
::

o

INTERP~1.ET p. TIVE SY 5TElvI FOR THE PROGRA !v1MING

CF RECUR3IVE FUNCTIONS ON A DIGITAL COMPUTER

by

Jan G Kent

o

o

- 2 -

CGNTENT.:J

?AR T I RECURGIVE FUNCTIONS IN LISP

2

2. 1

2. 1. 1

2. 1. 2

2. 1. 3

2.1.4

2. 1. 5

2.2

2. 2. 1

2.2.2

3

3. 1

3.2

3. 2. I

3.3

3.3. I

3.3.2

3.3. 3

3.4

3. 4. 1

3.4.2

3.4.3

3.5

3.6

3.6. 1

; 3.6.2 .

INTRODUCTION

A iv1ATHEMP, TICA.L-LCGICAL INTRODUCTION
TC LISP

Form and function

Definition of form

Definition offunction

A-notation

The conditional form

The label function

Prguments

Definition of atom

Definition of :; - exp re s sion

THE DEFINITION OF RECURSIVE FUNCTIONS
IN LISP

Primitive functions

Definition of primitive recursive function

P,ltern3.te definition of primitive recursive
functions

Examples of primitive recursive functions

The function plus (a+b)

The function difference (a:.b) and time (a' b)

The functions sg and sg

Definition of primitive recursive predicate

Representing fUnction

Propositional connectives

Theorem 1

Examples of primitive recursive predicates

More examples of primitive recursive functions
and predicates

The absolute value of a difference (I a-b I)
The function remainder rm

Page

7

7

8

9

9

f)

9

10

11

12 .

12

13

13

13

14

15

15

IS

16

17

17

17

18

18

19

20

20

20

o

o

I
Ii

I'

3.7

3.8

4

- 3 -

The gl'eatest common divisor as given by
the Euclidean algorithm

Examples of general recursive functions

CONCLUSION

Fl'~T II LI:':;P IMPLEMFNT1\TION

2

2. 1

2.2

2. 3

2.4

2.5

2.5. 1

2.5.2

2.5.3

2.5.4

2.6

3

3. 1

3. 1. 1

3. 1. 2

3. 1. 3

3.1.4

3. 1. 5

3. 1. 6

3.2

3.2. 1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

INTRODUCTION

C.8.GP.NIZATI8N OF THE .sYSTEM

Crganization of storage

P rguments and registers

Freeword list

Cbject list

l='roperty list

Binary markers

Fullwords

-.:?rintnames

Numbers

Crganization of input and output

THE INTERPRETER

Recursion techniques

The pushdownlist (Stack)

SAVE

UNS/,VE

RGJPCfLL

ClILL

RETURN

The reader

RE1,D

GETCH1.R

TRY1:TCM

~TOR!,TOM

TRY!.-"tPl:R

TRYDOT

"Page

20

21

22

23

23

23

23

24

25

25

25

26

26

27

27

27

28

28

28

29

2:;

29

29

29

30

30

31

31

33

33

33

o

o

;;1

3. 3

3.3. I

3.3.2

3.3.3

3.4

3. 4. 1

3.4.2

3.1.3

3.4.4

3. 5

3. 5. 1

3. 5.2

3.5.3

3.6

3. 6. 1

3.6.2

3.6.3

3,6.4

3.6. 5

3.7

3.7. 1

3.8

3, 8. 1

3.8.2

3.9

3. 9. 1

3.9.2

3. 10

3. 11). 1

3.10.2

3. 11

The printer

PRll\TT

~EN01'TOM

WRLINE

- 4 -

Other input and output routines

10 DVJ..NCE

CTf,RTRE/,D

PRINI

TERPRI

Routines operating on printnames

Pi;CK

MKl:TOM

UNP/,CK

Elementary functions

CIR

CDR

C;CN,s

ilTCM

EQ

The garbage col1ect~r .

