User's Guids

}September 1974

S

Department of Computer Science

UNIVERSITY OF BRITISH COLUMBIA

07-23-76

el (o &QQ
j&r NS \,\)%.,Q,CG X Dol)r-f Ce ()\»«u(’,,.(.

5

pmcjones
Sticky Note
Page 49 is missing.

I.
IT.

IIT.

Iv.

A

B.
C.
D.

A.

Lisp/MTS
Table of Contents

Table of Contzanis

Introduction ® 9 8 & & 0 9% e ..’......0‘.‘.0...0‘0‘0..‘.0.1
The LISP Langnage l'I.O‘.O’...O".‘0‘.0..‘.0..00.‘."2
Atoms, Buffers, ANG AITAYS esosesesccsssnscsncossnscsl

1.
2.
3.
q,
5.
6‘
7.

PNAME Of An Atom .QQ‘O.“OCQQQO.......'I.'l‘lz.

Types Of ALtOMS teverescsccansscnscsosacsennensal
Valu2 Of AN ALOM eescevevscccavssssansssansssss3
SPeCial AtORS ensecsesscsscacasssncsscasscanasl
Property LiStS ceececccccscesnssnacascacssssslh

Buffers'C..‘......‘.O.'.‘.".‘C...,..O'q

Arrays ...C’.."‘QO..O‘C..‘.‘..O."....."..Oia

Running The LISP INterPIreter eeecescsssssccsscsncesssad
The PAR= Run Field ..'Q."..t‘l...."‘..'..‘.".‘is
INPut TO LISP cececcacvoncscsnanssssssennsrsnasansaanDd
Operation Of EVAL (eeesceceacccscasscasssscsscsnnnsnens?/
Output And Tormination ecieeesecsceacssccsssccascaased

Basic LISP FUNCTIONS ceevscesnvesnccsocsccsnsnnosaansd

1.

GOTE 9
Q tl LR B 2 B BE BN BE N L BN B BE B IR I Y R NN BL BE BN N BE BN JL NE B BE B NE BE BE Y BE BE B BN B 4

Basic LISP Predicates ."’...0".’...‘.’0.0.'..“.10

10
20
3.
4,
5.
6.
70
80
9.
10.
1.
12.
List
1.
2.
3.
4,
5.
6.
7.
8.
9.
10.

ATOﬂ oOcoooooc»-aao-..ooo¢.-0003¢¢0..qcoaooa-10
NOT ooo.to-ooc‘ooooo.ooooo..:-.oc.paoooa'c-:o10
NULL o.noco.o'o--n--ooo.o...-caa'aoﬂoo-..-.'-1o
EQUAL 'oocoo'.c.oﬁconoo.oo-oaonco.ﬁosoooooo.o?O
EQ ...-...........;-..'..-.-a.'-........~..-.10
NEQ evecsccecasesecancsoscsanscssscsnssssssncsccell
EQNAME cececacocnsassssvoconccocscanscnssssnss il
NOMBERP cesveveescccoscansanscosvocsscncanonell
SORTP seeecsssvscccccconcescssssscocsocssensnecse 11
LISTP o.o--iobotooo-..o.-.-.o.-oc-..-c;.ctco.11
UNDEFP oao.onooio-o-.oooOooo¢ooov.oo:¢o¢¢o¢--12

TAILP Q.‘.‘...O‘.‘.’.'Q‘."...".’.‘0.......‘12

Searching Op2rationNsS seeececcvrcecccsccnsesoas 12

CAR ...Q.‘..."...-"..'.OC"‘O.."...Q.....“12

CDR LR ‘00...-..0......‘.“.0.....0‘....‘.,.'.‘12
c - - - R P B B S S 4V 0.0 B PSP PGS SN S OU TS OB VeSS e 13
HEMBER 2 5 5 99 40 9B NS S Oe 0000.000‘000060000'0.13
MEMO ¢ ecescescacsncsscasssenssnnacssanscssssasss 13
ASSOC .C"..‘Q..'....‘t.‘....t‘..Q..O'.'."-'13
ASSQ L AR BN B B R 2R 2B BN BE B BL BE BN BE IR IR A BB 2N BL BN BN B BE K B BN 2R A BN 20 2 2N IR 2 R SN I J 13

FIND .;.l..00.'...'....0..0.30.000000001000'0‘11‘

NTH .C...‘...0...".“0.‘.OC““'.“"‘.“.‘.1&

LAST '.Q.Q........‘.“...’."Q.‘..“.l‘.".'.‘u

Functions That Create New LISP StTUCLULES .eecseess 1D

1.
2.
3.
4,
5.
6.

CONS .'..Q..o‘o.o....‘o.o'c.0100.0100‘000001015
LIST 0.-n.a....oo."o'.-.n.l.tct..0'....0....15
BVLIS 00‘.ncot.(o.o‘!o“00000‘0..0.'0-."000.15

APPEND Q.O.'..‘..I‘....-I.......-.'.O..l..l'.15
APPEND1 ootoo“o.ooncn.o00.000“..00'0""0'015

APPEND* ..Q'tt.v‘!..oﬂco...'0."".0'0Q000'0'16

7.

8.

9.
10.
1.
12.
13.
14,
15.
16.
17.
18.
19.
20.
21,
22.

Functions That Modify Existing LISP Structures ...20
' 1 -

2.
_30
4.
5.
6.
7.
8-
9.
10.

Lisp/MTS
Table of Contents

REVERSE .‘.0'..‘.O.IOQ...Q"‘O.O..‘.OO0.".‘0‘16
DREVEBSE LR N BN BN R BN BL BN B B B B BE B R B B BE R B BN I BN B BN IE R BN EE B NP WY I B BN) 16
COPY * .0."..............."......0‘.0."'.’.16
DSUBST L B IR 2R B AR R 2L K IR BN I IR BE B BN BN BN BE BE BN I BN BE AP 00000‘1'017
GENSYH Q’.’....CI............."..00000000000.17
MKATOM LR 2R BN B IY AR BN 20 B IR B IR BN 2R BE IN B BE BE AR BE BN AR JX BN BN BF I N BF B 3 N WP B R) 17
EXPLODE cevvevsconcsocsccsssencsssnsssasscansnsa B
LDIFF LR B AR 2R IR A 2L B Bk B0 BN BN b b DR U I BE BL B R BN BN I BN BE IR BN B BN BE JL AR BN BE NN B 3 18

UNION .'..‘C".’....OQOO.l‘."‘.!'......’...‘18

. UNIONQ 0‘Ct.‘..t.l’ol’...oo...I..I.Ql‘."..'419

INTERSECT L0 B B AR BE B BE B BE BE IR IR BL R BE BN R Y BN BN N J C‘.CQC.‘..O".19
INTERSECTQ LR BN B B B AR K IR BN BE B BN BE R B BE BN BE BN IR BN BE B I B B R B R BN B K R) 19
EXCLUDE AR L IR BN L 2R 2R BE 2 IR JE IR BL AR IR 2R 2N B IR BN BY BN IL B IR BE IE B B AR B BN BN JE BRI 3 19
EXCLUDEQ etevevsvsssacescsacsancocsssosnccsesss 19

SOBT ..0'..0..‘."‘-.""0".’.".'0.0""”..20

MERGE 'I..Il.I'l............0'.’....‘....'.'.20

SET .a0--aao.i..l'...--...l..'.o.o.l'oloo...020
SETQ .'..':Qc..co'ooc”o...oo‘.t.000....0‘-o021
SETA .".‘Q‘..l'.'.D.".I...Q.‘..'0100000000.21

UNCONS C“.'0....'40.0'...0.l.'.'..'."‘..‘..'21

RPLACA-.....-...............}..22
RPLACD 0.‘--..3‘:...06‘...."c..'.oooolo'o»..22
DELETE ...¢......'..........................-22
REMOVE’......‘...a..............'.....22
DELQ onov;cccoonoooooc-c-o.co‘-'---n.ocauoou023

NCONC Q..O‘.'..'I.O.Q“l.‘."lll...."'..‘l"2-3

Operations On Property LiStS ceeececssocsssssssssel3

1‘
2.
3.
4,
S.
6.
7.
8.

PUT 0.‘0.000.0....!.'l'l'.00.‘.0.0.'1'0'0.00023
PUTL 00:...00-00-oq.’o',oqooooo-otncoocosoooaza
DEFPROP‘...-.............-..o.-.ZQ
ADDPROP cvevossecsccscsescncscccssscsaccescssss
GET‘...‘..........--................2“
GETL.;.......-a......-..................-....25
GETFN-.........--.................25

REM 0-.......OO.....Q.."'DI..."Q.."‘O"..‘,ZG

Basic Numeric Predicates ssscecssssccsescscsescacalb

1.
2.
3.
4.
5.

GREATERP ‘Q‘l"‘.O.’...‘Q....O.Q'..l“‘.,.'"26

LESSP 8 5 B 95 0 04 3 08 PSSO SO E S AN S VS OSSOSO eS BB . 26
ZEROP B ® % 9 0B 5 9SS 9SS Ot S S S GOS8 DS C O NE eSS 26
EVENP ® 9 % 0 8 8 B & 06 0P 8T S e S S ST PGS B PSS PI SN e 26

HINUSP "’.‘.....0.."'.0..'..0'.0..0..‘..‘.0.26

Basic NumericC OpPeratiONS cscesceasccsscscccscscnacsesll

1.
2.
3.
u‘
5.
6.
7.
8.
9.
10.
11.

LENGTH .'.I..Q'...'O.C'.'..'.l'..‘..'...."'..27

PLEN 0‘00.'0-‘.'00.00‘...00.00‘0'00.0'000'.0027.

ADDT 4 eevvevoesscccsovssacssosscssancsasencnsoaascldl
SUB1 ...‘...l...‘..OO:IQ.“0.0".;......"....z?
MINUS ciseeconnescacsocscscssnssnosnnsssscsnocnsll
ABS tecvscosssosscssoccscnsoncscosssscssccsnscell
FIX ‘.QO‘O..’.OQ....Q.Q.O.CII...COCOQOQOQOO0.27
FLOAT ceceeoscacsesssnsesncncssasncsscasccascnssldl
MAX .C.OOOIQO.Q'O'O.‘.‘O""""'"..‘....000027
MIN teeceosocscsecssncssancsacocsensscsssssncasselb

PLUS .-‘0.00'0'40"0.'10o‘oto'..o.o’lo"l.-‘ltza

ii

V.

A.
B‘
C.
D.
E.
F.

Lisp/MTS
Table of Contents

12, DIFPERENCE ceveecececccoccansoosnnsssacccsnneaslB
13" TIﬂES ..0...‘.'..000..I.....'OO.Q.‘..'OOCI‘.QZe
14, DIVIDE +ovecscocasoaoncssoacaccosaseoanosasaess?B
150 REMAIN O.'0.'0‘l‘...0".'.0‘0.".0.0.'...000028
16' ADDRESS 00..0..‘0.........'000000000‘000100.028
17. SHIFT eeveesavescaccscnsssssesnoesosascacsanseelB

18. LANS .0..'0..0.’.."..Q'..."’.‘......’..-J....28
19. I‘OR 2 @ & 0 & 09 5 9 e e .Q.'.'0..0."....0.‘.'...'.0'29
20. LXOR i eveeccecsnessccesscscsnsoscsscssscosvsssssaeldd
CONtTO]l FUNCLIONS cteceonsnascscssoscccosacnccssccseeld
1. EVAL I.".'l'."..’..."'.."0..’...Q'CQ."“.ZQ
20 PROG - Q»OQ.C‘.0.0'.'...OO....l.....l..'."..'zg
3. RETURN 2 8 5 @ 9 4 0 30 0% &8 0B OO P O 9N O SN O .." * 98 5 @5 9 30
u' Go * 90 'O..Q..C...COO."....'..QQC."'..Q..’.Cao
S. PROGN ‘0.0..‘..‘.l."“.‘l..'....'..'...'...¢31
6. REPEAT 'Ol..."...'.."..""..‘.000010000.03031
7. DO teeesevosancscssccsancsssannancssessosonsasscssesl]
80 APPLY .‘...OOQOO'....-."00..‘.."..0.'000.0‘31
9. APPLY1 0.QQ"..'C'...Q‘.'O'.".‘Ql.‘..-QldIC'QBz
10. MA? .0.‘.'..'0..0'.'C.‘...".."..0000000000032
11. MAPT i eeeanconsovennncsssscsscsccoscescsossosnnscsssae32

12. MAPLIST 0]'...'.00.o‘..’00'.!0'.0"'0‘.0'00'..32
13. MAPCAR ot.'-.-oco..o.o...otoc...0.-0....-.-‘032

114' ﬂAPCON 0-0'000..too‘.’..c.-.:o...'..'....-.a033'

15. ﬂ.APCAN»"C'."‘O.Q.Q.‘.‘..."'......".".‘O033
OBJECT I‘ist Functions L B BB R B BN B B R B R 2R R B AN B N B BR BE BE BN I B B 1 33
1: OBLIST cnoo“-..onp.t...".o'o..l‘c.t.a‘l'lo'34

2. REHOB"'.OO.“.'.Q“..."‘.’0..'.‘...‘.‘.3“
3. PUTOB .;.....»............-..¢................34
4' MAPOB ..".'..Q."".l...i...‘.'.O.Q'....‘Q'O3u
Conditional FUNCLIONS seveeccsssessccsansscsassases3d
1. AND '..'..C'-..OC..0.......'0.’0.'0.'.....'0035
2. OR l.ll..."‘."‘.Q..."......ll...000.0.'0.'35
3' COND .l.'.‘...QCO"00."‘.'0‘.'..I..Ol'..ﬂ"036
a' SELECT 0.0".'000 LR C"......“..O"O‘...".00037
5. SELECTQ «cevsecasonscosascsenscavsocoscsncsssscscsesn3]
6' TIHER ..I.."O'.-ﬁ.."...“.Q‘.O.C..OICQ.'IOOO38
7. TIME v eceesevsasasacsscsccsecsncsnsccscssccscssnansenid
8" KTS 0.C.O.....Q.-..0.'..‘..".‘0.0.’.0“.’..0‘39
g, UNTIL ceeeceerecnccacessonnncssnsssscsssnsnssnsaslil
10‘ WHILE E IR L B B B B BN B B I BN BE BN BE BE B RE N IR BN BE I B B AR B B R B] .“.."'Cuo
11. STOP .."...‘.“.Q..Q'Q."C..'D.Il."‘...'.'lvuo

FunCtiOI‘. DefinitiOﬂ O.l"l.l.'.Q.'.‘.Q’QDQCQ..«O‘...‘.“1

Lanbda-EXPreSS1iONS ceseeseaseovssscsonsssnssoncsesosi]
NO-SPread LAMBDAS seveceosvscsssscscssscsssosnencnaeasld?
FLAMBDA And NLAMBDA EXPreSSiONS ceeeecsccecsacsceasli3
Named LAMBDA-expressions (LABEL-expressions)H44
Accessing Defined FUNCtIONS ceeceaccsnscesesnsnnsald
Defining New Functions INn LISP ciceecocescesacsasaeslhb

10 DEFUN Q'.O."Oﬁ'.‘.0...‘.'Q.‘....'.....Q‘.C..us
2. DEFINE ® 9 0 5% 9 5 0 W B O SO OO P B OSSO C S S Q.“b
i. BUGS oo.‘ooacao..'o.noccog....'t'ootﬂo-u-’

ii' Arrays ‘Q.'0...QO‘.QQQ...'.‘...O'QQ.Q‘.“9
iii, Calling External Routines From LISP ...50

iii

VI.
A.
B.

c.
D.

F.

G.
H.

VII.
A.
B.
C.

VIII.
A'

Lisp/MTS
Table of Contents

Input/o“tput OQ.'........'0....'....0.0‘I""....’.Osz

Defaﬂlt I/O Operations 0'..--.'.'O‘O...Q.’...’o.‘.osz
I/O Data Types.".“l.......‘....‘...'.‘QC".O'..‘SB

1. I/0C Destination ALOMS ececasscscccccscconsasesed3
20 Buffers ® 8 0 % O 65 2 8 2PV DU S P E O S S A S 9D O 20N .‘O 000_53
30 Files B 8 5 9 8 O 6 8 08 B O 5 S G S PO H SO D VS S B OO OB e Q....S“

Buffer And File PrefixX CharacterS ceccecesccsnscssedd
Buffer Overflow Interception sveveesesscscsscncesssedb
End"of"file PrOceSSing-...-'o.......-.SS
READMACRO And PRINTMACRO FUNCLiONS eceeesosnsccneaced?
1. Inm2diate READHACRO AtOMS cesecesssesconcassad?
2. Delayed READMACRO Atoms ‘..C"DD......Q..""SB
3. PRINTHMACRO BAtOMS e secesosvssccacescsoscsseosased8
4, The READMACRO Character CharacteristicC .eee..59
The FLAGS Argument Of I/0 FURCLiONS tessesvscaasaabdl
Input/Output Function DesSCriptiOnNsS seeescascecsessbl

1' OPEN ..."I.-".‘....'....O.‘."-"...0‘.'0'060
2' EOF ...OQ.'Q.-'...'.‘......I...‘.‘QC.".’.1.‘61
3. REBD cevesssesecncanasocccsasacsnsssacscsancesbl
u. READCH ’....'.0“‘0.0‘....0'.....".'.0".-"061
5. READLINE # 0 9 ¢ 5 0 8 VB B S S S D PO O PSS SB A eSS S 0062
6. PRINT 4uvsoovoscesccanscanssosssaacsscansonesb2
7- PRIN‘! l'i.....’."ll.."0."..'..‘.O.C...IQ‘!.62
8. TEBPRI .."'..".."...‘....‘.."‘.'...‘...‘..63
9. TAB .l.C‘-.""."."Ql.‘,..“....."’.0001'00063
10. SKIP "..-...I00.'.""'0.."..‘.0‘.'...0'-’..63

Error And Debugging FUNCLIiONS ceevevoccasssnesassnsasbd

Error Atoms, Forms, And EXPreSSiONS .cesessceesssasbd
System ErTOr IOARGS <sesessscasesecscscsscscsssasnsensbdb
ErrOr FURCLINNS tevensocncescsescsescssssanccnnsecsasbdb
1‘ BREAK '00‘.....‘.0.QO..".I’.‘.O..Q.O...0..“66

2. DHMP IQ"COOOOOO...l....'...“..'.‘.'0000000067

.3. UNEVAL 'O.....'Q.Q....."Q...‘.O..'.......0.’068

u. DISPLAY 'O’.Q.O‘C.....‘....0.'....0.“0000.0069
5‘ MODIFY ¢ S 0 9% 5625 S0 9SS W T E SO IO s ...QQC.O.70
60 ERR L 2 "C..O.’.l.QQ"O.‘.'Q‘.’..l""""'.‘!'?O
7. RES P9 99 8 0 9 5 2B S 09 0C SO eSO s ...‘..Q..'."...‘71
8' TRACE 'OQ.‘..'1......0"‘."......‘..'.......71

9. UNTRACE oo.ooooootoo.-o--o.ooc.o.co-'ocﬁoqo.a71

10‘ STEP Q0"..-000-000.0.0’..0!.'01'-..000.0..0072

Error Messages ..0..'..-.‘..’.0‘0..'...’..‘.‘..‘0072

Special System FUNCtiONS ceceavescoscsasssossnoncsseld

The STATUS FUNCLION esecencssonssssessccccsvessasnne lD
Te TYype I STATUS COACS ceceeccsscssnsossscsssssssseld
2. Type II STATUS Codes .‘OO..'O.l.'..'.".‘.'..$079
3. Direct Core ModificatiOBR seeececscscsscasssssB]
The Garbage Collector '.0'0...0""‘.'90000000000'82
1. RECLAIM "OQ'-’.Q"'#O.'."...O"Q'..O'O".OO_‘.82
CHECKPOINT And RESTORE eecececvnsenscecnccvscsvsansesnsse 82
1. CHECKPOINT cevesosnsmesescacscssncssnssssosssaess32
20 RESTORE ."Q0.0.0'.‘.1...".00.'..l"'...‘00‘82
Miscellaneous FPUNCLIONS cesvescvencscecsancsnsceeasl

1. LTR .'..'..1...."...l'...‘.....'...‘..0.0..'8“

Undoable Functions - The Transport SYSt2ill eseseeeses85

iv

1.
<.

3.
Index

Lisp/MTS
Table of Contents

NEWHORLD ool0‘.‘ot.nv-ttolOQOO;OOOOOQOOQQQOCOQQBS
GETWORLD -oo¢o-o.-.4-oooo'o-'tno-o---.oc.0.00086
REALWORLD ..l.l....".'.....;...'."QQ..C‘.‘O86

0-0O‘o.00'.00‘...0'..00...0..o.‘c.".."...t..87

Lisp/MTS o 1
Introduction

I. Introcduction

Welcome to the wonderful world of LISP/MTS. LISP 'is not
like any other programming language. It combines a very simple
syntactic structure with an extremely powerful and flexible
semantic structure, This combination of characteristics puts a

reat burden on the programmer to use the 1language carefully.
You should think of learning LISP as an adventure in the use of
computers, and an exercise in logical thinking. Although you may
have difficulty with the language at first, you will ©probably
£ind that once you are accustomed to LISP, other programming
languages will seem very cumbersome and restrictive. '

In designing LISP/MTS we have attempted to embody the
logical power of LISP in a 1language economrical enough to be
us2ful to many people., We have also addad many of the user
options, input/output capabilities, and de-bugging f=2aturess that
programmers expect to find in any programming language.

Throughout this manual, w2 have used mnemonics to rTepresent
LISP elements in concise representations of the formats of basic
LISP operations. A, A1, A2 represent atoms; N, N1, N2 Trepressant
numeric atoms; L, L1, L2 represent lists. S, S1, S2 represent
any LISP structure, LA, LA1, LA2 represent lists whose elements
are atoms; and FN, FN1, FN2 represent function specifications.
By ST « « « Sn we mean that any number of expressions of that
type may be given, by <S> we mean that an a2xpression of that type
is optional, and by <A, LA> we mean that the user has a choice of
one or the other.

