the left. An 
attempt to SKIP outsid9 the huffer will generate an 
error. 

IOARG identifies the current buffer for the skip 
operation. If IOARG is not given, or is NIL" then the 
,:~ystem output buffer is used. The file portion of IOARG 

s ignored. 

FILL, if given, must be an atom or an buffer 
'-inter (IOARG). The PNAME of FILL will be used as a 
-:ler for any positions skipped during a SKIP operation 

';:.C, the right. 

Input/Output Function Descriptions 



lisp/MTS 
Input/Output 

64 

Note: TAB and SKIP affect the value of the buffer 
length for output only. These routines cannot be used 
for the purpose of skipping around in a buffer to READ 
various positions. 

Input/Outp~t Function Descriptions 

-

LIS 
fo: 
whi 
ths 
wit 
LIS 

at.o 
wil_ 
on, 
be t 

the 
numb 
gen.::: 
whic 
The 

(DUM. 



Lisp/MTS 65 
Error and Debugging Functions 

There are 39 different errors that are" recognized bV the 
LISP system. When an error of type N occurs, trie error message 
for that type becomes the "current" error messaga, the expression 
which generated the error (e.g., the illegal argument) becomes 
the "current" error expression, and the error form associated 
with that type is evaluated. After the error form is evaluated, 
LISP is re-started at the top lsvel. 

The error form for an error number is accessed through an 
atom, called the error atom. A call to the STATUS 1 function 
will associate an error number with a given atom. From that time 
on, whenever that error type occurs, the VALUE of that atom will 
be used as the error form. 

At present, there are "thre~ pre-defined error atoms within 
the LISP system. The atom *ATTN* is the error atom for error 
number 1, which occurs whenever an attention interrupt is 
generated. The atom *PGNT* is the error atom for error number 0, 
which occurs whenever a non-nu~eric program interrupt occurs. 
The atom *ERR* is the error atom for all other errors. 

*ATTN*,*ERR*, and *PGNT* are initially set to the form 
(DUMP). See the description of DUMP below. 

Error Atoms, Forms, and Expressions 



Lisp/MTS 66 
Error and Debugging Functions 

We have seen that thare are initially two buffer~ maintained 
by the LISP system, the system input and output buffers, and the 
the two IOARGs LISPIN and LISPOOT initially point to these 
buffers (in th~ir paired form with the system I/O files). There 
are also two system error buffers maintained by the LISP system, 
and the two IOARGs ERRIN and ERROUT initially point to these 
buffers (in their paired form with the system error I/O files). 

The system default error input file is GUSER, and the 
default error output file is SERCOM. 

whenever a BREAK loop is entered, the system error IOARGs 
are used instead of the normal IOARGs for the READ-EVAL-PRINT 
loop and for all user-generated I/O which does not specify its 
own IOARGs. 

1. (BREAK <5» 

calling BREAK causes the system to enter a break 
loop. A break loop is a READ-EVAL-PRINT loop identical 
to the top-level loop of LISP, except that the BRRIN and 
ERROUT buffers and files are used for reading and 
printing respectively. After exiting from the BREAK 
loop, execution continues normally. 

5 is an optional argument which, 1£ given, will be 
evaluated before the BREAK loop is entered. 

The way to exit from a break loop is to evaluate 
NIL at the break level (i.e., just typa in NIL). The 
value returned from BREAK is. always NIL. 

Note: The file Prefix characters for LISPIN and 
LISPOUT are * and > respectively. The fils prefix 
characters for ERRIN and ERROOT are ? and + 
resp~ctively. Thus, the user can easily tell whether or 
not he is in a break loop. 

Error Functions 

') 
<l.. 

Cc 

pro 
fir 
fir 
eli 
comf 
con: 
argt; 
{arg 
user 
argu 
cont 
defa 

back-

loca1 
code~ 

is ( 
start 
round 
assuro 
struc 



2. 

Lisp/Mrs 67 
Error and Debugging Functions 

(DUMP <N <SW») 
DUMP is the basic system dumpinq and trace-back 

program. DUMP can be called in two modes. The first 
mode occurs when no second argument is given. In this 
mode, the status of the rightmost eight bits of N 
indicate whether various error recovery actions should 
be performed. The code values described below should be 
added together to specify the actions desired. (The 
numbers in parentheses after the action specification 
indic~te the relative order of performance of "the 
various actions). If the first argument is omitted, the 
default value is 7. 

code Value Action 
1 Print current error massage and expression which 

generated tha error (1). 
2 Print a backtrace of EVAL forms. The namber 

of levels to be printed is determined by the 
system backtrace numbar - STATUS Code 26 (5). 

4 Call aREAK (6). 
8 Print PSi and contents of General Registers (2). 

16 Dump 32 bytes of core starting 16 bytes' before 
PSW location (3). 

32 Dump 32 bytes of LISP stack data (for system 
programmer) (4). 

There are three parameters controlling the backtrace 
produced by DUMP which may be altered by callinq STATUS. The 
first is STATUS 30, the terse mode switch. Ordinarily, only the 
first output line of each expression is printed in order to 
eliminate long trace-backs. This switch may be reset to give a 
complete trace-back. The second parameter which may be 
controlled is STATUS 27, which controls the printing of 
arguments. Ordinarily the CAR (function specification), and CDR 
(argument list) of each form in the backtrace is printed. The 
user may, by changing this switch, suppress the printing of the 
argument lists. A third parameter, accessed by STATUS 26, 
controls the number of forms which will be backtraced. The 
default is 3. 

(DUMP 0) is a special code which causes a full EVAL form 
back-trace to be printed. 

Note: Duap codes (other than 1 and 4) begin the dump at the 
location of the most recent error block on the stack. These DUMP 
codes should only be used within an error block. 

The second mode of DUMP operation occurs when a SW argument 
is given~ If Sw is an integer, then that number of bytes, 
starting at "address N, will be dumped in hexadecimal. (SW is 
rounded to a multiple of 16). If sw is not a number, then N is 
assumed to be the address of some LISP structure, and that 
structure is printed. Note that the number N is normally treated 

Errol: Functions 

\ II , \: 

II 
1\ 
I 
! 



Lisp/MTS 68 
Error and Debugging Functions 

as a DECIMAL number; this can be .changed thru status 24. 

Note: The user can very easily generate a type 0 error 
(program interrupt) by asking DUMP to print a LISP structure, and 
giving it an address which is not a LISP structure. This will 
not do any harm, however. 

DUMP always returns NIL. 

3. (ONEVAL <N,S1> «T,S2») 
UNEVAL allows the user to look back on the system 

stack and trace the path that was followed by the system 
to get to its current position. It may be used from an 
error form or break loop to restart from any given 
point. 

Each time EVAL is called internally, a block of 
information called an EVAL block is stored on the stack. 
The EVAL block contains the form which was to be EVALed, 
plus all revelant information needed to restart at that 
level. When t he first argument to UNEVAL is an in teger, 
it refers to the Nth previous EVAL block on the stack. 