RECRGARB

The interpreting routines

ERRCR

GPREAD

The trace feature

TRACE

UNTRIoCE

/,rithmetic functions

'::;TCRE

/, rithmetic functions in LISP3600

The i?ROG feature

3.11. 1 SET

3.11. 2 3ETQ

3. 11. 3 GO

3.11. 4- . RETURN

3.12 Miscellaneous functions

Page

34

34

34

34

35

35

35

35

36

36

36

36

36

36

,36

37

37

37

37

38

39

39

40

40

41

41

41

42

42

43

44

45

45

46

46

46 I
J

o

o

3, 12, 1

3. 12. 2

3. 12. 3

3. 12.4

4

4. 1

SETBIT

TEJTBlf

CLE/ I?BIT

GEN.5YI',1

CONCLU3ICN

- 5 -

?ossible extensions of the system

P/lRT III LI.JP3600: USER's MANUI. L

1.1

1. 1. 1

1. 1. 2

1. 1. 3

1.2

1. 2. 1

1.2. 2

1.2.3

1. 2. 3

1.2. 5

1. 2. 6

1. 2. 7

1. 2. 8

1. Z. 9

1. 2. 10

2

2. 1

2.2

2.3

2.4

2.5

3

3. 1

INTRODUCTION TO THEPROGRI.MMING
L/.NGUI.GE LISP

C-expressions

/:..toms

Dot -notation

List -notation

L.ISP -functio!ls

QUOTE

CONS

Cl:R

CDR

EQU/;L

bDDI

ITOM

CCND

DEFINE

LAMBD!,

(;PERP TING PP,OCED URECi

Running a program punched on cards

'?relisting the LI3?-program

Running a program punched on pap~rtape
Stopping a LISP -program

Tracing in LIS?3600

ERROR DItGNGjTICC

Syntactical errors

..

Page

46

46

46

47

47

48

49

49

49

49

49

49

50

50

50

51

51

51

52

52

52

53

53

55

55

56

57

58

58

59

59

. '

.!

o

'3.2

4

,4. 1

4.,2

4.-3

5

5. 1

5.2

6

6. 1

6.2

f)ppendix I

- 6 -

Runtime error s

DIFFERENCES BETVvEEN LISP3600 f.N D
LIC? 1.,5

Extensions

emissions

Differences

EXl.,MPLES OF THE USE OF LISP

METEOR

PRETTYPRINT

INS'f bLL.tJ TION, PROCEDURES

Contents of system tape

Running the systcm tape

Flow charts for some of the routines
used in the implementation of the inter
pretcr

Ippendix II 1: ssembly listing of the interpreter,
written in COMP 1',SS-language for the
CDC 3600 (Separate binding)

1\ ppendix III

Appendix IV

Ippendix V

1\ppendixVI

Description of the indicators in the D
register used in the interpreting process

Some functions in the interpreter de
fined in M-expressions

Rules for translating functions written
in M-expressions into S-exprcssions

/, sample LISP-run showing the com
plete initial object list and
PRF.:TTYPRINT printing itself

References

Page

59

62

62
63

63

63

64

64

64

64

65

67

94

96

101

103

113

",
II

" ;'

lJ

"

', .
. ,

,;
I ~

--- .. .:. ::... '" ... ,. -. --=--=-=-=

o

~ '.I !

o

- 23 -

LI,sP IMPLEMENTATION

INTRODUCTIO~T

This paper describes the implementating of LISP 1. 5 on CDC 3600

at Kjeller Computer Installation.

The CDC 3600 is a l:s complement binary computer with a 48-bit

word length and 32768 words ;)f storage. Core. speed is 1. 5 micro

seconds. SCOPE, the monitor for CDC 3600 occupies 6000
10

words

of core store.

The machine has an accumulator 1:., an accumulator extension Q and

a flag register D. A, Q and D c:re all 48 bits long. In additionthere

are six I5-bit index-registers B1 - B6 and various other regis~ers.

LIS?3600 as this interpreter is called has been modelled after the

original LISP 1. 5 (I) for the IBM 7090, and care has been taken to

ensure compatibility between these two ver sion.

The actual implementation CJf this interpreter differs in some impor

tant respects from the original version to increase the efficiency.

The most marked differences are in the organization of storage,

where the idea of a separate block for "fuUwordstorage" has been

abandoned, and in the propertylist of each LISP-atom where the indi

cator PNP. ME never is needed. Note that the interpreter and the

initial object list is assembled re10catable.

Z CRGA.NIZ.f. TICN CF THE SYSTEM

Z. 1 ~anization of storage

Core store is distributed according to this figure.

o

o
Z.2

0000°8

7140°8

77000
8

777778

- 24 -

CCCPE

Pu shdownlist

F reewordstorage

LI::;-:::--interpr

Various drivers

Figure 2. 1 Crganization of Core store

-.