Good Luck. We hope vyou will enjoy using LISP/MTS. Any
comments, questions, or bugs should be reported to the authors at
2028 Mental Health Research Institute, Ann Arbor, i#ich. Tel:
. 313-764-4220. ‘

BRUCE WILCOX . . CAROLE HAFNER |

Note: For a formal definition of the originai LISP language,
s2e McCarthy et. al., LISP 1.5 PROGRAMMERS GUIDE, #. I. T.
Press, 1962.

The development and implem2ntation of LISP/MTS was supported
in part by National Science Foundation Grant Number GJ-31339X.

This document was converted into Format source by Mark
DuMont and Vincent Manis, UBC Department of Computer Science.
Furthur revision and modification was done by Paul Friedman,
Wayne Hall, David McDonald, and Jim Davidson.

Lisp/MTS ' ' 2
The LISP language

II. The LISP Langquage

— s — T - e

A. Axzoms, Buffers, and Arrays

The primitive data structures of LISP, calied ATOMS, .are’

similar in form to variabless in other languages.

1. PNAHE of an atonm

Atoms are created implicitly and referenced through their
PNAMEs, or print namas. The2 PNAME of an atom may be any
character string up to 255 characters 1long. '

When an atom name, say BOOK, first appears in th2 input
stream, an atomic structure with the PNAME #BOOK™" is
automatically created. Any future references to the atom BOOK
will refer=snce the same structure. Tha system OBJECT LIST
maintains pointers +o0 all atomic structures, and each atomic
string which appears in the input stream is checked against this

lisx.

2. Types of atoms

There are +two types of atoms in LISP, literal atoms and
numaric atoms., When an atom name appears in the input sStrean,
+he form of the name, and the current input number base destermine
the typs of the atonm.

: If +the input number base 1is 10 (the default cas2), then
FORTRAN type integers and floating point numbers will be tresated
as decimal numbers, and will become numeric atoms. All other
character strings will become literal atoms.

If the input number base is 16 (the wuser may change the
number base by <calling <+he STATUS function), FORTRAN type
floating point numbers will still be treated as decimal numbers,

and will Dbecome numeric atoms. However, any character string

b2ginning with a decimal digit (0 - 9) and containing only
hexadecimal digits (0 - 9, A - F) will bs treat=d as a
hexadecimal number, and will become a numeric atou with the value
of that hexadecimal number.

If the input number base is 0, then all character strings
will be interpr=ted as literal atom names, and no numeric atoams

Atoms, Bufifers, and Arrays

i~

JAr e by

Vo]

U)

M S Kl b hed

e R Y

/ Lisp/MTS : _ 3
. Th2 LISP lLanguage

will be created.

Unlike literal atoms, numeric atoms are not stored on the
OBLIST; instead a new atom is created each time a number appears
in the input stream or when a new value is calculated. Thus, two
occurrences of thes number 17 will produce raferences to two
distinct structures. »

Note ~-- The interpreter recognizes two uumbers as being
EQUAL if their values ars 2gqual; they will also »p=2 EQ for " all
functions which use EQ tests, ie MEMQ, DELQ, etc.

3. Value of an atonm

Atoms can have VALUEs, which may be any LISP structure. The
VALUE of a 1literal atom is undefined until a valua is given to
it. All numeric atoms, by convention, have themselves as their
VALUEs.

4, Special atoms

There are several special atoms in LISP, with pre-defined

null list, or a truth valuzs of false. The VALUE of NIL is NIL.
Arother special atom is the atom T, used throughout the system to
indicate a truth value of tru=2. The VALUE of T is T.

Although the user can change the value of any atom, in
general he should not alter the VALUEs of numeric atoms.

The VALUE of NIL must always remain NIL.

The pre-defined atoms of LISP, (and theair general
significance) is as follows: :

NIL (Program Logic) = NIL

T (Program Logic) = T '

LISPIN (Input/Output) = (Input Buffer . SCARDS)
LISPOUT (Input/Output) = (OQutput Buffer . SPRINT)
EERIN {Input/Output) = (Error Input Buffer . GUSER)
ERROUT (Input/Output) = (Error Output Buffer . SERCON)
*ERR¥ (Error Processing) = {(DUMP)

ATTN (Error Processing) {DUNMP)

PGNT (Error Processing) (DUMP)

UNDEF (VALUE of undefin=d atoms) = error 1o if EVALed
FNS (list of DEFUN'd functions) = NIL

All numeric atoms = themselves

H

Atoms, Buffers, and Arrays

VALOEs. One is NIL , used throughout the system to indicate a

4

Lisp/MTS ' 4
The LISP language

5. Property lists

Besides a VALUE, an atom can have any number of properties,
and <each property has a property-value. For example, the atom
BOOK may have a property COLOR with property-valus BLUE, and a
property PAGES with property-value 367. The name of a property
is referred to as the proparty 4indicator, or IND, and the
property-value is referred to as the PVAL.

Associated with each atom is a property-list (PLIST) of
indicators and values, If an atom has no properties, then its
PLIST is NIL.

The property 1list of the atom KIL is NIL, and may not be
altered. Thus, NIL is always guarante2d to have a NIL value and
a NIL PLIST.

Numeric atoms may not have property lists.

6. Buffers

LISP/MTS supports a data type <called BUFFERS. Although
buffers are not truly atoms (they may not be given VALUEs), +hey
are -like atoms in that they have PNAMEs., The PNAME of a buffer
is the current contents of the buffer., The PNANEs of atoms and
list representations of LISP structures can be placed in a buffer
by <calling the system print functions. New atoms can be created
whose PNAMEs are the contents of a buffer by calling +the READ
function. 21l input/output in the system takes place by printing
the contents of a buffer on an MTS device, and by reading a
record from an MTS device into a buffer. Buffer contents can be
compared and translated by system functions.

Whenever a buffer is passed as an argument to a function, it
is actually a buffer pointer structure (called an IOARG) which is
passed, rather +than the buffer itself. A full d=2scription of
buffers may be found in the Section on Input/Output in LISP/MTS.

7. rrays
LISP/MTS also supports arrays, where the value of an array

ele2ment can be any LISP structure. For a description of the
definition and use of arrays, see the DEFINE function.

Atoms, Buffers, and Arrays

Lisp/MTS ‘ 5

Running the LISP Interpreter

III. Running the LISP Interpreter

LISP is an interpretive language. The system will read .one
S-expression from its input stream, evaluate it, and print out
the value computed, then read another S-expression, &etc. Since
the +op-level controller calls READ to get an S-expression, EVAL
to evaluate it, and PRINT to print out the result, the top 1level
function of LISP is often referred to as a READ-EVAL~-PRINT lodp.

A. The PAR= Run Field

LIsP, 1like many other MTS programs, accepts various control
parameters via the PAR= field of th2 PRUN command. The keyword
parameters may appear in any order, and th2re may be any number
of keywords given, e.g. "PAR=FCS=3,PDS=2, MAX=8", The keyword
parameters recognized by LISP, and their significance are
dsscribed below. B

1. PAR=FCS= Indicates the number of pages of initial
freespace, Default value is 3 pages.

2. PAR=MAX= Indicates the limit on th=s number of pages of
freespace which will be ailocated by the
system. If this limit is allocated and more
space is needed, the user wili be prompted in
interactive mode; and execution will be
terminated in batch mode. Default value is

15 pages.
3. PAR=ERR= Indicates the initial status of interrupt
traps.
0 = program and attention dinterrupt traps
enabled. ' '

1 = attention interrupt trap disabled.
2 = program interrupt trap disabled.

4 = both traps disabled.

Default value is 0.

4., PAR=GC#= Number of cells of freespace which must be
reclaimed during a garbage coilection in
order to suppress allocation of more space.
initially set to 500.

5. PAR=INT= Allows numbers to be made common and placed
on the OBLIST. 211 positive numbers less
than this number will be made unique.
initial value is O.

The PAR= Run Field

Lisp/MTS : 6
Running the LISP Interpreter

6. PAR=PDS= Sets the initial number of pages of Stack
space. Lisp/MTS will ask the user for
confirmation of Stack extents beyond this
limit in interactive mod2. Batch runs will
stop after +this 1limit is —reached. The
d=fault is 1 page.

7. PAR=0BJ= Indicates the number of hash buckets for <the
literal atom OBJECT LIST. The greater the

number of buckets, the faster the resolu+ion’

of atomic references should be. An odd
number is recommended. Defauit is 69.

[vd]

inpu

et

to LISP

Input to LISP is free format, with blanks, commas, periods,
parentheses, and ends-of-line acting as separators. Any time a
saparator appears, it may be surrounded by any nuwmber of blanks.
Extra right parentheses may be inserted at the b=ginning or the
end of a top-level form, and they will be ignorad. Ffor example:
) (A BCD)))) = (A BCT L) at the top level.

If a semi-colon (;) appears anywhere in an input line, the
system will ignore everything else that appears in the line, and
will skip to the nex* line. Thus, the semi-colon is equivalent
+o an end-of-line. This allows the usesr to put comments in his
input file without the expense of making an atom from every word.

**¥xJarning: The semi-colon 1is an MTS <carriage control
character which will cause a line printer to skip to a new page
if it 1is the first character imn an output line. At the present
tim2 this warning does not seem to0 apply to MTS at UBC, but users
should +take note anyvay.

Note: An exception is made to the treatment of the period as
a s=2parator when it occurs in a legal floating-point number. In
that case, the period will be interpreted as part of the number.
To make a dotted-pair of ¢two numbers, merely surround the period
with blanks. For example, (123.456) 1is a 1list of a single
num2ric atom, while (123 . 456) 1is a dotted-pair of two
integers.

In order to allow the incorporation of separator characters
into atom PNAMEs, LISP/MTS defines a special input convention.
" If a double~guote character (") occurs at the beginning and the
and of an atom name, then all characters which occur petween the
double-quotes will be treated as the PNAME of a single atom. The
closing double-quotes must be part of the same input line as the
opening double-quotes, and the double-quotes wili not be part of
t+he PNAME of the atom. For example, if the input stream contains

Input to LISP

Lisp/MTS ' 7
Running the LISP Interpreter

the atom name:

"AB CD.EFH
an atom with the PNAME: AB CD.EF will be created.

If two double-quotes in a row appear within a double-quoted
string, they will be interpreted as a literal double-quote. For

example, if "ABC""DEY is read in, the literal atom ABC"DE will be
created.

Double-quotes which appear strictly within an atom name have
no special significance, and are treatsd 1like any other
character. If +two double- gquotes appear at the beginning of an
atom name, however, this will generate a syntax error.

To insure balancing of parentheses, the characters < and >
act as super parentheses., Upon reading a right super parenthesis
(a >), enough right parentheses will be added to balence the s-
expression begun with the most racent left super parenthesis. If
there is no 1l2ft super parenthesis, then enough right parentheses
are2 added to finish off the entire expression. Extra riqht super
brackets are ignored. A maximum of 100 pairs of super
parentheses are allowed. For example ' '

<{({((a B> is read as (({{((aA B)))})
(COND <<NULL (CDR X> (COND ((NULL (CDR X))
' (CAR (CONS X X> 1is read as {CAR {CONS X X}))
<T {CAR (CADR X>) : (T (CAR (CADR X))))
({2 B> (QUOTE ((({(A B)))1))

-C. Operation of EVAL

Evaluation of LISP expressions is done by the function EVAL.
#hen LISP reads a form and sends it to EVAL, the first thing EVAL
does 1is check to see if the form is a single atom. If so, then
the value of the form is the VALUE. of the atom.

If the form is not an atom, it must be a 1list. The first
2lement, or the CAR of the 1list spescifies a function to be
called. The remaining elements of the 1list, or the CDR,

represent the arguments of the function. If the CAR of the form
is an atom, then LISP interprets it as the name of a function,
and calls that function (W2 will see later that there are ways of
invoking functions other than a direct call). For example, if .
the form read by LISP is (ADD X Y), then the function ADD will be
called with the VALUE of X as its first argument, and the VALUE
of Y as its second argument.

Notice that, as in other languages, it is not the name of

Operation of EVAL

e S o=l = P o= TSPy AP S SN ST S PO O

Lisp/MTS : - : 8
Running the LISP Interpreter

the argument which is passed to the function, but its value. For
this reason, we refer to the elements which actually appear in
the form as arqument-designators, and reserve the term "argument"
for the values which are actually passed to the function.

Since EVAL calls itself in order to determine the values of
the argument-designators, the argument-designators do not have to
be atoms, but can be any LISP form which will evaluate to the
desired argument. For example, if the VALUE of X is 2 and the

VALUE of Y is 3, then EVALing the form (ADD X (ADD ¥ 1) will"

cause the function ADD to be invoksd twice - the first time with
arguments 3 and 1, and the final time with arquments 2. and 4.

- Naturally, the VALUEs of X and Y are not altered by this
operation.

There ar2 a number of built-in LISP functions which are
invoked by a direct call as described above. 1n addition, the
user can define n2w functions by composing these built-in
functions in various ways, and then the user-defined functions
can also be invoked by name.

D. Qutput and Termination

Whenever a LISP form is EVALed, a resulting value is
returned. When the system reads and EVALs a form, it then prints
out its (top-lev=l) value before reading the next form. When we
say only the top-level value is printed, this means that the
svaluation of arguments, which may involve intermediate function
calls, does not cause anything to be printed.

For example, if a user types in the form: (ADD X (ADD Y 1))
where the VALUE of X is 2 and the VALUE of Y is 3, the systenm
will EVAL this entire expression and print the resulting value:
6.

Evaluating the form (STOP) at any level will terminate
execution of LISP. Evaluating the form (MTS) will cause a return
tc MTS from which the user may restart.

Output and Termination

e it

Lisp/MTS 9 !
Basic LISP Functions '

1. (QUOTE S) ' E

It is important to remember that when a LISP form
appears. as an argument in a function call, this
signifies that the value of the form is to be the
argument of the function. However, many times LISP
users wish to specify directly what an arqument to a
function should be. In order to facilitate +this
process, the function QUOTE is available.

The value of (QUOTE A) is the atom 4. The value of
(QUOTE (CAR (A B C))) is the list (CAR (A B C)).

If a user enters (CONS X Y) from the input strean,
the -system will call the function CONS with the
respective VALUEs of X and Y as arguments. If the user
enters (QUOTE (CONS X Y)), the system will merely type
back (CONS X Y), since that structure is the value of
the 4input form. If the user enters (CONS (QUOTE X)
(QUOTE Y)), the system will execute CONS, but its
arguments will be the atoms X and Y rather than their.
respective VALUEs. To make QUOTEing more convenient, a
shorter notation for QUOTE is defined in the systesn.
This is the ' character. '

A is equivalent to (QUOTE A). '{(A (3 C) D) is
equivalent to (QUOTE (A (B C) D)).

1

Lisp/MTS 10
Basic LISP Functions ‘

[}

I

1. (ATOM S)
returns T if its arqument is an atom, NIL otherwise,

Ex: (ATOM 'A)

=T
(ATOM (A B C)) =

NIL

2. {NOT S)
returns T if its argument is NIL, NIL otherwise.

Ex: (NOT (CAR '(A NIL B))

) = NI
(NOT (CAR (CDR ' (A NIL B)))) =

L
T

3. (NULL S)
Same as (NOT S); returns T if its arqument is NIL,
and NIL otherwvise.

4., (EQUAL S1 S§2)
returns T if 1its arquments have the same LISP
structure. NIL otherwise. ‘

Ex. (EQUAL '(A B C) *'(a A
(EQUAL "(A B C) (CDR '(A A
(EQUAL 8 (TIMES 2 4)) =T

= NIL

B C))
€))) = 1T

5. {(EQ S1 52) A
returns T if its argquments are the same LISP
structure. NIL otherwise.

Numeric atoms are exceptions in that there values
are compared instead of their address.

Since thera are frequently multiple structures
which represent the same S-expression, not every pair of
olements which ares EQUAL are EQ. EQ 1is almost always
used with atomic arqguments, since there is only one copy
of each atomic name on the OBJECT LIST.

Ex: (EQ 'A 'R) = T
(EQ '(A B) ‘(A B)) = NIL

Basic LISP Predicates

4 Lisp/MTS ' v ’ 11
Basic LISP Functions

6. (NEQ S1 S2)
returns T if its arguments are not EQ, NIL
otherwise. This function is equivalent to
{NOT (EQ S1 S2))
See EQ above.

7. (EQNANE A1 a2)

returns T if its arguments re 1literal atoms or.
buffer atoms which have the same PNAME. NIL otherwise.

EQNAME will be equivalent to EQ for normal atoms
which are on the OBJECT LIST. 'However, for BUFFER atons
(see Section on 1I/0), and atoms created by GENSYHN,
EQNAME provides a new and useful function.

Ex: (EQNAME 'TEST 'TEST) = T
(EQNAME 'ANINPUTLINE IOARG) = T if the buffer associated
with IOARG has as its contents WANINPUTLINE".

8. (NUMBERP 2)

returns T 1if 1i4¢s argument is a numeric atom NIL
otherwise.

Ex: (NUMBERP 3) =T

9. (SORTP A1 A2)
~returns T if the PNAME of its first arqument is less
than or equal %o its second argument in standard EBCDIC
collating sequence. NIL otherwise. A1 and A2 must be
literal atoms or IOARGs.

Ex: (SORTP *ABC 'ABB) = NIL
(SORTP 'ABB 'ABB) = T
(SORTP 'AB 'ABB) = T

10. (LISTP S)
Returns T if S is a CONS-cell, and Nil otherwise.

Basic LISP Predicates

7/ . : :
. : Lisp/MTS 12
) Basic LISP Functions
3.
11. (UNDEFP A <S>) .
Returns T if A 1is an wund=fined atom, and NIL
otherwise.
If S 1is given, and A is undefined, the value of S
is assigned to A.
Ex: (ONDEFP 'X) = T (if X is unbound)
(UNDEFP 'X 3) = 3 (X is SETQ'd to 3)
(UNDEFP 'X) = NIL (X is now bound.)
4,
12. (TAILP L1 L2)
Returns L1 if L1 is a tail (i.e. some number of
CDRs 2 0) of 12, and NIL otherwise.
Ex: if X has the value (A B C)
(TAILP ' (B C) X} = NIL
(TAILP (CDR X) X) =T
B. List Searching Opesrations
The functions in this section enable the user to break down 5.
LISP structures into component structures in various ways. The
result - will frequently depend on finding some particular
substructure. :
6.
1. {CAR L)
returns the CAR of any structure (i.e., the first
clement of any list or the VALUE of an atom).
Ex: (CAR '"((B C) D (E F))) = (B C)
2. (CDR 1) .
' returns the CDR of any structure (i.e., the list of
remaining elements of any list or the PLIST of a non-
numeric atom). The CDR of a numeric atom is an error. 7.

Ex: (CDR "((B C) D (E F))) = (D (E F))

List Searching Opesrations |

N,

P, ' Lisp/NTS ’ ’ 13
Basic LISP Functions

3. (C. . .R1)

These 28 functions perform all comrpositions of up to
4 instances of CARs and CDRs.

Ex: (CAAR L) = (CAR (CAR 1))
(CAAAAR L) = (CAR (CAR (CAR (CAR 1))
(CADADR L) = (CAR (CDR (CAR (CDR L))

))
))
(CDDDR L) = (CDR (CDR (CDR L)))

4. (MEMBER S1 L <S2>)

The list L is searched to see if S1 is an element.
If so, then the rest of the list L, starting with S1, is
returnad.

If S1 is not an =2lement of L, and no third argument
is given, NIL is returned. If a third argument is
given, it is EVALed and that result is returned.

Ex: (MEMBER 'A '((A B) C (D E) G)) = NIL
(MEMBER 'A ' {(A B) C (D E) G) ' (ADD1 3)) = 4
(MEMBER '(D E) '((A B) C (D E) G)) = ((D E) G)

5. (MEMQ S1 L <52>)

Same as MEMBER, but uses an EQ test instead of an
EQUAL test. '

6. (ASSOC S1 L <S52>)
The 1list L is searched to see if S1 is the CAR of
any eliement. If so, then that element is returned. If
S1 is not the CAR of any elemsnt, and no third arqument
is given, ©NIL is returned. If a third argument is
given, it is EVALed and that result is returned.

Ex: (ASSOC '2 *((A B) (C D) (EG))) = (A B).
{(ASSOC ' (A B) '{(A B) (C D) (E G)) ''FAIL) = FAIL

7. {(ASSQ S1 L <52>)

Same as ASS0C, but uses an EQ test instead of an
EQUAL test, ’

List Searching Operations

»

o Lisp/NMTS ‘ : 14

Basic LISP Functions

8. (FIND 51 52 <N>)

The structure 52 is searched for any substructure
(subtree) whose CAR is EQUAL to S1. If N is given, the
Nth such substructure is returned. If N is not given,
the first such substructure 1is returned. If the
substructure specified is not found, FIND returns NIL.

Ex: (FIND 'B '(A B C)) = (B C)

(PIND 'A '(A (B (A C) D))) = (A (B (2 C) D))
(FIND 'A *(A (B (A C) D)) 2) = (A C)

(FIND "(A C) *(A (B (AC) D))) = ((A C) D)
(FIND *{(A C) '(A (B (A C) D)) 2) = NIL

9. (NTH L N) ;
returns the sublist of L beginning with the Nth i
element of L. If N is zero or negative, NTH will return

the last cell of L. If N is greater than tne number of
2lements of L, NTH will return NIL.

Ex: (NTH '(ABC) 1) = (A B C)
(STH '*(A B C D) 3) = (C D)
(NTH '"(A B C D) 0) = (D)

(NTH *(A B C D) 100) = NIL

10. (LAST S) . :
Returns the last top-level CONS-cell of a list. '

Ex: (LAST '(A B C)) = (C)
(LAST '"(A B C (D E)) = ' ((D E))

List Searching Operations

L.
'1Tit__
' Lisp/MTS 15 ,

Basic LISP Functions

C. PFunctions that Cr=2ate New LISP Structures

This section includes functions that, besides returning a
value, <create new LISP structures. Frequently, the value
returned from a function in this section is precissly the new
LISP structur2 which was createsd.

1. {CONS S1 52)
returns the dotted-pair of S1 and S2.

Ex: (CONS 'A 'B) = (A . B)

(CONS '*{A BC) '({DEF)) = ((ABC). (DEF)) = ((AB C)
D E F)

(CONS 'A *(B C (D E))) = (A BC (D E))

2. {LIST ST . . . 5Sn)
returns the list of S1 through Sn.

