
UNIVERSITY COMPUTING CENTER

L

UNIVERSITY OF MASSACHUSETTS AT AMHERST

--------- ----_._-_

o

,)

o

•

o

-

........

-
-
,

-
-
;,-,·0

-.

:rNTRODUCTION

A LIS P is a t i III e s h a r i n £{ and batch L. I SF' 1 • 5s ~ s t e m operating
on the CDC Cyber-74 installation at UMASS. It is similiar to the
ALISP s~stem previously operatins on UMASS timesharing with the
CDC 3600/3800. Some of the features of ALISP include: automatic
d~namic adjustment of all storage areas UP to the user's field
length limit; uniform definition of functions using the value
cell of literal atoms; explicit typing of all data forms for
faster execution and redundancy tests; overla~ complier and
assembler; filing, editing and prett~-print packages for
time-sharinS. Applications packages include a full-scale
relational dB embedded directly in ALISP, and GRASPER, a graph
language (see separate manuals for these packases).

A few words about the manual. It was written with care and
an attempt at precision and clarit~, and should be read in the
same spirit. There are some unavoidable omissions and
ambiguities, but most of the information ~ou need is findable
inside; exercise patience. Since LISP is found b~ man~ to be a
difficult lanSuage conceptuall~, I heartil~ recommend that ~ou do
not tr~ to learn it simpl~ from this manual, since I have
pre-supposed a modicum of LISP abilit~. Using one of the
learning manuals available (such as Weissman's LISe 1.5_e~ime~ or
Ibe_Little_Lisee~), alons with this as a reference manual, is a
very fine and painless way to learn LISP.

This is more than a dense reference manual, however. Inside
~ou will find lots of goodies and tips on LISP proSramming, as
well as discussions of some exotic parts of LISP barely touched
on by the learning manuals (such as READ macros). While it does
not read like a novel, it would be most helpful if YOU could skim
through it and familiarize yourself with its contents beta~e
sitting down for a heavy session at the terminal. Much_ temper
and riffling through pages will be saved

ON COblUEblIIO~S

Conventions help make this manual
wordy. Certain pre-defined words
throughout; consult the Glossary when
meaning.

- . ----------

more readable and less.
are used extensivelY
in doubt as to their

Numbers are always written using base 10 (decimal)
representation, unless the letter -B- appears at the end of the
digits; indicating an octal number. An optional exponent can
appear after the IB-; this exponent is a base 10 integer
specifying a left-shift count for the octal digits preceeding it.

-.. ,

........

-

-

'-

-

'-
-

E~·:amp les:

13B
10B21

= 11
= 8 * 2**21

in an obvious fortran-type notation for the exponent.

The boxed notation for representins S-expression is used
several times, especiallY in section 1.3. A sood reference fer
this convention is Weissman's ~£ime~. Usual notation for
S-expressions is the parenthesized linear structure used on input
to READ. Note that a comma .," is used rather than a dot •• " for
a seneral S-expression, as it usually does not make any
difference which is used; when it is important to distinsuish the
twb, it will be done.

Syntactic variables are used to avoid difficulty with
evaluation of arsuments when describins functions. Syntactic
variables are indicated by use of the lower-case, as opposed to
upper-case, which is reserved for actual ALISF' code. If the
arsuments of the function are evaluated (SUBR, SUBR*, and LAMBDA
functions), then a syntactic variable in the arSument position
stands for whatever the arSument evaluates to. If the arSuments
of the function are not evaluated (FSUBR, FSUBR*, LSUBR, and
FLAMBDA functions), then the syntactic variable stands for the
actual arsument. The differences can be seen by lookins at QUOTE
(FSUBR) and CONS (SUBR) examples:

(QUOTE x) -- x stands for:

(FOO) in (QUOTE (FOO»
BAR in (QUOTE BAR)

(CONS x y) -- ~ stands for:

(FOO) in (CONS '(FOO) BAR)
(BAR) in (CONS (LIST 'BAR) 1)

Syntactic variables allow eas~ description of functions without
resard to their arSument evaluation conventions. Note that the
variable is underlined when ~sed in descriptive text.

SUPPORT AND DISTRIBUTION

The COIliPuter Center at UMass at Amherst wi 11 be slJPport.ins
ALISP starins in Fall 1977. All inGuiries on system problems

should be addressed to:

Richard H'Jdson
University Computins Center,
Graduate Research Center,
University of Massachusetts

r

c

'--

-0

.'-

o

Amherst~ MA 01003

Tel! (413) 545-Z"QO

ALISP runs under KRONOS or NOS operatinS systems on CDC
61.)00 series computers. It. wi 11 be r,H:stributed to reouestors uPon
receipt of a tape. Distributed materials include the ALISP
s~stem in source form; ALISP, Relational DB, and GRASPER manuals;
and an installation and internal specifications manual. The
ALISP, Relational DB, and GRASPER manuals ma~ be co'pied for
non-profit purposes with permission from their respective
authors.

Updates and news should be sent periodicall~
An~ fixes to bugs should be sent to UMass so
distributed to other users.

'from UMass.
the~ can be

..

c

0
Sec:t.ioo

1

1.1
1.1 .1

1.2

2

2.1

·2'.2
2.2.1
2.2.2
2.2.3
2.2.4

3

3.1

0
3.1.1
3.1.2
3-.1.3
3.1.4
3.1.5
3.1.6
3.1.7

3.2
3.2.1
3.2.2
3.2.3
3.2.4

,e

3.3
3.3.1

4

4.1
4.1.1
4.1.2
4'.1.3

4.2

Table of Contents/ALISP User's Manual

Table of Contents

Part 1: The ALISP Lan~uase

SiSnins On and Keepins Up

SiSnin~ On and Gettins Off
ALISP Coritrol Card

NEWS

ALISP Data T~pes '

ALISP Pointers

Data T~pes
Literal Atoms
Number-Tokens
Strirlss
Lists

I nplJt st ream

InplJt Lines
INUNIT
End-6f-Line Processins
Prompt
Input Line Editins
TTYCHAR and Character Sets
ECHO Contrpl
Problems with TELEX

READ Structure
STATUS
READ SYnta>:
READ Macros Explained
TEREAD and READENT

Input Buffer Pointers
Sinsls-character Read Functions ..,.

Output Streanl

OutplJt Lines
OUTUNIT
Character Sets
End-of-Line'Processins and TERPRI

PRINT Structure

E:ase

1

1
1

2

4

7
7

9

9
9
9

10
10
10
11
11

12
12
13
20
22

22
23

24

24 .
24
24
24

25

5

5.1
5.1.1
5.1.2

5.2
5.2.1
5.2.2
5.2.3

5.3
5.3.1
5.3.2

6.

6. :l.
l).1~1
6.1.2
6.1.3

. ·6.2
6.2.1
6.2.2
6.2.3
6.2.4

6.3
6.3.1
6.3.2

~). 4
6.4.1
6.4.2

7

7.l·

7.2 .
7.2.1
7.2.2
7.2.3

8

F'RINT S~nta~·~
PRINT S~ntax Functions

Unified Output Buffer
Charac~er Printin~ Functions

Literal Atom Structure

OBLIST
Trul~ Worthless Atoms
WIPE

Literal Atom T~pes
NIL
GENSYM Atoms·
N~litats

Literal Atom Properties
Pname
Value

The Supervisor and EVAL

Top Level
SYS·
SYSIN and SYSOUT
SYSPRIN and *

EVAL
Atomic Evaluation
List Eval'.Jat-ion
The Function EVAL
APPLY

Functior. T~pes
Lambda-expressions
Machine Lan~ua~e Subroutine

Definins Functions
Checkin~ for;Function Definition
'Erasin~ Function Definitions

Switches

Functionals

Passin~ Functional Ar~uments

Pre-defined Functionals
MAPC and MAF'CAR
MAPL and MAPLIST
MAPCON and MAPCONe

Pro~ram Flow

25
30

30
32

33

33
33
34

36
37
37
38

39
39·
40

45

45
45
47
48

49
49
50
53
54

57
57
62

63
65
66

66

68

68

70
71
71
71

75

o

C')
/

8.2
EJ.2.1
8.2.2

8.3

9

9 ") .,

10

10.1

1().2·
10.2.1
10.2.2

10. ~:s
10.3.1
10.3.2

11

1:1 .• 1
11.1.1
11.1.2

1:1..2
11.2.1
11.2.2

11.3
1:1 .• 3.1
11.3.2

11.4
11.4.1
11.4.2

11.5

12

Conditionals
CONI! and IF

F'rosralTJ Feat'..Ire
F'ROG
F'ROGN

Iteration

ECHJc3l i t~

Pointer Eal..lalit~

Numeric EOIJal i t~
Numeric IneGualit~

List Structure EQualit~

Address EGualit~

List Manipulation

Propert~ List Functions

Non-destructive List Manipulation
Of CAR's and CDR's
List Construction

Destructive List Manipulation
RPLACA,RPLACD,CONC
Element Functions

Arithmetic

Mi~·~ed Modes
Number T~pe Predicates
Number T~pe Conversion

D~adic Functions
Plus, Times~ Di~f

Division

Monadic Functions
Trivial Monadic Functions

75
75

77
"77
79

.79

83

83

84
87

87

89

92

9 ") ,

93
95
96

100
100
102

106

106
106
106

107
107
107

Non-trivial Monadic Functions and RANDY

108
108
109

Losical Functions
Boolean Functions
Shifting

Bi t FIJnctions

Arra~s and Strings

.... _ .. -_ .. _._ , .. _ .. _----, _-----_._--_ .. " ..• , .. .

110
110
110

111

113

" ... --------- ._.--_.-----

:L2.:I.
12.1.1
12.1.2
12.1.3

13. :L
13.1.1
13.l.2
:L3.1.:3
13.1.4
:L~5.1.5

L'~. :~

:L:'5.2.1
13.2.2

13.3
j,3.3.1.
1:'5.3.2

14

14 to:L

14.2

14.3

1 L':'
.,J

1 ~5. 1
15.1.1
15.1.2
1!::;.1.~3

15.1.4
1~).1.5

15.1.6

1 ~,:j. 2
15.2.1
15.2.2
15.2.3
15.2.4

1 ~5 • 3
1!5.3.1
1!::i.3.2

16

St rin~j~:;
Strins Manipulatin~ Operations
StrinS Matchins Functions
Comparins and Convertins StrinSs

External Program Control

Error Control
Error Recovery Procedure and Backtracins
ERRSET Cant ':"01

User-defined Errors
Time Limjt and Timing Functions
ALISP S~stem Errors

Interrupts and Breaks
Terminal Interrupt
Conditional Tracing

Tracing
Simple Tracing
Conditional Tracing

Allocations and Garbage Collectors

ALISP Storage Areas

Field Lensth Limit

Garbage Collection

FILES

Permanent and Local Files
Openin~ a Permanent File
Local Files
Closing a local File
AlternatinS Catalogs and Passwords
Direct Access Files
Permission Modes

SeQuential File Operations
SeQuential File Format
SeQuential File Pointer
Reading SeQuential Files
Writing SeQuential Files

End-of-File Processing
EOFSTAT and REWIND
Multi-record Files

Checkpoint Files

BATCH

113
114
114
114

119

119
119
121
124
12~:;

126,

127
128
131

134
134
138

140

140

141

142

144

144
144
144
146
146
147
148

148
148
149
149
151

152
152
152

154

158

16.3

1

1.1

1.2

1.3
·1.3.1
1.3.2
1.3.3
1.3.4

:t .• 4

2

2.1

2.2

C~I 3

3.1·

3.2
3.2.1
3.2.2

3.3
3.3.1
3.3.2
3.3.3
3.3.4
:~.3.5

3.3.6
3.3.7

3.4
:~.4.1

3.4 .. 2
3.4.3

:~. 5

C:

Runnin~ a Batch Job

File Assi~nments and. Initial Values

BATCH, Interrupts, and Overlay

Part II: Editin~, Filin~, and PrettY-Printin~

ALISPFilin~ S~stem

General Description

File Format

Filin~ Functions.
Initialization
Input, Output and Updatins
Printin~ and Listin~
Documentation and Formattin~

Declarations

ALISP PRETTY-PRINT

Description of ·the Prett~-Print Al~orithm

Pretty-Print Functions

ALISP EDITING

Callin~ the Editor

Editing Concepts
Editin~ Values
Command ForlT,at

Edi tor COlTlmands
Printin~ and Listin~
T~aversin~ List Structures
Element Manipulation
Level Manipulation
Undoin~
Settin~ and. Extraction
Conditional Editin~

. Search ·ComlT,ands
Pattern Matchin~
Find
Replace

Editor Errors

158

160

161

161

. 163

164
164
164
168
170

174

175

175 .

177

178

178

180
180
181

182
182
182
184
186
189
189
191

191
192
195
196

.197

4 COITIPileT' 19.9

4.1 O.veT'la~ Compiler-AssembleI' 199
~\

4.2 F'hlnction Linkage· 200
I

........... --"

4.3 VaT'iable Bindings 201

4.4 [lee 1 a T'at i or,s 202

4.5 RestT'ictions on Compiled Ftlnctions 203

4.6 IIefirdns OVeT'la~5 204

4.7 The AssembleI' (LAP) 204

l~\
(.

..... ,...",/

-
I Chapter 1

Signing 00 and ~eeeins Ue

This section describes the procedure for
callins the ALISP s~stem and exitin~ from it.
(Note: Installations other than UMass ma~
have a different procedure for staring
ALISP.) The ALISP control card is described.

1.1 Signing On and Gettin~ Off

Get a ter~inal and si~n on properl~ (see the UMASS
Iimesba~in~ Manual). At UMass, ALISP is a TELEX command which
can be invoked from an~ subs~stem (for BATCH operation, see
Chapter 1.15). To run, t~pe IALISp l

• The ALISP s~stem will
respond b~ printins IALISP VERSION nl and then reQuestins input~
You are now at the top level of ALISP, under the EVAL supervisor.
The top-level ALISP prompt is a 111.

The interpreter will keep on evaluatins stuff thrown at it
until it evaluates the EXIT function, a SUBR of no ar~uments.
The EXIT function sets ~ou out of ALISP, back to the batch
subs~stem. It also prints out the CP time (in thousandths of a
second) spent in ALISP, the number of sarba~e collects, and the
maximum field lensth used, all in base 10· representation. A
sample session b~ a beSinning LISPer is siven in DialoSue 1.1
below.

1.1.1 ALISP Control Card

ALISP allows control card parameters to be specified on
execution. Lesal parameter values and their effects are given in
Appendix B. Unless the overla~ option is used (LD parameter),
ALISP will attempt to process all control card parameters when it
is called. The parameters are processed from left to risht; this
order is important if, for instance, a file is to be read into
the s~stem (IF parameter) and the executing field lensth is
lengthened (FL parameter). If the file read parameter occurs
before the field lensth parameter, the ALISP s~stem ma~ no~ have
enough room to perform the read, and will abort. If there are
an~ illesal control card parameters, or if an~ errors occur
durinS control card processing, an error message will be print~d,
and execution aborted.

The control card parameters are available to an~one who
wishes to do his own control card processing. To b~pass system
processins of the control card, either the LD or OWN paramter.

-
-

'-

2

Dialosue 1.1
Sample Terminal Session

Ie~mioal_Dialosue

TERMINAL: 110,TELEX

RECOVER/SYSTEM: BATCH
$RFL,O

IALISP
ALISP VERSION 1.1

? (CONS I A I B)
(A,B)
?(CAR '(FOO BAR»
FOO

'!)(EXIT)
END t~LI SP RUN
,CP: 26 FL: 12400 GC: 0
IBYE

xxx LOG OFF nnn
xxx CP nnn

CamlIler.Jt.s

Sisn-on ~essase from TELEX

In batch subs~stem of TELEX

E~·,ecl"lte

Now in ALISP
Top-level supervisor in effect

E~·d t frolTl Al.ISP

Statistics of the run back in
batch sUbsystem of TELEX, sisn
off

The user may then examine the parameters via the PARAMCP
function, a SUBR of no arsuments. This function returns a list
of the control card parameters. COMMAS, SLASHES and eGual signs
in the control card are returned as separate atoms in the list.
Table 1.1 sives some examples.

Table 1.1
The PARAMCP Function

1.2 NEWS

ConiJ!ol Car.d

ALISP,IF=MYFNS
ALISP,FL,PR
ALISP,IF=MYFNS/LISPOOO
ALISP,IF=MYFNS=YFNS,FL

E'.~RAMce Ualue

(IF=MYFNS)
(FL,PR)
(IF=MYFNS/LISPOOO)
(IF=MYFNS=YFNS,FL)

The most recent ALISP news can be printed on entry to ALISP
b~ using the NEWS parameter. To get the most recent news, use:

ALISP,NEWS.

To get all the news, use:

o

-

-

ALISP,NEWS=T.

The news can also be printed b~ evaluatin~ the function
NEWS, a SUBR of one arSument. (NEWS NIL) prints the most recent
news on SYSOUT, while (NEWS T) prints all news.

3

-.

--

-
.....

-

-
-

4

I Chapter 2

This section describes all twpes of
ALISP data, and sives information on their
internal representation. This information is
not crucial or even necessar~ for runnins
ALISP, except perhaps for the section on
number tokens; the incurious user maw skip
this section entirel~ without penalt~.

~LISE: E:oinf.el!s

An ALISP pointer (or simpl~ pointer) is the basic data
:format. It consists of 30 bits (half of a CDC C~ber-74 60-bit
word) divided into two parts, the address and the indicator. The
address is in the lower (risht-half) 18 bits, the indicator in
the upper 12 bits:

29 18 17 o
IND. [ADDRESS I

The indicator tells what t~pe of data the pointer is, e.S., an
indicator of 1400B specifies an SNUM. The address portion holds
either the data (SNUM), or an address in core that has more data.
Onl~ the lower 17 bits of the address are used at present, ~ivinS
an addressins capabilit~ of 2B18 - 1, about 121K decimal Words.

Two pointers can be stuffed toSether into an ALISP word (60
bits). The left half of the word is the CAR, tha risht half the
CDR of the word.

The indicator bits allow fast testins of the data t~pe.
Indicator bit assiSnments are siven in Table 2.1. Future data
typ~S' such as a binar~ tree data t~pe ma~ use the currentl~
unused bits. Note that individual data t~pes can set more than
one indicator bit, e.S., SNUM's have an indicator of 1400B,
specifyins a number (bit 27) and an SNUM (bit 26).

2.2 Data I!:u2es

Here are descriptions of the pointers for the various data
t~pes. For more information on atomic data, see the sections on
numeric. operations (1.12) and literal atoms (1.5).

-
(-~\

-J

-

-

_.

_.

......

Table 2.1
I nd i cat,o T' Bit Ass i gnlTlerd:,s

bit if set it Qat set

29 list atom
28 ~~arbage-collect info
27 number rIot number
26 SNUM not SNUM
25 BNUM not BNUM
24 LNUM riot LNUM
23 F'NUM not PNUM
22 not used
21 ANUM not ANUM
20 STRING rIot STRING
19 not used
18 not used

2.2.1 Literal Atoms

An atom which is not a number token or a string is a literal
atom. Literal atoms are distinguished as having uniGue
print-names, and (except for NIL) property-list (plist) and value
attributes which are user-definable. Literal atoms will often be
called 1i1a1s. A literal atom which is not NIL will be called an
01i1a1. A literal atom which is neither NIL nor a GENSYM atom
will be called an o~litat.

Indicator: ooooa
Address: points to the first atom data word

NIL has no plist or value attributes, and conseGuently does not
use any atom data words. It has an address of OB; it thus has a
pointer of 30 zero ·bits.

2.2.2 Number-Tokens

Any atom which is not a litat or strin~ is a number token,
often referred to simplY as a number. Not all numbers are
amenable to standard arithmetic operations (F'NUM's and ANUM's).
Number tokens have bit 27 set in the indicator. There are four
t~IPes :

i. SNUM (Small NUMber)

Indicator: 1400B
Address: inteser value of the SNUM

Note that the SNUM address uses all 18 bits as a sisned

---_._ .. _ .. -................. _._---_._ -

5

-

-

-

-
'-

6

integer with
cheapest ALISP
storage.

maximum magnitude 2B17 - 1.
number stora~e, re~uirin~ only

This is the
30 bits of

ii. BNUM <Big NUMber)

Indicator: 1200B
Address: points to floatin~-pt. number

The BNUM address points to a core location which holds a
59-bit floating-pt. number. This number is obtained from
the CDC 60-bit floating-pt. format by clearin~ the
low-order bit (bit zero), and shiftin~ left circular by
58. This puts the cleared bit at bit position 58, where
it is needed by the garba~e-collect routine. BNUM's thus
have one bit less precision than CDC floatinS-pt. numbers.

iii. LNUM (Logical NUMber)

iv.

Indicator: 1100B
Address: points to 48-bit octal di~it.

The LNUM address points to a core location which has the
48-bit octal inte~er ri~ht-Justified. The upper 12 bits
are not used except for bit 58, which is us~d by the
~arba~e-c61Iect routine. Like BNUM's, LNUM's reauire 60
bits of stora~e.

PNUM (Program NUMber)

Indicator: 1040B
Address: points to function definition word

A PNUM datum defines a machine-Ianguase
address points to core location which
definition word. This word is divided as

59 42 41 36 35 18 17

subroutine. The
has a function

follows:

o
o I type I t of ar~s I address

T~pe assignment is as follows:

lB
2B
4B
lOB
20B

fUClc:t..iota

LSUBR
FSlJBR*
FSUBR
SUBR*
SUER

Onl~ SUBR and FSUBR functions types use the t_Q~_a£gs
field to specify the number of arSuments a particular
machine function takes; the other types can take an
indefinite number of ar~uments, and this field is zero

c

. -

c

I

-
:,

;-
,.

-

·0

v.

(for more information on machine function t~pes, see
section 1.6).

The add T' f.-~ 5 S F' C) r tin n 0 l' t h f~ P N U H de fin i t ion W 0 r d hoI r.J ~j
t, h (:' a b 5 (J 1 u t, f:' a c:.' d T' f.-~ S !5 (] of' the IfI a c h :i. n e S I_I b r () 1 •• 1 tin e w hie h
actuallY performs the function.

ANUM'S -- (Arra~s)

Arra~s are also considered to be number tokens; the~ are
called ANUM's when, passed around as a data type.

Indicator: 1010B
Address: points to arra~ list word

The arra~list word holds a pointer to the arra~ in array
space. Since the arra~ itself is relocatable, all arra~
references via the ANUM ~o indirectl~ throu~h tMe
arraylist word.

2.2.3 StrinSs

Strin~ data represents a compromise between compact stora~e
of strinss and ease of manipulation. Characters are stored at
most 5 per word in free space, with a pointer to the next word in
the strin~.

Indic~tor: 0004B
Address: points to the first strin~ data word

Each strin~ data word has from one to five 7-bit ascii
characters, left-Justified:

59 23 22 18 17 0

C1 C2 C3 C4 C5 CT IADDR J'
CT is the count of
of the next 5trin~

2.2.4 Lists

characters,
word.

and ADDR is the

A non-atomic pointer is a list pointer.

Indicator: 4000B

free-space

Address: points to the list word

The address points to a core location' which holds
ALISF' word, that is, tW() ALISF' pointers, one in the IJPper
half, the other in the lower or CDR half of the word.
pointers may themselves be list pointers. A true linked
formed b~ havin~ the CDR pointer be a list pointer to

address

a full
or GAR

These
list is
another

7

-
-

......

'-

-

-

8

ALISP word, and its CDR be a list pointer to another ALISP word,
and so on; the last CDR pointer must be the NIL pointer. There
is a simple correspondence between boxed list diasrams and list
pointers: ever~ arrow in a boxed dia~ram is a list pointer.
Table 2.2 below ~ives an example of internal ALISP representation
of a list struct~~e.

Two predicate funct.ions are provided to distinsuish between
lists and atoms. ATOM, ~ SUBR of one ar~ument, returns T if its
ar~ument is atomic, NIL if not. LISTP, also a SUBR of one
ar~ument, returns T if its ar~ument is a non-atomic S-expression,
NIL if not.

Table 2.2
Internal ~ist Representation

Parenthesized expression:

(MABEL (LIKES) BIG, FIGS)

___ IM_AB_EL_o [_---1r [~:J: t-'> I BIG [FIGS I

f LIKES r:=;;:[
core representation (assume the followins addresses for the
atoms: MABEL=1. LIKES=2, BIG=3, FIGS=4), in base 8:
' .. ,

co~e locaiion

10
13
17
22

conients

0000000001 4000000013
4000000017 4000000022
0000000002 0000000000
0000000003 0000000004

The list pointer for the whole expression would be:

4000000010B

(' ,-".,

c~

I Chapter 3

Ioeut st.cealIl

ALISP does its own input stream
handlins, resurrecting the user from some of
the deeper pitfalls in the KRONOS/NOS
time-sharins system. This section describes
the ALISP input stream and read functions in
seneral, and the particular conventions for
terminal input. For special batch and file
characteristics of the input stream, see
sections 1.14 and 1.15 in this manual. One
chan~e from normal LISP read syntax should be
noted: the comma is used in place of the dot
in dotted S-expressions. The dot is used
solely in reading floating-pt. numbers,

3.1 Ioeui Lioes

The input stream is line-oriented, that is, it looks at onl~
one line at a time. Lines are delimited from the terminal by a
carriaSe return (CR), which ends the line and sends it to the

("-"} input buffe rs in ALISF'. Ma~·~ i mtlfTl line 1 ensth, inc 1 udins cont 1'01
~ characters, is 150. If ~ou type more than this, and then hit CR,

the messase *OVL* will be printed, and the line i~nored.

'-
-
....,

--0

3.1.1 INUNIT

The value of INUNIT is used by the read functions whenever a
line must be input from somewhere. If INUNIT i~ set to the SNUM
zero, a line is reQuested from the terminal. See sections 1.15
and I.16 on batch and files for other values of INUNIT. Initial
value of INUNIT is o •

3.1.2 End-of-Line Processins

The CR character is normally appended to the end of the line
on input. ALISP sees tJlis character as a space (see section on
STATUS below), but it can also be used to check for end-of-line
or special input handling. A CR character is oat tacked on the
end of a line if the atom EOLR (End-Of-Line on Read) is set to
NIL. This is useful for files or special input procedures where
a character strins runs past the end-of-line onto the next line,
and a CR insertion would be undesirable. The only effect EOLR
has on normal READ syntax is that literal atom, and number, and

9

-

-
-

-

-
-

strins tokens cannot be continued past the end-or-line. Initial
v~lue of EOLR is T.

3.1.3 PROMPT

The A LIS P s H~; t e m n en' fTl a 11 y s i 9 n a 1st hat i twa n t sin p IJ t fro fTl

the terminal b~ tHPins U~?I on the terminal and then waitins for
the user to t~pe a line (special prompt handling is taken for
batch and file input--see section I.15 and I.16). The prompt
character can be changed bw resettinS the value of the atom
PROMPT, initiall~ NIL. PROMPT should be set to the integer value
of the character desired, i.e., (SETQ PROMPT 65) causes IAI to be
used as the prompt character. For inteser values to all
characters, see Appendix A. Settins PROMPT to anything but an
SNUM integer or NIL will sive a SYN-ERR on the next terminal
input re~uest, and reset PROMPT to NIL.

There are two special cases for values of PROMPT. As noted
above, NIL causes the characters n~? to be used for the prompt.
A zero value for PROMPT will have the same effect. If ~ou wish
to use a null character as a prompt, then set PROMPT to 32B
rc:lthe r than OB.

3.1.4 Input Line Editin~

After a CR is tHPed at the terminal, the line Just typed is
transferred to the ALISP input buffers. Before an~ ALISP
f~nction sees this line, control characters within the line are
used to edit it. The control characters are the same as those
used in normal mode input to NOS 1.2 operating system:
backspace, line feed, and escape.

Backspace deletes the most recent non-backspace charact~r.

Line-feeds are deleted from the input stream.

Escape (control-shift-K on TT33, ATTN-ATTN on correspondence
terminals) causes the entire line to be deleted, and a new line
re~uested. The messaSe I*DEL*I is printed on the terminal, and
the prompt is re-issued. (Because ALISP uses transparent mode
input, deletins a line takes 10nSer than under normal input,
since ALISP has to be rolled in). A control-C at the end of a
non-em~i~ line will also cause an escape; control-C on an empty
line will cause an interrupt.

Input lines are edited before they are moved to the input
buffer, so that ALISP sees only the edited input line. Lines
inputted from files or ALISP batch are never edited.

3.1.5 TTYCHAR and Character Sets

10

c'

'-

-

ALISP can support a full ASCII character set, because it
used a 7-bit internal character code There are
times, however, when usin~ the full set is cumbersome because of
the shift reGuired for upper-case alphabetic characters. This
occurs on ASCII and correspondence terminals which have both
upper and lower case alphabetics. For these terminals, t~pin~
-seta·, for example, will not be the same as t~pin~ ·SETG·, since
the internal representation of upper and lower case is different.
Most likel~, ·SETa l was desired, since it corresponds to the
inte "na I pr i nt-name of the cCHTImonl ~-lJsed atolTl SETG; the user
must resort to man~ upper-case shifts to input this atom. The
reffied~ is to translate lower-case alphabetic characters directl~
to uPper case before the~ reach the ALISP input buffer. This is
done automaticall~ if the atom TTYCHAR has a non-NIL value, as it
does initiall~.

3.1.6 ECHO Control

The input line can be echoed on the current output device
(OUTUNIT) b~ settins the value of the atom ECHO to the current
input device (INUNIT). The echo is imlTlf?diat,e, that is, no
control character functions are performed, and the CR character
is not tacked onto the end-of-line. ECHO has inital value of NIL
in interactive mode: no echoinS takes place. It is mainl~
useful under batch and in dealin~ with files (see the appropriate
sections in this manual).

3.1.7 Problems with TELEX

Several m~sterious behaviorial problems of TELEX deserve
mention. ALISP operates usin~ a TELEX input mode called
transparent mode. What this means is that ALISP is responsible
for handlins all input line editin~ characters, and for
outputtins a prompt when it reGuests an input line. The keyword
here is patienc~. Since ALISP does all of this input line
processinS, the user must' wait at least the TELEX Job response
time in order to have thin~s like escape (delete line) processed.
Since this response time is t~picall~ on the order of 5 seconds,
and can ~row at times to above 20 seconds on a ver~ bus~ sYstem,
a frustrated user might well wonder if his input line is bein~
processed at all. To find out if the s~stem is doin~ an~thin~,
the user has two commands at his disposal. T~pin~ a simple CR
will cause TELEX to print -JOB ACTIVE- if ALISP is runnin~.
T~pins ·STATUS· will print the current TELEX status of the ALISP
Job. An~ other commands t~ped at this point will cause TELEX to
respond with the messaSe, uILLEGAL COMMAND'.

Another problem occurs freQuentl~ on a bus~ system. In this
case, ALISP will print out the input prompt. When the user
responds b~ t~pins in a line and pressinS CR, TELEX prints the
repl~, 'ILLEGAL COMMAND-. What has happened is that there is a

11

-

-

-
-

-
-
'-'

-
',-

12

slight time lag between the printing of the prompt and issuing of
an input line command from TELEX; conseauentl~ the user is
talking to TELEX rather than ALISP for that short lag. On ver~
busy systems this la~ can be several seconds IonS. TELEX will
eventuallY get around to issuing the ALISP input reGuest9 wait
for a auestion mark prompt (distinSuishable from ALISP's prompt
because it has no preceeding blank). A line can now be entered
to ALISP. This line is not entered in transparent mode, however,
but normal TELEX mode, so that onl~ a restricted character set
can be received b~ ALISP, no 'matter what the value of TTYCHAR.
Note finall~ that this problem will not occur with correspondence
terminals, since the ke~board will not unlock until the ALISP
input reGuest is actuall~ issued.

A final problem occurs with the trapping of interrupts.
There is a short time span immediately after a CR is typed to end
an input line, when the interrupt (control-C or ATTN-S-ATTN) will
not be trapped b~ ALISP. If an interrupt is given during this
time, TELEX will abort the ALISP run with the *TERMINATED*
message. Again, the problem is worse on· ver~ busy s~stems.'

3.2 READ st~uctu~e

READ, a SUBR of no arguments, is the primar~ function used
in forming the ALISP input s~ntax. This function reads
characters from the input buffer, forming them into internal
ALISP S-expressions. Associated with the input buffer are
cha~acter positions pointers (see section 3.3 below). READ takes
characters from the input buffer until it forms a complete
S-expression; if end-of-line is reached before the S-expression
is completed, another line is reauested from the current INUNIT.
It also advances the buffer pointers past this S-expression, so

~that subseauent READ's will return successive S-expressions from
. the input buffer. Thus, more than one S-expression can be READ

from a single input line. Note, however, that the top-level loop
of the supervisor uses READENT rather than READ, and READE NT
returns at most one S-expression per input line (see section
3.2.4).

, \)

An S-expres~ion may also extend over several input lines.
READ automaticall~ reauests new lines until the S-expression is
completed. This has caused some users heartache because the~
think the~ are in an infinite input reGuest loop. They keep
setting input rec~uests on the tel'minal, and t~pe in
S-expressions, and get more input reauests, without anything else
happening. What has happened is that the user forgot to close a
left-parenthesis in his first S-expression, and READ keeps asking
for lines until he closes it. The remed~ is to type many
risht-psrentheses if yOU think ~ou are in this t~pe of loop.

3.2.1 STATUS·

c=·

c~

,,--- .
. U

. C)

~O

Associated with each character is a 3-bit inte~er called its
STATUS, used b~ the READ function to decide s~ntax. The initial
STATUS of all characters is siven below in Table 3.1.

i~E!e

alphabetic

numeric
separator
Ipsr
rpar
dot
slash
macro

Table 3.1
STATUS of Characters

SIeIUS Cbar-acier-s

0 A to Z and all
those below.

1 0 to 9 and -.=1=
2 ~ and CR
3 (

4)
&::" .. }

6 /
7 • '$;(~

chars. eHcept

The status of characters can be fetched or chansed usin~ the
function STATUS, a SUBR* of one or two arsuments. The first
arSument should be an n~litat (non-NIL, non-GENSYM literal atom);
the first character of this atom's pname is used b~ STATUS. If
there is onl~ one arSument, STATUS returns b~ character's status
as an SNUM from 0 to 7. If the second ar~ument is present, it
must be an SNUM; the lowest three bits of this SNUM inteser are
used to set the new status of the character and STATUS returns an
SNUM sivin~ the previous status of the character. Several
examples of the STATUS function are siven in Dialosue 3.1 below.
The STATUS function should be used with care, as it can
drasticall~ redefine the action of the READ s~ntax.

3.2.2 READ S~ntax

This is the standard ALISP s~ntax for inputtins strin~s of
characters and assemblinS them as LISP data t~pes. To some
extent this standard 5~ntax can be manipulated with user-defined
READ macros (section 3.2.3) and the STATUS function. The
alternative to READ s~ntax is sinsle-character manipulation (see
section 3.3).

If an incorrectl~ formatted character strins is siven to
READ (e.S., an alphabetic character in a numeric strins), then
READ will complain b~ issuing a SYN-ERR, which is a fatal error.
If ~ou are at the top level of ALISP, this simpl~ means ~ou will
have to ret~pe the entire S-expression ~ou were inputtinS. The
SYN-ERR also prints a messaSe tellins what caused the error, and
the character position in the input buffer at which the error

13

-

-
-
-

14

D:ial(J~.:lu(,:~ :3.:1.
The Function STATUS

()

?(HT(.iTUS '2 ~.~)

o

? 'FnDZBAF~
FDG

,?(STf.1TUB '/" 0)

?(CDR '(FOO I' BAR»
(!I Br-HO

Fetch the current STATUS of
II Z II •

Chanse the STATUS of ·zn to 2¥
a separator (blank). Zero is
the previous STATUS of ·Z".

Since nZII has the STATUS of a
separator character, on18 the
first three characters of the
line were assembled into an
atom!' FOO.

This defines the character .,'
as an alphabetic.

Now • , n nrJ longer acts as the
dot Colf dotted S-'e>,p J'ess ions 'I
but as a F'name chs T'ac:te r.
Note that, 50 Ions as no
chcJ T'acte r has a dot STATUS
(~» , no dotted S - e N pre S!:; :i. on s
can be inputted.

OCCI..l T' r(·:~ld ~

b(·:~J. DL·J ~

Syntax erro~s for particular data t8pes are noted

Almost all ALISP data t~pes can be read in using READ. READ
scans the input line for the first non-separator (STATUS not 2)
chs T'ac tf.:\ T', and u~:;€~s th i~:; chcJ racte T' to date rm i ne the s~lnta~·: of thc~l

rest of the strinS. If the first non-separator character is:

Ch~racters are fetched from the input s t. J'eam to
which is
than 2)

.,..' U T'Ii'! a 'F: i"' :i. n t n a IT! P (F" n a IT! f.-~) 1..1 n t i 1. a c haT' act e T'
n (~.~ :i. t h (:~ r (3 1 r·:r h a t.l f:~ t :i. C c) l' n '..1m (7~ J' :i. C (S TAT U S £t rea t e r
is encountered. The pname
OBLIST and the pointer is
than 322 . char'(:~ct(~~.lT'S cannDt
GYN .. ··EHF~ \>

is then internalized on the
returned~ Pnames of more
be assembled, but cause a

(~t.CJm~; hav i n£t F"'namf?S bC-?£i i nn i n£~ with nUlTle ric:
chaT'act£-~T'sy or cDntaining chaT'ac:tf.~rs with STATUS other

.,-.......
. (

'-.../

,-

than a 1 phabet-i cor numf.-~ ric, cH'e ca 11 ed e~·:ot i c ate)ms.
Exotic atoms can be read in with the help of a slash
convention. Any character with a slash status (6) is
ski p. p e din for oli n ~1 the p n a me, but t, h e c h a r act, f.~ r
i ITIITI r~ d :i. a l, (::~ :I. ~:I f 0 1 1 (] win ~.:.{ , nom a t t e r w hat its s t, a t us, i ~.

interpreted as alphabetic. A slash can be put in the
pname by usins two consecutive slashes. All terminal
characters except, LF (line-feed) and backspace can be
inputted into pnames in this wa~.

Note that atom print-names cannot normall~ be
continued past the end of a line when EOLR is non-NIL,
since the CR character tacked onto the end of the line
is interpreted as a space (STATUS = 2). However, if a
slash is the last character t~ped before the CR, the CR
character will be assembled into the pname, and the
pname strins will continue onto the next line.
Examples of pname formation are Siven in Dialo~ue 3.2
below.

in8U:t. si.cealIl

irlkiirlFOOktk{ •••
ktirl~F002kt~. (.•
~IlH12FOOkt~ •••

Dialosue 3.2
Pname Formation

assembles to

atom with pname -FOO
atom with pname -F002-
SYN-ERR, first character
not alphabetic

irlkH6/2FOOirl~ •••
irl~~FO/ / /~OkH6 •••

atom with pname -2FOO
atom with pname -FO/~O-

b. Nuo,e T' i c - assemb I e nume ric atom

There are three t~pes of numbers which .can be
assembled b~ READ:

i. LNUM L.oSical NUMber.
16-diSit octal intesers

i i • SNUM So,a1l NUMber.
integers in the ranSe -2B17 + 1
to 2B17 - 1

iii. BNUM - Bi~ NUMber.
floatin~-point numbers in the ran~e.
±10E-298 to ±10E312

SNUM's and BNUM's (but Doi L.NUM's, which alwa~s us, an
octal base) are assembled with reference to the base
contained as the value of the atom INBASE. The value
of INBASE must be an LNUM (thus makins it independent

15

... ------_ _--_ .. __ ... _----

-

-

-
-

-

-
-
-
'-

-
-

16

'-

of INBASE or OUT8ASE); it is initiall~ set to 12B (base
10) but can be reset b~ the user to an~ value from 28
to 208 (base 2 to base 16). A SYN-ERR is issued on the
next number assembl~ if INBASE is set to an illesal
value, and INBASE is reset to 12B.

i. l.NUM I s

They are siSnalled b~ an initial number-sisn
(Itl). Format is:

tsdddd ••••

where

,5 is an optional minus sisn (I_I) which
complements the assembled octal inteser

d are octal disits, UP to 16 of them.

The assembled number is:

dddd ••• B

SYN-ERR caused b~:

1. 8,9, or A-Z appearins in the strins
2. More than 16 disits in the strins

ioeUL sL.t:ealIJ

~~f.~~22~~ •••
~:I:-222t6t6 + ••

~:l:t6I!.i •••
t6t-Ot6~ •••
~t9231616 •••

i i. SNUM's

InPIJt format

sdddd ••••

where

. .
1S.

oumbe:c assembled

0000000000000222B
7777777777777555B
OOOOOOOOOOOOOOOOB
7777777777777777B
SYN-ERR, 9 is not
an octal digit.

s is an optional minus siSn (I_I)
d are digits from 0 to INBASE-l

The disits are assembled into an inteser usins
the INBASE base representation.

:,"'---""',

c'

;-

-
-
-

-
'-

:-

SYN-ERR caused b~:
strins

Alphabetic character in the

Examples (assume INBASE set to 12B):

iOt::~u:t. s:i:.J.:ealIJ

l618~l6+ ••
l6-18~M.+.

. l6--0l6M •••
~OOOki~ •••
l618636302222ki~.~.

QUlIlbE!C assembled

18
-18
o
o
converted to floatin~-pt

Note that negative zero is read in as positive
zero, and that inte~ers out of SNUM ran~e are
automaticall~ converted b~ READ to BNUM's.
Largest maSnitude for an SNUM is 2Bi7 -i.

iii. BNUM' s

BNUM's are sisnalled b~ the presense of the
decimal point 1.1 or the exponent marker lEI, or
if an SNUM formatted number is too lar~e in
ma~nitude to be an ~NUM. BNUM's are assembled
usin~ the INBASE input base. Format is:

sdd.dd ••• Eseee •••

where

s is an optional minus sign CI_I)
d is a disit, from 0 to INBASE-i
E is an optional exponent marker
e are optional exponent di~its, from 0 to

INBASE·-:L
• is an optional -decimal l point

The assembled number is formed b~ assemblin~
the coefficient di~its d into a floatin~-pt.
number usin~ the base INBASE, then
multipl~in~ this coefficient b~ INBASE raised
to the assembled exponent power. The
exponent di~its e are also assembled into an
integer usin~ INBASE representation.

SYN-ERR caused b~:

1.

2.
3.
4.

Alphabetic character (except lEI) in the
string
More than one decimal point or lEI
A decimal point in the exponent
Exponent too larse or small

Examples (assume INBASE set to 12B):

17

.......• -..... __ ._._--_ _-_ .. _-...... -

-

-

--
18

it"Jaut sir.earn caumbe.J! assernbled

~1f3+1616 •••
~.18E216~ •••
~- .18EO~~ •••
~0.016~ •••

18
18
-.18
o

Note that the presence of an lEI or I.
distinguishes BNUM's from SNUM's; even in the
case of 0.0, a BNUM is assembled. Internal
accuracy for BNUM's is 47 bits in the
coefficient, or about 14 deci~al digits.

d. Ipar - assemble non-atomic S-expression

When the READ function encounters an initial
left-parenthesis (STATUS of 4), it assembles a complex
LISP structure. Format is:

(5trin~1 strin~2 •••• strin~n,strinSm)

Each st~iosi is an~ character strins which assembles
into a valid ALISP expression, even another list
string. The comma is an optional dotted-pair
indicator; if it is present, st.J!iosm rather than NIL
will be stuffed into the CDR of the last word beins
assefTlbled, so that a seneral non-atomic S':"eHPressior"
rather than a list, will be assembled. The comma
character must always appear Just befQre the last
strins, since its stuffs the last assembled strinS into
the CDR of the last assembled S-expression word. If
the lpar is immediatel~ followed b~ an rpar, NIL (an
empt~ list) is assembled.

Examples of READ list assembl~ are Siven in 3.3.

Dialosue 3.3
List Assembl~

ioeut sir.eam assembles to

I6(FOO~BAR~MOO)16 •••

~(FOO~BAR,MOO)16 •••

I FOO I =t) I BAR· 1 =tIMOD fSJ
J FDO I T)IBAR I MOO I

~«FOO,BAR)I6MOO(MARI6LOO»I6 •••

VI

-
e.

- \, C'

Macro - evaluate macro expression

The use of READ macros is explained more full~ in
section 3.2.3. The initiall~ defined ALISP macro
characters are five: ,.; $ @ (sin~le Quote, double
n u C) t e, ~5 (.:~ ITI :I. CD Ion ~ (I (J 1 :I. a J' - 5 i £i n " and at .. ·· 5 :i ~:.t n • [J 0 not use
tll~?1TI as s:i.n~.ne··-chaJ'actf:·~T' atom pnalYlE~,Sl' as it will
CD n f J. i c t wit, h the i r mac y. 0 usa 9 e (f 0 r ins tan c e, do riot
use the atom with pnBme' as a lambda-expression
variable>. Their effects are!

i. Ouotin!=.t -- I

The ' character is used when a Quoted expression
must be assembled from the input stream. The
effect of the Quote character, when encountered
bs READ, is to cause the next strinS in the
input stream to be assembled (by a recursive
call to READ), and then used as part of a QUOTE
expression. The followins examples should make
this clear:

iCJF!ui si.ceam

~'FOOki~ •••
~'(FOO~BAR)~~ •••
~(FOO~/BARMMOO)~~ •••
~(FOO/BAR~MOO)~ ~~ ••

ii. Comment ins -- ;

assembles inta

(QUOTE FOO)
(QUOTE (FOO BAR»
(FOO(QUOTE BAR)MOO)
(FOO(QUOTE BAR)MOO)

The ; character is used to add comments to the
input stream. When the ; character is
encountered by READ, it causes the rest of the
line to be isnored. Note that pname or numeric
strinss cannot be continued be~ond the comment
character onto the next line. Examples:

ioaui si.ceam

(FOO

(FOD

FOO;
BAR)

THIS IS A COMMENT
BAR)
2ND COMMENT

3RD COMMENT
BAR)

iii. Immediate evaluation -- $

assembles iOLo

(FOO BAR)

(FOO BAR)
(FOD BAR)

The $ character is used to evaluate expression
assembled from the input stream before addins
them to the READ result. When the $ character
is encountered b~ READ, it causes the strins

19

-

-
'-

-
-
-

-

'-',

iv.

immediatel~ followin~
evaluated (usins EVAl)
the result. Examples:

iQ~ui si~ealIl

to be assembled and
before insertins it into

assembles iota

(FOO$(lIST 'MOO 'MAR)BAR)
$'FOO

(FDa (MOO MAR) BAR)
FOO

$' 'FOO (QUOTE FOO)

The $ macro can be used ver~ handil~ to add
lonser S-expression to the input stream without
havinS to re-t~pe them each time. For example,
suppose the atom FOO is set to a Ions list. To
insert that list into the input stream at an~
siven point, .FOD is all that's needed.

Read strinS .-.- II

The II character is used to assemble strins data
from the input stream. Characters are read from
the input buffer and assembled into a strins
until another II character is encountered. A
double Guote ma~ be included in the string b~
usins two successive double Guotes.

iOl?ui sir.ealIl

-ABCD
IIABIIIICD Il

IIABC)D[CRJ
EFGII

assembles iota str.ins

ABeD
AS·CII
ABC)Ir([CRJEFG

v. Read arra~ -- @

Arra~s are assembled when the @ character is
encountered in the ihput stream. See the
chapter on arra~s for the exact format.

3.2.3 READ Macros Explained

The macro facilit~ on input is a most valuable method for
custom-tailorins input s~ntax within the READ s~ntax structure.
This section explains the action of READ macros, and how to
imp 1 ement thern.

Two properties define a valid macro character -- a character
STATUS of 7, and a valid function definition stored in the value
cell of an atom with that sinsle macro character as its pname.
The five pre-defined macro characters, , I ; $ @, are all defined

20

I

\''-''~

-

;...:.·c)

as FSUBR's. User defined macros must be lambda expressions of no
variables (either FLAMBDA or LAMBDA will do). When the macro
cha r-acte T' is encounte T'ed b~ f~EAD in the i nput ~; t ream, its
function definition is fetched and evaluated, and the result
placed in the appropriate part of the result beins assembled b~
READ. Since the macro function itself can call READ, some ver~
clever thin~s can be done. For example, tr~ to re-define the I

macro usin~ a lambda-expression. Dne way would be:

(DE /' NIL.. (LIST «~UOTE QUOTE) (READ»

Now the atom with pname 'has the above function definition.
Take a sample input stream:

••• ~~(FDO~/BAR~MOO)~~ ••

READ starts to assemble a list when it hits the left parenthesis.
It assembles the atom FOO as the first element of the list. READ
is now at this point:

il:lE:ut sir-ealIl asselIlbled J!esult

•• ~~(FOO~'BAR~MOO)~~ •• _I F_O_0--.a..._---:--+--~
"i'

input buffer pointer

The macro character is
function definition and
arguments. It evaluates:

next encountered and READ looks
evaluates it as a function

(LIST (QUOTE QUOTE) (READ»

UP

of
its

no

The 'READ call returns the next S-expression in the input stream~
n<3I1'1E<1. !:~ y the atom BAF~. Th(·:·~n the I... 1ST function si ves (QUOTE BAR)
as its result, and this is the result which the macro function
returns. READ takes this result and inserts it as the next
element on the list it is assemblinS. READ is now at this point:

irJf?ut str.ealIl

•• ~~(FOO~/BAR~MOO)~~:~
1'"

input buffer pointer

assembled cesult

JFDO I ~I I >
I QUOTEr ~IBAR tsJ

Finalls, MOO is read as the last element and the list is
completed. The final result is:

'FOD

This is same as if the input stream had been:

21

-
-
-
-

-
-

-

-
22

•• ~~(FOO~(QUOTE~BAR)~MOO)~~ •••

READ macros are a very powerful tool for manipulatin~ the input
stream; the inventive ALISPer will find many uses for them in
front-end translators for his proSrams. Unfortunately makin~
read macros work as intended is tricky and most LISP'ers reQuire
some time before they become proficient.

3.2.4 TEREAD and READENT

The input line can be flushed usin~ the function TEREAD, a
SUBR of no ar~uments. Evaluatins (TEREAD) causes the input
buffer (see 3.3) to be blanked, and a new line reQuested from the
current input device. The value of TEREAD is NIL.

The function READENT is a SUBR of no ar~uments. It does a
TEREAD and then a READ, returnin~ the result of the READ as its
value. READENT is used when it is desirable to READ at most one
S-expression per input line.

3.3 ID~ut Buffe~ ~aiDier.s

The input buffer is directly accessible from ALISP at the
sinsle-character level. The buffer pointers are the values of
the atoms - READBEG, READLEN, and READEND. The values of these
atoms are SNUM inte~ers
input buffer. (The fi rst

desisnatinS character positions in the
character position in the input buffer

is at position zero.) Whenever a new input line is read in, the
buffer pointers are reset as follows:

READBEG is the first character position in the
input buffer that will be read. Initial value for
READBEG is zero, so that all characters in the input
buffer are used. If READBEG is set larser than zero,
initial characters in the input buffer will be skipped.
Settins READBEG ne~ative or Sreater than READEND causes
a NUM-ERR, and resets READBEG to zeio.

READEND is set to the number of characters, in the
line when it is read in, includinS the CR character, if
there is one. If EOLR is non-NIL, this will be 1 + the
number of characters typed in. Inputtins a null line
by hittins Just a CR will thus set READEND to 1 (if.
EOLR is NIL, READEND is set to zero).

READLEN is set to the value of READBEG when a new
line is read into the input buffer. READLEN is the
current character position used by all the read
functions. If READBEG is zero, READLEN is initiallY
set to th~ besinnins of the input line. Readins a
character causes READLEN to be incremented to the next
character. When READLEN=READEND, the last character

(----
\

.... ~,.,/

,,-,
/ '

"1_..,;

I
1-

,-
o

-, ,r-', Il .. ,1

has beE-~n
reGuests
Pf~rf(JT'lTIed ~

read from the line, and
will cause an automatic
resettin~ the input line.

subseGuent read
TEREAD to be

The input line pointers allow 5in~le-character control over the
i n r-dJ t. s t.. l' (~ a ITI • T h E~ 1 en 9 tho f the CUT' I' e n tin put lin e as well as
the current character position within the line can be extracted
from them; and the~ can be reset with SETQ to skip or back UP

over characters in the input line. In conjunction with the
functions described in the followin~ section, explicit
sinSle-character control over the input stream is possible.

3.3.1 Sin~le-character Read Functions

The functions described below read and return sinSle
characters from the input line. The~ are all functions of 'no
ar~ument5. The character is read from the current position of
READLENy and READLEN is incremented to point to the character
after the one read (except for READPK). If READLEN=READEND when
the function is called, an automatic TEREAD is first executed,
and the function reads from the next input line.

READCH reads the next character from the input
stream, and returns an atom whose pname consists of
that sin~le character.