-.

The boundary between freewordstorage and the pushdownlist is fixed,

though easy to reset when reassembling the LISP-system.

The length of the pushdownlist has been set to 4000
10

words. The

interpreter occupies about 2850
10

words and freewordstorage the rest

of core store, about 20 000 10 words. This compares favourably with

LISP 1. 5 which by excising LIP and the compiler has 16300
10

words

of free- and fullwordstorage and 2560
10

words of pushdownlist.

P rguments and reg~sters

Between LI,st='-functions arguments axe transmitted through the p,

register, P-register and the standard cells ARG3, •....

The t. -register is also used for transmitting a.ddresses to and from

the pushdownliot ..

The value of a function is always held in A when returning. The D

register is used to hold several indicators (binary switches) needed

2.3

o
2.4

o
Z.5

- 2.5 -

in the interpreter. Information about the status of the interpreter can

then be read out of the bit for bit displayed D-register on the console.

The reader is referred to Appendix III for a description of the indica

tors.

Freewordlist

P 11 unused words in freewordstorage are strung together on 3. list called

the freewordlist. Every time 3. new word is needed it is taken from

this list. The addre s B of the fir at word on the freewordliet is always

held in a location called FREE.

Object list

In LISP all predefined atoms are held on a list called the object list.

That part of the object list which contains the standard atoms has been

generated in a ssembly language. See Appendix VI. When an atom is

encountered by the reader this list is searched to see if the atom al

ready exists, if not the atom is appended to the object list. The add-

. ress of the first word on the object list is held in the location OBJE':T,

which is accessible to the LISP-programmer as the property APV AL

of the atom eBLIST.

Property list

Some atoms have special properties. Information about atoms is

stored in the atom's property list. 11 typical property list might look

like this:

11 I ~L--lt-'. -->-_=:f-_ NIL

L-,-.L.=::~AL1t~. -=----:t---4::::j .

1, ~
LAMBDA

Figure 2. 2. Property list of the atom with printname FF

2. 5. 1

Z. 5.2.

- 26 -

FF is .::.s we sec 3. function namely an EXPR which starts thj sway:

(Ll,MBDf. (X) ••.••).

Bin~ry marken:;

/ s the wordlength is 48 bits, 3.nd cnly 15 bitG are needed to express

an address, 9 bits in the upper hiifword and C) bits in the lower half

word are released for other uses.

If bit 47 in a word is set this indicites that the word is an atomhead.

47 46 45 44

I ,
1 I

---- 47 46 45 44
- -- 0 0 0 BCD ALF11MER

~ ~ ~
0-: ct, ~

~
0 0 FIXPOINT

<l; < ~
?-: cr; 0 FL01'.T POINT

~ ~ ~
::? p:) f-i 1:...::.4

...0.; r-: 0 1 LCGIC/1L
0 ~ 0 l'J
E-4 ::> ~ 0
~ Z ~ ~

Figure 2.3 Markers and their meanin/i in the atomhea.~

The bits 46, 45 and 44 refer to the word whose address is in the

upper address of the atomhead, (sec Figures 2..2. and 2..3). This word

is the fullword list associated with the atom. Bit 39 indicates whether

or not a function is to be traced.

When bit 2.2. is set this indicates that the word in question is a full

word. Bit 2.3 is used by the garbase collector to mark active words.

Fullwords

The fullwords in freewordstorage replace the Ilfullwordstorage ll in

LISP 1.5.

/' fullword is 3. word with the 2.4 upper bits occupied by either:

a) Four BCD characters from a printna~e. (If need be, filled in
from the right with blan!<s.)

2.5.3

o

2: 5.4

o

2.6

- 27 -

or

b) 24 bits from a 48 -bit number.

or

c) The addre'3G of a binary LI31?-routine (SUBR or FSUBR).

Printnames

1:11 nonnumeric atoms have in the upper half of their atomhead the

address of a linear list of their BCD printnames. For instance the

atom DIFFERENCE had this fullwordlist:

Figure 2. 4 The fullwordlist of the atom DIFFERENCE

Numbers

There are three kinds of numbers:

a) Fixed point

b) Floating point

c) Logical

I,ll are stored as 48 -bit binary numbers with the help of two fullwords,

and must be converted from or to BCD in input and output. (The BCD

representation of a number is not stored.)