Ex: (LIST 'A 'B) = (A B)
(LIST '(A B C) '(DEF)) = ((ABC) (DE F))
(LIST "2 "(B C D)) = (A (B C D))

3. (EVLIS L) _
evaluates <each elema2nt of 1L and returns a list of
these values.

Ex: (EVLIS ' ({(&DD 3 1) ({(ADD 5 6))) = (4 11)

g, (APPEND L1 . . . Ln)
returns a concatenated list of copies of 1lists L1
through 1nm.

Ex: (APPEND '(A B C) '(D E F))
(APPEND ' (A B C) NIL *(D E F))

"o
=
tw
a
o
ts
=

5. (APPENDT L S1 . . . Sn)
returns a copy of the list L, with S1 through Sn
appa2nded as elements to the end.

¢y

Ex: (APPEND1 '(A B C) 'D 'E 'F) = (A B C D E F)
(APPEND1 *(A B C) *(D E) 'F) = (A B C (D E) F)
(APPEND1 NIL 'C 'D 'E) = (C D E)

Functions that Create New LISP Structures

Lisp/MTS 16
Basic LISP Functions

6. (APPEND* L1 . . . LN) ’ _ 1

returns copies of L1 . . . LN-1, appended to the
original 1list (not a copy) LN.

EX: (APPEND* '(A B C) *(DE) '(F GH)) = (ABCDETFG H

7. (REVERSE 1)
returns a list of the (top-level) elements of L, in 1
revarse order.

Ex: (REVERSE '(A B (C (D E)) F)) = (F (C (D E)) B Aa)

8. (DREVERSE 1)
' returns a list of the (top level) elements of L, in
reverse order. The original list is destroyed in the
process.,

EX: Suppose X has the value (A B (C D) E F) then:
(DREVERSE X) = (F E (C D) B 1)

and X = (1h).

3. (COPY S1 <52 <53>>)
returns a copy of structure S1.

If arguments S2 and S3 are given, each occurrence
of S2 in the original structure (S1) wili bs replaced by
S3 in the copy. S2 need not be a "top-level® element,
but may be an element at any 1level. If 52 appears
without S3, then all occurrences of S2 in the original
structure (except as the CDR of a dottad-pair) will be
deleted in the copy.

—

If the first arqgument to COPY is a literal atonm,
the value of COPY will be a new atom, not on the OBJECT
LIST, with the same FNAME as the original atom.

Ex: {COPY '(A B C)) = (A B C)

(EQUAL L (COPY L)) = T

(EQ L (COPY L)) = NIL

(COPY '(A (B) C) 'B) = (A NIL C)

(COPY "(A B C (D B) E) 'B) = (A C (D) E)

(COPY '(A B C (D B) E) 'D '(L K)) = (A B C ({L K) B) E)
(Copv *A) = A

(EQ '7IPY 'A) 'A) = NIL

Functions that Create New LISP Structures

u Lisp/NTS ' ' 17
. Basic LISP Functions '

10. (DSUBST L S1 52)

returns L with all occurences of S1 replaced by S52.
The 1list L is physically changed.

EX: Suppose X has th2 value (2 B C D) then:
(DSUBST X 'C * (D)) = (A B (D) D)
and X has the value (A B (D) D).

11. (GENSYN <A>)

returns a unigue atom. If no argument is given,
GENSYM cr=ates atoms G1, G2, . . . etc. Every time
GENSYM 1is «called, the GENSYM counter is incremented by
one. If a literal atom or an IOARG is givean to GENSYN,
the PNAME of that atom, or of the buffer associated with
the TIOARG will b= used, followed by ths current GENSYM
counter, If the buffer portion of the IDARG is NIL, the
current system output buffer will be used.

The GENSYM countar can be re-set by using the
STATUS function.

Note: An atom created by GENSYM is not placed in
the system OBJECT LIST. Thus, if an atom with the same
PNAME is created during a READ, it will not refer to the
same atom which was created by GENSYM. The user may
remove any atom from the OBJECT LIST by calling the
function REMOB {Se= the Section on OBLIST functions).

Ex: (SET 'GENSET (GENSYH 'ATCB}) = ATOM1
{EQ GENSET 'ATOM1) = NIL
({EQNAME GENSET ‘*ATCM1) =T

12. (MKATOM A1 . . . An) :
' The function MKATOM returns an atom whose PNAME is
the string of all the PNAMES of its arguments. Each
argument must EVAL to a literal aton.

EX: (HKATOM YABC 'DE !FGHI) = ABCDEFGHI

{MKATOM (CAR ' (THIS IS IT)) (CADR ' (SO IS THIS)))
= THISIS ‘

Functions that Create New LISP Structures

TG e

7 : Lisp/MTS : A 18
Basic LISP Functions

13. (EXPLODE BA) 1¢
Returns a list of the single-character atoms of the ’
PNAME of A, :

A must be a literal atom, or an IOARG, in which
case the PNAME of its associated buffer will be used.
If the buffer portion of an IOARG 1is NIL, the systenm
output buffer will be used.

14. (LDIFP L1 L2 <L3>) 17

L2 must be a tail of the list L1, i.e. EQ to the

result of applying some number c¢f cdr's to L1.

LDIFF(L1,L2) returns a list of all elements of L1 up to

L2, i.e. the list difference of L1 and L2. The value

of LDIFF is always a new list structure unless L2 = NIL,

in which cas2 the value is L1 itself. If L3 is included

as a parametaer, then the value of LDIFF is effectively:
(NCONC L3 (LDIFF L1 L2))

i.e. the 1list difference is added at the end of list ‘ 18.

L3.

EX: Suppose X has th2 value (A B C D E F) then:
(LDIFF X (MEMQ 'D X)) = (A B C)
(LDIFF X NIL) = X = (A BCD E F)

(LDIFF X (MEMQ 'D X) X) = (A BCDETFABDZC)

19,
15. (UNION L1 L2)
returns a list which represents the set union of
lists L1 and 1L2.
The members of L1 and L2 are trsated as the
elements of a set, and elements which are EQUAL will not
be duplicated in the resulting list. 20.

Ex: (UNION '(A (B C} (D E)) "((B C) D)) = (A (BC) (D E) D)
(UNION '(1 2 3) (3 4 5)) = (12 34 5)

Functions that Create New LISP Structures

16.

17.

18.

19.

20.

Lisp/MTS 19
Basic LISP Functions

(UNIONQ L1 L2)
same as UNION, but uses an EQ test instead.

] Note =-- Du=2 +to the way this function is
implemented, numbers are not recognized as peing EQ.

EX: (UNIONQ '(A B CD) '(EF BDG)) = (GDBFEC 3

(INTERSECT L1 L2)
Returns a list of all elemants of L1 which are also
elements of L2. The test used to compare elemants is
th2 EQUAL test.

Ex: (INTERSECT '(2 (B C) (F G) D) '{(BC) D E)) = ({BC) D)

(INTERSECTQ L1 L2)
same as INTERSECT, but uses an EQ test.

Not=a -~ Due to the way this function is
implemented, numbers are pot recognized as being EQ.

EX: (INTERSECTQ *(A B 1 2) (1 2 C B 4)) = (4 B)

(EXCLUDE L1 L2)
Returns a list of all elements of 12 which are not
elements of L1. The test used is EQUAL.

Ex: (EXCLUDE *(A (B C) D E) *({X Y) (BC) A32)) =
(X Y) 2)

(EXCLUDEQ L1 1L2)
same as EXCLUDE, but uses an EQ test.

Not2 -- Due to the way this function is
implemented, numbers are pot recognized as being EQ.

EX: (EXCLUDEQ *(A B C 1 2) *({DEATGB2) = (2E D)

Functions that Create New LISP Structures

Lisp/MTS 20
Basic LISP Functions

21. (SORT L <SPB>) : ’ P
Returns list L sorted according to the function SP.
SP should be a pradicate of two arquments, if the first
argument should be ahead of the second argqument in the
sorted list SP should return a NON-NIL valu2, otherwise
SP should return NIL. SP defaults to the systen
function "SORTP",

Not2 =-- SORT destructively sorts list L.

EX: (SORT '(B C 2)) = (A B C)
(SORT *(4 2 1 3) 'LESSP) = (1 2 3 &) ar

22. {MERGE L1 L2 <SP>) I
Returns a merged list of the two sorted lists L1 and
L2 according to SP. SP should be a predicate of two
arquments. The n2xt element of the first list is passed 3.
as +he first argument to SP and the next element of the
second 1list is passed as the second argumant to SP,. Sp
should return a NON-NIL value ir the first arqument
should be ahead of the second argument, otherwise it
should return ©NIL. SP defaults to the system function
“YSORTP".

Note -- MERGE destructively merges the two lists.

EX: (MERGE '{({A C E) *"(BDFG)) = (ABCDETFGQG)
(MERGE ' (1 3 5) '(2 4) 'LESSP) = (1 2 3 4 5)

Functions That Modify Existing LISP Structures

.
— —— o

; The VALUE of Ai is set to Si for each i, and the
value returned from SET is the last Si.

Ex: (SET 'X *A 'Y '(B C)) = (B C), and tae VALUE of X is

set to A,
the VALUE of Y to (B C).

Functions That Modify Existing LISP Structures

Lisp/MTS : : 21
Basic LISP Functions

2. (SETQ A1 S1 . . . An Sn)
Sets arguments A1 . . . An to the values of
arguments S1 . . . Sn, respectively.

The value returned from SETQ is the value of SKN.

Ex: (SETQ X {CAR '(B C)) Y 'A) = A, and the VALUE of X
becomes B,

Note: Suppose the VALUE of X is VALX. Then

{SET 'X *(B C) 'Y X) = VALX,
and X is set to (B C), Y is set to VALX, since the arquments ¢to
SET are EVAL=d before SET is callzd. However,

(SETQ X *{B C) Y X) = (B Q),
and X is set to (B C), Y is set to (B C), since the SETQ performs
an EVAL-SET-EVAL-SET loop.

3. (SETA ARR-ELT S) _
sets the array element spacified by ARR-ELT to the
value of S. ARR-ELT is an array element specification
of the same form used to get an array element.

SETA returns the value of S.

Ex: (SETA (B 3 4) '(X Y)) = (X ¥Y), and the array element (B
3 4) is set to (X Y). _ '

(SETA (B (ADD 2 2) (SUB1 5)) (B (ADD 1 1) 3)) will return
the value of (B 2 3),

and the array element (B 4 4) will be

set to this value

4. (UNCONS L A)

' returns the CAR of 1L, and, as a side effect, sets
the VALUE of A to the CDR of L. Note that A, the second
argument, is not avaled,

Ex: (UNCONS '(A B C) X) = A, and the VALUE of X becomes (B
C) .

If the VALUE of L is (A B C), then:

(SET 'M (UNCONS L L)) = A, and the VALUE of L Dbecomes (B
),

and the VALUE of M becomes A.

Functions That Modify Existing LISP Structures

————T———————————________ff_________________-_————_—_——______________-—-———_——_-q§@'——__

Lisp/MTS ' ‘ 22
Basic LISP Functions

5. {RPLACA S1 S2) 9.
replaces the CAR of S1 with S2 and returns the new
Structure.

Ex: (RPLACA '(A B C) '(E P)) = ({(EF) B C)

6. (RPLACD S1 S2)
replaces the CDR of S1 with S2 and returns the ne¥
structure

Ex: (RPLACD '(A B C) '(D E)) = (A D E)

Note: RPLACA and RPLACD actually modify the structures sent
to them as arguments, unlike functions such as APPEND, APPEND1,
and COPY, which create entirely new structures with the desired
properties. Because of this, RPLACA and RPLACD shouid be used
with great caution. It 1is very easy to create circular LISP
structures using these functions, and attempts to process such
structures can become very expensive by +the time the user ap:
discovers his program is in an infinite loop.

7. (DELETE S L <N>) ,
, Deletes up to N occurrences of expression S from the E
list L. If no N is given, all occurrences are deleted. ’

S must occur as a top-level element of the list L.

DELETE returns the new list L. : uno

in
Ex: (DELETE 'C *(ABCDCDCD) 2) = ({(ABDDC D) (IN
(DELETE 'C *(A B CD (C D) CD)) = (A BD {(C D) D) nay
; er;

) If the VALUE of L is (A B C), then (DELETE 'B Ly = (A O,

and the VALUE of L is (A C). However, (DELETE 'A L) = (B C), but 1.
the VALUE of L is still (A B C). Thus, DELETEing the CAR of a

list L is merely equivalent to taking the CDR of L, but DELETEing

any other element will causs an .actual change in the list

structure.

8. (REMOVE S L <ND)
Same as DELETE, but the original structure 1is not
changed.

EX: Suppose X has the value (A (A B) (C D) (A B)) then:

(REMOVE '"(A B) X) = (A {(C D))
and X still will have th= value (A (A B) (C D) (A B)).

Functions That Modify Existing LISP Structures

Lisp/NTS 23
Basic LISP Functions '

9. (DELQ S L <N>)

Same as DELETE, but uses an EQ test instead of

10. (NCONC L1 . . . Ln)
creates a concatenated list of L1 through Ln by
actually modifying 1list Li so that it becomes 1Li
- « o Ln. Thus, list LN is "grafted" onto the end of
list L{(n-1), and then list L(n-1) is grarfted onto the
end of list L(n-2), etc.

Ex: If the VALUE of X is {A B), and the VALUE of Y is (C D)
and the VALUE of Z is (E F), then:

(NCONC X Y Z) = (ABCDEF), and the VALUE of 2 is (E F),
and the VALUE of Y is (C D E PF),
and the VALUE of X is (A B C D E ¥)

Note: The same warnings given for RPLACA and RPLACD also
apply to NCONC. '

It=s

Operations on RProperty Lists

-
S

Although the property list of an atom is often treated as an
unordered collection of property indicators and property-values,
in fact the PLIST of an atom is a normal LISP list of the form
(IND1 PVAL?1 . . . INDN PYALN). With a few special exceptions,
new proper*y indicators and = property-values are added at +the
front of the PLIST.

1. (PUT <A,LA> IND <PVAL>)
gives the atom A, or all the atoms in the 1list LA,
the property IND with property valus PVAL.

If PVYAL is omitted, a systen default of T is used.
(This system default may be <changad 0y calling the
STATUS function).

If an atom already has property IND on its PLIST,
then the previous PVAL associated with property IND is
replaced by the ne2w PVAL. '

The value returned from PUT is PVAL.

Ex: (PUT ' (A B) 'INCL 'X) = X,

and the property INCL with property-value X
is put on the PLIST of A anrd B.

Operations on Property Lists

e

Lisp/MTS ’ 24
Basic LISP Functions

2. (PUTL L IND <PVAL>) ' ~
is like POT axecpt that it operates directly on the
list it is given (i. e. as if it were a property list).
The value returned is the new list.
Ex: (PUTL * (A INCL B BLUE) 'A 'EXCL)
(A EXCL B BLUE)

(PUTL * (A EXCL B BLUE) 'C 'GREEN)
= (C.GREEN A EXCL B BLUE)

3. (DEFPROP <A,LA> IND <PVAL>)

DEFPROP is the NEXPR version of PUT. It returns its
first arqument. ‘

4. (ADDPROP <A,LA> IND <PVAL>)

works just like PUT except a new instance of IND is
alwvays put on the PLIST of A, or of the atoms in La.
Thus, using ADDPROP, it is possible to have duplicate
instances of ons property on the PLIST of an atom.
Using ADDPROP in conjunction with (REM A IND 1), the
user may operate a push-down stack of property-valuos
for a particular property. :

Ex: (PUT 'A 'INCL 'X)
(ADDPROP 'A 'INCL 'Y)
(GET A 'INCL) = Y
(REM 'A 'INCL 1) = NIL
(GET 'A 'INCL) = X

X
Y

5. (GET <A,L> IND <S>)
returns +the property-value associated with the
indicator IND on. the PLIST of A, If A does not have
property IND, and S is not given, then GET returns NIL.

If the third arqument S is given, then S is a forn
to be EvAaled if A does not have property IND. If S is
EvAled, the value of S will be the value returned fronm
GET.

Ex: (PUT 'A 'INCL '{X Y)) = (X Y)

{GET 'A 'INCL) = (X Y)

(GET 'A 'NOTON) = NIL, assuming NOTON is not on the PLIST
Of A. '

(GET *A 'NOTON ' {GET 'aA 'INCL)) = (X Y)

If the first argument 1is a 1ist; it will be searched
diractly, rather than having its P-list taken.

Operations on Property Lists

Lisp/MTS ’ ' 25
Basic LISP Functions

Ex: (GET '(A B C L) 'C) =D

6. {GETL <A,L> L <5>)
finds the first indicator on the PLIST of A which is
a member of the list L. - Returns the rest of the PLIST
of A, starting with the indicator which was found.

If no indicator on the PLIST of A is a member of 1L,
then if S is not given, GETL returns N§IL. If s is
given, it will be EVALed and this value will be returned
from GETL.

Ex: If the PLIST of BOOK is (COLOR BLUE SIZE 367 TOPIC
MATH), then

(GETL *BCOK ' (WEIGHT TOPIC SIZE)) = (SIZE 367 TOPIC MATH)
(GETL 'BOOK ' (TOPIC) '(GET 'BOOK 'COLOR)) = (TOPIC MATH)
(GETL 'BOOK ' (WEIGHT) '{GET 'BOCK 'COLOR)) = BLUE

If the first arqument is a 1list, it will 'be searched
directly, rather than having its P-list taken.

Ex: (GETL '(A B C D) *(X C)) = (C D)

7. (GETFN FN)

GETFN allows the user to inspect the function
definition associated with a form., GETPN will consider
its argument as a function specification, and will
simulate the action of EVAL in determining how to apply
it. If FN 4is a LAMBDA or LABEL expression, then the

value returned from GETFN is just FN itself., If FN is

an atom which is currently defined as a SUBR, FSUBR, or
NSUBR, then the PVAL associated with the SUBR, FSUBR, or
NSUBR indicator is returned as the vaiue of GETFN.

(This PVAL will g2nerally be a SUBR or ARRAY type atomn.)

If FN 1is an atom which is currently defined as an
EXPR and the PVAL associated with the EXPR property is a
LAMBDA-expression, then the LAMBDA-expression 1is the
value returned from GETFN.

GETFN generates an error if it encounters an atom
with no function definition whose VALUE is itself or
JNDEF,
EX: (GETFN ' (LAMBDA (X) X))

{(GETFN 'CAR) = *

(LAMBDA (X) X)
The SUBR atom will be printed as an Asterisk, but
Operations on Property Lists

SR

‘Lisp/MTS : : 26 |

8.

1.

Basic LISP Functions

it may be Dumped, compared +to other addresses, or
transfered to the PLISTs of othar atoams,

(REM <A,LA> IND <N>)
removes up to N occurrences of the property IND from

the PLIST of the atom A, or all the atoms in the list
LA. If N is not given, all occurrences are remroved.

The value of REM is NIL.

Ex: (PUT YA YINCL *"(X Y)) = (X Y)

(GET '2 'INCL) = (X Y)
(REM 'A 'INCL) = NIL
(GET 'A 'INCL) = NIL

{GREATERP N1 . . . Nn)
returns T if N1 . . . Nn is
sequence of numbers. NIL otherwis=.

a strictly decreasing

(LESSP N1 . . . Nn)
returns T
sequence of numbers,

if N1 . . «. Nn is a strictly increasing
NIL otherwise. '

(ZEROP W) ,
returns T if integer N=0, NIL otherwise

(EVENP N)
NIL otherwise,

returns T if N is an even integer,

{MINUSP N)

returns T if N is a negative number. NIL otherwise.

Basic Numeric Predicates

_+—"

16

Lisp/MTS
Basic LISP Functions

——— . —

(LENGTH L)

27

returns the length of the list L. LENGTH of an atonm

is 0.

(PLEN A)

returns the length of the PNAME of the atom A,

must be a literal atom or ioarg.

(ADD1 N)
r2turns integer N+1

{SUB1 N)
ra2turns integer N-1,

(XINUS XN)
returns number -N.

(ABS N)
returns the absolute value of number N.

(FIX N)
returns the integral (truncated) part of N.

"
w

Ex: (FIX 3.91)

(FLOAT N)

returns floéting pcint equivalent of N.

o+
=
®

(MAX N¥1 . . . Nn)
returns the " algebraic maximum of numbers
* - * Nn'

N1

Basic Numeric Operations

I SSSSEEEETETLTLELEL—S S

10.

11.

13.

14.

16.

17.

18.

Lisp/MTS 28
Basic LISP Functions

(MIN N1 . L) . Nn) :
returns the algebraic minimum of numbers N1
. - - Nn.

(PLUS N1 . . . NN)

returns the sum of N1 . . . NN. The function ADD
has the same effect.

(DIFFERENCE N1 N2)
Teturns N1-N2. The function SUB h
effect.

the same

[y
n

(TIMNES N1 . . . Kn)
returns the product of N1 . . . Nn.

(DIVIDE N1 N2)
returns the quotient of N1 and N2. Floating point
division. '

(REMAIN N1 N2)
N¥1 and N2 must be integers. Returns the remainder
of N1/N2.

(ADDRESS 5S)
returns a numeric atom equal to the address of the
LISP structure S.

(SHIFT N1 N2)
N1 and N2 must be integers. Returns the number N1,
shifted N2 bits +to the left. If N2 is negative, the
effect is a shift to the right.

(LAND N1 . . . Nn)
¥1 « « « Nn must be integers. Returns the result of
a bitwise logical AND of N1 . . . Nn.

Basic Numeric Operations

1¢

2¢C

Lisp/NTS : : 29
Basic LISP Functions

19. (LOR N1 . . . Nn)

N1 . . . Nn must be integers. Returns the result of
a bitwise logical OR of N1 . . . Nn.

20. {LXOR N1 . . . Nn)

N1 . . . Nn must be integers. Returns the result of
a bitwiss logical EXCLUSIVE-OR of N1 . . . Nn.