READNM read the next character from the input
stream, and returns its internal inteSer representation
as an SNUM. IAI would be 101B, IBI would be 102B, etc.
See Appendix A for internal character codes.

READNB keeps readins sinsle characters from the
input line until a non-blank (STATUS # 2) character is
found or until the end-of-line is encountered. It
returns an atom whose pname is that sin~le non-blank
character or NIL if the end-of-line was found first.

READPK reads the next character from the input
stream, but does not advance the READLEN pointer. It
returns an atom whose pname is the sinSle character
read. If READLEN=READEND no TEREAD is called, and
READPK returns NIL.

23

-.

.-

I Chapt,e T' 4

Ouieui S:t.~ealIl

This section describes the seneral
characteristics of the ALISP output stream,
as well as specific time-sharins
characteristics (for special batch and file
considerations¥ see sections 1.14 and 1.15).

4.1 OUi2Ut Lines

The output stream, like the input stream, is line oriented,
that is, it iooks at onl~ a sinSle line at a time. Lines
automaticall~ have an end-of-line b~te tacked onto the end when
they are written to an output device. Maximum line lensth is 150
characters; the actual printed line lensth (before an end of line
is automaticall~ transmitted) is siven b~ the current value of
the atom PRINEND (initiall~, PRINEND is set to the SNUM 72).

4.1. to:1. OUTUNIT

The current value of OUTUNIT is used b~ the print functions
whenever a line must be output somewhere. If OUTUNIT is set to
the SNUM zero, lines are printed on the terminal. See the
sections on batch and files for other values of OUTUNIT.

4.1.2 Character Sets

If ~ou have si~ned on to the terminal correctl~, then all
characters which are available on the terminal t~pe element will
print correctl~ (even the APL t~peball is compatible). See
Appendix A for characters available from different terminals.

ALISP uses full ASCII mode
terminal, so that problems caused
KRONOS or NOS are minimized.

when communicatins with the
b~ the 64 character set fn

4.1.3 End-Or-Line Processing and TERPRI

The atom PRINEND contains the line length for the output
line (maximum is 150 characters) When the output buffer is full,
it is dumped to the current output device. An end-of-line b~te
is tacked onto the end of each line as a line delimiter. There
are Bctuall~ two t~pes of end-of-line b~tes; which one is used is

24

~ (.
, _.~ .. /

-

-

! -

, -

.... _ ... _ _._._-_ ... _-_ .• _-_._--•... _--------

controlled bhl the atom EOLW (End Of Line on Write). If EOLW is
non-NIL, the end-of-line b~te causes a carria~e-return line-feed
(CR-LF) when the line is output, resettinS the terminal carria~e
to l",hf:"~ t:.l(":"~!":t:innin!":"t of th(~~ neNt I inf~. If EOl.W is NIl., the
end-of-line byte has no effect on the terminal printins, and
t.hE' c:-aT'r':La~jf~ is left where it stopped after printin~ the last
cha ractE-n'. No T'ITI(3 11 ~l' thE-~ CR-l.F end"""c)f-l i ne b~te is the c)ne
that's wanted, and thus the initial value of EOLW is T. For some
special applications, such as output formattin~ or control of
sraphic devices, it is necessar~ that an end-of-line not print
the CR-LF, and for this purpose EOLW should be set to NIL.

The function TERPRI, a SUBR of no arSuments, is provided to
end an outptit line and dump it before the PRINEND limit is
l'eached. Evaluating (TERPRI) terminates ,the output line and
dumps the output buffer. If there was nothins in the buffer, an
empt~ line is outputted. For further considerations on output
line formattins, see section 4.3 below.

4.2 ~RI~I st~uctu~e

The function PRINT, a SUBR of one ar~ument, provides
communication between internal ALISP structures and the output
line~ In seneral, an~ ALISP expression that can be read with
READ (and a few that can't, also) can be printed b~ PRINT, in a
format compatible with the orisinal READ s~ntax. When PRINT
finishes outputtins its arSument, it issues a TERPRI to dump the
final output line.

4.2.1 PRINT S~ntax

Intimate knowledse of PRINT s~ntax is reall~ not ver~
important, unless one is concerned with output formattin~ or
files. Still, a knowled~e of the PRINT s~ntax enables the
informed user to know exactl~ what internal ALISP structures are
repl'esented b~ the output.

a. List Structures

A list (or non-atomic S-expression in Seneral) is
printed as a series of elements between parentheses.
This format is recursive, that is, if an element of a
list is itself a list, it too is printed as a set of
elements between parentheses. Between ever~ element of
a list a space is inserted. If the final CDR of the
S-expression is non-NIL, a comma· is printed, and then
the final CDR element. Note that the onl~ place a
comma will app~ar is Just before the last element of an
S-expression.* Examples of list structure print format

* The comma is used instead of a dot in dotted S-expressions.

25

-

-
......

26

are siven below in Dialosue 4.1.

Dialogtlf.~ 4.1
List structure PRINT Format

S·-e~e£ession

FDO BAR (FDD BAR)

MOO BOO MAR

«FOQ,BAR) MOO BOD,MAR)
FDa BAR

b. Literal atoms

i. The atom NIL prints as ·NIL·.

ii. Gens~m atoms print as ·Xdddd •••• ·, where ~ is the
Sensym character (see GENCHAR) and the dare
Sensym disits, uniGue to each sensym atom.
Gens~m atoms cannot be read back into the system;
their print characters are only to enable the
user to identify them on output.

iii. All other literal atoms use their print-names
(pnames) to form a printable character strin~.
This strin9 is normall~ exactlY that used to
i rlP!..rt thf.~ atom with READ" e. g., • FOO I read in
will print as ·FOO I

• A problem arises with
exotic atoms, however (exotic atoms contain pname
characters with STATUS 1 2). Since exotic atoms
are inputted usins slash convention, they will
not look the same on output, when'no slashes are
present. This is usuallw what is desired,
thoush, since terminal output cannot be
re-inputted directly anyhow. For files which can
be read back in, however, it would be nice if
exotic atoms could bw output and read back in
properly. To this end, the switch SLASHES is
provided. If it is set to NIL, no slashes will
be inserted in exotic atom pnames when they are

Because there is no confusion with the
floating-point numbers, there is no ne~d to
the comma.

dot as used in
put spaces around

(~
.............

'-

.....

-
~(""-~'l

'\--_.1

,/, ,."
I I
~~

printed; if non-NIL, slashes will be inserted at
the correct positions, to enable the atom to be
read back in (this does not solve all problems
with exotic atoms -- see the section on files).
Initial value of SLASHES is NIL. Examples of
literal atom printins are siven in Dialo~ue 4.2

'? (GENSYM)
GO

?(SETQ GENCHAR 'A)
A

?(GENSYM)
Al

? ()
NIL

?SLASHES
NIL

?(SETQ FOO'/2BAR)
2BAR

'j) I THI S/t6MESS
THIS~MESS

?(SETQ SLASHES T)
T

?FOCl
/2BAF~

'? I TI--I I S~MESS
THISt6MMESS

c. Numeric atoms

Dialosue 4.2
Literal Atom Printin~

GENSYM atoms
character of
pnames, unless
non·-NI IL •

have the default
'G' in thei r
GENCHAR is set

SLASHES is initiall~ set to
NIL.

No slashes on output.

SLASHES ~;et to T

Slashes now appear in the
outputted pnames, as the~ w~re
when inputted.

Numeric Dutput format is completel~ compatible
with input format for LNUM's, BNUM's, and SNUM's.
Thus, if the~ are written to a file, the~ will be read
back in correctl~. The t~pe of numeric atom
represented is apparent from the format.

27

-

-

-

-

28

Both SNUM's and BNUM's use a variable base
representation on output. The value of the atom
OUTBASE must be an LNUM~ this LNUM is the base
representation on output. Initiall~, OUTBASE is set to
112 (base 10). Le~al values for OUTBASE are from 12
(base 2) to 120 (base 16).

i. LNUM' s

i i •

Output format is:

tsddd ••••

whe T'f?

5 is an optional minus si~n (I_I)

used if the left-most bit of the
set.

which
LNUM

is
is

d are th~ the octal disits representins the
48-bit LNUM (up to 16 disits). If the
minus si~n is present, these disits
represent the one's complement of the LNUM
bits. Left zeros are suppressed; if all
bits are zero or one, ItO· and ·.-0· are
output r~spectivel~.

SNUM 1£.;

Output format is:

sddd •••

sis an optional minus sisn (I_I).

d are digits representins the SNUM inteSer.
The inteSer printed uses OUTDASE for its
base representation. LeadinS left zeros
are suppressed; zero alwa~s prints as 10 1 •

iii. BNUM' 5

Output format is:

s.dddd •••• Eseee •••

where

s is optional minus sign (._1).

d are digits of the coefficient. They are
output using OUTDASE representation.

()

E is an exponent indicator (alwa~s present).

e are exponent disits. The~ are also output
us i n£~ th(·:~ DUTBASE basE-~ T'€-:F' T'esentati on.

The nuruber of disits d in the coefficient of a
printed BNUM can be controlled b~ the atom
DIGITS. The value of DIGITS should be . an SNUM
positive inte~er indicatins the number of disits
desired. All disits asked for are printed, so
that riSht trailing zeros are not suppressed.
Rounding is done on the DIGITS + 1 disit to make
the result more readable. If DIGITS is set to 0
all siSnificant disits will be printed (14 or 15
for base 10), and no roundins will take place.
DIGITS is initially set to 13. Note that disits
does not control the total lensth of the BNUM
output, Just the number
the coefficient. Neat
other tricks.

i v + PNUM' s

of siSnificant .digits in
formatters must resort to

This number t~pe is used internall~ by the
interpreter, and cannot be read into the system.
Nevertheless, there are times when a PNUM will
sneak into an S-expression being output, so the
user may as well know what he's got. A PNUM is
the value of an atom which has a machine-lanSuaSe
function definition (SUBR, LSUBR, etc.) such as
SETQ or CONS (for more specific information, see
the section on ALISP data types). Format is:

Ptddd •••

where

PI is the PNUM indicator.
d are octal disits representins the function

type and its machine address.

v + ANUM' 5

This is a number type which cannot be read back
in by READ. An ANUM is an internal array
pointer, and can onlY be created by the function
ARRAY (or the @ real macro). Format on output
is:

Ainnnn

29

-

-

-

-

'-

where Dono is the octal address of the arraylist
word for the array. The file packa~e will print
arra~s specially so that they can be read back
in, rather than printins ANUM's. The functions
PRINARRAY and READARRAY are available to the user
for storins his own file liD with arrays (see
section 1-12 on arrays).

4.2.2 PRINT Syntax Fuhctions

PRINT is the most commonly used printin~ function. It is a
SUBR of one arSument; it prints its ar~ument accordinS to the
PRINT syntax Just described, then issues a TERPRI to flush the
output buffer. The value of PRINT is its ar~ument.

PRIN1 is Just like print except it issues no TERPRI. The
difference between PRINT and PRIN1 can be seen in Dialosue 4.3
below. The value of the function PRINl is its arsument.

The functionHALFPRIs is used to print out part of a Ions
list. It is a SUBR of one arsument which acts Just like PRIN1,
except it will only output a limited number of atoms in a Ions
list. The limit is fixed by the atom HPRNUM, which should be set
to an SNUM. If HPRNUM is not an SNUM, the default value 4 is
used (this i~ the initial value of HPRNUM). If a list with more
than HPRNUM atoms in it is siven to HALFPRI, it will correctly
print the list UP to the first HPRNUM atoms, then print an
elipsis ••••• , and close all parentheses in the list. Examples
of HALFPRI calls are siven in Dialosue 4.3.

TERPRI is a SUBR of no arSuments, which terminates and dumps
the output buffer.' Val'Je of TERPRI is NIL.

4.3 Unified OutBut Buffe~

Like the input buffer, the output buffer is directly
accessible from ALISP on the sinsle-character level~ Three
buffer pointers control the buffer flow: PRINBEG, PRINLEN, and
PRINEND; they must all have SNUM values.

30

PRINBEG is the first position to be~instuffinS

characters into the output buffer. Initially,PRINBEG
is set to 0, i.e., the leftmost character position in
the buffer. If PRINBEG is set nesative or ~reater than
PRINEND, a SYN-ERR will be issued at the next output
buffer flush, and PRINBEG will be reset to o.

PRINL.EN is
character into the

the current position
output buffer. When

to stuff a
the buffer is

c

_.
[I i a 1 (J s.h.J(~\ 4. 3

PI' i nt Funct i ()fl5

(---j
~~ ?(PROGN (PRINT 'FOO)(PRINT 'BAR) NIL)

"_.

-

FOD
BAli:
NIL. PRINT terminates the output

line on each call.

?(PROGN (PRINl 'FOO)(PRINl 'BAR) NIL)
. FOOBARNIL PRINl does not terminate the

output line, 50 successive
calls are strun~ to~ether.

Note that the result PROGN,
NIL, was tacked onto the end
of PRIN1's output. If the
number of characters in the
output buffer exceeds PRINEND,
the Dutput buffer is dumped,
even if PRIN1 is doinS the
printing.

?HPRNUM
NIL

?(HALFPRI '(A BCD E F»
(A BCD •••) (A BCD E F)

?(SETQ HPRNUM 10)
10

?(PROGN (HALFPRI '(A BCD E F»
? (TEIi:PRI»

(A B C II E F)
NIL.

HPRNUM is set to NIL, so onl~
4 atoms are outputted on a
call to HALFPRI.

Note that HALFPRI, like PRIN1,
does not dump the output
buffer after it prints, so
that the value of HALFPRI
immediately follows its
output.

? Since HPRNUM was 10, all of
the atoms in the argument of
HALFPRI was printed.

emptied, PRINLEN is set to PRINBEG, the first available
position. Stuffin~ a character into the buffer causes
a PRINLEN to advance by one, until it reaches PRINEND.
If a character is to be stuffed when PRINLEN=PRINEND,
the output buffer is first flushed to the current
output device, PRINLEN reset to PRINBEG, and then the

31

-.
character is inseT'ted :into the buffer. E~·:plicitl~
settins PRINLEN Sreater than PRINEND ~ives a SYN-ERR
on the next buffer operation, and resets PRINLEN to
Pli I Nf(EG.

PRINEND is the last position of the output buffer;
it should not be set lar~er than 150, or a SYN-ERR will
be issued, and PRINEND reset to 72. Initial value for
F'RINEND is 72.

The output buffer pointers are all used and updated b~ the
print:ins functions; the user can chan~e their values explicitly
by usin~ SETQ (or SET or aSETQ).

Three hints on the use of these pointers. If PRINBEG is
~reater than 0, then the character positions before PRINBEG are
filled with blanks. Thus if PRINBEG is set to 2, all outputted
will start with 2 blanks.

When the output buffer is flushed, all character positions
are filled with blanks. Thus advancins PRINLEN as a character
position (usins SETQ) without stuffinS any thins into that
position, will cause it to print as a blank. Also, if PRINLEN is
set back to a buffer position that alread~ has a character
stuffed into it, a new stuff will replace the old character with
t.he new.

Finally, note that a buffer flush (usins TERPRI) takes the
value of PRINLEN as the end of line position, so that onl~ the
first PRINLEN characters in the whole buffer are outputted. This
is cool unless you reset PRINLEN to a previous character position
(in order to replace a character, say), and then do a TERPRI.
Only the characters UP to the PRINLEN position will be output,
every thinS past that is lost.

4.3.1 Character PrintinS Functions

These functions provide
characters to the output buffer.
buffer pointers.

the. ability to send individual
All of them use and update the

PRINB is a SUBR of one arSument. (PRINS x), where K is an
SNUM, packs ~ blanks into the output buffer. If'~ is zero or
ne$ative ~ no blanks are outputted. Returns NIL for its result.

PACKl is a SUBR of one arsument. (PACKi x), where ~ is an
SNUM, sends the sinSle ASCII character represented by the inteser
~ to the output buffer. See Appendix A for inteser
representations of characters. If ~ is lar~er than i77B, it is
truncated to provide a 7-bit inteser. Some caution should be
used for odd values of M; for instance, certain inte~ers do not
~epresent any characters, and will not print.

32

o

--~--- -- --------- ... __ .. _-.. __ . __ .. ¥_--
------- _-------

I Chapt.er 5

Lite~al ~ioru Si~uctu~e

This section describes t.he attributes
and internal representations of literal
atoms~ as well as the methods used to
internalize and update t.he literal atom
object list. (DBlIST).

5.l DBLISI

The DBlIST is an internal hash array of 128 buckets holding
all non-NIL, non-Sens~m literal atoms in the s~stem (except for
literal atoms which have been WIPE'd? see section 5.1.2 below).
Each bucket is a list of atoms corresponding to its ~articular
hash. Whenever a literal atom is read in (usins a READ s~ntax
function)~ its pname is hashed and the appropriate bucket
searched to find a match. If none is found, a new entr~ is
created on the bucket.

The DBlIST can be explicitly retrieved usinS the function
OBLIST, a SUBR of no arSuments. It returns a list of all 128
atom buckets. DBlIST actuallY returns a CQPY of the internal
hash buckets, so that its result can be manipulated with impunity
b~ RPLACA, RPLACD~ NCONC or any other permanent list-alterins
functionp without fear that the DBlIST will be wrecked and bomb
out at the next garbage-collect.

An atom's position on the DBlIST can be obtained with the
function ATMHASH, a SUBR of one arsument. ATMHASH returns the
bucket number of its arsument as an SNUM from 1 to 128; the first
bucket on the DBlIST is bucket 1, the last is 128. If ATMHASH is
Siven an~thins but an nslitat arsument, it will complain with an
ARG-ERR. If it cannot find its arSument on the DBlIST, it
returns NIL. An example of the ATMHASH function is ~iven in·
Dialosue 5.1 below.

5.1.1 rrul~ Worthless Atoms

Also called TWA's for short~ these are non-NIL literal atoms
which have no other attribute than a pname, and are not
referenced b~ an~ other dat structure in the AlISP system. TWA's
are purged from the OBlIST at the next sarbase collect, unless
the~ have been set with the functi~n SPECIAL (see below).
Clearin~ out TWA's has the effect of freeins UP free storaSe and

33

'-

34

unclogging the OBLIST, especiall~ when large numbers of new
literal atoms are created and then abandoned during the course of
prosram execution~

If for some stranSe reason (such as freeing UP more storage)
YOU desire to turn a worth~ atom into a TWA, then ~ou must remove
its value attribute with REMOB and set its plist to NIL with the
function PLIST. If there are no references to this atom in list
~:;tT'lJctI.JT'eS; OT' oth(:~r atcJm vall.Je~;, then hlOI..l have created a TWA.

Th~re are times when it is desirable to keep a literal atom
around even when it is not beins activelhl referenced, or has no
value or plist attributes. The function SPECIAL is used to mark
an nlitat 60 that it will not be garbase-collected even if it is
a TWA~ This function is a SUBR* of one or two arguments. The
fir !:; t j:~ T' ~11..1m e n -t i ~5 the n 1 :i tat t C) b (0 S (-~ tor G u e l' i e d for S P E C I A L..
~:; tat u ~:; • T h p ~:; (7~ con dar ~:_~ I.J ITI E~ n 1:, :i sop t i (J n a 1; :i f a b 6 e nt, the S PEe I A L..
s tat u ~:; C) f t h f? at C) m i~) l' (~\ t u T' n (-:~ d as Tor NIL. Iff" l' e sen t, t h (~ -
SPECIAL status of the atom is set if it is non-NIL, cleared if
NIL. Value is the atom. Examples of the SPECIAL function are
given in Dialogue 5.1 below.

All s~stem atoms such as SETQ, CONS, etc. have their SPECIAL
status set so they won't set clobbered even if ~ou turn them into
TWA's. You can, if ~ou wish, intentionall~ destro~ the s~stem b~
an overt act of un-SPECIAL' ins and cloberring a vital atom such
as PRINLEN. The atom NIL cannot be SPECIAL'edt

5.t.2 WIPE

In some cases it is desirable to make a literal atom
invisible to the READ functions. This is true, for example, if
~ou have a larSe proSram which uses local variables, and does
some READ calls; if nothins in the READ should conflict with
the local variables, the locals can first be WIPE'd. WIPE' ins a
literal atom removes it from the CElIST and places it on the
W I PEL J [,T y Whf? T'(-? it w:i 11 l.:l(~~ !~.a T'bas~\'-co 11 ected co T' rect I ~ . but not,
looked UP b8 READ when an atom with a similar pname is inputted.
All other attributes of the atom remain as the~ were. In this
wa~ it is possible to create two different nslitats with the same
pna/TJ(;~ •

Literal atoms on the WIPELIST are not uniGue. If the atom
FOOy for exampley is WIPE'd onto the WIPELIST, then another atom
with the same pnsme FOD is put onto the DElIST, WIPE/inS the
OBLIST atom FOO will put this new atom on the WIPELIST. There
will then be two atoms with the same pname on the WIPELIST. B~
successive applications of WIPE, an indefinite number of atoms
with the sa/TJe pname can be put onto the WIPELIST9 the~ will all
be different internal atoms, and not EQ to each other.

Once an atom is WIPE'd it
If an atom on the WIPElIST is

cannot be put back on the DELIST.
a TWA (section 5.1.1 above), then

c

--

.---.
(
',,--~,

,

, -

?(lIST 'FOO 'BAR)
(F()O BAI=\:)

?(ATMHASH 'FOD)
6':)

'r (ATMHI~SH 'BAR)
:l20

?(ARGN (OBlIST) 62)
(I FO()

?(ARGN (DBlIST) 120)
(SUBR* RETURN BAR)

'(SPECIAL 'FOO)
NIL.

'(SPECIAl... 'BAR)
NIl ... ·

'i) (~:)PEC I AI... ' FOO T)

FC)()

?(GC)
NIL

?(ARGN (OBLIST) 62)
(. FOD)
?(ARGN (DBlIST) 120)

(SUB I=\:* r~ETURN)

[I i a 1 O~.tUf~ ~;. 1
The Function SPECIAL

The atoms FOD and BAR are
TWA's, since they have no
value or plist attributes, and
their only reference, in (LIST
'FDD 'BAR), is lost as soon as
:i. t :i 5 t-:1V<iJ luated.

ATMHASH returns the hash
bucket on the D8LIST which
holds its arSuments. Both FDD
and BAR are on the DBLIST,
since no Ge's have been
performed yet. ARGEN is. a
function which returns the
other element of a list.

The SPECIAL status of FOO and
BAR i~:; NIL.

This s~ts the SPECIAL status
of FOD te) T.

The GC
ilTlmediate
The atom
DBLIST,

function calls an
Sarbase-collect.

FDD is still on the
but BAR has

disappeared.

it is removed from the WIPELIST at the next Sarbase collection.

The function WIPE is a SUBR of one arsument. This arSu~ent
should be an nslitat to be removed from the DBlIST. If the atom

- --- ----- ------------ ---

35

-

-

-
-

'-

36

is not on the OBLISTv or is a GENSYM atom or NIL, no action is
taken. WIPE returns its ar~ument if it was successful in
~J J PE' :i. n !.:.~ it, 0 J' NIL.. :i.·f" :i. twa s n C) t • E ~.~ a IYI P 1 E~~:; () f t h €~ W I P E fun c t ion
are siven below in Dialo~ue 5.2.

D :i. a :I. () ~:.~ u (-:~ !:5.:~

The Functions WIPE and WIPELIST

.? (::) E T D F n C) I (B A I:~ B D D M n D))
(D (I r;: B D 0 M (J D)

T (E n (c (:) F~ F 0 D) " BAr;:)
T

?(WIPE (CAR FOD»
BAI:;:

'i' ([J,IIPELIST)
(BAF:)

T(EU (CAf~ FOO) 'BAF\)
NIL.

The value of the atom FDD is
the list (BAR BOO MOO).

T h f.~ f :i. T' ~o) t f? I f.~' III en t () f t h f.~ :I.:i !;) t !I

the atom BAR, is on the DELIST
and EQ to the atom BAR Just
T' €~ a ci :i. n +

This WIPE's the atom BAR from
the DBLIST and places it on
th(7~ WIPEI...IDT +

The atom BAR placed on the
W I PEl... I f:>T :i.!:; not... no 1 On9f? T' thf:~

!:;alTl(~'~ as th(~ atom BAR read:i n
and placed on the OBLIST.

The function WIPEI...ISTv a SUER of no ar~ulTlents, returns the
cUP~ of the WIPELIST. This cop~ can be manipulated b~

list-alteT'in~ functions such as NCONC, RPI...ACA, etc., without fear
D f t,,1 l' E' C k :i n !:~ t h f:" :i. n t (.:.~ I' n a 1 W I PEL. I S T (~n d ~:; c T' E~ win 9 the s ~~ s t em.

5.2 Literal ~lom I~ees

T h (.:~ J' (.:.~ i:;· I' (7~ t. hi" p (.:.:. t. '::: ,... .. (.:~ ~::. C) f 1 :i. t (.:~ T' a :I. (:~ t c) In S : NIL l' G e n ~; ~ ITI a t. 0 IT! ~:;. :1

i::: n d n D n G f:~ n ~; ~:~ IT! l' non .. " N I I... :I. :i. t (.~ T' a :I. at c) ITI S (n 9 1 ita t / !:;) • The ~ a T' e
mDstl~ inteT'ch2n~eable when used in ALISP proSramsv but the user
!:; h D 1..11 d . b (.:~ a ~" a T' E\ C) f t h f..~ i T' S r-' (7~ c i f :i. c P ~~ C u :I. a T' i tie 5 •

There is no sin~:l.e predicate to determine if an S-expression
:i.!:; a lit€-.'T'al (:~t.()1TI Dr nott I...ITP will T'(~tl..lT'n T fOT' non""NIL literal
atolT!s~ The followins expression will return T if an S-expression
~ is an~ literal atom!

(Dr;: (N U 1...1... ;.~) (LIT P ;<»

c

C'"

/' "

o

(
...- ..

NIL is dear to the heart
ubi~uitous and fills a multitude
empty list and literal atom.

of every
of nf:1eds

LISP user.
in its dual

It is
role as

The test for NIL is the function NULL, a SUBR of one
ar~ument, which returns T if its arSument is NIL, and NIL if it
is non-NIL. The NULL function is eQuivalent to the lo~ical NOT
function found on some LISP sYstems, since in AlISP lo~ical truth
is sisnalled by any non-NIL value~ loSieal falsity by NIL.

NIL is represented in core by an ALISP pointer of all zeros.
Since this points to the first word in free space, which is a
word of all zeros~ the CAR and CDR of NIL are also both NIL. NIL
is the only atom which CAR and CDR will accept as an arsument.

The pname of NIL is, of course 'NIL', althou~h NIL can also
be input as .()R. NIL is not on the DBlIST, and cannot be
WIPE'd Dr SPECIAL'ed or sarbaSe-collected.

The value of NIL is always NIL, and cannot be chan~ed with
any of the functions SETQ~ SET, or QSETQ. Nor can its value be
REMOB'ed (see 5.3.2 below). The plist of NIL does not exist9 any
of the plist functions will complain on beins siven NIL as an
atom which is supposed to have a plist.

5.2.2 Gensym Atoms

.... '0 GenS~HT. atolTls ay'c·? ver~1 much like other non·-NIl. literal atoms,

-

except that they are not on the OBLIST and have funny (but
uniQue) pnames. Because they are not on theOBLIST, Gensym's can
never be recosnized by READ.

Gens~m atoms are useful in LISP pro~rams which.must Sene rate
symbols, usually as tass to list structures. Tree-buildinS
F··rO~~T'aITlS wi 11 often USf? Gensym atoR.s as node nalT.€-~s. The MIL.ISY
(MIni-Llnsuistics SYstem) proSram uses Gensym atoms as internal
names for objects in its data-base. Gens~m atoms can be created
on the fl~ b~ ALISP proSrams, and each new Gensym is suaranteed
un :i. Ql.Jf~ •

Genssm atoms are created usins the function Gens~m (GENerate
SYMbol)~ a SUBR of no arSuments. It returns as its value, each
time it is called, a newl~-minted GensYITI with pname Xnnn ••• The
Dare disits for an inteser (in DUTBASE representation) uniaue to
that Gensym; the X is the Gens~m prefix character. Each time
Gens~1TI is called, the Gens~m disit is advanced by one, so that
subseGuent Gens~1TI calls will return pnames with an incremented
int.eser.

The atom GENCHAR controls the GensYITI pname character prefix.
If GENCHAR has value NIL, the default character 'G' is used.

37

-

.38

GENCHAR can also be set to ans non-NIL, non-Gens~m literal atom.
Th(·:·~ fi T'!:;t ch<3y'act(-:~r of t.h(.;~ ::':'naITJ(:-~ of this atom is used as thf.:~
Gens~m pname prefix~ Gens~m will complain when called if GENCHAR
is not NIL or an nSlitat. Initial value for GENCHAR is NIL.
E .~.~ a III ;;:, 1 (.:.~ £; C) f t h f:'~ G (::) n s ~:nTJ fun c t :i. () naT' 0~ ~;J :i.v en :i. n II i a log IJ e 5. 3 be :I. () W •

D :i. a :I. C) ~.:.{ I..J f? ~:i + ~3

The Funct:i.on Gens~m

'!> G ENe H (.) r;:
NIL

'j> (C; C-:-~ n ~:; ':J IfI)

GO

?(SETQ GENCHAR 'ANOTHER)
ANnTHEF~

'1) (C:i (.:~ n !::. ~:1 m)
,~:I.

?CSETQ FOO (Gens~m»

(.:12

?(ECi /(.)2 FOO)
NIL.

Initial value for GENCHAR is
NIL, so "G II is tlsed as thf?
Genssm character.

This sets the Gens~m character
to II A II •

Note that the Gens~m counter
has been incremented for each
n(-:'lw GE.lnsslTJ call.

The atom wi til pname II A2" i £.;

d:i.fferent from the Gens~m atom
UA2 U•

Th(·:~ F'nalTl(';~ 'Tlan:i.f,"'ulc~t:i.n!~f funct:i.c)nr:; PACK and UNPACK do not work
Dn G(·:·)n!=·~3JrJ::>' and w:i.l1 cC)ITIPlain :if £fiv(-?n such.

To f :i. n d 0 u t w h f? t h f:~ T' . an S -.. f:~ ~.~ p r' e ~;; 5. ion i 5 aGe n 5 ~ IT! at (,') IT! , the
funct.:i on Gf·~ns~:lITJF" i:~ ~3LJBf~ of on€~ a T'£{UITI€~nt 'J can be used. . G(:-1nS~ITJP

returns T if its ar~ulTJent is a Gens~m atom, NIL if it is not.

T h C-~ !:~ (::~ (:~ l' (.:~ n D n N I J... y n () n G (-? n !3 ~:~ ITI 1 :i t (~\ T' a :I. a t 0 ITJ S • A 11 0 f t, he
properties described in section 5.3 appl~ to nSlitats. The
PT'operts wh:i.ch distin~uishes nSl:i.tats from the other two t~pes of
literal atoms above is a print-name consistins of· an arbit~ar~
string of characters (but less than 322) used b~ the ALISP system
I.·"hen :i."":::"l..ftt:i.n~:.~ and Dut:·::·ut.t:i.n~.{ thf:~ .atDITJ? anti intf..l T'nal:izatiDJ"J of
the <::'(:.O'i, on (.:.~:i. thf:~ r th(-:~ DDt.. I ST (;) J' thE:l WI PEL 1ST (!:;ee' secti on 5. 1
abo'/(':J) t Thf.~ pl"lalTl(~~ funct:i.ons F'ACI\ and UNPACK will onl~ wc)rk on
n~litat.s and NIL.

c\

",--''''

(I

~I

5.3 Litecal ~tDru ecoeeriiss

T h (7~ ~:; e F' r (J P t (~ Y' :i. f.-~ sap p 1 ~:l t () n 1 ita t s , i • e ., n (,1 n - NIL. 1 i t era 1
atomsy with the exceptions noted.

5t3.:I. Pname

The pneme or print-name is a character strinS associated
with an nlitat, and used for communication between the ALISP
system and the user. Whenever the atom must be printed, the
pname character strins is outputted; if the atom can be input, it
is bs means of the pneme character strinS.

Gensym atoms will print as a sinSle character followed by an
inte~er uni~ue to that atom (see section 5.2.2). The slash
convention ¥or printin~ exotic atom characters is not used, even
if the switch SLASHES is set. Gensym atoms cannot be input.

Nsl:itats can have pnames of UP to 3?? " characters. An
n~~l i tat is output by printing its character string, using the
e~<ot i c atom slash convention if the switch SLASHES is set.
Nsl i tc:J'ts can be input by t~lpins in thei T' character stT'in~:h usins
the slash cc)nvent ion on input to REAli for e;·~otic atoms (see
section ~3.2.2).

The functions PACK and UNPACK enable the user to explicitly
manipUlate literal atom pnames. These functions will not work
with Gensym atoms; however, they do work with NIL.

UNPACK, a SUBR of one arSument, returns a list of atoms
whose pnames consist of the individual characters in the pname of
its arSument. The atom NIL UNPACK's as the list (N I L).

PACK, a SUBR of one arSument, packs the first characters of
the pname of each element in its arSument into a new pname, which
it then internalizes and returns as a literal atom+ Its arsument
must therefore be a non-empty list of n~litats+

Examples of the PACK and UNPACK functions are siven in
Dialosue 5.4 below.

It is sometimes valuable to know Just how many characters
are in a pname. The function ATLENGTH, a SUBR of one ar~ument,
does Just that. If its arSument is a literal atom, it counts the
number of characters in its pname and returns that count as an
SNUM. ATLENGTH will actuall~ take an~ atomic S-expression as its
ar~ument. It returns the followin~ values:

NIL
Gens~'m
NumbE~r

n~litat,

3
6
print lensth of number, includins decimal
point and minus siSn.
1 f.-~nst,h c)f F"nam€~

-

-

40

Di(~lo~~~ue 5.4
The Functions PACK and UNPACK

? (UN F' A C 1< N I I ...)
(N I L.)

? (UNPACI< I FClO)
(F () ()

?(UNPACK 'HI/~THERE)
(H I ~ tHE R E)

'r(PACK '(F () 0»
FOG

?(EQ (PACK '(F OO»'FDO)
T

?(PACK '(FOO BAR»
FE!

?{PACK (UNPACK 'FDD»
FOD

5.3.2 Value
I

The aton. 'HI~THERE' has a
blank character in its pname.
UNPACK handles this character
Just as it would any other, b~

forn.in~ an at on. with the blank
character as its pname.

Note that the atom formed b~
PACK is the same as that
inputted by the READ function.

Note that onl~ the first
character in the atoms FOO and
BAR is used bhl PACK.

PACK and UNPACK are inverse
functions.

All nlitats have a value cell which holds the current ~alue
of the atom. The value can be any valid ALISP S-expression.

When an nlitat is initiall~ created or re~d in for the first
time, it is siven the atom ILLEGAL as a value. This special atom
is checked for b~ the interpreter, which considers an nlitat to
have no value if it finds ILLEGAL in the value cell.

The value of an nlitat can be chan~ed at any time by one of
the functions SETG, SET, or OSETG. SET is a SUBR of two
arguments; it sets the value cell of the first arSument to the
second ar~ument. SETG and GSETG are both FSUBR*'s of an
indefinite number of ar~uments. The first of each pair of
ar~uments is an nlitat whose value cell is to be set, the second
is the value to set it to. SETG differs from GSETG in that it
evaluates the second of each pair of arsuments. All of these
functions return the value of the last set made as their result.

c:

r',
r '

~

-

C
"--"'"

I

Examples of the SET functions are siven below in Dialogue 5.5.

DiaIc)slJf? 5.r"5
The Functions SET, SETQ~ and OSETO

'~(SFT I FDO I BArn
BAr~

?FO[)
BAR

?(SETO FOD 'MOO BAR 'MAR)
MAR
r~FO()

MOO
'!'BAr,

MAH

?(OSETO FOD MOM BAR DAD MOO COW)
COW

?(LIST FDa BAR MOO)
(MOM DAD COW)

This sets the value of FOO to
the atom BAR. Note that SET
evaluates its first arSument.

SETQ takes any number of pairs
of arSuments, and onl~

evaluates the second of each
pair. It returns the value of
the last set.

OBETQ has the same format as
SETQ, but evaluates none of
its arguments.

It is impossible to set the value cell of an atom to the
atom ILLEGAL usins the above functions, since ILLEGAL can neither
be read in nor passed from one expression to another with an~
ALISP function (EVAL alwa~s intercepts it and complains ~ith a
VAL-ERR)t The function REMOB, a SUBR of one arSument, is
provided to stuff ILLEGAL into the value cell of its argument.
The reason ~ou might want this to be done is to remove the atom
from the ALISP shlstem. If an nlitat has vaiue ILLEGAL, a plist
of NIL, is not SPECIAL'ed, and is not pointed to b~ an~ reachable
ALISr data structure, then it is a TWA and will be cdllected on
the next sarbase collect (see section 5.1.1). The function REMOB
thus does not immediatel~ remove its nlitat argument from the
ALISr s~stem, but sets one of the conditions that will allow it
to be removed on a sarbase-collect. NIL cannot be REMOB/ed.
REHaB returns NIL as its result.

The value cell of a literal atom is automaticallY accessed
bhl EVAL whenever the interpreter evaluates that atom during
proSram execution. The function EVAL, a SUBR of one argument,
will thus return the value of a litat if it is Siven one as an

41

42

a r ~!. I . .IITI (.:.~ n t (!::. (.:.~ (-:~ !:~ C-:~ c t :i. <:) n c) (. 2) •
issue 2 VAL-ERR if the litat

The value of NIL is NIL.
has an ILLEGAL value.

EVAL will

t) (.:1 L U E Pi!::. a ~3 U 13 F~ p J' (:.~ d :i cat (:~ C) of' C) n (':J a r !~t UITI e n t •
is 8 litat which has a lesal value, it returns
T' p t 1./ l' n ~::. i',,! I I... (.

If i ts arSUITIE~nt

T; if not, it

GE'rVAL is a SUBR of one arSulTlent which returns the value of
i t ~:. c:::)" !.:.~ 1..1 In f~ n t :i. fit :i. !:; a 1 :i. tat. I'" :i. t hal (.~ ~l a :I. va 1. u f?; i f not" i t
ret.1..! l'n!:;· th(·:~ atolll NCll)AI ...•

EX2ffiPles of these two functions are siven in Dia10sue 5.6.

~.:.:; ~. 3 ~ 3 F' :I. :i. '::. t

(:\ J:I. n :I. :i. tat !:) h a v E' i:; P :I. :i. !::. t (p T' 0 f:' (-? l' t ~:~ 1 :i. s t) cell w h i c h h a 3. d !:;
t.hEl }'.:. J :i. !:) t.fD T' t.hat. atDIl"! (. NIL ha!::. no F' I :i.~; t .. The F,l i 5 t is a true
]. i !::. t <:) fin d :i. cat D T' <:3 n d va 11..1 (~ F' a i T' !:; 0 f t h El of a r ITI :

(iod1 vall ind2 va:l.2 ••• indn vaIn)

Lo,I h E' n (:~ n n 1 :i. t. <:3 t, :i. ~::. c rEI a t (':J d D 1" T' f:~ a d :i. n 1" a T' the fiT' 5 t tim e" i tis
~.:.~ i 'v' (.:.~ n N I /...!/ t h (.? E'ln F·' t ~:!. :I. :i. ~; t" f () l' :i. t !:) y 1 i !5 t •

Thi':')
furlcti on

}:-..l:i.st of
PLIGTy a

an i:~tDm Ci:~n

~:)l.JBr~ of on(·?
be fetched and set usins . the
or two ·ar~Uffients. The first

dr~ument should be an nlitat. The second arSument is optional;
if present, the plist of the nlitat is set to it; if not present,'
the plist of nlitat is Just returned ~s the value of PLIST.·
Examples of the PLIST function are siven below in Dialosue 5.7.

PLIST is not the usual access function for plists, however9
plists are ver~ hand~ because of the function primitives which
are provided to work. with them; see section 10.1. The
interpreter does not use the plists of an~ user-created atomsy
and so the user has full control over thei~ contents.

..

t"--"'\

(

\.....

C)
D i a 1 D!:.~ue !~j to f.)

The Functions VALUEP and GETVAL

? (::) E T Ci F n D .. [(A H)
}~o ,', 1';0

'~~ i: E V (11... ,. F 0 0)
D{:iF~

? (GETI)I~1... 'FDO)
B,~Fo

?(I)ALUEF' 'FDO)
T

? (I)AI ... UEP .. BAli:)
NIL

? (GET~"I:)I... I BAI:;:)
NOVtlL..

? < [IJAI... 'BAf~)

*** VAL-ERR FROM EVAL

Note that, since EVAL is a
SUBR and evaluates its
arsument, FOO is Guoted if the
value of FOO is desired.

GETVAI... returns the same result
as EVAL if FOO has a value.

VALUEP returns T if FOO has a
value.

BAR has no value.

GETVAL returns NOVAL. [VAL,
on the other hand, issues a
VAL-ERR. Note that there is
no wa~ to distinSuish between
an atom havins the value NOVAL
and havinS the value ILLEGAL,
if YOU are Just usins GElVAL.
The function VALUEP can alwa~s
be used to check this case9
however, since it returns NIL
only· if its arSument has the
value ILLEGAL, or is not a
1 i teT'al atom ..

43

--- ,

44

? (f' I... I ~::; T I F [) C))

1'1 J I.

II :i. a 1 O~.:~I..1(·~ ~).?

Th(e Funct:i. on PL 1ST

1nitiall~Y the plist of an
nl:itat i~) NIL.

T' .: PI... J n·r 'FOD ,. (FOD BAr~ MOM DAD»
(F nOB tl r;: M 0 h It I~ D) T h i ~:; Sf? t 5 t h (~ p 1 i ~; t <:) of F 0 () t ()

the four-element list (FDD BAR
MOM DAD).

·?(F'LI~)T 'FOO)
(FOO BAR MOM DAD)

CJ

"-""
~_\

, ,~

,f!

J ChaF't<-:·~ T' 6

Ibe Suee~~iso~ and EVAL

Th:i.!5 chaF··t(~)r df:·~f:;cribE:lf:; thG.l action of th(-?
top~level supervisor and the modified EVAL
function used b~ ALISP. The sections on EVAL
and Lambda~expressions are especially
:i.ITIPo,rt.ant.

\~ v 1 Tal:: Le~el

When the ALISP system is called, it enters the top-level
loop of the supervisor. Initiall~, this is a READENT-EVAL-PRINT
loop that eats UP S-expressions t~ped at it (at most one
S-expression per line), evaluates them with EVAL, and outputs the
results to the terminal. The basic structure of this loop can be
modified in several wa~s, as the followin~ sections show.

6.:1 .• :1. f:>YS

The value of the atom SYS controls the t~pe of evaluation
done b~ the supervisor. If SYS is NIL, EVAL is used. If SYS is
T, an EVALQUOTE function is used. In EVALQUOTE mode, two reads
are performed. The EVALQUOTE supervisor takes this pair of
S-expressions, uses the first of the pair as a function, the
f:; f~ c () n d a ~:; a 1 :i. s t 0 faT' ~j u ITH·? n t s w hie h will be pas~; edt a t h €-~
functiony alway~ without evaluation. EVALQUOTE prints the result
and asks for more inputt In DialoSue 6.1 a simple example of the
use of EVAL and EVALQUOTE' supervisors is ~iven.

Both [VAL and EVALQUOTE modes can be discarded in favor of a
user-defined evaluation function. To use this' mode~ BYS should
b l:'~ d (-:~ f :i. n (~d a ~) a fun c t :i. (] n 0 f no a r ~.~ u III €~ n t s (e i t h €~ T\ F LAM B D A, 0 T'

LAMBDA). This function is then used in place of the READENT-EVAL
part of the READENT-EVAL-PRINT loop. The user defined function
must do all of its own readins; it is called until SYS is set to
T or NIL. As an example, Dialosue 6.2 defines a top-level
'::; 1..1 p f~ rv :i. 5 c) T' W hie h a 11 0 w~:; III C) Y' e t han 0 n f-l S M" €~ ~.~ pre~:; sic) n F' e r l:i net C) be
E~va I uat(;·~d ~

It is important that SYS be defined correctl~ when it is a
user-defined supervisory since errors will Just be trapped and
start the evaluation of the fault~ supervisor allover. An
infinite, unbreak~ble error' loop is thus established. There
seems to be no neat wa~ out of this problem if user control over

46

NIl ..

?(CONS 'FOD 'BAR)
(FDO v HAl:;:)

'1) «(~UOTE FOO)
FOO

? (~:)[Tn !:)','S T)
T

?CON!3 (FOO BAR)
(FOD y BAF\)

"T'!;;ET (SYS N:r L..)

D:ial()~~I..1(~~ 6.1
ThE~ Sw:i tch SYB

Initial value of SYS is NILy
callin~ the EVAL supervisor.

Under EVAL mode, one
S-expression is read, and
evaluated with EVAL.

This sets the supervisor to
EVALQUOTE lTIode.

In EVALQUOTE mode, the first
S-expression read
the function, the

is used as
sE~cond as a

list of arSuments. Note that
the arguments to functions
which normally evaluate their
arSuments, such as CONS,
remain unevaluated at top
level.

NIL This sets the supervisor back
to EVAL mode.

the supervisor is desired.

Note also that user-defined supervisors do not have to call
the EVAL function, but can do any type of interpretation that it
is possible to do with ALISP functions. It is a Sood idea to be
able to set back to the normal supervisor, however, by settins
SYS to NIL Dr T from the user-defined supervisor.

Once the value of SYS is reset fr6m a user-defined
supervisory the supervisor is lost (unless it is stored so~ewhere
besides the value cell of SYS), since it, like all named function
definitions, is contained in the value cell of a literal atom.

The switches SYSIN, SYSOUT, SYSPRIN and * are all active
und(~n' a IJ~H~ T'·-def i ned ~;upe rv:i sc)J' (SE~£~' bE~ I (.lW, 6 fl. 2 and 6.1.3).

One sood feature of the SYS=NIL supervisor, as opposed to
the user-defined supervisor given in the example of Dialogue 6.2,
is that it will read onl~ one S-expression from an input line.

~
r
1 /

c

Dialo~.~,"IE~ 6.2
User-Defined Supervisor

? (DE ~)YS () (EVAL (r~EAD»)
SYS

~)(CONS 'FDO 'BAI:;:) (LIST 'FOO)
(FO()"BAR)
(FOO)

?'A '8 'e 'D (SETQ SYS NIL)
f~

B
C
1:1
NIL

A
?

Defining SYS as a LAMBDA
function of no ar~uments
causes it to be'used as the
new supervisor. NOte that now
READ rather than READENT is
used, so that multiple
S-expressions can be read from
the same line at top level.

Both the CONS and LIST
expressions are evaluated.
Their results are printed in
succession.

Five S-expressions are read
and evaluated from this line;
the last one sets the
supervisor back to EVAL mode~

Now onl8 one S-expression per
line is evalua~ed.

S·-·e~·~p rf~ssi ons can be cloGed wi th eNcess right parenthesE~s if
READENT is used. This enables the user, at the end of a Ions
S-expression that perhaps extends over several lines, to forset
about matchins parentheses exactl~" and Just t~pe 10 or so,
certain that the S-expression will' be closed and no SYN-ERR will
be Siven. READENT starts a new line and flushes all the excess
parentheses when it asks for 'the next S-expression.

6+1+2 SYSIN and SYSOUT

These atoms control wher~ the supervisor reads S-expressions
fro III an (1 w her e i t P T' i n t s t h e'ftl a trt ~ I nit i a 11 8, bot h S Y SIN and
SYSOUT are set to zero, so readins and printinS take place on the
terminal (for special batch considerations" see the section
1+ 16) + Thes(:;' swi tches work in the followinS wa~: before an

47

I

I

48

S-expression is read at the top-level loop of the supervisor
INUNIT is set to SYSIN; before the result of evaluation is
printed, OUTUNIT is set to SYSOUT. ChanSinS values of INUNIT and
OUTUNIT durinS an evaluation will not therefore affect the
top-level supervisor read and print device assisnments. ChanSinS
either SYSIN or SYSOUT will, however. Suppose, for example, that
~ou have a permanent file containins S-expressions YOU would like
to have evaluated b~ the supervisor. Simply open the file as a
local,file with unit 0 (see section 1.15), and set SYSIN to Q.

The supervisor will then read throush the file and evaluate each
S-expression, printinS them on the SYSOUT device. If the last
statement in the file is (SETQ SYSIN 0), readins will contihue
from the terminal when the file is exhausted. For more
information~ see the section on file primitives.

SYSIN and SYSOUT work for a user-defined supervisor as well
as the SYS=T or NIL supervisors.

6.1.3 SYSPRIN and *
At times it is desirable to turn off printins by the

top-level supervisor. The switch SYSPRIN is provided for this
purpose. SettinS SYSPRIN to NIL shuts off the printins of
results bhl the supervisor; if SYSPRIN is non~NIL results will be
printed on the SYSOUT device. SYSPRIN is 'initiallw set to T.

At other times it is nice to be able to ~eference the value
printed by the supervisor as the result of an evaluation, durin~
the De~i evaluation. The atom * is provided to always hold the
result of the last supervisor operation in its value cell, and
can be used to access this value. Examples of the use of the
atom * are siven below in DialoSue 6.3.

DialoSue l,.3
The Atom * at Top Level

?(APPEND I(A'B C) I (D E F G»
(A BCD E F G)

?(SETQ FOD (CONS IBAR *»
(BAR ABC D E F G)
?F()O

(BAR ABC D E F G)

?(CAR *)
BAR

Now * is set to the result of
the APPEND operation, namely,
the list (A BCD E F G).

Now * is set to the value of
FOO.

6.1.4 EXIT

(~\ At an~ point in an evaluationy the top-level supervisor and
"--il"le AL ISP S'::l~i t,(::au, can bc-:~ abandc>nf~d b'::J t~va ll..lat i ,..,~.:t thE.' funct ion

c/

EXIT, a SUDR of no ar~uments. A siSn-off messaSe SivinS
execution statistics will be printed (see section 1.1), and
control returns to KRONOS.

The workhorse of the interpreter. I have used a modified
version of the McCarth'::J EVAL, which lends itself well to a speedy
implementation, less ambiSious s'::Jntax for function evaluation,
and better conventions for compilation of functional ar~uments.
For most common cases of evaluation, however, the McCarthy EVAL
works Just the same as a standard EVAL. The only ~reat
difference appears with functional arguments (see below and
sectie)n 1.7).

A compressed definition of the EVAL and APPLY ~unctions can
be found in Appendix E. The followinS sections are more
descriptive of the action of these two functions, and much more
readable than the Appendix. All AlISP data types can currentl~
be EVAL'ed; these sectiohs describe the results.

6.2.1 Atomic Evaluation

i. Number Tokens

EVAL simply returns the number, without
an'::Jthin~. This applies to all number tokens:
BNUM, LNUM, ANUM, and PNUM types.

ii. Literal Atoms

doirl~
SNUM,

If the atom is NIL, NIL is returned. If not, EVAL
sets the value cell of the atom and returns that.
Note that an atom may have no value, in which case
EVAL complains with a VAL-ERR. The atom ILLEGAL is
~5ed to indicate that a litat has no value, that is,
the value cell of the litat contains the atom ILLEGAL
(see section 1.5.3.2). Examples of atomic evaluations
are given in Dialosue 6.4 below.

The values of litats are alwaws contained in the value
cell~ there is no association-list which EVAL searches
to find litat bindin~s. As a conseGuence, a litat can
have onl~ one bindinS at "a time. This bindins is
alwB'::Js in the value cell, and can alwa~s be chan~ed
usins SET, SETQ, or QSETQ. If a litat is used as a
variable in a PROG or LAMBDA expression, then its
oriSinal value is preserved on a stack (the SPDL, or

49

J.23
?--5 t 6E4

!' tTl
;tT7

'l)NIL
NIL

?(SETQ FOD ?BAR)
BAR

?FOO
BAR

?BAI~

*** VAL-ERR FROM BAR

[I:ialo~~lJe 6.4
Atomic Evaluation

Nl..IlTlbE~ r tokens evaluate
thf'~ITI~:;f~ I V€~!:;.

NIL evaluates to NIL.

atoms evallJate
theiT' values.

to

ttl

If a literal atom has no value
(i.e., is set to the atom
ILLEGAL), then EVAL complains
with a VAL-ERR.

Special Push-Down List) until the function has
finished execution, at which point the ori~inal value
of the litat is popped from the SPDL and placed back
in the value cell. Such a bindin~ scheme i~ called
shallaw-bindin~. It sacrifices the ability to save
bindinS environments for better exectuion speed.

6.2.2 List Evalu~tion

When EVAL is ~iven a non-atomic S-expression, it evaluates
it as a function form (the S-expression should be a true list; if
it is not, the last non-NIL CDR is treated as if it were NIL). A
t~pical function form is:

As the mnemonic sug~ests, the
treated as a function, the rest
arsuments to the function~

first element of
of the elements of

the list is
the list as

The first thinS EVAL does is try to decide what type of
to find either a function fo is. It eventuallY wants

50

"...
I '

\~.