For example, if you are in a break loop, and you 
type in (UNEVAL 1 ), the last form sent to EVAL will b~ 
returned. This will be (BREAK) if you entered the BREAK 
loop by calling BREAK directly, or (DUMP N) if the BREAK 
loop was entered as part of a DUMP operation. (UNEiAL 
ignores its own EVAL block). 

If the first argument to UNEVAL is some expression 
s which is not an integer, then it refers to the most 
recent call to EVAL for which the CAR of the form to be 
EVALed.wa~ EQUAL tci S. For exampl~, 1I you evaluate 
(UNEVIL 'ASSOC ), UNEVAL will return the most recent 
outstanding EVAL-form which has ASSOC as its CAR. 

If the first argument to UNEVAL is a number larger 
than the current EVAL depth, or if it is a structure 
which is not EQUAL to any function specification on the 
stack, and the second argument is present, an error is 
generated. If the first argument to UNEVAL is a 
negative number, UNEVAL interprets this as a reference 
from the top-level form, and either returns that form, 
or unbinds to it (depending on the value of the second 
argument). 

Once UNEVAL identifies the correct EVAL block~ the 
second argument det~rmines the action to be taken. If 
no second argument is given, UNEVAL returns the form 
that was sent to EVIL at that level. Thus. a call to 
UNEVAL with no second argument does NOT change the 

Error Functions 

4. 



.. 
Lisp/MTS 69 

Error and Debugging Functions 

current level" of execut10n. If the second argument to 
UNEVIL is'T, then execution is re-started at that level. 
Thus, if you evaluate (UNEVAL 'ASSOC T), the system will 
exit from its current level, unbind all bindings down to 
the last time ASSOC was called, and re-start the call to 
ASSOC. 

If the second argument to ONEVAL is anything other 
than T, then execution is re-started at the indicated 
level, but the form given as the second argument· is 
substitut~d for the form which was originally sent to 
EVAL. Thus, if you evaluate (UNEVAL 4 '(APPEND X Y», 
the system will unbind to the 4th previous EVAL block, 
and will then proceed to evaluate (APPEND X Y) in place 
of the form which was originally given. 

Note: The user should be aware that unbiridinq to a 
previous LISP level will not restore altered data 
structures, property lists, or VALUEs changed via SET or 
SETQ. 

4. (DISPLAY <H,S1> <B,F,L) <.A» 
The DISPLAY function allows the user to locate a 

position on the stack with reference to an EVAL block, 
and then display one of the folloving: 
a. The first bound value of a particular atom A, that 
occurred after that EVIL block was created. 
b. If the EViL block is a"COND, a PROG, a SELECT, a 
LAMBDA-expression, or any function specification which 
even~ually produced a LAMBDA-expression to bd applied, 
then DISPLAY will return the n9xt COND or SELECT 
expression to be processed, the next PROG expression to 
be EVALed, or the next sub-form of the LAMBDA to be 
EYALed. 
c. The level in the stack (a negative number, counting 
from the top level). 
d. The value ARG would return at that eval block. 

The first arqument to DISPLAY has the same 
significance as the first argument of ONEVAL. If it is 
an integer, it refers to an EVAL block N beiore the 
current block. If it is not an integer, it refers to 
the most recent EVAL block which has 51 as its CAR. As 
in UNEVAL, a negative inteqer references the top-level 
form. If the EVAL block referenced does not exist, NIL 
is returned. 

The second argument to DISPLAY is either B, P, L or 
a number: B for binding (option a. above) and F for 
form (option h. above), L for level (option c. above), 
or a number which is taken as the first argument to ARG 
(option d. above). 

Error Functions ( 
, f 

__ ---------------I~:-



Lisp/MTS 70 
Error and Debugging Functions 

The ,third 'argument to DISPLAY is given w~enever the 
second argument is B or a number. It is the atom whose 
binding is to be found. If A was never bo~nd after the 
EVAL block referenced was created, then the current 
VALUE of A is returned. If a binding of A is found, 
then the value stored on the stack will be returned. 
(This is the old VALUE of A, that is, the VALOE which 
was saved away to be restored on exit from a PROG or 
LAMBDA). If the second argument was a number, the third· 
is the optional second argument to ARG (the dummy 
variable name). 

Note: In DISPLAY mode F, it is possible to find ,a 
COND, SELECT, PROG, or LAMBDA block on th~ stack which 
is not yet being executed. This will occur if the user 
interrupts during the binding of the PROG-variables, or 
during evaluation of the arguments of a LAMBDA function. 
In this case, there is no "next form" defined for that 
,block, and an error type 37 will be qenerated. 

DISPLAY is an N-type function, and its ~rguments 
are not EVALed. 

5. (MODIFY <H,S1> <B,F> <A> S2) 
The MODIFY function allows the user to modify one of 

the bindings or expressions accessible from DISPLAY 

The arguments of MODIFY have the same significance 
as those of DISPLAY, except that 52 will replace the 
saved VALUE of A (in B mode) or the next expression to 
be processed (in F mode). MODIFY, like DISPLAY is an N­
type function. However, 52 will be EVlLed and i~s value 
will be used as the replacement binding or expression. 
The value returned from MODIFY is the va~ue of S2~ 

6. (ERR S) 
This function generates a. type 15 error, with S 

treated as the expression which generated the error 
(error expression). In addition, the atom ERR is set to 
S. 

Error Functions 

7. 

8. 

9. 



L.isp/MTS 71 
Error and Debugging Functions 

1. (RES <N» 
RES is the LISP internal restart function, and may 

be called to restart after an attention interrupt or 
STEP error call, or a timer intarrupt. These interrupts 
are processed by LISP as follows: A single attention 
interrupt will cause a flag to be set, and when LISP 
reaches a state from which it can be restarted, the 
interrupt will be processed, and the error form 
associated with a type 1 error will be EVlLed. 

If a second attention interrupt is issued before 
the first one is processed, it will be recognized 
immediately and the error form will be EVALed. However, 
when this occurs, no restart is possible. 

Assuming that only one interrupt has been issued, a 
call to RES with no arguments will cause exeuction to be 
resumed at the point where it was interrupted. If the 
argument N is given, it must be a positive integer, and 
the Nth previous outstanding interrupt will be 
restarted. 

TIMER interrupts are always dafarred until the 
syst~m reaches a state from which it can be restarted •. 
However, upon receiving a TI~ER interrupt, the system 
immediately prints a comment on *MSINK* acknowledging 
the TIMER interrupt. At that point, the user may 
interrupt if he so desires. If an attention interrupt 
is issued while a timer interrupt is still pendinq, it 
will be processed immediately (and no restart will be 
possible) • 

8. (TRACE FN1 •.• '. PHn) 
The function TRACE turns on an indicator on each 

atom PN1 ••• FNn which will be detected which will be 
detected when that atom's function is EVALed. The list 
of argrlments will be printed on entry and the value will 
be printed on exit. FN may have an EXPR, SOBR, or any 
type of function. 

9. (UNTRACE FN1 • • • FNn) 
Untrace undoes the flagging done by the function 

TRACE. 

