.
FEs
}-’

QUANTUM THEORY PROJECT
FOR RESEARCE IM ATOMIC, MOLECULAR, AND SOLID STATE
CHEHMISTRY AND PHYSICS
UNIVERSITY QF FLORIDA, GAINESVILLE, FLORIDA

OPERATORS FOR MBLISP

ot

PPOGRAM NOTE # 9

........

26 July 1963




ARSTRACT

The primitive operators contained within MBLISP are described,
together with an example of their application. The cperators fall
into three categories: list processing operators, input-output operatcrs,
and data movement overators. Some of the operators are predicates;
this permits programs to be constructed using them, controlled by the
functions AND and OR.



ACKNOVWLEDGEMENTS

The choice of an cperator complement for MBLISP has depended
to a great extend on Lowell Hawkinson's thorough analysis of LISP
processors and the resultant insight into the most efficient form of
the recursive processor, Considerable experimentation has gome into
the cheice of input-outnut opverators, as well as data mevement, but
they owe their final form to the experience gained in the use of a
preliminary set by T.A, Brody in his studies of LISP compilation,

Many of the studies performed when we used much clumsier operators
were carried out by R.A, Smith, Jr., and were indispensible in setting
the style of the present cperators,

Most of the development of MBLISP was completed during the period
of my employment by RIAS, and it is a pleasure to thank the director,
Mr., Welcome ', Bender, for his continued interest in and support of,
this work. It is not often realized how much the success of the
development of any program depends upon the skill, interest, and coopera-
tion of the nembers of the computing center at which the work is done,
and for this reason it is a particular pleasure to express my gratitude
to the Digital Computations Section of MARTIN BALTIMORE, Yere it not
for their continued willingness to make their programs and facilities
available, continued development of MBLISP would have been impossible.

The time required to verify the ovnerators reported in this note
was made available at the computer center of the University of Florida,
for which time I am grateful to the committee and personnel associated -
with the operation of the Center, as well as their courtesy in making
time available for Prof. Brody.

‘Harold V. McIntosh

Gainesville, 26 July 1963




GPERATORS-1

OPERATORS

Due to the recursive nature of its operation, no information

. in the memory store which is accessible to a LISP program is ever
desrtoyed, because it may have to be replaced in its original state

at some later stage in the execution of the program., Gradually,
information is abandoned, in tlie sense that no oneration in the program
can ever locate it again, From time to time the memory store may be
examined, in order to recover the ahandoned cells for further use,
During this rennovation, or garbage collection as it is usually called,
information will be destroyed, so that to be precise we should say that
no information available to the program is ever altered in any manner.

Although different technical schemes may be imagined to realize
such a manner of operation, the one generally chosen is to have a
large resoirvoir of cells, called the vacuum, available for use by the
program. The only primitive LISP function which writes information is
CONS; all the others read information. Thus the only function which can
modify the memory store is CONS. Rather than search the memory for a
cell containing the desired linkages, if indeed one exists, CONS removes
one cell from the vacuum, which, modulo garbage cecllection, has never
before been used, and writes the necessary linkages into it. For
example, the LISP function (APPEND U V) which adjoins the list V to
the end of the list U in no way modifies either the list U or the list
V. Rather, a new list is constructed whose head is an entirely new
copy of the list U and whose tail points to the list V., Consequently
if the bound variables U and V appear anywhere else in the same
¢xpression théy still refer to the same lists, and not the one gotten
by tacking V onto the end of U, which would have changed the meaning of
the symbol U.

Needless to say, such a procedure is quite extravagant of memory
cells and would ordinarily be felt to be justified only when one felt
that he had to retain the identity of the list U intact for further use
by the program. For scme but hardly all programs this would be true.

Although automatic recursion is sometimes much more rapid from
the point of view of writing a program, the necessary saving and unsaving
of registers takes its toll on the operating speed, and often by paying
attention to the organization of the memory store, such waste motion -
may be avoided. -

In addition toc the situations in which one veluntarily foregoes
the recursive mode of operation, there are others which are inherently
irreversible. Thus, if one were to introduce a LISP function which
would read one record from the input apparatus to a certain portion of
memory, repeated use cf this function would result in repeated records
being read in, most likely destroying the old records in the process.