Ex: (LAND 3 5) = 1
({LOR 3 5) = 7
(LXOR 3 5) = 6
(LXOR =1 3) = -4
(SHIFT 32 -1) = 16
{SHIFT 3 2) = 12

Control Functions

[

This section includes the functionals, which take as their

arguments definitions of functions to be invoked;, as well as

EVAL, PROG, REPEAT, DO, and PROGN, which control the evaluation
of forms in LISP. '

1. (EVAL S)
Evalunates its argument and returns the result.

Ex: If the VALUE of X is (A B C), and the VALUE of 2 is
VALA, then
EVAL (CAR X)) = VALA

The PROG function, along with GO and RETURN, allows
the LISP user to write subroutine-like sa2quences of LISP
code, with branching, and with the ability to exit and
return a value at any point.

LA is a list of local or PROG variapnles. The PROG
variables are bound to NIL upon entry to the PROG, and
unbound to their previous values upon exit from the
PROG. Thus, the PROG variables may be used within a
PROG as though they were distinct variables from any
outside the PROG. Note that this "protection" of PROG
variables applies only to their VALUEs. If the property
list of a PROG variable is changed within a PROG, the
change will not be undone upon exit from the PROG.

The PROG variable 1list may be NIL, but it may not

Controli Functions

| "Lisp/MTS : : 30
. . Basic LISP Functions

be omitted. : 5.
S1 . « « Sn are a sequence of forms to be evaluated

in order., However, if any of these forms are atonms,

they are not evaluated, but rather ars interpreted as

statement labels, If a form (GO A) appears in the PROG,

and A is used as a statement label in the PROG, then

evaluating (GO A) causes the flow-of-control to be

transfered to the form which appears after the label A.

If the flow-of-control *drops througa” the 1last
form of the PROG, then the value of tanat form will be
returned as the value of the PROG. However, if the last
form of the PROG is an atom, ¢then the atom itself,
rather than 1its VALUE is returned as the valu2 of the 6.
PROG.

3. {RETURN S <LEVELD>)
If at any point within a PROG, a form {(RETOURN S) is
evaluated, then PROG immediately exits, and returns the
value of S. RETURN takes an optional second ’‘argument,
which is the level to be RETURNed from. This argument
is a stack pointer and is specified in the same way as
~in UNBVAL, DISPLAY, and RES. If the second argument to
RETURN is omitted, the return will be from the current 7.
dominating PROG.

(RETURN (CAR X)) returns to the closest enclosing PROG.
{(RETURN (CAR X) YFOO) returns from the closest enclosing
call to F0O. ‘

4. (GO 1)
‘ GO is used within the PROG function to branch to the

PROG label A. GO is, like PROG , an N-typs function.

Thus, (GO A) will cause a branch to the form labelled by

the atom A, However, if GO 1is given a non-atomic

argument, it will EVAL this arqument, and then attenmpt

to "go" %0 the result. Ex: {GO (CAR A)) will evaluate

(CAR 2), and if the result 1is an atom, will branch
accordingly. If the result is not an atom, GO will EVAL

it in turn, and continue the process until an atom is

found. |} £n3{PROG1,S1,'. . . Sn) returns S1, or 1its 8.
first argument. This function is useful when the user

wants to do several different things in one step, and

vants only the fist value *o be returned.

{PROG1 'DONE S2 . . . Sn) = DONE

Control Functions

wé——

Lisp/MTS 31
. Basic LISP Functions

5. (PROGN 51 . . . Sn)

returns Sn, or its last argument. This function is
useful wher the user wants to do several different
things in on=2 step, and want only the last result
returned. The argument designators will be EVALed as a
side effect of calling PROGN. For example, at the top
level, the user may wish to embed a anumber of forms in a
PROGN in order to suppress printing of all but the 1last
result,

Ex: (PROGN S1 . . , Sn 'DONE) = DONE

6. (REPEAT S N <EQUFAILD>)
Evaluates form S N times, or until the value of S is
EQUAL to EQUPAIL. REPEAT returns the last computed
value of S. If N is negative, an error results.

EX: (SETQ N 1)
(REPEAT *(SETQ N (ADD1 N)) 12) = 13, and N = 13
(REPEAT ' (SETQ N (ADD1 N)) 12 2) =2, and ¥ = 2

7. (DG VAR INITIAL INCR TEST S1 . . . Sn)
This function can be useful for writing FORTRAN or
ALGOL 1like loops. It can be best explained with the
following equivalant PROG.

(PROG (I)
(SETQ I (INITIAL))

- LOOP (COND ((TEST) (RETURN I})})
S1
s2

L

SN
(SETQ I (INCR))
(GO Loop))

8. (APPLY FN L) ‘

Causes the function FN to be invoked, where L is a

list of 4its argumants. FN may be any LISP function
specification,

. (APPLY 'CAR '((A BC)) = &
~"PLY 'CONS "(X Y)) = (X . ¥Y)

Control Functions

_ e P A PRI

10.

11.

12,

13.

Lisp/MTS 32
Basic LISP Functions

(APPLY1 FN S1 . . . Sn)

Causes the function FN +o be invoked, where S
- +« « Sn are the arguments of FN. FN nay be any LISP
function specification.

{APPLY1 'CAR '(A B C)) = A

 (APPLY1 'CONS 'X 'Y) = (X . Y)

(MAP FN L1 . . . Ln)

Causes the function FN to be called, with L1
« » +» Ln as 1its arguments, and then to be called again
with (CDR L1) ., . . (CDR Ln) as its argum=ants, and then
to be called again with (CDDR L1) . . . (CDDR Ln) as its
arquments, etc., until the shortest list is exhausted.
Thus, when MAP is used, the argqum=ants of FN will always
be lists, never atonms.

MAP returns NIL.

(MAPC FN L1 . . . Ln)

Works 1like MAP, except the CAR of each successive
list is used as the argument to PN. Thus, MAPC calls PN
with (CAR L1) . . . (CAR Ln) as its arguments, and then
with (CADR L1) . . . {CADR Ln), etc.

MAPC returns NIL.

(MAPLIST F¥N L1 . . . Ln)

Causes the function FN to be called with L1 . . . Ln

as its arguments, and then with (CDR L1) . . . (CDR Ln),
etc, Jjust as in MAP. However, the value returned from

MAPLIST is the 1list of all the successive values
returned from FN.

(MAPCAR FN L1 . . . Ln)

Works just like MAPLIST except that the CAR of each
successive list is used as the argument to FN. MAPCAR
returns a 1list of all the successive values returned
from FN. '

Control Functions

15,

i
jo

=

LIST.
atoms
compe
match
alrea.z
iS N«
LISsT.

T
LIsT,
uniqus
PNAMT
atonm b
not be

Lisp/MTS ’ | 33
Basic LISP Functions

14. (MAPCON FN L1 . . . Ln)

Causes the function FN to be called with L1 . . . Ln
as its arguments, and then with (CDR L1) . . . (CDR Ln),
just as in MAP. However, the value returned from MAPCON
is a concatenated list of all the values returnad fron
FN.

***¥NOTE: The user should be aware that the values
returned from FN when called via MAPCON or HAPCAN nmust
be 1ists, or an error will result. ' '

***yarning: The wuser should be aware that MAPCON
and MAPCAN call NCONC to create the concatenated list of
values returned from FN. Thus, the actual structures
returned from FN will be modified by MAPCON and MAPCAN.
The possibilities for creating circular lists are the
same as for NCONC, RFLACA, etc.

15. (MAPCAN FN L1 . . . Ln)

Works just like MAPCON, except the CAR of each
successive 1list is used as the argument to FN. MAPCAN
returns a concatenated list of all the values returned
from FN.

Ex: Let the VALUE of~X be ((D 7) (A 6) (N 5))

(MAPLIST *REVERSE X) = (((N 5) (A 6) (D 7)) ((N 5) (A 6))
((N 5)))

(MAPCAR 'REVERSE X) = ((7 D) (6 &) (5 N))

(MAPCON 'REVERSE X) = ((N 5) (A 6) (D 7) (N 5) (& 6) (N 5))
(MAPCAN 'REVERSE X) = (7 D 6 A 5 N)

I. OBJECT List Functions

LISP maintains a system list of atoms called the OBJECT
LIST. The purpose of the OBJECT LIST is to allow references to
atoms by name on input. Thus, whenever READ reads an atom, it
compares the atom with the atoms on the OBJECT LIST. If they
match, then the pointer created references +the atom which was
already on the OBJECT LIST, and no new atom is created. If there
is no match, a new atom is created, and placed on the OBJECT
LIST.

There may be atoms in the system which are not on the OBJECT
LIST. For example, atoms created by GENSYM are guaranteed to be
unique since they are not on the OBJECT LIST. A reference by
PNAME to an atom which is not on the OBJECT LIST will cause a new
atom be created with the same FNAME, and the original atom will
not be referenced.

OBJECT List Functions

the

4,

Lisp/MTS ' ‘ 34
Basic LISP Functions

Atoms on the OBJECT LIST are considered active structure by
garbage collector, and ars preserved.

{OBLIST)
The function (OBLIST) of zero arguments returns a

(long) 1list of all the atoms which are on th2 OBJECT
LIST.

(REMOB A1 . . . An)
The function REMOB removes literal atoms from the
OBJECT LIST. Once an atom is REMOBad, it may no longer
be referenced by PNAME, and will be destroyed during the
next garbage collection, if it is not referenced by any
active LISP structures.

(PUTOB A1 . . . An)
The function PUTOB puts literal atoms on the OBJECT
LIST. If an argument to PUTOB is already on the OBJECT
LIST, then PUTOB has no effect on that atom. If PUTOB
finds an atom on the OBJECT LIST with the same PNAME as

one of its argquments, the PUTOB arqument is put on the

OBJECT LIST "in front of" the other atom, but the other
atom is not remobed. Thus, the most recent atom with a
particular PNAME is the one which will be found by READ,
but if the most recent atom with a particular PNAME is
REMOBed, <+hen a previous atom with the same PNAME will
become “active" (from the point of view of the READ
function). '

(MAPOB FN)
Maps the function FN onto the OBLIST. Unlike the
function OBLIST, MAPOB doas no CONSes and will not pass
+he atom *UNDEF* +o0 FN. The function N must be a
function of 1 argument.

OBJECT List Functions

2, {OR

—,—'——‘—Wﬂ" -

Lisp/MTS 35
Basic LISP Functions

J. Conditional Functions

1o (AND ST . . . Sn)
evaluates the arquments S1 through Sn in turn until
some Si has a value of NIL. AND then stops evaluating
and returns NIL.

If none of the Si has a value of NIL, AND returans
the value of Sn. '

Ex: {AND (CAR 2) (SETQ Z A) (SETQ X 'DONE)) has the
following effect:

If (CAR 2) is NIL, meresly returns NIL.

Otherwise, Z is set to the VALUE of A, and if the VALUE of
A is NIL, then returns NIL.

Otherwise, X is set to DONE, and DONE is recturnad.

2. {OR S1 . . . Sn)

Evaluates its arquments S1 . . . Sn until it finds
one with a value which is not NIL. OR then returns that
value., If all of the arqguments evaluate to NIL, then OR
returns NIL.

Ex: (OR (CAR 2) (SETQ Z A) (SETQ X 'DONE) (SETQ Y NIL)) has
the following effectg:

If (CAR Z) is non-NIL, returns CAR Z.

Othervise, sets Z to “he VALUE of A. TIf the VALUE of
A is non-¥NIL, then returns that value.

If the VALDE of A is NIL, then sets X to DONE, and returns
DONE.

Y will never be set to NIL,

Conditional Functions

N ' I

Lisp/MTS 36
Basic LISP Punctions

| 3. ({COND : 4,
(P1 <S1 . . . SN>)
(P2 <T1 « + « TND)
<01 . . . UND>)) :
is the basic conditional execution format for LISP
The arguments to COND are one or more COND-expressions
of the form: (P <S1 . . . 3Sn>).

(PN

. COND starts with +the first COND-expression, and
evaluates P, which may be any LISP form. JIf the value
of P is NIL, then COND will go on to the next COND-
expression and repeat the process. If the value of P
for the last COND-expression is NIL, then COND returns
NIL.

If the value of P is non-NIL, then COND does not go
on to the next COND-expression. COND will evaluate S1
. « « Sn successively, and the value retarned from COND
will be +the value of Sn. If no Si are given, COND
merely. returns the value of P.

EX: We can see that the functions AND ahd OR are merely
sub-cases of COND.

(AND S1 . . . Sn) = (COND
({NOT S1) NIL)
((NOT S2) NIL)

{ (NOT ;(n-1)) NIL)
((sn))) 5.

(AND S1 . . . Sn) = (COND

or:
{S1 {COND :
(S2 (COND . . .
(coﬁo
(S (n=1) Sn)
Yeeo))))
Ex: (OR S1 . . . Sn) = (COND
(s1)
(S2)

.

(Sn))

Conditional Functions

Lisp/MTS . 37
Basic LISP Functions

4. (SELECT EQUTHING
{E1 <S1 . . . SKN>)
(E2 <T1 . . . TN>)
(EN <U1 . . . UND) . i
FAIL)
is similar to COND, except the values of E1 . . . En
are tested to see if they are EQUAL to the value of
EQUTHING., If so, then S1 through Sn are evaluated, and
the value of Sn is returned as the value of SELECT. -

If E1 does not match EQUTHING, then SELECT goes on
to (E2 71 . . . TN), etc., If E1 matches EQUTHING, and
no Si are given, then SELECT merely returns the value of
joh I

If none of the E1i match EQUTHING, then FAIL is
evaluated, and its value is returned. It is important
to understand that th2 last arguma2nt of SELECT is always
treated as a form to evaluate in case of failure, and
never as a (E1 ST & « & Sn) type of expreaSLOn. Thas, a
FAIL expression must be given.

Ex: (SELECT (GET 'BOCK 'COLOR)
('*BLUE (BLUEFN 'BOOK))
('RED (REDFN 'BOOK))
("GREEN (GREENFN 'BOOK))
(PROGN (PRINT ' (ERROR: BOOK ILLEGAL COLOR))
(ERRCOLOR 'BOOK)))

5. (SELECTQ EQUTHING :
(<A1,LA1> <S1 . . . SN>) |
(<AN,LAN> <S1 . . . SID)

FAIL)

is similar to SELECT, except that the test
conditions, 1if atoms, are compared with EQ, and if
lists, with MEMQ.

EQUTHING is EVALed. If tha first test condition is
an atom (A1), then an EQ test is performed, and if
successful, then the corresponding (51 Sn) are
EVALed. If the first test condition is an atom and not
EQ to EQUTHING, then the next clause is examined. If
the first test condition is not an atom, it mnust be a
list of atoms (LA1) and a MEMQ test is performed betweaen
EQUTHING and the 1list of atoms. If EQUTHING is an
2lement of the list of atoms (the MEMQ returns a non NIL
‘value), then the corresponding (S1 . . . Sn) are EVALed.
If the MEMQ fails, the next clause is examined. If all

Conditional Functions

Lisp/MTS ’ ’ 38
Basic LISP Functions

clauses fail, then the FAIL condition is EVALed.

(SELECTQ (GET 'BOCK 'COLOR)
(BLUE (BLUEFN 'BOOK))
(RED (REDFN 'BOOK)) 7.
((GREEN BLACK) (ODDCOLOR *BOOK))
(PROGN (PRINT ' (ERROR: BOOK ILLEGAL COLOR))
(ERRORCOLOR *BOOK)))

6. (TIMER ID N) :

: The TIMER function allows the user to set up his own
interrupts after a specified amount of CPU time has
elapsed. The ID arqument allows different timer
interrupts to be distinguished., ID may be any LISP
atonm.

The following table indicates the various uses of the TIMER
arguments:

ID X MEANING

non-NIL 0<n<1001 = Set up an interrupt identified by ID, to the
generate a timer interrupt error in N 1.8,
seconds of real time. When the timer the

error occurs, the error form which will
be printed is ID. The value returned is

ID.] arqgu!
non-NIL N>1000 Set up an interrupt identified by ID, to
: ~ generate a timer interrupt error in N
microseconds of CPU tinme. When the 8. |

timer error occurs, the error form which
will be printed 1is 1ID. The value
returned is ID.

non-NIL T : If there is an outstanding request with
an ID which is EQ to ID, then TIMER
returns the «clock time remaining (in
microseconds) in .that raquest.
Otherwise TIMER returns NIL.

" NIL - NIL Cancel all outstanding TIMER requests.

The value of TIMER is NIL.

non-NIL NIL Cancels the pending interrupt request,
if any, associated witn ID. The value

Conditional Functions

Lisp/MTS 39
Basic LISP Functions A

of TIMER is the remaining clock time (in
microseconds) in that request.

7. {TINE TIMEX <TIMEN <TIMETYPED>>)
TIME is an NLAMBDA function, which executes TIMEX
TIMEN times and prints out statistics about the
computation, TIME returns as value the last value of
the evaluation of timex.

TIMETYPE is wused to specify the type of output
which will be produced. the possible values of TIMETYPE
and their meanings are:

1 Print number of cons calls created.

2 Print CPU time used for the computation in seconds,
- garbage collection time is subtracted out.

4 Print CPU time used for garbage collection in seconds.

8 Print feal time used for the computation in seconds.

To obtain more than one statistic pass to TIME the sum of
+he numbers of the statistics wanted. TIMETYPE defaults to 3,
i.e. the number of cons cells created and the CPU time used for
the computation is printed.

TIMEN defaults to 1. If TIHEN is negative a bad integer
argument error will be produced, '

Note -- TIME may be be called recursively.

8. (MTS <A,IDARG>)
The #TS function, besides allowing the user to
return to MTS with the option to restart by calling
(MTS), also allows execution of a single MTS command,
with an automatic restart. This allows the LISP
programmer {as distinct from the user of the program) to
execute MTS commands without the user's knowledg=.

The PNAME of the atom A, or the contents of the
buffar associated with IOARG, is executed as an MTS
command, and an automatic restart is performed.

MTS always returns NIL,

Conditional Functions

Lisp/MTS
Basic LISP Functions

9. (UNTIL PRED S1 S2 . . . Sn)
An UNTIL loop. The forms PRED, S1, S2, . . . Sn are

EVALed repeatedly until PRED EVALS to a non-NIL value.
This value is then returned from the UNTIL function.

10. (WHILE PRED S1 S2 . . . Sn)
A WHILE loop. the forms PRED, 51, S2, . . . Sn are

EVALed repeatedly until PRED EVALs to NIL. The value
returned is NIL.)

Ex: (SETQ X 1)
(WHILE (LESSP X 10) ({SETQ X (ADD1 X)) (PRINT1 X))

will print the line
23456789 10

11. (STOP)
' This function will <cause execution of LISP +o

terminate,

Conditional Functions

40

sSpec
the
The
are
turn

sSpec]
APPL}

mean
value,
Hithi;
as th
withi;

any ¢
argume
be NII
not bj

Lisp/MTS . ‘ 41
Fuanction De2finition

Y. PFunction Defipition

A. Llambda-Expressions

As we noted in previously, the CAR of a form being EVAlLed is
interpreted as a function specification. We described the
situation when this CAR is an atom. In that case, tana atom is
“interpreted as the name of a function to be called.

However, the CAR of a form to be EVAL=zd need not pe an atonm.
It can be an explicit function specification, called a LAMBDA-
expression. The basic form of a LAMBDA-expression is:

(LAMBDA (A1 . . . An) S1 . . . Sn)

When a LAMBDA-expression appears as a function
specification, it is treated as a function where A1 . . . An are
the dummy arguments, and S1 . . . Sn is the body of the function.
The dummy arguments A1 . . . An are bound to the arguments which
are passed to the function, and then S1 . . . Sn are EVALed in
turn. Finally, A1 . . . An are unbound to their original VALUEs.

The value of the LAMBDA—éxpression is the value of Sn.

A LAMBDA-expression may appear any time a function
specification 1is required, for example, as the first argument of
APPLY, MAP, MAPLIST, etc.

Ex: ((LAMBDA (X) (CDR X)) '(a2 B C)) = (B C)

Note: Wwhen we say that an atom is bound to some value, we
mean that its present VALUE is saved, and it is set to the new
value. When the atom is unbound, its previous VALUE is restored.
Within the scope of a LAMBDA-expression, the dummy aryuments have
as their VALUEs the arquments of the function. For example,
within the LAMBDA-expression above, the VALUE of X is (A B ().

¥Ate: The number of arqgquments to a LAMBDA-expression, as for

any . her function, must be the same as the number of dummy .
irgur - 8, Or an error will result, The dummy argument list wmay
* i in which case the function takes no argquments, but it may
itted. '

Lambda-Expressions

Lisp/MTS ' ' 42
Function Deofinition

B. No-Spread LAMBDAS

Another form of LAMBDA-expression may be definad which takes
an indefinite number of argquments. The basic form of the no-

spread LAMBDA-expression is:
(LAMBDA A S1 . . . Sn)

Here the dummy argument list is replaced by a single non-NIL
atom. When a no-spread LAMBDA is executed, the dummy argument 2
is bound to the number of arguments which were given.

The value of any particular arqument may b2 obtained by
calling the function ARG, with the number of the desired
argument. Thus (ARG 1) returns the first argument, (ARG 3) the
third argument, etc. Calling ARG with a number greater than the
number of arguments given will generate an error. :

Because a no-spread LAMBDA-=2xpression may occur within the
scope of another no-spread LAMBDA-expression, +the function ARG
takes an optional second argument, which, if given, must be EQ to
th2 dummy argument of a dominating no-spread LAMBDA,. For
sxample, ((LAMBDA A (ARG 1 'a)) '(C D)) = (C D). If no second
arqum2nt is given to ARG, then the immediately dominating no-

spread LAMBDA is implied.

Ex: (LAMBDA C
' (PROG (X N)
(SETQ N 1)
A {COND ((GREATERP N C) (RETURN X))
((SETQ X (APPEND1 X (CAR (ARG H))))))
(SETQ N {ADD1 N))
(GO 14))) '

This function will return a list of the CARs of all of its
arguments.