Error Functions 



Lisp/MTS 72 
Error and Debugging Functions 

10. (STEP N) 
This function can be used to step through the 

execution of a form at a controlled rate. N specifies 
the number of forms which will be evaluated, after which 
an error (error number 24) will b~ generated. Calling 
(STEP 0) will turn off the step ?rocess witho~t causinq 
an error~ Thus, for example, (STEP 1) will cause an 
error after executing the next form • 

. Note-- Any LISP error will automatically turn off" 
the STEP function, as will a return to top-level LISP. 

Fotlowing is a list of the errors recognized by the system. 
Each"type of error sets up an error message and an error 
expression, which may be obtained (or altered) by calling STATUS, 
or which may be printed by calling DUMP. Since the default error 
form for all errors is (DUMP), which includes a print6ut of the 
current error message and errpr expression, these will normally 
be printed every time an error occurs. Error types 1-7 do not 
generate an error expression. Errors type 8 and above use as an 
arror expression the argument which caused the error, unles~ 
otherwise noted. 

Code Meaning 

o program Interrupt 

1 Attent~on· Interrupt 

2 Timer Interrupt (See the Section on Control functions 
for a description of the TIMER function). 

3 A function was called with too few arguments. 

4 A function was called with too many arguments. 

5 Numeric operation failure - numeric overflow, division 
by 0, etc. 

6 An array specification contained the wconq number of 
subscripts. 

7 PiAL of SUBR indicator not a SUBR. 

8 A list was required as an argument, bu~ somathing else 
was given. 

Error Messages 



Lisp/MTS 
Error and Debugging Functions 73 

9 An atom was required as an argument, but something else was gi yen. 

10 A numeric atom vas required as an argument, but something else was given. 

11 An integer atom was required as an argument, but 
something else was given. 

12 A buffer (IOARG) was required as an arg umen t, "but something else was given. 

13 
A file (IOARG) was required as an argument, something else was given. but 

14 An array name was required as an argument, but something else was given. 

15 A call to the EBR function has occurred. 

16 Attempt to EVAL an atom which is undefined. 

17 Undefined function - the CAR of the form being EVALed is 
neither a valid function nor a Lambda expression. 

18 Syntax error detected by READ. The error expression is 
the contents of the READ buffer. 

19 Attempt to OPEN a bUffer with a size which is non­
positive or greater than 255 

20 Invalid request code number in a call to STATUS. 

21 Invalid error number given in a STATUS Code 1 call. 
22 

Attempt to set a "get-only" STATUS Code. STATUS function). (See the 

23 Attempt to re-set a buffer to a size less than its current contents. 

24 STEP counting completed. 

25 A sytax error in a PROG. The list of PROG variables was 
not a list of atoms. The error expression is the PROG variable list which was given. 

26 An atomic argument to GO was not the name of any current GO-label. 

27 ARG was called where there is no outstanding No-spread 
function, or ARG was called with two arguments, and the 
second argument is not the name of any outstanding No-

Error Messages 



Lisp/tiTS 74 
Error and Debuqging Functions 

spread dummy a~gument. 

28 ARG was called with a number which is non-positive or 
greater than the number of arguments passed to the No­
spread function. 

29 

30 

31 

32 

An attempt to DEFINE an external SUBR with a type which 
is not defined. 

LISP couldn't find or couldn't load an external routin~ 
which was DEFINEd. The error expression is the file 
name or entry point name ~hich was given. 

A subscript in an array specification was non-positive 
or exceeded the limits of that subscript position. 

GETiORLD vas called with an argument wh~ch is not valid 
ticket. 

33 A call to RES was attempted when ~here was no 
outstanding attention or timer interrupt at that level, 
or the attention interrupt was an immediate" (double) 
attention. 

34 An attempt to call CHECKPOINT which vas not at the top 
level of LISP, or a call to CHECKPOINT or RESTORE which 
did not specify a sequential file, or a call to RESTORE 

"which specified a file which was not produced bV 
CHECKPOINT. 

35 An attempt to expand a Readmacro which is defined as 
both immediate and delayed. 

36 

37 

38 

39 

A call to UNEVAL, DISPLAY, or MODIFY tried to reference 
an EVAL block which did not exist. 

A call to DISPLAY or 
identified an EVAL block 
PROG, COND, SELECT, 
definition. 

MODIFY which specified F mode 
which was not" an executinq 
or function with a LAMBDA 

More than 100 left super brackets were encountered. 

The second parameter to LDIFF was not EQ to some number 
of CDR's of the first parameter. 

Error Messages 

set 
type 
and 
supp 

numb 
asso, 
thes 
form 

wher 
atom 

be 0 

wher" 

swit 
argu 

prev 
argu 
the 

be a 
will 
defi 
ABUF 



lisp/MTS 75 
Special System Functions 

The STATUS function is used for two purposes - to get and" to 
:;et the values of system switches and parameters. There are two 
:yp~s of status call. One which merely interrogates the system 
lnd returns the value of a system parameter, and one which 
5upplies a value which is to replace the system parameter. 

The various system parameters are identified by STATUS 
lumbers. Numbers 1 through 30 are ussd to get and set parameters 
Lssociated wi~h buffers, files, arrays, and atoms. To qet one of 
:hese pa~ameter values, the argument to STATUS will be of the 
:orm: 

(STATUS-NUMBER NAME) 

here NAME is the name of the appropriate buffer, file, a~ray, or 
tom. 

To set one of these parameters, the argument to STATUS will 
e of the form: 

(STATUS-NUMBER NAME VALUE) 
here VALUE is the new value for the parameter. 

STATUS numbers .17' and above are used for general system 
~itches and parameters. To get and set these paramaters, the 
cgument to STATUS will be of the form: 

STATUS-NUMBER 
(STATUS-NUMBER VALUE) 

to get, and 
to set. 

whether getting or setting. a system parameter value, the 
~evious value will be returned from STATUS. If more than one 
~gument to STATUS is given, a list of the previous values of all 
la parameters used in the call will be returned. 

Note: In a call to STATUS, the STATUS 
I any atom, and its VALUE (which must be a 
11 be used as the actual STATUS Code. 
f: l'"'itions to be giv~n to STATUS Codes, e. 

'?IL», ~here the VALOE of SETPFX is 8. 

number parameter may 
legal STATUS Code) 
This allows mnemonic 
q. (STATUS (SETPFX 

The 'STATUS Function 



Lisp/MTS 76 
Special System Functions 

1. Type I STATUS Codes 

This group of STATUS functions are for Buffer, File, Array, 
and Atom Characteristics. 

Code Meaning 

1 This status number is used to get or set the error atom 
associated with a particular error number. (See 'the 
section on Error Recovery for an explanation of th~ 
error atom). The qet form is (STATUS (1 N»), which will 
return the error atom associat~d with error number N. 
The set form is (STATUS (1 N A», in which case A will 
be the new error atom associated with error number N. 
From that time on, a Type N error will cause the VALUE 
of A to be used as the error form. 