For such reasons we distinguish operators from functions. The
distinction is that a LISP function receives its arguments from a
certain pushdown list, and delivewrs its values to this same pushdown
list. By contrast, an operator may receive information from any register
as well as modifving any register. Of course, in addition it may work
with the pushdovn list patronized by the functions, so that one must
recognize a mixed case,



CPERATORE-2

In planning & formal progremning language, it is desirable to
keep the number of nrimitive operators to a minimum, as well as the
number of primitive functions, For list »rocessing purposes, only
three operators are needed., These allow cne to locate a free cell
in the vacuum, cverwrite an address linkage, or overwrite a decrement
linkage. More extensive operators are needed to perform input-output
operations, movement of datz, or arithmetic operations, MHowever, the
three list processing operators are:

(SAR E X) causes E to become (CAR X)., Its value is T.
(SDR E X) causes E to become (CDR X). 1Its value is T.

(BILE) is a function of no variables whose value is a
fresh cell from the vacuum [PZE *,,NIL].
Its value is thus an empty set. Repeated usage
of (BILE) produces a string of fresh cells.

G From these primitive operators certain variants may be

constructed which will be useful in particular contexts. For example,
SAR and SDR have been designed as predicates, to facilitate their
inclusion in programs. However, instead of returning the value T to
the LISP processor, it would shorten the corresponding program if they
would occasionally return other values., Although the variants might
be written as LISP functions of SAR and SDR, in actual practice they
would profitably be coded as machine language programs. For example,

(XAR E X) causes E to become (CAR X). Its value is the
' displaced value of (CAR X).

‘(XDR'E X) causes E to become (CDR X). Its value is the
displaced value of (CAR X). '

Their respective LISP definitions are:

(XAR (LAMBDA (E X) ((LAMBDA (2) ((LA¥BDA (T) Z)
...... (SAR E X))) (CAR X))))

(XDR (LAMBDA (E X) ((LAMBDA (Z) ((LAMBDA (T} Z)
(SDR E X))) (CDR X})))

Yet another variant would yield the argument X as the value of
SAR and SDR instead cf the overwritten linkage. In the latter case, one
would perhaps be using CAR of an expression as a temporary storage
position, and is simultaneocusly updating the location, and retrieving
its old value. By receiving the new value E instead of the displaced
value, one would have a variant which would make it convenient to store
the same expression in a series of locations by simply nesting the
appropriate SAR or SDR variants with appropriate second arguments,
Finally, in the last variant we have proposed, a series of quantities
could be stored at the same or a chain of addresses, since the value
of the operator would always be the last location at which the storage
took place,




OPERATGRS-3

Besides operators which are useful in the various asnects of
list precessing, another immortant class may be used for data
transmission purnoses. The details of this latter class are somewhat
machine dervendent in that they will vary accord:ng to whether the

_memory store is decimal or binary, or whether it has fixed or variable
word length and so on, They are in this sense only weakly machine
devendent; the exisencies of the IBM 709 design make the following
collection seem desirable:

($PEAD Z) causes words to be read frdm SYSPIT (A-2,
decimal) as specified by the title Z,

(SWRITE Z) causes words to be written on the printed
output tape, SYSPOT, (A-S decinal) as specified
by the title Z,

 ($PUNCH Z) causes words to be written on the punch tape
PCHTAP (B-4, decimal), as specified by the title

G z.

Each of these operators makes use of the title of a buffer area.
By a title we mean a description of an array [PTH ARRAY+N,,N] which
occupies one cell, containing a flag indicating an array, the number of
words comprising the array, and the final word plus one. The title
itself occupies this last location unless other provision is made,
allowing the garbage collector to recognize arrays and save them if
necessary. All arrays are referred to through their titles,

The functions $READ, $WRITE, and $PUNCH really do little more
than activate the relevant ICCD cemmand, They are all predicates, whose
value is T if they are functioning without incident. However, they are
only semipredicates, and may return information to the LISP processor
concerning possible error conditions, end of file or end of tape, and
so on,

The choice of three functions such as these lirits the number
of tapes accessible to the LISP programmer, and no nrovision has been
mnade for reading or writing binary tapes. All these variations may
eventually be provided by internzlly compiled operators, so that we have
described only the three essential for ordinary operation and made them
inherent operators in the systen,

The reason that these three operators have been given names
commencing with the character § is to indicate that they are not intended
to be a portion of ordinary programs, The reason for this is that they
make no provision of themselves for controlling various error conditions
or other impediments to the free flow of information to and from the
input-output mechanism. Concern with these latter conditions is not
properly a part of a LISP program, and should be accomplished by standard
data transmission operators which incorporate the proper tests and
remedies ro handle such problems., Should this latter treatment vary,
or the style of invnut-output vary, the standard operators may be
redefined without affecting any LISP programs in the slightest,

\



CPERATORS -4

In order to allow a LISP program to actively manipulate the
memory store, we further introduce operators which will allow bits
to be read from .or stored in desired locations. It is convenient to
distinguish a numerical frem a BCD mode, the latter treating the
hollerith characters as the basic units, while the former treats
octal numbers as the units., Again this choice is moderately machine
dependent, Rather than carry an excessive number of arguments
continually, each of the main functions is provided with a satellite
vhich initializes it to work from a given array. It will then work
through the array, from left to right, lew address to high address
until the limit to which it has been sect has been exceeded. This event
will produce a characteristic reaction by the function.