-()

lambda-expression or a PNUM, which are the onl~ valid function
t~pes (see section 6.3 below).·

If fo is a list, then it must be a larubda-expression; if it
is a iist and not a lambda-expressiony EVAL complains with a

. ~(J N ····I::J~ I:;: .. A 1 am b d a .- e >: P T' f~ 5 S i 0 r. i s a lis t. be 9 inn i n 9 wit h the at 0 m
LAMBDA, FLAMBDAy or LABEL; see 6.3 below. Examples of fo as a
list are siven in Dialosue 6.5.

D i a 1 o~4l.Je 6. ~j
Lambda-Expression Evaluation

? ((LAMBDA (X) X) , FOD)
FOD

'j' ((FLAMBDA (X) X) , FOD)
(QUOTE FO()

?(('LIST 'LAMBDA' (X) 'X) 'FOO)

*** FUN-ERR

fo is the lambda-expression:
(LAMBDA (X) X).

fo is the lambda-expression:
(FLAMBDA (X) X). Note that
FLAMBDA's do not evaluate
their arsumsnts, so that 'FDD
is returned as (QUOTE FDO).

fo is not a lambda-expression,
even though it would evaluate
to one.

OFFENDING VAL = (LIST (QUOTE LAMBDA)
(QUOTE (X» (QUOTE X»

If fn 15 an atom, it must be a non-NIL literal atom. A
number or NIL for fo causes EVAL to issue a FUN-ERR.*

If fo is a non-NIL literal atom, then EVAL looks at its
valu~ cell. The value cell must contain a valid function t~pe,
eitheT' a lambda-expression or a PNUM, OT' EVAL will complain. All
s~stem functions, such as SETQ and CONS, are defined in this wa~:
the~ have a PNUM in their value cells, indicatins a machine
subroutine. Examples of atomic to are Siven below in Dialosue
6.6.

The search order for fo is summarized in Table 6.1. This
search order works extremel~ well with functional arSuments (see
section 1.7).

* The exception to this is if fo is a PNUM; however, since PNUM's
cannot be input b~ READy it is unlikel~ that one will end UP as
the first element of a list. If tt does, then it is treated as
a machine subroutine function.

51

D i a 1 ()~:tU(~ I.> .1.)
A t C) m i c F I.J net :i on E: v a 11..1 at i 0 rl

?(NIL 'FDO)

*** FUN-ERR FROM EVAL
OFFENDING VAL = NIL

NIL is not a legal value for
fo.

1(123 'FOO) An~ number t~pe except PNUM is
also an ille~al value for to.

*** FUN-ERR
OFFENDING VAL - 123

'!'CAR;,j CAR has a F'NUM value.
Pt:2000000:l.00b023

?(SETQ A (LIST CAR' '(FOD BAR»)
(Pt20000001006023 (QUOTE (FOD BAR»)

?(EVAl.. A)
FOO

?(CONS 'BAR 'BOO)
(BAR,BOO)

1(5ET£1 FOO CONS)
l::. i2 000000200616 f.)

?(FClO 'BAR 'BOO)

•

A now has a PNUM in the to
position.

The value of A was evaluated
correctlw b~ EVAL because to
has a PNUM value.

CONS has a PNUM definition.

Since FOD was set to th~ PNUM
.value of CONS, it too had a
valid function definition" as
its value.

1(SETQ FDa (LIST 'LAMBDA (X Y) (CONS X.,»)
(LAMBDA (X y) (CON~1 X Y»

52

?(FOO 'BAR 'BOO)
(BAR, BOO) "

*** FUN-ERR FROM BAR
OFFENDING VAL = ILLEGAL

• •

FOD now has a valid function
thlPe, namely a
lambda-expression, as its
value.

BAR has no value.

Once a valid function has been found, EVAL makes a decision
as to whether or not the ar~uments are to be evaluated. If the
function is a LAMBDA, SUBR, or SUBR*, then the ar~uments are

(
., ,

c'

/-- ,
I I -.......-/

-----_. "-' . __ ._--_ __ ._-------------

evaluated before the~ are passed to the function; if the function
is a FLAMBDA, FSUBR, FSUBR*, or LSUBR, then the ar~uments are not
evaluated. Arsuments are evaluated from left to ri~ht. Several
examples of lambda-expression ar~ument evaluation are ~iven below
in Dialo~ue 6.7. For machine subroutines~ one can look UP their

Dialogue /.).7
Lambda-Expression Arsument Evaluation

'[(LAMBDA (X) X) I FOO)
FOD

? ((FLAMBDA (X) X) I FOD)
(QUDTE FDc)

The sinSle ar~ument to the
lambda-expression (QUOTE FDD),
was evaluated before the
lambda-expression worked on
it.

FLAMBDA functions do not
evaluate their arguments.

,.~ ((LAMBDA (X Y) (L I 5T X Y» (f'R I NT I FDD) (f'F~ I NT ' BAR))))
FDD
BAR
(FOD BAR)
? This lambda-expression has two

arguments which are evaluated.
The~ are evaluated from left
to right, so that FDD Prints
first, then BAR.

type in Appendix C to see if the~ evaluate their arguments or not·
(see section 6.3 also>.

After decidin~ whether or not to evaluate the arguments,
EVAL passes them to the function and evaluates the function
according to its t~pe. For machine functions such as CAR and
CONS, this simplY involves branchin~ to the routine address in
core. lambda-expressions must bind their variables and have
their forms evaluated; see section 6.3 below· for more
information.

6.2.3 The Function EVAL

EVAL is available as a SUBR of one argument, as well as
throu~h the top-level supervisor. The function EVAL evaluates
its ar~ument according to the rules given above and returns the
result. Note that, because EVAL is a 5UBR, its argument is first
evaluated before it is passed to the function EVAL; and the
function EVAl does aooibe~ evaluation.

53

54

PNUM or
1 afT,bda····p;·~p

<no)

non·· .. NII...
1 i te r·.::~ 1 atolTt

ValUE! c~:dl i~;

PNUM Dr'

1 alTlbda·· .. c:-~~<p

d ()n€~

Table 6.1
Search Order for to

. __ .. (~:JE~S) --····d()nE~

.N (no) "--··rUN-ERR

.- (no) --··FUN·_·ERf<

The function EVLIST, a SUBR of one ar~ument, applies EVAL to
each element of its arSument, and returns the result of the last
evaluation. Examples of EVAL and EVLIST functions are siven
below in Dialo~ue 6.8. If EVLIST is siven in atomic arsument, it
does no evaluations, and returns NIL.

It is sometimes desirable to appl~ a function without havin~
:i. ts a r·~.:.{I..JIJIf.~nt ~:; (·?va 1 uated t Th~' funet i on APF'L.. Y i ~a IJSE:"1d fo r th is.
APPLY is a SUBR of two arSuments; the first arSument must be a
va 1 i d fUl"le t:i on t,~:~PE~ y t.he second is an a rsulTlent 1 is t. 'APPL Y
applies the function directly to the ar~ulTlents wihout evaluatinS
them. ThE~ fi T'st C3T'91JITlent nrlJst be a val id function type, ei ther a
PNUM or a lambda-expression. Usuall~ the unGuoted name of a
function is used as the first ar~ument to APPLY, as in the
e~«:$lTIplps :i,n Dial09u8 6.9 bE~l(]wt

APPLY* is like APPLY except that it is a SUBR* and takes an
indefinite number of arguments. The first ar~ument must a~ain be
a valid function t~pe; the remaininS arsuments to APPLY* are used
as arSulTlents of this function.

APPLY and APPLY* work with all function t~pes. Examples of
these functions are given in Dialosue 6.9 below.

The APPLY functions initiall~ evolved as partners to EVAL in
the evaluation process of LISP. Modern systems have streamlined

.l

c'

Dialogue 6.8
The Functions EVAL and EVLIST

r"--"'\
\..J ? (ElJAL 1.)

r·~.

(,

1

? (EVAL. ' I FDO)
FDa

? (SETa FDa 'BAr~)

BAR
?(EVAL (LIST 'CAR "(FOO BAR»)

FDa
?(EVAL (LIST 'LIST 'FOO»

(BAR) .
'?

?(EVLIST '«PRINT 1) 2»
1
2

1 evaluates to itself.

Here two GuotinS operations on
FOD ape needed. EVAL first
has its ar~ument evaluated
from (QUOTE (QUOTE FOO» to
CaUOTE FOO), then evaluates
that to FOO.

These two examples show the
effects of the double
evaluation inherent in the
EVAL function. In the first,
the arSument of EVAL is
evaluated to (CAR (QUOTE (FOO
BAR») before beins passed to
EVAL. Then EVAL evaluates
that to FOO. In the second,
the argument is· evaluated to
(LIST FOO), which EVAL
evaluates to (BAR).

EVLIST evaluates the first
element of its arSument,
printing a 1, and returns the
result of evaluating the last
element, 2.

EVAL to work independentl~; APPLY becomes a subsidiar~ entrw
point to EVAL, where no argument evaluation is done.
Nevertheless APPLY still has great usefulness in LISP, as an
alternative method of passinS arguments to a function. Two
particularl~ neat uses of APPLY are described.

The first makes use of the fact that APPLY takes an argument
list (unlike APPLY*) to be used with a function. Suppose, for
example, that YOU have a list of SNUM's whose maximum ~ou wish to
find. The function MAX (see section 1.9.2.1) is the one that ~ou
want; but MAX takes an indefinite number of single elements as

55

Dialoguc~ 6.9
The Functions APPLY and APPLY*

'j! (() P F' L Y r [) N n ' (F n (] B A F~))
(FOn 'I DAI:~)

?(APPLY 'CONS '(FOO BAR»

*** FUN····EF~F< FI~nM APPI ... Y
OFFENDING VAL = CONS

?(APP/...Y (/"'Ai'1I:<r.h~ (X) X) I (rOD»
FOO

? (APF'L.. Y* CONG I FDa I BAr.:)
(FO(J,BAR)

APPLY evaluates Its arSuments,
so that it received a PNUM
(value of CONS) as its first
arSumentv the list (Faa BAR)
as its second. Note that the
arguments to the function
CONS, FOa and BAR, were not
€·~vc~ 1 ua ted.

Her€~
APPL.Y
CONS,

the' 1'i rst
evaluates
which is

function t~pe

vall.J€-~ is).

argument of
to the atom

not a valid
(a 1 tholJ9h its

The lambda-expression
evaluBPes to itself (see
section 6.3.1 below), and is a
valid function t~pe.

With APPLY*, arguments are
strung out instead of being in
a list.

af'~~UlTtpnt!:;, rath(7~r than a s:in~.tl(·? 1 :ist ()f n'-'mbE~rs. Thu~1:

56

(MI~X 1. 2 3 4)

is a valid waH to call MAX, but:

(MAX '(1 2 :5 4»

i s not. Hc)l.JE~V(';'~ r y u~:;:i ns thE~ funct i on APPLY)' it is
take a list of numbers and appl~ the function MAX
fOf'mat :is!

(APPLY MAX '(:L 2 3 4»

possible to
to thenl. The

~:; :i. n c C' thE' ~;) (;:~ C C) n c.i ill r· ~~ll . .l1Tl t;.1 n t t (] A P PLY :i f:) an C3 T' ~~ U III f? n t, 1 i s t, t, his i s
thE~ samf:'~ as if:

had been evaluated.

s (~~ c () n d :I. ~:I " A P P I... Y nor III ali z est he' a r 91J ITI e n t e v a 11.1 a t ion
conventions of LAMBDA and FLAMBDA functions b~ never evaluatins
t h (.:~ a T' ~J UITI (-~ n t s t 0 (~.~ i t h E~ r • T h i ~:; :i~) tTl (:)~:; t tI ~.> e f 1..11 w hen F L.. A M B II A

(----') funct:i. 01"1 !:) iii T' (-:~ cons i i.'.,(.:.~ T'(-:'~(:" • SI..lPt··.,o~:)(~ ., fo T' (~~~., amp 1 t?, that ~~C)I..I havE~
,~./ def :i. nf~d a FI ... AMBDA fl..ll"lct i 01"1 FOO c)f nn(·? a Y'~:.~UlTlt?f'lt; ~.UF'PC)f:.e a 1 ~;() t.hat

~ou wish to use the value of the atom BAR as an arsument to FOO.
Obv:iousl~" evaluatinS:

(FOO BAR)

wi 11 n () t w (] T' k , sin C E,\ F ODd 0 e 5 not e val u ate its a r gum e 1"1 t •
However, evaluatinS:

(APPLY* FOO BAR)

will do the Job, since APPLY* evaluates BAR and applies FDO to it
di rect.l~:I ..

6.3 EUDctioD I~e8s

Function t~pe5 are completel~ characterized b~ three
criteria! lambda-expression or machine subroutine, evaluated or
unevaluated arguments, and definite or indefinite number of
arSumentst These criteria are summarized in Table 6.2 below.

LAMBDA
FLAMBDA
SUBF\
SlJB~,,*
FSlJBR
FSlJBR*
LSUBR

lambda-
e~·~p ress ions
ITlach i n€·~·
lan9uage
sub rout i ne~:;
(F'NUM I ~:;)

Table 6.2
Funct i on T~PE~s

e~gUlIJeD:t.s

evaled
unevaled
evaled
evaled
I..In~~valed
I..Inevaled
I..Inevaled

6.3.1 Lambda-expressions

The format for a lambda-expression is:

j of ar.9s

definite aridtndef.

definite
indefinite
definite
indefinite
indefinite

LAMBDA
(or
FLAMBDA

varlist YAl exp2 ••• expn)

57

58

va~list can be one of three things:

it NIL. The lambda-expression takes no arsuments.

ii. Sinsle literal atom. The lambda-expression takes
8 variable number of arSuments. The literal atom
is bound to a list of thearsuments (or to NIL if
U I E,l r €" a r E.' n () a l' £{I.J rTl e n t, 5) •

iii. List of literal atoms. The lambda-expression
takes a fixed number of arguments. Each of the
ar~uments is bound to the corresponding variable
in ~ar.lis:t..

These variable bindins conventions
and FLAMBDA's. The~ are summarized in

Table 6.3

appl~ to
Table 6.3;

Lambda Bindins Conventions

both LAMBDA's
eHBmples of

UaI!iables Bound

NIL.

nlitat
X

li!.:;t. of
nlitats
(XYZ •••)

non(7.'

:i. /"IdE)f in i te
(A B C II •••

nl..l/Tlbf~ r of va rs
(A B C tt.)

no

X
(A

X
y

Z

b:i.ndings

tC) the list
B C [I ...)

to A
to !)

to C, etc.

bindin~~ are siven in Dialosue 6.10 below.

Evaluation of thE~ la'Tlbda·"·E)}·~pre!;;sion proceeds as follows. If
it is a LAMBDA list, then the arSuments are evaluated in order
from left to risht, and bound to the corresponding variables in
~ar.list accordins to the conventions Just described. A FLAMBDA
list is the same except no evaluation of the arguments takes
place. Then each of the e~e is evaluated in order from left to
risht, and the value of e~en is returned. The e~e's are an~
valid ALISP data types which can be evaluated; there must be at
least one of them or an ARG-ERR will be issued.

After all of e~ei have been evaluated, all lambda variables
are restored in their orisinal values. The variable bindings in
a lambda-expression onl~ hold for the extent of the
:I. am b d a _. e ~.~ p T' (~ S 5 ion €-~ ~.~ e cut ion. T h us, i nth e e ~., a ITI pie i n D i a log u e
6.11 below, the variable' VAR had value TWADDLE within the
lambda-expression9 but then had its orisinal value of FOO
restored when the lambda-eXpression was exited. Onl~ one value
of VAR is available at a time, however. Everything evaluated

t

Dial (.')~.:.tUf:~ 6. 1 ()
Variable Bindings

('-'1 ~)((LAMBDA () T))
'--/ T ~a~list is NIL, so there are

o

'i) ((LAMBDA N N) , FC)() , BAF~ 'MOO)
(FOD BAR MOO)

?«LAMBDA(X Y) (LIST X V»~
?'FOO 'BAR)

(FDa BAR)

'~((LAMBDA (X Y) (LIST X Y» 'F()O)

*** AF,G-'ERF,
WRONG NO. OF ARGS
OFFENDING VAL = (X Y)

no arSumewW to the
lambda-expression.

Indefinite
arguments.
bound to a
a r£tIJments.

nlJmber
Note that
list of

of
N is
these

X is bound to FOO, Y is bound
to BAR.

If the wrong number of
arguments is given to a
lambda-expression with a
non-atomic ~aclist, an ARG-ERR
results. The ~aclist in
Guestion is printed as part of
the error message.

within the lambda-expression will see
One sa~s that the effects of binding
given lambda-expression.

VAR as having value FOO.
variables are local to a

The function ARGN is ver~ useful when deal ins with
lambda-expressions of an indefinite number of arsuments. Since,
in .this case~ the lambda variable is bound to a list of
ar~uments, it is often necessar~ to retrieve a particular element.
from that list. ARGN, a SUBR of two argulTJents~ will do Just
that; see section 10.2.1 below.

The state at an~ siven moment of all literal atoms and their
values is called the environment. Another wa~ to state the fact
that onl~ one litat value is available at an~ siven moment is to
say that there is only one environment available at any Siven
time. When an e~e is evaluated within a lambda-expression, it is
evaluated with respect to the environment produced by the bindinS
of the lambda-expression's variables. There is thus no way to
always evaluate a function in the environment in which it was
defined~ the classic FUNARG problem. Most users are not affected

59

......

60

Dialn9u€~ 6.11
Lambda-Expression Evaluation

?«LAMBDt) (X) (PRINT X) (CAR X» '(FOO BAR»
(FO() BAR)
FOO X was bound to the evaluated

arSument, (FOO BAR). Then the
PRINT function was evaluated,
printins the value of X;
finall~, the CAR function was
evaluated, and its result
returned as the value of the
lambda-expression.

?((FLAMBDA (X) (PRINT X) (CAl:;: X» I (FOO BAR»
(QUOTE (FDD BAR»
QUOTE This is the same as the

previous lambda-expression,
except that FLAMBDA is used.
Thus, the arSuments are not
evaluated, and X is bound to
(QUOTE (FOO BAR».

1~SETQ VAR 'FOO)
FDD

This sets the value of VAR to
FOO

? ((L.AMBDf~
TWADDL.E

(VAFO (Pf~:r NT VAR) (SET VAR I BAR» I TWADDLE)

BAR

-rVAH
FUn

?TWADDl..E
BAR

Within the lambda-expression,
VAR is bound to the atom
TWADDLE. The set function
sets the value of the value of
VAR (that is, the value of
TWADDLE) to BAR.

VAR is
value

restored to its old
outside the

lambda-expression.

TWADDLE, set within the
lambda-expression to BAR,
retains this value even after
the lambda-expression is
exited, because it was not
used as a lambda variable.

b~:t th:i. S P T'obl E~ITI. Fe> r 1'1..1 rthe r info rmati c)n on the FUNARG p rob! em,
see Weissman/s e£ime~. An example of this t~pe of problem is
siven in Dial09ue 6.12 below.

function LABEL. is an alternate form of
la~bda-expression, used when it is desired to name and call the

~
I
\

'---'

-

-
'-

-

-

"'-"

-

?(SETO VAR 'FOO)
FOD

'i) (SETO VAI...SET

Dialogue 6.12
The FUNARG Problem

? (LAMBDA (VALUE) (SET VAR VALUE»)
(LAMBDA (VALUE) (SET VAR VALUE» The atoffi VAL SET is now defined

as a lambda-expression, a
valid function. VAR is set to
FOO.

? ((LAMBDA (VAR) (VALSET 20» , BAR)
20

?FOO

*** VAL-ERR FROM FOD
?BAR

20

The environment in which the
function VALSET was defined
thus had VAR set to FOO; and
evaluating VALSET in this
environment should set FOD to
the value of VALUE whe~ the
expression (SET VAR VALUE) is
evallJated.

The function VALSET, evaluated
within- the lambda-expression,
saw the value of VAR as BAR
and not Faa, and so set BAR
rather than FDa to 20.

-
lambda-expression from within its own form. Format is:

(LABEL lname lexp)

where loame is an nlitat, and le~e is a valid lambda-expression.
LABEL is used Just like an ordinar~ lambda-expression. When it
is evaluated, the litat loame is bound to le~a, so that it
becomes a valid function name within le~e. LABEL can be used to
define recursive functions: the following example defines the
recursive factorial function and supplies it to an inteser.

?«LABEL FACT (LAMBDA (X) (COND «ZEROP X) 1)
(T(TIMES X(FACT (SUB1 X»»») 6)

24

Within the LAMBDA form, FACT is used to refer to the
lambda-expression. LABEL is actuall~ of little practical use
except as a teachins tool. When it is necessar~ to sive a
lambda-expression a name, the function definition procedures

-

-

62

~iven in section 6.4 below are much handier, and also more
pprmanent 'J

~ll of the lambda-e::pression forms described in this section
(LAMBDA~ FLAMBDAy and LABEL) are defined as LSUBR's. The~ are
identit~ functions under EVAL, returnin~ themselves. This
propert~ is useful mainl~ in connection with passin~
lambda-expressions as functional arsumerits (see section 1.7).
Examples of the identit~ functions are ~iven in Dialo~ue 6.13.

~~------------------------------.

Dialogue 6.13
Lambda-Expressions as Identit~ Functions

?(LAMBDA (X) (CONS X 'FOO»
(LAMBDA (X) (CONS X I FDO))
?(LABEL NN (LAMBDA ex) X»

(LABEL NN (LAMBDA ex) X»

6.3.2 Machine LanSuage Subroutines

All LAMBDA, FLAMBDA, and LABEL
expressions are identit~
functions.

These functions do not bind variables like
lambda-expressions. You should be aware, however, that some of
them use the values of litats during the course of their
(.~ ;: (:-~ cut :i. 0 n (t her E-) a (j an (i F' T' tnt fun c t ion s 1..1 set h e b u f fer poi n t e r 5 ,

GENSYM uses GENCHAR, etc.).

i. SUBR -- evaluates a definite number of ar~uments.

TBPical examples of SUBR's are CONS, CAR, CDR,
ATOM, etc.--most of the familiar LISP functions. A
SUBR function will complain if it is ~iven too man~ or
two few arguments b~~ issuing an ARG-·ERR.

ii. SUBR* -- evaluates an indefinite number of
arsuments.

Typical examples of SUBR*'s are the numeric
functions TIMES and PLUS. These two functions will
take as many arsuments as ~ou care to ~ive them, but
yOU must sive them at least two. Although it is true
that SUBR* functions in general have the abilit~ to
take anB number of ar~uments, most have restrictions
like TIMES and PLUS so that the~ will accept a variable
number of arguments within a certain ran~e. The
function PLIST, fer example, takes onl~ one or two
arsuments, and sives an ARG-ERR for an~ other number.
Individual restrictions for SUBR*'s are ~iven in

~'
I
\ '
'-.. .. /

-
-

-

-

'-
-

-
-

descriptions of the functions in the text.

iii. FSUBR -- unevaluated, definite number of
arsuments.

Typical examples of FSUBR's are QUOTE and DEFPROP,
which take one and three arsuments, respectivel~. An
FSUBR function will complain if ~iven the wronS number
of arSuments by issuins an ARG-ERR.

iv. FSUBR* and LSUBR -- unevaluated, indefinite
number of arSuments.

The difference between these two is an internal
one in the way arSuments are passed on the stack, and
invisible to the user. Most of the prOSram flow
controllinS functions (COND, IF, PROG, AND, OR, etc.)
are of this type. FSUBR* and LSUBR functions act Just
like SUBR*'s, except that their arsuments are passed
without evaluation.

Defioios EUOCLicos

Since valid functions are always put into the value cell of
an nlitat, there are sev~ral ways to define user functions. Any
of the functions SET, SETG, or QSETQ used to put a
lambda-expression list into the value cell of a litat will work9
the standard DE and DF are also provided. DE and DF are LSUER's
which use the followins standard format:

DE
(or fn varlist exp1 exp2 ••• expn)

DF

The result of evaluatinS the above form is to place in the value
cell of fo the followin9 lambda-expression:

LAMBDA
(or varlist exp1 exp2 ••• expn)

FLAMBDA

DE defines a LAMBDA, DF a FLABMDA function. to must be an nlitat
or DE (or DF) will complain with an ARG-ERR. DE and DF return
fo. Examples of DE and DF functions are siven below in Dialosue
6.14.

*** NOTE *** NOTE *** NOTE *** NOTE *** NOTE *~*
BecalJse functions are contairled in the value cell of an

nlitat, that, nl i tat, cannot have both a function definition and a
value at the same time9 its function definition is a
lambda-expression which i~ also its value. Unlii' .. e most other

63

..... -

-

64

Dialosue 6.14
The Functions DE and DF

T OH? F'L. U f.) 2 (X) (F'L. U ~:) X 2»
F'LU~)2

PLUS2 is defined as a lambda
e~"{p T'ess ion.

?PL.US2
(LAMBDA (X) (PLUS X 2»

Note that a lambda-expression
is actuall~ stuffed as the
value c)f PLUS2.

"i' (GETU F'L.US2 I(L.A11BDA (X) (PLUS X 2»)
(LAMBDA (X) (PL.US X 2» This SETQ has the same effect

as the DE.

LISP sYstems, ALISP does not have a separate value and function
definition slot for each nlitat. If ~ou want to use an nlitat to
na'lI(~ a function, then ~~C)u cannot use it as a variable at the same
time. The onl~ circumstance where this is bothersome is where
you'd like to use an atom which is alread~ a s~stem function
(surh as LIST, ATOM, etc.) as a variable within a
l~mbda-expression. This is ok as Ions as the s~stem function is
not needed durin~ the evaluation of the lambda-expression,
because then the atom will have (in seneral) a non-PNUM value.
An example of what oai to do is the followins:

?(DE NEXT2 (LIST) (LIST (CAR LIST)(CADR LIST»)
NEXT2

?(L.IST 'FOO 'BAR)
(FOO BAR)
1(NEXT2 '(FOO BAR MOO»

*** FUN-ERR FROM LIST
OFFENDING VAL = (FOO BAR MOO)

1(8ETO l.IST 1)
1

?(LIST 'FOO 'BAR)

*** FUN-ERR FROM LIST
OFFENDING VAL = 1

?

The f.i 1'5 t Illi stak€-~ made above was to t r~ to IJse LIST as both a
function and variable within NEXT2. Since the atom LIST was set
to (FOO BAR MOO) when NEXT2 was called, it lost its function
definition (PNUM) within the scope of NEXT2, and EVAL could not
find a valid function definition for LIST. After the FUN-ERR,
LIST gets reset to its value before NEXT2 was called, and is once
a~ain a valid function (PNUM). Settin~ LIST to 1 at top level,
hJwever, erases its PNUM value and thus wipes out irretrievabl~
th p function ciefinition associated with LIST.

Because of the dual nature of value cells and the ease with

-

'-

'-

which function definitions can be erased, it is recommended that
~ou not try to use an nlitat as both a variable and~a function,
even if YOU can set UP these uses so they do not conflict. In
an~ case, never use s~stem function litats as variables, and
n~)VE.\T' change them with SETQ (SE,T, QSETO) or REMOB.

6.4.1 Checking for Function Definition

An nlitat can be checked for a valid function definition by
the function GETFUN, a SUBR of one ar~ument, or FNTYPE, also a
SUBR of one argument. FNTYPE will return the function type of
its arSument, as the atom LAMBDA, FLAMBDA, SUBR, etc. GETFUN
returns the function itself, either a lambda-expression or a
PNUM. Both return NIL if their ar~uments do not have valid
function definitions. Note that GETFUN and FNTYPE can take
either a valid function t~pe or an nlitat with a valid function
t~pe in its value cell, as an ar~ument. Examples of these two
functions can be found below in Dialo~ue 6.15 •

....
Dialogue 6.15

The Functions FNTYPE and GETFUN

?(FNTYPE 'SETQ)
LSUBR

'? (FNTYPE ' SET)
SUBR

1(DE PLUS2 (X) (PLUS X 2»
PLUS2

?(FNTYPE 'PLUS2)
L.AMBDA

?(FNTYPE PLUS2)
LAMBDA

?(GETFUN 'SET)
Pt20000002006123

SETQ is an LSUBR functions.
Note that FNTYPE evaluates its
ar~IJment •

PLUS2 is defined as a
lambda-expression. FNTYPE
returns LAMBDA as the type of
function of PLUS2. Note that,
even when PLUS2 is not Guoted
as an ar~ument to FNTYPE,
FNTYPE still ~ets the correct
function definition. This is
because PLUS2 evaluates to a
lambda-expression, and FNTYPE
will reco~nize
lambda--expressions.

The function definition ot SET
is a PNUM, which GETFUN

.......

?(GETFUN 'PLUS2)
< LAMBDA (X) (PLUS X 2»

-
6.4.2 Erasins Function Definitions

returns.

GETFUN returns
lambda-expression
definition of PLUS2 •

•

the
flJrlction

Function defini t:i.OrtS can be overwri tten b~ usirl9 DE or DF on
the alreads-defined function name. The new definition replaces
the old.

_ Function definitions can be erased usins REMOB (see section

-

-

5t3.2) which sets the value of the nlitat to ILLEGAL. To change
the name associated with a function, Just do:

(SETQ newname oldname)
(REMOB 'oldname)

lJ • 5 Switcbes

Switches are ALISP nglitats whose vaiue cells are important
to certain functions. The value is used b~ the function as a
switch to determine a particular course of evaluation. An
example of this switchinS action is found in the atom HPRNUM,
which is used b~ the function HALFPRI. The value of HPRNUM is an
SNUM positive integer siSnalling the function HALFPRI as to how
manH atoms it should output before it stops printins (see section
4.2.2). The user can chanse the value of HPRNUM at an~ time b~
using one of the SET functions.

Switches are a waw of communicatins with an ALISP function
without passins its arSuments. HALFPRI could Just as easilw have
been defined as a SUBR of two arguments, the second of which
specified a limit on the number of atoms printed. The advantage
of usins switches lies in their external nature. Once HPRNUM is
set, ~ll HALFPRI calls, no matter what their oriSin, will print
usins the HPRNUM limit. A function which uses HALFPRI can then
be defined without reference to the current value of HPRNUM, and
~ield different results when evaluated with HPRNUM set to
different values. The control resides not with the defined
function, but with the environment it is evaluated within.

The chief advantage of environmental as opposed to
definitional control for certain proceeses is the ease with which
the environment can be changed. Suppose, for example, that wou
have defined a function called MYPRINT which uses HALFPRI at
several points in its execution. In order to change the number
of .,atoms p r i nted bw HALFPR I at each of these PO:1. nts, it is on I y
necessar~ to change HPRNUM once. If wou do not wish to destro~
the original value of HPRNUM, the function MYPRINT can be

66

--
_.

-

-

-
-
-

-
-
-
'-

embedded in a lambda-expression which has HPRNUM as one of its
variables. When the lambda-expression is entered, HPRNUM is set
to the desired value; when it is exited, the old value of HPRNUM
is restored, and the environment has been preserved in a ver~
hand~ wa~.

Switches are indexed alon~ with pre-defined functions in
Appendix C.

67

--

'-

'--

68

I Chapter 7

Euociicoals

Functionals are functions which take
other functions as ar~uments. A function
used as an argument will be called a
functional arsument (meanin~ either that it
is an ,arsument to a functional or that it is
a function which is also an arSument, take
~our pick). Because of the nature of the
modified ALISP EVAL, functional ar~uments are
not passed in Quite the same wa~ as with most
Dther EVAL IS. Th(o? followin~ sections e>~plain
differences and describe the pre-defined
functionals available in the ALISP s~stem.

7.1 ea5sioS Euociional A~SumeQts

The
arguments

easiest way to understand
is to ~o thru an example.

the workin~s of functional
Start with the form:

In order for this form to evaluate correctly, the atom FN must
have a valid function definition, either a PNUM or
lambda-expression, in its value cell (see section 1.6.2).
Keepins this in mind, we embed the form in a function, thus:

(LAMBDA (FN) (FN X Y»

Now FN is also a variable in a LAMBDA form. Since it is a
variable, it sets bound to an arSument when the LAMBDA form is
used as a function; and since bindins stuffs the arSument into
the value cell of FN, the arSument must be a valid function type,
a PNUM or lambda-expression. This seems eas~ enoush, so a few
examples of functional ar~uments are siven in Dialosue 7.1, and a
c(J/TIfTlentar~ follows here.

In Dialosue 7.1, FOO is initiall~ defined as a
lan,bda",,(-:~;·~pr(~ssion. The fi rst ti.Tle FDO is called, its arSument is
CONS. Since CONS evaluates to a PNUM (and FOO evaluates its
ar~uments) the variable FN sets bound to a PNUM. When the form
(FN X Y) sets evaluated within FOD, FN has a PNUM, a valid
function t~pe, in its value cell, and so the form evaluates
co T' J'(-~C t J. ~:l +

In the second call to FOO, the ar~ument is (QUOTE CONS).

~'

-

'-

-

I1ialosue 7.1
Functional Ar~uments

?(SETQ X 1 Y 2)
2

,.~ (II E F a a (F N) (F N X Y»

Faa
?FDO

(LAMBDA (FN) (FN X Y»

?(FOO CONS)
(:L,2)

?(FOO 'CONS)

*** FUN-ERR FROM FN
OFFENDING VAL = CONS

?(FOO !(LAMBDA (X Y) (LIST X V»~)
(1 2)

?(FDD (LAMBDA (X Y) (LIST X V»~)
(1 2)

Initializations. X is set to
1, Y to 2, and FOO is defined
as a function of one arSument.

Correct passins of functional
a r~IJlTlents, CONS.

Incorrect passin~
functional arsument.

of

Correct pass inS of
lambda-expressions as
functional arSuments. Either
Quoted or unGuoted forms will
do.

_ ?(DE LIST2 (X Y) (LIST X V»~)

-
-

-
-

LIST2
?(FOO LIST2)

(1 2)

,.~ (FOO 'LIST2)

*** FUN-ERR FROM FN
OFFENDING VAL = LIST2

, ...

Lambda-expression is passed as
the value of LIST2.

Incorrect since LIST2 is not
itself a valid function twpe.

•

This evaluates to the atom CONS, and FN is bound to it. Now when
the form (FN X Y) ~ets evaluated, it does not have a valid
function twpe in its value cell, but rather the atom CONS. A

FUN-ERR results.

The rest of the calls to FOD show examples of
lambda-expressions used as functional arsuments~ In the first
one, '(LAMBIIA •••) evaluates to a lambda-expression, which then

'-

'-

70

gets bound to FN, and (FN X Y) evaluates correctl~. In the
!:") f..' cor. d 1I t h 8 LAM B n A f 0 J' ITI its 81 f get s e v a luat ed • T 11 is is no
problemy however¥ since LAMBDA and FLAMBDA forms Just evaluate to
the~selves (see section I.6.3.1). The result is the same as the
previous expression.

Finall~, consider an atom, LIST2, which has a function
definition (lambda-expression) in its value cell. This case is
ent i 1'(,::' 1 ~3 ana 1 OSDU5 to th€~ fi rst, case consi de red, i. e + , (FOD
CONS)~ where CONS also have a valid function definition (a PNUM)
in i ts \'all..lf.~ cell. The vall..l~~ of LIST2 is bo,-,nd to FN, and FN
then has a lambda-expression value, so the form (FN X Y)
evaluates properl~. Once again, however, the Quoted atom LIST2
will not work, since FN sets bound to the atom LIST2 rather than
its lambda-expression value.

There is a solden rule for PBssinS functional ar~uments in
AL.ISP:

~e~ex auote a function oame used as a funciional a~~umeoi.

Tt)(·~ above T'ule will never lead ~ou astra~ when fur.ctional
ar~uments are called for.

The LISP hacker ma~ have noticed a problem with the passins
of furlctional arguments in the above ~\~·~ample. The function FDD
was defined as a LAMBDA (usins DE), so that it evaluated its
ar~uments~ It was this evaluation which enabled it to set the
values of functional arsuments such as CONS and LIST2, and
COJ'rectl'.:l apply them. If F.OO were defined as a FLAMBDA (using
DF), then no such evaluation of arSuments would take place, and
all of the examples in Dialosue 7.1 would fail, except for the
one where an unQuoted LAMBDA-list was used as an ar~ument. Well,
it is obvious that FLAMBDA functions which use functional
arsuments need some method for settin~ the function definition of
an atom passed as a functional arsument. The simplest solution
is to use the function GETFUN (section 1.6.4.1). In Dialo~ue
7+2v for example, FOD is defined as an FLAMBDA eQuivalent of its
definition in Dialogue 7~lt On the first call to the function
FOOv FN is bound to its unevaluated ar~ument, CONS. The SETQ
call sets FN to the function definition of CONS, a PNUM. Then
the form (FN X Y) evaluates correctl~. Thus, passins functional
ar~uments to FLAMBDA functions is no problem, as Ions as the
FI.AMBDA variable is reset to the function defir.i tion of the
arSument, with GETFUN.

7.2 ~ce-defioed Eunciionals

These functions are identified bu the letters -MAp·
a~fearing in their pnames. They take a function and appl~ it to
successive CDR's or elements of a list. All are SUBR's of two
arSuments, the first argument beins a list, the second a function

(""
.......... j

-

c····" .~
.-...:..-

-

-'

-

L
'~-·'

-'
/

[lialD~.HJe 7.2
Functional Ar~uments to FlAMBDA Functions

? (::> E T Q X :l Y 2)
")
.\:.

'~(:OE FOD (FN) (FN X Y»)
FDG

'i:'FUD
(FL..AMBDA (FN) (SET(~ FN (GETFUN FN» (FN X Y»

'i) (FOG CONS)
(:L :J 2)

Initialization. FDO is set to
the FLAMBDA eGuivalent of its
definition in Dialo~ue 7.1.

This succeeds because
resets FN from CONS
PNUM value of CONS.

GETFUN
to the

to appl~ to parts of the list. Note that this order of ar~uments
fo J' t.he Mf)P funct i ()n~:· is T'eve rsed from that of some LISP
implementations. The result returned b~ a particular MAP
function depends upon the nature of the function.

7t2.:l MAPC and MAPCAR

These two functions appl~ their second ar~ument to
successive elements of the first. MAPC returns the result of the
last application, whil~ MAPCAR returns a list of the results of
all applications~ The e~uivalent LISP definitions of MAPC and
MAPCAR are Siven at the end of this chapter in Table 7.1.
Examples Df the MAPC and MAPCAR functions are siven below in
[lialD~:.~l..If~\ 7.3.

7.2.2 MAPl and HAPLIST

These functions are Just like HAPC and MAPCAR, e~cept the~
appl~ their· second arsuments to successive CDR's of the first
ar~l..Iment. MAPl returns the result of the last application, while
MAPLIST returns a list of the results of all applications. The
MAPL and MAPlIST functions are defined as LISP lambda-expressions
in Table 7.1. Examples of these two functions are ~iven below in
Dialogue 7.4

7.2~3 MAPCON and MAPCONC

Note that MAPCAR and MAPLIST alwa~s return a list with the
same number, of elements as their first ar~ument. It is often
desirable to delete certain of ,the elements returned in the final
list. MAPCON and HAPCONe, b~ using NONe ~~ther than CONS to

JI 7

...... ,...

-

-

-

72

Dialogue 7.3
The Functions MAPC and MAPCAR

?(MAPCAR '(FOO BAR) PRINT)
FOO
BAli
(FDO BAR)

?(MAPC '(FOO BAR) PRINT)
FOO
BAF~

BAli

?(MAPCAR '(FOO BAR MOO)
? (LAMBDA (X) (EQ X 'BAR»»»

<NIL T NIL)

--

MAPCAR applies the function
PRINT to successive elements
of the list (Foo BAR). Note
that the unauoted atom PRINT
is used as an argument. The
slue of MAPCAR is a list of
the values of the PRINT
functiorl.

MAPC is like unto MAPCAR, but
returns as its result only the
last result of the application
of PRINT. MAPC is used when
the effect of a function,
rather than its result, is
desired"

An example of a lambda-expres
sion as an argument to MAPCAR.
The lambda-expression was used
without auotins, since it
evaluates to itself. -

strin!=j together the results of aF,plic.'"ation of the second
arSument, allow a variable number of elements to be returned.

The difference between MAPCON and MAPCoNC is the same as the
difference between MAPlIST and MAPCAR; MAPCoN applies the second
ar~ument to successive CDR's of the first arsument; MAPCONC to
successive elements.

In this example, MAPCONC is used to delete all non-atomic·
elements from a list:

?(MAPCONC '(FOO (NIL T) BAR (MOO»
(LAMBDA (X) (IF (ATOM X)(lIST X»»

(FOO BAR)
?

This can be understood as follows:
to each element of the first argument.

FOD ~.:.fives (FOO)
(NIL T) gives NIL
BAli ~:ives (BAR)
(MOO) gives NIL

apply the lambda-expression
The four results are:

'_., ..

-

-

--
-

-
-

DialoslJe 7.4
The Functions MAPL and MAPLIST

?CMAPlIST '(FOO BAR) PRINT)
(FO() BAR)
(BAI=\:)
((FOD BAR) (BAR))

?(MAPlIST '(FOD BAR MOO) CAR)
(FOD BAR MOO)

?(MAPl '(FDa BAR) PRINT)
(FOD BAR)
(BAI:::)
(BAF~)

'*

MAPLIST applies PRINT first to
the list (FOO BAR), then to
its CDR, (BAR). The result of
the MAPLIST function is a list
of the results of the PRINT
function.

Here, MAPLIST reconstructs its
first arsument b~ appl~ins CAR
to successive CDR's of (FOO
BAR MOO).

MAPl onl~ returns the value of
the last application of PRINT.

These four results are now strung together using NONC. It is
easy to see that the result of these NONC's is the list (FOO
BAR)v which is exactl~ the result returned b~ the MAPCONC call.

73

Table 7.1
LISP Definitions of the MAP Functions

0)[MAr'c (X FN)
(CDND «(ATOM X) NlI ...)

((ATOM (CDR X») (FN (CAR X»)
(T (FN (CA':~ X» (MAPC (CDR X) FN» »

(DE MAP CAR (X FN)
(COND «ATOM X) NIL)

(T (CONS (FN (CAr< X» {MAF'CAR (CDR X) FN») »

(DE MAF'L (X FN)
(COND «ATOM X) NIL)

({ATOM (CDF~ X» (FN X»
(T (FN X) {MAF'L (CDR X) FN» »

(DE MAPLIsr (X FN)
(COND «ATOM X) NIL)

(T (NCONC (FN X) {MAPLIST (CDR X) FN») »

(DE MAPCON (X FN)
(COND «ATOM X) NIL)

(T (CONS (FN X) (MAPLIST (CDR X) FN») »

(DE MAP CONe (X FN)
(COND «ATOM X) NIL)

(T (NCONC (FN (CAR X» (MAF'CONC (CDR X) FN») »

C:

-

-

.I .

-

74

-

-

-

-

--_ ... _-_ , .. -------

I Chc:~pt€~ T' f:l

E:~osr.alIl Elow

T h €~ fun c t i (J n r:; d f.~ So C T' i bed i nth iss e c t ion
a T' (:1 tho s (-:~ u ~; ~~ d t (J C C) n t r 0 1 pro 9 r a", flo w
COND, IFy PROG, etc. In most respects the~
act. 1 :i_I--:. (:~ t h f.-~ !;; tan d i~~ ref fun c t ion 5 des c rib e din
Weissman's e£ime~.

8.1 Conditionals

F () I.J T' fun c t :i () n ~5 a T' f? d E.\ S C rib e d :i nth i s
AND~ and OR. The~ are all LSUBR's; COND
least one argument, AND and OR can take none.

section: COND, IF,
and IF must have at

In ~eneral, when a conditional tests a value, it looks for
either a NIL or a non~NIL value, i.e., ever~thing which is not
NIL is considered to be true in a conditional test. Lo~ical
truth :in ALISP is represented b~ an~ non-NIL S-expression,
losical falsit~ b~ NIL.

8~1~1 COND and IF

Format for COND is:

(COND (predl expll expl2
(pred2 exp2l exp22

•••
•••

eNPln)
eHP2m)

(predJ expJl expJ2 ••• expJG))

The' evaluation order for the arSuments of COND is as follows:
each e~ed is evaluated in order, starting with e~~d, until one is
found which returns a non-NIL value. . store ENamples of lesal
CONI) fo T'ITIS:

(CON!) «ATDM X) (SET(~ X NIL) (CONS Y X»
((E(~ (CAH X) II FOO) (CONS (CDR X) Y»
(T (S[T(~ Y X) (NCDNC Y' • (FDD BAR» (CDR X»)

(COND (X NIL.)
«FOD Y»)

Note that in the second example, the second COND arsument had a
2~ed but no E~e. When this occurs, and e~ed evaluates to a
non-NIL expression, that expression is ~eturned as the value of
th(~~ CODND +

75

_.-

-

-.
-

.....

'-
76

The function IF is a shortened COND with a sinSle predicate.
i F (J J' ITI a t i!;:

::-£J~ed ,[t;:. pvaluated, and if the result i~) NIL, the value of the IF
function :i.s NIl.... If non····NIL.., e::~p- thr'u E!}.!an are evaluated in
order v and the value of the last is returned. If there are no
e~e~ then the value of the 2£ed expression becomes the value of
the IF (but in this case, the IF function is superfluous an~how).

The SELECTQ function is a specialized COND. Format is:

(SELECTQ se}·a:.r
(al exp11 exp12 ••• ex?1n)

(<32 e;<p21 e~'~F'22 ••• eHP2n)

(aJ expJl expj2 ••• expJG)
dE.'}·:?)

Se~e is evaluated (its result should
asainst each atom a's for a match.
correspondinS e~as are evaluated, and
returned as the value of the SELECTQ.
e0aluated and its result returned.

be atomic) and checked
If one is found, the

the value of the last is
If no a's matches, de~a is

Note that SELECTQ uses EQ in checkins for a match to the
a's, so that SNUM's, literal atoms, and Sens~m atoms are oka~
(see section 1.9.1).

8.1.2 AND and OR

These functions act as continuous conditionals, testins the
values of each of their arSuments. Format is:

AND
(or ex?1 exp2 ••• expn)

OR

Each of e~e is evaluated seGuentiall~ from left to risht.

AND stops at the first NIL value and returns NIL; if no NIL
result is encountered, the value of e~~n, the last expression to
be evaluatedy is returned as the value of the AND function.

OR stops at the first non-NIL value and returns that; if no
non-NIL result is encountered, OR returns NIL.

.r~
1
''\- ,.;'

.........

-

-
--
'-
-
'-

-
-
-

--

If there are no e~e, AND returns T, OR returns NIL as a
result. Examples of AND and OR functions are given below in

8.2 P'~og~am Eeatu~e

The functions PROG, GO, and RETURN form the program feature.
The experienced LISP'er will resort to PROG s~ntax onl~ when
absolutl~ necessary, since it introduces th~ FORTRAN-like
elements of loopins and iteration so foreign to LISP.

8.2.1

that
but

PROG

The PROG
it binds
it also

function acts something like a lambda-expression in
variables and evaluates a seGuenc~ of expressions,
has the abilit~ to Jump program control between

expressions within its bod~. Format is:

(PROG varlist expl exp2 ••• expo)

where ~a~list is a list (perhaps empt~) of variables to be used
within the PROG, and e~e thru e~en are arbitrary S-expressions
composing the bod~ of the PROG. If an~ of e~e are atomic, the~
are treated not as expressions to be evaluated but as labels for
control of proSram flow. SNUM's and litats (including Gensym's
and NIL) are all valid labels which will work with GO.

When the PROG is entered, all variables on ~a~list are bound
to NIL. Each e~e is then evaluated seGuentiall~ from left to
risht, with labels (atomic eMe) being skipped. Unless a GO or a
RETURN statement is encountered somewhere within an a~a, PROG
exits with value NIL after eMen has been evaluated. Prosram flow
is diverted from this order with the GO and RETURN functions.

The function GO is an FSUBR of one argument. If its
argument is non-atomic, it keeps evaluatins it until it is
atomic. It then uses this atom to match a label in a PROG bod~.
If no match is found, the PROG is exited with value NIL. If a
match is found, execution of e~e within the PROG bod~ starts
asain from the matched label. Looping aod branchios in general
within a PROG are accomplished with the GO statement.

RETURN is a SUBR of one argument. It causes an immediate
exit from the PROG, and the PROG returns as its value the
ar~ument of RETURN. Note that the onl~ wa~ to exit a PROG with a
value other than NIL is with the RETURN function.

Both RETURN and GO can be used at an~ level within a PROOf
The~ need not even be explicitl~ present in the bod~ of the
PROG, for exampley an e~e could call a function which has a GO or
RETURN call, and the~ will work correctl~. If, however, a RETURN
or GO is executed outside the scope of a PROG, an error will be

77

'-

'.-

-

'-

-

-
-

-.
-

Dialosue 8.1
The Functions AND and OR

?(AND (SE"fU FOD 'BAR)
? (CAR '(NIL»
? (SETQ FDD 'MOO»

NIL
?FfJO

BAR The AND functions first evaluated
the SETG, settins the value of FDD
to BAR. Next, the CAR function was
evaluated ~ieldins NIL; the AND
function stopped at this point and
returned NIL. The last SETG never
sot evaluated, so the value of FDD
is BAR.

? (AND (PRINT ' FOD) (PRINT 'BAR)
FOD
BAI~

BAR Here AND evaluates the first PRINT
function, which prints FOD and returns the non-NIL v~lue FOO.
Then the second PRINT function is evaluated, printins BAR and
returnins a non-NIL result, BAR. The result of the whole AND
expression is the result of the last PRINT evaluation, namel~,
BAR.

?(OR (SETQ FOD 'MAR)
? (PRINT 'BAR)
? (SETQ FOD 'BAR»

MAI\
r~F()O

MAr~

(OR (PROGN (PRINT 'FOO) NIL)

The OR function stops at the first
non-NIL result it encounters, and
returns that. In this case, the
first SETQ expression returned the
atom MAR, Px so OR stopped there
and returned the atom MAR as its
value. Now FOO is set to MAR.

? (PROGN (PRINT 'BAR) NIL»
Fon
BAI:~

NIL

78

Here OR evaluates the first
PROGN expression. PRINT
prints the atom FDD, but the
result of the whole PRDGN
expression is its last
evaluation, NIL. Thus OR Soes
on to the second PROGN

,"'--''', (. I, ..,

\ -~

-
-

"

-

-

eNPression, which likewise
print the atom BAR, but
ret.urns NIL as its value. The
res I t of the entire OR
eHPression is NIL.

issued with the messaSe, -NO PROG EXECUTING·.

The action of RETURN and GO is imlTlediate. If, for e>~ample,
a PROG has the followins form for one of e~e:

(SETG A (RETURN NIL) B 'FDD)

then not onl~ would B never be set to FOO, but A would never be
set to the value of the RETURN statement, since upon execution,
RETURN immediatel~ returns control to the PROG function and
causes it to exit. This is true no matter what the callins level
at which the RETURN or GO 6ccurs within a PROG.

When the PROG exits, all PROG variables are reset to their
values Just prior to the PROG call; see section 1.6.3.1 for more
information about variable findinss. An example of the PROG
function is siven in DialoSue 8.2 below.

8.2.2 PROGN

This function is a castrated PROG; no variables and no
labels. Its sole purpose is to allow execution of a number of
expressions. It is an LSUBR, with callin~ format:

(PRD6N exp1 exp2 ••• eHPn)

Each e~e is evaluated in se~uence from left to ri~ht, and the
value of the last is returned as the value of PRDGN.

8.3 Ite.ra:t.ico

It is unfortunatel~ often convenient in LISP to iterate a
proSram Se~uenCe a number of times. The function DO, an LSUBR,
supplies a simple iteration facilit~. Format is:

(DO n exp1 eHP2 ••• expn)

The first arSument 1:1 is evaluated; it must evaluate to a
positive SNUM. This is the number of times the iteration will
proceed. If 0 is zero or ne~ative, no iterations of the loop
will be performed, but DO will simpl~ exit. On each iteration,
e~2 thru eK2n are evaluated se~uentiall~ from left to ri~ht. The
value of DO is NIL. EHsmples of the DO function will be found in

.......

-

-

-.
-
-

80

Dialogue 8.2
The Function PROG

1(SETQ FOD '(A BCD E F G»
(A B C II E F G)

? (F'I~:OG (X PRED RESUl. r)
? (SETt~ X FaD)
? TAG ;THIS IS A LABEL FOR THE PROG LOOP

;EXIT WITH RESULT ? (COND «NULL X) (RETURN RESULT»
? jIF X IS EMPTY
"r
"r
.?
'~

~f

!'
?

((~ B

(T (SETO PRED (CAR X»» ;ELSE GET FIRST ELEMENT
jOF x

(SETO RESULT (CONS PRED RESULT)
X (CDR X»

;ADD ELEMENT TO RESULT
;POP ELEMENT OFF OF X
;LOOP TO TAG IF ELEMENT
; IS NOT D

(IF (NULL (EQ PRED 'D» (GO TAG»

(RETURN RESULT»
A)

..