2 This STATUS number is used to get or set the immediate 
readmacro switch for an atom. Its argument must be an 
atom. If the readmacro switch is NI~, then the atom 
will not be recognized as an immediate readmacro. If 
the switch is non-NIL, then whenever the atom "appears as 
part of an S-expression read in, it will be treated as 
an immediate readmacro as described in the Section on 
I/O routines. The initial value of this parameter for 
all atoms is NIL. 

3 This STATUS number is used to get or set the delayed 
readmacro switch for an atom. It has the same 
significance as the immediate readmacro switch, except 
that if this switch is on, whenever the atom appears as 
part of an S-expression read in, it will be treated as a 
delayed readmacro. 

4 This STATUS number is used to get or set the printmacro 
switch for an atom. It has the same significance as the 
readmacro switch~s, except that if this switch is on 
whenever the atom is printed into a buffer, it will be 
treated as a printmacro as described in the Section on 
IIO routines. 

5 This STATUS code is used to get or set the disposition 
of characters in the READ scan table. It allows the 
user to alter LISP syntax. The argument must be a 
literal atom. The parameter value given will replace 
the scan table value for the first character of that 
atom. The legal scan table values, and their 
significance to READ, are as follows: 

o Insignificant (non-printinq) characters. 
4 Left parenthesis "(" 
8 Right Parenthesis ")" 

The STATUS Function 



Lisp/MTS 
Special System Functions 

12 End.of line (including semi-colon). 
16 Period: dotted-pair or number. 
20 Plus sign "+": baginning of a number. 
24 Minus sign "-": beginning of a number. 
28 Sinqle character atom. 

(For Readmacro characters). 
32 Quote character. Special processing. 
36 Number st~rter CO - 9). 
40 Literal starter. (.A-Z, etc.) 
44 . Double-quote char. special processinq. 
48 Right super parenthesis ">" 
52 Left super parenthesis "(" 

77 

6 This STATUS code is used to get or set the disposition 
of characters in the READ literal break table. The 
argument given must be a literal atom. The parameter 
value given will replace the break tab~e value for the 
first character of that atom. The break table values 
are: 

o May be part of a literal atom's PNAME. 
1 Break character - end of literal PNAME. 

7 This STATUS cod~ is' used to get or set the disposition 
of characters in the READ number break table. The 
argument given must be a literal atom. The parameter 
value given will replace the break table value for the 
first character of that atom. The number break table 
values are as follows: 

8 

o Numeral (O-9) 
1 Normal end of a number. 

(Blank, comma, end-of-line, etc.). 
2 Floating-point Period. 
3 Hexadecimal digit (A-F). 
4 Neither a break character nor 

part of a number. Back up and 
process this atom as a literal atom. 

Note: Codes 0,2, and 3 must be used only with the 
characters listed after them. Attempts to do numeric 
conversion after improper use of these codes will 
generate numeric exceptions. 

This STATUS number is 
dimensions of an array_ 
name. 

used to get the 
Its argument must be 

number of 
an array 

9 This STATUS number is used to qet or set the size of a 
buffer (effectively the right margin). The buffer size 
includes the buffer prefix (if any), and may not exceed 
255. 

The STATUS Function 



Lisp/MTS 78 
Special System Functions 

10 This STATUS number is used to g~t or set the buffer 
prefix characteristic for a buffer. Evaluatinq (STATUS 
(10 IODA T» freezes the current contents of the buffer 

11 

associated with IODA as a prefix. Evaluating (STATUS 
(10 IODA NIL» releases the prefix. At that point, the 
prefix will be treated as the contents of the buffer, 
and will appear at the beginning of the next· output 
line, unless a (TAB 1) or (TERPRI) is performed to get 
rid of it. 

This status number is used to get or set the current 
READ pointer for a buffer. The argument qiven must be 
an I/O destination atom. The value of t~is parameter is 
not computed relative to any prefix which may exist. It 
is not affected by doing print operations into the 
buffer, but it is re-set to 0 whenever a TERPRI or a 
physical write operation is performed. A TAB or SKIP to 
a smaller number will reset the pointer to the smaller 
number. 

12 This STATUS number is used to get or set the default EOF 
function for a LISP file. The argument given ~ust be an 
I/O destination atom. If an end-of-fila is encountered 
on a read operation from the file, the EOP function will 
be invoked, unles~ it has been explicitly overridden in 
the call to READ. For a description of the form of the 
EOF function and the significance of the value returned 
from it, see the Section on I/O functions. The initial 
value of this parameter for all files is the system· 
function EOF. 

13 This STATUS number is used to get or set the echo 
characteristic for a LISP file. The argument given must 
be an I/O destination atom. If the parame~er value is 
non-NIL, all input read from the file will be echoed on 
*MSINK*. If the value is NIL, echoing will not occur. 
The global echo switch (STATUS Code 31) overrides the 
individual file switches if the global switch is non­
NIL. Otherwise, the individual file switches control 
echoing. The initial value of this parameter for all 
files is NIL. 

14 This STATUS number is llsed to get or set tha file prefix 
character for a LISP file. The argument given must be 
an I/O destination atom. The parameter must be a 
literal atom, vhose first character vill be used as th~ 
file prefix character for the file. The value returned 
will be an integer between 0 and 255, which represents 
the byte value of the prefix character. 

15 This STATUS number is used to get or set the line number 
for a LISP file. Th9 argument given must be an I/O 
Destination atom. The parameter value must be an 

The STATUS Function 

---

2. 



Lisp/MTS 79 
Special System Functions 

integer atom which represents the line number parameter 
to b~ used in the next I/O operation involvinq the file. 

16 This STATUS number is used to get or set the modifier 
word for a LISP file. The argument given must be an I/O 
destination atom. The parameter value must be an 
integer atom which represents the modifier vord to be 
used in all subsequent I/O operations invol~inq the file 
(that is, until this parameter is changed). See the MTS 
Manual~ Volume 3, for a description of the siqnific~nce 
of modifier values. The initial value oi this parameter 
for all files is o. 

2. Type II STATUS Codes 

These STATUS functions access System switches. 

Code Meaning 

17 

18 

20 

Bytes of freespace currently allocated. 

Number of bytes currently allocated to stack. 
only) • 

(Get 

System standard 
dotted pair of 
SCARDS. 

input IOARG. Initially set to the 
the system input buffer (size 255) and 

21 Syst~m standard output IOARG. Initially set to the 
dotted- pair of the system output buffer (size 70) and 
SPRINT. 

22 System error input IOARG. Used in BREAK loops in place 
of standard input IOARG. Initially sat to the dotted­
pair of the system error input buffer (size 255) and 
GUSER. 

23 System error output IOARG. Used in BREAK loops in place 
of standard output IOARG. Intially se~ to the dotted­
pair of the system error output buffer (size 70) and 
SERCOI1. 

24 Input num.ber base (10, 16, or 0). 
numerics. Initially 10. 

o 'signifies no 

25 Output number base (10 or 16) •. Initially 10. 

26 Number of levels of 
backtrace. (0 = none, 
Default is 3. 

forms to 
-1 = all). 

print on EVAL form 

The STATUS Function 
I 

I 
_____ ------'-~LJ~-



27 

Lisp/MTS 
Special System Functions 

Trace-back argument switch. 0= prin~ 

specifications on EVAL form trace-back. 
function specifications and argument list. 