C rganization of input and output

Input and output operationG in the interpreter always refer to so,:"called

logical units. The concept of logical U'1its is introduced by SCOPE to

help all programme rs achieve flexibility in input and output. 1-, logi

cal unit is independent of actual units in a given machine-configuration.

The LISP-programmer chooses his actual input and output units at

run-time. /; 11 output in the inte:::p·.·eter goes to logical unit 11 and all

input is from logical unit 10.

o

. u'

..
- 28 -

3 THE mTSRP~ETER

3. 1

3. I. 1

The following chapter is C'. description of the main subroutines in the

interpreter which cannot be described in LIS? Note that flow charts

for some of these routines are given in Appendix I. In this descrip

tion all words written with capital letters (except the register mne

monics) refer to symbolic addresses in the interpreter, or to the

names of indicators in the D -register. (See Ippendix II for a listing

of the interpreter and J.ppendix III for a description of the indicators.)

I'll functions which can be defined in LIS"!? are given in M-cxpressions

in the manual LISP3600: Users Manual.

Recursion techniques

LISP is a very recursive programming system as can be seen from

the hct that a LISP function may call the LIS? -interpreter which

then in effect has to interpret a call to· itself. Idlimportant in all this

recursion itJ the pushdownlist and the bookkeeping (S/ .. VE and UNSl~ VE)

of the pushdownlist.

The pushdownlist (Stack)

The wh,ole system uses only one pushdownlist. This pushdownlist

then has to hold:

a) I,rguments of recursive routines. (J\lways in the form of pointers
to lists in freewordstorage.)

b) Return address for routines entered by a recursive call.

c) 1'. ddresses of specific operLltions to be performed in combined
routines, when these have to call the interpreter to evaluate their
arguments (see under arithmetic routines).

Note that the pushdownlist is just a linear block of storage with no list

structure.

··s'..... 'I"

o

: ;

·0

"Il ,.""-.~.:... • .-;~~, ,.-.~- ... -.;.,,--.- - --~-.~-~~ .. --~'"~--~~--.--.'.--.. ,._, ,. _ ' .•........ ~ -,~_._-"" , •....... !,
~

3. 1.2

3. 1. 3

3. 1.4

3.1.5

3.1.6

- 29 -

GtVE

This subroutine puts the A -register on top of the pushdownlist and

increases the pointer which points to the top. If the stack is exceeded

control is transferred to ERRCR.

This subroutine decreases the pointer to the top of the pushdownlist,

an.~ hads !: with the word on top. If the bottom of the pushdownlist

is reached control is transferred to ERROR.

The recursive call on, and return from, a routine is handled by two

subroutines named CALL and RETURN. Withinthe interpreter the

calling sequence needed for calling a routine by the help of CALL is

inserted by a macro called RGJPCALL.

RGJP~ALL

This macro has a single argument namely the name (symbolic address)

of the routine to be called. The macro also preserves index register

BI. This has proven very useful because it means that BI can be used

freely in all routines entered by CALL.

RGJPCALL retains control if the argument is CAR or CDR and

codes in the necessary 5 instructions which perform CAR or CDR.

CALL

This subroutine is entered by a return jump (from RGJPCALL

usually) which means that a jump back to the calling routine is stored

in the very first location in CJ. LL. This location is then saved by the

help of SAVE. The .I.-register is preserved in this operation. Lastly

control is transferred to the routine which was to be called.

RETURN

This subroutine unsaves the jump mentioned under 3. 1. 5 and executes

it, thereby returning control to the calling routine.

.3.2.

3. l. I

o

o

- 30 - •

The reader

!: 11 symbolic analysis is done in i·I::';P by. the reader, which is usu:).lly

written first. Thc reader consists of the routine RE/.D which uses

GETCH1.R, TRY I TOM, TR YRPi. It, TR YDOr and STORP TOM.

Y.Then control is transferred to 3.EJ"D a single C-expression is read

from bgical unit 10. The address cf the first word in the internally

generated list is held in 1: when returning from REi D.

["E'/.D ::;UB::Z pseud":>function

1.1 the flow chart for REI.:-:) some LI:P-tcrms arc used to explain the

working f;)f the rC3.der. However, no LIJP-functions are actually used

in REi. D, mainly because the reader was written first.