;ELSE RETURN THE RESULT

The PROG function first bound
its variables, X, PRED, and
RESULT, to NIL. Then X was set
to the value of FOO, or the
list (A BCD E F G). The
PROG loop 'was then ente red.
The first element of X was
CONS 'ed onto RESULT, unless X
was empt~ or the element was
the atom In l• In this case,
the atom In l appeared first,
and the result of the PROG was
the reversed list (C B A) •

nialo~ue 8.3
Thf) Funct i or. DO

1(DO 3(PRINT 'FOO»
FOD
FOD
FDD
NIL

~(SETQ N 1 COUNT 4)
1(DO COUNT (PRINT N)

The PRINT expression is evaluated
three times. The value of the DO
function is NIL.

? (SETa N (ADDl n»)

C~:

(----\1
\~_/ .'

'-'"

-

'-

'-

-
.......

"-

-
-

C
-·,·,

;" .-

-

,.)

"-

3

1

4
NIL

?N
5

.......

--_._---_._-----_ __ ._._- -------

Here DO evaluates its first
ar~ument, COUNT, yieldins an
iteration count of 4. First the
PRINT expression is evaluated, then
the SETQ function. The value of
the whole DO expression is aSain
NIL. Note that the effects of the
SETQ on N are retained outside of
the DO expression' DO does not bind
any variables •

A non-NIL result from iteration is returned by the function
DOCONS. DOCONS is like DO, except that -the values of e~2n are
concatened {nto a result list. For example:

(DOCONS 8 NIL)

returns a list of 8 NIL's.

More structured iteration is available
function. The form of REPEAT is like that
addition of an automatic loop and exit flaSst

(REPEAT

BEGIN

WHILE

UNTIL

varlist
I e>~p 1
leHP2

le~·~pn

e>~pl

e:·:pw

expu

expn)

with the REPEAT
of PROG, with the
Format is:

81

82

~a£list is a list of variables bound initial1~ to NIL, as in
f' f;; IJ C-:i \. (.~ :I. :I. ~:~ (.;~ }~ F' r f..~ ~::. ~5 :i. 0 n ~:; b e f ("J r C·? t h c~ Ie E GIN at 0 III are e v a lu ate d
(HICf~!,I in DY'(.fc~r· to ~3f?t !.JF' init:i.al vall.J£~s of var:iat.")lF.~s or pr.~T'fc)T'1lI

C) 'I.. ;'ie I' del :i. Dn!:;· i.Olefo T'(~~ th(·:·~ Ina :i. n T'E\F'f.·~at 1 C)OF' (i f t.he re is no setup
L Cr I.':' (.,.:. do 1"1 f!!,1 PEG I N III a !:~ be (J ITI :i. t t (.:~ c.f !' and t h F.~ T' e P f:1 a t 1 0 () pst art 5 '-J i t h
'1: .. h (.::, f :i. r !:; t. ~:) (.;~ :.~ f-:' p (.:~ ~::. !::. :i. n n aft (.:.~ T' ~J. a l! 1 i 5:t:.) • e ~ t:~ t h T' C) 1..19 t'l e ~ F~ n ,a T' e
•. :.~ \/ ,,:~ '1 '..I c::: t r~ c.l :i. 1"1 0 T' ci f'~ T' l' a 1"1 r:.! t. h C::' 1"1 c:: (] n t T' 0 1 1 0 C:) P ~:; ~:) a e k toe 1,': E~ , and the
;~. rl.JC(·:~·:::.:::· :i .. :::. rf~F,·c·~et.(::~d. Th(·::' lODP ('::'}<:i. t~;; when an S~-e}'~PT'f?S5ion aft..f?r
[..1 H J I... L (.:~ \..' .::~ J u a t. (':'.' !::. toN I I... (e ~~ ~::: hi) 'I C) T' an S - e ~.~ f~ T' e s s ion aft f? T' UN TIL
.:)' :~'1 u::;:t.(·:·!::. 1·'ol"l NTL (i::~~<F:I..I). l)aluE' Df t.hc·~ I:-':EPEAT fl..ll"lctic)n i~:; that

of the S'" fin·:,.." "t:-lij 1:.; or, wh.l cl, c.: ~',,:.;~'~:~,j t,he .Hd t • H(JY'e thmr) one WH I LE
nr UNfIl.. may be present.

T h C' r;: E F' E (.1 T C B fl i:~ .I. ~:~ n IJ i:;~ (.:.~ >~ :I. t. [.~ (I a t r.~ n ~ tilT! e us i n !:j t h f.~ RET U I:;: N
'f' U I I C. t . .i. 0 I'I!I :i. n t. h (.:.~ !::. a Il'I (.:~ IT! a 1"1 n f:~ T' a ~::. P F~ () G • The T' ear e n (J 1 a b f? 1 sin
r;; E F' L (:} T!, h D hi (.:~ v (-:~ T' ~1 S C) G () w :i. J:I. n C) t '-,I C) T'I..:. +

C'·

-
-

-
-

-
--

-
-
-
-

'-

I eh apt.E~ T' <f

EGualit~

The concept of e~ualit~ is a ke~ one for
man~ ALISP funct.ions. It is eas~ to define
euualit~ for litats~ since the~ are all
stored uniGuel~. In seneral, however,
different ALISP data t~pes have different
1TI(·?anin~:js for ec~ualit.~l" and different ALISP
functions test for different t~pes of
e~ualit~ amonS data t~pes. The purpose of
th:i~~ sf.·~cti("Jn is to define carefull~ the
various t~pes of euualit~ present in the
ALISP s~stem, and the functions which calIon
thf~m •

This is the simplest t~pe of eGualitw. Two ALISP pointers
(see section 1.2) are eGual if the~ have exactlY the same bit
pattern. The function which indicates pointer eGualit~ is EQ, a
SUBR of two arSuments. EQ returns T if both its arSuments are
exactl~ the same ALISP pointery NIL if not.

This t~pe of e8ualit~ is most useful for litats and SNUM's.
SNUM's and litats which print the same are always EQ to each
other (except, of course, if a litat has been WIPE'd;' see section
1.5.1.2). Note that LNUM's and BNUM's" even if the~ have the
same numeric value, will in general not be EQ; and that list
structures" even if the~ look the same at read or print time, are
not EQ unless the~ are exactlw the same list in core. A few
examples of the EQ function are Siven in Dialogue 9.1 below.

Pointer eGualit~ is used by almost everw ALISP pre-defined
function which must check for eQuality of two expressions. The
GO function uses it when searching for a label in a PROG bod~, so
that both litats and SNUM's are valid PROG labels. 'The plist
functions use it when searchinS for labels on propertw lists, so
that SNUM's and litats are valid prope~tw labels. Two functions
which check for inclusion of atoms in a list structure use
pointer e8ualit~: MEMBER and MEMB.

MEMBER is 0 SUBR of two arsuments. The first is an
S-expression to be searched for, the second is a list to search.
MEMBER checks ·the first arSument a~ainst successive tOP-level
elements of the second. If one is found whi~h is EQ, the list
startins from that element is returned9 else NIL is returned.

83

...... '.

'-
-
-

'-
'-
-
-
-

-
84

';I(ED NIl... NIl...)

'!' (En T T)
T

'1' (EG 'FDD 'FDO)
T

? (EC~ () 0)
T

? (E(~ ····123 ····12::0
T

~' (E(~ () NIl ...)
NIl ...

'i'([Q l~O 1)
NIL

?(EQ '(FOO) '(FOO»
NIl...

?(BET(~ X ' (FOD»
(FOc)

'!)(Et~ X X)
T

Dialogue 9.1
The Function ~:a

Both NIL and T evaluate to
themselves.

SNUM's can be compared with
Ea.

Zero and NIL' are not Ea, even
thoush they have the same
address pointer of zero (see
section 1.2).

BNUM's and'SNUM's are never EQ
to each other.

These are two different list
structures internally, even
thoush they print the same.

The value of X is EO to
itself, since it is the exact
same internal list structure.

MEME is also a SUER of two ar~uments. It sear~hes every
level of its second ar~ument for an S-expression EQ to its first
ar~ument; if successful, MEMB returns T, else it returns NIL.
Note that both MEMS and MEMBER, if ~iven an atomic second
2r~ument, return NIL. Examples of these two functions are found
below in DialoSue 9.2.

n ") '} t.:.. NUlIJel~ic EGui31i±'~

This e~ualit~ is useful
various ALISP number types.

when comparin~ the values
The function EQP, a SUBR

of the
of two

c

-

-
-

-
'-
-
-
-
-'

-

Dialosue 9.2
The Functions MEMB and MEMBER

?(MEMBER 'FOO '(FOQ BAR MOO»
(FOc) BAR MOD)

?(MEMBER 3 'CFOO 3 BAR»
(J BAf~)

?CSETQ X '(FOO (BAR) MOO)
? Y (CADR X»

(BAh')
'~ (MEMBEJ~ Y X)

((BtHO MOD)

MEMBER found FDD as the first
element of its second
arsument, and so returned the
list startins from FOO.

SNUM's are valid labels to
MEMBER.

?(MEMBER '(BAR) '(FOD (BAR) MOD»NIL
Since MEMBER uses EQ in
searchins a list, it found the
tas (BAR) which Y was set to.
Note that the next example
does not succeed, because the
list (BAR) is a different
internal structure in the
separate arsuments to MEMBER.

?CMEMBER 'FOO '(BAR (FOO MAR) MOO»NIL

'i) (MEMB ' FDD
? '(BAR (MOO(FOO»NIL MAR»»

r

?(MEMB 'FOO 'FOO)
NIL..

MEMBER searches onl~ the top
, level of a list.

MEME searches all
list, and returns
NIL.

levels of a
onl~ T or

The second arsument to MEME
and MEMBER must be non-atomic
to succeed.

arsuments, does numeric eGualit~ testins. It works with an~
mixture of LNUM, BNUM, and SNUM arsuments. The alsorithm used
is!

let d = abs (arSl*fuzz)

then arsl-diars2i ars1+d

85

-

-
-

--

-

-
86

"Jh(·:·~ I'E' abs i s th€·~_ absol ute value fl..JnctiorIP and fuzz is a
comparison tolerance. The value used for fuzz is a BNUM
contained in the value cell of the atom FUZZ; initiallw, it is
2E-5. The user can reset FUZZ to anw comparison tolerance
desiredy but it must be a BNUM, or an ARG-ERR will be issued at
the next Eap call. This alsorithm works prettw well, and assures
that zero is never aGual to an~thin~ but zero.

EQP will complain if given an~thins but LNUM, SNUM, or BNUM
a T'!:H.llTJents. Some e;·~aITlP lf~s of the EOF' fl..Jnctions are ~iven below in
Dial()!~u€~' 9.3.

Dial09ue 9.3
The Funct i on Et~F'

TCEOP () 000)
T

?(EQP 0 .0000000000000001)
NIl ...

'r (EO P :IJ: 1 2 :I. 0 • 0)
T

'. 'p (E () P :11: ? ? ... ,'.> ~5)
T

'i) ([(~F' 24E~5 ::.~4E4)

NIl ...

'rFUZZ
t 2E··"~j

?(EQP :I. :1..0000000001)
T

'p (S[T(~ FUZZ 2.0)
.2Et

'i) ([UP 2 ::D
T

'i) (EQ 2 3)
NIl ...

Th T'f~(:~~ functi ons COITIPS T'E.'

SUBR's of one arSument, and
t ~;~ F' (.;~ S ~

Zero is onlw EQP to zero.

Different ~umber t~pes can be
compared. LNUM's are
considered as 16~di~it octal
intesers, with sisn.

The comparison tolerance of
FUZZ is used bw EQP.

If FUZZ is reset to a lar~e
enou~h BNUM, ridiculous
comparisons can be made. Note
that EQ does ooi use FUZZ in
comparin~ SNUM's.

numbers to zero.
take snw' of SNUM,

Thew are
BNUM, or

all
LNUM

(~,

''-... .. --'

c·

-

-
'-
-

-

-
-
-

--
-

ZEROP returns T if its arSument is zero, NIL if
n C) t t Not E:' t ~l a t (Z E f~ 0 F' ~,~) i 5 d iff ere n t fro m (E Q >~ 0) ,
sine ZEROP will work with LNUM's and BNUM's as well as
SNUM's. Ne~ative zero can exist for LNUM's, and ZEROP
J'f,~tUJ'n~:; T :tn this cc~s(-;~c·

PLUSP returns T if
:i, nc:l. ud(·?d) • LNUM' !:; a J'E'

hish-order bit is set;
!3i(·~'lds NIL.. fJ'om PLUSP.

its arSument is positive (zero
considered ne~ative if their

thus an LNUM ne~ative zero

MINUSP returns T if its arsument is ne~ative.

A 11 th T'E~~:'~ of t,hf.~Sf:~ func t:i (Jn~:; will C:OITIP 1 a i n with a NUM·-ERR if
~:~ i 1,/ (,:,~ I', i:~ n ~~ t h ins but an S N U M , Ie N U M, 0 r L N U Mar ~ U IT! e n t •

Finall~, the function ODDP, a SUBR of one ar~ument, can be
used to determine if a number is odd or even. ODDP takes either
SNUM, BNUM~ or LNUM ar~uments, but it truncates BNUM's to their
:i. n t. E' ~.:H:'~ J' par t (i f the Ie N U Mis 1 a T' 9 e r t han 2 Ii 4 7 - 1, i tis a I w a ~ s
considered to be even). LNUM's are treated as 48-bit si~ned
intesers. ODDP returns T if its ar~ument is odd, NIL if not.

9.2.1 Numberic IneGua1it~

While EUP can tell if two numbers are eGual to within a
certain tDlerance, it is often useful to know which of two
numbEH'~:; is J. a T'~je T' 0 T' sma J.l e T' than the othe r. The functi ons
GREATERP and LESSP, both SUBR's of two ar~uments, provide this
faci 1 :i. t~~ +

GREATERP returns T if its first ar~ument is numericall~
Sreater than its second; returns NIL if not. LESSP returns T if
:i. t~:. f:i T'st a T'Sl..IlTIent is l"IulTleri Cel 11 ~l less than its second; returns
NIL if not. Both functions accept an~ combination of SNUM, BNUM,
or LNUM ar~uments. Because of the comparison tolerance FUZZ used
in EUPy two numbers ma~ be both EQP to each other and LESSP or
GREATERP than the other. Examples of these two functionss ma~'be
found below in Dialosue 9.4.

Also useful for numeric comparison are the functions MAX and
MIN~ bDth SUBR*'s, which take an arbitrar~ number of numeric
i:JT'!:.{UITlf..'nts and retu rn the numeric ma;·~imum and mi nimum,
respectiveJ.~. At least two ar~uments must be siven to these
fUnctions, and aJ.l ar~ulTlents should be SNUM's, BNUM's, or LNUM's.
ASain, LNUM's are considered to be 47-bit intesers with si~n~
The functions MAX and MIN alwa~s return their results as the same
data t~pe as siven; see the examples in Dialo~ue 9.5 below.

87

'-

88

DiaJ.oglJ~~ 9.4
The Functions GREATERP and LESSP

?(SLTQ FOO 1.0000000001)
~ :1. O()()()OOOOO 1 E:l

?(EOF' FOO 1)
'T

? (L E!3!:>P :I. FOO)
T

?(GREATERP FOO 1)
T

? (LEE;~:;P :I. :L)
NIl...

?(GREATERP 112 10)
NIl ...

With FUZZ set to .2E-5~ these
two numbers are eGual. Still,
LESSP finds that 1.0 is less
than 1.0000000001.

LESSP and GREATERP tend to be
better behaved with fixed
numbers. Note the mixed
modes.

DicJlo~;jU(:-'\ 9.5
The Functions MAXand MIN

?(MIN 1 l~OOl -3 112)
····3

?(MIN 1 1.001 112)
:I.

?(MIN 112 61£3 126)
:U· :l :::.~ .

?(MAX 3 4 5 6 7 .-66)
"'J
/'

?(11(~X 3 426E2)
.)26[4

Note the use of mixed modes in
th~?se ~~Ham~les.

The function EQUAL is used to test eGualit~ of list
~; ,/:, 1'1..1 C t. U T' (.:~ ~:~ • T w () 1:i~;; t ~; t. rue t u r e ~; are E QUA l. i f the ~ h a vet h e sam e
f 0 1'1rJ and th(~~ ~;;amE~ (E(~ 0 r Et~P) atoms at the same PO i nts in the i r
structu1'e~ Numeric atoms are testedwith EQP, litats with EQ.
Because EQUAL checks each node of two list structures, it is much
slower than EO, but it is also the onl~ way to check for
dauivalent list structures in a s~stem where the~ are not
un :i. G'.J(·:~ 1 ~~ ~:; to r(·:~d +

[QUAL is also useful
it is unknown beforehand

in testins for atomic eGualit~, where
whether the arSuments are numeric or

r'
I

\.....--

C~

(j

n n t· ;. (E: C-i >: ~::!)!I f C) r (o;~ ~< a IT! p 1 C~ 9 ..,,1 :i. :I. 1 n C) t ~,I C) r k :i. of !:! i:~ n d ~ a r f:.' L N U Mis
and BNUM's~ while (EQP x ~) will complain if ~ or· ~ are
n C) n ... n I..IITI (-:-:0 r' :i. c ~. (E G U A I... >: \:~)" C) nth ~:~ (J t h (.~ T' han d!l w :i. :I. 1 1..1 seE n F' i f ~::

o Y' ~ :i .. :::. i::· n U 11"1 f:.l (-.1 Y'!I E Cl :i. ·f· t. h (.:.~ ~:~ a I' f~ :I. :i. tat ~:; ~ E ~< a m F·' 1 (~ S C) f the E QUA I ...
f 1..1 n c·t. :i. C) n ("I :i. 11 b l::~ f 0 1..1 n d :i. n II :i. a :I. D :.:t u (~~ s> (0 \1) b f:.' 1 () W (0

1:1 :i. ;::: :I. 0 ~.:.~ u c·:·) <y ~ 6
Th(~.' Ful""tct:i. c)n EG1U('~1...

.oj:. (E U /.:: F U U D A r;~) .' (F C) UnA F~))
NIl ...

. y (F Ci 1...1 () I. . I (F [I () B i) F:;) I (F n D J:< () F:;))

T

T (E n U (ll... I:: I:: (. ()).
T

'i) .: F () 1..1 (:,1.. l I~) :I.. 0)
NI! ..

.oj'. (!::: n 1..1 (I I... ... (:I. .~ 0 F DO) / (:1. F D ())).
T

.ol' (EClUAI... .' (FDD (BAF;~ :11::1. 2) MOD)
f /(FOO (BAR 10) MOO»

T

?(EUU(.ll... ,. (FOn (BAi=~» I (FDD HAF~»

NIl ...

T h :i. ~:; f:.' ~.: a m F' 1 E' F'Dints UP

f.".i :i. 'j" f~? l' (.:~ n c c~·~

EnU(~I ... e:

bc·;~twc·?(·?n EQ
E(~ Y'c·;)tu T'nc-?d

the
anc.i
NIL

because itstwD arsuments were
not the same list internall~Y
while EQUAL returned T because
thes were the same list
~:; t T' I.J C t 1..1 T' <311 ~~ •

EnUAI ... :I. :ik€~ El~P on
numbers, except it will not
complain if siven a
non-numeric arSument.

E[~t.J{~I ... II 1 :i.kE~ E(~F' , will
correctly compare mixed number
t~:~Pf.~E •

An example of nan-EQUAL lists.
The two arSuments to EQUAL do
not have the same structure,
since in tthe first BAR is on
the second level, while on the
second it is on the tap level
of thf.~ list.

r· u r L. 0 IfI (.:.~ F" 1..1 J' P D S <-:.~ ~:~, P. 5J +!' :i. n f n y'llI :i. n ~:.~ 0 J' d E~ T' f.~ d b:i naT' ~, t T' e e 5 , i t

89

is convenient to establish an orderins of ALISP data. The three
functions EQ, ADDLT (ADDress Less Than), and ADDGT (ADDress
Greater Than) provide this facility, Everw ALISP data ~tructure
can be compared with these three functions' every ALISP data
~:.tr-I..ICt,I..IT'(·:·~ i~5 edthf:H' ECh ADDL..T, (JT' ADDG'r every other. T]1e

--- D Y' (.k~ r :i. n ~:.~ T' f? 1 at :i 0 n!':> ~l i F' i 5 t T' cHl sit i ve , and ex c IIJ S i ve , The
comparison uses the internal addresses of the data to establish
the order-inS. Since different data are strired at different
addresses in free space (except for SNUM's' see section 1.2), the,
OCIJ' iC'T'in!=.l al..ltnll'lc:~ti(::al1~:~ hiH> the tWeJ PT'C>F"eT'tief:) rrrf~ntioned. SNUM's
a T'[~ ~:j:i ''/(':':1''1 add T'f:~~:;se~:; h i ~:.~h~~ T' thc:~1"1 an~ f T'ee-'SF'Bce add ress, so that
t h C·;) ~:~ iH' G~ a 1 w a ~~) ADD G T t han any C) t h f:n' A L.. I SF' d a tat ~ F' e ,

EQ returns T if its twa arSuments are the same ALISP
~ointer. ADDLT and ADDGT are both SUBR's of two ar~uments.
ADDLT T'(·:~tl.H'ns T if its fiT'st argument is less than its second in
tt'H:~ ord(:~T':i.n!:.~ dE~~~crib(·~d above; f~lse it,' rettlrrls NIL. ADIIGT retur'ns
T if its first arSl..lment is Sreater than its second in the
orderins described above; else it returns NIL. The exclusivitw
p0opert8 of ·the orderins means that only one of EQ, AIIDLT, and
~DDGT will return T for the same tWD ar~ument~.

Final18Y if ~ou wish to use the internal address of an ALISP
data structure for Hour own devious purposes, the function INTAIIII
(INTernai ADDress), a SUBR of one ar~ument, is available. INTAIIII
returns the internal address portion of its arsument as an SNUM.
Note that if INTADD is siven an SNUM for an arsument, it is an
identif8 function; 'thus INTADII does not Quite correspond to the
orderins used b~ the function ADDLT and ADDGT. In particular, an
SNUM and some other data type could have the same INTADD.

Examples Df these address functions 'are siVen below in
D:lal(J~':.~l..If:~ 9 ~?

90

(-~

I) '.,-./

CI

"i> (~:;FTn rUD / ((~

((:~ D)
.. !, (~:)[TO n(:)r~' l (C

((" n)
.'1' (1("·1 T (:) D D F [) D)

:L O{,·.:?
? (1 NTtlDD D(.~H)

2913

'1' (EO Fc)D FO()
T

D)

II)

'1'': (.~flf.tI...T FDD BI~f~)

'r
'1' ((.~ D [I G T F nOB (~r~)

NIl...

?(EU' :LOe)} FDO)
NIL..

?(ADIIGT 1067 FOc)
T

T(INTADD 'FOO)

?(ADDGT 'FOO FOO)
T

)

)

ThC::~~5~~ a rf?

two 1. :i. s ts
co T'e •

the addresses of the
(A B) and (C D) in

The value of FOD is of course
EQ to itself. Note that the
value of FDD is ADDLT the
value of BAR, since its
internal address is lower.

SNUM's are given
orderins value than
ALISP data t~lPf.~.

a higheT'
an~~ othe T'

The address functions will
compare all data t~pes. Here
an atom, FOO, with internal
,address of 1392, is compared
with the value of FOO, the
listCA B), with internal
i~dl.'.h'es!:; of 1067.

91

'-

-

92

I ChaptE.\ r 10

List Maoi2ulaiioo

Th i s ~5P.Ct i on
which operate on
de~5tructive and

documents thos functions
the plist, and acco~plish

non-destructive chan~es on
non-atomic s-expressions in general.

10.1 e~oee~t~ List EUDCiioDS

Propert~ lists are not used by the ALISP system for holdinS
atom values or function definitions, as they are in some systems.
Instead, the interpreter relies on the value cells of litats; the
propert~ lists are the complete concern of the user.

There are two main reasons why property lists are useful to
the LISP proSrammer. In the first place, property list values
aT'e much less volatile than litat value cells. The property list
is not affected by lambda-expression or PROG bindin~s; it can be
reached solely throush the functions described below. Thus it is
usc-?ful foT' holdins things which remain relatively constant
throush the li~e of an ALISP run -- for example, the Srammer
rules used by MILISY (Mlni-Llnsuistic SYstem) are stored on
pliE.ts.

In the second place, plists offer a ~reater variety of
indexins than value cells, and an easY means of storin~ and
retrievins values throush this index. Every value stored on a
plist has actually two indices: the litat on whose plist the
value resides, and the indicator label under which it is called.
This double indexins scheme proves hand~ where the proSrammer
must keep track of any similar items under different ke~s. For
example, suppose that ~9u wish to mark all litats that have been
processed in a certain way. A simple, efficient solution would
be to put the value T under the indicator PROCESSED on each
litat's property list. Then, to check whether a particular litat
X had been processed, it is onl~ necessar~ to evalu~te (GET'X
,. PI;:()CESSED) •

ALISP suPPorts the standard
and fetching values from propert~
lii;ts i!:d

functions for addins, removins,
lists. The format for property

(lab1 prop1 lab2 prop2 ••• labn propn)

where the lab are labels (either litats or SNUM's)
are any S-expressions. Ever~ nlitat can have a

and the e£.ar~
propert!:l list.

··c:.

associated with it.

EntriE-~s are addE~d to thf:? pli~:;t I,.Jith thf:~ functions PUT and
1:1 E F P I~ [) P • PUT :i. s a sun F\ 0 f t h T' (.? (~ a r ~.f!..l1T! (? n t s • T h ~~ fiT's taT' 9 tim (.:~ n t
is an nlitat whose propert~ list will be used, the second is a
label~ and the third is its associated value!

(PUT lit lab prop)

I f 1 a b i s a 1. T' f:'~ a ch~ 0 nth e p 1 i ~;-l', () f 1 it, the n RI~ Q E: des t l' U c t i vel ~
replaces the propert~ associated with it on the plist. If Lab is
not on the plist, then a new entr~ of lab followed b~ eCOE: is
added to the front of the plist. Note that PUT and DEFPROP use
EQ in searchins for lab on the plist, and test onl~ ever~ other
f-~l.pulent of thf~ p1:i.st. Thus atolTdc l?CQI? will not cause false
II. (J t c h C·I ~:; (] n p 'I. i s t 1 a b p 1. s f~ a T' C h F.~ S •

II E F F' f.: 0 F' ~ an F SUB R 0 f t h r e ear gum e n t s , act s e ~.~ act 1 y the s a IT. e
as PUT, except it does not evaluate its arSuments. Both
functions return lab.

Properties are fetched from plists usins GET and PROP. The~

are both SUBR's of two arguments, with format:

GET
(or lit lab)
PROP

The~ search the plist of lit (usinS EQ) for a match to lab; if
found, GET returns the e~Qe associated 'with it, while PROP
returns the rest of the plist followin~ lab. ·If lab is not
found, both functions return NIL. IT is impossible to
distinsuish between GET returnin~ a ~CQE: of NIL, and not findins
lab at all, an ambi~uit~ which is often useful. If it is nf it
is necessar~ to distin~uish the two cases, PROP can be used.

Properties are removed from the plist with the function
REMPROPv a SUBR of two arsuments. Format is the same as that for
GET or PROP above. REMPROP searches the plist of lit (using EQ)
for 8 match to lab; if one is found, it and its associated a~ae
8re destrtlctivel~ deleted from the plist. If no match is found,
no action is taken. The value of REMPROP is NIL.

Finall~ the whole plist can be accessed with the function
PLIST, a SUBR* of one or two arsuments. With one argument, it
returns the complete plist of that ar~ument. With two ar~uments,
it sets the plist of its first argument to the second ar~ument.

Examples of all these plist functions will be found below in
Dial(J~~fl..le :LO.1.

10,2 Noo-des!xuc1i~e Lis! Manieulaiioo

93

94

?(PL..IST ~FOO)

NIL

?(PUT 'FOO 'BAR 26)
BliR

~i) (F'L I ~3 T ' F 0 0)
('BAr.: 26)
~(GET 'FOO 'BAR)

26
?(PROP 'FOO 'BAR)

(26)

?(DEFPROP FDa MOO NIL)
MOO

?(GET 'FOO 'MOO)
NIL

?(PROP 'FOO 'MOO)
(NIl ... BAR :~6)

·'1'(PI...IST 'FOD)
(MDD NIl... BAR 26)

?(REMPROP 'FOO 'MOO)
NIl ...
~(PROP 'FOO 'MOO)

NIL

?(DEFPROP FOO 26 BAR)
1') (
A .. (.)

'it (P L. 1ST I F (1 ())

(26 BAR BAR 26)
l' (GET I FOO 26)

BAt'"\

Dialogue 10.1
The Plist Functions

The plist of FOO is initiall~
NIL.

The plist of FOO now contains
the indicator BAR and the
value 26. Note that GET
returns the value, while PROP
returns the rest of the plist,
startins Just after the
indicator.

Now the plist of FOO has the
indicator MOO and associated
value NIL on its plist. Note
that GET returns NIL, Just as
if the indicator MOO were not
on the plist; but PROP will
distinguish this case.

REMPROP removes . the indicator
MOO and its value NIL.

SNUM's are valid indicators on
propert~ lists, since the
search functions use EQ.

,. ,

".....', (,

\

(~,

?(PLISr 'FOO '(MUD MAR BOO BAR»
f'OD

?(PL..IST 'r()o)

'" ---,-"" ---

(MOO MAR BOO BAR) PLIST can chanSe the whole
F,l:ist. at, once.

These functions form results from their ar~uments without
c h i3 n ~:,i i n ~J t h C~ 0 r :i, 9 :i n a 1 a r ~j I.J ITI f:~ n t~) • N

10.2.1 Of CAR's and CDR's

These standard functions are SUBR's
N(,~ i th(:~ l' wi 11. Wi) r k c)n atom i (~ a l"~tUITIE~nts, e~·~cept

shd CDR of NIL both return NIL.

of one
for NIL.

arSument.
The CAR

Combinations of CAR's and CDR's can be performad with the
functions CAAAR throu~h CDDDR.

Multiple CDR's can be performed with the function CDRS, a
SUBF.: of two ar~uments t The fi rst arsument is a 1 ist (or NIL) Dn
which to appl~ the CDR's, the second is an SNLJM specifyi'ns the
number of CDR's to be taken. If zero or nesative, no CDR's are
takenv and the oriSinal first argument is returned. Excessive
CDR's past the end of the first argument Just return NIL.

The first several elements of a list can be fetched with the
functio CARS, a SUBR of two ar~uments. The first arSument is a
list whose elements are to be extracted, then second is an SNUM
specif~ins the number of elements to be taken; if zero or
nesative, NIL is returned. If the second ar_ument specifies more
elements than the first has, a top-level COpy of the first
ar~ument is returned. Note that CARS creates a new list
structure, callinS CONS implcitl~.

The LAST functiDn, a SUBR of no arSuments, returns the last
eJement of a list. If siven an atomic ar~ument, LAST returns it~

The function ARGN can be used to return a specific element
of a list. It is a SUBR of two arsuments; the first is a list,
the second an SNUM specif~ins the element of the list to be
T' ,,:,d', U T' J"H7? (f t 1ft h e 5 e con dar S I.J ITt en tis I e sst han 0 T' e Qua Ito z e r 0 ,

or lal"Ser than the length of the first argument, NIL is returned.
ARGN is chiefl~ useful in lambda-expressions of an indefinite
number of arsuments (see section 1.6.3.1).

The function LENGTH, a SUBR of
n~mber of elements in that argument.
i t l'f~tu T'ns ze ro.

one argument, returns the
If its argument is atomic,

Examples' of these functions will be found in Dialogue 10.2

95

-

96

10.2.2 List Construction

The 5 e fun c t :i. Q n s c () n s t J' IJ (~t new lis t s fro IT. the i T' a r gUm e n t 5 ,

1..1 ~:;i ,.', !:j t h l? 5 i n g I e p T' :i mit i vee 0 N S i rrr p 1 i cit 1 '::J (C A R S abo v e i sal so
one Df this group). NrJ wOT'rl.es about d~\stro'::Jing the original
list structures with these functions; however, they have the
disadvantase of usins UP free storage.

CONS is the standard function, a SUBR of two arguments. Its
T'esult is the dotted pair:

CONC8NS takes a variable number of arguments, being a SUBR*,
and strinss them together usins CONS. Its result is the
f.) .- (.;? ;.~ P T' (~ S s ion :

CONCONS must have at least two arguments. It is' eGuivalent to
LIST if its last arsument is NIL.

LIST is a SUBR* Df at least one argument.
list of its arsuments!

It forms a true

(ars1 ars2 ••• argn)

APPEND is a SUBR of
forms a result by merSing
Consider the form:

two arsuments, usually lists, which
its first argument with its scond.

(APPEND ars1 srs2)

w h P T' e a J~ san d a 1~ !=.t a T' €~ b () t h non - a t 0 IT. i c S - e ~., pre s s i (J n s •
f~rst makes a top-level copy of B£S, then stuffs a£S
last CDR of this cop~. Suppose, for example, that a~d -
MOO)~ and a~s = «NIL) MAR), then the result would b

(FOO BAR MOO (NIL) MAR)

APPEND
into tl')E.l
(FOO BAF<

You can think of APPEND as formins a sinSle list whose elements
are the elements of arS and a£S.

APPEND also works nicel~ for the special cases where acS and
a£S are atomic. If a~S is atomic, APPEND simpl~ returns acS. If
arS is atomic, it sets sstuffed into the last CDR of a cop~ of

*In ALISP, a dotted pair is represented as (A,B) rather than
(A.B), in order to prevent confusion with floatins-point number
f:)~:lnta;·, •

i
I -

("" 'v'

" """-""-"""---"""--"--

Dialc)~,~I..1(~~ 10.2
CAR, CDRI' arId DeT':LVat:i.vP Functions

'!'(SETO FOD '(1"-\ B (C) II»
«(" P (C) [I)

T (C n F\~ F () ())
(B (C) l)

'i) (C I~ D [l1:~ F () ())

?(CAR NIl...)
NIL

T(CDDr;: NIL..)
NIL

T .: C l) R ~, F CJ () 0)
(f~ H (C) II)

? (CDR!, FDCl 2)
«C) [I)

'r (CDRS JP FOD 10)
NIL.

?(CtiRS FOD 0)
NIL.

?(CARS FOD 2)
(A B)

? (C trl~ F 0 D 1 ())
(A B (C) It)
?(EQ FDa (CARS FDD 10»

NIL

? (AF.:GN FDO 0)
NIL

? (AF.:GN FD(2)
B

'f «(.-lr~GN FDD 10)
NIL

'? (LENGTH FaO)
4

?(I...ENGTH NIL.)

". :;:" "At-l/;
.~!1IJf'

CAR and CDR of NIL return NIL.

CDRS does multiple CDR's on
its first argument.

CARS extracts elements from
the besinnins of a list, and
uses CONS to create a new list
with these elements. Note
t,hc~t this new list is not [(]
to the first ar~ument to CARS.

ARGN takes the cth element of
a list. Note that if asked
for an element not in the
list, it ret~rns NIL.

97

-

98

()

'? (L.ENGTH 'FDfJ)
o

'?FDD
(A B (C) D)

1:-

LENGTH returns the number of
top-level elements in a list
as an SNUM. Atomic arsuments
to FOO have zero lensth.

None of the above functions
chanSed the orisinal list.

aig; so thatv if a~S is a list and acS is NIL, ApPEND Just
l' c·~ t 1 . .1 T' n ~; a c eH-"' ~:I () f a I~ 9 • (A P PEN II ~.~ ~J) i 5 E~ n t, i r (~~ 1 ~ e Qui ya 1 E? n t t, 0

(NCONC (COPY x) ~). Examples of the APPEND function are ~iven in
Di31Q~ue 10.3 below.

Dialogue :LO.3
The Function APPEND

?(SETQ A '(FOO BAR»
(FOn HAl:;:)
?(APPEND A 'CMOO CMAR»)

(FOO BAR MOO (MAR»
'i) A

(FOO BArn

?CAPPEND 'FOO '(MOO (MAR»)
C MOO (MI~R»

?(APPEND '(FOO BAR) NIL)
(FOO B,.~Fn

? C APPEND '(FOO BAR) , M()D)
(FOO BARvMDO)

TCAPPEND '(FOO BAR,MOO) '(A B»
~ FOG DAF\ A B)

APPEND strings its arguments
tosether at the top level.
Note that the original list
remains unchanged.

If the
APPEND

first argument to
is atomic, the second

arsument is returned.

If the second argument to
APPEND is atomic, th~ first
argument has it stuffed into
:i t~; CDR.

N () t E? t hat, thE) fin ale D r~ oft h E?

first argument is alwa~s ·lost.

Two functions, a COpy and DeOpy, are provided for cop~inS

'- .. ~.'"

-------_._.-_._- _._------------

1 i !:) t !:) t r-u c t I.J J' (:-~ • B nth a T' (-:-~ S LJ B R ' 5 C) f C) n f:~ a r 9 I J men t • COP Y f C) T' ITI S a
top-level cop~ of its ar~uments by applyinS CONS to each element
:i. n :i. t ~:i a T' ~:I U III e n t • II C () F' Y f C) T' IlI~) an :i n -, ci E~ p the 0 p ~ 0 fit, ~:; a r 9 U IfI e n t '!

(
_.... entirel~ re-creatins its list structure down t6 atomic level+
__) T h (~~ :i. T' 1,., I SF' f? C~ 1..1 :i, val (.;~ n t s a l' (.:~ :

C--:
.,

(DE COpy (X)
(COND (CATOM X) X)

CT (CONS (CAI:~ X) (COPY (CDR X»» »

(DE IICOF'Y (X)
(COND «ATOM X) X)

(T (CONS (DCDPY (CAf~ X» (DCDF'Y (CD~-;: X»»
))

If th~~ are given atomic arsuments, COpy and DCOPY simpI~ return
thf:~/TI ~

The function REVERSE, a SUBR of one arsument, reverses the
o rdf:~ T' of the t()P"" I evel €-.'lem€,~nts in that a T'9ument,. If :i. t~:i
a Y'~:{l..IlTJent :i 5 atom i c" it, iss i mp I Y retu T'nE~d. A f'lon'"'atom i c a r£{ulTI(~nt
to REVERSE should be a true; list; if it is nol, the last CDR in
the ar~ument is lost.when th~ reversal is performed. Examples of
the REVERSE function will be found below in Dialo~ue 10.4.

[Ii a1 t1~,~IJf.~ 1 () • 4
The Function REVERSE

'i) (REVEr~SE ' FOD)
FOD

?(SETQ A '(FDD BAR»
(FaD HAl:;:)

? (F\EVEF~SE A)
(HAl:;: FOO)

'r(~

(Fun .. B{.IH)

REVERSE Just returns
arSument if atomic.

The tOP-level elements of the
a T'9ument, th REVERSE wh(~ r(.;~
reve rsed. Note that th€·~
()risinal list was not chan~ed.

?(REVERSE '(FOO (BAR (MAR MOO» NU»
(NU (BAR (MAR MOO» FDO) Onl~ the top-level elements of

a list are reversed.

?(REVERSE '(FOD BAR,MOO»
(BAI:;: FaD) The final CDR of a reversed'

list is alwa~5 lost.

'l>~"

~';N~

100

10.~ Destructi~e List Maoieulaiioo

U,.., :I. :i. k C-:-~ t h (.:.~ n () n f.'.t (.:~ ~5 t J' 1 .. 1 C t" :i. 1.1 f'~], :i. !:) t f IJ net ion 5, t h f.~ fun c t ion 5-

d (~ ~::. c f' :i. ~.'.l f~ d :i. nth :i. ~~ ~:; (.:.~ c t :i. 0 n act 1..1 <3]. 1';:1 C han !:~ {;.~ aIr f..l a d ~ e >~ i s tin g

structures, rather than creatins new ones. Amons other
a d van t i:~ !:,f e ~;;:J '1:, he::; (.:! f 1..11"1 C t. :i. C) n~; (:~ T' (:~ f;;~ ~,; t e T' and use 1 e 5 5 f r e e 5 P ill C c'
t. h d nth (.?:i l' n (J n -.. ci (.;.) !:; t Y' 1..1 C t i v (~~ c () 1..1 n t(~J T' paT' t, s + Howe vel" the t~ can a], ~:; 0
screw UP existins list structures if used incautiousl~, creating
~:;lJch u~;I,j(~ll!J undf.·!s:i.r'r.~blf~ :;tT'l..IctU1'~~S a!:; ciT'cular listf:i+

10.3.1 RPLACAy RPLACD, NONe

F\' F' L.. A C I~ and 1:< F' I... I~ C D a T' p t h (:.~ ~:; t (:~ n d a 1'd f IJ net j. C) 1"1 5 Y bot h SUB F~ / ~:; (J f
. t l-J naT' ~:.~ U IT! P n t !:; • F\' F'I... (-) CAT' (~~ P lac f:~ !!; t h f~l CAR 0 f :i. t s fiT'S tar 9 IJ ITI to? 1"1 t
01lh the second argument~ RPLACD replaces the CDR of its first
;); T' !:.~ U HI f-~ 1"1 t wit. h t h f? S E~ C D n d • B (J i:. h l' E) t IJ r nth E! a 1 t I:~ T't? d fir 5 tar S IJ IT! e n t
(:~ ;;; i3 l' (.:.~ S I..J 1 t t

Both these functions w:ill siven an error if called with an
atomic first ar~ument. Note that their effects are permanenty as
the examples in Dialosue 10.5 below indicate.

D:i.al()!~ue :LOt~=j

The Functions RPL..ACA and RPLACD

?(SETU FOO /(A B C»
((:) Be)

? (F<F'I...ACA FOD / BAI:~)
<HAr;: rr C)

?FOO
(BAr~ B C)

T (F< P LAC [r (C D I=< F () () / ~1 DO)
(B,riOO)

TFDO
0: I'/Ar< By MOO)

Y<RPLACD (CDR FOO) /(MOO MAR»
(B NDD MAH)

'(FOO
(nAF~ B MOD MAl:;:)

RPI...ACA replaced the CAR of the
list (A B C) with BAR. Note
that its effects are reflected
in all pointers to the list it
chan~ed, i.etY it alters
~xtant list structure.

RF'LACD replaces the CDR of its
first argument. It thus has
the power to chanSe the lensth
of a lir->t.

-

C:' .-
-
-

~ONC, a SUBR of·two arguments, acts Just like APPEND except
that it does not cop~ its first arSument. Itpermanentl~ changes
list structure b~ makins the last CDR of its first argument point
t oi t!5 s e Co' (J n r..1 a r g!..llT! en t • If :i. t s fir s tar!:J u ITI e n tis a to ITI i Co', the
second arSument is returned. Examples of this function lTIa~ be
found iM Dialogue 10.6 below; compare to the examples of APPEND
in Dialosue 10.3 above.

'~ (SETQ FOD '(A B COO
(A B C)
'?(NONC FOD '([I E))

(A B C [I [)
?FDO

(A B C D E)

?(NONC FOO 'BAR)
(A B C [I E,BAR)
"?FOO

(A BCD E,BAR)

?(NONC 'FDa '(MOO MAR»
(MOO MAR)

?(SETQ MOO '(F G HI»
(F G H I)

?(NONC FOO MOO)
(A B C [I E F G H I)

?MDO
(F G H I)

Dialosue 10.6
The Function NONC

NONe chang~s *nternal list
structure; therefore the
value of FOO was implicitl~
chanSed b~ the .NONe call.

An atomic second arsument is
stuffed into the last CDR of
the first ~rSument.

Atomic first arsuments are
iSnored, NONC returns the
second argument.

Onl~ .the
NONe. has
al tered •.
arStllTlent
its last

first arSument to
its list structure

Note that the first
to NONC alwa~s loses
CDR.

CONG is like NCDNC except that it is a SUBR*
take a var:iabl€-~ number of arsuments (but alwa~s at
The followins two expressions are eGuivalent:

and can ·thus·
least two).

(CONC ars1 ars2 ••• arSITI arSn)

101

-

-.
-

102

(NONe ars1 (NONe ars2 ••• (NONe arsm arSn »)

:I. O. J .2 E I elllf.·~nt Funct i (]I'I~:;

A common operation in IISP is the addition or deletion of an
el~ffient from a list, using the element position as an arSument.
I~ this form lists are treated as variablesize vectors of
elements, the first (leftmost) element beins numbered by 1, the
se~ond b~ 2, etc. The total number of elements in the list is
siven b~ the LENGTH function.

The functions ADDEl and DELETEl allow elements to be added
and deleted from a list by 5pecif~inS an element position. The
format far ADDEl, a SUBR of three ar~uments, is:

(ADDEl new lis pos)

where oew is the element to be added, lis is the list to add it
top and eos is an SNUM specifhlins the element after which ne~
will be inserted. If eos is zero, ce~ is added as the first
element of lis. If eos is nesative or Sreater than the number of
to~-level elements in lis, an ARG-ERR is issued.

Note that ADDEl actuallY chanses the internal structure of
lis, so that all pointers to it will point to the altered
structure. If lis is atomic, there is no structure to alter, and
ADDEl simpl~ returns a list of one element, new.

DElETEL, a SUBR of two arSuments, deletes elements from a
list. Its format is:

(DElETEL lis pcs)

where l~s is a non-atomic list and aas is an SNUM specif~ins
element in lis to be deleted. eos must be ~reater than zero and
less than or eGual to the number of the elements in lis, or an
ARQ-ERR is issued. DELETEL returns the altered list as its
value.

Note that DElETEl actuall~ chanses the internal structure of
lis, so that all pointers to it will point to the altered
structure. It is, howeverv impossible to delete the last element
frbrn a oneelement list b~ alterin~ its structure. In this case,
DE(ETEL returns the expected value NIL (an empt~ list), but does
not chanse the structure of lis. Examples of the ADDEl and
DELE TEL functions are siven below in Dialosue 10.7.

The function EFFACE is usedto remove an element of a list b~
name. EFFACE, a SUBR of two arSuments, searches its first
ar~ument for a top-level element EQ to its first arsument. If
no~e is found~ EFFACE returns its second arsument unchanSed. If
an occurrence is found, EFFACE deletes the first such occurrent

,-

(~J

-
-

.. -

.. -
'-

-

-
-'

-
-'

D:i. a I c.')!:tlJ(~ 1 () • 7
The Functions ADDEl and DEl~TEl

1(9[TO FOD '(A B C»
(A B C)
1(ADDEL 'D FDD 2)

(A B D C)
'?FDO

(A B II C)

1(SETQ BAR (CDR FDD»
eB D C)

'i' (ADDEL ' F FOO 2) (A B F DC)
'i'BAf~

(D F It C)

'~(SET(~ FOO NIL)
NIL.

1(SETQ FOO CADDEl 'A FOD 0»
(A)

?FClO
(A)

ADDEl added
the 5€~cond
list.

the atom Dafter
element of the

, The list was
permanentl~ altered.

This illustrates the effect of
the list-alterins functions on
all point~rs to a list. BAR
has as its value the CDR of
~he value of FOO, i.e., the
list (B II C). When ADDEl
chanSed the structure of the
list which was the value of
FDa, it also chansed the value.
of BAR, since the value of BAR
was part of the same list
5 t T'uct.U re •

Here is the correct wa~ to use
AD DEL with empt~ lists. Since
the value' of FOO was NIL,
ADDEl could not reall~ alter
an~ list st~ucture. It 5impI~
returned a list of the sinsle
element A. Now usin~ SETQ
causes the value of FOD to be
set to the list returned b~
ADDEl, namel~, (A). Note that
the SETO expression' will work
even when the value of FOO is
non-NIL, since ADDEl returns
the altered list as its
T'esul t.

103

-

104

? (DEI ... CTEL.. BAF~ 4)
r:B F [I)

?B(.)F~

(D F D)
'(Fun

'i' (~;;[T(~ FOO '(A))
(A)

? (DELETEI ... FDD :l.)

NIL.
?FDO

((.1)

'1' (~:)ETC~ FOD (DELETEL FOO :1.»
NIL

?FCtD
NIl...

DELE TEL removes an element of
a list, permanentl~ alterins
that list's internal
~;tT'uctur(-:~. Note that the
value of FDD is affected.

~JH('2n th(~ va I ue of FOD i~; (:~

one-element list, DELE TEL
cannot remove that final
element, even thoush it
returns NIL as its result.

This is the correct wa~ to use
DELETEL on one-element lists.
Note that it will also work
correctl~ when the value of
FDD is a Ions list.

from the list, and rturns the altered list as its result. If the
second ar~ument to EFFACE is atomic, EFFACE returns NIL. If the
~;. (;"-.1 C D n ci a l' i:'{ 1..1 IT! 0~ n t :i. ~:~ a c> n (:' f? I €.~ IT! E,' n t 1 :i ~; t,,, E F F ACE d () e s not a I t E~ T' its
list structure but still returns NIL. Examples of the EFtACE
r: un c t. j. (} naT' (-:.~ !:.~ j, v t~ n b (::~ 1. C) win II i a 1 () ~.f 1..1 (::~ :1. () + B •

(..--...,
't ____ ,

r~
\

-
() -
-

-
-
-

-. ,,.-....
(. _ '

-

-
.......

-

'-

Dialo~fl.JE~ iO.8
The Function EFFACE

?(SETQ FOO 'eA B (FOO BAR) 4»
(A B (FOO BAR) 4)

. ?(EFFACE 'A FOO)
(B (F 0 DBA I:~) 4)

?FOc)
(B (FDO BI~I:~) 4)

'1' (EFFACE 4 FOO)
(B (FOD BAR»
?(EFFACE '(FDD BAR) FOO)

(B (F()D BAR»

? (SElf] FOO '(A))
(A)

'i' (EFFACE I A FOO)

NIL..
'i' FOD

(A)

?(SETQ FOO (EFFACE 'A FOO»
NIL

'i)FOO
NIL

EFFACE rubbed out the first
occurrence of the atom A.
Note that the value of FOO was

.chanSed: EFFACE alters
internal list structure.

Since EFFACE uses EQ in
searching, SNUM's and litats
are found, but not list
structures in general.

EFFACE cannot delete the last
element of a list.

This is the correct way to use
EFFACE with one-element lists.

105

-

-

-
-

-

"-

106

I ChaF't(·~ T' :I.:l.

~) .1.:i:l:. hlllet l C

J:/. {. J

This section discusses the various
functions available in ALISP to perform
arithmetic operations. The three numeric
t~pe5 (LNUM's, BNUM's, and SNUM's) have
alreads been discussed in sections 1.2 and
1.3; predicates for numeric comparisons were
d :i. ~;; c u s ~:; f~ d :i. ,.., ~; (~~~ c: t ion I • 9 • P N U M ' s are not,
allowed 8S arSuments to arithmetic functions.

M 0 ~:; t (] f t h (':.1 A L J SF' a Y' :i. t h HI f:! t :i. c f 1 • .1 net. ion s y bot h d ~l a die and
HlOn;]"'.l:i. C Y CiJn l:.l(.:~ 1..I~:)(?d l4i th all thr(0(:'" nl..llTlbE.' T' t!~PE~S (SNUM' 5 y BNUM" s,
2hd LNUM's; PNUM's and ANUM's are not valid arSuments to the
a r :i. t. h III (.:~ tic fun c tiC) n ~:.) • T h (.:-~ t '3 F' E-~ 0 f n U IT! b e r the ~ J' e t urn a s a
result depends upon the t~pes of their arSuments and the function
i n v 0 :I. \.' £:1 d ~ I n ~:.{ E,I n f~ r' a :I. (f:~ ;.~ c f:'~ P t f (J T' t h E~ log i c a 1 and bit fun c t ion~;) "
they return an SNUM if all their arsuments were SNUM's and the
result is in SNUM ranSe; otherwise the~ return BNUM's.

:I. 1 (. :1. ~ :I. N 1../ ITI b f:~ T' T !:~ F' E' F' T' e cf i cat f~ s

s p V f.~ 'j' a 1. P T' €.~ cf :i. cat f'~ saT' (.:.~)'.', T' <:) v :i. d F.,\ ('.f to d iff e re n t i ate bet wee nth e
\! d r' :i. C) U ~::. n I..l /TJ b f~ T' t !:l P f:-~ ~:; • The !:J a T' f:~ a 11 f3 U B R '~; ('J f 0 n eaT' 9 u ITJ e n t; t h P '::l
T' f-~ t U T' n T i f t h (.:~ :i. T' a T' £{ !..IITJ f~ n t :i. ~:~ a pay' t, :i cuI a T' n U IT! b e r t !:l P e " N :r L i f
not " Nott·.1 that thf:-~ :i. r a r'!:{ulTJ(~~nt~:; dC) not have·? to be nUlTJbf.~ r tH}j(~ ~>;

i'j' t h f·) !:~ a T' e n () t, t h f.~ S El fun c t :i. D n s ~:; i rT, P 1 ~:~ T' E~ t U T' n NIL.