80 

only function 
)0 = print 
Initially 1. 

28 Most recent expression which generated an error. (Get 
only) • 

29 Error number of most recent error. (Get only) • 

30 Onlf one line of each backtrace form is printed. 

31 

32 

33 

34 

Global switch for echoing input lines on *MSINK*. 
echo, NIL = do not echo. Initially NIL. 

System message switch. 
o = no mssages. 
1 = Print Garbage Collector messages. 
2 = Print Checkpoint message. 
4 = print function redefinition messages 
default = 7. (print all) 

Batch/Terminal switch. 
4 = batch 
o = interactive. 

Interrupt trap switch. Initially 0 (all traps on). 
1 = Disable program interrupt trap. 
2 = Disable attention interrupt trap. 
3 = Disable both. 

T = 

35 Value of STEP counter. 

36 Value of GENSYM counter. 

37 Initialization call for TIME (Set form only). 
Automatically initialized at the start oi each run. 

38 CPU time used, reiative to previous initialization. 
(Milliseconds, get only). 

39 Elapsed time, relative to previous initialization. 
(Milliseconds, get only). 

40 supervisor state time, relative to init.ialization. 
(Timer units, get only). 

41 Problem state time, relative to initialization. 
units, get only). 

(Timer 

42 Time of day. Returns literal atom: AA:BB:CC, where lA = 
hour, BB = minutes, CC = Seconds. (Get only). Note: 
The atom returned is not on the OBJECT LIST. 

The STATUS Function 

-

3. 

,COL 

SO 

num 

lit 
cOJ.. 

mu 
of 
tha 

th ... 
ev 



Lisp/MTS 81 

Special System Functions 

43 Date. Returns a literal atom of the form 
"MMK DD, YXYY", where MMM = month. DD = day, YIYY = 
year. (Get only). The atom is not put on the OBLIST. 

44 CHECKPOINT restore switch. 0 = exit after CHECKPOINT. 
1 = automatic RESTORE after CHECKPOINT. Initially 1. 

45 Function record switch. 1 = save list of all functions 
on atom *FNS*. a = don't. Default is o. 

46 ID. Returns the user's ID as a literal atom (get only). 
The atom is not pat on the OBLIST. 

3. Direct Core Modification 

This special STATUS code permits the user to alter up to 7 
consecutive bytes of core to any value. Obviously, the user does 
so at his own risk. 

A1 must be an atom, whose VALUE is a numeric "atom. 
number is the first address which will be modifi~d. 

That 

A2 is an I/O destin~tion atom, whose associated buffer or a 
literal atom whose PNAME contains the data to be inserted in 
core, starting at address A. The first character in the PNAME 
must be the character X. It must be followed by an even number 
of hexadecimal digits, up to a maximum of 14, representing half 
that number of bytes to be modified. 

EX: (SETQ MODA (ADDRESS t ZAP» 
{STATUS (0 MODA TBUF» 

If the buffer TBUF contains the characters 100000000, then 
the VALUE of the atom ZAP would be destroyed. An attempt to 
e~aluate (CAR ZAP) would generate a program interrupt. 

The STATUS Function 

II 
11 

1\ 
i 



• 

Lisp/MTS 
special System Functions 

82 

This section is included only to mention that there is a 
garbage collection routine in the LISP system which is activated 
when a job runs out of space to create new LISP scructures.. The 
garbage collector releases space which is occupied by 
unreferenced structures, alloca~es more space if necessary 
(controlled by STATUS Codes 33 and 34), and prompts the user if 
the maximum allowable space is exhausted. 

The user may optionally receive a message at tha end of each 
garbage collection indicating the type of collection that 
occurred (relevant to the programmer but not the user), the 
number of LISP cells "collected", the amount of additional space 
allocated, and the current_depth of the stack. 

It should be noted that attention interrupts which occur 
during a garbage collection are deferred until immediately after 
the garbage collection is completed. 

1 • (R ECLA If1) 
This function forces a garbage collection to occur 

and returns as value the number of cells collected. 

1. (CHECKPOINT FILE <5» 

2.· (RESTORE FILE) 
CHECKPOINT and RESTORE allow the user to save a 

"snapshot" of his current system, and restore the same 
system at a later time. A CHECKPOINTed system takes up 
less space on disk, and requires considera.oly less time 
to load than a LISP system stored in source (S-
expression) form. 

(CHECKPOINT A) saves the current system in the MTS 
file A. The file must be sequential or CHECKPOINT will· 
generate an error. 

(RESTORE A) restores the LISP system previously 
saved by CHECKPOINT in MTS file A. 

(CHECKPOINT A S) Ch9ckpoints only the LISP 
structure S. On RESTORE of the file A, the system will 
be augmented by structure S. Any atoms which have the 

CHECKPOINT and RESTORE 

re 

wh 
In 
in 
pr 

No 

No-

No 



• 

Lisp/MTS 83 
Special System -Functions 

same PNAME_ as an atom which is part of S will be REMOBed 
an~ replaced with the CHECKPOINTed atom. 

********NOTE: The arguments to CHECKPOINT and 
RESTORE are NOT IOARGs. They are honest to goodness 
file names. The user should not attempt to OPEN a file 
for the purpose of CHECKPOINT and RESTORE. 

At the present time, a call to CHECKPOINT may occur at any 
level of LISP, howev9r a RESTORE of the &n!iti §I§l~m al~ays 
returns to the top level. 

When CHECKPOINT terminates~ a message is printed on *MSINK* 
which informs the user of the pages of core used by his program. 
In adition, (CHECKPOINT A), which destroys freespace, immediately 
initiates a RESTORE of the system. STATUS 4~ may ba used to 
prevent this RESTORE. 

Neither CHECKPOINT nor RESTORE evaluates its arguments. 
Note -- On the RESTORE of a specific structure S, it may happen 

that an atom A occurs in the structure being Restored, and 
. ther~ is already an atom A on the OBLIST. Both the VALUE and 

property List of A will be set to the value they had at the 
time the CHECKPOINT was done; the current values disappear. 
The user can reverse this effect by setting the PLIST of the 
atom to *UNDEF* before the CHECKPOINT. In this situation, the 
RESTOREd atom A will reference the current atom A and the 
VALUE afid Property List will ]Q~ be changed. 

Note After a total system CHECKPOINT file is Restored, the 
system will begin reading from the current input buffer 
(LISPIN). If the user wants some initialization performed 
after a RESTORE, he can CHECKPOINT the initialization form 
into his file by putting it on the same input line. 

e.-g. (CHECKPOINT MY-FILE) (REINIT) 

Note -- A COlI to CHECKPOINT with a specific structu~e S will not 
do an automatic RESTORE, but will always terminate execution. 

Note -- Two attention interrupts occurinq durinq a CHECKPOINT or 
RESTORE will cause an immediate return to MTS. Use a SRESTART 
to continue. 