REi.D is a recursive subroutine. The recursion is performed by a

subset of REID with two entry points UPPER and LOWER. The

subset is called recursively e'lch time a leftparenthesis is encountered

in the input string. If the leftparenthesls is the first character after

a dot the entry point LOliJE~ is used, vtherwise the entry point UPPEF.

is used.

The otatement "Try to read atcm into car [V}J" means that TRYJ. TCM

is called which, as the name implies, seeks to make an atom out of the

next character3 in the input string.

Control is returned to REf, D if a nonalphamcric character (except

preceding blanks) is encountered. The same holds for the:.lther "Try

toll except that these routines only read a sin81e character (though

skipping preceding blanks) and exits successfully or unsuccessfully.

'1Ef.D also check:; for syntactical errors and puts in an errorte::-.'t at

the point where the error was encc.untered. J~t the same time the error

inJic"ltor ERRIN D is set. This indicator in checked before entering

:-;V 1 L:'TJ -:'TE and if it is on EV 1. L~UC TS is sl:ipped and an errc.r

rrintout effecteJ.

3,2.2

. 3.2.3

o

o

- 31 -

GETCHIR

This subroutine loads, Pwith the next character from the input buffer

BUFF (0-10). I s the input is always cards or c3.rdimages a new card

is read each time 72 characters have been read. The number of ch:l

ractersread within a card is held in TEMP+2. If the character in l':

is an apostrophe, the running of the interpreter is stopped and control

returned to the monitor ':;CG?E. (That is to say, apoGtrophe acts

like "end of file"-mark to LIJ'?3600).

TRYf.TCM

This subrcutinc tries to forL1 a string of BCD characters or a half

c'..:nverted number in B UFF{ 11-20). H the next characters in the input

string makes this possible. TP, Y l.T(:M calls [iTeR/, TOM which m3.kes

atom,s out of the information in B UFF{ 11-20). To aid TRY 1. TOM in

the understanding of the input string and 5TOR/: TOM in the making of

atoms several indic:~tors in the D -register is us ed by TRY j\ TOM. /111

these indicators are cleared when entering TR Yl~ TCM.

The possible indicators used by TRY 1. TOM -are:

Bit no Name

10 J:.TCMIND

11 NUMBIND

12 MINU'::IND

Usage

This is set if the first character {skip

ping preceding blanks} is alphamerical,

and is used to tell TRYP.TCM that the

construction (·f an atom is in progress.

Get if first character is a digit. Used

to te 11 TRY/:· TOi\1 that the construction

of a number is in progress, and to tell

::TC<RI, TOM that a numeric atom must

be made.

.'Jet if first character is a minus. Tells

[JTC?J. Tel'/: that th8 number must be

complemented before atommaking.

g; !i"'"

~

o

o

13 FLDITIND

14

15 LCGIND

16 NEGEK3ll'ID

17 LETTIND

- 32 -

This is set if a decimal point is encoun

tered under the construction Jf a number.

Tells TRY I TCM that the number encoun

tered is floating point, and STCR/" TCM

that floating-point conversion must be

done.

Set if the letter E is encountered while

assembling a floating-point number.

Gign;::.ls TRY/: TGM and 5TCR/. TDM that

the number has an exponent.

:::;et if the letter n is encountered while

assembling a number. Signals TRY LTCM

and STORI TOM that this is an octal

number v.rith a possible scale factor after

the ,:-:~.

::;et if a minus is encountered while the

EK~PIND is on. Signals that the ex

p0nent is negative.

Set if first character is a letter. Indi-

cates that the atom is nonnumeric.

Note that the characters ar~ brought by GETCHIR, and the last brought

is always hel~ in LLGTCHR. The first non-blank character encounter

ed by TRYLTOIA in the input string determines if it is possible to make

an atom or not, namely if the character is alphameric or not. If atcm

making is possible the mode of conversion is also set by the first charac

ter. /, special mode is set if the first two characters are ;:;~. The

character follewing $$ is preserved {called DELIMITR} and all charac

ters after thi3 put into the conversion area without checking until DELI

MIT~_ is encountered ag3.in. This provides for making atoms contain-

ing arbitrary characters .

Exits from T'?, Y I TCM are also governed by the first non-blank charac

ter encountered as can be seen from the following table.

o

o

3.2.4

- 33 -

P..ddress of the instructi~n calling TRY l' TC M is called Cl\ LLING.