No-Spread LAMBDAs

al:
Ths=
anc

The

slig
FLAH
whic
all

FLAKM
the

desi.

three
alway
will

diffe
Howay
into

the ¢
are g
a2xamp

Lisp/MTS 43
Function Definition '

—— e e i e o —

There are two alternate forms of LAMBDA-expressions, vwhich
allow the user to give explicit definitions of N-type functions.
The first of these is the NLAMBDA-expression. The basic spread
and no-spread forms of NLAMBDA-expresssions are as follows:

(NLAMBDA (A1 . . . An) St . . . Sn)
(NLAMBDA 2 S1 . . . Sn) ~

The NLAMBDA-expression operates 1like an ordinary LAMBDA,
2xcept that the argument-designators themselves, rather than
their values, are used as the arquments to the NLAMBDA.

Ex: ((NLAMBDA (X) (CDR X)) (A B C)) = (B ()
{(NLAMBDA A (CAR (ARG 1))) *{A B C)) = QUOTE

The third and last form of LAMBDA-expression is the FLAMBDA.
The basic forms of FLAMBDA- expression are as follows:

(FLAMBDA (A) S1 . . . Sn)
(FLAMBDA R S1 . . . Sn)

The argument-passing conventions for FLAMBDA-functions are
slightly different than for LAMBDA and NLAMBDA-expressions. The
FLAMBDA-expression must alvays have exactly on2 dummy argument,
which in the case of a spread type FLAMBDA is bound to a 1list of
all the argument-designators. In the cas2 of a no-spread type
FLAMBDA, the dummy argument is always bound to the number 1, and
the function (ARG 1) will return the list of ail the argument-
designators.

Ex: ((FLAMBDA {A) A) X Y 2) = (X Y 2)
((FLAMBDA A (ARG A)) X Y 2) = (X Y 2)

It is important to be aware of the effect of APPLYing the
three types of functions. The arguments to APPLY and APPLY1 are
always EVALed before being passed to these functions, and they
will not be EVALed again. Thus, for the purposes of APPLY, the
difference between LAMBDA and NLAMBDA-functions disappears.
Howev ., for FLAMBDA-type functions, the arguments given are made

into : list in the case of APPLY1, or left in their list form in
*he .. : of APPLY, and thus when these functions are APPLYed they
are x::nteed to receive a single argument. The following

Xxa© s« itllustrate the process:

FLAMBDA and NLAMBDA Expressions

R LS. DEESES—

Lisp/MTS uy
Function Definition

(APPLY ' (LAMBDA (X Y 2) (LIST X Y Z)) '(A B C)) = (A B C)
(APPLY ' (NLAMBDA (X Y Z) (LIST X Y Z)) '(A B C)) = (A B C)
(APPLY ' (FLAMBDA (X) (LIST X)) '(A B C)) = ((A B Q)

Note: 1In general, the term "LAMBDA-expression" is a generic
erm including the NLAMBDA and FLAMBDA-exprassions.

AMBDA-expressions (LABEL-expressions)

D. Named

. LISP traditionally provides a special syntax for writing
LAMBDA-expressions which <can <call them~ selves. This is the
LABEL-expression. The basic form of a LABEL-expression is:

(LABEL NAME LAMBDA-EXP)

‘NAME may be any atom. First NAME is bound to the LAMBDA~
axpression which is the second argument of the LABEL-expression,
and the evaluation continues as though the LAMBDA-expression had
bsen givan. The effect 1is to tompo‘arily define NAME as the
LAMBDA-expression, provided that NAME is not already defined as a
function within the systen.

Thus, within the LAMBDA-expression, =xplicit calls to NAME

may be made, which will invoke the LAMBDA-expression recursively.

EX: ({(LABEL COUNT (LAMBDA (L N)
(COND ((NOLL L) N)
{ (COUNT (CDR L) (ADD1 N))))))

'"(A BCDE 0 = 5
The effect of this LABEL-expression is to temporarily define

a function COUNT, which will Teturn the sum of its second
argument and the number of elements in its first arqument.

Named LAMBDA-expressions (LABEL-expressions)

[8

Hh

usa;
fre.
func
LIs:

Lisp/MIS 45
FPunction Definition

k=

I

Accessing Defined Functions

. When an atom is to be used as a function name, a link to the
function definition is maintained on the property 1list of that
atom., The following special system indicators are used to mark
function definitions:

SUBR
NSUBR
FSUBR
EXPR
BUG

SUBR, NSUBR, and FSUBR are indicators which mark the three
types of built-in LISP functions, SUBRS take their arguments
EVALed, 1like LAMBDA-functions; NSUBRs take taeir arguments
unEVALed 1like NLAMBDA-functions, and FSUBRs take their arguments
in a 1list, like FLAMBDA~functions. The property-values
associated with these indicators are pointers to the machine code
for those functions., An attempt to print out one of these links
will merely cause an asterisk ({*) to be printed.

EXPR and BUG are the indicators used to mark the 2 types of
usaer-definad functions. The property-value associated with an
EXPR indicator will be a function specification (usually but not
necessarily a LAMBDA-expression) which will be invoked when the
"parent® atom is used as a function nanme.

If several special system indicators are on the property
list of the same atom, the first (and most recent) on2 will be
used as the function definition for that aton.

Note: There is nothing to stop the user from modifying or
dest.roying the special system properties on the PLIST of an atom.
In fact, since the PLIST of an atom is the CDR of the atom, the
user may access this 1ist 1like any other 1list. This may
frequently b2 a good way to make corrections to a user-defined
function. However, modifying or destroyirng the links to built-in
LISP functions should be done carefully, if at all.

**%See the description the the GETFN function.

Accessing Defined Functions

isp/MTS
Function Definition

F. Defining New Functions in LISP

1. (DEFUN NAME <TYPE> ARGLIST S1 . . . Sn)

DEFUN is an N-type function which provides an
for the user to define one new LISP function by the
its

NAME is the name of the function being

way
usual method of putting a LAMBDA-expression

property 1list.

46

easy

defined. TYPE must b2 EXPR, NEXPR, or FEXPR. If TYPE
is omitted, EXPR is assumed. ARGLIST is a list of dummy

arguments, or NIL, for a

single atom for a no-sprzad type function. S1 .

is the body of thz function.

If TYPE is EXPR, a LAMBDA-exprassion is created.

spread type function; or a

Sn

If TYPE is NEXPR, an NLAMBDA-expression is created.
If TYPE is FEXPR, an FLAMBDA-expression is created.

DEFUN always puts the LAMBDA-expression created on

the property list of NAME under the indicator EXPR.

value returnesd from DEFUN is th2 atom NAME.

_ of a-
Note: If TYPE is omitted, then ARGLIST may be currq
EXPR, NEXPR, or FEXPR. indiqd
that
curr
Ex: (DEFUN SAMPLE C is
(PROG (X N) the
(SETQ N 1) one.,
A (COND ((GREATEEP N C) {RETURN X))
((SETQ X (APPEND X (CAR (ARG N)}))))
(SETQ N (ADD1 N))
(GO 14)))
Thls creates a function called SEMPLE, which returns a list
of the CARs of all of its arguments. SAMPLE takes an indefinite
number of arguments - including none. LIsp,
BUG
. prope
(SAMPLE) = NIL will o
(SAMPLE "{S R T) '(P Q) "{(R)) = (S P R) The
other
' - and ajl
2. (DEFINE (NAME <TYPE> DEFN) . . . (NAME <TYPE> DEFN)) form o
DEFINE is the basic function for defining and naming
new LISP functions. DEFINE is an N-type function which
takes an indefinite number of definitions as arguments.
NAME is always an atom, which is the name of the entity
being defined. TYPE may be EXPR, MACRO, BUG, ARRAY, or D
SUBR, or may be omitted, in which cass EXPR is assumed. express
v sama2 n
For an EZXPR or BUG, the DEFN given 1s put the callir
PLIST of NAME exactly as it appears. Thus, to DEFINE an FLAWE:,
the ar

EXPR, the entire LAMBDA-expression must be written out.

The

Defining New Functions in LISP

Lisp/MTS ' 47
Function Definition

The form and meaninq of BUG definitions will be
2xplained in the two sections to follow. ‘

The ARRAY and SUBR definitions require special
parameters which define 1L1ISp arrays, and which create
linkage to external subroutines, respectively. The form
and meaning of these definitions will ba explained in
sections H and T to follow.

The value raturned fronm DEFINE is the name defined
if only one definition ¥as given, or a list of the names
defined if more than one was given,

Ex: (DEFINE (TEST EXPR (LAMBDA (Y) (PRINT Y)))) = TEST

This defines a function TEST which merely prints
its arqgument.

Note: DEPUN angd DEFINE, which put properties on the PLISTs
of atoms, 4o not work in the same way as pyT. They compare the
current indicator being placed on the PLIST with the first
indicator which is there, and if they are the same, the PVAL of
that indicator is replaced with +the new definition., If the
current indicator does not match the first one on the PLIST, it
is merely placed in front of it. This Process quarantees that
the most recent function definition of an atom will be the active
one.

i. BUGs

In order to facilitate the writing of de-bugging routines in
LISP, a new facility called a BUG has been added to LISP/MTS. = &
BUG is a pseudo-function definition which can be placed on the
property list of an atom already defined as a function. The BUG
will cause an interception of the function on entry and on exit,
The user can display the arguments sent to the fuaction, or any
other LISP structures, can test entry conditions, and can display
and alter the value being returned from the function. Th2 basic
form of a BUG definition is as follows:

(DEFINE (A BUG (DEFN1 . DEFN2)))

DEFN1 is a function specification (usually a LAMBDA-
expression) which must either ba an FLAMBDA-function or have the
sam2 number of arguments as the function a. Immediately prior to
calling the function A, DEFN?1 will b= called. If it is an
FLAMBDA-function, its dummy argument will be bound to a 1list of
the arguments of A. 1If it is a LAMBDA or NLAMBDA function, its

Defining New Functions in LISP

Lisp/HTS ’ ’ 48
Function Definition

dummy arguments will be bound to the arguments of A. For the
purposes of BUGs, LAMBDA and NLAMBDA functions are idsntical.

After DEFN1 is called, A will be invoked as if the BUG were
not present. DEFN1 does not have the power to alter the
arqguments sa2nt to A (except, of course, by physical modification
of the argument structures), but it does have the power to abort
the call entirely. (see Section IV of this manual oa Debugging
Features).

, Upon returning from the function A, DEFN2 is called. DEFN2

may be a LAMBDA or NLAMBDA function of one argument, in which
case that argument will be bound to the value returned from A.
If DEFN2 is an FLAMBDA, its dummy arqument will bz bound to a
list of the value returned from A. The value returned from DEFN2
will replace the value actually returned from the function A, as
the final result of <calling A. Thus the writer of BUGs who
wishes to pass along the value returned from A must be certain to
define DEFN2 to accomplish this. :

Note 1: When a BUG is placed on the property 1list of an
atom, and then a nrew function definition (EXPR OR MACRO) is
placed on the same property list, the BUG will be ignored. In
other words, BUGs must be the first indicator on a property list
~in order to be effective. Thus, in a call to DEFINE which

defines a function and a BUG for the same atom, the function'

d=finition must precede the BUG definition.

Note 2: One or more BUGs appearing with no function

definition on the property 1list of an atom A will genesrate an.

error if A is invoked as a function.

Note 3: Multiple BUGs appearing on the property-iist of an
atom, followed by a function definition, will be treated as
M"stacked” and invoked in order. The input-bug-functions will be
execuited from first to 1last, followed by the function itself,
followed by the output-bug-functions, from last <to first. The
dummy argument of each output-bug-function will be pound to the
value returned from the one following it on the property list.

Note 4: If either DEFN1 or DEFN2 is NIL, then that portion
of +the BUG will be ignored and the function A will be invoked or
exited without intervention.

Example: A bug is put on the function COUNT, to trace the
entry and exit, and to print out the arguments. i

(DEFUN COUNT (L N) (COND ((NOT L) N)
((COUNT (CDR L) (ADD1 N)))))

(DEFINE (COUNT BUG ((FLAMBDA (ARGS)
{PRINT 'ENTRY-TO-COUNT)

Defining New Functions in LISP

ang

The
The linm:
number ¢

Not
ow¥n hash
(DEFINEF

To ob+z:
To s=t
VALUE)

S
Lisp/MTS _ 50 |
Function Definition ’

\
HASHFN may be any LISP function which returns a numeric atom |
as its valus, or may be an external routine called from LISP. : |

iii. Calling External Routines from LIS?P

LISP/MTS provides the option of <calling user-written or .
library subroutines, The major purpose of this feature is to E
allow the use of complex numeric function, hash functions, etc.,

which would be extremely slow if written in LISP. N=2
The basic form used to define external subroutines in LISP -
is: e
({DEFINE (FN SUBR (N FILENAME <ENTRY-NAME>))) _
FN is an atom which will become the LISP name of the L
external function. S
N=3
FILENAME is the name of an MTS file from which the external 5.
cod2 is to be loaded. C.
ENTRY-NAME specifies which entry point in an object file, or <.
which subroutine in a library file is to bs associated with the £

LISP function name FN. If no ENTRY-NAME is given for an object v

file, the default MTS entry point will b2 used. If no ENTRY-NAME

is given for a library file, an error will be generated.

_ Ccr.
If the ENTRY-NAME given is already in <core, then nothing L=
will be loaded, and the LISP function FN will be defined to be cc
+he ENTRY-NAME function. This means that ENTRY-NAHE must be ve
unique, not only within its own file, but within the entire set Nc
of files used in DEFINE statements. ar
_ or.
N specifies the type of calling conventions to be used, and at

. must be 0,1,2, or 3.

N=0 wi
signifies that LISP internal SUBR calling conventions will be wn!
used. Any number of arguments may be given, and these may be in-

nus

any LISP structures. This external mode is for the use of
systems programmers who might wish to write extensions of the
LISP interpreter, and requires familiarity with the internal

structures of LISP.

signifies FORTRAN function calling conventions, with a
floating point return value., Any number of argumants may be
given, and they must be numeric atoms. If an arqument is a
floating-point numeric atom, it will be passed to the function
as a doubla~-precision flecating point number. (This allows the

Defining New Functions in LISP

Lisp/MTS 4 » 51
Function Definition

user to call both single and double precision functions,

although LISP - numbers have only single precision
significance.,) If the argument is an integ2r numeric atom, it
will be passed to the function as a full word integer. (Note

that the numeric value of the atom will be passed, and not the
atomic structure).

Upon return frcm the function, Floating Point Register 0
will be trsated as a single-precision numeric return value
from the function, and a numeric atom will be created with :
that value, and reoturned as the value of the external r
function.

N=2
signifies FORTRAN function . calling conventions, with an
INTEGER return value, Any number of arguments may be given,
and their interpretation will b2 the same as the N=1 case.

Upon return from ths function, Genesral Reyister 0 will be
treated as an integer return valus from the function, and a
numeric atom will be created with that value, and will be ;
returned as the value of the external function. @
N=3 - '

signifies FORTRAN subroutine calling conventions. Any number
of numeric arguments may be given, and their interpretation
will be the same as the N=1 and N=2 case2s. For this type of
external function, the arguments may be modified by the
function, just as if ¢they were +the values of FORTRAN
variables.

Upon return from the subroutine, General Register 15 is
checked first., If the return code is non-zero, then the value
returned from the LISP function will be NIL. If the return ;
code 1is zero, then a list of the (possibly modified) argument %
values will be returned as the value of the LISP function.
Note that a FORTRAN program which modifies the values of its 5
arguments does not alter the value of any LISP structure. - The |
only effect of the modification is to return some new numeric ?
atom as part of the returned value of the LISP fuactiomn.

An argument which was originally passed as an integer
will be interpreted upon return as an integar. An argument
which was originally passed as a floating point number will be
interpreted upon return as a single-precision floating point
number.

Ex: (DEFINE (DEXP SUBR (1 *LIBRARY DEXP)&)

Defining New PFunctions in LISP

Lisp/NTS : - 52
Input/Output

A. Default I/0 Operations

In the simplest application of LISP input-output, all input’
is read from the system input device (SCARDS), and all output is
directed to the system output device (SPRINT). I/0 is always
treated as a stream, with the syntactic boundaries between S-
expressions constituting the divisions between 1/0 operations,
rather than physical records. Thus, several S-expressions may be
r=ad from one input line or one S-expression may span several
input 1lines, Similarly, the basic print function PRIN1T will
"stream" output S-expressions into a single output buffer until
i+ overflows. Then it will be printed, and the current
expression being PRIN1ed will be continued as the stact of a new

buffer.
EX:
(PROGN

(PRIN1 'THIS)

(PRIN1 11IS)

{PRIN1 '2)

(PRIN1 'TEST:)

(TAB 35)

(PRINT *"THAT?'S ALLY)

(TERPRI))) '
is NIL, and the following line will be printed:
THIS IS A TEST: THAT'S ALL

Defaul:t I/0 Operations

conr
aboc
1/0

is acc
creat:
Toutir
viewed

-
s

e

Lisp/MTS ‘ - 53
Input/Output

B. I/0 Data Types

LISP/MTS provides the option of a more flexible (and more
complicated) input/output scheme than the defaults described
above, The basic data structures involved in the scheme are: the
I/0 destination atom, the buffer, and the file.

1. I/0 Destination Atonms

An I/0 destination atom is a pointer atom whose VALUE is a
buffer/file pair to be used in an I/0 operation. All of the I/0
functions described in the previous section accept such a pair as
an optional argument, and if given, the buffer/file pair
specified will be used for that opsration. Such a buffer/file
pair is called an I/0 argument, or IOARG.

If an IOARG is given on input, data is read from the
specified (rather than the system input) buffer, and if the
buffer is used up, a new line is read from the specitied (rather
than the system input) file. On output, data is printed into the
specified (rather than the system output) buffer, and if an
overflow occurs (or the operation is a PRINT), data will be
printed on the specified (rather than the system output) file.

specifically, an IOARG (the VALUE of an I/0 destination
atom) 1is a dotted-pair (BUFFER . FILE), which may be used to
direc*t input/output operations, and may also be used as a buffer
pointer for performing operations on buffers (EXPLODE, etc.). If
either component of an IOARG is NIL, then the appropriate systen
buffer or file will be used. The VALUE of the I/0 destination
atom LISPIN is the dotted-pair of the default system input buffer
aund system input file. The VALUE of the I/0 destination atom
LISPOUT is th2 dotted-pair of the default system output buffer
and system output file, If the user changes the system default
buffers or files using the STATUS function (the equivalent of a
r2ad or write select operation), he may still have access to the
‘original system IOARGs through LISPIN and LISPOUT.

2. Buffers
2 buffer is an atomic structure with a variable PNAME, which.
is accessed through one or more IOARGs. New buffers may be
creat2d and 1linked to I/0 destination atoms by calliing the OPEN
routine. Buffers are used for input/output, and may also be
viewed as charactar strings.
The maximum size of a buffer is 255 characters.

Any PRINT operation into a buffer will <cause a

I/0 Data Types

Lisp/MTS . : 54
Input/Output

representation of the arqument to be placed in the Dbuffer. Any
READ operation from a buffer will create and return the LISP
structure represented by the next S-2xpression in the buffer.
Options available +through the STATUS function allow the user to
suppress the insertion of blanks between printed S-expressions,
or to intercept the performanc2 of physical I/0 when a buffer
overflows, and execute some user-written <routine iastead. The
user may also define Read-Macro and Print-Macro atoas.

Wwhen a buffer 1is passed as an argument to a function, it’
will always be the IOARG whose CAR is the buffer, rather than the
buffer itse21f, which is passed. For example, functions such as
EXPLODE, vwhich forms a 1list of one-character atoms from the
characters in a buffer, or GENSYM, which will created an aton
vhose PNAME 1is the current contents of the buffer, expect an
IOARG, rather than the buffer itself to be passead. The FILE
portion of +the IOARG will be ignored. Thus, tae IOARG also
serves as a buffer pointer throughout the system. However, when
functions such as READLINE, TAB, and SKIP return buffer pointers,.
it is the actual buffer structure and not the IOARG which is

r2tuarned.

The atomic structure of a buffer extends only to its PNAHME.
Buffers may not be given VALUEs and PLISTs by the user. However,
a buffer may be part (or all) of the list-structure argument +to
PRINT or PRIN1. For printing purposes, a buffer is treated like
any other atom, and its PNAME will be inserted into the output

buffer.
Ex:

normal conditions of operation, the character string * (PRIN1
(CAR LISPIN) BUF1)" will be placed in the buffer associated

with I/0 Destination Atom BUF1.

3. Files

The PFILE is an internal LISP. structure which has no
significance to the user except that it serves to direct input
and output calls to MTS files and devices. A FILE may reference
any MTS file name (MYFILE), device name (*T*, *SINK¥), logical
unit name (SCARDS), or logical unit number (0 - 9).

Several files can be attached to a single buffer, Dby
creating several IOARGs with the same buffer component. If these
" IOARGs are used for output, data printed will all go to the same
buffer, but if the buffer overflows, the file for that I/0
operation will be wused as the output file., Similarly, several
buffers can be attached to the same file by creating several
IOARGs with the same file component. In that case, output from
all the attached buffers will be interleaved in tahe file.

I/0 Data Types

If (PRIN1 (CAR LISPIN) BUF1) appears as an input line under

#* Vv

* V o# Vv

{P1]

T g by

Lisp/MTS . 55
Input/Output

C. Buffer and File Prefix Characters

Any LISP buffer may have a prefix of up to 255 characters,
which may be set and unset by calling the STATUS Y function. The
purpose of the buffer prefix is to allow prefix strings to
precede output lines., All PRINT operations, including TAB and
SKIP, will treat a buffer with an active prefix as thouqh it
begins after the prefix.

Note: Prefix characters use up character positions at ‘the
beginning of a buffer, and are included in the buffer size limit
of 255 characters.

Aarning: Since READ operations do not recognize buffer
prefixes, a physical read operation into a buffer with a prefix
will destroy or replace the prefix.

A file prefix character may b2 attached to any LISP file by
calling the STATUS 14 function. This has the effect of calling
the MTS function SETPFX which will cause any input from or output
to the terminal or line printer to be prefixed by the prefix
character. ‘

Ex: Here is a sample run in which a buffer is created, given
3 prefix, the prefix is used, and then the prefix is turned off.
Lines which are not indented are typed in by the user.

¥ (OPEN (ABUF 132)) ;a buffer is created with length 132.
;ABUF is the I/0 destination atom.
;The file portion of the IOARG
;creatad will be NIL.