FIXP returns T if its ar~l..Iment is an SNUM~ NIL if not.

F"I... D A T P J' f..~ l.u T' n !:) T :i. f :i. t, ~;; a T' ~:{ u ITr e n t :i. 5 a B N lJ M, NIL i. f not +

L. f) c-; F' l' (-~ 1'.. U T' n !:~ T :i. f :i. t ~:) a T' ~:~ U ITt f:.1 n t :i ~s a rr /... N U M !I NIl. :i. f not +

NUMBF.::F;:P T'f:~t.I.1 T'n!:; T :i f it':; a T'~:.~I../ITI(·:~nt
(incll..1 .. jirr~J PNUM and ANUM" NIl... if n(Jt.

1:1. (. :1. ~ 2 NunrLle Y' T~;~F'e CDnV(':~ T'!:; i on

:i.!:i nl.."Tlbf.~ T'

T D con \.' £.~ T' t b (.:~ t. t..,1 (.;~ (.;) n ITI <:) (f e ~~!I t h r (.~ E~ fun c t :i () rr 5 . a T' e a v a :i 1 a b 1 (:', all
~;; !.i B F~ i ~:~ D f C) n E\ a l' ~{ I..IITr (~:~ n t ~

F I X CDnV(':~ rt!:; to SNUM' !:i • If its ar~ument is out of SNUM

.......

-
-

-
-

'.';---\ L:

--

ran~e, a NUM~ERR is i~sued. If its ar~ument is an SNUM, FIX
simpl~ returns It.

F I... [} ATe (] n v (~, T' t ~; t C) B N U M / S • I f :i t 5 c~ T' 9 1.., ITI (~n tis a B N U M, F L.. () A T
creates and returns a new BNUM having the same ~alue.,

LOGICAL converts to LNUM/s. If its arSument is out of LNUM
ranSe, a NUM-ERR is issued. If its arsument is a LNUM,
LOGICAL creates and ~eturns a new LNUM havinS the same alue •

The three functions above can always be used if a result from an
,arithmetic operation must be a definite ALISP number t~pe.

11.2 n~adic EUDctions

T h f~ (J ~:l ad :i. c i:~ T' :i. t h ITI f;' tic fun c t :i () n s a r f? i:~ 11 SUB R * / 5, e >: c e F' t for
REMAINDER~ which is a SUBR of two arsuments. The format is!

(fn aT'~:tl. arg2 ••• aT'~jm aT\£~n)

'~Jh~:~rf~ at l€~ast
i:~PF"l :i. f;·~cf to thf?

is!

two B£S/S are present. The
arSuments from right to left, 50

(fn aT·!=.~:L (fn ar~.12 ••• (fn aT'!=.~1TI aT'sn»)

11.2.1 PLUS, TIMES, DIFF

dYadicfunction is
that the result

These functions return SNUM/s if all their arguments are
SNUM's, and the result is in SNUM range. If these two conditions
are not met, the~ return BNUM/s. Dyadic DIFF subtracts a~S from
B£S. Examples of thse functions may be found below in Dialo~ue
:I. :1. ~ :I. f

:I. :I. (::;~ , :::.~ II:i. v:i. s i on

Division offers special problems when dealing with different
rr HI b E' T' t Y P f.~ S + T W C) fun C.' t ion,s are pro vi de d , D I V I II E and QUO TIE NT,
which alwa~s return BNUM's and SNUM/s,' respectively, no matter
what the t~pes of their arsuments. QU()TIENT alwa~s truncates the
result of each d~adic division, and retains onl~ the integral
part; DIVIDE returns the full floatins-point result.

D~adic QUOTIENT and DIVIDE divide a~~ b~ a~S. If a~S is
zeroy a NUM-ERR is issued. A NUM-ERR is also issued if the
result of a divide operation is out of SNUM ranSe for QUOTIENT,
found below in Dialosue 11.2.

The function REMAINDER tak~s only two arsuments. It does a
floatinspoint divide of a~s b~ arS, and returhs the non-inteSral

107

--

'-

-
--

108

'j' < ! 'L U ::;: J 3 ... 2)
... i ~

.\ ..

. 'i'(f'Ll.J~3 :I. 3.0 · .. ·2)
~·2[.1.

? (P /... US :fI: 1 0 :/1::1. 2)
~ :1. HE:?

D :i. a 1 () !~ ' .. ' f:~' 1 :1. • :l
Dsadic Arithmetic Functions

EGuivalent to 1+(3-2). Note
that the result is an SNUM,
since all three ar~uments were
SNUM's and the result was
within SNUM ranSe •

'? (T I ttES 3000 :I. 60()0)
f4UED Mixed modes~ Note that the

rf.~~:;ult is alwa~s a BNUM if the
arsuments were not all SNUM's,
or the result was out of SNUM
1'an~je •

'1' (II IFF 6 :3 -4 :1.)
EQuivalent to 6-(3-(4-1».

D f t i'l e n 1''' f:~ T' a tiC) n t I'f b () t haT' ~.=1 u IT! (.:~ n t s we r' e S N U M ' 5" t h~' l' E.' S U]. t w ill
be an SNUM; else it is a BNUM. Note that the concept of
remaInder is not well-defined for a floatins-point division
r (,2 ~;~ I .I :/. t who !:> (.~ a b 5 0 11..1 t E~ va 11..1 f.~ f.~'}~ C e E'd 5 2 B 4 7 ~ i nth i 5 cas e !I the
remainder will be close to zero. a~S cannot be zero.

1J.3 Monadic EUDctioDS

Monadic arithmetic functions are all SUBR's of one arSl..lment.
T h f:~ ~::! can t a 1-:. (.:~ a 11 t h T' (.:~ f.~' n 1..1 m f~ r' i c d a tat ~l pes (P N U M ' san dAN U M ' s not
irrcll.1(fed) •

11.3.1 Trivial Monadic Functions

Thf:~S(~~ foul"
Lf'·!Uh ,. <;: 0 T' ~:)NUM" !;;

F :I. ~;: (.:.! ~.' t. h E' ~:! r f::~ t. urn

funct:i.Dn~;;. T'(~~t.I..IT'n SNUM's:if thf:?ir argument.s <3T'e
and t. h (.:.~ T' (7~ ~; I.J]. t~:; a T' (.:.~ I"J () t. 0 1../ t C) f S N t.J M T' a n ~.:.~ C-:~ •

BNUr1 ,. ~:: .•

A 1:1 n 1 and ~] U n :I. ad (f and:.-> u t:.l t T' act D n f? f T' C) ITt t h E~ i r T' (:~ ~:> P E! C t. :i. ' .. / (7.'

i:~ r' ~j 1../ ITI (.:~ n t!3 t

M J N t.J n c han ~:t (.:~ ~;; t h (.~ s :i. :.:~ n C) f :i. t !:; a T' ~:f U ITJ f? n t •

ABSVAL returns the absolute value of its arSument.

c.

-

-
-

-

-' -

-

-

D i a 1 C)~:,tue :1.1.2
The Divide Functions

'1) (1:1 I V I [t E 6 4 2)

.3E:L
EGuivalent to 6/(4/2). Note
that DIVIDE Alwa~s returns a
floatins-point result.

I~'
,.J

'l)(ClLJDTIENT 3.2 .6)

'r(GLJDTIENT :1.2 6.2 3+:~)

:1.2
QUOTIENT performs a
floatinS-point divide of its
last two arSuments, then uses
onl~ the inteser portion of

rr (F;:EMA I NDER 3 2)
:L

?(REMAINDER 3.2 .6)
+2EO
?(REMAINDER 110 6)

•. 4F1

the res~lt in sucessive
perations. Thus it divides
6.2 b~ 3.3 and truncates the
result to 1, then divides 12
b~ 1 to ~eturn 12.

REMAINDER performs a floatinS
point divide of its arSuments,
but returns the non-intesral
portion of the result. If all
of its arSuments were SNUM's,
the esult is an SNUM; else it
is a BNUM.

1:L.3.2 Non-trivial Monadic Functions and RANDY

These functions all return
numeric t~pe of their arsuments.
C) n C~ a r ~.=.t I.J IT! E~ 1"1 t •

BNUM's, no matter what the
All except RANDY are SUBR's of

SIN and COS return the sine and cosine functions of thei~
arSulT!ents+ Arsuments are in radians.

f:) C~ r;: T T' (o? t 1..1 T' n ~:; t h €-~ ~:; C~ 1..1 a T' e-~ r (J C) t <:) f the a b sol ute 'va lu e 0 fit s
a T'~.~UlYlf~nt .•

EXP returns the exponential function of its arsument.

LOG returns the natrual loSarithm of its ars~ment, which
InU~:; t be ~t T'ate-~ T' than ze r'o ~

109

4

110

RANDY, a SUBR of one or no ar~uments, will return a
F"~;(·:~l.Jd 0···· T'an(!OITI BNUM :i. n th(~) OPf;)n i nt,e T'va 1 (0, 1) if ca 11 ed with
no a T' ~.:.~ I..J m (~~ n t ~:; • I f c a 11 €-~ d wit h () n (~ a r 9 u men t ,a B N U M, the
pseudo-random Senerator seed is reset usin~ that number.

11.4 Losical [uDctioDs

Th(·;~~;(-:~ fl..lnctlon~::. F"rC)v:i.d(~ lC)!=.~:i.cal and shifting operations on
L N U i1 d i:~ t i:!. ~ T h f:·~ s t a k (.:.~ D n 1 ~d l.. N U M I ~;; ;:3 saT' !:.~ u me.;;' n t::), and a 1 w a ~ s ret I.J r n
I... NU,.·i r(::·~:;1../ 1 t.~;; ~

11.4fl Boolean FunctiDns

T h (;.' r p i:~ J' f~ f nUT' bon:/. (.:~ a n f I.J n c t :i. (] n s l-J h :i c h F' f.~ r f () r m bit .-b ~ _. bit
boolean operations on LNUM data~ These functions are all SUBR's
C) f t .. hi 0 a T' ~:~ I..IlTJ c·~ n t !;) «.:~ >~ c (.:.~ p t f 0 l' L.. 0 G N () T II c~ f:) U B F~ C) f 0 n e a 1"' £f u m f.-~ n t) +

T h C-:-~ a T' E{ U ITJ (.~ n t S ITJ 1..1 !;;. t b (.? t.. N U M 's 0 T' a N U M - E R I~ w ill be iss u 0~ d + T h C:~
boolean functions create a new LNUM as a result of their
OF" <-:-." T'Dt :i. on y and T'(·::'tl..l T'n :i. t i:3~:; a T'E~SU 1 t • Thc\ 0 rig ina 1 a T'SUmE.'nts
T' f~ ITJ i:;· :i. nun a :/. t (:? Y' pdt

I... U G AND F' (:.~ T' f D T' ITI S i:~ :/. 0 !.:J :i. Cd :I. aDd fun c t ion.

LOGOR pprforlTls a losical inclusive O£ function.

LOGXOR performs 3 losieal exclusive O£ function.

I... 0 G N D T F' e T' f [) T' ITJ ~:; a :I. n ~ 1 C a :I. C c) IT! F' 1. (·21T1 e n t fun c t :i (J n • I t i!i> a S LJ B F~
of onls one arSument; it performs the complement function on
that one ar~ument and returns a new LNUM result.

J:I.\·4~;? Sh:i.ft:i.n~:~

Shifting of LNUM's is done b~ the functions CSHIFT (Circular
~:) H J F T :i. n !:~) and E S H 1FT (E n (1···· 0 f f S HI F T :i n ~:.~) , bot h S LJ B R '5 0 f t w ()
i:~ T' ~.:.{ 1..1 IT! c·~ n t~. ~ T h (::~ of :i. T' !:; taT' ~:.{ ! . .ItT1 f.:' n t :i. ~5 an L N U M to be s h i f ted" the
~:;f;)Con J i ~::. an SNUM S i v :i. n~.:.{ th(~~ sh i ft count. The second a rSlJmE~nt
ITI u ~;~ t. 1".1 fo) i nth t-: T' i:~ n ~.=.~ c-:.~ f T' C) m ····4 B to 4 B •

Both these functions create new LNUM's for their results, so
c a :I. J :i. n ~J t 1"1 t"-:) /Tr U S f:~ son C·;) 1..J D T'd 0 f f T' f:~ (.~ !:; t, () rag (~~ • The 0 T' i sin a I LN LJ M
argument remains unaltered.

i·:~::;H J F T dOf:~~::. C i 1'CI..I1 a Y' !:;h i ft :i. n~.~ • I f the !:;ecDnd a rglJlTJf~nt is
F· () ::} :i. t i \I c·:-! Y ~; h :i. f' t. :i. n ~.:J :i.~; do,.., [) T' i ~J h t c :i. T' c U 3. a l' 0- I f t h f::O sec 0 n d
a T' ~j UITr (.;) n t :i. ~:; n i·:~ ~;J a t :i. v (.:~!1 t h f:' !:; h :i. f t :i. rJ 9 :i. ~> d () n e]. Eo\ ftc ire u 1 a f' y

and t.h(·:~ a1:.l!:~olutf= valUE' of the sf;Jconr..i ar9UITI(.;)nt is used as i3

~::. h :i. f t. c c) 1..1,.., t. f

ESH]' FT dDf-~S (·:~nd····Dff !5h i ft :i. ns If the second arsument is

c

-"-.-'

F·' 0 ~:: :i. t :i. V C'!!I t h (.:.!:::. h :i. '1" 1: .. :i. 1"1 ~:.~
(.'.l :i. t. :i. ~::. (.:.! : •• ~ t f) n d ,?} (1 ~. J 'f
~:;. h :1. '1" t :i. n ~j :i. ~::.1 0 n (.:.! 1,:.~~ f t

is done ri~ht end-off_ and the si~n
the second arsument is nesative,

(,:.~ n (I C) f'f ~ (~n d t h f~ a b s (.') 11..1 t (.:~ va 11..1 (-:.~ (} f
I:,. h r.' ~:: C~ c n 1"1 (i ;.~ ("!,:,l 1..1 III c·:' 1"11... :i. ~::, 1..1 ;::' (.:.~, d <:1 S~ i:~ !:; h :i. ftc C) u n t ~

.I :l . ' ... i Bit EI.JDc:l:.ions

"I" h (.:.\ j''.l 'i t. f U 1"1 C t :i. 0 r I ~::. a],:1. D P f'~ T' (:~ t c·:! D n I... N U ('-I ,. ~:; ,. T h c·:! ~::! F' T' D V :i "".1 (:.! t h c·:·~

f' :::. '.::' :j, 'I. :i. t, ~3f" 0 j" c h i:~ n ~J :l n 5:.:; a 1"1 (} t c·:': !:~ tin ~.:~ :i. n (I :i. v :i. d 1..1 a :I. b :i. t s . w :i. t h :i n an I... N l.J M ~
(ill aT'(~! ~:;UBr;:'·~::. D',... tt.'JO (:~T'~~~l..flTJc~~nt!:;" hlh:i.ch thf:~ f()11()1,J:j.n~j 'i"(JT'/TJatt

(i:'.l :i. t. f n :I. n 1..1 fl'I F' n ~:;)

~'J h ':';)1 . (.:.! 1 D LlIII :i. ':;:, t h l-:-: L N 1...1 fo'j t.D b (.~ Cl r·~ C:-: T' a t c·:: d C) n 1I (;~ n (I·)205 :i. So an S N U 11
::.:,~ :i. \l :i.I"I:::,~ the·: b :i. t F'D~::. :i. t :i. on w:i. th :i. n thf? l..NUt,·I. B i t!:-; a T\(~ nUlTlbe T'e f '1'" T'DITI
T' :i, ;:.:; i' i t. t. 0 :I. (:.: f t y t h (:-: 1. 01,,1 f: ::;, tOT' ({ (:-) T' (T' :i. ~.:~ h t ITI <:) !::. t) bit b (~~ i n !:.f b :i. t :I.!' t h (-?

h :i. ~;: h p ~::. t D T' d (.:~ T' (:I. (.:~ f t. trJ C) ~~, t) i::', :i. t. b (-:.) :i. n ~:.~ bit 4 B •

The bit functions do not create new LNUM's as T'SSultsr but
1'" i:~ t h (,:,~ j'" P ':':'.' r Il'I an f: n t 1 H C han ~:.~ E' t h f:~ 1 r::J I.J III t h £-: \Jar' f~ ~.:.f i v f:~ n a ~:; i:~ naT' :::~ I..IITI (.:~ n t
I, (.::,:~ (: (':',' F t 'I" D r T ~:~ T BIT., 1,,1 h :i. c h (f 0 C-~ !:; not a 1. t E' T' :i. t. So c~ T' ~j t..I IT! E.' n t) • T h c~·~ ~:l

t j' i 1..1 ;;; "".1 () not. 1..1 ~::. t:;~ f l' (.:.! l::~ :::. t. n r' i:~ ~.:.~ c·:·) a taIl t

t·.,1 :i. t, h t. h C':·.' iJ i t. f n~; y I...I'~ U h d i:~ t a can 'b c;~
b :i. t. .1 C~ \j (.:~ 1 ~ U ~:;. :i. n!J I... N U I'i '!i; and t h €~ b :i. -t.
~:;. t I.) 1 . r:' i:~ n ci a c: C (::) !:) !:;], <;~ T' ~{ ('::' n I.J IT! f:.l f~ T' 5 C) f b :i. n a r ~J
!." I :3 F'~' t hat. :i. ::;;. ~

TSTBIT tests individual I...NUm bits.
of Inum is set~ NIL if not.

SETBIl sets the 20S bit of loum.

accessed and set at the'
functions, the user can
values vers cheapl~ (for

It l'eturns T if bit eos

TOC-!BIT tD~.:{£t:r.{·:)~: (:i. ~f'!!,:1 C(JITIF'IE'~ITlf:~nt~:;) th(~ r-:~os bit Df loum.

cl...r;~p:l. T:I :3ETBI T ancf TO(3BI T
}'. t,.:! :::. ' • .1 :I. t. ;. E ~.~ G m pIt·) ~:; D f t. h (:~
D:i.i:~lCl!:.~uc,) :/.:1. \. 3 ~

return the altered loum
bit functions 'are siven

at:; thE') :i. T'

b(~ 1 Ot,J in

111

112

'j' (:::~ L r () I:· CI U :/I::J ::.::0)

II !'

j: ,. :;;:; r.r: J T F Cl U ,.~:,)

f..J r I ..
'(,. I .. IiJ

:/1:.1 :?

. ,!:. (::::; [. T f~ J T F U Cl :I.)
:/1: J :::;

?I:'(j(l

:/1: J :':

.? .: C I ... F: r: I T F U 0 :I.)
:/1' J ':.:::

.',:' T U U E·: I T F 0 n (,)
:/!::::;::? .

TFC.lC)
:11: ~:i::.:.::

It :i. i:~ 0/. (1 !.:.~ U f..' :1 t ~ :;)
T h C·: .B:i. t F 1..1 ,.., C" t. :i. C) n ~;;

Tot h (-~, b:i. t. f ',,1"" C t :i. 0 n !:~]I t h f..
'

I... N U t"l
://: :/. 2 :I. c) D k ~:~ J :i. k (.:.~ g

b:i.t :11: .> . '" l) ,:: . -4 3 ") :I. + i· ,. (. i' ,.J ,.. ...
v;:$:l.I..J(::~ : 0 0 () :1. 0 :I.

..,
(. ,. i· I,,)

T S T n J T 'Y' f..l t I..J r' n ~::. T i f t h f~ E.: 0 S

b :i. t. D 'f :i. t ~::. f :i. l' ::; tar ~:i I..IIl'I (:.~ n t :i. ~::.
set. Note that it.s first
ar~l..Iment is not chanSed •

SETBIT Sf:'t~:; th(::~ r::os b:i. t C.l'·f :i. t~;:.
f :i. l' !;; t a J'i:.i I..! HI (.:~ ,.., t· • N (J t (:':, t h B t. :i. t.
c han ~:{ f:~ !;; t 1'1 f~ V <:3.1 U (.:.~ 0 f :i. t. !:; 'f' :i. T' :;;. t
a T'!.:JUITlf:'n t ~

C I... F;: B :r T c 1. f..' a r' E !! and . TOG 0 I T
complements, the 205 bi+ of
t h (-:.~ ·f:i. T' !:; t. (:~ i" !~{ U In (.:~ ,.., t. t T h (.:.~ v <:~ J 1..1 (':'.'

D 'f t. h ('::' f :i. J' ·:i:. t i:~ T' ;::t 1..1 m (~,,.., t :i. ~:;
permane,..,t:l.s altered.

.-C'"
I. >

---- ---,--'----------------------------------.--

I Chapt(·:~ r 12

T h i !:~ c hap t (~~ r t:.i f.-~ a :I. ~:; wit h t w C) n () n'- s tan dar' (.1
LISP r:.tat,a
thC~~:1 a T'f.·~

caT' t:-~ f 1..11 1 ~:I
befo T'e

t,ypesv arrays and strin~s. Because
non"'standaI'd, the U~;E.'r should T'ead

th(·:·~ df.-~sC'T\ipt:ic:)ns in this chapteT'
usin~ them. The~ can offer

significant advantages in storage and
execution times for the risht applications~

12. :I. Si:cioss

Strin~s are a compx,;y of storing text information.
7-bit ASCII characters are stored at most five per word, with a
pointer to the next strins word (see 1.2.2). This represents a
compromise between fully compact stora~e and the abilit~ to point
to different places in the same text.

12~1.1 Strins Manipulatins Operations

Thf.·~ T'(':'~ a I'e two 5 t r i rrg furrct :i. ons v STRCAF~S and STRCDRS, wh i ch
will return substrinss from a ~iven strins.

STRCDRSis a SUBR of two arSuments:

(STRCDF~S 5il~ n)

wh(.;~ r(·:~ s:t..l~ :i. s a ~-; t I':i nf.t., anel [) is a po~;:i t i ve SNUM. STRCDRS retu rns
a strins formed from si~ by deleting the first 0 characters. If
o is zero, the ori~inal st,rin~ is returned. If n is greater than
the number of characters in the string, a null strinS is
returned. Note that STRCDRS returns a pointer into'st~, rather
than creatin~ new strin~ structures. Operations on the substrins
will affect the oriSinal strin~, since the~ are part of the same
~; t T' :i. n 9 d a t, a . s t I' U C t I . .IT' e • S T R CDR S can c a I..I~:; e t h f..~ 0 r i sin a 1st r ins t (]
be spread out in free storage, to a minimum of one character to a
stT':in~~t w(]T'd.

STRCARDS is a SUBR of two aT'Suments, like STRCDRS:

(STRCARDS s:t.:c n)

113

-

-

-

wHere st~ is a strins, and 0 is a positive SNUM. STRCARS returns
a new strins composed of the first Q characters of st~. If 0 is
zero, or Sreater than the len~th of st~, a complete cop~ of st~
is returned. Note that STRCARDS creates new strins structure,
and so uses free storaSe. STRCARDS can be used to cop~ and
compact (to five characters per word) a strin~ that has been
spread out b~ the action of STRCDRS.

STRCONC is a SUBR* of two or more ar~uments:

(STRCONC strl str2 ••• strn)

where st~ throu~h st~n are strings. STRCONC concatenates these
strings tosether, in order, to form a new string. No free
stbraSe is used; the old strins structures are altered in place.

12~lt2 Strins Matchins Functions

Strins matchins involves
substrinS of another. There
STRFIND. The format for these

STRTEST
(or strl str2)
STRFIND

checking whether one strin is a
are two functions: STRTEST and . .

IS.

These functions search si~ for a substring which ~atches stc.
STRTEST searches onl~ the besinnins of sic, i.e., st~ must be an
initial substrins of st~. STRTEST returns T or NIL, dependins on
the success of the match.

j. STRFIND will search st~ to find a substring which matches
~ $t~ at any position. If it finds a match, the first character

position of the match in st~ will be returned, as an SNUM.

If 5i~ is empty, both fUnctions find a match, STRFIND
returninS o. Neither function will find a match if the lnsth of
st~ is Sreater than 5i~; matches are onl~ found if all of stc is
contained in st~.

12~1.3 Comparing and Converting StrinSs

strings can be compared with the functions EQS, LTS, and GTS
(Section 1.9). StrinSs are eGual (EQS) if they match in all
character positions and ar the same lenth. One strinS is less
than another if it would appear before it in the dictionary (for
characters which are not in the dictionarY, order is defined by
th~. ASCI I codes in AF,pendi}~ A).

I .•

Th(~ numbe r c)f
ATLENGTH, a SUBR of

114

~ I

characters in
one argument.

a strinS can
It returns

be fOIJnd wi th
o for the r.ull

-
strins. Strin~s are much like pnames, but are stored internall~
in different wa~s. To convert from one to another, the function
INTERN is provided. A SUER of one argument, INTERN will return a

(... ~ 1 i t era 1 at 0 m i f 9 i ve n a s t r i n 9 , and a s t r in£{ i f 9 i ve n a lit, e J' a 1
\.j' atom. INTERN will :i.~:;SUf.·~ an error if !i.tiven a string argl.Jment

whose lensth is Sreater than 322 characters, the pname length
limit.

-

-

c -
-

I
, -

, .

R~ading and printing functions for strings are described in
Chapters 1.3 and I.4.

~r..r..a~s

ALISP arrays can have an~ number of dimensions, and each
dimension can have length from 1 to 2 -1 (subject to core space
limitations, of course). Arra~s are kept in a special storage
area called arra~ space. Since arra~s can be moved within this
space in order to compact it, access to arra~s is alwa~s through
the a~~a~ list, which is akin to an atom table bucket list (see
ALISP internal specifications manual). Arra~ pointers, also
called ANUM's, are an ALISP 30-bit data t~pe (see section), and
point to the arra~ list. The~ can be passed like an~ other ~LISP
data t~pe, i.e., bound to variables, inserted into lists, etc.
Arra~ pointers alwa~s print as Atnnnn, where Q6QQ is the octal
address of an arra~ list word. Arra~ pointers can Qat be read
back in with READ or an~ other read function.

Arra~s are us~fu~ for two reasons. First, the arra~index
allows random access of an~ arra~ element in constant time.
Second, arra~s are more compact than list structures (twice as
compact, if the arra~ header is not counted). The~ can thus save
time and space if used correctl~.

There are currentl~ three t~pes of arrays: half-word CHW),
floating-paint numreric (BNUM), and logical numeric (LNUM).

1. HW arra~s have elements which are ALISP S-expressions.
The S-expression pointers are 30 bits, and thus packed two per
word in the arra~. HW arra~s are useful when a large number of
S-expressions need to be stored using a numeric index.

2. BNUM arra~s store floating-point numbers one per word.
Arra~ elements must be BNUM's; the arra~ insertion functions
will complain if given an~ other t~pe. When an element is
fetched from a BNUM arra~, a new floating-~oint number is created
in free storage, and receives the arra~ element. Thus successive
accesses of a BNUM arra~ will use UP free storage. Also, if the
same array element is accessed at two different times, the
results of these accesses will Qot be EQ.

3. LNUM arra~s store 16-di~it signed octal numbers one per

..... ,_._-,.-, .. _. -.~-.--.----.-----.. -.-.--.--.
. _ •.... _-- ---------------

115

-'
-

-
-

-
-

-

-

116

w6rd. The same remarks appl~ as for BNUM arra~s.

Defining Arra~s

Arra~s are defined with either the function ARRAY or ARRAYQ.
The function ARRAY has the format:

(ARRAY name t~pe diml ••• dimn)

All arSuments are evaluated. oame is a literal atom whose value
c~ll will held the arra~ pointer; ty~e is the t~pe of the arra~,
a~ HW, LNUM, or BNUM; and dim through dimn are th~ SNUM arra~
dimensions. ARRAY defines a new arra~ of t~pe t~~e, and places
an arra8 pointer to the arra~ in the value cell of Qame. If Dame
is NIL, then ARRAY does not put the arra~ pointer into a value
cell, but simpl~ returns it. The user must then save the arra~
pointer so that he can reference it in the future.

1 ARRAYQ is the same as ARRAY, except all its arguments are
IJn~va 1 uat,ed.

A newl~-defined arra~ is initiall~ empt~. For HW arra~s all
elements are NIL; for BNUM arra~s all elements are 0.0; and for
L~~M arra~s all elements are to.

Accessing Arra~s

In the ALISP s~stem, arra~ pointers, or ANUM's, can be used
a~:;. }functions to retrieve aT' set elements of an arra~. Ir. this
respect the~ are similar to PNUM's, the machine lan9uase
5~brputine pointers which define ~~stem functions like CONS, CAR,
and CDR.

Elements of an arra~ are retrieved b~ using the array ANUM
as a function of D arguments, where 0 is the number of arra~
dimensions. For example, define array Foo by:

CARRAYQ FOD HW 5 8)

so that FDD is a 5 x 8 arra~ of ALISP S-expressions (actually,
th~ ~alue of FDD holds an ANUM pointer to the arra~). To get the
3,4 element of this array, evaluate:

(FDa 3 4)

EVAL checks specially for ANUM's, and interprets their arguments
ai indices to the arra~, returning the correct array element.
Note that all arsuments to an ANUM are evaluated, i.e., an ANUM
acts like a SUBR.

Arra~ elements can be set b~ usins the array ANUM as a
function of D + 1 arguments. The first argument to the ANUM is

t
th~ new value for the arra~ element, while the rest specif~ an

•

r
',,-,/'

element index. For example, to set the 3,4 element of FaD to the
list (LIKES FIGS), use:

/ .. _-'" (FaD I (L IKE S FIG S) 3 4)
~../.

-

-
-

-

-
--

ASain, all arsuments are evaluated.

If ANUM's are Siven too few or too man~ ar~uments, the~ will
complain with an ARG-ERR. Also, indices other than positive
SNUM's, or indices out of the arra~ bounds, will also ~enerate an
e r ro r.

Auxiliar~ Arra~ Functions

There are several helpful functions for findins out about
arra~s.

DIMS is a SUBR of one arsument. If its ar~ument is an ANUM,
it returns a list of the dimension len~ths, in the correct order.
If not, returns NIL.

ARRTYPE, like DIMS, is a SUBR whose single ar~ument should
be an ANUM. It returns the arra~ t~pe as HW, LNUM, or BNUM.

ARRAYP can be used to tell if an S-expression is an ANUM or
not. Returns T or NIL.

Readins and Printing Arra~s

Special functions have been written to print out a compl~te
arra~ definition (includin~ its contents), and to read it back
in.

PRINARRAY is a SUBR of one arsument, an ANUM. It prints the
arra~ defined b~ the ANUM on the current out~ut unit. The format
for the printed arra~ is:

(NIL t~pe (diml ••• dimn) el e2 e3 •••)

where t~ee is the arra~ t~pe, dim1 throuSh dimn are dimension
lengths, and the e's are the arra~ elements, in row-major order~
If the array is a lar~e one, this could cause Guite a large
print-out.

READARRAY, a SUBR of no arSuments, will read the next
S-expression from the input buffer, and tr~ to form it into an
array. The S-expression should be in PRINARRAY format, except
that the CAR of the S-expression ma~ be a literal atom instead of
NIL~ READARRAY will create a new arra~ having the dimensions,
t~pe, and elements indicated, and return an ANUM pointer to it.
If the CAR of the S-expression is a literal atom, it will also
place the ANUM in its value cell.

The @ character has been defined as a macro read character

117

-
-

-.
-.

-

-

for arra~s. It does an immediate call to READARRAY to form an
arra~ from the next S-expression in the input buffer. For
example, a 3 x 4 arra~ called FOD which looks like:

6.0
4.2
5.6

1 .0
1 .0
:1..0

95.2
10().6
300.5

.06

.05

.04

could be defined b~ t~pinS:

@(FOO BNUM (3 4) 6.0 1.0 95.2 .06 4.2 1.0 100.6 .05
5.6 1.0 300.5 .04)

The @ macro returns an ANUM pointer to the arra~.

The filins functions know about arra~s and how to correctly
read and write them to files. However, there are restrictions on
this abilit~, so it would be best to read Chapter 11.1 if ~ou
intend to input and output arrays to files.

118

'-

-
-

-

-

-

-

-
-
'-

I Chapter 13

This section details three parts of the
ALISP s~stem which monitor ALISP pro~rams:
error control, interrupts, and tracin~.

13. :I. EI!I!OI! Cocd.£ol

References have already been made throu~hout this manual to
certain conditions which cause the ALISP system to issue a
program error. The general procedure followed on error
detection, and methods for user control over error calls and
traps, is the subject of this section.

13.1.1 Error Recovery Procedure and Backtracins

All ALISP errors are non-recoverable, that is, the program
cannot be started again at the point at which the error occurred.
An error causes complete abortion of the currently executing
ALISP proSram (but see ERR SET for trappin~), and eventuallY
returns control to the top-level supervisor.

Most of the time, an error message is not sufficient to
determine where an error occurred, especiallY if a co~plicated
set of pro~rams is being executed. A backtracing of function
calls and variable bindings pendant at the time the error
occurred will be printed if the ato~ BACKTRK is set to T (it is
initiall~ NIL). Variable bindin~s are printed, deepest bindings'
first; then the pendant functions, again deepest function calls
first.

BACKTRK can take values other than T. In general, the ~alue
of BACKTRK is evaluated when an error. occurs, before any other
error processin~ takes place. At this point the user can do any
processing he chooses, by calling an arbitrary ALISP function.
The most useful probably BREAK (section 1.13.2.2), which calls
the break supervisor and allows the user to examine the.
environment at the point of the error. Use:

(SETQ BACKTRK '(BREAK 'ERROR T»

The BREAK is exited with (RETURN T) to print a
(RETURN NIL) to get back immediately to top level.
the BACKTRK switch will be found in Dialosue 13.1.

backtrace, and
Examples of

119

-
-
-

-
-

-

?(QSETQ BACKTRK

DialoslJe 13.1
The Switch BACKTRK

? (PROGN (PRINT 'YOU/ LOSE> T»»
(PROGN (PRINT 'YOU LOSE) T) This sets the BACKTRK switch

to a non-NIL value.

?CDE FLAMER (X Y> (CONS (CDR X Y»»»
FLAMER

?(FLAMER '(A BCD E F) 'BAR>

*** ARG-ERR FROM CDR
WRONG NO. OF ARGS ..

YOU LOSE

BACKTRK
yO BAR
X' (A BCD ••• >

BACKTRK
CDR
CONS
FLAMER

The function FLAMER bombs
because the call to CDR was
i rico T' rect.
Now the BACKTRK expression is
evaluated, printins -YOU LOSE
and returnins the value T.

Because the BACKTRK switch
evaluated non-NIL, a backtrace
is printed. First the
variable bindinss in effect
when the error. occurred are
printed, then the functions
whose execution was
interrupted. Note the HALFPRI
format used to print the
variable bindinss.

A backtracins of variables is normally printed with the
f~nction HALFPRI, so that a less wordy output is produced. The
user can effect this in two ways: by settins HPRNUM so that
H~LFPRI prints more structure, or by usins the switch BACKPRN.

If this atom is set to NIL, as it is initially, then the
- normal backtracins printout will occur. If, however, the atom

BACKPRN is non-NIL, then special backtracins occurs. BACKPRN
should be defined as a lambda-expression of one arsument. When a

~ backtrace is called, BACKPRN has its variable bound to the
t

function name or bound variable currently beins popped from the
stack. BACKPRN can then print this variable, or perform any

- ALISP operation in seneral. When BACKPRN exits, then the next

'-
120

'"

-

...,

C~, -

....... -.,.....-
/'

~j

value is popped from the stack, and BACKPRN is called a~ain with
this new value bound to its variable. This process continues
until the stack is emptied. For example, suppose that ~ou onl~
want to know if the functions CONS and COND are on the stack of
function calls. Then simpl~ do:

(DE BACI\PRN (FN)
(COND «EQ EN 'CONS) (PRINT FN»

«EQ FN 'CONII) (PRINT FN» »

Examples of the use of the BACKPRN switch will be found in
Dialogue 13.2 below •

The error recover~ mechanism automaticallY cleans UP the
environment by popping and variable bindin~s of pendant
lambda-expressions, PROG's, and REPEAT's. Note that an~ plist
changes, or changes to list structures, or changes to values of
literal atoms which are not variables; any of th~se changes are
Dot undone after an error, and the user must provide his own
functions for resetting these changes (see Dialogue 13.3).

For some applications, it is desirable to suppress an~ error
printing that does occur, even the error messa~e. This becomes
es?eciall~ important for a production system where the programmer
does his own error control (with ERRSET), and wishes to shield
the end user from .even knowin~ he is in ALISP. If the switch
ERRPRIN is NIL, no error message will be printed (althou~h.
backtracing will occur if BACKTRK evaluates non-NIL). Initial
value for ERRPRIN is T.

Because it is difficult to
ERRPRIN is NIL, this should
well-debugged set of pro~rams.

interpret what happens when
onl~ be done in a stable,

Of course, it could happen that an error is issued during
error processing, for example, during the evaluation of the
BACKPRN switch. If this happens, an unbreakable error loop could
be established: evaluation of BACKPRN causes an error, which
causes BACKPRN to be evaluated, which causes an error, etc. To
prevent precisely this occurrence of events, the error prcicessor
will abort user control if an error is encountered durin~error
processing. This means, essentially, that step (d) in the error
recover~ procedure is skipped; no backtracins control is done.

13~1.2 ERRSET Control

The function ERRSET, an
provide error recover~ or
Errors, no matter what kind,
call.

FSUBR of two arguments, is used to
trappins within an ALisp program.
will not propagate be~ond an ERRSET

,

121

?(SETQ BACKTRK T)
T

1(DE BACKPRN (X) (COND

Dialogue 13.2
The Switch BACKPRN

BACKTRK must evaluate non-NIL
for BACKPRN to be called on an
error.

? «EQ X 'CONS) (PRINT X»
? (CEQ X 'COND) (PRINT X»»»)

BACKPRN BACKPRN will now print the
function names CONS and COND

- when they appear on the
function all stack.

-

1(COND «CONS (SETQ FOO (CONS NIL» NIL) T)
'? (T T»»

*** ARG-ERR FROM CONS
WRONG NO. of ARGS

BACKTRK

BACJ(TF~K

CONS
CONS
COND

1(DE BACKPRN (X) (IF (EQ X 'VAR)
1. (PRINT (GETVAL VAR»»»)

No variable bindings are on
the stack, but the function
COND called CONS which called
SETQ which called CONS asain,
so these function calls were
printed by BACKPRN. Note that
the function SETQ, which was
also pendant, was not printed.

BACKPRN This will print the value of
the variable VAR if it appears
on the stack.

?«LAMBDA (VAR)
1 C (LAMBDA (VAR) (CONS» 1) 2»»

*** ARG-ERR FROM CONS
WRONG NO. OF ARGS

BAGKTRK
1
2

"

122

(.

(\

"'-/

-

BACKTr~K

At the time of the error, VAR
was bound by two
lambda-expressions; in the
first, to the value 1; in the
second, to the value 2.
BACKPRN p~inted these values
when they were popped from the
stack.

Dial(J~jue 13. ~~
Variable BindinSs Reset After An Error

?(SETQ FDa 'MOO BOO 'BAR)
BAR
1«LAMBDA(FOO) (PLIST 'FOD '(A B»
? (SETQ FDa NIL BOO NIL)'(CONS 'A» 'MAR)

*** ARG-ERR FROM CONS
WRONG NO. OF ARGS

?FOO
MOO
'~[IDo

NIL.
'1)(PLIST -FOO)

(A B)

The ERRSET format is:

(ERRSET evalform errform)

The atom FaD, which was used
by the lambda-expression as a
variable, had its value
correctly restored from the
stack. The atom BAR, however~

retained its value of NIL from
within the lambda-expression,
since it was riot a
lambda-variable. The plist of
Faa also stayed at its settinS
within the lambda-expression;
plists are never saved on the'
stack.

where e~alfo~m and e£~fo~m are anw valid ALISP expressions. When
ERRSET is called, it evaluates e~al~o~m usin~ the EVAL function.
If no error occurs durinS this evaluation, ERRSET returns a list
of the result and exits. If an error does occur, the error
recovery procedure (section 13.1.1) takes effect. Instead of

123

-

'-

-

124

pOPFins all variable bindinSs to top-level, the error recover~
procedure only backs bindinss UP to the level of the ERRSET, so
that only variables found in e~alfo~m are restored. The error is
affectively trapped within the ERRSET form. After bindinSs are
restored, e£r£o~m is evaluated (with EVAL) to perform any error
processinS the user may desire; and ERRSET exits with the value
NIL. It is thus always possible to tell if an error occurred
during an ERRSET evaluation: if ERRSET returns NIL, there was an
error; if ERRSET returns a list, there was no error.

Since ERRSET traps all errors, it is possible to program
loops that cannot be exited even with the interrupt facilit~.
Th~ followin~ is the simplest example:

(PROG () a (errset (PRINT 'EXECUTING) NIL)
(GO A»

Unless the interrupt catches ·the evaluation outside of the ERR SET
fom, this expression will Just keep printiis the atom EXECUTING
until the terminal phone is hun UP a the CP time limit is
re~ched. Interrupts will be trapped by the ERRSET.

12.1.3 User-defined Errors

The knowledgeable user ma~ initiate his own errors with the
function ERR, a SUBR of three arguments. ERR causes an immediate
USER-ER t~pe of error, and calls the error recover~ procedure
(13.1.1). Everything is the same as for a normal ALISP error,
except the arsuments of ERR specify the error message to be
printed. The format for the ERR call is:

(ERR x message (y»

The error message format . .
1S.

LJSER-ER FROM ~.~

message
OFFENDING VAL = y

Th~ first argument of ERR is printed as ~ if non-NIL.
ne~ther the characters IFROM 1 nor ~ is printed.

If NIL"

an
The second argument

nlitat or string.
of ERR is printed as messa~e, if it is

If it is not an nlitat or string, no
message is printed.

i If the third argument of ERR
printed as ~. If it is atomic,
pr~nted.

is non-atomic, then its CAR is
no ·OFFENDING VAL· message is

ERR uses the normal error recovery procedure, so the ERRPRIN
switch is in effect (section 13.1.1). If set to NIL, no messaSe
will be printed no matter what the arguments to ERR. Examples of

-

-

. -
-
-

-
-

i-

'C,I

the ERR function in action will be found below iri DialoSue 13.4.

?(ERR NIL NIL NIL)

*** USER-ER

?(ERR NIL 'FAILURE NIL)

*** tJSER-ER
FAILURE

?(ERR 'FOD NIL '(BAR»

*** USER-ER FROM FDD
OFFENDING VAL = BAR

Dial()Sl..le 13.4
The Furlction ERR

No values are printed, onl~
the user error messaSe.

A messaSe (nlitat) was used as
the second arSument to ERR.

Both!:! and ~
Note that the

were specified.
CAR. of the I as t

arSument was used •

13.1.4 Time Limit and Timins Functions

The KRONDS and NOS operatinS systems maintain
resource accumulators for a terminal session.
accumulators reach a certain point, the messaSe:

TIME LIMIT
or
SRU LIMIT

CPU
If

and
these

will be printed on the terminal. The user should respond either
IT,nnn l or IS,nnn l

, respectivel~, where 000 is the n~mber of
units (seconds or SRU's) which will elapse bef6re the next
accumulator messaSe. There is an absolute resource limit~hich
the user cannot exceed, however; when this limit is exceeded, the
user is unsraciously excluded from any further processinS.

The function PARAMTL is available from ALISP to forestall
the time limit error and to return the amount of CP time already
spent in a termi~al session. PARAMTL is a SUBR* of one or no
arSuments. With no arsuments, it returns a two-element list
specifyinS the current timin~ status of the ALISP Job. The first
element of the list is an SNUM sivinS the number of seconds of CP
time used so far by the user in a terminal session; the second
element is an SNUM sivinS the number of seconds in the time
limit. The difference between the first and second elements is
the number of CP seconds to So before a time limit will be
issued.

125

-

-"

'-
-

-

-

With one arSument, an SNUM, PARAMTL resets the value of the
time limit to the SNUM. The SNUM should be less than or eGual to
the user's validation time limit; if it is not, the AlISP Job
will be summaril~ aborted b~ KRONOS.

Th(=re is nc) function for accessir,g or changing the SRLJ
limit, a new addition to NOS. If it is necessary that ALISP not
be interrupted b~ an SRU LIMIT message, appropriate NOS control
cards can be issued from the batch sUbsystem before entering
ALISP.

A millisecond timing clock local to the ALISP Job is
provided via the function RUNTIME. The RUNTIME clock can be set
and fetched durins the course of an ALISP Job, or can be used to
time the evaluation of an S-expression.

The function RUNTIME is an FSUBR* of one or no arguments.
With no arSuments, it simply returns the current value of the
RUNTIME clock as a BNUM. The RUNTIME clock is tied to the
executing ALISP Job, i.e., ever~ time the ALISP system uses CP
ti~e, the RUNTIME clock is updated. On entering the ALISP
s~~tem, the runtime clock is initially set to zero.

If RUNTIME is giVen a BNUM argument, it resets the value of
th~ RUNTIME clock to that argument. The value of the RUNTIME
fur~tion is its arsument. Thus, calling RUNTIME with the
arsument 0.0 will completel~ reset the RUNTIME clock.

If RUNTIME is given any thins but a BNUM for an argument, it
evaluates that argument and returns the evaluation time (in
milliseconds) on the current output device, and prints the result
of the evaluation. The RUNTIME clock is not reset.

Some examples of the RUNTIME function are given"in Dialogue
13.5 below.

13.1.5 ALISP System Errors

There is a chance that at some point YOU will receive the
following error messase:

*** HALT FROM nnnn
OFFENDING VAL = m

where the ,0 and m are digits. If so, this in~icates an ALISP
s~stem error, a bus in ALISP, and it's my fault, not yours.
PI~ase save as much of your output as possible, including the
error messase; or write down the procedure which led to the
e r r,o r, and give it to me at one of the p I aces Ii s'ted at the end
of *he introduction. Prompt redress will be attempted.

The HALT or system
exeFuting programs, and

126

error in
the normal

itself
err'or

did not
recovery

harm the
procedure

-

-
-
-

(" ,

"--...1 -

-

-
-

Dialogue 13.5
The Function RUNTIME

?(RUNTIME)
.45E2

?(RUNTIME 0.0)
.0

'!) (RUNTIME)
.2E1

?(RUNTIME (CONS 'FDD 'BAR»
*RUNTIME=.lE1
(FDD,BAR)

'? (RUNTIME)
.4E:I.

The RUNTIME clock sives the
amount of CP ~ime' spent in the
ALISP sYstem, until it is
reset. The value of the
RUNTIME clock is in
milliseconds; here, the ALISP
Job has a~ed 45 milliseconds
of CP time.

Callins RUNTIME' with a BNUM
arsument resets the RUNTIM~
clock tD that arsument. This
is a handy feature if it is
necessarY to time some
seGuence of ALISP commands.

RUNTIME with a non-BNUM
arsument evaluates that
argument, then prints the CP I

evaluatiom time in
milliseconds, and retu~ns the
result of theevaluatio~.

-The RUNTIME clock accumulates
CP time since the last reset.

should have unbound all bound variables, so that execution could
proceed asain from the top level. However, it is wise to save
everything again, rather than continuing with a system which went
down in a HALT. The reason for this is the system error may
indicate that something is wrons internally with that particular
ALISP run, and continuing to execute in it may hang the ALISP
system.

13.2 lo!e~~ue!s and B~eaks

There are two basic types of interrupts in the ALISP sYstem,
both useful only under time-sharing, and so absent from a
batch-run ALISP Job. They are terminal interrupt and BREAK.

------ -------- ----- - ---- ---- - ._-- ---_.------------------- --------------------------

127

-

-

-

-

128

13.2.1 Terminal Interrupt

There is a single program interrupt available from
terminal. It is control-C on ASClI-t~pe terminals
ATTN-S-ATTN on correspondence terminals. The results of
interrupt depend on the state of the ALISP s8stem when
interrupt occurs.

the
and
the
the

If ALISP is executins a proSram, the interrupt causes a
recoverable break in execution. The output and input buffers are
emptied, and the messaSe 'BREAK FROM INTRFLG' is printed on the
t~rminal. ALISP is now in a BREAK supervisor loop. Within this
Idop, the user can execute an8 ALISP function, examine and chanse .;.
the environment, etc.; see section 12.2.2 below.

When the user is throush processing in the BREAK, he can
either return control to the executing program at the point where
it left off, or cancel execution of the program and return to the
top level of ALISP (or to the nearest ERRSET trap, if one
exists). To exit the BREAK and continu~ proSram execution, ~se:

(RETURN T)

To:exit the BREAK and return to top level, use:

(RETURN NIL)

The effect of (RETURN NIL) is actual18 to cause an error, so that
the messaSe,

*** HALT FROM INTRFLG

will be printed on the SYSOUT device; and all the error
processing detailed in section 12.1.1 above will take place.

Within a BREAK, the interr0pt is still valid, so it is
possible to have nested interrupts and BREAK's. A RETURN will
then exit from the current BREAK to the previous ,one.

There are certain points durins execution when an interrupt
ma~ not be honored, or behave in a stranse was. Most ALISP user
proSrams such as EDIT, INPUT, OUTPUT, etc., are protected from
inierrupts. A control-C t~ped during these prosrams will be
ignored.

A control-C will act as an escape character (delete line) if
it is t8ped after t~pinS some input characters, but before a
carriage-return. . .

If an interrupt occurs during
S-expression, the 'printing is aborted.
stopping IonS undesired printouts such
lists.

the printins of an
This is useful for

as occur with circular

-

c."

.....

-

-

-
-
-

If an interrupt occurs when ALISP is about to issue a read
reGuest, the read will sometimes be issued first, so that the
user sees the .,. prompt. The return ke~ should be pressed at
this point, and the interrupt will proceed.

Above all" patience should be exercised when deal ins with
interrupts. The operatins s~stem will issue two line-feeds to
let ~ou know that your interrupt was accepted; it ma~ take some
time after that for ALISP to set around to processing it.

Within the BREAK, one of the most hand~ functions is the
STACK function, a SUBR of no arguments. Evaluating (STACK)
returns a list of those function calls pending during the BREAK,
i.e., those functions which were executing when the interrupt was
given. The list is in stack order, which means that, in a nested
series of function calls, the innermost ones are first on the
list. All entries after the atom BREAK are those of the user's
program. An example of the interrupt facilit~ is given in
Dialogue 13.6 below.

There are times when the user wishes not to cause an
interrupt even when it is reGuested from the terminal. For
instance, there ma~ be sensitive portions of a program that if
interrupted and fooled with in a BREAK will wreck the rest of the
execution. To prevent,unwanted interrupts, the switch INTRFLG is
provided to disable the interrupt facilit~. If INTRFLG has the
value NIL, an interrupt reGuests from the terminal will not be
honored. Note that, if the reGuest is not honored, it is thrown
awa~ completel~. An interrupt reGuest must occur when INTRFLG is
set non-NIL; interrupts are not saved to cause dela~ed
interrupts. The value of INTRFLG is initiall~ T.

An interrupt BREAK uses the input and output btiffers to
communicate with the terminal, and so flushes them before
entering the BREAK loop. This causes no harm unless ~ou are
doing input and output to files with printing or reading
functions other than PRINT or READENT. In this case, some output
or input (but never more than,one line of each) ma~ be lost when
an interrupt occurs.

129

-------_._--_._-_., ... __ .. --_ .. _.----, _ .. ---_._---- ---------- ----------_._-------------'
- ---------- ----

_____ R _______ _

-

-

-
.-
-
-
-

IIialo~ue 13.6
Terminal Interrupt

(control-C is represented b~ the character e)

?(PRDG (FDO) (SETQ FDD '(A B»
? A (CONS (CAR FOD) (CADR FOO»
? (GO A»») 'This expression has an

BREAK FROM INTRFLG

*FDD
(A B)

*(STACK)
(CAR CONS PROG)

*(RETURN T)

BREAK FROM INTRFLG
*(~ETURN NIL)

*** HALT FROM INTRFLG
?

130

infinite loop inside the PROG.

User hits interrupt
causin~ a BREAK.

here

Now in the top level of the
BREAK, a READENT-EVAL-PRINT
loop. An asterisk is the
BREAK prompt character.

The value of FOO is its
bindin~ in the PROG form.

The STACK function returns a
list of pendant functions
(excuse the APL terminolo~y).
Note the order: CAR, then
CONS, then PROG. This is the
reverse order from the way the
function were entered on
execution. ·The interrupt
occurred while the CAR form
was bein~ evaluated.

Pro~ram continues executin~
the infinite loop.

Another interrupt. This user
must finally realize it's an
infinite loop.

This time the RETURN ~ets back
to the top level of ALISP,
exitin~ the infinite loop.

' _ ...

-
-

-

-
-

The BREAK function is an ALISP proSram. It starts a
REA [I EN T ... E VA L..p R I NT 1 00 pat, a n~' poi n t :i nan e >~ e cut inS A LIS F'
proSram, in which the user can check and reset values, examine
list structures, or execute any ALISP function; then resume the
proSram at the point where the BREAK was called.