Condition

::';ucccssful atommaldng

Comma

Dot and right parenthesis

Left parenthesis

Returnaddre s s

ChLLING + 1

CI. LLING + 2

Cl.LLING + 3

Cl.LLING + 4

If an atcm has been made its address is in Q when returning to

REi . .'J.

:JTCRLTCM

This subroutine converts and makes an atom out of information in

the conversion area BUFF(11-20) according to the indicators in the

D-re~i!}tcr set by TRY f; TCM. These indicators are also used to get

the correct m3.rl~ers in_ the atom.g hC3.d. When the construction is

finiahed the entire object list is sC3.nned to sec if this atom has been -

generated before. If the atom already exists the address of the elder

atom is in I. when returninG_ If the atom is new it is appended to the

object list and its addres s held in I: when returning ..

: 3.2. 5 TRY~Pl,.P'

l. 2. 6

This subroutine compares the first character (skipping preceding

blanks) with a right parenthesis. and if they are equal returns to CA L

LING + 1, otherwise return is to Ci.LLll'TG + 2. (CA LLING is as be

fore the address of the instruction calling the subroutine in question.)

Characters are brought by GSTCH1,R. and the last brought held in

LL3TCHR.

TRYDOT

This subroutine checks for a dot. in the same way as TRYRP/I R.

~ ·1''';;;~-':-------" -------------'------·~

~

~
f,

I
I
f
r
I
f

I

3. 3

3. 3. 1

o

3. 3.2

13• 3• 3

- 3<1 -

The rrintcr

I lmost 2.11 ::utput of .J-cxpressi0ns is handled by the printer. The

printer consists cf the CUB"~ '?3.INT which uses the subroutine

'SEND!, T0i'/ and ~'~/P.LINE.

'PRINT ::';UBR pseudofunction

If the argument of PRINT is ncnatomic I) is set to minus zero and

saved, thereaft·8r PRINT starts an iteration the -end of which is

signalled by an unsaving of minus zero~ In this iteration the list

structure which is the argument ~A PRIN'T is converted to S-expres

sions and placed in the output buffer CUTBUFF(0-15) for later

printing by ~;'lRLINE. 1': s the ::';-expressions may be longer than 15

words there i8 a check for end of line. If the word CUTBUFF + 10

is filled, bit 3 in the D-register (CVERIND) is set, the line termi-

n :It.':!-1'anj printed before a new atom or a new sublist is built up. The

c-~nvcrGi;m to c.-expressions then ccmtinues from CUTBUFF + 1

again.

::;ENDf~TC1vI

Thia Gubroutin2 sends a printname to the output buffer after per

forming the necessary conversi(;ns. The arguments are the atom

head of the -ltom in question held in ::: and a pointer to its fullwordlist

in B2. SEN,: __ il. T 0iv1 uses bit 15 in the D-register (LCGIND) to indi

cate that a lor;ical number is under conver sion. fhe subroutines fer

convertinG internal binary representation of lcgical, fixed point and

floating p:;int numbers to external BCD representation are all stan

dard l~jel1cr Computer Insbllation routines. The r~utine for output

of floating point numbers gives in this version 1 digit before the deci

mal point and 6 2.fter. Trailing zercs in the mantissa are omitted

and the same hoIda for leading zeros in the exponent.

WRLINE

This subroutine transmits a line to logical unit 11. .f.rgument is the

address (in I,) of the control word tc. be used. IT this is the standard

.0

o

- 35 -

control word for printing frem CUTB UFF, the words containing the

line (CUTE UFF (0-15)) is transmitted to C UTBUF.F (20 -3 5) and print

ing initiated from OUTBUFF + 20. It the same time CUTBUFF (0-15)

is reset to blanl,s.

If the contrvl word address is the address of any other control word,

'NRLINE only initiates' printing and returns control.

3.4 ether input and output routines

3.4.1

RELD will read a BCD list from logical unit 10,' "PRINT will write

an internal list-structure on logical unit 11. In order to process non

list input and C'utput, Lr.:;? has several generalized input and output

routines. l/?hen using these routines together with the routines which

YG21'ates on the printnames, extreme generality can be achieved in

inrut and cutput.

l,DVf,NCE SUBR pseudofunction

t.DV i.NCE reads the next character from the card currently in the in

put buffer and returns with it made into an atom. This is done by

first calling GE~=HfR and then sending the character to BUFF + 11,

after which 3TCRt TCM is called. /; DV /)NCE checks TEMP + 2 to

find '":ut how many characters have been read. If the 72 characters

have been read .l.DV llNCE increases TEMP + 2 and returns with the

atom EOR as value. I fter reading EOR, the next kDV /,NCE will

bring the first character on the next card by calling GETCH.1\R etc.