> NIL
* (READ ABUF) ;causes a line to be read
.3from the system input device into ABUP,
;and the first S-expression found
3;to be returned as the vaiue of READ.
THIS IS A TEST shere is the input 1line.
> THIS :
< (STATUS (10 ABUF T) symakes the current contents
sof ABUF a prefix.
> 0
* (TERPRI ABUF) ;this has no effect, since the prafix
' ;is not tr=2ated as buffer contents.
g NIL .

* (PRINT 'PRINT2 ABUF)

THIS IS A TEST PRINT2
' PRINT2
* {STATUS (10 ABUF NIL)) ;turns off the prefix.
: 14
* (PRINT 'PRINT3 ABUF)

. THIS IS A TEST
PRINT3
PRINT3

Buffer and File Prefix Characters

Lisp/HTS 56
Input/Output

* (PRINT 'PRINT2 ABUF)
PRINT2
> PRINT2

D. Buffer Overflow Intercaption

The user may, by including an optional argument, attach a
read intercept function or a print intercept function to an I/0
call, The arqument must have as its value a function which takes
one argument, If a read intercept function is includesd, on any
attempt to do a physical read into that buffer, the intercept
function will be called first. The IOARG for that READ will be
passed to the intercept function as its argument. If a write
intercept function is specifed in a PRINT, PRIN1, or TERPRI call,
on any attempt +to do a physical write from the buffer, the
intercept function will be called first. The IOARG for that
PRINT operation 1is passed as +*he rgument to the intercept

function.

Upon return from an intercept function, the LISP system will
complete the I/0 operatiomn. '

E. End-of-file Processing

Fach file has an EOF function, which will be <called if an
and~-of-file 1is encountered while reading from that filie. An EOF
function may be attached to a file by calling STATUS 1Z.

An EOCOF function must be a function of one arqument. When
+the function is called, the I0ARG for the READ operation will be

passed to it.

A1l files initially use the system default EOF function,
called EOF, which causes the file to be closed. Whenever a file
is closed, it is changed to reference *MSOURCE*, An end-of-file
encountered on *MSOURCE* 'will cause the user to be asked if he
wishes to continue if the run is interactive. 1In batch mode, an
end~-of-file on *MSOURCE* causes immadiate termination of
execution. The value of the function EOF is NIL. :

The action which will be %aken on return from an EOF
function 1is determined by the value r2turned. If the value is
non-NIL, the READ is aborted, and that value is returned as the
value of READ. If the value r=2turned from the EOF function is

NIL, the READ will be tried again.

. End-of-file Processing

BV H#V RV EV % % % % % % x

Wi
en
apy
mu

- b by By
e SO

ot B @
R N

bes

the
stres

jes]
b

—

) Lisp/MTS ' - 57
Input/Output

F. READMACRO and PRINTMACRO Functions

It is possible for the LISP user to define functions which
will be called whenever a particular atom or character is
encountered in the input stream, or whenever a particular aton
appears in the output stream. A Readmacro or Printmacro function
must be a function with one dummy arqument. An atom is defined
as a Readmacro or Printmacro by calling STATUS functioans 2, 3, or
4 with the appropriate arquments.

1. Immediate READMACRO Atonms

(STATUS (2 HIT T)) defines the atom HIT as an immediate
Readmacro. If HIT is encountered in the input streanm during a
READ operation, the function associated with HIT will be invoked
imm2diately. The function HIT must be a function of 1 arqument
(the IOARG). :

Upon return from the HIT functlon, the follow1nq action will
be taken:

If the value return=2d from HIT is an atom, then HIT
will simply be "spliced out™ of the input sStream, and the
READ will continue.

If the value returned from HIT is a 1list, then the
elements of that 1list will be "spliced in" to the input
stream in place of HIT, and the READ will continue.

The Readmacro function may itself call READ, in which case
the S-expression immediatzly following the atom HIT in the input
stream will be returned.

Ex:

*

* (DEFUN HIT (X)

* {(COND ({(ATOM (SETQ X (READ)}))

* {LIST (LIST X 'HIT))) .

* ((LIST (MAPCAN ' (LAMBLA (3a)

x (LIST A 'HIT))
* x>

> HIT

* (STATUS (2 HIT 7))

o NIL

"(A B C HIT (D E F) G)

(A BC (D HIT E HIT F HIT) G)
(A B CHIT D E F)

(A B C (D HIT) E F)

READMACRO and PRINTMACRO Functions

—w’i"'

Lisp/MTS ' ' 58
Input/Output

2. Delayed READMACRO Atoms

(STATUS (3 HIT T)) defines the atom HIT as a delayed
Readmacro. If HIT 1is encountered in the input stream during a
READ operation, the function associated with HIT will be invoked,
but not until after the current READ has been completed.

Thus, if the HIT functionr calls READ, it cannot read part of
the "current" S-expression, but will return <tne S-expression
following it. ’

Upon return from the HIT function, the value returned (if it
is a 1list) will be *#spliced in" to the original S-expression
which was read, at the point where the Readwmacro atom was
encountered, If +the value returned is an atom, +*hen the
Readmacro atom will merely be "spliced out" of tane original S-
expression.

Ex: Using the same definition of the Readmacro HIT:
(STATUS (3 HIT T))
NIL
'"(A B C HIT D E F)
(SPLICE THIS)
(A B C (SPLICE HIT THIS HIT) D E F)

VvV % Vo

Note for Readmacro- Users: The ' feature in LISP/HTS is a
substitution (not a Readmacro), and does not involve an extra
call o READ.

3. PRINTMACRO Atoms

Printmacros have been inplemented sliqghtly differently from
"Readmacros. (STATUS (4 ATM T)) will define ATM as a Printmacro
atom. Whenever an attempt is made to print a list wvhose CAR is
ATM, the Printmacro function will be invoked. Upon return from
the Printmacro function, its value will determins what action is
+0 be taken. If the value returned is NIL, the list (whose CAR
is ATHM), will be printzad normally, as if no Printmacro were
+thare., If the wvalue returned is non-NIL, printing resumes,
ignoring the 1list passed to the Printmacro function. (It is
assumed that the Printmacro function printed the iist.)

Printmacros are not defined as Exprs, but as PMACROs. They
must be functions of 1 argument which will be bound to a CONS
cell whose CAR is the list which was to be printed, and whose CDR
is the IOARG. .

EXx: To re-insert the charactar ' for ths QUOTE function,
e
* (DEFPROP QUOTE PMACRO

(LAMBDA (X)

READMACRO and PRINTMACRO Furictions

LAV JAVER DR TRV T

bea
alt
Cod
ato
How,
ate
racq
24qu]

Lisp/MTS ‘ o 59
Input/Output

(COND ((EQ (LENGTH (CAR X)) 2)
(PRIN1 '™tn (CDR X) 2)
(PRIN1 (CADAR X) (CDR X) 2)
™ _
QUOTE
(STATUS (4 QUOTE T))
NIL

"(X 'Y '(A B) (QUOTE) QUOTE *QUOTE)
(X 'Y '(A B) (QUOTE) QUOTE !QUOTE)
'((QUOTE) (QUOTE A) {(QUOTE A B) !'*''D)
({QUOTE) 'A (QUOTE A B) t®11p)

#V ¥V YV EV R R H R

4., The READMACRO Character Characteristic

A single-character imm=2diate or delayed Readmacro atom may
be given the additional effect of a READMACRO character by
altering its disposition in the READ scan tabla. {See STATDS
Codz 5 description). A READMACRO character need not occur as an
atom, but may occur at the beginning of any of any S-expression.
However, a READMACRO character which is strictly embasdded in an
atom, or which occurs at +the end of an atom, will not be
racognized. Ex: Re-define the character Q as a Readmacro
2quivalent to the system ' substitution function.

(DEFUN Q (X) (LIST (LIST 'QUOTE (READ))))
(STATUS (5 Q 28) (20 T))

Q3 = A

Q(A B C) = (A B C)

QQ(A B C) = (QUOTE (A B C))

READMACRO and PRINTMACRO Functions

:
{
i
|
H
]

G. TIke

Lisp/MTS ' ' 60
Input/Output

FLAGS Arqument of I/0 Functions

Many of the 1I/0 functions contain a FLAGS argument which
spacifies certain conditions on the operation. This arqument is
an integer which is the sum of all specifications. If a buffer
intercept function is to be includesd, then this number mwmust be
present (if no special processsing is to take place, then 0 should
bz us24).

The FLAGS specifications have the following meaning:

O £ N -

The

No Readmacro Processing

No Spacing Between s-expressions Or Output
Place Double Quotes Around Spacial Atoms
Output In Terse Mode (one line only)

FLAGS argument will have as it value the sum of the

desired specificaions. For example, if No Macro Processing and

Doubl=

or 5.

1o

L

Quoting is desired, then the value if FLAGS w#will be 1 + 4§

Input/Output Function Descriptions

1. (OPEN (IODA BUFFER <FILE>) . . . (iODA BUFFER <FILE?>))

Establishes any number of new I/0 destination atoms.

IODA mus*t be an atom, and its VALUE will pe set to the .

new buffer-file pair which is creatad. BUFFER must be
an integer between 1 and 255, or a previously defined
I/0 destination atom, or NIL., 1If it is an integer, a
new buffer will be created with that initial size. If
it is an I/0 dsestination atom, the butffer attached to
t+hat atom will be used. If it is NIL, then the buffer
portion of the IOARG created will be NIL, and the systen
input and output buffers will be used whenever that
IOARG is specified in an I/0 call.

FILE must be an atom, a lis%* of a single atom, or a
previously defined I/0 destination aton. If it is a
{non IODA) atom, then that atom is interpreted as an MTS
file or device name, . g. MYFILE, *Tx, If it is a
list of a single atom, then that atom is interpreted as
a 1logical unit number or name, e.g9. (3), (SCARDS). If
FILE is a previously created I/0 destination atom, *hen
the FILE portion of that atom will be used.. {This
feature allows the user to associate mnmultiple buffers
with one file). If the FILE argument is omitted, then
the FILE portion of the IOARG will be NIL. When the
I0ARG 1is specifiad 4in an I/0 call, the system default
file will be used.

Input/Output Function Descriptions

Lisp/MTS 61
Input/Output

OPEN is a special-form type function (an FSUBR),
which takes 1its arguments unevaluated. The value
returned from OPEN is NIL.

). (EOF IOARG)
closes the file associated with its arqgument and re-
associates it to *MSOURCE*, An end-of-file on *MSOURCE*
will cause a CONTINUE? prompt in interactive mode, and
termination of exacution in batch mode.

The function CLOSE has the same effect.
3. {READ <IOARG <FLAGS <INTERCEPT>>>)

‘ The READ function takes a numb2r of optional
arguments., If any optional argument 1is given, all
preceding ones must also be given.

READ causes the next S-expression in the current
buffer to be read (b=ginning with the next atom or 1left
parenthesis), and the corresponding LISP structure to be
returned as the valua of READ. If the current buffer is
exhausted, a new line is read from the current file, and
the operation continues.

IOARG identifies the Dbuffer-file pair to be used
for the READ. If IOARG is not given, or is NIL, the
system input buffer-file pair will be used..

FLAGS, if included, specifies the special operation
(possible disabling of Readmacros).

INTERCEPT must evaluate to a function of one
argument which is the btuffer intercept function. :

. (READCH <IOARG <FLAGS <INTERCEPT>>>)

READCH works just 1like READ, except that each
character in thes buffer is treated as a separate S-
expression, and is returned as a one-character atom.
Commas, parentheses, periods, double-quotes, blanks, and
other special characters are treated like any other
characters, and simply formed into single-character
atoms.

WARNING: The user should baware of single-character
Read-Macros which will be activated by READCH if the

Input/Output Function Descriptions

Lisp/MTS 62
Input/Output

character appears, even incorporated in a character

string. Similarly, multiple-character Read-Macros
cannot be activated by READCH.

(READLINE <IOARG <FLAGS <INTERCEPT>>>)

READLINE causes a new line to be read 3into the

current buffer. The previous contents of the BUFFER ARE
DESTROYED,

IOARG, if given, idsntifies the buffer-file palr to
be used for the READ. If IOARG is not given or is NIL,
the system input buffer-file pair will be used.

(PRINT S <IOARG <FLAGS <INTERCEPT>>>)

PRINT takes three optional arquments if an
optional argument ~s given, the preceding arquments must
also be given.

S is the S-expression which is to be printed.
PRINT will perform a TERPRI, will print the expression
into the current buffer, and will TERPRI again. The
value returned from PRINT is S.

IOARG identifies the buffer-file pair for the print
operations., If IOARG is not given, or is NIL, the
system output buffer-file pair will be us=2d.

FLAGS specifies what type of special processing is
to take place.

INTERCEPT is the optional buffer intercept fuction.
INTERCEPT must evaluate to a function of one argument.

(PRIN1 S <IOARG <FLAGS (INTERCEPT>>>)

PRIN1 simply places the print-name of S in the
current buffer, after any previous conteats of the
buffer. If the buffer overflows, its contents are
printed on the current file, and the operation
continues. The arguments of PRIN1 have the same meaning
as those of PRINT. '

Input/Output Function Descriptions

10.

Lisp/MTS 63
Input/Output '

8. (TERPRI <IOARG <FLAGS <INTERCEPT>>>)

TERPRI causes the contents (if any) of the current
buffer to be printed out in the current fiie. If the
buffer is empty, TERPRI does nothing. The value of
TERPRI is normally NIL, however, if the print operation
is intercepted, the value returnsad Irom the intercept
function will be passed back as the value of TERPRI.

The IOARG and FLAGS arguments have the same meaning
as they do for PRINT.

9. {TAB N <IOARG <FILL>>)

TAB causes a tab operation to position N in the
current buffer, (The first position in a buffer is 1;
thus (TAB 1) is a way to clear a buffer without printing
it). If the buffer has a prefix, TAB Operates relative
to the prefix. If N is non-positive, or larger than the
buffer size, an error is generated.

IOARG identifies the current buffer for the TAB
operation. If IOARG is not given, or is NIL, then the
System output buffer is used. The file portion of IOARG
is ignored.

FILL, if given, must be an atom or a buffer pointer
(I0ARG) . The PNAME of FILL will be used as a filler for
any positions skipped during a TaB operation to the
right.

10. {SKIP N <IOARG <FILL>>)

SKIP causes a skip operation N spaces to the right.
If ¥ 1is negative, the. skip will be to the lef+., An
attempt to SKIP outsids the buffer will generate an
error.

IOARG identifies the «current buffer for the skip
operation., If IOARG is not given, or is NIL, then the
“ystem output buffer is used. The file portion of ICARG
s ignored.

FILL, if given, must bas an atom or an buffer
inter (IOARG). The PNAME of FILL will be used as a
~..ler for any positions skipped during a SKIP operation
“¢ the right.

Input/Output Function Descriptions

Lisp/MTS 64

Input/Output

Note: TAB and SKIP affect the value of the buffer
length for output only. These routines cannot be used
for the purpose of skipping around in a buffer to READ

various positions.

Input/Output Function Descriptions

The

(DU

§
Lisp/MTS 65
Error and Debugging Functions

e v vy i ST v e 2

A. Error Atoms, Forms, and Expressions

There are 39 different errors that are recognized by the
LISP systen. Wwhen an error of type N occurs, the arror message
for that type becom2s the "current" error messag=2, the expression
which generated the error (e.g., the illegal argument) becomes
the fcurrent" error expression, and the error form associated
with that typs is evaluated., After the error form is evaluated,
LISP is re-started at the top lavel, :

The error form for an error number is accessed through an
atom, called the error atom. A call to the STATUS 1 function
will associate an error number with a given atom. From that time
on, whenever that error type occurs, the VALUE of that atom will
bz used as the error form.

A At present, there are three pre-defined error atoms within
the LISP systen. The atom *ATTN* is the error atom for error
number 1, which occurs whenever an attention interrupt is
generated. The atom *PGNT* is the error atom for error number O,
which occurs vhenever a non-numeric program interrupt occurs.
The atom *ERR* is the error atom for all other errors.

ATTN,*¥ERR*, and *PGNT* are inritially set to the forn
(DUMP). See the description of DUMP below.

Error Atoms, Forms, and Expressions

Lisp/MTS : : 66
BError and Debugging Functions

B. System Error IQARGs

' We have seen that there are initially two buffers maintained
by the LISP system, the system input and output buffers, and the
the two IOARGs LISPIN and LISPOOUOT initialiy point to these
buffers (in their paired form with the system I/0 files). There
are also two system error buffers maintained by the LISP systen,
and the two TIOARGs ERRIN and ZRROUT initially point to these
buffers (in their paired form with the system error I/0 files).

The system default =rror input file is GUSER, and the
default error output file is SERCOMN.

whenever a BREAK 1lcop is =ntered, the system error IOARGS
are used instead of the normal IOARGs for +the2 READ-EVAL-PRINT
loop and for all user-generated I/0 which does not specify its

own IOARGSs.

C. Error Functions

1. (BREAK <5>)

Calling BREAK causes the system to enter a break
loop. A break loop is a READ-EVAL-PRINT loop identical
to the top-level loop of LISP, except that the ERRIN and
ERROUT buffers and files are used for r=ading and
printing vrespectively. After exiting from the BREAK
loop, execution continues normrally.

S is an optional argument which, if given, will be
evaluated before the BREAK loop is entered.

The way to exit from a break loop is to evaluate
NIL at the break level (i.e., just typ=s in NIL). The
valus returned from BREAK is.always NIL.

Note: The file Prefix characters for LISPIN and
LISPOUT are * and > respectively, The file prefix
characters for ERRIN and ERROUT are ? and +
raspactively. Thus, th2 user can easily tell whether or
not he is in a break loop. :

Error Functions

Cc

PTo/
fir:
fir:
elis
comy
con*
argu
{(arg
user
arguy
cont
defa

back

loca:
code

is [
StarH
roun«
aASsur
struc

Lisp/MTS 67
Error and Debugging Functions '

2. (DUMP <N <SH>>)
DUMP is the basic system dumping and <trace-back Co
program. DUMP can b2 called in two modes., The first
mode occurs when no second argument is given. In this
mode, the status of +the vrightmost =ignt bits of N
indicate whether various error recovery actions should
be performed. Th2 code values described below should be
added together to specify the actions desired. (The
numbers in parentheses after the action specification
indicate the relative order of performance of ‘the
various actions). If the first arqument is omitted, the
default value is 7.

Code Value Action

1 Print current error message and expression which
generated the error (1).
2 Print a backtrace of EVAL forms. The number

of levels to be printed is determined by the
system backtrace numbar - STATUS Code 26 (5).

4 Call BREAK (6).

8 Print PSW and contents of General Registers (2).

16 Dump 32 bytes of core starting 16 bytes before
PS¥ location (3).

32 Dump 32 bytes of LISP stack data (for system

programmer) {(4).

There are three parameters controlling the backtrace
produced by DUMP which may be altered by calling STATUS. The
first is STATUS 30, the terse mode switch., Ordinarily, only the
first output 1line of each expression 1is printed in order to
eliminate long trace-backs. This switch may be reset to give a

complete trace-back. The second parameter whichk may be
controlled is STATUS 27, which controls the printing of
arguments, rdinarily the CAR (function specification), and CDR

{argument list) of each form in the backtrace is printed. The
user may, by changing this switch, suppress the printing of the
argument lists. A third parameter, access=2d4d by STATUS 26,
controls +the number of forms which will be backtraced. The
default is 3.

(DUMP 0) is a special code'which causes a full EVAL form
back-trace to be printed.

Note: DUMP codes ({other than 1 and 4) begin the dump at the
location of the most recent error block on the stack. These DUHP
codes should only be used within an error block.

The second mode of DUMP operation occurs when a SH argument
is given. If SW 1is an integer, then that number of bytes,
starting at '‘address N, will be dumped in hexadecinmal. (5% 1is
rounded +to a multiple of 16). If SW is not a number, then N is
assumed to be the address of some LISP structure, and that
structure is printed. ©Note that the number N is normally treated

gError Functions

o

' Lisp/MTS 68
Error and Debugging Functions

as a DECIMAL number; this can be changed thru status 24.

Note: The wuser «can very easily gensrate a type 0 error
{program interrupt) by asking DUMP to print a LISP structure, and
giving it an address which is not a LISP structure. This will
not do any harm, however.

DUMP always returns NIL.

3. {UNEVAL <N,S1> <<KT,S52>>)

UNEVAL allows the user to look back on the systenm
stack and trace the path that was followed by the systen
to get to its current position. It may be used from an
error form or break loop to restart froa any given
point.

Each time EVAL is called 4internally, a block of
information called an EVAL block is stored on th2 stack.
The EVAL block contains the form which was to be EVALed,
plus all revelant information needed to restart at that
level. #®hen the first argument to UNEVAL is an intager,
it refers to the Nth previous EVAL block on the stack.

For example, if you are in a break 1loop, and you
type in (UNEVAL 1), the last form sent to EVAL will be

returned. This will be (BREAK) if you entered the BREAK

loop by calling BREAK directly, or (DUMP N) if the BREAK
loop was entered as part of a DUMP operation.’ (UNEVAL
ignores its own EVAL block).

If the first arqument to UNEVAL is some expression
S which is not an integer, then it refers to the most
recent call to EVAL for which the CAR of the form to be
EVALed.was EQUAL to S. For example, if you evaluate
(ONEVAL 'ASSOC), UNEVAL will return the most recent
outstanding EVAL-form which has ASSOC as its CAR.

If the first argument to UNEVAL is a number larger
than +the «current EVAL depth, or if it is a structure
which is not EQUAL to any function specification on the
stack, and the second argument is present, an error is
generated. If +the first argument to UNEVAL is a
negative number, UNEVAL interprets this as a reference
from the top-level form, and either returns that fornm,
or unbinds to it (depending on the value of the second
argument).