Format for the BREAK function, a LAMBDA of two arsuments,
is:

(BREAK messaSe pred)

where messaSe is a litat whose pname will be printed
BREAK is entered, and B£ed is a condition for the BREAK:
is NIL, BREAK exits with value NIL without enterinS
loop; if ~£ed is non-NIL, the EVAL loop is entered.

when .the
i f e.~ed

the EVAL

When BREAK is called (e£ed is non-NIL), it first prints the
followins:

BREAK FROM messaSe

Then it enters the READENT-EVAL~PRINT loop. At this point, the
ALISP system acts Just like the top level EVAL supervisor, except
that the prompt for input is an asterisk rather than ~ Guestion
mark. Expressions typed at the BREAK supervisor are evaluated
with EVAL (the SYS switch for different supervisors does not work
in BREAK) and the results printed. Both SYSPRIN and * work in
the BREAK evaluation loop, as well as SYSIN and SYSOUT (see
section 1.6).

All ALISP errors are trapped by the BREAK supervisor, and do
not cause the BREAK to eHit. If an error occurs, . the error
recovery procedure is invoked (section 12.1.1) and BREAK
re-enters its EVAL loop, printins the BREAK messaSe aSain.
Interrupts within a BREAK cause another BREAK supervisor to be
established; exitins this new BREAK causes the previous BREAK to
be resumed. SYSIN and SYSOUT are initiallY set within the BREAK
to 0, so that the BREAK supervisor addresses the terminal.

To exit from a BREAK, the form:

(RETURN x)

should be typed at the top level of the BREAK supervisor. The
BREAK will exit with value w. For the special case of a
control-C interrupt, ~ should be T to continue execution from the
interrupt, and NIL to halt and return to ALISP top level.

Certain variables are set by BREAK and restored to their

--------------_.,,------------ -_.-._-----._-_._---._-- ------- --"" ... _--------_ .. -.-. --- -----.-,,---_._.-

131

-
-
-
-

-

-

132

i ''-'"'
I
I

ori~inal values when the BREAK exits. If an~ of
these litats are changed durin~ a BREAK call,
restored on exit from BREAK. These variables and
within the BREAK are ~iven in Table 13.1 below.

Table 13.1
BREAK Local Variable Values

~a.ciable

SYSIN
SYSOUT
INUNIT
OUTUNIT
PROMPT
SYSF'RIN

* TRACFLG
INTRFLG
BACKTRK
TTYCHAR
EOLR
EOLW
ERRF'RIN

ioi±.ial ~alue

o (i.e., the terminal)
o
o
o
54B (i.e., asterisk)
T
NIL
NIl.
T
NIL
T
T
T
T

the values of
the~ will be
thei r val'Jes

BREAK can be inserted into functions bein~ debu~~ed b~ use
of the editin~ packa~e (section 11.3). It can be inserted at
function definition time also. In all respects BREAK is treated
as a normal function call within an ALISP pro~ram, that is, it
takes its two ar~uments and returns a result. Examples of a
BREAK call within an executin~ function are ~iven in Dialo~ue
13.7 below.

In5ertin~ a BREAK call into a function bein~ debus~ed is
onl~ one possible use of the BREAK. It has the advantase that
the user knows exactl~ where in his pro~ram the BREAK occurred.

There are two other uses of BREAK that are particularl~
hand~. If a BREAK call is stuffed onto the value of BACKTRK, the
BREAK will occur Just after an error, so that the environment at
the time of the error can be examined (see section 13.1.1 above
for the use of BACKTRK). Then, when the user exits from the
BREAK, he has the option of settins a backtrace printin~.
(RETURN T) will print it, (RETURN NIL) will exit without printin~
it.

Secondly, a BREAK call can be used as part of a function
trace (see below, section 13.3). In this wa~, a BREAK can be
called on a particular ar~ument to a function, or a particular
value returned by a function, or indeed any condition definable

""-""",
(
I.

-""

'

-
-

t"

-
l •

-

?(BREAK 'FOD NIL)
NIL

'?(BREAK 'FO() T)

BREAK FROM FOO

*(CONS 'A 'B)
(A,B) * (PI~OG () (RETURN 'BAR»
BAR
*(RETURN '(MOO MAR»
(MOO MAR)

'?

1(DE FACT (X)
'? (COND «ZEROF' X)
~) (BREAK 'FACT
'? (T (TIMES X (FACT

FACT

'?(FACT 4)

BREAK FROM FACT

*X
()

*FOD

Dialogue 13.7
The BREAK Function

T) X)

If the second ar~ument to
BREAK evaluates to NIL, BREAK
exits with value NIL.

The second arsument to BREAK
evaluated non-NIL, so the
BREAK loop is entered.

The BREAK supervisor is an
EVAL supervisor. Note that it
uses the asterisk prompt, so
that the ·BREAK supervisor can
alwa~s be distinsuished from
ALISF' top level.

The first call to RETURN
took place inside a F'ROG, so.
that the BREAK was still
executins. The second call to
return took place when no PROG
was runnins9 the BREAK exited.

(SUB1 X»»»
This defines the
factorial function,
BREAK call inserted
zero.

recursive
with a

when X is

The BREAK loop is entered
while FACT is executin~.

Within the BREAK, the values
of litats can be examined.
Note that X is set to zero, as

133

-

-
-

-

-

-
'

134

*** VAL-ERR FROM FDD
BREAK FROM FACT
*(8ETO X 10)

10
*(RETURN NIL)
240

it should be.

FOD is undefined, ~ivins a
VAL-ERR; but the BREAK traps
errors and does not exit.

The SETG resets the value of X
to 10 instead of o. Since the
value of X is returned as the
value of FACT (see the
definition above) the value
returned b~ FACT is actuallY
10 times the normal factorial
function. Note that the value
of the BREAK function was not
reall~ used~ (RETURN T) would
have worked as well.

by an ALISP expression, Just before or after a function is
executed. The advantage to usin~ BREAK with the trace facility
lies in the flexibility and ease of callins the BREAK on B
certain condition. Also, the BREAK call is never actuallY
inserted into the traced function, so that there is no need to
use the editor to restore the function to its ori~inal form once
it has been debusged.

·A ~ood LISP system has a ~ood trackin~ packa~e·, said a
famous Chinese philosopher. In keeping with this tautology, a
tracin~ facility of great power, flexibilit~, ~enerality, and
simplicity is available on the current ALISP system.

13.3.1 Simple Tracing

Tracing is the ability to observe programs in execution. In
ALISP, the tracin~ facility is a superstructure on the executing
programs; it does not chanse the form or manner of their
execution, but simpl~ observes what they do and reports back to
the user.

Tracins is done onl~ on nlitats (non-NIL literal atoms). A
traced nlitat causes a tracing printout if it is used as the name
of a function. This occurs when expressions of the form:

(FOD A B)

-

-

.. -

-

-

-

are evaluated. Here the nlitat FOD, if traced, would cause
tracins messaSes to be printed,· because it is bein~ used as a
function name.

Two messa~es are printed on ever~ traced function. The
first, when the function is called, sives the recursion level of
the function call (zero is the top level of first call), the
function name, and the ar~uments to the function. If the
function evaluates its arSuments, the evaluated ar~uments are
printed (SUBR, SUBR*, and LAMBDA functions) 9 if not, the
unevaluated arsuments are printed (FSUBR, FSUBR*, LSUBR, and
FLAMBDA functions).

After the· function is evaluated, the value it returns is
printed, alons with the function name and the recursion level.
The recursion level of the value messaSe matches that of the
ar~ument messaSe, thus enablins the keen-e~ed user to match UP

arSument message with value message in a recursive function; see
the example in Dialo~ue 13.8 below.

All tracin~ messa~es are printed out on the SYSOUT device •
Since the~ use the output buffer to print their message, the
buffer contents are chansed b~ tracin~; this could cause proSrams
writin~ to files with functions other than PRINT to lose lines of
thei r outPIJt.

To initiate tracins of a litat, simpl~ use the function
TRACE, an FSUBR*. With no ar~uments, TRACE returns a list of all
nlitats currentl~ beins traced. With nlitat ar~uments, TRACE
will turn on the tracins status of each of these arsuments, and
return NIL as its result. The tracins status of an atom can be
turned on either before or after the atom is defined as a
function; chan~es in the atom's value do not affect tracin~

status. If TRACE is ~iven an~thin~but nlitat ar~uments, it
com~lains with an ARG-ERR (but see the exceptions noted·in 13.3.2
below) •

UN TRACE can be used to turn off tracins. It, like TRACE, is
an FSUBR*. With no arSuments, it turns off the tracin~ status of
all nlitats. With nlitat arsuments, it turns off the tracin~
status of each of those arguments onl~. UNTRACE alwa~s returns a
NIL result.

At no time should .the plist of TRACE be tampered with, as it
is used for bookkeeping on the tracin~ status and recursion
levels of nlitats.

An example of simple tracin~ is given in Dialogue 13.8
above.

All tracing can be temporaril~ turned off through use of the
switch TRACFLG. The value of TRACFLG is tested before each
tracin~ call; if NIL, the trace is not performed. TRACFLG does
not affect the tracing status of an~ nlitat9 if NIL, it simpl~

135

-

-

-

'-

136

Dialogue 13.8
Simple Tracing

?(DE FACT (X) (COND «ZEROP X) 1)
? (TIMES X (FACT (SUB1 X»»)

FACT This is the recursive
factorial function.

?(TRACE)
NIL

~) (TRACE FACT)
NIL

l' (TRACE)
o:·'ACT (0»

?(FACT 3)

0 ARGS of FACT
3

1 ARGS of FACT
2

2 ARGS of FACT
1

3 ARGS of FACT
0

3 .VAl. OF FACT

2 VAl. OF FACT

1 VAL OF FACT

0 -VAL OF FACT
6

I

1

1

2

6

No nlitats are currentl~ being
traced.

This sets the tracihg status
of the nlitat FACT. Note that
TRACE returns NIL as its
value.

Now FACT is currentl~ traced.
The list (0) is used to hold
the recursion level when a
tracing printout is performed.

The recursion level is printed
the ARGS OF

and finall~ the
fi rst" then
message,
function
argumer,ts.

name and its

The recursion level is printed
first, then the VAL OF fn

r---"'"
(
\
'-/

'-

.......

c -

-
-

?(UNTRACE)
NIL

'~ (TRACE)
NIL

messaSe, then the value of the
evaluation of £0. The
recursion level is useful for
matchinS the correct ARGS OF
and VAL OF messaSes. The
final 6 is the value of the
(FACT 4) expression.

UNTRACE removes all tracins
stat'Jses.

prevents all tracins until it is set non-NIL.

The TRACFLG switch is especiall~ hand~ when used in the
ALISP editor, filins, and prett~-print functions. B~ bindins
TRACFLG to NIL, these proSrams temporaril~ halt all tracins
without ruininS the tracinS status of functions the user wants
traced when he runs his own proSrams. Thus, even if a user i~
tracins such a ubiGuitous function as CONS, editor and filins
functions will run without causinS an~ tracins printout.

:, t.. •••

137

-

-

13.3.2 Conditional Tracins

This section describes the promised flexibilit~ of the ALISP
tracins facilit~. Simple tracins is fine for simple programs
which do not recurse too deepl~; but for more complex or lensth~
prosrams reams of useless output can be senerated--imasine the
output for a simple trace of the factorial function of Dialogue
13.8 used with an arSument of 1000.

The answer to tracing wordiness is conditional tracins! sive
control of the trace back to the user.

Conditional tracins is a simple extension of the simple
'tracins described in 13.3.1 above; there are onl~ two
modifications. When a traced function is entered, instead of
printins its arguments, an entr~ function is eval~ated. This
entr~ function can call an~ ALISP function, for printins,
reading, etc. If the evaluated entr~ function returns NIL, then

(no arSument tracing occurs. If it returns a non-NIL result, then
the argument message is printed as in simple tracing, on the

·SYSOUT device.

138

After the traced function has been evaluated (and despite
the results of the evaluation of the entr~ function), an exit
function is evaluated in the same manner as the entr~ function.
ASain, the result returned b~ the exit function signals the
printins (non-NIL result) or non-printing (NIL result) of the
value tracing message.

The entr~-exit functions can be associated with an nlitat
via the function TRACE. Instead of giving TRACE an nlitat
arsument, one gives it a list of the form:

(fn ENTRY entr~fn EXIT exitfn)

where fo is the nlitat name of the function to be traced. Both
the ENTRY and EXIT parts of the list are optional, or can occur·
in reversed order; the trace routines Just look for the tag
ENTRY and consider the S-expression immediatel~ following .it to
be the entr~ function, and the S-expression after EXIT to be the
e~it function. In this form, a call to TRACE both sets the
conditional entry and exit functions, and sets the tracing status
of i[).

TRACE evaluated with no arguments will return the tracing
conditions of all traced atoms, as a list of atoms followed b~
their tracing conditions. The initial zero in the tracins
conditional list is used as the recursion level marker.

UNTRACE will clear tracing conditions in addition to the
tracin~ status of an nlitat.

-
-

' ...

-

-
I ...

Within the conditional trace, several litats have values
wh,i ch cou I d be usefu I •

*ARGS holds a list of ar~uments to the traced function.
These ar~uments are evaluated if the function is a
LAMBDA, SUBR, or SUBR* type. If there are no arSuments
to the function, *ARGS is NIL.

*VAL holds the result of the evaluation of the traced
function. Before the function is evaluated, *VAL is
set to the atom NOVAl.

*lEVEL holds the recursion level of
function, as an SNUM.

the traced

*TRACE is a tracins switch.
NIL, all tracinS will be

If eot~~fo sets *TRACE to
turned off during the

evaluation of the traced function.

Conditional tracing expressions are limited onl~ by the
in~enuity of the user. A few examples of the capabilities of the
conditional trace follow:

1. To trace onl~ the first 0 recursion levels of a
function FOD, use:

(TRACE (FDa
(ENTRY (IF (EQ *lEVEL n)(SETQ *TRACE
NIL»»

2. To cause a BREAK when the first arSument of FDD is
BAR, but to cause no tracing printout:

(TRACE (FDa
ENTRY (BREAK 'FOD (EQ (CAR *ARGS) 'BAR»
EXIT NIL»

3. To print the result of evaluating FDD onl~ when it
is non-atomic:

(TRACE (FDD
ENTRY NIL
EXIT (IF (lISTP *VAL) (PRINT *VAL) NIL»)

.. ,_._-_. __ _ ,_."",,_._----- ... __ ._---

139

-

'-

140

I Chapter 14

~llocations aod Ga~base Collections

Information on the various ALISP storage
areas, and the routines used to maintain
them, is contained in this section. ,For most
ALISP proSrams, there is little need to worry
about storaSe problems; but those users with
large proSrams or heavy storaSe reauirments
should gO over this section carefully in
order to optimize their execution speed.

14.1 ~LISR Sio~aSe Ar.eas

There are four ALISP storaSe areas,
Descriptions of these spaces, and their
allocations, are siven below in Table 14.1.

called spaces.
ird tial storage

FREE

PROG

JPDl.

APDLl
SF'Dt

Table 14.1
Initial storaSe Allocations

Initial ~~ailable
~lloca:t.ioo

(in decimal words)

8000

1000

500

500

Desc.ciaiiao

Holds all ALISf' data types
except arra~s.
StoraSe for arra~s and binar~
proSrams.
Jump Push-Down List -- holds
return addresses for recursive
routines.

Argument/Special f'ush-Down
List holds variable
bindings and arsumer,ts to
functions.

The allocations for these areas are not fixed. As a space
becomes filled up, the ALISP s~stem reauests more storage for it,
and expands the .initial available space allocation. This
ex~ansion is automatic for all four spaces, UP to the field
length limit (see section 14.2 below). If a space has excessive

".--....
I

\'-.," '

-

-
-

-
-
-

-

-

storase assisned to it when it is not needed, that space is
contracted. Contraction is automatic for all storaSe areas
except FREE, which cannot be contracted at all. Contraction
enables the ALISP s~stem to have a smaller execution field.
lensth, thus increasins the ratio of CP time to rollout time for
an ALISP Job. The automatic expansion and contraction of space
means that the execution field lensth of an~ particular ALISP Job
chanses dynamically in response to proSram needs for storaSe,
~ivins more efficient use of storase.

The alsorithm used for decidinS when a storaSe area size
should be chansed is fairl~ simple. There are three parameters
for each storaSe area: a minimum size for unused space, a
maximum size, and an increment size. If the unused space in a
given storase area is below the minimum size parameter, then that
storase area is expanded b~ the increment size. If unused space
is above the maximum, it is contracted so that the amount of
unused space is eGual to the increment size. This alSorithm
works prett~ well in the storaSe-eatins proSrams run so far in
testins the ALISP s~stem. The parameters are not currentl~
accessible b~ the user.

The function PARAMGC, a SUBR of no arSuments, provides
information about unused storaSe available in each of the four
spaces. Evaluation (PARAMGC) returns a list of six SNUM's. The
first four are the number of free words of core left in the four
ALISP spaces (FREE, PROG, JPDL, and APDL, in that order); the
last two are the num~er of sarbase collects done since the last
PARAMGC call, and the total number of sarbase collects since the
ALISP system was initiated. Note that the PARAMGC value for FREE
space will actuall~ sive less than the total amount of FREE space
left to the user, unless a GC has Just been called.' This is a
conseGuence of ALISP's sarbase collect mechanism, which does not
reclaim previousl~ used but inactive FREE storaSe until there is
no more unused storaSe left.

14.2 Eield Leogib Limit

The ALISP s~stem has a maximum field length limit beyond
which it will not expand. This limit is set when the ALISP'
s~stem is initiated, by the FL parameter on the ALISP control
card (see Appendix B); the default value is 64000B. From AlISP,
the field length limit can be accessed and changed with the
function PARAMFL, a SUBR* of one or no arsuments. With no
arsuments, PARAMFL returns a list of three SNUM's, the first of
which is the current execution field lensth, the second the ALISP
field length limit and the last the absolute KRONOS FL limit for
the user. With one arsument, an SNUM, PARAMFL sets the ALISP
field lensth limit to that arsument, if it is larser than the
currsnt execution field lensth; if it is smaller, PARAMFL issues
an ARG-ERR.

It does no harm to use a ver~ larSe field lensth limit if

141

-

-
-
-

-
-

'''"

142

: .'

~ou feel ~ou might need it, since ALISP does its own d~namic
storage allocation and will not use the excess unless and until
it is necessar~. On the other hand, if YOU are sure that ~ou
will not need that large an allocation of storase, it is
reasonable to set a low field lensth limit, since this traps
patholosical errors such as infinitely recursive functions all
the soone T'.

When the user's execution field lensth approaches the field
length limit, the storaSe re-allocation alSorithm described in
14.1 is modified somewhat to tr~ to SGueeze ever~ last word of
the limit into the execution lensth. However, there comes a
point where the ALISP storaSe spaces are too clossed, and sarbase
collections besin to take UP too Sreat a portion of execution
time. When this happensy the s~stem complains with a GC-ERROR,
a~d prints the messaSe 'SYSTEM TOO FULL'. At this point, the
f~ustrated user can either use PARAMFL to chanSe his field length
limit, if it isn't alread~ at his KRONOS maximum, and tr~

r~-execution. If the user is at his KRONOS maximum, he can tr~
f~eeins UP space by eliminatins unneeded programs and data. He
m6st pare down his programs, use proSram segmentation, and try
callinS in seSments onl~ when they are needed; or find more
etficient ways of storing his data. The address capabiity of
ALISP is limited to 17 bits (see section 1.2), and there are no
immediate plans for increasing it.

14.3 Ga~bage Collection

When all unused FREE storage is gone, the ALISP system does
a Sarbase collect to reclaim all FREE storage which is not
activelY accessed by an~ ALISP data structure. For instance,
suppose the following dialogue took place:

7' (A B C II)
(A B C II)
7(SETQ FOO '(E F G H»

(E F G H)
?

A~ this point, the lists (A BCD), although still present in
core, is unaccessed b~ any structure in the ALISP sYstem, and
h~nce Just using UP valuable FREE storage. On the other hand,
the list (E F G H) is accessed by the atom FOO, and it must
remain in FREE· storaSe. A Sarbage collection f~ees UP all
unaccessed structures like the list (A BCD), as well as
uriaccessed litats (TWA's, section 1.2) and numbers. This
freed-up space is linked tosether and becomes the new unused
siprase for FREE space. If the u~used storase after a garbage
cQllect is too small, a re-allocation is done, and FREE space is
e~·i:panded (see sect i on 14.1).

The Sarbage collect routine also checks the unused space

c

-

-
-

-
-
{
,"--"".

"'/ -

remainins in all the other ALISP spaces, and does are-allocation
on them if necessar~.

The FREE space sarbase collect uses a recursive al~orithm
that is fast and efficient; t~pical Ge times are on the order of
a few tenths of a second. The d~namic stora~e capabilities of
ALISP assure that a Jammed s~stem with freauent Ge's will not
occur as Ions as there is space left before field len~th limit is
reached (see section 14.2). If this limit is reached with a
crowded s~stem, and the Ge routine cannot free UP a reasonable
amount of space, a GC-ERROR is issued. The amount of unused
storase remainins in all four ALISP stora~e areas, as well as the
number of GC's performed, can be obtained from the PARAMGC
function.

If ~ou wish for some odd reason to have a ~arba~e collect
performed at a specific time, the function Ge, a SUBR of no
arguments, is available. Evaluating (Ge) will cause an immediate
sarbase ~ollection; the result is NIL.

Interrupts from the terminal are recosnized durins a Ge, but
not performed until the GC is exited. Patience as alwa~s.

-- -- -------------_.-----_._--- .--. . .. _.-...... _--------_._--_._-_.

143

-

-
-
--
-

'-
-

-

144

15.1

I Chapter 15

EILES

The ALISP s~stem has the abilit~ to
access and maintain KRONOS permanent files.
With this abilit~, the user can fetch and
store larse masses of S-expressions or
character data on the KRONOS mass-storaSe
device. For the user interested in
maintainins large ALISP programs, a filins
s~stem has been written usins the filinS
primitives described in this section; refer
to section 11.1. The filins s~stem described
there is adeGuate for most user needs, and is
in a ver~ convenient form. This present
section describes the workinss of the ALISP
file primitives, and is useful for the user
who wishes to do his own file handlinS.

~e~maneni and Local Eiles

The KRONOS operatins system allows the user to store
permanent files in his catalog. These files can be accessed from
ALISP for reading and writinS. Normally, a copy of a permanent
file is attached to ALISP and made available for file operations
as a' local file. After file operations are performed, the local
file can be detached from ALISP and optionallY put back in the
permanent catalos, either replacins the old permanent file, or
creatins a new permanent file alonSside the old.

15.1.1 OpeninS a Permanent File

A permanent file can be opened for use bw ALISP with the
function OPEN. Format is:

(OPEN fname unit)

where fname, a literal atom, is a permanent file name, and uoit
is a logical unit number from 1 to 16 (see below, 15.1.2). Both
arSuments are evaluated. OPEN searches the user's catalog for a
permanent file with the name fname, and attaches it as local file
unii. If foame is NIL, then an empty file is attached. This is
useful for creatins new files from ALISP.

15.1.2 Local Files

-
-

Local files are accessible to the ALISP readins and printinS
functions. A local file in ALISP has a unit number from 0 to 16.
Unit number 0 is reserved for terminal lID, while 1 throush 16
are used for communication with disk files.

All currently open local file units can be found with the
function UNITNOS, a SUBR of no arsuments. The result is an
ordered list of SNUM's of all currently open local file units.
An opened local file is also called an acti~e local file. There
can be a maximum of 16 active local files at an~ time.

Often it is desirable to find a unit number that is not
currently in use, so that OPEN will not release a currently
active local file. The function FRUNNO, a SUBR of no arsuments,
will return an inactive unit number if one exists, or NIL if
there is none. All ALISP support packages (INPUT, EDITFILE,
etc.) use FRUNNO so that they will not destroy a user's currently
active local files.

Local file units are assisned KRONOS local file names which
the user need not ordinarily worry about, except if he has KRONOS
local files he doesn't want destroyed across an ALISP run. The
reserved file names are TAPE01 throush TAPE20.

For those users worried about storase reauirements, each
active local file uses about 200 words of binary proSram space
for a buffer. This space is released when the local file is
closed. Keepins man~ local files active can clos UP a loaded
ALISP s~stem9 it is wise to close local files as \soon as
possible.

The status of a local file unit can be accessed with the
function FILESTAT, a SUBR of one arsument. Format is:

(FILESTAT urd t)

where uoii is a local file unit from 1-16. If the unit is.not
currently open, FILESTAT returns NIL. If it is open, FILESTAT
returns a list of four elements sivins the status of the unit:

(access eofstat perm lastop)

where:

access is IA for indirect access,
DA for direct access

eofstat is NIL if the unit pointer is not at the end of the
IJnit

1, 2 or 3 if it is (see EOFSTAT, section 15.3.1).

ee~m is R if read only
W if read and write

145

---------_._ __ ._-- ----- _._".--_ .. ,,_

'-

146

lastoe is NIL if no file operations have taken place, or a
REWIND was Just performed.

R if the last operation was a read
W if the last operation was a write

15.1.3 Closing a Local File

An active local file can be detached from ALISP with the
function CLOSE. Format is:

(CLOSE fname unit)

where foame is a (literal atom) permanent file name, and uoit is
an active local file unit. The local file will be detached from
ALISP and saved as the permanent file tQa~e, replacins an~ other
permanent file of that name. Note that a local file need not be
replaced as the same permanent file from which it was, opened.

i If foame is NIL, the local file will be detached without
beins replaced in the permanent catalos. Alsor there will be no
error if uoit is not an active local file. Thus a user can
alwa~s detach a local unit without worr~ins whether it is active
or not.

CLOSE alwaws returns foame as its result.

15 t,l .4 Alternate Cataloss and Passwords

Permanent files from cataloss other than the user~s can be
accessedusins a slishtlw different form of OPEN 'and CLOSE.
Instead of a sinsle literal atom file name, a list specif~ins
file name, user number, and (optionallw) a password can be used:

(fname usernum password)

useXQum should be a valid KRONOS user number, and easswand should
be the file's password, if it exists. If the permanent file is
not in the alternate catalos, or if the file is not public or
semi-private, then OPEN will issue an error. A permanent file
can be made public or semi-private with the KRONOS CHANGE
cOlT/lT'-and.

Alternate cataloss cannot be used with the CLOSE function.

Certain values for use~oum cause special actions tor OPEN
and CLOSE.

1. "LOCAL

~Opens or closes KRONOS local file. For OPEN, instead of

c

c

-

. --

-

checkin~ the user's permanent catalo~, a KRONOS local file
is attached to ALISP; the original local file is destro~ed.
For CLOSE, the ALISP local file is detached and left as a
KRONOS local file.

LOCAL is useful where ALISP must pass lar~e files to other
p r()9 rains.

DISPOSE

Disposes a local file to the printer. An active file can be
printed on the batch printer by usin~ CLOSE with DISPOSE as
the use~oum. At the end of ~n ALISP run, all such closed
files are dumped to the printer. Remember that the first
character of each line is used for printer carriase control.

15.145 Direct Access Files

Normall~, a user will deal onl~ with indirect access KRONOS
files. When an OPEN operation is performed on an indirect access
permanent file, a COpy of that file is attached to AL~SP as a
local file. Changes can be made to the local file wi~hout

affectin~ the permanent file; w~en all changes are completed, the
permanent file can be replaced b~ the local file with the
function CLOSE.

Direct access files, b~ contrast, are attached directl~ to
ALISP. An~ chan~es made to the local file are directl,=, reflected
in the permanent file. The advantage in u$ing a direct access
file is that the overhead involved in makins a cop~ of the file
is eliminated; this ove~head can be sisnificant for lar~e files.
The disadvantage is that write operations on the local file are
directl~ reflected in the permanent file, and ma~ leave the file
in an undesirable state if a prosram error occurs before all
processins on the file is completed.

T~picall~, lar~e files that are available on a read-onl~
basis to man~ users are made direct-access. Thus the main ALISP
SAVE file, which is read automaticall~ when ALISP is started, is
direct-access.

OPEN will find both direct and indirect access files; it
checks for indirect access first. If it is known that a file.is
one or the other, OPEN can be made to look for onl~ that t~pe.
An optional arSument is included:

(OPEN fname unit access)

where access is evaluated, and. should be either IA (indirect
access) or DA (direct access).

A local file opened from a direct access permanent file can

. Ii" ',,' ..
147

. _-------_ _-----"'_ ... - _-,., , .. , _-_ .. _._ .. ---_.

i,

'"""

_.

'-,

148

be closed using:

(CLOSE NIL I.lni t)

since all chanses to the local fil~ are also made to the
permanent file.

A new direct access permanent file can be created from a
ldcal file by usins an optional arsument:

(CLOSE fname unit 'DA)

which will create the permanent file toame from local, file uoit
as a direct access file. The default for CLOSE wit~out the
optional arSument is to create an indirect access file.

15.1.6 Permission Modes

A local file which is attached b~ OPEN is normall~ available
for both readins and writinS. For direct access filasthis may
be a problem, since chanses to the local file are reflected
imRlediatelY in the permanent file. A user ma~ thus wish to
attach a file in a read-onl~ mode, in order to prevent accidental
damaSe to the permanent file. A local file can be made available
for read-onl~ operations b~ an extra arSu~ent to OPEN:

(OPEN fname unit 'R)

All attempted write operations on the local file will cause a
FIL-ERR.

15.2 SeaueoLial Eile Oee~aiioos

The normal mode for performins file I/O ia b~ seQuential
operations. This section describes se~uential file for.ats ~nd
operations.

15.2.1 Se~uential File Format

SeQuential files are composed of lines. Like terminal I/O
lines, a seQuential file line can be UP to 150 characters Ions.
No line editins is done on file lines, however~ thus a c~ntrol-H
in,a file line will be read as a control-H, rather than, causins
the previous character to be deleted.

, The character set usedb~ seQuential files is the KRONOS
6-bit or 6/12-bit set, so that se~uential files can be created by
the KRONOS TEXT command. Also, an~seGuential files criated or
mod.li fied b~ ALISP are readable by other prosr'allis as text ·!f:iles.

"

I ~,. ",

-

!~

i '-

--
'--

... _ .. -•.. _-_ __ .. _-_. __ ._--_._ ... - .. -... _--_ ..•... _---

ThE~ choice of 6-bit or 6/12-bit character sets is controlled
b~ the switch ASCII. Initiall~ ASCII is set to T. so that
seouential files are read uainS the extended 6/12-bit convention,
correspondins to ASCII terminal mode. If a seQuential file is to
be read or written usinS 6-bit conventions (NORMAL terminal
mode), then ASCII should be set to NIL.

15.2.2 SeGuential File Pointer

A local file unit has an associated unit pointer that tells
what the current position of the unit is. When a reGuest for an
input line is made to a unit, the line is taken from the position
of the unit pointer, and the unit pointer is advanced to the next
line. There is no way to skip forward or backward within the
file, since the unit pointer is not directl~ accessible to the
user (seGuential files may be rewound, however).

Each local file unit has its own pointer. so that input and·
output to different units can be intermixed without losins track
of the position of any Siven unit.

When a line is written to a unit, it is written at the
position of the unit pointer, and the uhit pointer is incremented
past the line Just written. Successive lines will thus be
written one after the other on the unit. A side effect of
writins a line to a unit is to cause an EOI (end-of-informati6n)
to be placed at the end of the written line. Thus an~ lines
after the unit pointer are automaticall~ lost when a seouential
write is performed. The last line written will always be the
last line of the file.

15.2.3 ReadinS Seouential Files

On input, whenever the input buffer must be filled to
satisfy a read reouest (from READ, TEREAD, etc.) the value of
INUNIT is checked. If it is not an SNUM in the range 0-16, a
NUM-ERR is issued and INUNIT is reset to SYSIN. If INUNIT is in
the' correct ranSe, then the input buffer is filled from the
corresponding local unit, if it is opened. For INUNIT = 0, input
is taken from the terminal. An example of readin~ fro. a local
file unit is Siven in Dialosue 15.1 below. The function EOFSTAT
checks for the end of the unit (section 15.2.5 below).

The SYSIN unit is special, since INUNIT is set to this unit
whenever an error occurs, or the top-level loop· of the ALISP
supervisor is entered. The supervisor can thus be made to read
and evaluate S-expressions from a file unit other than the
teriTdnal. For example, the user can t\:lpe S-e>CPT'essions he wishes
to have evaluated into a text file outside of ALISP, then enter
ALISP, open the text file. and evaluate the S-expressions b\:l
setting SYSIN to the local file unit. (See DialoSue 15J2.) The
control card parameter SI can be used to open and read aifile of

--._-_ _._-._----_._ ...•.. __ .. _._.,---_._-----

149

--

.. --

-

I1ialo~ue 15.1
Readin~ a Local File

Let unit 1 have the followin~ three 1in&s in it:

(FOD BAR)
(MABEL HATES FIGS)
MOMANItDAD

'?(PROG (INUNIT)
'? (SETG INUNIT 1) The PROG has set the litat

INUNIT to local file unit 1.

,?'TAG (IF (EOFSTAT l)(RETURN 'DONE»)
r If the end of unit 1 is
r reached, return.

(PRINT (READENT»
(GO TAG»»)

(FOO BAR)
(MABEL HATES FIGS)
MOMANDItAD
DONE

'?(EOFSTAT 1)
T

,?(REWIND 1)
1

?(EOFSTAT 1)
NIL

If there is stuff in the file,
read and print it.

The three S-expressions are
read from the file, and the
PROG exits with value DONE.

Local unit 1 is at its EOI. A
call to REWIND resets it to
the beginnins asain.

S-expressions automatical1~ when ALISP is entered (Appendix B).

The ECHO swi tch can be used to automaticall~ echo 1 ~rte's read
from a local file unit onto the current output unit. ECHO should
be set to the local file unit bein~ read from. Echoed lines are
printed exactl~ as the~ appear on the input unit. The ALISP
output buffer is not used, so its contents are undisturb~d. The
initial value for ECHO is NIL, i.e., no e¢hoinst takes plaee.

Echoins lines from one local file unit ·to another is much
faster and less wasteful of- storage than READinS and PRINTin~
S-expressions. It is thus a useful. wa~ of cop~~ns portions of
one,file to another.

150

c.

-

-_. __ ._- .. _._._---- _._-_._-------------------------_._-.----

Dialosue 15.2
SYSIN Set to a Local File

Let the followins lines exist on local file unit 1:

(CONS 'FOD 'BAR)
DE FACT (X) (COND «XERDP X) 1> (T (TIMES X (FACT (SUB1

X»»»»
(FACT 4»
(PPRINT 'FACT)
(LIST 'FOO 'BAR)
(SETQ SYSIN 0)

'P(SETQ SYSIN 1)
1

(FOO,BAR)

This sets the top-level input
file to unit 1.

"__ FACT

'-

-

-

24
(LAMBDA (X)

(COND
«ZEROP X) 1)

(T (TIMES X (FACT (SUB1 X»»»
(FDD BAR)
o

With SYSIN set to- 1, the
S-expressions in local input
file unit 1 are evaluated b~
the EVAL supervisor. Since
the final expression in the
file was (SETa SYSIN 0),
supervisor continues.to itake
input from the terlllin;al. If
no such statement had been
included in the local file,
the ALISP s~ste~ wo~ld have
exited .after encountering the
EOI on. the SYSIN unit.

15.2.4 Writins Seauential Files

On output, whenever the output buffer must be du.ped to
satisfy a write reauest (from PRINT, TERPRI, etc.) the value of
DUTUNIT is checked. If it is not an SNUM in the ranse·O-16, a
NUM-ERR is issued and OUTUNIT is rese~ to SYSOUT. If OUTUNIT is
in the correct ranse, then the output buffer is dumped to the
corresponding local unit, if it is opened. For OUTUNIT~O, output
is dumped to the terminal.

The SYSDUT unit is the default unit used b~ the top level

151

-
"-

-

--
......

-
-

152

supervisor, and by the error processor. It is thus possible to
channel output from the interpreter to a local unit, b~ opening a
local unit and settins SYSOUT to it. This can be useful when
debugging, if larse amounts of output are produced.

The switches SLASHES, ASCII, NORMTAB, and PRINBEG are often
useful in writing to files.

15.3 End-of-File Processing

Normall~, files processed b~ ALISP are single-record files
from the standpoint of KRONOS. The~ consist of a sinsle KRONOS
record, which ma~ contain an arbitrar~ number of lines. Files
are ended b~ an EOI (end-of-information) mark. ALISP will not
read past this"mark; if a READ is incomplete when the EOI mark is
e~countered, a FIL-ERR is issued. Lines can alwa~s be appended
to the end of a file; the EOI mark is placed after the last line
written.

KRONOS makes a further distinction in end-of-file marks,
wfth EOR (end-of-record), EOF (end-of-file), and EOI
(end-of-information). An~ one of this will normall~ be
i~terpreted b~ ALISP as the end of a file.

15.3.1 EOFSTAT and REWIND

The function EOFSTAT, a SUBR of one arsument, will enable
the user to tell if a unit pointer is at the end of the unit.
Format is:

(EOFSTAT unit)

where uni±. is a local file unit r,'Jmber from 1 to 16 (the
terrrdnal, unit 0, is never at an end-of-file, since a new line
can alwa~s be t~ped) • EOFSTAT returns NIL if the unit pointer is
not at the end of the unit, and 1, 2, or 3 it it is. The r.umbers
correspond to KRONOS end-ot-file marks:

1 = EOR
2 = EOF

::.: 3 = EOI

L It is always possible to reset a local tile unit pointer to
th~ beginninS of the unit, with the function REWIND, a SUBR of
one argument. (REWIND unit) will rewind local file unit unit,"
where 1 i uei±. i 16.

15.3.2 Multi-record Files

In special cases, an AlISP proSrammer ma~ need to access or
write multi-record or multi-file files. However, the read and

-

print functions in ALISP alwa~s work with s sinsle KRONOS ~ile
record. In order to skip past m record, two spacial functions
are provided: EOFSKIP and EOFMARK.

SUER of two ar~uments, is used when readin~ a
It will skip the unit pointer over end-of-file

records other than the first on multi-record

EOFSKIP, a
local file unit,.
marks, to ~et to
files. Format is:

(EOFSKIP unit eoft~pe)

where ueit is a local unit number, and eaft~ae is an' SNUM which
specifies the t~pe ot end-of-file mark to skip, acco~dins to the
followin~ table:

eoft!:lee

o

1
2
3

-1

-2

-3

act..iao

skip UP to the next EOR (but do not
cross it to the next record).
skip past' the next EOR
skip past the next EOF
skip to the EOI.

rewind to the be~innin~ of the
current record.
rewind to the besinninSf of ,the
current KRONOS file (Just sfte~ the
last EOF read).
rewind to the be~inninS of the file
(eouivalent to REWIND).

C·~~/ EOFSKIP will norlTlall~ return its second arsumant as a result.
There is one special case: it eattwae is 2 and there is no EOF
b~fore the E01, NIL is returned, and the unit, pointer is
positioned at the EOI.

ECHO will work with EOFSKIP for pos-itive eo£. t.~e. All
lines and end-at-file marks skipped over are ~pied to the echo
output unit.

In order to produce multi-record files 'ro~ ALISP, the
abilit~ to write end-of-file marks must be available. The
function eofmark, a SUBR ot two arSuments, will do this. Format
is:

(EOFMARK unit eoft~pe)

where uait is a local file IJnit number, snd QQtt~ae is either 1
or 2. A 1 causes an EOR to be written, and a 2 an EOF~In both
cases the unit pointer is advanced past the end-ot-file rrm:rk Just
wri tten, and points at the E01. EOFH~RK returns itsii':, :,~acond
a rsulTlent. ~"

There are sOlTle peculiarities to note, for ~ou fans of the

153

'-

-
-

KRONOS file s8stem. First, an EOR is automaticall~ written
before an8 EOF, so that the structure of a multi-file file is
alwa~s hierarchical:

first
record
second
record

data
EOR
data
EOR
data
EOR
data

data
EOR
EOF
etc.

first multi-file file

The on18 exception to this rule is at the end of the file,
where an EOR may be followed directly b8 an EOI.

~ Second, it is basicall8 impossible to write an e.pty record
(althou~h an empt~ file is possible). Try to put somethins in
ea-ch record in a mlJlti-record file, or an EOFMARK with eCi£t.~e:e of
1 will write an EOF rather than EOR (don't ask why).

15.4 CbeckeoioL Ei1e$

~~ A checkpoint file is a snapshot of the ALISP s~stem. A
checkpoint file can be re-loaded to restart ALISP at the exact
point at which the checkpoint file was made. Twpically,

'~ checkpoints are used to save the state of an ALISP ~xecution
after' a larSe amount of set,Jp has been done. The eheckpciint file
saves the cost of the execution of the setup each time ALISP is
entered.

-

"--,
154

Because checkpoint files are expensive in terms of disk
stora~e, the8 should be used with restraint. Production systems
which reQuire SUbstantial setup time and are used by a n~~ber of
users are the best candidates for checkpointins.

The functions LOAD and SAVE, both SUBR's of one arSument,
are used for creatin~ and loadins ALISP checkpoints. Their
'f'ormat is:

LOAD
(or filename)

SAVE

where fileoa~ has the same format as the £ileDa~ paramete~ in the
OPEN command (section 15.2.2 above).

~
I
I

.... "

-

-

.'to ,

.......

SAVE creates a snapshot binar~ file of the,ALISP
s~stem, and saves it as a permaneMt indirect-access
file with name fo. SAVE uses CLOSE to store the
permanent file9 see the description of the CLOSE
commarld in 15.2.2 above fo r a 1 te rnate use r acO:ess,
permission mode, etc.

SAVE can be called at an~ point in an ALISP
proSram. It is a normal function call, and doe$ not
interrupt the proSram flow. SAVE returns £~ as its
result.

LOAD loads the checkpoint file to into the AlISP
s~stem, and starts UP execution at the point where the
SAVE was called. Since LOAD uses the OPEN function to
find the permanent load file, the same conditions of
alternate user access and permission appl~ as for'the
OPEN function; see section 15.2.2 above.

LOAD returns NIL as its result, so that a a
proSram with an embedded SAVE can determine whether the
SAVE Just created the checkpoint, or the checkpoint was
started UP b~ a LOAD.

A simple example of the use of SAVE and LOAD" commands is
Siven below in Dialosue 15.3.

There are several parameters and buffers which are not saved
in a checkpoint, or restored on a LOAD. Local file units remain
unchansed under a SAVE or LOAD. The input and output buffers
also remain IJnchansed, althoush the buffer pointers (PRINBEG,
READBEG, etc.) take on values from the loaded file. The
parameters involvins CP time, number of Ge's, and .axi~um field
lensth, as well as the control-point parameters, are all
unchanged b~ a LOAD.

Checkpoints are a convenient method for savinS an entire
ALISP s~stem for later restart. The~ are inexpensive in terms of
CP time, I blJt take a lot of disk space to save. Nevertheless,
there are times when it is worth the added disk expense to save a
checkpoint: when it is to be used often, or as a safet~

checkpoint before tr~ing a trick~ and bombable AlISP prOSram.
For storage of larse prosrams, it is recommended that ~ou use the
ALISP filins s~stem (see section 11.1) rather than checkpoints.

A checkpoint receives special status when it is called from
the ALISP control card with the LD parameter. In this case~ none
of the other control card parameters are processed' instead~ the
checkpoint can use the PARAHCP function (see section 1.1.1.1) to
fetch the other parameters, and perform its own control card
processins.

Because the~ are so wasteful of disk space, checkpoints,
when used in excess, have a tendenc~ to overflow a user's cataloS

155

Dialosue 15.3
ALISP Checkpoint Functions

?(PROGN (PRINT 'FOO)
? (PRINT (SAVE 'TEMP»
? (PRINT 'DONE»»

1
TEMP
nONE
DONE

?(LOAD 'TEMP)
TEMP
DONE
[lONE

?(,CONS (LOAD 'TEMP) NIL)
TEMP
DONE
DONE

?

156

The PROGN function executes a
number of functions. The
first PRINT call prints the
atom FOO. The second print
call evaluates the SAVE
function, which saves a cop~
of the ALISP system as the
overla~ file TEMP, and returns
the atom TEMP as its value;
PRINT outputs this atom. The
final call to PRINT outputs
the atom DONE, and PROGN
returns the same atom for its
result.

This sisnifies the user does
some processins.

The LOAD function loads the
overla~ TEMP and starts
executin~ at the point where
the SAVE call was issued. The
second two PRINT state.ents in
the PROGN call are executed.
Ir. all respects the ALISP
s~stem is now at ~e same
point as it was af,ter the
PROGN exp~ession was first
executed. The processinS done
after the PROGN call has
dissappeared.

The LOAD function co.pletely

' '

-

'

-

halts the pro~ram being
executed when it is called.
Here, the call to CONS never
completes; instead, the ALISP
S~$tem restarts in the PROGN
function aaain.

limits. Indeed, the lowest priorit~ user number class (BL) does
not have enou~h permanent file stora~e space to save an ALISP
checkpoint. When there is not enou~h room to store a checkpoint,
a FIL-ERR is issued. The user must either delete unwanted
permanent files with PURGE (see above> or reauest a user number
with a larSer permanent file stora~e limit.

157

'-
~.

""',

-

--

16,.1

I Chapter 16

Batcb

ALISP will operate under batch at the
Universit~ Computer Center. This section
describes the method for call inS ALISP from
batch, and some peculiarities of a batch
oriSin ALISP Job.

Runoins a Baicb Job

The control cards needed to run ALISP are:

,JOBNAME.
ACCOUNT, •••
ATTACH,ALISP/UN=LISPOOO.
ALISP.
7/8/9 -EOR card
data for the ALISP interpreter
(EXIT)
6/7/8/9 -EOI card

The ALISP control card can have parameters attached to it;
see Appendix B for the effects of these parameters. There can be
other KRONOS control cards before and after the AlISP control
card. There is no error exit from the ALISP control card' upon
completion of the ALISP prosram, the next KRONOS control card is
alwa~s executed, unless the time limit has been reached. The
time limit for the whole Job can be set usinS the T para~eter on
the Job card or with the TL parameter on the ALISP control card.
Within ALISP, the time limit can be extended to the user's
validated maximum with the PARAMTL function (section 1.14.2).

The 7/8/9 card (multi-punched in the first column) is an
end-of-record, and siSnals the end of the KRONOS control cards.
After it comes the data used b~ the control cards. ALISP alwa~s
uses one record of data from the batch deck, even if the user

~ chanses SYSIN so that no data is actuall~ read into the ALISP
sy~tem from the deck (see below, 15.2). Which record in the d.ck
sets used b~ ALISP depends on where the ALISP control card

~ appears. If the ALISP control card is the first control card to
use records from the input deck, then it uses the second record
in the deck (the first record after the control card~). If
control cards before the ALISP card use records from the deck
(FORTRAN, COMPASS, etc.), then ALISP will use the one after
theirs. An example of a multiple deck structure misht be:

158

. -'

C~
.",,/

-

--. -_ _-_ .. -------~~

JOBNAME,Tl00,CM50000.
ACCOUNT
FORTRAN.
ATTACH,ALISP/UN=LISPOOO.
ALISF'.
7/8/9
data for FORTRAN compiler
7/8/9
data for ALISP interpreter
(EXIT)
6/7/8/9

An (EXIT> statement is normallw included as the last
statement in an ALISP data record, but it is not strictl~
necessar~. If ALISF' hits the end-of-record mark on the data from
batch, it automaticall~ terminates as if an EXIT had been called.
Also, an EXIT can be called from an~where within a statement
bein~ executed b~ the ALISP interpreter; it will cause an
immediate exit from ALISF' •

16.2 Ei1e ~ssi~omeois and Initial Ualues

Local file unit 0 is the Job deck data record on input, the
file OUTPUT (i.e., the batch printer) on output. Initial1~,

SYSIN and SYSOUT are both set to 0, unless the I or 0 options are
used on the ALISF' control card.

The data record evaluated b~ ALISP can be printed on the
output device alon~ with the results of the evaluations. This is
done automaticall~ on enterins a batch ALISP Job, which sets ECHO
to SYSIN; all lines read from the SYSIN unit will be printed
di rectl~ on SYSOUT before 1;he~ are evaluated.,' If SYSIN is set to
0, then the echo is preceeded b~ prompt characte~s to distin~uish
it from the results of its evaluation. The prompt characters are
alwa~s •• $.$$$$$~a; the atom PROMPT has no effect und~r batch.
The echo featUre can be turned off b~ usin~ the E parameter on
the ALISP control card.

The atom PRINBEG is initiall~ set to 1, rather than 0 as
under timesharinS. Since the first character of each line
out~utted to the printer is interpreted" as a.carria~e-control
character (see Appendix A), settin~ PRINBEG tti 1 causes this
first character to alwa~s be a blank, i.e., skip to th~ next
line. If ~ou reset PRINBEG to 0 under batch, then all printer
output will lose the first character to carriaSe control. On the
other hand, it is sometimes desirable to do ~our own carriase
control (skip to the top of the paSe, ate.), and this can'be done
by settin~ PRINBEG to 0 for the carriase control line, resettins
it to 1 for printing of S-expressions. The printer
carriage-control characters are listed in Appendix A. Be careful
to reset F'RINBEG to 0 when outputtins to local file units other
than 0, or the~ might not read back in properl~.

159

-

--

.......

-

'-

16.3 BAICH, IOLe~~ueLs, aod O~e~la~s

Althol.J9h batch and timesharinS proSrams T'IJn veT'~ much alike·
under ALISP, it is sometimes necessaT'~ for a PT'OST'am to know if
it is runnins as a batch Job or not. The func~ion BATCH, a SUBR
of no ar~uments, can be used. It returns T. if the pro~ram is
runnins as a batch Job, NIL if it has a time-sharin~ orisin.

Interrupts are of course inactive under batch. The function
BREAK and the switch INTRFLG are still available, but have little
use in the batch environment, and should not be called.

Checkpoints are a sli~ht problem in batch mode, since the~
can be created from either batch OT' time-sharins Jobs. If a
checkpoint created b~ a time-sharinS ALISP Job is loaded into
ALISP runnins under batch, all the batch peculiarities described
so far in this section will appl~ to the checkpoint s~9tem.
Remember, however, that the checkpoint loads its own values of
PRINBEG and ECHO, and the batch Job ma~ have to reset these to
continue comfortabl~. The function BATCH described above comes
in hand~ here. The followins expression is an example of an
overla~ creation which will load differentl~ (and corT'ectl~) for
batch and timesharin~ Jobs:

160

(PROGN (SAVE 'MYLOAD)
(COND «BATCH) (SETG PRINBEG 1 ECHO 0»

(T (SETG PRINBEG 0 ECHO NIL»»

-

......

,-.

II Chapter 1

~LIse Eilio~ S~siem

The filing s~stem, written in the ALISP
lan~ua~e usin~ the file primitives, provides
an effective and painless means for creatins,
documentin~, maintainin~, modif~in~,
inputtin~ and outputtin~ lar~e nu~bers of
ALISP S-expressions. It is recommended that
both the novice and experienced LISPer use
this system for maintaininS lar~e ALISP
pro~rams consistin~ of man~ functions and
plist assi~nments.

1.1 Geoe~al Desc~ieiioo

The filin~ system uses indirect-access permanent files to
store ~roups of S-expressions. The onl~ limit to the number of
separate files that can be maintained is the user's maximum file
limit. Each file is ~iven a user-specified name b~ which it is
called from ALISP; this name is also the permanent file name in
the user's catalo~. Each file can have an unlimited number of
S-expressions in it (as long as the user's KRONOS file limits
aren't exceeded, of course). In addition, each fil~ can contain
documentation for ever~ S-expression in it, as well as
informati6n regardin~ formatting of the file tor' printin~,
compiler declarations and other subsidiary niceties.

The filin~ system operates completelY from within ALISP. Do
not attempt to create files outside of ALISP to be used by the
ALISP filing sYstem, as they will not work. Withi~ ALISP,
however, YOU can, for e}tample, define a function, output it to a
file, modif~ it, update the file, re-inptit the function, etc. A
t~pical session might look like the one in Dialogue 1.1 below.

In this session, the user defined the function FACT, and
initialized an ALISP fila called MYFNS usinS the ~unction
INITFILE. Then FACT was output to the file HYFNS, and the
LISTFILE function revealed that MYFNS did sctuallw contain FACT.
The user th~n did some editins, and re-output FACT; the new
version replaced the old in MYFNS. Then he set FACT to NIL,
erasing the function definition; the function INPUT retrieved
FACT from the file MYFNS, where it was safel~ stored. ·the user
then verified that FACT contained its old function de'ini~~on.

This sample session did
abilities of the filing s~stem,

not exhaust b~ an~ means the
but it showed b~ far the most

. - - -,,------_._,,------ -------"""." .. --". __ ._._._----

161

----"--"",,.-... ,,---_.- .

.....