: 3.4.2 3T I RTREJ . .0 eVBR pseudofunction

GT l:RTR 1;:.'./,D always brings the first character on the next card. This

is done by setting TEMP + 2 to 80 and jumping to A DVJ.NCE.

,;-,,-

o

o

3. ·1. 4

- 36 -

end of line, executing successive P.?INl's will fill up and print out line

after line.

TERP::lI .sUBR pseudofunction

TEFPRI prints out the output buffer by calling WRLINE.

3.5 Routines -Jpera.ting on printnames

3. 5. 1 ?!.CK eUER pseudofunction

l'h2 argument of ?!:CK should be an atom, and the effect of P!.C:K is

to place the first character in this atom's printname in the output

buffer.

3. 5.2 I MKJ. TOM SUB a pseudofunction

3.5.3

MKJ:TOM makes an atom out of the characters placed in the output

buffer by PP-CK. This is dcn~ by calling STORI TOM. The value c£

MKP. TOM is the newly created atom (see STeR! TOM for details).

Executine, 1vlKl. TOM without first having executed PACK 'gives the atom

EL/NK. MKP. T<JM is a new function in LIS?3600. and in terms of

LIS'? 1. 5 its effect is: MKP. TC'M == INTERN (MKNflM).

UN?/,CK 3UBR pseudofunctian

The 3.rgument of UNPICK should be an atom. The value of UN?!:CK

is a string cf atoms each having as printname a single character from

the original atClm. This is done by calling SFND/. TOM and then trans-

mitting the character s in the pr intname one by one to BUFF + 11 while

calling STCRL TCM.

3,4 • .3' PRIN 1 GUBH. pseudofunction 3.6 ElcL1cnt?ry functions

~:'lINl has an atom as argument which it sends to the output buffer.

" This is done by calling GENDJ.TOM. !: sSEND/, TOM has checking for
3.6. 1 CIR :JUB.R

C! R loads j. with the upper address of the word, whose address was

the a rgument of C/. R.

o

o

- 37 -

•• 6. Z CDR GUBIt

3.6.3

CDR loads I. with the upper address of the word, whose address was

the argument of CDR.

CONS ,s·UBR

a) CeNS obtains a new word from the freewordlist by taking the first
word on the freewordlist. ,

b) If this word is not the last word on the freewordlist FREE is set
,ts C ;JR. of the freewordlist.

c) Thereafter CONS phces its two arguments in upper and lower
address of the new word, and returns with the address of this word
as a value.

d) If the new word was the last on the freewordlist, the garbage collec
tor is called. Upon return to CONG FREE is checked for zero and
if zero, ERROR is called with the remark "store is full". If non
zero the first word is again tested for being the last and if not CONS
proceeds as described under 3.), b) and c). '

If the freewordlist ·ag3.in contained only a single word ERROR is
called with the 83.me remark as under d).

Note: Wherever an unused word is needed from freewordstoraO'e
in the interpreter CONS is used to bring it. This also applies to
fullwords, aee 2. 5. 2.

This also means that the garbage collector can only be called from
CONS.

'3.6.4 1, TOM CUBR predicate

Bit 47 in the word, whose address was the argument of 1'. TOM is

checked. If zero the value of A TOM, is F, if nonzero the value is T,

see 2.5. 1.

E0 SUBR predicate

If the two addres se s which are the arguments of ES: are equal, the

value ':.Jf EQ is T, otherwise F.

. 3. 7

0
!o::i

J

~~

- 38 -

The g:::.rbagc collector

rhe garbage collector is called from CeNS whenever the freewordlist

haG been exhausted, and unleJs the computation is teo large for the sys

tem, ther·~ arc many words in freewordstorage that are no longer needed.

The zarbagc collector uses these to make a ne,,; freewordlist.

1.'0 fb.::! the unused words, the g'1.rbage collector sets bit 23 in all needed

w()rdG.