Once UNEVAL identifies the correct EVAL block, the
second argument determines the action to be taken., If
no second argument is given, UNEVAL returns the form
that was sent +to EVAL at that level. Thus, a call to
UNEVAL with no second argument does NOT change the

Error Functions

|
Lisp/HTS 69 | !
Error and Debugging PFunctions ﬁ

current level of execution, If the second arqument to
UNEVAL is T, then execution is re-~started at that level. }

Thus, if you evaluate (UNEVAL 'ASSOC T), the system will o
exit from its current level, unbind all bindings down to ‘

the last time ASSOC was called, and re-start the call to
ASS0C. :

If the second arqgument to UNEVAL is anything other
t+han T, then execution is re-started at the indicated
level, but the form given as the second argument is
substitutad for the form which was originally sent to
EVAL. Thus, if you evaluate (UNEVAL 4 '{APPEND X Y)),
the system will unbind to the 4th previous EVAL block,
and will then proceed to evaluate (APPEND X Y) in place
of the form which was originally given.

Note: The user should be aware that unbinding to a
previous LISP 1level will not ©restore altered data
structures, proparty lists, or VALUEs changed via SET or
SETQ.

4, {DISPLAY <X,S1> <B,F,L> <i>) .
The DISPLAY function allows the user to locate a %i

position on the stack with reference to an EVAL block, ‘
and then display one of the following: ,
a, The first bound value of a particular atom A, that
occurred after that EVAL block was creatzd.
b. If the EVAL block is a COND, a PROG, a SELECT, a
LAMBDA-expression, or any function specification which
aventually produc=2d a LAMBDA-expressioan to be applied,
then DISPLAY will return the next COND or SELECT
expression *o be processed, the next PROG expression to
be EVALed, or +the next sub-form of the LAMBDA to be
EVALed. .
C. The level in the stack {(a negative number, counting
from the top level). _
d. The value ARG would return at that eval block.

The first argument to DISPLAY has the sanme
significance as the first argument of UNEVAL. If it |is
an integer, it refers to an EVAL block N bafore the
current block. If it is not an integer, it refers +¢to
the most recent EVAL block which has S1 as its CAR. As
in UNEVAL, a negativa intesger references the top-level
fornm. If the EVAL blcock referenced does not exist, NIL
is returned. -

The second argument to DISPLAY is either B, F, L or
a npumber: B for binding (option a. above) and F for
form (option b. Aabove), L for level (optiom c. above),
or a number which is taken as the first arqument to ARG
{(option 4. above). :

Ercor Functions

5.

6.

Lisp/MTS ‘ ’ 70
Error and Debugging Functions

The third argument to DISPLAY is given when=ver the
second argument is B or a number. It is the atom whose
binding is to be found. If A was never bound after the
EVAL block referenced was c¢reated, then the current
VALUE of A is returned. If a binding of A is found,
then the value stored on the stack will be returned.
(This is the old VALUE of A, that is, the VALUE which
was saved away to be restored on exit from a PROG or

LAMBDA). If the second argument was a number, the third-

is the optional second argumant to ARG (the dumnmy
variable name).

Note: In DISPLAY mode F, it is possible to find a
COND, SELECT, PROG, or LAMBDA bleck on the stack which
is not yet being executed. This will occur if the user
interrupts during the binding of the PRUG-variables, or
during evaluation of the arqguments of a LAMBDA function.
In this case, there is no "next form" defined for that
block, and an error type 37 will be generated.

DISPLAY is an N-type function, and its arguments
are not EVALed.

(MODIFY <N,S1> <B,F> <A> S2)

(ERR

The MODIFY function allows the user to modaify one of
~the bindings or expressions accessible from DISPLAY

The arguments of MODIFY have the sane significance .

as those of DISPLAY, except that S2 will replace the
saved VALUE of A (in B mode) or the next expression to
be processed (in F mode). MODIPY, like DISPLAY is an N-
type function. However, S2 will be EVALed and its value
will be used as the replacement binding or expression.
The value returned from MODIFY is the value of S2.

S)

This function generates a. type 15 error, with S
treated as the expression which generated the error
{error expression). In addition, the atom ERR is set to
S.

Error FPunctions

7.

8.

9.

Lisp/NTS 71
Error and Debugging Functions

(RES <N>)

RES is the LISP internal restart function, and may
be called to restart after an attention interrup:t or
STEP error call, or a timer intarrupt. These interrupts
are processed by LISP as follows: A single attention
interrupt will <cause a flag to be set, and when LISP
reaches a state from which it <can be restartad, the
interrupt will be processed, and the error forn
associated with a type 1 error will be EVALed.

If a second attention interrupt 1is issued before
the first one is processed, it will be recognized
immediately and the error form will be EVALed. However,
wvhen this occurs, no restart is possible.

Assuming that only one interrupt has bsen issued, a
call to RES with no arguments will cause exeuction to be
resumad at the point where it was interrupted. If the
argument N is given, it must be a positive integer, and
the Nth previous outstanding interrupt will be
restarted.

TIMER interrupts are always deferred until the
system reaches a state from which it can be restarted..
However, upon r2ceiving a TIMER interrupt, ths systen
immnediately prints a comment on *MSINK¥ acknowledging
the TIMER interrupt. At that point, the user may
interrupt if he so dezsires. If an attention interrupt
is issued while a timer interrupt is still pending, it
will be processed immediately (and no restart will be
possible).

{TRACE FN1 . . -« FNn)

The function TRACE turns on an indicator on each
atom FN1 . . . PNn which will be detected which will be
detected when that atom's function is EVALed. The list
of argquments will be printed on entry and the value will
be printed on exit. FN may have an EXPR, SUBR, or any
type of function. .

(UNTRACE FN1 . . . FNn)

Untrace undoes the £lagging don2 by the function
TRACE. ‘

Error Functions

Lisp/MTS ’ 72
Error and Debugging Functions

10. (STEP N)

This function <can b2 used to step through the
execution of a form at a controlled rate. N specifies
the number of forms which will be evaluatasd, after which
an error {error number 24) will be generated, Calling
(STEP 0) will turn off the step Jrocess without causing
an error. Thus, for example, {STEP 1) will cause an
error after executing the next form.

- Note == BAny LISP error will automatically turn off
the STEP function, as will a return to top-lsvel LISP.

D. Error Messages

Following is a list of the errors recognized by the systenm.

Each type of error sets up an error messagye and an error
axpression, which may be obtained (or altered) by calling STATUS,
or which may be print=d4 by calling DUMP. Since the default error
form for all errors is (DUMP), which includes a printout of the
current error message and errpr expression, these will normally
be printed every time an error occurs. Error types 1-7 do not
ganerate an error expression. Errors typ2 8 and above use as an
arror expression +the argument which causa2d the error, unless
otherwise noted.

Code Meaning

0 Program Interrupt
1 Attention Interrupt
2 Timer Interrupt (See the Section on <Coatrol functions

for a description of the TIMER function).

3 A function was called with too few arguments.

4 A function was called with too many arguments.

5 Numeric operation failure - numeric overflow, division
by 0, etc.

6 An array specification contained the wronq number of
subscripts.

7 PVAL of SUBR indicator not a SUBR.

8 A list was required as an argum2nt, but somathing else

was given.

Error Messages

10

11
12
13
14

15
16
17

18
19

20
21
22

23
24
25
26

27

Lisp/MTs 73
Error and Debugging Functions

An atom was required as ah arqument, but Something else
was given,

A numeric atop “as required ag an argument, byt
Something else was given,

‘An integer atom was Tequired as ap argument, but

Something else was given,

A buffer (I0ARG) was fequired as gap argument, byt
Something else wag given,

A file (IOARG) was required as ap arqument, but
something else was given,

An array name was required as ap argument, put something
else was given,

A call to the ERR function has occurred.

Syntax error detecteq by READ, The @IIor expression is
the contents of the READ buffer,

Attempt to OPEN a buffer with g, size which is non-
positive or greater than 255

Invalid Iequest code number in a call to STATUS.
Invalid arror number given ip a STATUS Code 1 call,

Lttempt +to set a "get-onlyw STATUS cCode. (See the
STATUS function).

Attempt to re-set a buffer to g size less than itg
current contents,

STEP counting completed,
A sytax error in a PROG. The 1ist of PROG variables was

not a 1list of atoms. The error €xpression is the PROG
variable list vhich was given. -

ARG was calleg where there isg no Outstanding No-spread
function, or ARG was calleg with +two arguments, and the
Second argument ig not the name of any Outstanding No-

Ercor Messaqges

28

29

30

31

32

33

34

35

36

37

38

39

Lisp/MTS ‘ ' 74
Error and Debugging Functions

spread dummy argument.

ARG was called with a number which is non-positive or
greater than the number of arqum=nts passed to the No-
spread function.

~An attempt to DEFINE an external SUBR with a type which

is not defined.

LISP couldn't find or couldn't load an external routine
which was DEFINEd. The error expression is the file
name Oor entry point name which was given.

A subscript in an artay specification was non-positive
or exceedad the limits of that subscript position.

GETWORLD was called with an argument which is not valid
ticket. ,

A call +to RES was attempted when there was no
outstanding attention or timer interrupt at that level,
or the attention interrupt was an immediate (double)
attention.

An attempt +to call CHECKPOINT which was not at the top
level of LISP, or a call to CHECKPOINT or RESTORE which
did not specify a sequential file, or a call to RESTORE

"which specified a file which was not produced by

CHECKPOINT.

An attempt to expand a Readmacro which is defined as
both immediate and delayed.

A call to UNEVAL, DISPLAY, or MODIFY tried to reference
an EVAL block which did not exist,

| A call to DISPLAY or MODIFY which specified F mode

identified an EVAL block which was not an executing
PROG, COND, SELECT, or function with a LAMBDA
definition.

More than 100 left super brackets were encountered.

The second parameter to LDIFF was not EQ to some nunmber
of CDR's of the first parameter.

Error Messages

Lisp/MTS 75
Special System Functions '

. The STATUS Function

The STATUS function is used for two purposes - to get and to
ot the values of system switches and parameters. There are two
yp2s of status call., One which merely interrogates the systen
nd returns the value of a system parameter, and one which
upplies a value which is to replace the system parameter.

The various system parameters are identified by STATUS
unbers, Numbars 1 through 30 are used to get and set parameters
ssociated with buffers, files, arrays, and atoms. To get one of
hese parameter values, +the argument to STATUS will be of the
orm:

(STATUS-NUMBER NANE)

here NAME is the name of the appropriatz buffer, file, array, or
‘C.Om.)

To set one of these parameters, the argument to STATUS will
2 of the form:

(STATUS-NUMNBER NAME VALUE)
here VALUE is the new value for the paramster.

STATUS numbers .17° and above are used for general systen
witches and parameters. To get and set these parameters, the
cgument to STATUS will be of the form:

STATUS-NUMBER to get, and
{STATUS~-NUMBER VALUE) to set.

whether getting or setting a system parameter value, the
revious value will be returned from STATUS. If more than one
‘gument to STATUS is given, a list of the previous values of all
12 parameters used in the call will be returned.

Note: In a call to STATUS, the STATOS number parameter may
.+ any atom, and its VALUE (which must b= a 1legal STATUS Code)
17 be wused as the actual STATUS Code. This allows mnemonic
£. nitions to be givan to STATUS Codes, . g. (STATUS (SETPFX
7. 7IL)), where the VALUE of SETPFX is 8.

The STATUS Function

Lisp/MTS 76
Special Systam Functions

1. Type I STATUS Cod=s

This

group of STATUS functions are for Buffer, File, Array,

and Atom Characteristics.

Code Meaning

1

This status number is used to get or set the error atom
associated with a particular error number. {(See "the
Section on Error Recovery for an explanation of the
error atom), Tha get form is (STATUS (1 N)), which will
return the error atom associatzd with error number N.
The set form is (STATUS (1 N A)), in which case A will
be the new error atom associated with error number N.
From that time on, a Type N error will cause the VALUE
of A to be used as the error forn.

This STATUS number is used to get or set the immediate
readmacro switch for an atom. Its arqgument must be an
atonm. If +he readmacro swvitch is NIL, then the atonm
will not be recognized as an immediate readmacro. If
the switch is non=-NIL, then whenever the atom appears as
part of an S-expression read in, it will be treated as
an immediate readmacro as describad in the Section on
I/0 rou%tines. The initial valus of this parameter for
all atoms is NIL. ~

This STATUS number is used to get or set the delayed
readmacro switch for an aton. It has the same
significance as the immediate readmacro switch, except
that 1if this switch is on, whenever the atom appears as
part of an S-expression r=zad in, it will be treated as a
d=layed readmacro.

This STATUS number is used to g2t or set the printmacro
svitch for an atom., It has the same significance as the
readmacro switches, except that if tuis switch is on
whenaver the atom is printed into a buffer, it will be
+reated as a printmacro as described in the Section on
I/0 routines.

This STATUS code is used to get or set the disposition
of characters in the READ scan table., It allows the
user to alter LISP syntax. The arqument must be a

literal aton. The parameter value given will replace
the scan table value for the first character of that
atom. The legal scan table valu=zs, and their

significance to READ, are as follows:

Insignificant (non-printing) characters.
Left par=2nthesis " (®
Right Paranthesis ")

@& O

The STATUS Function

Lisp/MTS . 17
Special System Functions

12 End of line (including semi-colon),
16 Period: dotted-pair or number.
20 Plus sign "+": beginning of a number.
24 Minus sign "-": beginning of a number.
28 Single character aton.

{For Readmacro characters).
32 Quote character. Special processing.
36 Number starter (0 - 9).
40 Literal starter. (A-Z, etc.)
44 Double-quote char. Special processing.
48 Right super parenthesis u>n
52 Left super parenthesis w<n

This STATUS code is used to get or set the disposition
of characters in the READ 1literal break table. The
argument given must be a literal atom. The parameter
value given will replace the break table value for the
first character of that atom. The break table values
are:

0 May be part of a literal atom's PNAME.
1 Break character - end of literal PNAME.

This STATUS <cod2 is used to get or set the disposition
of characters in the READ number break table. The
argument given must be a literal atom. The parameter
value given will replace the break table value for the
first <character of that atom. The number break table
values are as follows:

0 Numeral (0-9)

1 Normal end of a number.
(Blank, comma, end-of-line, etc.).

2 Floating-point Period.

3 Hexadecimal digit (A-F).

4 Neither a break character nor
part of a number. Back up and
process this atom as a literal atonm.

Note: Codes 0,2, and 3 must be used only with the
characters listed after them. Attempts to do numeric
conversion after improper use of these codes will
generate numeric exceptions.

This STATUS number is used to get the number of
dimensions of an array. Its argument must be an array
name, '

This STATOS number is used to get or set the size of a
buffer (effectively the right margin). The buffer size
includes the buffer prefix (if any), and may not exceed
255. :

The STATUS Function

ot

10

11

12

13

14

15

Lisp/MTS ' ’ ’ 78
Special System Functions

This STATUS number is used to g2t or set the buffer
prefix characteristic for a buffer. Evaluating (STATUS
(10 I0DA T)) freezes the current contents of the buffer
associated with IODA as a prefix. Evaluating (STATUS
(10 IODA NIL)) releases the prefix. At that point, the
prefix will be treated as the contents of the buffer,
and will appear at the beginning of the next - output
line, wunless a (TAB 1) or (TERPRI) is performed to get
rid of it.

This status number is used to get or set the current
READ poirter for a buffer. The argqument given must be
an I/0 destination atom. The value of this parameter is
not computed relative to any prefix which may exist. It
is not affected by doing print operations into the
buffer, but it is re-set to 0 whenever a TERPRI or a
physical write opsration is performed. A TAB or SKIP to
a smaller number will reset the pointer to the smaller
numbar, :

This STATUS number is used to get or set ths default EOF
function for a LISP file. The argument given must be an
I/0 d=stination atom. If an end-of-file is encountered
on a read operation from the file, the EOF function will
be invok2d4, unless it has been explicitly overridden in
the call to READ. For a description of the form of the

EQOF function and the significanc2 of the value returned
. from 1it, see the Section on I/0 functions. The initial
value of this parameter for all files 1is the systenm

function EOF.

This STATUS number is used to get or set the echo
characteristic for a LISP file. The argument given must
be an I/0 destination atom. If the parametrer value is
non-NIL, all input read from the file will be echoed on
MSINK., If the value is NIL, echoing will not occur.
The global echo switch (STATUS Code 31) overrides the
individual file switches if tha global switch 1is non-
NIL. Otherwise, *the individual file switches control
echoing. The initial value of this parameter for all
files is NIL. '

This STATUS number is used to get or set the file prefix
character for a LISP file. The arqument given must be
an I/0 destination atom. The parameter must be a
literal atom, whose first character will be used as the
file prefix character for the file. The value returned
will be an integer between 0 and 255, which represents
the byte value of the prefix character.

This STATUS number is used to get or set the lin2 number

for a LISP file. The argument given must be an 1I/0
Destination atom. The parameter value must be an

The STATUS Function

16

Lisp/MTS 79
Special System Functions

integer atom which represents the line number parameter
to be usa2d in the next I/0 operation involving the file.

This STATUS number 1is used to get or set the modifier

word for a LISP file. The argqument given must be an I/O
destination atonm. The parameter value nmust be an
integer atom which Trepresents the modifier word to be
used in all subsequent I/0 operations involving the file
(that is, until this parameter is changed). See the MTS
Manual, Volume 3, for a da2scription of the significance
of modifier values, The initial value of this parameter
for all files is 0.

Type II STATUS Codes

These STATUS functions access System switches.

Code Meaning

17
18

20

21

22

23

24

25

26

Bytes of freespacs currently allocated. (Get oniy).

Number of bytes currently allocated to stack. (Get
only) . ’

System standard input IOARG. Initially set to the
dotted pair of +the system input buffer (size 255) and
SCARDS.

Syst=2m standard output IOARG. Initialiy set to the
dott=d- pair of the system output buffer (size 70) and
SPRINT.

System error input IOARG. Used in BREAK loops in place
of standard input IOARG, Initially sst to the dotted-
pair of the system error input buffer (size 255) and
GUSER,

Systzm error output IOARG. Used in BREAK loops in place
of standard output IOARG. Intially set to the dotted-
pair of the system error output buffer (size 70) and
SERCOM. '

Input number base (10, 16, or 0). 0 signifies no
numerics. Initially 10.

Output number base (10 or 16).. Initially 10.
Number of 1levels of forms to print oa EVAL fornm

backtrace. (0 = none, -1 = all).
Default is 3.

The STATUS Function

—

27

28

29
30
31

32

33

36

35
36
37

38

39

40

41

42

-2

Lisp/MTS 80
Special System Functions

Trac2-back argument switch. 0= print only function
specifications on EVAL form trace-back. >0 = print
function specifications and argument list. Initially 1.

Most recent <expression which generated an error. (Get
only) .

Error number of most recent error. {(Get only).
Only one line of esach backtrace form is printed.

Global switch for echoing input lines on *MSINK*. T =
echo, NIL = 4o not echo. 1Initially NIL.

System message switch.

0 = no m=sages.
1 = Print Garbage Collector messages.
= Print Checkpoint nessage.
4 = print function redefinition messages

default = 7. (print all)

Batch/Términal switch.
4 batch
0 interactive.

Interrupt trap switch, Initially 0 (all traps on).
1 Disable program interrupt trap.

2 Disable attention interrupt trap.

3 Disable both.

Value of STEP counter.
Value of GENSYM countar.

Initialization call for TIME {Set form only).
Automatically initializ=2d at the start orf each run.

CPU +ime used, relative +to previous initialization.
{Milliseconds, get only).

Elapsed time, relative to previous initialization.
(Milliseconds, get only).

Supervisor state time, relative to initialization.
{Timer units, get only).

Problem state time, relative to initialization. (Timer
units, get only).

Time of day. Returns literal atom: AA:BB:CC, where AA =

hour, BB = minutes, CC = Seconds. {Get only). Note
The atom returned is not on the OBJECT LiST.

The STATUS Function

.con
SO

num

1id
corl
mus
of

tha

e

Lisp/MTS _ 81
special System Functions '

43 Date. Returns a literal atonm of the form
nMMM DD, YYYY", where MMM = month, DD = day, YYYY =
year. {Get only). The aton is not put on the OBLIST.

By CHECKPOINT restore switch. 0 = exit after CHECKPOINT.
1 = automatic RESTORE after CHECKPOINT. Iritially 1.

45 Function record switch. 1 = save list of all functioans
on atom *FNS*., 0 = don't. Default is 0.

46 ID. Returns the user's 1D as a literal atom (get only).
The atom is not put on the OBLIST.

3, Direct Core Modification

This special STATUS code permits the user to alter up to 7
consecutive bytes of core to any value. Obviously, the user does
so at his own risk.

A1 must be an atom, whose VALUE is a numeric aton. That
number is the first address which will be modifi=d.

A2 is an I/0 destination aton, whosa associated buffer or a
l1iteral atom whose PNAME contains the data to be inserted 1in
core, starting at address A. The first character in the PNAME
must be the character X. It nust be followesd by an even number
of hexadecimal digits, up to a maximum of 14, representing half
that number of bytes to be modified.

EX: (SETQ MODA (ADDRESS YZAP))
{(STATUS (0 MODA TBUF))

If the buffer TBUF contains the characters Xx00000000, then

the VALUE of the atom ZAP would be destroysd. An attempt %o
avaluate (CAR ZAP) would generate a progran interrupt.

The STATUS Function

Lisp/MTS
Special System Punctions

B. The Garbage Collector

This section is included only to mention +hat there is a
garbage collection routine in th2 LISP system which is activated
when a job runs out of space to create new LISP structures. The
garbage collector releases space which is occupied by
unreferenced structures, allocates mnmore space Aif necessary
(contfollod by STATUS Codes 33 and 34), and prompts the user if
the maximum allowable space is exhausted,

The user may optionally receive a message at tha end of each
garbage collection indicating the type of «collection that
occurred (relevant to the programmer but not the user), the
number of LISP cells "collected”, the amount of additional space
allocated, and the current depth of the stack.

It should be noted that attention interrupts which occur
during a garbage collection are deferred until lmmedlately after
the garbage collection is completad.

1. (RECLAIM) :
This function forces a garbage collection to occur
and returns as value the number of cells collected.

€. CHECKPOINT and R

2]

= ESTORE

1. (CHECKPOINT FILE <S>)

2. (RESTORE FILE) :
CHECKPOINT and RESTORE allow the user to save a
“snapshot™ of his current system, and restore the same
system at a later time. A CHECKPOINTed system takes up
less space on disk, and requires consideranly lass time
to 1load than a LISP system stored in source (S-
expression) forn.