--

-

-

-

Dialog'Je 1.1
The ALISP Filing S~stem

?(DE FACT (X) (COND (CZEROP X)l)
?(T(TIMES X(FACT (SUB1 X»»»)

FACT The user defines the recursive
factorial function •

?CINITFILE MYFNS)
MYFNS

?(OUTPUT MYFNS (FACT»
(PACT)
?(LISTFILE MYFNS)

(FACT)

?(EDIT FACT)

END EDIT
?(OUTPUT MYFNS (FACT»

?(SETQ FACT NIL)
NIL

?(INPUT MYFNS (FACT»
(FACT)

?(FNTYPE FACT)
LAMBDA

162

A new ALISP permanent file is
created with the filins s~stem
function INITFILE. This file
is initiall~ empt~.

The user now outputs the
function definiti6n to the
file MYFNS b~ usins the filing
function OUTPUT. . The function
LISTFILE verifies that the
file actuall~ contains the
function definition that was
outPI.Jt.

The user now ~han~es the
function definition of FACT
with the editor. The new
version of FACT is re-stored
in MYFNS with the OUTPUT
function. The new definition
replaces the old one.

The user forgets he has
defined FACT and sets its
value to NIL,. erasing the
function definition. All is
not lost, however~ he simpl~
inputs FACT from the file
MYFNS with the filins s~stem

-

-
.....

-

function INPUT. Note that now
FACT has been restored to its
lambda-expression value.

practical and t~pical use: definin~ a function in ALISP and
savin~ it in a permanent file for later use.

B~ convention, files created usin~ INITFILE for the storase
of S-expressions are called ALISP files. Throu~hout this
chapter, ·file· will mean an ALISP file so created and used.
Althou~h ALISP files are KRONOS text files, the~ have a ver~
restricted format. Hence it is usuall~ not profitable to list
them on the terminal, or use the KRONOS text editor on them
(ALISP files ma~ be listed from ALISP with the function GRIND,
and edited with EDITFILE or OUTPUT).

1.2 Eile EOl!lIIat

ALISP files are intended to be convenient depositories for
information created durinS an ALISP run. Since most of the
useful information is stored on the value or plist of atoms
(e.~., function definitions), this is what ALISP files contain:
a set of atoms, alons with their values and propert~ lists. Each
atom and its a~sociated information is called an eo~~~ in the
file.

Functions ~xist for transferrin~ entries from ALISP to a
file, from a file to ALISP, or from one. file to another. Since a
file (or ALISP) can contain a Sreat number of atoms, and usuall~
onl~ a subset is to be transferred, an eDt~~list is commonl~ used
iri the filins functions. In its simplest form, tHe entrYlist is
simpl~ a list of literal atoms:

(FOD BAR •••••)

For example, in Dialo~ue 1.1, the entr~list (FACT) was used to
specif~ the sinSle atom FACT on input and output.

~ On rare occasions a more complicated entr~list allows the

'-

-

user to specif~ onl~ the valGe or plist of an atom:

(FOD (BAR VALUE) (FACT PLIST) ••••)

Here the value of BAR and plist of FACT are indicated (note that
the'default is to consider both as for FOO).

Some functions interpret an empt~ or atomic
meaninS ·all entries·, e.~., INPUT will input the
Descriptions of individual functions will indicate
special values of entr~list.

entrYlist as
whole file.
actiorls for

163

---- -----_. __ ... _-_ ...•.. __ .. " ..

--

-
, .'

-

:

1.3 Eiliog Euociioos

The filing functions are organized in this manner:

Ini t,ial ization:

Printins and listing:

INITFILE

INPUT
OUTPUT
OUTPUTA
COF'YFIL.E
PURGFILE

LISTFILE
GRIND

Documentation and formatting: COMMENT
F'AGEFILE
DECFILE

Since all the file functions are defined as FLAMBDA'sp all
arsuments are unevaluated. Use (INPUT MYFNS (FOD BAR» rather
than (INPUT 'MYFNS '(FOD BAR».

1"3.1 Initialization

Before ALISF' atoms can be output to a file, the file must
have been created with INITFILE. Once created, an ALISP file
exists as a permanent file until it is destro~ed (usuall~ b~ a
KRONOS PURGE command).

Initialization creates an empt~ ALISP file as an
indirect-access permanent file, destro~ins an~ permanent file
with the same name in the use~'s catalos (or alternate catalos,
if one is specified in fileoam). The name used b~ the ALISP
f~lins functions and the name in the user's catalos are the. same.

The function call format for initialization is:

(INITFILE filenam)

If fileoam is atomic, then INITFILE initializes the file with
name fileoam in the user's catalos; this file need not have
alread~ been present as a permanent file. If tileaa& is not
atomic, then INITFILE will attempt to initialize aM ALISP file in
an alternate user's catalos. The format and restrictions on
fileoam in this case are the same as those for the CLOSE function
(section I.15).

1.~.2 Input, Output and Updatins

These are the most-used filins functions.
the value and plist attributes of entries. With

164

The~ affect onl~
them, the user

c

-

-

-
'-

C)

can output S-expressions to an ALISP file, input S-expressions
from a file to the ALISP s~stem, pur~e file entries, and transfer
entries from one ALISP file to another.

The standard format for these functions is:

(filefn filenam entr~list)

where eni~~lisi is as defined in section 1.2 above, and ~ileoam
is a file name. If an alternate user number is specified in
filenam, then it must conform to OPEN specifications for INPUT,
and CLOSE specifications for the other functions (see section
1.15).

INPUT

This function inputs entries from an ALISP file
into the ALISP s~stem. If eot~~list is not ato~ic,
then onl~ those entries or parts ~~ entries specified
b~ ent~~list are input.

If eDt~~list is atomic or omitted entirel~ (onl~
one ar~ument to INPUT), then all entries will be input
from the file.

INPUT returns a list of those entries for which it
input either a plist or a value.

OUTPUT

This function outputs entr~ attributes to an ALISP
file from the ALISP s~stem. Onl~ those eritries
specified b~ eDtJ!~list are output; an atomic eot..r.!:llist
does nothin~. The entr~ name must have either a v~lue
(not be ILLEGAL) or a non-NIL plist in the ALISP s~stem
in order for these attributes to be output.

If an entr~ in ent~~list is in the output file,
the new attributes replace the old ones. If it is not,
a new entr~ is created at the end of the file and the
attributes placed there. OUTPUT thus does not chan~e
the order of alread~-present entries in £ileoaae.
OUTPUT returns a list of those entries into which it
output either a plist or value attribute.

The two functions INPUT and OUTPUT are the most
important and useful ~embers of the filin~ s~stem. In
~eneral, the~ are ver~ friendl~ -- the~ protect the
user from his mistakes, and need ver~ little thousht to
be used correctl~. Some examples of these two
functions are ~iyen in Dialo~ue 1.2 below.

OUTPUTA

165

-
-

166

...........

Dialosue 1.2
The INPUT and OUTPUT Functions

?(DE FOO (X) X) .
FOO

?(PLIST 'BAR '(MOO MAR»
(MOO MAR) The user defines FOO as a

function, and puts somethin~
on the plist of BAR.

?(INITFILE MYFILE)
MYFILE

?(OUTPUT MYFILE (FOD
(FDO BAR)

BAR»
The user initializes an ALISP
file with the name MYFILE,
then outputs the attributes of
FOD and BAR to this file.
Note that the file now
contains the value (function
definition) of FOO and the
plist of BAR, s~nce these were
the onl~ attributes defined
for these two atoms in ALISP.

?(DE BAR (X) (CONS X NIL»
BAR BAR now has a function

definition as well as a
non-empt~ plist.

?(INPUT MYFILE (BAR»
(BAR)
1BAR

(LAMBDA (X) (CONS X NIL»
?(INPUT MYFILE «BAR VALUE»)

NIL The user now inputs the entr~
BAR from the file MYFILE,
expectins to replace the value

?(REMDB 'FDD)
FDO

of BAR with its value on the
file. However, no value
attribute ·for BAR was output
to MYFILE: INPUT finds the
plist attribute and inputs
that, but the value of BAR
remains the same. Note that
when the user tries to input
the value a~tribute of BAR
from MYFILE, INPUT returns NIL
as a result and does nothins.

-

-,

?(OUTPUT MYFILE (FOO»
NIL The user removes the value of

FOO with the ~unction REHOB.
Since FOD now has neither a
value nor a non-empty plist,
OUTPUT cannot send anYthin~ to
MYFILE, and returns a NIL
result. The entr~ FDO b~
MYFILE remains unaffected.

1(INPUT MYFILE (FOO»
(FOO)
?FOO

(LAMBDA (X) X)
?(PLIST 'FDD)

NIL INPUT restores the value of
FDD that was originall~ sent
to the file MYFILE. Note that
the plist of FOD remains
unaffected, because it was not
output to MYFILE.

This function is essentiall~ the same as the
OUTPUT function, except that it affects the order of
entries in a file.

eot£~list should 'be non~atomic. The first entr~
in eol£~lis1 is the entr~ after which all of the other
entries in eot£~list will be output; this first entr~
is not itself output to the file. If it does not exist
as an entr~ in the file, then ever~thinS is added at
the end of the file.

The rest of the entries on eot~~list are output as
in the OUTPUT function. If the~ have either a value or
non-NIL plist, then the~ are output after th~ first
entr~ on eot~~lisi, and an~ duplicate entries a~e
deleted from the file. If the~ do not have a value or
non-NIL plist, then the~ are not output; and the entr~
on the file is not affected.

PURGFILE

This function pur~es attributes and entries from
an ALISP file. If eot£~list is atomic, no action is
taken; use INITFILE to completelY erase all entries in
an ALISP file.

If, thru purSins, both the value and plist
,attributes of an entry are deleted, then the whole
entr~ is deleted. An entr~ must have either a value or
plist attribute to remain in the file. PURGFILE

167

-

-
-

"~ ..

returns a list of all entries from which it has deleted
at least one attribute.

COF'YFILE

This function copies entries and attributes from
one ALISP file to another. It has a third arsument:

(COPYFILE filenaml entr~list filenam2)

Entries are copied from fileoaml to fileoam2; onl~
complete entries can be copied, so specif~inS PLIST or
VALUE attributes within eoi~~list will have no effect.
An entr~ in ect~~list, if it appears in tileoaml, is
first deleted from filecam2 if it is present there, and
then copied from fileoam1 onto the end of £ileoam2. If
an entr~ is eoi~~list does not appear in tileoaml no
deletion or cop~ing to filecam2 occurs. tileoaml
alwa~s remains unchansed. COPYFILE returns a list of
entries actuall~ copied. If eot~~list is atomic, all
entries from fileoaml are copied.

1.3.3 Printins and Listins

At some point it is desirable to know what the contents of
an ALISP file actuall~ are. LISTFILE retrieves entr~ names from
a file, while GRIND prettw-prints value and plist attributes.

168

LISTFILE

This function has the standard format:

(LISTFILE filenam entrwlist)

fileoam can either be atomic, in which case it
specifies an ALISP file in the user's catalos; or
non-atomic, in which case it has the same format and
restrictions as the arSument to OPEN in Chapter 1.15.

If eni~~lisi is atomic or omitted, all entr~ names
in fileoam wi 11 be ret'Jrned. Otherwise, LISTFILE
returns onl~ entr~ names in eQt£~list which are found
in fileoam. If a PLIST or VALUE attribute is specified
in eDt£~list, then the correspondins entr~ in tileoam
will be returned onl~ if it has that attribute. The
value of LISTFILE is a list of entr~ names found.

Some examples of the function LISTFILE will be
found in Dialosue 1.3 below.

GRIND

r,
..... _ .. ~

-

-

-

c ..

Itialosue 1.3
The Filins Function LISTFILE

?(SETG FOD 'A BAR 'B)
B FOD and BA~ are siven values,

then outputted as entries to
the file HYFILE.

?(INITFILE MYFILE)
MYFILE

?(OUTPUT MYFILE (FDD BAR»

?(LISTFILE MYFILE)
(FOO)

?(LISTFILE MYFILE
(FOO)

?(LISTFILE MYFILE

(BAR)

*

(FDD»

LISTFILE with
ret'.Jrns a list
in the file.

no eQt.r.~list.

of all entries

If eQtr.~lisi is non-atomic,
LISTFILE returns those entries
from eQt.r.~list which it finds
inthe file. Here FOD was
found.

«FOO F'LIST)
(BAR VALUE»)

Dnl~ the value attribute of
FDD and BAR exists on HYFILE,
so LISTFILE returns onl~ the
BAR entr~.

This most useful function displa~s the entries in
a file, in a prett~-printformat (see section 11.2).

The format for the GRIND function is:

(GRIND filenam entr~list -options-)

where filenam is the name of an ALISP file, and
en1~~lis1 is an entr~list for that file; an atomic
en1~~list indicates all eritries in the file.

GRIND will prett~-print all specified entries in
the file on the terminal. Options can specif~ printinS
to a file, sivins a cross-reference, and several other
useful features. Options can appear in an~ order.
Their effect is as follows:

1. SNUM

specifies printing width9 should be between
50 and 136. Default is value of PRINEND for
printins on the terminal, and 110 for the

--- ----- ---._--------

169

-.-.. __ , ... _-----_._-- -- -.. - .,--'"
., ".' -, ,---,_.----_._--'"._ ..

'-

-
-

.......

'-

.......

.'-"

batch F,rinter.

2. atom PRINTER

3.

specifies a format suitable for printin~ from
the batch printer, with a blank first column
for carriase control. Useful when GRIND'in~
to a file for later printins on the batch
printer. This option is selected
automaticall~ if ALISP is' runnin~ as a batch
Job.

atom DISPOSE

specifies a dispose to the batch printer.
The output of the GRIND is saved on a special
local file which is dumped to the batch
printer at the end of the ALISP run (see
section 1.15.1.4). Automatically selects the
PRINTER option.

4. atom XREF

produces a cross-reference of function calls
and variable usaSe at the end of the listins.

5. atom ALPHA

the output is alphabetized b~ entry name •
This option can be expensive unless the ALISP
file is short or is in nearl~ alphabetic
order.

6. an~thinS else

specifies a permanent file name to receive
the output of the GRIND. This file m~~ then
be listed usinS KRONOS commands, but note
that it is oat an ALISP file, and cannot be
read back in correctly by. INPUT.

1.3.4 Documentation and Formattins

Documentation consists of addinS comments to entries within
a file. Formatting specifies certain t~pes of control to be used
when printins an ALISP file with GRINDf . at present the only
formattins control is paSins. Both of these functions onl~
affect the printinS of files, when the GRIND function is used.
They have the common format:

170

COMMENT
(or
PAGEFILE

filenam entrylist)

~
I
.'-.

'-.-

-

..

-

-

........

'-..,

C",
.-"

......

COMMENT

Comments can be associated with each entr~ in a
file. The comment is for the entr~ as a whole; GRIND
will first print the entr~ name, then an~ comment lines
associated with it, then the value and plist
attributes. COMMENT is the onl~ wa~ to add comments to
a file.

Comments reside strictl~ on the file •. INPUT does
Dot input comments. Most other filin~ functions do
what one would expect, e.~. OUTPUT does ~ot destro~
comments if it updates an entr~;. COPYFILE copies
comments; etc. The onl~ exception is OUTPUTA, which
does destro~ the comments of an~ entries on its
entr~list. The onl~ wa~ to print comments is with
GRIND •

This function adds comments to entries within an
ALISP file~ If eoi~~li5i is atomic, comments are added
to all entries in fileoam. Com~ents must be added b~
the user from the terminal. COMMENT will print the
name of an entry to be commented on the terminal,
followed b~ the prompt -+-. The user t~pes in as .an~
lines as desired, at least one character per line,
until he wishes to end commentins of the entr~; he then
types an empt~ line (CR immediatel~ after the .+.
prompt), which ends the comment field. COMMENT then
prints the next entry to be commented, follo~ed b~ the
.+. prompt, etc., until all specified entries have been
commented.

If an entr~ specified b~ eD~~~list is alread~

commented, an interactive editins mode is entered,
where individual lines of the ori~inal comment
attribute can be deleted or replaced or added to.

When COMMENT encounters an entr~ which is alread~
commented, it prints (on the terminal> the first line
of the comment, and reQuests input with a colon
character prompt. At this point the user has two
options. If he presses CR without t~ping an~thin~, the
printed comment line is accepted as part of the new
comment attribute, and the next line of the comment is
printed. The user can keep hitting CR and acce~ting
comment lines until he finds a line he wishes to edit,
or until the comments have been completel~ p~inted out.

If the user wishes to edit
an editing command after the
command format is:

a line, he can t~pe in
line is printed. The

171

,-.

-

-

'---

-

172

'-..

where ~ is a one-letter editins command, and D is an
optional base 10 positive inteser (the spaces between
the command and 0 are also optional). The effect of
this command is as follows:

A -- add lines after

If the 0 parameter is present, this
command iSnores it. The A command reGuests
lines to be added after the command line Just
printed; the prompt character + is used. The
user can t~pe in as man~ lines as he desires'
when he wishes' to stop, he should t~pe a CR
without t~pins an~ chara6ters on a line (a
null line). After the lines are added, the
rest of the comment is edited as usual.

B -- add lines before

If the 0 parameter is present, this
command isnores it. ProcessinS is the same
as for the A command, except lines are added
before the comment line Just printed. Note
that both the A and B commands accept the
printed line into the new comment attribute.

D -- delete lines

If the 0 parameter is absent or not a
positive SNUM, the comment line Just printed
is deleted from the new comment attribute.

If 0 is a ,positive SNUM, then n
consecutive lines, startins with the one Just
printed, are deleted (and printed on the
terminal). If 0 is larSer than the number of
lines left in the old comment attribute, then
all lines startins from the printed line are
deleted.

If there are an~ lines left in the old
comment attribute after the delete command is
executed, processins continues on the line
after the last deleted line.

E -- end editins

If the 0 parameter is siven, it is
isnored. This command ends all further
editins of the comment attribute. All old
comment lines, startins from the one
currentl~ beins edited, are added to the new
commet'lt.

('
,-'

'-

......

-,,--,
f '.

.. ~j --

'-'

R -- replace lines

If the 0 parameter is absent or not a
positive SNUM, onl~ the line Just printed is
replaced. Else, 0 lines startin~ from the
printed lines are replaced; if 0 is ~reater
than the number of lines in the old comment
attribute after the printed line, all these
lines are replaced.

The R com~~nd is t~~ same as the D
command followed b~ the B command.

S -- skip lines in comment

If the 0 parameter is absent or not a
positive SNUM, then all lines of the old
comment attribute, startin~ with the printed
line, are added into the new comment.

If 0 is a positive SNUM, then Q comment
lines, includin~ the one Just printed, are
skipped over and added to the new comment
attrib'Jte.

If there are an~ lines left in the old
comment, editin~ continues.

Unless an E command has been ~iyen, COMMENT alwa~s
makes a final input reGuest when editin~ of the old
comment attribute is finished. The input reGuest is
made with the prompt character f, and can be ended with
a null line. After this final input reGuest,
processin~ of the comment entrv is finished.

F'AGEFILE

This function causes paSe markers to be inserted
in the file, so that a pa~e eject occurs when usins
GRIND. A pa~e eject skips to the top of the. next pa~e
on the line printer, and skips 5 blank lines on the
terminal.

The format for F'AGEFILE is:

(PAGEFILE filenam entr~list)

A pa~e marker is inserted befQ~e

eoi~~lisi; if entr~list is atomic, all
marked.

each entr~ on
entries are so

In order to delete pa~e markers, it is necessar~
to use the function DECFIL~, described in the next
section.

173

-

-
.........

-

1.4 Declarations

Besides property list, value, and comment attributes, an
entry in a file can have a declarations list. This list holds
auxiliar~ information used by various functions such as GRIND and
the compiler. Currently, the chief use of the declarations list
is for page markers (see previous section) and. compiler
declarations for free variables and function linka~e.

The declarations list can be manipulated explicitl~ with the
function DECFILE:

(DECFILE filenam entr~list)

The name of each entr~ in eot~~lisi will be printed, follow~d by
its declarations list (if empt~, the declarations list will print
as NIL). Next an asterisk prompt will be printed, and the user
can t~pe in a new declarations list (includins NIL). The
declarations list will be replaced on the file. DECFILE then
processes the next entr~ in the same wa~, until all entries in
eot£~lis1 have been found. An atomic entrYlist causes all
entries to be processed.

There are two special atoms which can be typed instead of a
new declarations list.

/-""<'.

'- /.~

'-

"-

' ..

1. EDIT

The ALISP editor is called on the declarations list.
Editor command can be used to alter the list. When the
editor is exited, the altered list becomes the
declarations list on the file.

2. STOP

Causes DECFILE to stop processing entries and exit.
Useful if an atomic eot~~li$t was used, and the file is
larse.

J In order to use DECFILE, one must know what the format of
declarations list elements is. Compiler decl~rations are
described in the chapter on the compiler (11.4). The paSe marker
is the atom PAGE appearins anywhere in the list. Page markers
can be deleted by deleting this atom.

.,

174

'

--
'-
"-'

-

-.

-

:

II Chapter 2

One of the ~reatest boons to the LISP
user is a sood prett~-print proSram.
Prett~-printins means that an S-expression,
instead of beins printed as a linear,
parenthesized structure (as one would input
it), has line-feeds and spaces inserted so
that it prints as a block structure.

2.1 Descxietion Qf tbe e~ett~-e~i~~ A~s9~.~Am

The difference in readabilit~ from linear to block structure
can be seen in the followins example,' utilizins the familiar
recursive factorial function:

(LAMBDA (X) (COND «ZEROP X) 1) (T (TIMES X (FACT (SUB1
X»»»

(LAMBDA. (X)
(COND «ZEROP X) 1)

(T (TIMES X (FACT (SUB1 X»»»

The first expression above is t~pical print-out from PRINT~ the
second is the prett~-print form of the same expression. Note
that it, too, is a valid S-expression, and could be read back. in
correctl~, since onl~ CR's and spaces have been inserted to
reformat it.

The task of prosrammins an efficient and readable
prett~-printer is not trivial. The alsorithm used for the ALISP
prett~-printer does a modified, truncated look-ahead down the
list structure beins prett~-printed at each print decision point.
The time taken for prett~-print is less than a Quadratic function
of the size of the list, but probabl~ sreater than linear. A

175

'-

'-

larse list which prett~-prints in about 30 lines takes around .5
seconds of CP time.

Prett~-printin9 .is most IJseful for furlction defini tions
(lambda-expressions), but it can be used with an~ t~pe of
S-expression. The basic action of the printer can be explained
in terms of three formats: linear, open, and miser •.

Linear format is used when a list can fit completel~ on a
line. This is the same format used b~ the PRINT function:

(T (TIMES X (FACT (SUBl X»»

Open format is used when there is not sufficient room left on a
line to print the complete list, but the list is not overl~ Ions:

(COND «ZEROP X)l>
(T (TIMES X (FACT (SUBl X»»>

Open format prints the first element of the list followed b~ the
second element on the same line, and succeedins elements indented
on:successive lines, as above.

,Miser format is used when space is ver~ tisht, and a Ions
list must be printed. Each element is printed on a new line,

~. elements after the first beins indented bw one space:

-

-

,

(COND
«ZEROP X) 1 >
(T (TIMES X (FACT (SUB1 X»»)

In the order in which the~ have been presented, each successive
format uses more 'vertical lines (1, 2, and 3, respectivel~) and
less page width (50, 36, and 31, respectivel~). In seneral,
prett~-printer tries to print S-expressions in as few vertical
lines as possible, so it is biased towards using linear and open
format. Overuse of open format will sGuash a Ions list asainst
the right hand marsin; too much miser format sacrifices
readabilit~. I have a truncated look-ahead that makes a decision
between these two based on a number of parameters; it works at
least acceptabl~.

In addi tion, special formats are~~~" used for SOllie functions
su~h as LAMBDA, PROG, SETQ, and others. The fu~ction QUOTE is
co~verted into the macro character '. Sometime in the future, a
macro format facilit~ will be incorporated that will enable the
user to define his own formats for special handling 6, specified
list structlJres.

The prett~-print prosram is a sroup of ALISP functions
contained on the indirect-access ALISP file PRINFNS in the AlISP
librar~. Thew are loaded with the initial ALISP s~stem. Both
the filing function (in particular, GRIND) and the editins
packase (PP command) make use of the p~ett~-print functions.

176

\~-,~

-

-

'-

'-
-

PPRINT is used for prett~-printins lambda-expressions. It
is a FLAMBDA of one ar~ument, the name of the function to be
printed. To print the function FACT, for example, use:

(PF'RINT FACT)

PPRINT will return NIL if its ar~ument does not have a valid
lambda-expression in its value cell. PPRINT normall~ returns the
name of the function it prett~-printed.

PPRINE is used to prett~-print S-expressions in ~eneral. It
is a LAMBDA expression of one ar~ument. To pretty-print the
value of FDD, for example~ use:

(PPRINE FOO)

177

-
'-

-

-

'-

. '-....

II Chapter 3

ALISE! EDlllblG

The ALISP editins packa~e is powerful means
for chansinS the structure of S-expressions in the
ALISP system. The editor is written as a Sroup of
ALISP functions, which are in the file EDITFNS on
the ALISP librar~. The editor is automaticall~
loaded with the initial ALISP syste~. One
command, pp, uses the pretty-print packaSe
(section II.2).

A list editor takes some Settins used to;
but 6nce learned, the ALISP editor is one of the
most valuable tools in· the ALISP system for
modifyinS larS~ proSrams. The followinS sections
explain how to call the editor, key editins
concepts, and the command rep,rtoire for the ALISP
editor.

3.1 Callios Lbe EdiLO~

There is only one function call for editins: EDIT, a LAMBDA
expression of one arsument. EDIT will only work on non-atomic
arguments.

To edit a function definition, use:

(EDIT FNNAME)

where FNNAME is the name of the function. Since function
definitions are contained in the value calls of atoms, EDIT sets
the value of FNNAME, that is, its lambda-expression function
definition. This is the most common EDIT call.

To edit a plist (in this case, the plist of FDO), use:

178

-
-
......

-

-
-
-(',

-'

'-

-
-
-'

------------------------------------ ---------------------

(EDIT (PLIST 'FOO»

Once the EDIT function has been called, it re~ponds b~
printinS the editins prompt character .:. and waitin~ for input
from the terminal. The user then t~pes editing commands, as man~
~er line as he wishes (or can fit), which the editor interpretes
and applies to its argument. The editin~ is ended with the
command END, at which point the function EDIT exits with value
END/ EDIT. All changes made to the edi t,"ed. I ist are permanent,
that is, the~ retain their effects after th~'exit from EDIT. A
sample session is given below in Dialogue 3.1.

Dialogue 3.1
, A Sample Editins Session
Ii
,I

'?(EDIT FACT)

!P

1 LAMBDA
2 (X)

The recursive factorial
function is bein~
edited.

3 (COND «ZEROP X) 1) •••)

The colon character is
the editor prompt. A P
command causes the ele
ments of the list beins
edited to be numbered
and printed.

:(l FLAMBDA) END
END EDIT

'?

Note that the
command it is ~iven.
EDIT· is printed.

Two commands were ~iven
on one line. The first
command replaced the
first element of the
list (which was LAMBDA)
with the atom FLAMBDA.
The second command
caused the editor to
exit. The function
FACT is now a FLAMBDA
rather than a LAMBDA
function.

editor does not print a response to ever~
At the end o~ the edit, the messaSe "END

, Err () r sear, oc cur 0 n c e r t a in' ed i tin 9 c omn,a nd s • 1ft his
ha~pens, an error messase is printed, the rest of the input line
is cleared, and the editor asks for more input. No cause for
alarm.

179

........

'-

'

-

........

......

3.2 Editing Cooceets

The editor looks at onlw one list at a time. At an~ siven
moment, the list the editor is lookins at is called the current
level (CL). When the editor is first entered, the CL is set to
its argument. The editor is able to des end from the CL b~ makin~
non-atomic elements of the CL into a new CL; and ascend from the
CL' (if it is not ~lread~ at the top) bw reversin~ this process
(see 3.3.2 below).

The'elements of the CL are referred to in editins commands
bhl number, i.e., the first element is i, the second 2, etc. Some
commands allow a reverse specification: -1 is the last element,
-2 'the second from last, etc. If an attempt is made to reference
a non-existant element (e.S., 10 on a five element list), then a
BOUNDS error will be ~iven. The last CDR element of ~ list can
be accessed b~ usins an asterisk. In fisure 3.1 some
illustrations of the element numberins s~stem for the CL are
Sivf::'n.

The CL must alwaws be a list, with at least one element. An
attempt to make an atom the CL will result in an ATOMIC SUBLIST
error, since the CL must alwaws be a list. If the CL is a
seneral S-expression rather than a true list, there is no
problem, since an asterisk can be used to reference the final
CDR. It maw be wiped out b~ certain commands, such as addinS
elements to the end of the el.

The CL corresponds to file pointers in a text-oriented
editor. Instead of movin~ back and forth alon~ text in a
seQuential file, however, the CL, as the center of the editor's
attention, moves UP and down throush levels of a list. A normal
seQuence of list editins is to find the risht CL, replace an
element of the CL, and So back to the ori~inal level.

The CL is reallw the onl~ concept needed to start usins the
editor •

3.2.1 Editor Values

Note
edi tor,
edi~or •

this section is
it maw be skipped

for sophisticated users
bw those Just learninS to

of the
use the

Within the editor~ it is convenient to have a means for
referins to different parts of the CL, or to other lists defined
within an edit. The editor uses a $ convention for this purpose.
The $ character, wherever it appears in an editor qommand, refers
to the editor value of the expresison immediatelw followins it.
The ,followins are pre-set editor values:

180

$n -- element of a list
o is an inteser. If positive, this is the nth

-
,_.

'-,

--

'--

._--------_ .. _--------

Fisure 3.1
The CL and its Elements

CL

(FDD BAR)

(FDD (A B) BAR,MOO)

«A (B» (FDD) BAR «C [I) E»

C.L Elemet'Jt.s

1 FDD -2
2 BAR -1

1 FOD -3
2 (A B) -2
3 BAR -1
MOO

1 (A (Ii» -4
2 (FDD) -3
3 BAR -2
4 «C D) E) -1

element of the list; if neSative, the oth element from
the bottom of the list. This value is actuall~ a
single-level cop~ of the specified element, so it can
be used, for example, in a replace or add command,
without fear of creating a circular list structure.

$STR -- extracted list
This is a cop~ of

extract command. If none
value NIL.

$x -- set val'Je

the list extracted b~ the
has been extracted, $STR has

~ must be an nglitat, but not STR. . Value is the
expression ~ has been set to usin~ the SET editor
command (see below, section 3.3.6).

The editor values are ver~ hand~ when doing extractions or
multiple replacements of the same list, or when used in
conjunction with the search commands. Examples of their use will
be siven with individual editor command descriptions. Note that,
within the editor~ the $macro has been re-defined to ~ield editor
values, rather than doing an immediate evaluation.

Command FOT'n,at

There are two basic t~pes of command formats:

1 • com
2. (com arsl arg2 + •• arSn)

where com is a one-to-four-Ietter commandi and acs thru a~gn are
arguments to the command. The form (com), with no arguments, is.
eGuivalent to the first format above. Some commands can be used

161

-

-
-

'-
'-'

-

"-

......... -

with either format, while some take Just one or the other. Extra
arsuments to a command are alwa~s ignored~ too few will cause an
error. If the editor cannot recosnize a command, it will sive an
eT'ror.

Editor values ($) can be used at an~ point within a command
format, or at an~ level within an arsument. They are translated
directl~ upon input into their actual values (except for the
searchins commands, which hold back assignment of some editor
values until the~ complete a successful match~ see 3.4 below).

3.3 Edito~ Commaods

This section sives a complete description of all the editor
commands, tosether with examples of their use~ The recursive
factorial function FACT defined earlier in the manual (see
section 11.2) is the principal list used in these examples.

3.3.1 Printing and Listins

One of the first reGuirements of editinS is that YOU know
wh~t ~ou are editinS. Two commands, P and pp, enable all or
parts of the CL to be displa~ed at the terminal.

P -- print elements
The P command prints and numbers elements of the

Cl. It uses the function HALFPRI for printins, so that
onl~ the first four atoms of IonS elements are printed.
Both command formats can be.used. The first format
causes all elements of the CL to be printed. If the
second format is used, a~S thru a£Sn must be intesers
specif~inS elements of the CL to be printed. Nesative
intesers can be used.

pp -- prett~-print elements
The PP command prett~-prints the Cl or elements of

the Cl. If the first format is used, the entire CL is
prett~-printed. If the second format is used, ac~ thru
a~Sn must be intesers specifwinS elements of the. CL to
be prett~-printed (nesative inte~ers are ok)9 elements
are numbered and prett~-printed. .

. Examples of the printins commands are siven in Dialosue 3.2
beI'ow.

3.3.2 Traversins list structures

It is often desirable to chanse the Cl, in order to ~et the
editor closer to a particular structure that must be operated on.
The list traversinS commands 0, GO, RET, U, and TOP provide an
ea5~ fBcilit~ for soins do~n and poppins back UP thru list

182

"

\ "..,,""

(~-)

_.

t_

-
-

'-

-
-
.......

~ -

--

Dialogue 3.2
The listing Commands P and PP

?(EDIT FACT) The P command by itself
numbers and prints the
whole current level.
Note that HAlFPRI for
mat is used to reduce
the wordiness of the
p r i r.toIJt.

:P

1 lAMBliA
2 (X)
3 (COND ((ZEROP

(P 2 1)

2 (X)
1 (lAMBDA)

X) 1) •••)

The second format for P
prints onl~ the given
elements of the Cl.
Note that the elements
are printed in the
order given by the P
command.

: F'F' pp b~ itself prett~

prints the whole Cl.
(lAMBDA (X)

(COND «ZEROP X) 1)
(T (TIMES X (FACT (SUB1 X»»»

: (F'F' -2)

2 (X)

levels.

n -- set Cl to nth element

Here the negative ele~
ment specification was
used to prett~-print

the second element from
last of the Cl.

n is an inteser, either positive or nesative,
specifyins the element of the Cl which is to' become the
new Cl. The element must be non-atomic or an error is
issued.

LJ -- set Cl 'JP levels
The U command backs the Cl UP to a previous level

after the 0 command has been IJsed. With no arguments,
it backs UP one level; with one a rSulT,ent , a positive
inteser, it backs 'JP the number of levels specified by
that inteser. If YOU attempt to back '"IP past the top
level of the edited list, an error will be issued, and
nothing done.

TOP -- set Cl to top level
Sets the CL to the top level first used as Cl when

the edit was entered. Used with no arsuments.

183

--_ __

-.

'-

-

......

.......

'-

GO -- set level marker
The GO command sets a level marker that can be

returned to with a RET command. GO saves the Cl so
that man~ list traversal commands can be used without
keepins tra~k of them; RET alwB~5 returns the Cl to its
value at the last GO. GO commands can be nested. Used
with no arSuments (first format).

RET -- return to level marker
The RET command returns the CL to the first value

when the last GO was called. If no GO had been called,
an error messaSe is printed. Dains a RET wipes out the
last GO marker. Used with no arsuments.

Examples of these commands will be found below in DialoSue

3.3.3 Element ManipUlation

These commands actuBII~ chanse list structure. Elements of
th~ CL can be replaced or removed, and new elements can be added.

o -- replace element
o must be a positive or nesative inteser

specifyins the element to be replaced. Onl~ the second
command format may be used. ac~l thru a~Sn are
elements which will be substituted for the specified
element. At least one arsument must be present.

D -- delete elements
Onl~ the second format is allowed for the D

command. a~sl thru a~sn are intesers specif~inS
elements to be deleted, in an~ order (nesative intesers.
are ok). At least one arsument must be present.
Duplicate arSuments are eliminated. Note well: the
final element of a list cannot be removed, that is, the
D command cannot delete all elements from the Cl. If
this is attempted, an error will be issued.

A -- add elements
Only the second format is

command. a~s1 must be a positive
specifYin~ an element after which
are to be 'added. If ar.~l is zero,
before the fi pst element + . a~g2
elements to be added.

allowed for the A
or ne~ative inteser
additional elements
elements are added

thru a~sn are the

Note that all of these commands can chanse the number of
elements within the Cly and this affects the operation of
subseQuent commands. If ~ou are not sure of element numberins
after one of the above commands, do a P command to print out all
the elements of the Cl, or ~ (P -1) to print out the last element
and thus find the number of elements in the Cl. Examples of the
element manipulation commands will be found in Dialosue 3.4

184

c

-

-.

t

-
.-

.-

-.
I '-'

-
. -

---------------- ---- -------

IIialoSlJe 3.3
The List Traversins Commands

?(EDIT FACT)
:3 P

1 COND
2 « ZEROP X) ·1)
3 (T (TIMES X (FACT ••• »)

:-1 F'

1 T
2 (TIMES X (FACT (SUB1 ••• »)

:U (P 1)

1 COND

:GO 3 2 P

1. TIMES
2 X
3 (FACT (SUB1 X))

RET (P 1)

1 CONII

----_ _--_._._---_._

The command 3 causes
the CL to become the
third element of the
old CL, i.e., the COND
form of the FACT func
tion (refer back to
Dialosue 3.2, and note
that the P command
reveals the COND form
as the third element).
Now the editor is act
ing on the COND form,
so that the P command
prints the elements of
this form.

The command -1 causes
the CL to become the
first element frolT! the
end of the old· CL,
i.e., element 3, the
second a rSuIT.er.t to the
COND f'Jr.ction.

The U command causes
th~ CL to move back UP

one level, undoing the
effect of the -1 com
mand. Now the CL is
the COND form asain.

The GO command saves
the CL for later recall
bw the RET command.
The 3 and 2 commands
traverse down the COND
form,fin~ll~ ending UP

by making the CL be the
TIMES list.

The RET command causes
the CL to be reset to
the list which was the
CL when the last GO
command was executed.
The CL is back at the
CONII form asain •

----_ .. _--.... - ... _ - ... _ ...

185

,-.

'-'

-
"-

'-
-

,,-.

tTOP (P

1 LAMBDA
2 (X)

:END
END EDIT

?

1 2) The TOP command sets
the CL back to the
oriSinal CL when the
editor was entered,
i.e., the LAMBDA form.

below.

3.3.4 Level Manipulation

At times it is desirable to
element, either to make it
sub-elements into CL elements.

chanse the level position of an
a sub-element, or to make its
Take, for example, the list:

(TIMES (X FACT (SUB1 X»»

There is an extra set of parentheses after the atom TIMES. What
should be done is the elements of the list (X (FACT (SUBl X»)
should be made elements of the list (TIMES •••), that is, the~
sould be moved UP one level. This can be accomplished with the 0
command.

Similarl~, it is often necessar~ to convert elements to
sub-elements, for example in the list:

(FACT SUBl X)

What should be done here is combine the elements SUBl and X into
a sinsle element, (FACT (SUB1 X». This can be accomplished with
the C command. In combination, the 0 and C commands can effect
an~ arbitrar~ level manipulations'reQuired.

186

o -- open elements into CL
The a command takes SUb-elements of specified

elements of the CL and moves them UP as elements of CL.
ES5entiall~, it removes a set of parentheses from
specified elements. Onl~ the second command format can
be used. a~Sl thru a~sn are positive or nesative
intesers specif~ing elements to be opened, in an~
order. Duplicate arSuments are isnored. All specified
elements must be non-atomic.

C _.- close elements in CL
The C (~olTJmand combines one or several elements

from CL into a sinSle element of CL. It takes two
arsuments, both positive or nesative intesers. a~~l

specifies the first element to be included, acs2 the
last; obviousl~, a~.l must specify an element before

'

.......

--
"'-

- -
-
-
'-
-
-

-.

c'

Dialogue 3.4
Element Manipulation Commands

7(E[lIT FACT)
:3 :3 2 P

1 TIMES
2 X
3 (FACT (SUBl X»

:(1 PLUS) (P 1)

1 PLUS

:(-·1 Y (Z» F'

1 PLUS
2 X
3 Y
4 (Z)

(D 3 -1) F'

1 PLUS
2 X

:(A 2 (FACT (SUBl X» Y) F'

1 PLUS
2 X
3 (FACT (SUBl X»
4 Y

:(1 TIMES) (D -1) F'F'

(TIMES X (FACT (SUBl X»)

The three commands 3 3
2 take the CL down to
the level of the TIMES
function.

The first command here
changes element 1 from
TIMES to PLUS.

The -1 command replaces
the last element of the
CL with twa elements, Y
and (Z). Thus the
length of the CL has
been e>~panded

three to four.
from

The D command deletes
the third and fourth
elements from the CL.

The A command adds,
after element 2 of the
el, the two additional
S-e>,p ress ions
(FACT (SUBi X» and Y.
A~ain, the len~th of
the CL has be~n
chansed.

The 1 command repla6es
the first element with
TIMES, and the D com
mand deletes the last
element. Now the orig
inal TIMES list has
been restored.

a~g2 in the CL. All elements from ac~1 to a£g2 are
closed, inclusively. If acsl=a£~2, only a single
element is closed. Essentially, the C command puts an
extra set of parentheses before acsl and after a~s2.

Example of these two level manipulation commands will be
found below in Dialogue 3.5.

187

'-

"-'

168

Dialosue 3.5
Level Manipulation Commands 0 and C

..

?(EDIT FACT)
:F' (0 3) F'

1 LAMBDA
2 (X)

3 (CONII « ZEROP X) 1) •••)

1 LAMBDA
2 (X)

3 CONII
4 « ZEHOP X) 1)
5 (T (TIMES X (FACT ••• »)

!.< C 3 5) P

t L.AMBDA
2 (X)
3 (COND « ZEROP X) 1) •••)

:3 2 P

1 (ZEROP X)
'"> 1 4~.

: (C 2 2) (P 2)

2 (1)

"

:(0 2 l) F'

1 ZEROF'
2 X
3 11

: <t 1 2) F' END

1 (ZEROP X)
'")
"- 1
END EDIT

?

The 0 command was used
to open the thi rd elf?
ment of the CL. This
caused the COND list to
be opened onto the CL,
so that elements of the
COND list are elements
of the CL. Note that
the lensth of the CL
chansed, as is usual
with the a or C com
mands.

The C command closed
the elements 3 thru 5
of the CL as one list.
This reversed the
effects of the 0 com
mand; 0 and C can be
used as inverses.

First the CL is sent
down several levels to
the first COND clause.
Then the C con.mand is
applied to the second
element of the CL, 1 •
Note that when the C
comrr,and has eaual arsu-
mer,ts, the effect is to
make a one-element
list •

The 0 command opens
both the first and sec-
ond elemer.ts of the CL,
~ieldins a new CL with
3 elements.

The C command closed
the first two elemer.ts,
restorins the COND
clause to its orisinal
form.

~'" ,_. ,I

(',
,,---,,'

/'
I
\
\'-.-'

-
-

c."
"-

.......

-

·c·,
I

~·5.3.5 Undoing

Ever~ command in the editor is undoable, which is to say its
effects are reversible. Think of commands which are siven to
the editor as beins k.ppi. in a stack. At an~ Siven moment, the
state of an ~dit is siven b~ this command stack. Undoins causes
the last entries to the stack to be popped and their effects
reversed. For example, suppose the stack is:

F'
(D 3 4)
2
(3 (QUOTE FOO))
GO
:I.
(A 2 X)

Most recent 8ntries ar0 at the bottom of this list. If the last
three commands, sa~, are undone, the stack will look like:

F'
<D 3 4)
2
(3 (QUOTE FOD»

and the state of the edited list will be exactlY the same as if
onl~ the four above commands had been siven. Subseauent undo's
will pOP the stack further; you can't undo an undo. All
commands~ even those which don't affect list structure such as P
or pp, ~re inlcuded in the command stack. The B command is used
for undoinS.

B -- back UP command stack
If the first format is used, the last command is

undone. If the second format is used, a~~l must be a
positive inteser specif~ins the number of commands to
be undone.

CLR -- clear command stack
The CLR command undoes the effect of ever~ editor

command. The CLR command is a last resort if ~ou have
totallY screwed the function YOU are editins; it
restores the function to its orisinal form. No
arsuments are used.

Examples of the undo commands will be found in Dialo~ue 3.6
belc)w.

3.3.6 Settins and Extraction

SettinS and extraction commands are used in conjunction with
editor values to move lists from one place to another in an

189

'--

.......

-
-

-'

'-.

ItialoSjue 3.6
The Undo Commands Band CLR

?(EDIT FACT)
:3 '")

.:.. F'

1 (ZEROF' X)
r) :l A"..

: (1 NIL) F'

1 NIL
2 1

: (B 2) P

1. (ZEHOP X)
2 1

: (8 3) P

1 COND
2 « ZEROF' X) 1)
3 (T (TIMES X (FACT ••• »)

:CLR PEND

1 L.AMBDA
2 (X)
3 (COND «ZEROP X) 1) •••)

190

The editor here 90es
down several levels of
list structure, then
changes the value of
the first element of
the CL from (ZEROP X)
to NIL. The command
stack now has five com
i.e., the print and
mands on it: two
level-changing com
mands, a print command,
a replace command, and
another print command.

The B command undoes
the effect of the last
two editor commands,
replace commands. Note
that the first element
of the CL has been
restored to its origi
nal value. The command
stack now has four com-
mands on it: two
level-changing com-
mands, a print command,
and the print command
Just completed.

This B command undoes
the last three com
mands, so that
effectivel~ onl~ one
command remains, the 3
command at the begin
ning of the edit. Note
that the B command
undoes the effect of
level changes in the
el, as well as changes
in list strDcture.

The CLR command undoes
the effect of ever~
command; the CL is back
at the top level of the
FACT function.

END EDIT

(""---'1
,::::-.---' (? d i ted s t rue t u Y' e • The e ~"d, r act, com man d , S TR, set s th e e ~.: t r act

buffer to the CL or an element of the CL. The set command, SET,
gi.ves a !"lance to a list structure so that it can be referenced in
subse~uent commands as an editor value (see section 3.2 above).

_.

SET -- set editor value
Onl~ the second format can be used with the SET

command. a~gl must be an nslitat, but not STR. acs2
can be an~ S-expression. The effect of SET is to cause
a£Sl to have an editor value of acs2. This value can
be accessed later by using ·ac~l· in an editor command.

STR -- set extract buffer
The STR command sets the extract buffer to either

the CL or an element of the CL. The previous value in
the extract buffer is flushed. If the first format is
used, the buffer is set to the whole CL. If the second
format is used, a~gl must be a positive or negative
interger specif~ing an element of the CL to which the
buffer is set. The value in the the extract buffer is
accessed with DSSTR w •

Examples of the setting and extraction commands will be
found in DialoSue 3.7 below.

(~'
~J 3.3.7 Conditional Editing

-

There is one conditional command, IF, for use with the
editor. It is most valuable when used in conjunction with the
search commands (see section 3.4 below). The IF command
(:':1 val u a t f~ san S - e ~.~ pre s 5 ion and, i f the res IJ I tis non'-NIL, a p pI i e s
a bunch of editor commands.

IF conditional edit
Onlw the second format can be used with the IF

command. a~gl is an S-expression which is evaluated
with EVAL. If the result is non-NIL, acs2 thru a~~n
are treated as editor commands. If the result is NIL,
no editor commands are called. Editor values ($) can
be used in a~gl fur testin~.

Examples of the conditional editin~ command will be found
below in Dialo~ue 3.8.

3.4 Sear.cb Commands

t.he
These aT'e

user can do
the most powerful editin~ commands. With them,

context-oriented editin~, b~ lookin~ for list

191

'-

......

.......

"-

'-

--
.......

'-.'

\.,'..,

Iiialogue 3.7
The Settins and Extraction Commands SET and STR

"r(EDIT FACT)
:(9ET FDa (TIMES x V»~ 3 3 P

:1. T
2 (T I MES X (FACT SUB 1 ••• »)

: (STR 2) (2 $FDD) (P 2)

2 (TIMES X Y)

: (2 $STR) PP

(T (TIMES X (FACT (SUBl X))))

:(A 1 $FDD) (P 1 2)

1 T
2 (TIMES X Y)

structures which match a pattern.
commands is the pattern matcher.

3.~.1 Pattern Matchins

The SET command sets
the editor value of
FDD to the list
(TIMES X V). The ALISP
value of FDD is
unaffected, and .will
remain the same as it
was before the edit.

This command sets the
extract. buffer to the
second element of the
CL. The next command
replaces the second
element with the editor
value of FOD, i.e., the
list (TIMES X V).

The STR command
restores the second
element. to the value of
the e~<t ract buffer.
the e:·:tract buffer is
not char.£fed b~ this
operatior ••

The editor value of FDD
is used here in the A
command to add the list
(TIMES X Y) after the
first element of the
CL.

The heart of the search

The workings of the pattern matcher must be understood
before the search commands can be used. Dasicall~, the matcher
takes a pattern composed of constants and variables, and tries to
match it to structures in the list being edited. The pattern can
either be a single atom, or a multi-level list structure. A?
character in the pattern indicates a pattern variable. Examples
of patterns:

FOD

192

('
''-..... /

.......

-

. -
......

-

'-

''-.--

C.
-' , '

---.-.-.------.-------- -_ .. _ .. _._------ -----------

IJiBlostle 3.8
The Conditional Editin~ Command IF

1(EDIT FACT)
: (P 1) (I F (EQ $1 ' LAMBDA)

1 LAMBDA
(1 FLAMBDA) (2 (Y») F'

2 (y)

3 (CONn « ZEROF' X) 1) •••)

:(IF (AND (EQ $1 'FLAMBDA) (ATOM
$2» F'F')

:(IF (LISTP $2) (1 LAMBDA)
(2 (X» (P 1 2»

1 LAMBDA
2 (X)

(FDD BAR)
(FDD ? (BAR 11»
(?VAR FDD (?VAR2 BAR»

The first print command
shows that the first
element of the CL is
LAMBDA. The second
command is an IF com
mand, which continues
across several input
lines. The first ar~u
ment of the IF command
uses the $1 to test if
the first element of
the CL is the atom
LAMBDA. Since this
test is successful, the
IF proceeds to use the
rest of its arsument as
editor commands,
chansin~ the first ele
ment of the CL to
FLAMBDA, the second
element to (Y).

This IF command fails
because the second ele
ment of the CL is not
atomic.

This IF command
succeeds, replacins the
first element of the CL
with LAMBDA, the second
with (X).

(1(VAR (EQ =VAR 'COND» BAR FDO)

Everythin~ not immediatel~ preceeded b~ a ? character is a
constant, and must match exactl~ its correspondin~ _part in a list
structure in order for the match to succeed.

A ? b~ itself (third pattern above) IT.atches an~ element of the data. Thus:

(FDD 1 BAR) matches (FDD NIL BAR)
(FDD (QUOTE MOO) BAR)
(FDD FOD BAR)

blJt not (FDD BAR)

193

.......

'-,.

'

-
"",.

"--

.........

._.

(FOO MOD (MAR) BAR)

A 11 by itself matches any number of elements in the data.
Thus:

(FDD 11 BAR) matches (FDD NIL BAR)
(FOD (QUOTE MOO) BAR)
(FOD (QUOTE MOO) BAR)

and also (FOO BAR)
(FOD MOO (MAR) BAR)

AlonS with the variable indicator characters, a variable to be
bound to part of the data at match time can be specified. For
instance, in the fourth pattern above, 1VAR matches any first
element of the data~ and binds VAR to that element. The bindinS
is accomplished b~ settin~ the editor value of VAR to the element
if the match succeeds; it can then be accessed with $VAR.
E~·~2:IfIP I es :

ea.t.texn

(FDD 1VAR)
(FDD 1VAR)
(FOD "??VAR)
(FDD ?1VAR)
(FOO 11VAR)

da±.a

(FOc) BAR)
(FDD (QUOTE BAR»
(FOO)
(FOO BAR)
(FOO BAR (MOO»

BAR
CQUOTE BAR)
NIL
(BAR)
(BAR (MOO»

Finally, conditions can be on the type of data which a
variable will match. Thi~ type of pattern is present in the
fifth pattern above. The format is:

1(var eHP)
or

where ~ac is an nSlitat, and e~e is any S-expression. On
encounterins a form like this in the pattern, the matcher first
binds ~a~ to the correspondinS part of the data, then evaluates
e~e (which contain =var to access the bindin~ of ~ac) and
succeeds if the result is non-NIL. Thus:

(FDD ?(VAR (EQ (CAR =VAR) 'COND» BAR)

matches (FOD (COND) BAR)
(FOO (COND (X X) (T T» BAR)

but not
(FDO (X CONII) BAR)
(FOD BAR)
(FDO COND VAR)

One must exercise caution when usin~ this format for pattern
~ variables. Note that attemptin~ to match the last data, (FDO

COND BAR), will ~enerate an error when the ekpression (CAR =VAR)

194

.... ,.