(PACK X) is a predicate, which stores its argument X in
the location to which it has been set, and whose
value is T if additional space remains in the
array to pack an additional character. Otherwise
its value is F,

(PACSET Z) is an operator predicate whose value is T and
which prepares the operator PACK to store
"successive characters, left packed, into the array
vhose title is Z,

(STORE X) is a predicate, entirely analogous to PACK,
save that its argument is a single atomic symbol
representing an octal digit, and that only 3 bits
at a time are stored, rather than 6.

(STOSET Z) is the analogue of PACSET, initializing STORE
to the array whose title is Z. It takes the
value T,

(DISINT) is a function of no variables, whose value is
either the next character in the array to which i
it is set, or else () if none remain, Repeated
usage from an exXhausted array will continue to
yield ()'s. Characters are removed from the array
6 bits at a time, non~destructively, The array
is considered to be exhausted when either its upper
limit is reached, or the illegal hollerith character
77 (which is used to fill out words) is encountered.

(DISSET Z) is a predicate, value T, which initializes
DISINT to the array whose title is Z,

(DISSOC) yields the contents of the array ro which it is
set, 3 bits at a time, in the form of octal digits.
Its value is () when it reaches the upper limit of
its array. The readout is non-destructive.

(DSCSET Z) is a predicate, whose value is T, which
initializes DISSOC to the array whose title is
z, :




program,

CPEPATCORS-5

Cperators are typnical of iterative programs, which are rather
the antithesis of LISP, To follow corpletely the iterative format
pertaining to operators would logicelly lead to the introduction of
the LISP '"program feature" wherein sequences of statements would be
written in the style of FORTRAN or ALGOL. Such a step is unnecessary,

- and may be avoided by the use of overator predicates, allowing such

LISP functions as IF, COND, AND, and OR to exercise control over the

Another characteristic of iterative programs is that the variable

‘names have a permanent meaning and cummulate the effect of operations

nerformed upon them, vhereas in a recursive program variable names are
transiently bound and while bound never vary. By properly arranging
the internal structure of atomic symbols, and using the operators
which we have defined, it is possible to arrive at a system which may
be used both redursively and iteratively. The diagram below shows the
canonical arrangement of an atomic symbol:

~ title pushdown
l ' list
x Hipgns UK ﬂé“" -
- // \hﬂﬁﬂg
!
te ;
. 771} -
(CDR X) ‘ tT UL QUi lé
(INCR. (CDR X)) oltefedes wI.

The internal constitution of MBLISP is such that whenever an
atom appears in a LISP program, it actually appears as an address in
the menory store. That address is the address of a title, which refers
to an array which contains the print mame of the atom, its function
definition and its value. By the print name we mean the string of
hollerith characters by which it is represented in printed output and
input. These are allocated six at a time to whatever number of words,
not exceeding six, required to hold them, Any vacant space at the
right of the last word is filled with 77's, rather than blanks (60's),
for convenience in collating, as well as to allow blanks to appear in-
internally stored messages, (CAR X) is a numeral, which is the size of
this array. (CDR X) is the cell following, which is used to contain
information, if any, concerning the use cf that atomic symbol as a
function name, If it is a primitive function or a machine language
function,the decrement of this cell contains the address of the subroutine
corresponding to it, If it is .a defined function, the decrement
contains the definition, so that for example, (CADP. (QUOTE APPEND)) is
the definition of APPEND., The address of this cell is the address of
the appropriate subroutine to cause the arguments of the function to
be evaluated; in the case of a defined function, this is the subroutine
EXPARG of the processor.