{CHECKPOINT A) saves the current system in the MTS

file A. The file must be sequential or CHECKPOINT will.

generate an =arror.

(RESTORE A) restores the LISP system previously
saved by CHECRPOINT in MTS file A.

(CHECKPOINT A S) ch=ackpoints only the LISP

structure S. On RESTORE of the file A, ths system will
be augmented by structure S. Any atoms which have the

CHECKPOINT and RESTORE

Not

NotY

No+

Nod

Lisp/MTS 83
Special System Functions

same PNAME as an atom which is part of S will be REMOBed
and replaced with the CHECKPOINTed atonm.

k¥ kkkkkkNOTE: The arquments to CHECKPOINT and
RESTORE are NOT IOARGs. They are honest to goodness
file names. The user should not attemp:t to OPEN a file
for the purpose of CHECKPOINT and RESTORE.

At the present time, a call to CHECKPOINT may occur at any
level of LISP, however a RESTORE of the entire sysiesm always
r=2turns to the top level.

When CHECKPOINT terminates, a message is printed on *MSINKx*
which informs the user of the pages of core usa2d by his progran.
In adition, (CHECKPOINT A), which destroys freespace, immediately
initiates a RESTORE of the system. STATUS 44 may ba used to
prevent this RESTORE.

Neither CHECKPOINT nor RESTORE evaluates its arguments.
Note -- On the RESTORE of a specific structure S, it may happen
that an atom A occurs in the structure being Restored, and
"there is already an atom A on the OBLIST. Botia the VALUE and
Property List of A will be set to the valus they had at the
time the CHECKPOINT was done; the current values disappear.
The wuser can revarse this effect by setting the PLIST of the
atom to *UNDEF* before the CHECKPOINT. In this situation, the
RESTOREd atom A will reference the <current atom A and the
VALUE and Property List will not be changed.

Note =- After a total system CHECKPOINT file is Restored, the
system will begin reading from the current input buffer
{LISPIN). If the user wants some initialization performed
after a RESTORE, he can CHECKPOINT the initialization form
into his file by putting it on the same input line.

2.9, (CHECKPOINT HYFILE) (REINIT)

Note -- A call to CHECKPOINT with a specific structure S will not
do an automatic RESTORE, but will always terminate execution.

Note =-- Two attention interrupts occuring during a CHECKPOINT or
RESTORE will causa2 an immediate return to MTS. Use a SRESTART
to continue.

" Note -- The user should be aware that if LISP I1/0 units have been
modified before a CHECKPOINT is performed, they will be in
effect after the RESTORE.

CHECKPGINT and RESTORE

D.

1.

Lisp/MTS i , 84
Spacial System Functions

Miscellansous Functions

(LTR S S¥)

The LTR function, th2 product of a aiabolical mind,
should never be used by anyone. I+t may be invoked any
time the LISP system is doing an iterated EVAL through a
list of S-expressions, in particular, during a LAMBDA, a
PROG, or the ®s1 . . . SN portion of a COND; and

also during evaluation of a sequences of arguments to be’

passed *to a function,. Its purpose is to allow
conditional evaluation of arguments.

S is the value to be return=4 from LTR.

SW is a switch which determines what will happen to
the rest of th2 forms in the 1list, waich would be
iteratively evaluated if the LTR were not present.

SW = NIL - don't evaluats any more foras. S is then
effectively the last value in the 1list. ‘

SW = T - continue normally through the list.

SH = anything else - in this case S¥ must be a new list
of forms, which will be substituted for the rest of the

- original list, and evaluation will continue.

Ex: (REM (READ) (LTR (READ) X) (READ))

If X is NIL, then the effact of this is (REM (READ)
(READ)) If X 1is T, then the effect of this is (REM

(READ) (READ) (READ)) If X is (S) then the effect of

this is (REM (READ) (READ) S)

LTR stands for "list terminate or re-direct".

Miscellaneous Functions

Lo~ >y V)]
Y =3)

3

Lisp/MTS ' ' 85
Special System Functions

E. Undoable Functions - the Transport Systenm

LISP/MTS incorporates a simple ma2chanism for creating and
altering data structures "hypothetically", for backing up to a
previous state of the data structures, and for maintaining
several alternative structures at once and switching back and
forth among themn.

This mechanism, called the Transport System, is useful for
LISP implementations of problem solving, game playing, ‘and
automatic programming algorithas.

If we consider the state of all LISP structures at a
particular moment to be a possibles world, then the Transport
System allows the user to obtain a "ticket" which wili return him
to that world at a later time.

Within the Transport System, there 1is always one unique
world which has the status of Reality. This is the state of LISP
structures bafore any "hypothetical" changes have been made. e
can picture a system of hypothetical worlds as a tree structure,
with Reality at the root. World A dominates World B if the user
started in World 2 and, by making various hypothetical changes in
his data structures, vreached World B. Thus, all worlds are
dominated by Reality.

The tickets which are created by the Transport System are
actually 1lists of alterations of LISP structure. When the user
returns to a dominating world, the alterations he has performed
are un-done, or reversed. If he returns to a world which does
not dominate the world he is currently in, alterations are
reversed until the closest common dominating world is reached,
and then the alterations which were performed to get to the
desir=2d world are repsated.

‘The following "undoable®” functions exist:

SETQ2, SET2, SETA2

RPLACA2, RPLACD2, UNCONS2
NCONC2, DELQ2, DELETE2

PUT2, RENM2, PUTPROP2, ADDPROP2

These functions behave exactly 1like their non-undoable
counterparts, but also save the information necessary to undo the
changes they make.

Undoable Functions - the Transport Systen

. Lisp/MTS : : 86
Special System Functions

1. (NEWWORLD <<T,KIL>>)

The NEWWORLD function has three usss. (NEWWORLD)
returns a ticket to the current state of LISP structure.
By calling NEWWORLD, a state becomes a reachable world
in the Transport Systanm.

EX: (SETQ EARTH (NEWWORLD))
SAVES THE TICKET AS THE VALUE OF EARTH.

(NEWWORLD T) returns a ticket to Reality. This
provided in case the2 user wishes to raturn to Reality,
but has not savad a ticket to g2t there.

{NEWWORLD NIL) re=turns a ticket to the closest
reachable world which dominates the current state.

Note: NEWWORLD do=2s not cause a transfer to any
other world. Its purpose is to create tickets.

2. (GETWORLD 5S)

The GETWORLD function performs the transportation in
the system. ts argument must be a valid ticket (Error
39 will be generated if not), and it causes a transfer
to the world identified by that ticket.

EX: (GETWORLD EARTH)

3. (REALWORLD)

: REALWORLD, th2 most amazing function of all, takes
the current state of LISP structure, and causes it to
become Reality. What was once Reality 1is now 1lost

forever, and all previously created tickets will no
longer be valid.

Undoable Functions - the Transport System

is’

Lisp/MTS 87
Index

{4
-
I+
1=
e
o
13

-

. ® % & 5 0 2 060 90 84 00 909 .Q.O".O..‘.‘.'..‘-’.'..‘......0...'..»‘.6‘7'9
Array ...0......‘.!..0‘....O‘.Q..".Q..‘.‘..'......I..'.’.“.u'ug
+ . .
A“.om ‘.'Q..‘......'...'.'..Q....O..'Q'.‘.'......'....'....Q‘...Oz

Buffer' 0.'."‘0"......Q.’l....l....’......‘..C..‘I..“....u'sB

Buffer Overflow . «56
Bug ® 0 % 9 506 98 ¢ O 9
Direct Core Modif .81

End Of File0""'."...‘.‘..C....'....‘Q....‘.‘.Q"..‘.D.SG

L]
L[]
L]
*
L]
*
]
L]
(]
*
L
L]
[
L]
-
*
*
L]
L]
]
L]
L]
.
]
.
L[]
.
.
]
[
L]
L]
.
[
-
.
.
.
L]
]
L]
-
L]
.
.

pie
Q
[©']
ct
P
Q
3
.
.
.
o
.
L]
[]
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
L
L]
.
.
.
L]
.
.
o
.

Error COdeS 00."0'.l....."‘.".‘..0‘...’0..0.0.‘..0....'..."072 *
Errors i.'.!.....‘.'.0....0.’00'....".O‘.O‘..Q..“.l.‘."..l.‘65
Eval “._00-00.0000..CC.I.Q"'.Q0.0"‘.O.".....'...000!.‘..00..'7
EXPR 0‘.'0.0..0..‘00.Q.'...O..Oll.'o.'..QO'Q'..Q..to.........totus
EXt2INAl cecescevoescencssssscannssescsansssncssssssonsasasssssssanebdl
File 0...00...0-.";.....0‘.."0.0.....Q.I'..".0..'."'0......05“
?Ortran O.‘...00.0.'0.‘..0'.0.'..O.CQCQ..'.'..OO.’Q‘l.'.-ot.IOCOSO
FSUBR .0000"‘.0."‘..Q;'.O...0.“..0.0‘000.‘.o..".‘.....l.o".us
Garbage Collector LR I BN B BE B K NE BE Y BE NE B NN RN R NN BN R N NN NN OB B N R I N I R NE R N ER RE IR YN N R N N 082
Ioarg OC.OOOOO‘..OC'0..00.0‘.‘..QO‘!O}'QO‘.O.DQ00.'..0‘000’0....53
IOda .C.....‘..l.....o.....-.‘"0.'0.“....l..’........‘..‘..‘05-3
NSUBR 0..'.'.'......O.'..'Q'OO..I.'....Q..'.0.0..'OQ......O.".us
Parameter List ‘..Q..0.‘.‘..0..0.'.'......Q'OO....".0.’.9.‘...005
Pname QQQCQOOOQOQOOQ0."...0.0.00.00....0'0000.'0.'O...QQ..O...Q2
Prefix ® 5 ® €0 90 9S 08 00 OCO00’.00'000.‘0‘0‘00000..00"0900.90..00..055
Printmacro '..'0.'0.Q..O...'C‘OO‘...O‘..CO“‘..O."I....'.CQ.‘.57
Property List OQQ.Q....0.‘.‘00".0.'0'..""’.Q...O’O..Q......O.u

Readmacro 9 8 & 59 09 03 ..0...'.-"....0"...0-”.‘.O..‘-O..“.....‘O.S7

SUBR t...‘o......"_.C'O.Q..OOQIQ-.OQ".OQOQOOCIQQl....“‘l...‘.ilus
Transport System LR IR NN IR N B IR BE R BN BN R N BN BE BN B B NN EE N NN BE B N B BRI I B R I N BN R B R BN R B] .’.0.85
Undoable FUNCEIONS s eecccecssosssscccsccssossacsnsssssocssansansseldd
value .00.0.....000-'IQQ.OC..O‘O...Q..IO.....C..Q..O..Q....'00003
ABS .0...'QC..QOQ‘..'.‘.D....O..Q.O'...0..00..’0..0..OO....CO._QIZ?
ADDQ..‘."."........ﬂ.'.........I.....'....‘....."....28
ADDPROP ® @ 99 9 % 4% &% 00 .0.0.00.‘.,...1“..QO.‘..'.Q..l...""..“.zu
ADDPROPZ * 94 %2 ® 09 %% e ..'00.’.'..}0'0...0.I.OO0.0.'0"....‘...0‘.‘85
ADDRESS .C'Q..’.OICQ"OI'..‘.O...C."‘.0..0.0..OOO.'QO..'I.....ZB
ADD1 O‘......'......‘.0...'0‘0......"0...‘.....‘000'0.0000000027

AND ® o 9 0 st 808 2 BV e Q‘.O.-.CQ.'....Q..l'....."....'..‘.'..'....35

APPEND cevceccacecsssosssascsasncsssscsssscsssosssssscssscsssnessscsasnlin-l6
hPPEND1 ncoo.ooboooooo'oO-QCoco.voon-oooo-otca-oooc'oooooo--.'o15
APPLY ® & 8 & 068 0 0% 25 B O 50 O TP O O BDH &P P C B OO P SO S LN Y VAN ‘......’.....31
APPLY1 S % 8 0 0 8 O 0O 00 VP S 4D A LS P E SO B O DH OSSP S OO DT PH OO OSSO OSSN e ‘32
ARG ceceoocosaconcscacsacacsscacsansesosscssssssnsonsesccsasscosaceesl
ASSOC L R I Y B B I R BE N AR B I R AL IR BE BN I IR AE B IR BN I BE BN BE L B BE R BE BE BE NE BN BN NE I B R BN JEY BN BE BE ICRE BE BE R BE R IR N 4 1~‘
ASSQ L K I BN B BN B I IR B R BN TN BN JEE BN NE B BN B B BN BN B BN BE BN B I BE BE BRI P B B BE N B BN B BE B I BN B IR NN R B BN N B B B BN 2 13
ATOH 2 9 9 4 9 09 B B S O S V0 2P P BT O T EC 5B SO SO SN BT PO SO SD NSO PSS DO R eSS ‘10

BREAK ® 0% 8 e 00 S0 00 e ‘Q'.C.n0.000.‘00....n'."...0.'0.00.‘0000.066

CAR % 0 09 €% 59 0% 0S8 00 00 ..l..‘..‘.’l'.’.".'.“‘..".’.'4......"‘.‘12

h___:__f____________________::-...r—--_r

Lisp/MTS 88
Index

CDR 4 9 &0 9 2508 38 800 '.'C...’.Oﬂl.'........O.........0000000000012
CgECKPOINT LR R I IR I R AR E R EE NI NI I I I N R N N T R E I EEYSY .82
CLOSE 48 9 8 85 0 8 0 09 90 00 SO e e ..O..‘.—..O.‘l"“'l'C.'..‘.O..'....QQS"
COND ® 8 5 ¢ 2 8909 OB ¢ e .‘.....'.Q"...'....O‘Q......O'..Q.."..‘..36
CONS ® % ® 6 9 29 69 vO PO IS ..".."....0"..I.0"‘.‘0'0’.'.‘.........'15

COPY ...

‘00.000..000'OOIQ'.O.Q.QQ.Q”0.0.COl".'.t.".0;000000.16
c . . e R oo-o.ooo--ocoo.o-q.on:oooot.’oo-.oooooo’o{-cooaoco-o.13
DEFINE .-..................-.......'-...........-......-.-..¢-.“6
DEFPROP ooooooco.o--o.c‘oooo.clooo-oc.-ooao-.ncQo.ocnoooo.»-ooozu
DEFUN -oo'.codo'co.obo.oooo’oc.ooooco-o'.o'o..oa-noo-o..-ootccous‘
DELETE;......................‘......‘..‘-......n....22
DELETE2 o-oooo.o.ooo-oooo.'ogoooooo.-.ooo-oc--oooooo.'oocoo.oaoss
DELQ sseesecaeceaccssasocsssnscocsssnscsesssoscsassssnssasconanell
DELQZ -a.o.o.coanoo.ooa‘ao'o.oc-'o.oot.o.oooottoo'.odcoaooocootss
DIF?ERENCE Qoovocootoottcocoo.ooooototctCQooaloo.".ocotonoinoozg
DISPLAY oo‘c-t.oc..o00‘Ootoooooncoooooo...oooa..900'00'.soa.t.¢69
DIVIDE .Q...................-......-.‘................--..»....28
DO ..f'-c-oao.oooooto.oooo.a--"--aoo-oconc-oocoooooco.’o'noooo31
DREVERSE ceeteveersnvesosesvssnsescsscncssoncsososcsnsncsenccscasnsslb
DSUBST c.oo..o.oo..ol.'0.""00.0.0.-0..0.0-.0.'Q.COQOO0000.0.'17
DUMP .oo.-ooooooo}.o.-o--c-.o-otooo;oaococa.o'ocoooono0000000'067
EOF 0‘.0...0....'.0.Q‘.i"‘..l.."l..lO.'."10."00.."1;...0.061
EQ ao.oo.‘oco.a.o.'.l.oO.‘ttno.oooo..to.o.ooc.Otoo0‘00:-0.00..010
EQNAHE C..l'.'o‘.'.!000.0’.'...0.c'o‘l.ooo....'l.o.o.nIO..'OQIO11
EQUAL C.'..'.‘Qo.l...00'3..0..0.00000!.O..OCO0.0}...CO‘0..‘00.010
ZRE Qccooooooccunoaooo.ooo..co-ooo.-o.oo.aooocooonnoooooocoooo-?O
EVAL co.ooo--ao-oooo.ooaacoo:o-o-ccaoooop-oo'oan-c.ccoooooo.ooozg
EVENP ---oootto-ooooonoooonoooaoo..-.ooooco-ooo'-oooooo-onootvozs
EVLIS ..C.QO'..CQQCQ900000.000.'.CC..QQ‘0.0‘!O..Q.00.00000001'015
EXCLODE 'occooocononO..OQO..‘.QO.....O00..'000...00..00000.'.'019
EXCLUDEQ 010..6.00..o....no..'o.oo".o00..000..00'0‘00000‘.“0.19
EXPLODE 'ooooocooooo.oocoooao..oooo-..ooaoo-o-..;a.ao..oc.;..:o18
FIND 0000000000.'00-ocoanaaoococI.“.c‘o'voo'o..c.'..o00.00.00'14
FIX o.nooooooo'o9.oo;oooooo-;0-'-ooouosooo'o'oooonoo.oocoot000027
FLAMBDA-.......-...-.-.....o.-¢..-......q......ﬂ3
FLOAT "000'.0.0.000Qo---0.0.00‘00.010..Q'c-oc...ao.o.-aootnt.ozj
GENSYH ;.oao-ocot-coooonoooob-aoo-oaoo-.ooono-.o.-o...o.coooo-o17
GET-;..-...-...........-...............‘...........2“
GETFN-.........4.................................25
GETL .'o'-oooonaoono--cccoo.0000‘0'00'0.000toaootoooooacoo:oaoozs
GETHORLD oc.aoc----.a--.c--o.}a-oo.o-ooooooo.o.oﬁ.ocnooo;oooaocgs
GO -.co.ooc'.toocoo-yoooooo'ocatocovnoo.oooauooQoo-0.0-.0--0.-030
GREATBRP o.o.--oco.‘oo-c.oooooa--nn'oaooottliuoolo-cto.octccooczs
INTERSECT oo'co'ooc--o-ooooo.o-ccoooot.-onovato-nooon-.ooaoo-oo19
ENTERSECTQ -cccn'oo--ogoo-oo..-oooooo.o'ocoooco¢cyc'o-.o¢noo-¢;19
LABEL cl...0000.."‘0.0’0“0‘000.-0‘.0DQ.O..0.0.“'0'0""..00.““
LAMBDA o¢ooo-.oo.ooo4..ooo-goooot‘..p--oiooocoo-ooc.ouonooc.oc.u1
LAND o-ooooco.oo-ootoooco.oQo.o-'Q-oo-o-oooooooonoooQQooooooiooza
LAST ngo-n-oo.oo:oco'tttoaolﬂooo}catoooo.o-ca-ooco.-ocon‘ooooo¢1u
LDITF .Q.Q.00'.0'0...0‘.0-.00..:...0"......li’....'."'.l"...18
LENGTH l..ln.‘...‘ﬂ'.0l.l..l."0.0.0.0.Q!'.Qo'.“t'l’o‘90.0.'.027
LESSP ...o.....o....-.........-'..-..-......-...-....o.........zs
LIST nooocooc'o‘oooo'onvooctocoooo»ooncoono;uo-o.o-anc-o:c:uoao’S

LISTPl..‘...'.'.'Ql...Q.......'O..".....-‘.‘.’.O..‘...l...11

LOR ...
LTR «ewss
LXOR ...
MAP
MAPC ...
MAPCAN .
MAPCAR .
MAPCON .
MAPLIST

MAPOB ..
MAX oeeo
MEMBER .
MEMQ ...
MERGE ..
HIN * e o0
HINUS ..
MINUSP .
MKATOM .
MODIFY .
MTS +...
NCONC ..
NCONCZ2 .
NEQ oees
NEWWORLD
NLAMBDA

NOT <.
NTH eeee
NUOLL «..
NUMBERP

OBLIST .
OPEN ...
OR ¢evws
PLEN ...
FLUS ..
PRINT ..
PRINT ..
PROG 4.4
PROGN ..
PUT <o
POTL ...
PUTOB ..
PUTPROP2
PUT2 ...
QUOTE ..
READ ...
READCH .
READLINE

REALWORLD

RECLAIM
REM
REMAIN .
REMOB ..
REMOVE .
REM2 ...

.

Lisp/MTS
Index

89

229
00814
»+29
.32
.32
««33
0132‘
.33
.e32
o>.3u
0027
.13
0013
..20
0028
.27
.0 26
0.17
.70
8,39
23
0085
‘-11
. .86
.2 43
«=10
..14
.« 10
.. 11
.34
..60
.35
0027
«+283
0062
.62
+e29
«e31
00.23
.. 24
.34
-85
.85
«eae9
<61
..61
eeb2
<« 86
=82
.o 26
.28
.34
ee22
««85

REPEAT .
RES eees
RESTORE
RETURN .
REVERSE
RPLACA .
RPLACA2
RPLACD .
RPLACD2
SELECT .
SELECTQ
SET LR B R]
SBTR - oS
SETAZ ..
SETD .
SETQ2 ..
SETz . e
SHIFT ..
SKIP ...
SORT ..
SORTP ..
STATUS .
STEP ...
STOP ...
SUB
SUB1 LR]
TAD oeee

TAILP ..

TERPRI .
TIME ...
TIMER ..
TIMES ..
TRACE ..
UNCONS .
UNCONS2
UNDEFP .
UNEVAL .
UNION ..
ONIONQ .
UNTIL ..
UNTRACE
WHILE ..
ZEROP ..

-

-

Lisp/MTS
Index

90

.31
<71
.82
.30
.16
.22

. « 85

'22
«85
<37
« 37
.20
«21
.85
.21
«85
.85
.28
.63
.20
.11
.75
« 712

3,40

.28
.27
.63
.12
.63
.39
.38
.28
.71
.21
.85
.12
.68
.18
.19
.40
.71
'ao
.26

	Table of Contents

	I Introduction

	II The LISP Language

	III Running the LISP Interpreter

	IV Basic LISP Functions

	V Function Definition

	VI Input Output

	VII Error and Debugging Functions

	VIII Special System Functions

	IX Index