...... _ •• J>I

'-'

is evaluated in the pattern. To be perfectly safe from this kind
of error, the following expression should 'have been used:

1(VAR (AND (LISTP =VAR)(EQ (CAR =VAR) 'COND»)

When usin~? or 11
there be no space between
expression. The followin~
data:

('? VAR FOO)
(?VAR FDO)

with variables, it is important that
the macro character and the variable

two patterns match wholl~ different

The first pattern matches data lists with three elements; the
se~ond matches data lists with two elements and binds VAR to the
fi T'st element ..

Both 1, $, and = are macro characters in the editor, and
cannot thus be inputted in pnames unless slashed. Do not use STR
as a variable with ? unless ~ou do not intend to use the extract
editor values ($STR, see section 3.2.1), with which it will
conflict.

3.4.2 Find

. The find command, F, searches for a data structure which
matches a pattern, then applies the editor to the list of which

~ that data is an element. The find format is:
(---
',-"" (F pat coml com2 ••• comn)

where eat is a valid pattern for the matcher as discussed in
3.4.1 above, and com1 thru comn are optional editor commands to

~ be applied each time a match to eat is f~und.

"-

The order of events on invocation of the find command is as
follows:

1. The CL is searched linearl~ from left to ri~ht for
a match to eat. If no match is found, the find
ends with the messaSe lEND FIND ' •

2. When a match to eat is found, the editor is called
with a CL of the list in which the match was made.
All variables bound in the match have their
correspondinS editor values (see 3.4.1 above).

3. The editor checks to see if there are an~ CQ& in
the find command; i~ so, they are interpreted as
editor commands. If not, the CL is printed.

4. The editor
as its top

is now operatins with the matched l~st
level. All edito~' commands, even .ore

195

.......

-
'-

'-

-

'-

'-....'

F's can be called at this point. UndoinS will
work, but onl~ with bommands siven in this
particular find call. The U ,command cannot be used
to so back further than the orisinall~ matched
list.

5. To exit from the find, either END or ENDF can be
used. END causes the command to So back to step 1
and find the next occurrenCe of the pattern. ENDF
causes the find to exit without searchins for other
matches. Both END and ENDF could, of course, have
been used as comn in the find command itself. On
exit from a find, the CL is the same as before the
find was entered.

Basicall~, there are two modes to the find command.
Iriteractive mode is when one of the cam are included, so that the
CL is printed each time a match is successful, and the editor
waits for input from the user. Automatic mode is when the cam
are included, and the last one is an END or ENDF command. In
automatic mode, nothins is printed out (unless one of cam
commands is a P or PP) and the find exits automaticall~, without
waitins for user input. A compromise mode is achieved if cam are
included , but no END or ENDF. Then a few commands a~e applied
automaticallY on each match, and user input is also accepted.

Some examples of these three modes of the F command are
siven below in Dialo~ues 3.9, 3.10, and 3.11.

The B command considers ever~thins done under one F command
to be a sin~le command. Thus backinS UP the command stack after
doins an F backs UP past ever~thins done in that F. Within the
F, a local command stack is used, so that commands within an F
command can be undone. Once the F ~xits, however, all these
commands are considered as one bw the undoins command.

The replace command, R, searches for a data structure which
matches a pattern, and replaces or deletes that structure. The
replace format is:

(R pat dat)

where ~at is a valid pattern for the matcher, and da1 is omitted,
a delete is done.

Within dai, editor values can be specified which depend on
ma~cher variables in eat. A copw of dat is used in replacements,
so that there is no need to fear circular list structures. ,

196

Finall~, it is impossible to delete the last element tn a
I i sit, and the R command thus canrlot delete all elements from the

(---...,
I,

........ ~" '

(~

' '

,-.

IIialoSIJe 3.9
The F Command: Interactive Mode

?(EDIT FACT)
: (F X)

1 X
END

1 ZEROF'
2 X
: (2 Y) END

1 TIMES
2 X
3 (FACT (SUBl

3 P TOP F' .
1 FACT
2 (SUBl X)

1 TIMES
2 X

X))

3 (FACT (SUBl X»

:ENIIF

: (F (ZEROF' ?V»

1 (ZEROP X)
2 1
: (2 $V) P
1 (ZEROP X)
2 X

The F command searches
for all occurrences of
the atom X.

The first X found was
the variable list of
FACT. Note that F
applies the editor the
list of which X is. an
element. The END com
mand causes the F com
mand to search for the
next occurrence of X.

Here the user replaces
X with Y, then uses END
to start searchins for
the ne:·:t X.

The user -Soes down one
level to element 3,
then Soes back to the
top level with TOP.
Note that the TOP com
mand will onlw So back
as far as the matched
list when the F command
is irl effect.

The ENDF command halts
the F command.

The pattern siven to
the F command matches
the list (ZEROP X).
The variable U has an
editor value of X.

CL. . If ~ou attempt to do this, an editor error will be issued.

Be extremel~ careful with
powerful list-alterinS function.
thoush, with the B command.

3.5 Ediio~ E~~o~s

the R cOrTlmand,
Its ef1'ects

it is a ver~
can be urldone,

197

______ •• ____ • _________ •••• ' o ••• _._,. __ ." •• ' ••• ___ • __ ••••• _____ • ____ •• __ •••••••• """ ... ,.,, ,--_.".-,.-------•• _-- ••• - •••••• -. _ ••••••• "".,.-•• ' •• -, ••• -----.

'-

DialoSI_le 3.10
The F Command: Automatic Mode

?(EDIT FACT)
:(F X (A -1 FOO) END)
END FIND
:pp

(LAMBDA (X Faa)
(CONII

«ZEROP x FOO) 1)
(T (TIMES X (FACT (SUBl X» FOO»»

:(F X (D -1) END)
END FIND

Dialosue 3.11

This F command searches
for a list which
contains the atom X,
and adds the atom FOD
as the last element to
each such list. Note
that the END command is
siven within the F com
mar,d.

This F command reverses
the effects of the pre
vious one b~ . deletins
ever~ list containins
x.

The F command: Mixed Mode

?(EDIT FACT)
: (F X

(IF (NULL (MEMBER ·ZEROP $O»END)
, p)

1 ZEROP
2 X
:ENDF

Here the F command
searches for all lists
which contain the atom
X. The IF command
iSnores all those ~hich .
do not contain the atom
ZEROPJ when one is
found which does, the F
command p~ints it.

The editor traps all errors, The messase printed on the
terminal should be of the form:

USER-ER FROM EDIT
n,eSSC3Se

The edit command which called the error is not performed, and any
commands after it in the input buffer or in a find or IF command
strins are aborted.

198

-

-

III CHAPTER 4

COlIleileJ!

An overla~ compiler is available for use
with ALISP functions. Savin~s in space and
execution time of functions results from
usin~ the compiler.

This PBckaSe performs compilation and loadin~ of ALISP
functions. Savin~s in execution time, core stora~e, and GC time
will result from compilation of user functions.

Complete linka~e between compiled functions and other
functions and slobal variables is possible. However, tracins and
backtracinS of functions called from compiled functions will
never occur. Debus ~our prosrams before ~ou compile them.

User functions to be compiled must reside on an ALISP file.
The compiler accepts ~n~ number of such files as input, and
either loads the compiled code directl~ into core, or saves it in
another file for later loadins b~ the assembler.

Where proSram se~mentation makes it feasible, ~roups of
functions can share the same core space as overla~s. The overla~
option is described in more detail below.

The compiler is invoked with the com.and:

(COMPILE flist fn)

Neither flisi or fo is evaluated. flist is either a si"~le file
name or a' list of file names which hold the functions to be
compiled. If the first ato~ of flist is overla~, an overla~ will
be compiled (see below).

199

.......

-

-

fo directs the output of the compiler. If it is the atom
LINK, the compiled functions will be loaded directl~ into core.
If not, fo is the name of the file to which the compiled code
will be sent. This code maw be loaded at an~ later time with
LAP, the ALISP assemblw pro~ram.

The compiler will print a list of functions compiled, and
the amount of core used if the LINK option was selected. In the
latter case, LAP maw also print some error messa~es in loadin~
incorrectlw compiled functions. The user should consult the LAP
error section below.

In addition to compilin~ function definitions, the compiler
wil~ input all plist definitions (LINK option) or send them to
the output file. If an entrw value is not a function. or has
been declared NOCOHPILE, then the compiler will also input that
value as an S-expression (LINK option) or send the value
definition to the output file. Thus, the COMPILE function acts
Just like the INPUT function in loadin~ an ALISP file into the
ALISP swstem; the onlw difference is that some functions are
compiled into machine subroutines.

Before compilin~ a file, the user should check carefullw
that all function and variable linka~es are correct, as described
below.

When a function is compiled, the value of the atom which is
the function name chan~es from a lambda-expression (list
structure) to a machine lan~ua~e subroutine (PNUM). All
uncompiled functions which call the compiled function will simplw
use this PNUM instead of the lambda-expression. Even functional
arSument uses of the compiled function will work correctlw,
thanks to the McCarthw EVAL. No proble~$ here, unless ~ou were
explicitlw manipulatin~ the list structure of a lambda-expression
~ou compiled.

When a function is
algo set compiled into
main twpes:

compiled, the function calls
various linka~e$. These fall

it makes
into two

200

i. Machine lambda subroutine calls.
Calls to pre-defined functions, previousl~

compiled functions, and concurrentl~ compiled functions
all use a verw fast link. All information as to the
name of the function bein~ called fs lost; inste~d a
direct Jump to the function code is made. If the
function beinS called is later re-defined, this linka~e
will still be to the old function definition. Tracin~
and backtracin~ of this linkaSe is n~t possible.

If a function to be compiled is onlw called bw

I~
'-.- '

C--·":
/' -

-
-
_.

"-

f
r---

\..../

4.3

wa~s.

functions which are compiled alon~ with it, then it is
no lon~er necessar~ to keep the called function name
around after compilation. Removins the name relieves
conflictin~ name problems and frees UP space on the
DBlIST. If a function is declared NONAME,' its name
will vanish after compilation (see section on
declarations below).

ii. lambda-expression function calls.
Calls to undefined or uncompiled functions use

this linkaSe. The name of the called function is
retained, and if the called function is re-defined, the
linkase will be to the new function definition.
Tracing of this linkage is not possible~ If the called
function is undefined on execution of the call, a
FUN-ERR from APPLY will result.

A function call ma~ be explicitl~ compiled with
this link b~ using the LAMBDA or FLAMBDA declaration
(see below, Declarations).

One further problem exists in linking to functions
which are undefined at compile time, or which are used
as functional arguments. The compiler must make a
decision as to whether an undefined function's
arsuments are evaluated or not. The default. is that
the~ are evaluated. The user can cause them to be
unevaluated b~ declaring the undefined function to be
of t~pe FlAMBDA (see below, Declarations).

All
function
function:

functional
are also

(DE FOD (BAR)

expressions within. a
compiled. For exa~ple,

compiled
in the

(DREDGE BAR (lAMBDA (C) (CONS.C MOO» (CDR BAR»)

the lambda-expression in the call to DREDGE will be
comp i 1 ed into a .PNUM. I f ~ou wish to pass a
lambda-expression as a list, rather than havin~ it
compiled, use (QUOTE (LAMBDA ••• » rather than (LAMBDA ...) .
Uar.iable Biodiogs

The variables of a function can be compiled in either of two

i. If the variables are referenced onl~ within that
function, then the variables are compiled to locations
on the stack, and their names are lost. The~ will no
lon~er reference the value cell of the variable· atom
name. An~ functions, compiled or uncompiled, which the

.......... _- _ .. __ .----------------

201

-

-
-

202

compiled
variables.

function calls, cannot reference these

11. Variables whose value cells must be referenced
outside the compiled function (~lobal varaibles) must
be declared SPECIAL (see below, Declarations). A
SPECIAL variable in a compiled functions retains its
name, and the compiled function will reference the
value cell of that atom. Thus compiled SPECIAL
variables will perform as normal uncompiled variables,
and will show UP on backtrackin~ output.

All swstem switches (OUTUNIT, INUNIT, etc.) are
automaticallw declared SPECIAL.

Be careful when usin~ compiled function' vari~bles
as free variables in functional expressions. For
example, the function:

(DE FDa (X)
(BAR Y (LAMBDA (Q) (LIST Q X»»

should have X declared SPECIAL, since it is unbound in
the lambda-expression. An exception to this rule is
the MAP ~roup of functions. The function:

(DE FOD (X)
(MAPC Y (LAMBDA (Q) (LIST a X»»

need not have X declared SPECIAL when compiled.

Remember to declare SPECIAL all variables in all
lambda-expressions of a compiled function, which are to
be used ~loballw (freel~) in functions called b~ the
compiled function.

4.4 Declar.atioos

There are four t~pes
listens to. All can be
DECFILE function (see 5.>.

i • NOCOMF' I LE

of declarations the compiler
sent to a file usins the

An entrw in a file, if declared NOCOHPILE, will be
inputted unchansed bw the compiler. The atom NOCOHPILE
must be put on the declarations list of the entrw.

ii. NONAME
An entrw in a file, if declared NDNAHE, will lose

its name when compiled, and cannot be referenced bw anw
other function. All calls to the compiled function b~
cOITIPiled functions in the same file(s) will be correct,
however. Note that all references to the atolTl declared

r~'
I

\ ~~

-

-
-

- -,
(" - ./

'-'

-

-
-..

NONAME, whether to its plist or value, will not find
the atom; it will be WIPE'd. The atom NONAME must be
put on the declarations list of the entr~.

iii. SPECIAL
Variables used sloball~ (freel~) outside a

compiled function (except in MAP function calls) should
be declared SPECIAL. All s~stem switches are
automaticallY SPECIAL.

Variables bound b~ a function can be made SPECIAL
b~ puttins a list of the form:

(SPECIAL varl var2 ••• varn)

on the declarations list for that function. The
SPECIAL status lasts onl~ durins the compilation of the
function; other functions which have thes~ atoms as
variables must also declare them SPECIAL if the~ are to
be used Sloball~. Note that functions which merel~
refer to the slobal variables, as opposed to bindins
them in a LAMBDA or PROG expression, need not declare
them SPECIAL.

iv. LAMBDA or FLAMBDA
A compiled function call can be declared either a

LAMBDA or FLAMBDA function call (evaluated ar~uments,
respectivel~) if the function is either undefined, or a
defined function t~pe is to be overridden. For
example, the form:

(FDO X Y)

where FOO is an undefined function at compile time, ~an
be compiled either as a LAMBDA or FLAMBDA function b~
puttins the list:

LAMBDA
(OT' FDO)
FLAMBDA

on the declarations list of the function where the form
occurs. Default for undefined functions ~s LAMBDA.

4.5 ~est~ictioos 00 Comeiled Euociioos

1. All GO's and RETURN's to a compiled PROG must occur
explicitl~ in the bod~ of the PROG, and not in functions
called b~ the PROG.

2. No GO's with evaluated arsuments ma~ be used in comp~led
PROG' s, i. e., all GO statements must be of the fOT'm:

203~

-
-

-
-

-
-

-
-
-
-

-

' .. ,,.. ... ~"''''-''''.~~,,,~. '-..,f" :""'V~ ~""'. ~.~ •• , , ••• , .•

(GO label)
I

\
where label is an atomic \PROG label. An~ references by
GO to undefined labels wilJ be trapped as an error.

3. GO's and RETURN's in comp~led functions that are called
by uncompiled PROG's will ~ork correctl~.

4. LABEL is uncompilable at present.

4.6 Defioio9 O~e~la~s

An overlay is a group of compiled functions that share the
same core space. Swappins of overla~ functions is automatic and
involves a minimum of CP time, but disk time for each swap is
appreciable (on the order of 200 milliseconds). Therefore
reasonable losical sesmentation of overl~~ function groups is
important to reduce the number of swaps reauired. Each time a
function not in fni is called, the cor~ect overlay sesment is
swapped into core, the function is executed, and fni is swapped
back into core at completion of the execution.

In all respects, overlay functions 10Sicall~ act like normal
machine subroutines (PNUM's).

4.7 Ihe asseroble~ (La~)

IF compiler output has been sent to a file, then the
assembler can be used to load that file. Use:

(LAP fn)

where fn is the name of the file that has the compiled code. The
LAP prosram is almost as fast as the KRONOS COMPASS assembler,
loadin~ 140 lines of macro instructions per second of CP time.

Routines that must execute in mi~imumtime (those bottleneck
inner loops) can be hand-coded usins a macro instruction set.
Specifications on this set, as well as the internal specs on on
ALISP necessary to write correctly linkins code, are not ~et
available (cough, couSh).

204

.-.--- -- .. _ __ ._._._---_ ... _ .. _- ._-_.

Appendix B / ALISP User's Manual

Appendix B

ALISP Control Card

This Appendix describes the legal param
eters and default values for the ALISP con
trol card. Both batch and TELEX origin jobs
are considered.

The comma, period, and slash are the only valid ALISP con
trol card ·separator and terminator characters. After each comma
must appear one of the valid control card parameters listed
below, unless the LD parameter is used; in this case, the user
does his own control card processing.

IF

LD

NEWS

Appendix B / ALISP User's Manual

Input an
ALISP file

ALISP load
file
(overlay)

ALISP
system
news

FL=n

omitted

IF

n must be an integer. The maxi
mum field length is set to n.

no action.

The ALISP file f.tYFNS is inputted
from the user's c~talog.

IF=pfnl=pfn2 •••

The ALISP files p~nl thru pfni
are inputted from t e user's cat
alog.

IF=pfnl/usernum/passwor=pfn2 •••

omitted

LD

LD=pfn

Alternate user number and pass
word are specified for the ALISP
file.

No action.

ALISP overlay file MYLOAD is
loaded from the user's catalog.

ALISP overlay file tfn is loaded
from the user's cata og.

LD=pfn/usernum/passwor

omitted

NEWS

NEWS=T

Alternate user number and
password specification for
overlay file.

No action.

file
the

Most recent ALISP system news is
printed on SYSOUT.

All ALISP system news is printed
on SYSOUT.

B.2

PE

51
•

so

TL

Appendix B / ALISP User's Manual

Print line
length

SYS1N
unit

SYSOUT
unit

Time
limit

omitted

PE

PE=n

omitted

S1

SI=pfn

PR1NEND is set to 72 for time
sharing orgin jobs, 130 for batch
origin jobs.

PRINEND is set to 100.

n must be an integer from 1 to
Tso. PRINEND is set to n.

SYSIN is set to 0, i.e., the·ter
minal on timesharing, the card
reader on batch origin jobs.

The permanent
opened as unit
set to 1.

file INFILE is
1, and SYSIN is

The permanent text file pfn is
opened as unit 1, and SYSIN is
set to 1.

5I=pfn/usernum/passwor

SI=n

omitted

so

SO=n

omitted

TL

Alternate user number and file
password specified on pfn.

n is an integer from 1 to 4.
SYSIN is set to local unit n.
The local file ITAPEn shouTd
exist before ALISP is caIled.

SYSOUT is set toO, i.e., the
terminal on timesharing, and the
printer on batch ori0in jobs.

SYSOUT is set to local output
file unit 1'. tV-hen ALISP exits,
local file OTAPEI will have the
output from the supervisor.

n must be an integer from 1 to 4.
SYSOUT is set to local output
file unit n:. when AL1SP is
exited, OTAPEn will have the out
put from the supervisor.

Tine limit remains unchanged when
ALISP is called.

Time limit is set to 64 CP sec
onds.

'8-3

... _ , _•. ,._ .. __ .,... _ _ ... , _._._ .. _-_._------------_._------------

Appendix B / ALISP User's Manual

TL=n n must be an integer. Time limit
Is set to n.

•

.r - . ~,

l '
~

.. ---_. __ ._---------_ .. _-----------_. ----.----...... ------.-.---.----------------

Appendix C / ALISP User's Manual

Appendix C

Initially Defined Functions and Switches

This Appendix details the pre-defined
function and switch names found in the ALISP
system when it is initially loaded.

There are four columns in this table. The first column is
the atom name. The second column is the type of its value, as
either a function or a switch. Function types are given as SUBR,
FSUBR, etc.; an integer immediately following it specifies the
number of arguments to the function, if it takes a definite num
ber. The third column is a brief description of the function or
switch. The fourth column is a list of references to chapter
sections in which the atom is described in more detail.

Within the description given here, argl, arg2, etc., are
used to name the arguments to the function; argn is used as the
last argument. When an argument is qualified (such as, "the list
argl"), it indicates that the function normally takes that data
type for its argument. These restrictions are not absolute, how
ever; for instance, NCONC will work on atomic as well as non
atomic arguments. See the references for more detail.

Atom Value Descrietion Refer-
Name ~ ences

ABSVAL SUBR,l Returns the absolute value of nwn- 11.3.1
ber argl.

ADDEL SUBR,3 Adds argl after SNUM arg3 element 10.3.2
of list arg2.

ADDG'l' SUBR,2 Address comparison of argl and 9.4
arg2.

ADDLT SUBR,2 Address comparison of argl and 9.4
arg2.

ADDl SUBR,l Adds one to number argl. 11.3.1

':;,
. _ ... " ... ,. -."_ ,,, -----,._-_._._---------------------_._-_. __ ._--_ ..•.•. _-_. __ ._----_._-_ .. ,_ ... _-

i'·
f

AND

APPEND

APPLY

APPLY*

ARGN

..
ATLENGTH

BACKPRN

BACKTRK

BATCH

BREAK

CAAAR
to
CnDDR

CARS

CDRS

CltOSE

CLRBIT

Apperidix C / ALISP User's Manual

LSUBR

SUBR,2

SUBR,2

SUBR·

SUBR,2

SUBR,l

SUBR,l

switch

switch.

SUBR,O

Evaluates each argument until one
returns the value NIL; else returns
the result of the last evaluation.

Non-destructive merging of top lev
els of list argl and list arg2.

Applies function argl to 'argument
list arg2.

Applies function argl to arg2 thru
argn.

Returns the SNUM arg2 element of
argl •

Returns character printing length
of atom argl as an SNUM.

Returns T if argl is atomic, NIL if'
not.

Controls the backtracing printout.
Initially NIL, i.e., normal back
tracing printout.

Controls backtracing. Initially
NIL, thus no backtracinq.

Returns T if ALISP job is of batch
origin, NIL if not.

8.1.2

10.2.·2

6.2.4

6.2.4

6.3.1
10.2.1

5.3.1

2.2.3

12.1.1

12.1.1

15.3

LAMBDA, 2 BREAK supervisor function. 12.2.2

SUBR,l

SUBR,2

SUBR,2

SUBR,2

SUBR,2

Standard CAR and CDR functions;
they work with NIL, but no other
atoms.

10.2.1

Returns a list of the first SNUM: 10.2.1
arg2 elements of list argl. 10.2.2

Does SNUM arg2 CDR's of list arg1. 10.2.1

Closes local output
arg2 as permanent
Returns argl.

unit number
file arg1.

Clears the SNUM arg2 bit of LNUM
argl.

C.2

14.2.2

11.5

, " . ·----..; .. '

, .

.----

..

CONC

CONCONS

COND

CONS

COpy

Cos

CSHIFT

DCOPY

DEFPROP

DELETEL

DE

OF

DIFF

• DIGITS

! •

DIVIDE

DO

Appendix C / ALISP User's Manual

SUBR·

SUBR*

LSUBR

. SUBR, 2

SUBR, 1

SUBR,l

SUBR,2

SUBR,l

FSUBR,3

SUBR,2

LSUBR

LSUBR

SUBR·

switch

SUBR*

LSUBR

Strings lists argl thru argn
together with mUltiple NCONC's.

Strings argl thru argn together
with mUltiple CONS'es.

Conditional function.

Standard CONS function •

Returns a top-level copy of argl.

Yields the cosine function of num
ber argl; argl is in radians.

Does circular shifting of LNUM argl
by SNUM shift count arg2.

Returns a complete (all-levels)
copy of argl.

10.3.1
II

10.2.2

81\~1

10,,1:'4~

it'l~~1t
11.3.2

10.2.2

Puts arg3 on the plist of nlitat 10.1
argl under label arg2.

. I

Destructively deletes the SNUM arg2 .. ··· 10.3.2
. element of list argl. Cannot "")' ~

remove last element of argl.
Returns altered argl.

Defines Lru1BDA-expressions.

Defines FLAMBDA-expressions.

Returns argl-(arg2-(arg3 •••• ~argn).

Controls number of significant dig-'
its on BNUM printing. Initially
13.

Returns argl/(arg2/(arq3 ••• /argn).
Result is always a BNUM.

Perfor~s argl iterative evaluations
of arg2 thru argn; argl is evalu
ated. Returns NIL •

6.4
~ f. ..
:f-

11. Z •. l ...

4.2.1.

11.2.2

8.3

. ---'~""'" ... _---, .. _._---"" --"' .. ," .-.---.----.... ".~ .. - .. -... "- ... ,,.~ .. ,--------'-' '" . "',. ---,---_."".

ECHO

EFFACE

EOFSTAT

EOLR

EOLW

EO

EQP

EQUAL

~RR

ERRPRIN

ERRSET

ESHIFT

r~VAL

EVLIST

EXIT

Appendix C / ALISP User's Manual

switch

SUBR,2

SUBR,l

switch

switch

SUBR,2

SUBR,2

SUBR,2

SUBR,3

switch

FSUBR,2

SUDR,2

SUBR,l

SUBR,l

SUBR,O

controls echo of input lines to
OUTUNIT device. Initially NIL,
i.e., no echo.

Dstructively deletes argl frqm list
arq2, if found •. Returns arg 2.

Returns T if
argl is at
not.

local input file unit
EOI or empty, NIL if

Controls appending of CR character
at end of input line. Initially T,
i.e., CR is appended.

Controls appending of CR-LF at end
of output line. Initially T, i.e.,
CR-LF is appended.

Returns T if argl is the same ALISP
pointer as arg2, NIL if not.

Numerically compares numbers argl
and arg2. Uses FUZZ as a compari
son tolerance.

Compares list structure.

Causes an ~ediate USER-ER; arg1~
arq2, andarg3 are messages.

Controls printing of
sages; initially T,
messages are printed.

error mes
i.e., error

Evaluates argl, returns a list of
the result if no errors occurred.
If an error was issued, arg2 is
evaluated, and NIL is returned.

Does end-off shifting of LNUM arg1
by SNUM shift count arg2.

Evaluates argl using the McCarthy
EVAL funotion.

Evaluates each element
returns the result of
the last element.

of argl,
evaluatinq

Exits from the ALISP system.

C.4

3.1.6
14.1.2
15.2

10.3.2

14.1.2

3.1.2
3.2.2
3.3

4.1.3

9.1
9.4

9.2

9.3

12.1.3

12.1.1

12.1.2

11.4.2

6.2
6.2.3

6.2.3

1.1
6.1.4

15.1

I
i

,~ ... ,;

(,--, r".
I,,-/~ __ -

EXP

FIX

FIXP

FLAHBDA

FLOAT

FLOATP

FNTYPE

FSUDR

FSUBR*

FUZZ

GC

GENCHAR

GENSYM

GENSYl1P

GET

Append~.x C / ALISP User I s Manual

SUBR,l

SUBR,l

SUBR,l

LSUBR

SUBR,l

SUBR,1

SUBR,1

switch

switch

switch

SUBR,O

switch

SUBR,O

SUBR,l

SUBR,2

Returns the exponential function of
number argl.

Converts number argl to an SNUH.

Returns T if argl is an SNUM, NIL
if not.

Identity function. Used as a func
tion definition.

Converts number argl to a BNUM.

Returns T if its argument is a
BNUM, NIL if not.

Returns the function type of arg1
as SUBR, ·LAMBDA, etc. argl can be
either the function definition or.
its name.

Type of machine-language function.

Type of machine-language function.

Controls theEQP interval for
BNUM's. Initially set to .2E-S.

Calls an immediate garbage-collectJ
returns NIL.

Controls the GENSYM atom character.
Initially NIL, i.e., a default
character of MG".

Generates GENSYM atoms.

Predicate for GENSYM atomsJ returns
T if argl is a GENSYM atom, NIL if
not.

Returns the property of indicator
arg2 from the plist of nlitat argl,
if foundJ else returns NIL.

11.3.2

11.1.2

11.1.1

6.2.2
6.3
6.3.1
6.4

11.1.2

11·.1.1

6.4.1

6.3
6.3.2

6.3
6.3.2

9.2

13.3

5.2.2

5.2.2

5.2.2

10.1

.---.-.. -..••... ---...•... -... -.-...... . ._-- ... _ .. _-_._•......

~:. GETFUN

GETVAL
,
I"

~ GO
;,

"
"

GREATERP

lJALFPRI

HPRNUM

IF

ILLEGAL

INBASE

'INTADD

IUTRFLG

INUNIT

LABEL

Appendix C / ALISP User's Manual

SUBR,l

SUBR,l

FSUBR,l

SUBR,2

SUBR,1

switch

LSUBR

switch

switch

SUBR,1

switch

switch

LSUBR

Returns the function definition of
argl if it has one, else NIL. Argl
can be either a function definition
or its name.

Returns the value of literal atom
argl.

Goes to the tag argl within a PROG.
Evaluates its argument until it is
atomic.

Returns T if number argl is greater
than number arg2, NIL if not.

Prints
argl.

the first HPRNUM atoms
Returns argl.

of

SNUM number of atoms for HALFPRI to
print. Default value of NIL is 4
atoms; initially set to NIL.

Conditional function.

value of an atom which has no
value; causes a VAL-ERR from EVAL.

Holds
tion.
10.

the input base representa
Initially 112, i.e., base

Returns the internal address of
argl as an SNUl-I.

Controls terminal interrupt. If
non-NIL, interrupts are enabled; if
NIL, disabled. Initially T.

Controls the local file
on input. Ini~ially 0,
terminal.

unit used
i.e., the

Identity function. Also a function
definition.

C.6

6.4.1
7.1

5.3.2

8.2.1
12.2.2

9.2.1

4.2.2

4.2.2

8.1.1

5.3.2
6.2.1

3.2.2

9.4

12.2.1

3.1.1
6.1.2

,14.1.1
14.1.2

6.2.2
6.3.1

LN·tBDA

LAST

LENGTH

• LE!")SP

LITP

LOAD

LOG

LOGAND

I.OGICAL

LOG NOT

LOGaR

LOGP

LOGXOR·

LSUBR

HAPC

Appendix C I ALISP User's Manual

LSUI3R

SUBR,l

SUBR,l

SUBR,2

SUBR,1

SUBR*

SUBR,1

SUBR,1

SUBR,l

SUBR,2

SUBR,l

SUBR,l

SUBR,2

SUBR,l

SUBR,2

switch

SUBR,2

Identity function. Also a function
definition.

Returns the last element of list
argl.

Returns the top-level length of
list argl as an SNUM.

Returns T if ~umber arg1 is less
than number arg2, else NIL.

Returns T if arg1 is a list, NIL if
not.

Strings together argl thru argn in
a list.

Returns T if argl is a nglitat,
else NIL.

Loads the ALISP overlay argl.

Returns the natural logaritl~ of
number arg1.

Returns the logi~al ~nd of argl and
arg2, both LNUM's.

Converts number arql to an L~Ul·t.

Returns the logical complement of
LNUM argl.

Returns the logical inclusive or of
argl and arg2, bo.th LNUf-t' s.

Returns T if argl is an LNUM, NIL
if not.

Returns the logical exclus~ve or of
argl and arg2, both WUM's.

Function type.

<

Applies function ar.q2 to successive .
CAR's of list arqlJ returns last
result.

C-l

" -.. -... -------~ ..•...

6.2.2
6.3
6.3.1
6.4

10.2.1

10.2.1

9.2.1

2.2 .. 3

10.2.2

5.2.3

14.3

11.3.2

11.4.1

11.1.2

11.4.1

11.4.1

11.1.1

11.4.1

6.3
6.3.2

7.2.1

t-lAPCAR

f.1APCON

'MAPCONC

MAPL

MAPI .. IST
II

MEMB

MEMBER

~1IN

MINUS

MINUSP

NIL

NCONC

NOVAL

·Appendix C / ALISP User's Manual

SUBR,2

SUBR,2

SUBR,2

SUBR,2

SUBR,2

SUBR*

SUBR,2

'SUBR,2

SUBR*

SUBR,l

SUBR,l

switch

SUBR,2

switch

Applies function arg2 to successive
CAR's of list argl; returns list of
results.

Applies function arg2 to successive·
CDR's of list argl; returns a CONC
of the results.

Applies' .function arg2 to successive
CAR's of list, argl; returns a CONC
of the results.

Applies function arg2 to successive
CDR's of list argl; returns the
last result.

Applies function arg2 to successive
CDR's of list argl; returns a list
of the results.

Returns the maximum of numbers argl
thru argn.

Returns T if argl is on any level
of list arg2; else NIL.

Returns rest of listarg2 starting·
with argl if argl is on the top
level of arg2; else NIL.

Returns the minimum of numbers argl
thru argn.

Returns the
argl.

negative of number

Returns T if number argl is nega
tive, NIL if not.

Value· of NIL is NIL; CAR and CDR of
NIL are NIL.

Destructively merges lists argl and
arg2 on top level.

Value returned by some functions to
indicate that no value exists.

C.8

i-'·
Ii

----' ' I

7.2.1

7.2.3

7.2.3

•

7.2.2

7.2.2

9.2.1

9.1
,

9.1

9.2.1

11.3.1

9.1

5.2.1

10.3.1

. : .,.~

... ~ ...
5.3.2

/-'"

~).~
,.-/

-'-- _ .•.... _ .••. _----------_. -.... _.- --------- --------

l'JllJ ... L

NUHnERP

OBLIST

ODOP

OPEN

OR

QU'l'BASE

OUTUNI~'

PACKl

PACK

PARAMCP

PAIW1FL

PARAMGC

Appendix C / ALISP User's Manual

SUOR,l

SUBR,l

SUBR,O

Returns T if argl is NIL, else NIL.

Returns T if argl is a number
token, else NIL.

Returns a copy of the internal hash
buckets holding literal atoms.

SUBR,l Returns T if integer portion of
number argl is odd, else NIL.

SUBR(9 :L Opens permanent file arg1 as local
input file unit number arg2.
Returns argl.

. LSUBR

switch

switch

, SUBR,l

SUDR,l

SUDR, 0

SUBR*

SUDR,O

Evaluates each argument until one
returns a non-NIL value; else
returns NIL.

Controls the output representation
for numbers. Initially #12, i. e. ,
base 10.

Controls the local file unit used
on output. Initially 0, i.e., the
terminal.

Packs the character represented by
SNUM argl ihto the output buffer.
Returns argl.

Forms the literal atom specified by
the first character of the pnames
of atom elements of list argl.

Returns the control card parameters
for the ALISP job as a list.

t'Ti th no argwnen ts , re turns the
field length parameters for ALISP a
s a two eleJTlent list of SNUH'SI
with one argument, sets the maximum
field length to that argument.

Returns a list of garbage-collect
statistics.

c! -7

5.2.1

11.1.1

3.2.2
5.1
5.1.1

9.1

14.2.2

8.1.2' '

4.1.1
14.1.3

4.1.1
6.1.2

14.1.1
14.1.3

4.3.1

5.3.1

1.1.1

13.2

13.1

, .. _ -._._-----........ _---_ ..•.... -....... .

I.

PARAMTL

PLIST

PLUS

PLUSP

PRINB

PRINBEG

PRINEND

PRINLEN

PRINT

PRINI

PROG

PROGN

PROMPT

P:ROP

PURGE

Appendix C / ALISP User's Manual

SUBR·

SUBR*

SUBR,l

SUBR,l

SUBR,l

switch

switch

switch

SUBR,l

SUBR,l

LSUBR

LSUBR

switch

SUBR,2

SUBR,l

With no arguments, returns a list 12.1.4
of the time limit statistics. With·.
one argument, sets the time limit
to that argument.

With one argument, ret urns the
p1ist of nlitat argl. With two
arguments, sets the plist of arg1
to arg2.

Returns argl+(arg2+(arg3 ••• argn).

Returns T if argl is positive, NIL
if not.

Packs argl blanks into the output
buffer. Returns argl.

First character
output buffer.

position in the

Last character position in the out
put buffer.

Current character position in the
output buffer.

Primary print syntaxing function.
Outputs argl to the current output
device. Returns argl.

Same as PRINT, except does not do a
TERPRI after it prints. Returns
argl.

Program feature.

Evaluates argl thru argn, returns
the last result.

Controls the input prompt charac
ter. Initially NIL, i.e., a ~?
prompt.

Returns the plist of nlitat argl
starting from but not including the
indicator arg2, if found; else NIL.

Purges permanent file argl.
Returns argl •

. C.lO .

5.3.3
10.1

11.2.1

9.1

4.3.1

4.3
15.2

4.1
4.1.3
4.3
4.3

4.2.1
4.2.2

4.2.2

8.2.1

8 .2.2

3.1.3
15.2

10.1

14.2.2

It

:" ,
\

PUT

\
I:

1.:":'TJo'r I ENfJ'

F:.1\.Nl)Y

READ

READ BEG

C=L.~-
H.r.AnEND

HE/\f)EN1'

HEAD LEN

~U:':'\DCH

~

READNB
.it

HE)"tDnt-t

READPK

REHAINDER

Appendix C I ALISP User's Manual

SUBR,3

LSUBR

FSUBR,l

SUDR*

SUDR,O

SUBR,O

Adds arg3 under the indicator arg2
on 1itat argl's plist.

Sets nlitat argl to ar~2; takes an
indefinite number of pairs of argu
ments.

Identity function, returns argl.

Does argl/(arg2/(arg3 ••• /argn).
Truncates the result of each divide
operation to an integer.

Returns a pseudo-random BNUB in' the
open interval (0,1).

Returns the next S-expression in
the input buffer.

10.1

5.3.2

3.2.2

11.2.2

11.3.2

3.2
3.2.2

switch First character position to start 3~3

switch

SUBR,O

switch

SUBR,O

. SUBR, 0

SUBR,O

SUBR,O

SUBR,2

reading in the input buffer. Ini-
tially O.

Last character
input buffer.

position in the

Does a TEREAD before a READ,
returns. the result of the READ.

Current character position ~in the
input buffer.

Returns the
input buffer
atom.

next character . in the
as a single-character

Returns the next non-blank (STATUS
~ 2) character from the input buf
fer as a single-character atom.

Returns the SNUM equivalent of the
next character in the input buffer.

Same as READCH, except it does not
advance READLEN. ~f
READLEN=READEND, returns NIL.

Returns the refflainder of arg1/arg2.

C)-II

, ... --" .. -.---.~-.- .. ------------.--....

.3.3

3.2
3.2.4

3 •. 3

3.3.1

3.3.1

3.3.1

3.3.1

11.2.2

REt-tOB

REHPROP

RETURN

, REVERSE

REWIND

RPLACA

RPLACD

RUNTIME

: SAVE

SCRATCH

SETBIT

SET

SETQ

i\ppp-nd :tx C

SUBR,l

SUBR,2

SUBR"l

SUB:l,1

SUBR,l

SUBR,2

SUBR,2

FSUBR*

SUBR,l

SUBR,l

SUBR,2

SUBR,2

LSUBR

Removes the value of' a'ttJH Hii, ,~':'i.
argl, by making it ILLEGAL.

Removes indicator ar02 and associ
ated property from the plist of
nlitat argl. Returns NIL.

Causes PROG to exit with value
argl.

Reverses top level of list argl.

Rewinds input local file unit argl.
Returns argl ..

Des tructi ve.ly replaces the C 'U(.:d~
list argl with arg2. Returns ':;.hc
altered argl.

Destructively replaces the CDR of
list argl with arg2; returns arg2.

6.4.2

10.1

8.2 .. 1
12.:~o2

10.2.2

14 .. 2 .1

. '\
I • ,_.

10 .. 3.1

with no arguments, returns the 12.1.4
RUNTIHE clock as a BNUM of milli-
seconds. If argl is a BNUM, sets
the RUNTIHE clock to arg1., Else,
evaluates argl and prints the eval-
uation time in milliseconds on
QUTUNIT, and returns the result of
the evaluation.

Saves the ALISP system as an over
lay file with name argl. Returns
argl.

Scratches local output file unit
argl. Returns argl.

Sets the SNUM arg2 bit of LNUM
argl.

Sets the value of nlitat argl to
arg2.

Sets the value of n1itat arg1 to
the evaluation of arg2. Takes an
indefinite number of pairs of argu
ments.

14.3

14.2.1

11.5

5.3.2

5.3.2

1'---",

I

" _ ,;'

\[

(-.
.. .I ,----,' SIN ,,,--,,,

SI&ASlIEf.

I :1 !

"'~

SPECIAL

STATUS

SUBR

SUER*

SUBl

SYS

SYSIN

SYSOUT

Appendix C / ALISP User'sManual

SUBR,l

switch

SUBR*

SUBR,l

SUBR,O

SUDR*

switch

switch

SUBR,l

switch

switch.

switch

Returns the sine function of number
argl. Argl should be in radians.

Controls the printing of slashes on
output of exotic pnames. Initially
NIL, i.e., no slashes.

Hith one argument, returns the spe-
cial statl;ls of nlitat ar<J1 as T c ..
NIL. With two arguments, S(~ ts tl
special status of argl to T or NIL.

Returns the square root of the
absolute value of number argl.

·11.3.2

4.2.1

c;-~

~I
11.3.2

Returns a list of pendant function 12.2.1
calls.

\vi th one argumen t, re turns the
status of the first character in
nglitat argl's pname as an SNUB
from 0 to 7. With two arguments,
sets the status of argl to SNUl:1
arg2, 'returns the previous STATUS
of argl.

,Func tion type.

Function type.

Subtracts one from number argl.

Controls the type of supervisor in
effect at top level. Initially
NIL, i.e., an EVAL supervisor.

Output device for supervisor and
error processing.: Ini tia11y 0,
i.e., the terminal.

Output device for. the supervisor
and error processor. Initially 0,.
i.e., the terminal.

3.2.1

6.3
G.3.2

6.3'
6.3.2

11.3.1

6.1.1
12.2.2

6.1.2
12.1.1
12.2.2
14.1.2·
15.1.
15.2

6.1.2
12.1.1
12.2.2
14.1.2.
14.1.3
15.1
15.2

SYSPRIN

TEREAD

TERPRI

TIMES

TOGBIT

TRACE

TRACFLG

TSTBIT

TTYCHAR

UNPACK

UNTRACE

VALUEP

HIPE

Appendix C / ALI~P :J~';:'L I! E ~lanu~!

switch

SUBR,O

SUBR,O

SUBR*

SUBR,2

FSUBR*

switch

SUBR,2

switch

SUBR,l

FSUBH*

SUBR,l

SUBR,l

Controls supervisor printing. Ini
tially T; i.e., the supervisor
prints its output.

Empties the input buffer and reads
in a new line from INUNI'l'.. P.E:tu:t:"ns
NIL.

Terminates the print line and dumps
the output buffer to OUTUNIT.
Returns NIL.

Returns arg1*(?rg2*(arg3 ••• *arg n).

Complements the SNUM arg2 bit of
LNUM argl.

with no arguments, returns a list
of all atoms currently being
traced. With arguments, sets the
tracing status of argl thru argn.

Controls tracing. If NIL, no
tracing is done; if non-NIL,
tracing is done. Initially T.

Returns T if the SNUM arg2 bit of
LNUM argl is set, else NIL.

Controls translation to upper-case
on input. If NIL, no translation
is done; if non"-NIL, it is. Ini
tially T.

Returns a list of single-character
atoms formed from the pname of non
GENSYM atom argl.

With no arguments, turns off the
tracing status of all atoms. with
arguments, turns off the tracing
status of argl thru"argn.

Returns T if litat argl has a
value, else NIL.

Puts nglitat argl on the WIPELIST.

C.14

6.1.3
12.2.2

3.2.4

4.1.3
4.2.2

11.2.1

11.5

12.3

12.3.1
12.3.2

11.5

3.1.5

5.3.1

12.3

5.3.2

5.1.2

.~/

~'npELrs'r

ZEROP

C and VI

" --..",
(I

,,--,,'
',,--,-

---- -.---------

Appendix C / ALISP User's Manual

SUBR,O

SUBR,l

switch

macro

macro

macro

Returns a list of all atoms on the
WIPELIST.

Returns T if number argl is zero,
else NIL.

Holds the last evaluation printed
by the supervisor, either the top
level or BREAK supervisor.

Sets off comments on a line.

Causes immediate evaluation of the
next S-expression in the: input
stream.

Returns a qu6ted list of _the next
S-expression in the input stream.

c-1J'

.. - ---"._---,- " .. ""-."-~-----.---.-

5.1.2

9.1

6.1.3
12.2.2

3.2.2

3.2.2

3 ~ 2. 2

Ci

,,--.

. ------_ __ .. ---_._._-----------

Appendix D / ALJ.~'p user· S lYldllUd.L

Appendix D

Error l-lessages

This appendix is a quick reference to
most of the errors given by the ALISP system;
it enables the keen-eyed user to decipher the
error messages issued. More detailed infor
mation on the conditions which will cause an
error will be found with individual function
descriptions in the manual.

An AL1SPerror will normally print as three asterisks, fol
lowed by a. group of characters ending in "ERR". Up to four ~if
ferent pieces of information can be included in an error message;
these help to pinpoint the sourc~ of the error. For intricate
programs, a backtracing of function calls and variable bindings
(section 1.12.1.1) can be a useful supplement to the error nes
sage.

The error message format is as follows:

*** xxx-ERR FROM Y
OFFENDING VAL (or ARG) = z
message

For any particular error, some parts of this fornat may be omit
ted.

The ~ost important part of the error message is the parame
ter y. Usually, ~ is the function name where the error occurred.
~ and nessage specify subsidiary conditions or explanations of
the error.

A table of errors and error messages follows. They are
ordered by type of error (~-ERR) and sub-ordere(~ by message.

IJ-I
~... ,

- .. _----------------- - -- -- - ' '-'. - -.-.•. - .. _ .. _----.. - ---•.•...... _ _ •........ _.- ------
...... _.---_._---

VAL-ERR

FUN-ERR

SYN-ERR

Appendix D / ALISP User's Manual

Value error.
Only the single parameter ~ is given. ~ is

an nlitat which did not have a value when EVAL
requested one. Frequently occurs when expressions
of the form:

(CONS Faa BAR)

are evaluated; here CONS evaluates its arguments,
and if FOO and BAR do not have values, the error
will be issued.

Function error.
If ~is given, it is the atom name which

caused the error. If not, the error was caused by
a list as the first element of an evaluated form.
In general, a FUN-ERR means that EVAL (or APPLY)
failed to find a valid function definition for ~.
If z is given, this is usually the value of X
which caused the problem. Re-read the section on
the interpreter (I.6) if you cannot figure out why
a FUN-ERR occurred.

Syntax error.
"i.. is usually

READ attmpts to
string. Section
tax.

READ. This error is issued when
parse an incorrectly syntaxed

I.3.2.2 describes the READ syn-

BAD NUMBER SYNTAX
An incorrectly formatted numeric string was in the
input stream. z is the character position in the
input line at which the error occurred.

PNAHE TOO LARGE
Pnames of more than 64 characters are illegal.

INI'rIAL RIGHT PAR
A right parenthesis was the first non-blank char
acter READ found in the input stream when attemp
ting to form an S-expression. z is the character
position of the parenthesis in the input line.

HISSING RIGHT PAR
A right parenthesis was missing after a comma when
forming a dotted S-expression. For example, the
line:

(FOQ , nAR MOO)

will cause this error, because READ expects a

D.2

,...-, (,

_.'-.

..

ARG-ERR

Appendix D / ALISP User's Manual

righL parenthesis after BAR. z is' the character
posi1:ion in the input line where the parenth~sis
should have been.

Argument error.
This is the most common type of error.

Either the interpreter decided thc.t the arguments
to a function were not correct, (lr the function
rejected them after they were passed by the inter
preter. y is the name of the function, and z is
usually tlie argument which caused the problem.-

\'lRONG NO. OF' ARGS
The wrong number of arguments was passed to a
function. For lambda-expressions, z is the vari
able list.

VAR NOT LIT. ATOH
A variable in a lambda-expression was not an
nlitat z is the offending variable.

BAD FN. FORN
A function ~ was used in an incorrectly formatted.
form, for instance, the form:

(PROG)

would give this error when.evaluated, since the
varicble list and body of the PROG are absent.
This error is called by LSUDR type functions.

NO PROG l~XECUT::NG

Call(~d by GO or RETURN when used outside the scope
of a PROG evaluation.

CAR (or CDR) OF UNNIL ATOM
CAR or CDR was given an atomic, non-NIL argument.·
z is the argument.

ARG NOT SNUM
An SNUM was expected as an argument, for example,
as the second argUment to the DO function. z is
the criminal argument. This message is usually
given by the functions which consider lists as
numbered vectors of eleme'nts, e.g. , ADDEL,
DELETEL, ARGN, etc.

LIST TOO SHORT
A list given as an argument did not contain enough
elements. The element manipulation functions such

0--3

Appendix D / ALISP User's Manual

as ADDEL and DEL8TEL issue this error,
faulty list.

z is i.he

ATOMIC ARG
ARG NOT LITAT
ARG NOT ATOM

(

NUM-E'~

The wrong type of argument was supplied to a func
tion. z is the offending argument. Valid argu
ment types are detailed in individual function
descriptions in this manual.

Numeric error.
The input and output buffer pointers, as well

as the switches INUNIT, OUTUNTT, INBASE, OUTBAS£,
DIGITS, and Complain when used if they are
set to non-numeric or out of range values. ~ is
the mis-set switch; z is the faulty value.

The arithmetic -functions also complain with
this error. In this case, ~ is the name of the
arithmetic function which issued the error. The
following messages apply to arithmetic errors.

r.['OO FEtv ARGS
A dyadic function was given one or no arguments.

NON-NUMERIC ARG
An argument to an arithmetic function was not an
ALISP number type. ! is the argument at fault.

RESULT OUT OF RANGE

GC-EFR

FIL-ERR

Called by FIX or LOGICAL when attempting to form
an SNUM or LNUM from too large a number; here 7. is
the number.

Also called by any arithmetic function which
generates a number out of floating-point range,
i.e., on division by zero.

Garbage-collect error.
Called when the GC routine fails to free up

enough space in one of the storage areas, and the
field length maximum has been reached. See sec
tion I.13.

File error.
Called by the read functions on certain

errors when reading from a local file; .J: is then
READ. Also called by the permanent fl.le manipu-
lating functions; ~ is then the function.

LINE TOO LONG
A line longer than 150 characters was inputted

D.4

,,,~'-""'"

I
' '

b

I

~

----- -------------- ----

l) '--

Appendix D / ALISP user's Manual

from a local file. zis the local input file unit
number.

READ PAST EOI
An attempt
local file;
information.

was mad~ to read from an empty input
or one which had reached the end of

z is the file uni t number. '

WRONG VERSION NO.
An attempt was made to load an ALISP overlay file
created by anALISP system with a different ver~
sion number. z is the overlay name.

FL TOO SHALL
An attempt was made to load an overlay file which
required an execution field length larger than the
current maximum field length.

Bfill l(RONOS NAt-IE
A permanent file name, user number, or file pass
word was not in acceptable KRONOS format: see sec
tion I.14.2.2. ~ is the name given.

BAD UNIT NO.

BAD ACCESS

An attempt was made to OPEN or CLOSE an illegal
local file unit numbt~r; z is the unit number. ,;,

, The user attempted
number for which he

to access an alternate user
was not properly permitted;

z is the offending access. _ Sea.. __ s_ection I .14 .2.2.

)
PF HOT FOUI~D _ .

Issued by OPEN or PURGE if a permanent file cannot
be found. z is the file nar.le.

i ITLE TOO BIG
STORAGE FULL
TOO HANY PFS

BAD. PARITY

These errors are issued by CLOSE if the user
overflows his catalog limits in attempting to save
a file. z is the file name.

A file operation could not be verified. Re-try
the operation.

USER-ER User definable error.

-.
-This error is· issued by some of the ALISP

filing system functions in section II.l, with an
explanatory message~

HALT

Appendix D / ALI~;i' UseX';: s Manudl

ALISP system error.
Save as much of your output as possible, and

bring it to the source at the end of the introduc
tion. Note that a "HALT FROM IUTRFLG" is not a
system error, but an error exit used by the inter
rupt facility.

D.6

(,---.,

" r'-"., I,
I t '-__ -.

t>:

. ----,"", -----

1'" '",

(

	Introduction
	Table of Contents
	Part I: The Language
	1 Signing on and Keeping Up
	2 ALISP Data Types
	3 Input Stream
	4 Output Stream
	5 Literal Atom Structure
	6 The Supervisor and EVAL
	7 Functionals
	8 Program Flow
	9 Equality
	10 List Manipulation
	11 Arithmetic
	12 Arrays and Strings
	13 External Program Control
	14 Allocations and Garbage Collections
	15 Files
	16 Batch
	17 ALISP Filing System
	Part II: Editing, Filing, and Pretty-printing
	1 ALISP Pretty-Print
	2 Pretty-Print Functions
	3 ALISP Editing
	4 Compiler
	Appendix A (Missing)
	Appendix B: ALISP Control Card
	Appendix C: Initially Defined Functions and Switches
	Appendix D: Error Messages