Note -- The user should be aware that if LISP I./O units have been 
modified before a CHECKPOINT is performed, they will be in 
effect after the RESTORE. 

CHECKPOINT and RESTORE 



1. 

Lisp/MTS 84 
Spacial System Functions 

(LTR SSW) 
The LTR function, tha product of a uiabolical mind, 

should never be used by anyone. It may be invoked any 
time the LISP system is doing an iterated EVAL through a 
list of S-expressions, in particular, durinq a LAMBDA, a 
PROG, or the "51 • SN" portion of d COND; and 
also during evaluation of a sequences of arguments to be" 
passed to a function. Its purpose is to allow 
conditional evaluation of arguments. 

S is the value to be returned from LTR. 

SW is a switch which determines what will happen to 
the rest of th~ forms in the list, which would be 
iteratively evaluated if the LTR were not present. 
SW = NIL - don't evaluate any more forms. S is 
effectively the last value in the list. 
SW = T - continue normally through the list. 
sw = anything else - in this case SW must be ~ new 
of forms, which will be substituted for the rest of 
original list, and evaluation will continue. 

Ex: (REM (RE-AD) (LTR (READ) Xl (READ)) 

then 

list 
the 

If X is NIL, then the effect of this is (REM (READ) 
(READ» If X is T, then the effect of this is (REM 
(READ) (READ) (READ» If X is (S) then the effect of 
t his is (RE M (BE AD) (READ) S) 

LTR stands for "list terminate or re-direct". 

Miscellaneous Functions 

aj 

p: 
s: 
fc 

L: 
a ~: 

w:.. 
s~ 

C:c 

w:.. 
s .... 
h: 
de 

ac 

ar 
nc 

a~ 

do:: 

S:.: 
RP 
NC 
PC 

c 
eh 



Lisp/MTS 85 
Special System Functions 

LISP/MTS incorporates a simple mechanism for creating and 
altering data structures "hypothetically", for backing up to a 
previous state of the data structures, and for maintaininq 
several alternative structures at once and switching back and 
forth among them. 

This mechanism, called the Transport System, is useful for 
LISP implementations of problem solving, game playing, "and 
automatic programming algorithms. 

If we consider the state of all LISP structures at a 
particular moment to be a possible world, then the Transport 
System allows the user to obtain a "ticket" which will return him 
to that world at a later time. 

within the Transport system, there is always one unique 
world which has the status of Reality. This is the state of LISP 
structures before any "hypothetical" changes have been made. We 
can picture a system of hypothetical worlds as a tree structure, 
with Reality at the root. World A dominates World Boif the user 
started in World A and, by making various hypothetical chanqes in 
his data structures, reached world B. Thus, all worlds are 
dominated by Reality. 

The tickets which are created by the Transport System are 
actually lists of alterations of LISP structure. When the user 
returns to a dominating world, the ~lterations he has performed 
~ra un-done, or reversed. If be returns to a world which does 
not dominate the world he is currently in, alterations are 
reversed until the closest common dominating world is reached, 
and then the alterations which were performed to qet to the 
dBsired world are repeated. 

oThe following "undoable" functions exist: 

SETQ2, SET2, SETA2 
RPLACA2, RPLACD2, UNCONS2 
NCONC2, DELQ2, DELETE2 
PUT2, REM2, PUTPBOP2, ADDPROP2 

These functions behave exactly like their non-undoable 
counterparts, but also save the information neces~ary to undo the 
changes they make. 

Undoable Functions - the Transport System 



Lisp/fiTS 86 
special System Functions 

1. (NEWWORLD «T,NIL») 
The NEWWORLD function has three uses. (NEwWORLD) 

returns a ticket to the current state of LISP structure. 
By calling NEWWORLD, a state becomes a reachable world 
in the Transport System. 

EX: (SETQ EARTH (NEWWORLD) 

SAVES THE TICKET AS THE VALUE OF EARTH. 

(NEWWORLD T) returns a ticket to Reality. This is 
provided in case the user wishes to return to Reality, 
but has not saved a ticket to qet there. 

(NEWWORLD NIL) returns a ticket 'to 'the closest 
reachable world which dominates the current state. 

Note: NEWWORLD does not cause a transfer to any 
other world. Its purpose is to create tickets. 

2. (GETWORLD S) 
The GETWORLD function performs the transportation in 

the system. Its arg~ment must be a valid ticket (Error 
39 will be generated if not), and it causes a transfer 
to the world identified by that ticket. 

EX: (GETWORLD EARTH) 

3. (REA.LWORLD) 
REALWORLD, the most amazing function of all, takes 

the current state of LISP structure, and causes it to 
become Reality. What was once Reality is now lost 
forever, and all previously created tickets will no 
longer be valid. 

Undoable Functions - the Transport System 

. • • 
Arr 
Ato 
Buf 
Bur 
Bug 
Dir 
End 
Err 
Er 
Ev 
EX 
Ex 
Fi 

Pr 
Pr 
R€ 
SU 

Tr 
Un 
Va 
AB 
A 
A~ 
AD 
AD 
AD 
AN 
AI? 
All 
AE 
AE 
AI 
A~ 

A~ 

A~ 

Bl 
C] 



, 

. 
• . ..... . ........ . . .... 

Lisp/MTS 
Ind9x 

. ........................... . 

87 

Array •••••••••••••••••••• ••••••••••••••• ·a ••••••• 

.6-7,9 

..4,49 
A ~-om ••••• • ••••••• 
Buffer · ...... . 
Buffer Overflow •••• 

• • • • • • • • • ••••••••••••••••••••••••••••••• -•• 2 
• • • • • • • •••••••••••••••••••••••••••• 4,53 
••••••••••••••••••••••••••••••••••••••••••• 56 

Bug •••••••••••••••••••••••••••• •••••••••••••••••••••••••• 45,47 
• ••• • ••••••••••••••••••••••••••••••••• 81 

••••••••••••••••••••••••••••••••••••••••••• 56 
Direct Core Modification 
End Of File •••••••• 
Error Codes •••••••• .................................................. .72 
Errors •••• ~ •••••••• ••••••••••••••••••••••••••••••••••••••••••• 65 
Eval ••• · ...... . · ........................................... . • • 7 
EXPR ................................................. • • • •••• 45 

• •••• 50 
• •••••••••••••••••••••••••• 54 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • 50 

· ..................................... . External ••••• 
File ••••• 
Fortran 
FSUBR •• 

.......................... 
• ••••• · ................................... . ••••• 45 

Garbage Collector ..................................... ••••••••• 82 
Ioarg · ...... . · ...... . • • • • • • • • • • • • •• • • •• • • • • • • • • • •• • • 53 
Ioda ••••• 
NSUBR •••• 

· ................. . • •••••••••••••••••••••••••••••• 53 
••••••••••••••••••••••••••••••••••••••••••••••••••• 45 

Parameter List ................................................. •• 5 
•• 2 Pname · ..... ........................................... 