The next cell, (INCR (CDR X)) in the diagram, holds the "value"
of the atom in its decrement. INCR is equivalent to (2NDVAL ($PLUS
X (DEC (QUOTE 1)))), and is used to add 1 to its argument, adsumed
numerical. "Ye may regard the value simply as a special storage space -
associated with the atom '

Since this arrangement is subject to slight change as growing
experience warrants a shifting of priorities for different storage
locations, it is better to introduce certain special functions to
manipulate this storage, which may be later redefined without affecting



OPERATORS-6

the functions using ther.
(SET (LAMBDA (X Y) (SAR X (INCR (CDR Y)))))
(VAL (LAMBDA* (X) (CAR (INCR (COR X)))))

(SEN (LAMBDA* (X) (XAR ((CADR X) (CAR (INCR (CDR X))))
(INCR (CDR X)) )))

(XEC (LAMBDA* (X Y) (SAR (X (CAR (INCR (CD® Y))))
(INCR (CDR Y)) )))

(SHELVE (LAMBDA (X Y) (SAR (CONS X (CAR (INCR (CDR Y))))
| (INCR (CDR Y)) )))

(UNSHELVE (LAMBDA* (X) (CAR (XAR (CDAR (INCR (CDR X)))
((INCR (CDR X)) ) )J)

FE (NUEUE (LAMBDA (X Y) (SAR (APPEND (CAR (INCR (CDR Y)))
(LIST X)) (INCR (CDR Y)) )))

The significance of these functions is the follcowine: With every
atom there is supposed to be associated an abstract quantity called its
value, In RLIST LISP this would be the same as the value to which it
was bound if it were a bound variable; however it may be simply regarded
as an abstract property. The functions enumerated above manipulate
this value, and as occasion demands deliver it to the LISP processor's
pushdown list,

(SET X Y) causes the value of Y to become X, Ordinarily
Y would be a quoted atom, since SET is defined
in terms of LAMBDA. Any previous value is lost,
and the value is retained until altered by another
operator.,

(VAL X) yields the value of X, Since it is defined
______ in terms of LAMBDA*, its argument need (indeed
G must) not be quoted.

(SEQ X) regards S as a funcétion of one variable, which
it applies to the value of X to obtain a new
value, which displaces the old value; the latter
becoming the value of SEQ reported to the processcr.,
SEQ is an adavtation of the concept of a sequence
rode or a sequenced variable used by Perlis in
connection with THREADED LISTS. (VAL X) corresponds
to his notation x¢, while (SEC X) corresponds to
x*, The motivation of (SEN X) is to have a way
that X can automatically be replaced by the next
value of a predetermined sequence each time that
it is consulted. (VAL X) offers us an opportunity
to consult X arbitrarily often without going on
to the next value, however,
As with VAL, the argument of SEf) should not be
quoted. :




- ) CPERATCORE-7

(XEC X Y) causes the value of Y to be renlaced by (X Y).
It is a predicate, always taking the value T. It
is used vhen one has a variable which is to be
sequenced in several alternative ways, It is no
longer possible to give the sequence functions all
the same name as the sequence variasble, so that
XEC may be invecked to apply the chosen ome,
Beyond doubt, one could define appropriate functions
to apply a particular sequence function to a variable,
so that XEC stands as a sort of general case.

(SHELVE X Y) replaces the value of Y by (CONS X (VAL Y)),
so that it acts like the shelving operation in
Yngve's COMIT, It is a predicate, having a value
of T to assure us that the shelving has taken place,
The "shelf" is simply a list hung under the atom
Y, which must be set to () or some other list

P initially. The shelving operation consists in simply
e inserting the given expression X on the front of
this list.

Since it is defined by LAMBDA, so that the expression
X may be evaluated before being shelved, it is
necessary to quote the argument Y.

(UNSHELVE X) deletes the first item from the shelf X, taking
that item as its value, X should not be quoted.

(QUEUE X Y) works in the same fashion as SHELVE save that
X is placed at the end of the "shelf", or list
hanging under Y, rather than on the front,

Programs written in terms of these functions remain entirely
ignorant of the structure of the atoms, and thus will be uninfluenced
by changes in this latter structure,

As an example of an application of a sequenced variable,
consider the following definition of a sequence function:

o (WRIRU (LAMBDA (XJ.(IF (EQ X ($WRIBU1)) ($WRIBUZ) -
($¥RIBUL) )))

($WRIBU1l) and (SWRIBU2) are two functions vhose values are the titles
of two arrays each holding one record for the output tape, SYSPOT. Ve
wish to construct the output records alternately in one array and then
in the other, so that we may use one while the other is being written
on tape., WRIBU is then a variable whose values under (SEQ WRIBU)
alternate between these two arrays.