Prefix ••••••••• · ....... . . ................................. . 
Printmacro ••••••••••••••••••••• ............................ .55 

.. 57 
property List •••• •••••••••••••••••••••••••••••••••••••••••• ..4 
R~admacro · . · .. .....................•.................. 
SUBR ••••••••••••••.• . ~ ....................................... . 
Transport System ••••••••• . ........................... . 

• 57 
.45 
• 85 
.85 Undoable Functions ••• . . .................................. 

Val ue •••••• 
ABS •••• · ... 
ADD •••••••••••• 
ADD PROP 
ADDPROP2 ••••• 
ADDRESS •••••••• 

· . 
· . 

· . • ••••••••••••••••••••••••••••••• ..3 · ............. . • ............................ 27 
• •••••••••••••••••••••••••••••••••••••••••• 28 
............................................ 24 
••••••••••••••••••••••••••••••••••••••••••• 85 

• •••••••••••••••••••••••••••••••••••••••• 28 
ADD1 ••• 
AND •• 

..................................................... .27 . . . . . . . . 
APPEND ......... . 
APPEND1 · . 
APPLY •••••••••• · . 
APPLY1 ••• 
ARG 
ASSOC •••• 
ASSQ ••••• 
ATOM ••••• 
BREAK •••• 
CAR ........ . 

· . · . .. . . . · . 
.. ..... . 

· . · ..... . ... 

· .. • .. • • • • • • • • • • • • • • • • ' .................... 35 . ................................... . .15-16 
••••••••••••••••••••••••••••••••••••••••• 15 
• •••••••••••••••••••••••••••••••••••••••• 31 

· ... • •••••• 32 
• •••••••••••••••••••••••••••••••••• 42 

. ... . ............ . 
• •••• 13 

• •••••••••••••••••••••••••••••••••••••••••• 13 
. ................... . . . . . . . 
.. . . . • ............................. 10 

• ............................................ 66 
.. ............................................ 12 



CDR ................ 
CHECKPOINT ••••••••• 

Lisp/MTS 
Index 

88 

· . •••••••••••••••••••••••••••••••••••••• 12 .................. • •••••••••••••••••••• 82 
CLOSE 
COND 
CONS 
COpy ••• 
C 

· .......................... . • ............................. 61 · .... 
· . · . 
• ••••••• 

R · ... 
DEFINE ••••••••••••• 
DEFPROP •••••••• 

· ..... · . . . . . . . .. . . . . . .. ••••••••••••••••••••••••• 36 
••••••••••••••••••••••••• 15 · .......................... . • •••••••• 16 . ...... · ..... · .............. . .13 · . . . . . . . · ................. . • •••• 46 ..................................... • •••• 24 

DEFUN 
DELETE 

............... ' ............................................. . .46 · .... .. . .. . .. . . . . . · . . . · .. .. . . · . ••••• 22 · ........................................................... . .85 DELETE2 
DELQ ••• 
DELQ2 
DIFFERENCE 
DISPLAY •• 
DIVIDE 

• •••• 23 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 85 

· .... · .... · ..... · . . . . 

DO ••••• 
D3EVERSE 
DSUBST 
DUMP 
EOF •••• 
EQ 
EQNAME 
EQUAL 
ERR •• 
EVAL 
EVENP 
EVLIS 
EXCLUDE 

· ... .4. . . . . . . . · ...... . .. . .. · ..... · ..................................... . •••••• 28 
••••••• 69 

. ••••• 28 
• •••• 31 

· ...... · ................ . · .. . ....... . · ....... · . . . . . . . . . · ..................... . · . . . . . . . . . . · ....... . .16 ............. .. ............... . ••••• 17 · ........ . ••••••••••••••••••••••••••••••••••••••••• 67 
••••••••••• ~ ••••••••••••••••••••••••••••••• ~ ••••••• 61 · ................... . .............. • ••• 10 

.. . . . · ........................ . · . • ..... 11 .................. ,. ............. . • •••••••. 4 ••••••• • •••• 10 · ............ . · ...... . · ..... ••••••••••••••••• 70· . . . . . . . . . . . . . . • •••• 29 · .......... . · ...... · . · ................ ,. .. ,. . . . ••••• 26 · ...... . · .... . . . . · .................. . • •••••••••• 15 

· . . . . .. . . . · . . . . . . . . . . . . . .. • •• ·e • • •••• 19 
• •••• 19 

• •••••••••••••••••••••••••••••••••••••••••••••••••••••• 18 
EXCLUDEQ ....... . .. . . . . . . · ............. . · . 
EXPLODE 

· .. · .......................... . · . . .. . •• 1 q. FIND ••••• 
FIX •••• · . . . · .. ' ....................... . . .............. . • •••• 27 
FLAMBDA •••••••• 
FLOAT · ........ . 
GENSYM ••••••• 
GET 
GETFN 
GETL 

· ... 
· . 

· . · ...... . • •••••••••••••••••••••••••••••• 43 · ...................... . ............. • •••• 27 · ............................... . . ....... . 17 
• •••••••• 24 

• •••••••••••••••••••••••••••••••••••••••••• 25 
· . . . . . . . . . . .. · .............. . 

· ....... . · . . . ••••••••••••••••••••• 25 
• •••• 86 

• • • • • • • • • • • • • • • •• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 
GETWORLD ••••••• · . · ..... . . . . . · .............. . 
GO 

· . GREATERP 
INTERSECT •••••• 
I NTERSECTQ ••• · . 

• • • • • • • • • • • • • • • • • • • e • • • ........... •••• 26 
• •••••••••••••••••••••••••••.••••••••••••••• 19 · . ~ . . . . . . . . . • •••••••••••••••••••••••••••• 19 

LABEL 
LAMBDA ••• 

· ................. . • • • • • •••••••••••••••••••••••• 44 
• •••••••••••••••••••••• 41 · . .. . . . . . . . . . 

'LAND ••••• .4 •••••••••••••••••••••• · ............. . • •••• 28 
LAST 
LDIFF 

••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14 · ..... · ........ . • •••••••••••••••••••••••••••••• 18 
• ••••••••••••••••••• 27 

LESSP ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 26 
LIS~ •••••••••••••••••••••••••••••••••••••••••••••••••••• 15 
LISTP ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 

LENGTH ••••••••• · ..... · . · . . .. . . . 



LOR •••••••••••••• 
LTR · ...... ' .. . .'. 

Lisp/M'rs 
Index 

· ...... . · ................................ . · ................ . . .................... . 
LXOR ••••• .................................................. 

· . · . . ........................................ . 
•••••••••••••••••••••••••••••••••••••••••••••••••• 

MAP 
MAPC 
MAPCAN 
MAPCAR 

. . . . .. . · . · . . . . . . . . . . . . ............................. . ............................................................ .... MAPCON ••••••• 
MAPlIST •••••••••••• 

· . . . . . . .. . . . . . . . . . . . . . . . · .......... . · ........................................... . 