Operator predicates, in conjunction with LISP's innate ability
to define functions, yield a very powerful technique for constructing
programs, By using the Boolean functions AND and OR, we can require
respectively that as many as possible of a series of operations be
performed, or that as many as necessary be performed. There is no
provision for an analogue of a transfer order, but the possibility of
a function definition allows a portion of the program to be regarded -
as a unit and reveated as often as desired, so that the repetition
characteristic of an iterative program can still be achieved,



(PERATCRS- 8

In order to illustrate the construction of a program, as well
as to exhibit a tyvical examle of the usase to which the coperators
which we have defined may be put, let us consider the function
COMPACTIFY. Its purpose is to orocduce a card deck serving as the source
progran for a LISP function, from which all superfluous blanks have
been removed., 'hen subjected to this treatment, the program for a
working function may be reduced to 1/2 or 1/3 the number of cards which
would be found convenient during the testing stages, when senarate
statements are placed on individual cards and ample room is left on
each card for legibility and modification., Vhen a card deck has to
be read on-liné frequently, this saving in volume can result in an
appreciable saving in time,

(COMPACTIFY (LAMBDA L (AND
(SET ($PCHBU1) (QUOTE PCHBU))
(PACSET (VAL PCHBU))
(NoT (//1))
- ($PUNCH (SEN PCHEU))
s (PACSET (VAL PCHBU))
(COMPACTIFY* L)
(NOT (//7))
($PUNCH (SEQ PCHBU))
" (PACSET (VAL PCHBU)) )))

COMPACTIFY is a function of an arbitrary number of arguments,
which will compactify each of them in turn. However, it is only the
control function which initializes a number of variables, prepares a
blank card (with the help of the function ///) to precede and follow
the output, and calls on the satellite COMPACTIFY* for the actual
compression,

(COMPACTIFY* (LAMBDA (i) (OR
(NULL L)

(AND
(Not (//77))
($PUNCH (SEO PCHBU))
. (PACSET (VAL PCHBU))
i (COMPEXPR (CAR L))
. (NOT (//1))
($PUNCH (SEQ PCHBU))
(PACSET (VAL PCHBU))

(COMPACTIFY* (CDR L)) ) )))

COMPACTIFY* in its turn simply ensures that a blank card
intersperses each case, as well as ensuring thaet the terminal line
is completed with blanks and punched out, Since the termination
requires three lines of program it could perhaps profitably be
defined as a separate function,

(COMPEXPR (LAMBDA (E) (OR
(AND (ATOM E) (PUNCHATCM E))
(AND (PUNCHATCM (LPAREN))
(COMPLIST E)
(PUNCHATOM (RPAREN)) ) )))

COMPEXPR distinguishes whether the expression to be compactified
is an atom or a list., In the former case, the atom is sent to PCHTAP
through the intercession of PUNCHATOM, whilE in the latter, the list




CPERATORS-9

is surrounded by varentheses and broken into its constituent parts by
COMPLICT.

(COMPLIST (LAMBDA (L) (OR

(NULL L)

(AND
(ATOM (CAR L))
(PUNCHATOM (BLANK))
(COMPLIST* (CDR L)) )

(AND
(COMPEXPR (CAR L))
(COMPLIST (CDR L)) ) )))

(COMPLIST* (LAMBDA (L) (OR

(NULL L)

(AND
(ATOM (CAR L))
(PUNCHATOM (BLANK))
(PUNCHATOM (CAR L))
(COMPLIST* (CDR L)}:)

(AND
(COMPEXPR (CAR L))
(COMPLIST (CDR L)) ) )))

These two functions are used alternatively, denending upon
whether two consecutive blanks appear in the expression or not, They
both terminate upon an empty list, and otherwise see that every
subexpression of their argument is compactified.

(PUNCHATOM (LAMBDA (X) (AMD
(DISSET X)
(PUNCHATOM* (DISINT)) )))

(PUNCHATOM* (LAMBDA (X) (OR
(NULL X)
(AND
(OR
(PACK X)
(AND
($PUNCH (SEQ PCHBU))
(PACSET (VAL PCHBU)) ) )
(PUNCHATOM* (DISINT)) ) ))) |

These last two functions dissect the print name of an atom
character by character, and simultaneously place it in the output
buffer,

The function PCHBU is a sequenced variable defined analogously
to the example WRIBU,

The reason that PUNCHATOM is used consistently, even to store
the punctuating blanks and parentheses, instead of PACK, is that it
sends a filled line immediately to the output tape, whereas PACK might
overflow the buffer area without notice of this fact being taken,

5/11/63 ’
7/15/63
7/26/63