89 

.29 

.84 

.29 

.. 32 

.32 

.33 

.32, 

.33 

.32 
11APOB 
MAX 
MEMBER 

· ........................................................ . .... °.34 · .......................................................... . ....................................................... . ...... .27 
• 13 
.13 
.20 
.28 
.27 
.26 
.17 
.70 

MEMQ ••••••• · ............................................... . 
MERGE •• · .......... . · ...... . · .......... ' ..................... . 
MIN •••• •••••••••••••••••••••••••••••••••••••••••••••••••••• 
HI NU S •••••••••••• · ..... • • . . . . . .. . .. · .............. . 
MINUSP ....................................................... 
MKATOM ••••••••• .............. · ... . ........ . . ....... . 
MODIFY .......................................... ~ ........ . 
M'rs •••• · ....................................... . ••••••• 8,39 
NeONC •• •••••••••• ••••••••••••••••••••••••••••••••••••••••••• 23 
NCONC2 ••••••• • •••••••••••••••••••••••••••••••••••••••••••• 85 · ........................................................ . NEQ 
NEWWORLD 
NLA~BDA 

.11 
~ 86 ......... · ....................................... . 

•••••••• ••••••••••••••••••••••••••••••••••••••••••••••• 43 
NOT 
NTH 

· ......................................................... . .10 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •• 14 

NULL ••• 
NUMBERP 
OBLIST 

••••••••••••••••••••••• ~ ••••••••••••••••••••••••••• 10 ...................... • •••••••••••••••••••••••••••••• 11 · . . . . . . . . . · . • ............................ 34 
OPEN ••••••••••••••• ................................... • ••••• 60 
OR ••• .... .............................. . ... .35 
PLEN • • • • • • • • • • • • • • • •• • • • • • • • • • • .. • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • 27 . .... · ................................ . .23 fLUS .' •••••• 
PRINT •••••••••• 
P RI N 1 ........... .. 
PROG 
PROGN •• 
PUT 

••••••••••••• 62 
••••••••••••••••••• 62 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 29 

. .......................... . · ..... · .... 
· ..... . .... . ..... ••••••••••••••••••••••••••••• 31 

PUTL ••••••••• . . 
PUTOB •••••••••••• 
PUTPROP2 ••••••••••• 
PUT2 ••• 
QUOTE 

.. . . . . . . . . . . . . . . .... 

111 ........ . . ............ . · ... · . .. . . . . . . . . . . . . . · . . . .. . 
· ............ . .23 

• ...... '24 
• •••••••••••••••• 34 · . . . . . . . . . · ........... . • •••••• 85 · .......... . . .............. . • ......... 85 

..................................... . .. ..9 
READ ••••••••••• 
READCH ••••••• 
READLINE ••••••••• 

.............•........•............... • •••• 61 

REALWORLD •••• 
RECLAIM 
REM 
REMAIN 
REMOB 
REMOVE 
REM2 

· ... 

. . . . . 
· . 

. . .. · .......... . · .............. . • .' ••• 61 
• ••••• 62 

•• ••••••••••••••••••••••••••••••••••••••••••• 86 
• •••••••••••••••••••••••••••••••••••••••••••• 82 

· . . . . . . . . . . .. · ........... , .... . . .. 

· . . . . . . . . ......... • •••• 26 · ...... . · .............. . .. .. • •••• • 28 · ...... . . . . . . . . . . . . .. . · . .34 · ..... .......... ••••••••••••••••••••••••••••••• 22 · ...... . .................................. • .85 



REPEAT 

Lisp/MTS 
Index 

90 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 31 
..................................................•....... RES 

RESTORE 
RETURN 

.71 
••••••••••••••••••••••••••••••••••••••••••••••••••••••• 82 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 30 
REVERSE •••••• • ••••• ••••• • ••••••••••••••••••••••••••••••••••• 16 .. .. . . .. . .............•...........•......... ••••• 22 

• •••••••••••••••••••••••••••••• 85 
••••••••••••••• ••••• •••• • ••••••••••••••••••••••••••••••• 22 

RPLACA 
RPLACA2 •••• . . .......... 
RPLACD 
RPLACD2 
SELECT 
SELECTQ 

•••••••• •• • •• • ••••••••••••••••••••••••••••••••••••••• 85 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 37" 

• • • • • • • • • •• • • • • • ••• • ••••••••••••••••••••••••••••• 37 
SET •••••••••••••• ••••••••••••••••••••••••••••••••••••••••••• 20 
SETA 
SETA2 
SETQ 

• •••• 21 
•••••••••••••••••••••••••.•••••••••••••••••••••••••••••••• 85 

· ..... • • • • • • .................................... 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••• .21 

••••••••••••••••••••••••••••••••••••••••••••••••••• 85 
••••••••••••••••••••••••••••••••••••••••••••••• 85 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 28 

S ETQ2 •••• 
SET2 
SHIFT 
SKIP 

· ... 
· ............... . 

SORT ••• .. . . . . . . . . · . . . . . . . . . . . •••••••••••••••••••••• ~ •••••• 63 
• •••••••••••••••••••••••••••• 20 

SORTP 
STATUS 

•• ••••••••••••••••••••••••••••••••••••••••••••••••••••• 11 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 75 

STEP ••••••••• ••••••••••••••••••••••••••••••••••••••••••• 72 
••••••••••••••••••••••••••••••••••••••••••••••••••• 8,40 
••••••••••••••••••••••••••••••••••••••••••••••••••••• 28 

STOP' ••• 
SUB •• 
SUB1 ......................................................... .27 
TAB 
TAILP 

• • •• • • • • • •• • • 63 
• • ' ••••••••••••••••••••••••••••••••••••••••••••••••••••.••• 12 

· ................... . ........ 
TERPRI ••••••••• .. .. . . . . . . . . . . . ....................... . .63 
TIME 
TIMER 
TIMES 

. . . · ..... ...... ••••••••••••••••••••••••••••••••••••• 39 · ... · .............. . ......... • •••••••••••••••• 38 
• •••••••••••••••••••••••••••••••••••••••••• 28 

• •••••••••••••••••••••••••••••••••••••••••••• 71 
••••••••• ••••••••••••••••••••••••••••••••••••••••••••••• 21 
••••••••••••••••••••••••••••••••••••••••••••••••••••••• 85 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12 

. . ........ 
TRACE 
UNCONS 
UNCONS2 
UN.DEFP 
ONEiAL 
UNION 

· ...... . 

· ..... 
U NIONQ ••••••••• 

· ...................... . ......... ••••• 68 
· . . . . . . . . . . . . . . ••• 4 .•••••• 18 
• •••••••••••••••••••••••••••••••••••••••••• 19 

UNTIL 
UNTRACE 

· ..... • •••••••••••••••••••••••••••••••••••••••••••• 40 
• •••••••••••••••••••••••••••••••••••••••••••••••••••••• 71 

W HI L E •••••••• 
ZEROP •••••••••• 

••••••••••••••••••••••••••••••••••••••••••••••• 40 . .............•................. • •••••• 26 


	Table of Contents

	I Introduction

	II The LISP Language

	III Running the LISP Interpreter

	IV Basic LISP Functions

	V Function Definition

	VI Input Output

	VII Error and Debugging Functions

	VIII Special System Functions

	IX Index