Since it is imp':Jrtant that all needed lists be marked, the garbage collec

tor starts marking from several base positions:

a)

b)

c)

d)

The object list, whose starting address is in the location CBJECT.

This protects the 'ltomic symbols, and all list-structures that hang
on the propertylists of at::>mic symbols.

The portion of the pushdownlist that is currently being used. This
protects most of the results of the computation that is in progress.

The two arguments for CC.·NS, when the g:1rbage collector was called.

The loc'ltion REI DTEMP + 3 which hold the starting addres s d
either the list-structure under construction by REI. D, or the last
read list-structure.

e) The locationG TEMPOH.I ''1. (0-5) which holds intermediate results
in computations involving CCN3.

£) The locati:ms .tLIST and I BG3 (0-20) which holds arguments for
the interp rete r or LISP -functions.

Before using any of the addresses in the base positions, they are tested

for being pointing into freewcrdstorage. If they are pointing into free

wordstorage 3.E.CRGJ.RP is c:llled, if not the next base position is tested

an.] G2 en. 'i!hen all haGe p0siticns have been run through the garbage

collect;r sC;J.ns freewordstorage Ihle'1.rly, setting bit 23 to zero in all

marked word:;, and stringing all unmarked words together into a new

freew::,rdlist, whose starting address is put into FRE:E before returning.

If the end sf freewordstora.ge is reached without discovering a single

w"lmarkcd v/or.:1, FREE is sct to zero before returning.

The garbage collector is also used to initialize freewordstorage. Be

fore ent'8ring the garbage collector for this initializing, bit 46 in the D-

~ 1.1 .
'--~--~--------~----~------------------------------------~~

o

o

'I.''''':

3.7. I

- 39 -

register is set. This bit tells the garbage collector that it need only

, mark the object list.

RECRGI,RB

This recursive subroutine is used by the garbage collector to perform

the actual marking of a needed list, whose starting address is in Bl

when entering.

Marking proceeds as fellows:

First every needed word within freewordstorage that can be reached

through a Cl.R-CDR chain from a base position is marked by setting

bit 23. Whenever a word with bit 23 set is reached in a chain during

this process, the garbage collector knows that the rest of the list in

volving this word has already been marked, and does not mark again.

k CDR chain is stopped by either NIL or zero in the lower address of

a word.

1, CI,R chain is stopped by either zero in the upper address of a word

or by reaching a fullword (bit 22 set). The marking of a fullwordlist

is done by a special part of RECRGfRB which never takes CIR of a

word. This is necessary because the upper address of a fullword

must never be used as a pointer (see 2. 5. 2). The testing for zero is

necessary because the garbage collector can be called from routines

such as REID which constructs lists, and all pointers in a list

structure may not be known at the time. The fact that the address in

a word will be put in later is Signalled by setting the address to zero.

1, garbage collection can be recognised by bit 47 in the D-register.

This bit is set upon entering the garbage coilector, and cleared before

returning control to CON;':;.

3. B 'The interpreting routines

Some of the functions that can be defined in LWP are given in M-expres-,

sions in 1..ppendixII.

o

o

,8.2

- 40 -

Th~ Lr::;'!? definitic.n of these functions have been followed with one ex

ception, EVLI:.J. To make the routines !aster all unneeded recursion

as indicated by the LISP definitions has been changed to iteration.

This left only four places where recursion was needed, one place in

1.PPLY and three in EVIL. In these places recursion were needed

because of having to call EV J..L or EVLIS before applying 1: P? L Y.

To eliminate recursion in EVLIG a new routine !:FPENDI was written.

This routine has been very useful and is used in PROG, DEFINE and

AP'PEND apart from in EVLIS.

EVLIS and LI.sT are in effect the same binary program.

The routine ERRCR is always called directly in the interpreter, and

a special section of ERROR takes care of these calls.

ERROR .sUBR

The function ERROR will cause an error diagnostic to occur. The

argument (if any) of ERROR will be printed. ERRCR is of some use

as a debugging aid.

J. s mentioned above a special section of ERROR gets control if an

error occurs in the interpreter. Before transferring control to this

section 1. and 0 must be loaded with a specification cf the error such

as 111:.7 :J?RE1,D". 'Y/hen entering the special sectbn 1~ and 0. are

stored in a standard error diagnostic line and printed out. Thereafter

all lists bound on the pushdownlist are printed out.

ERRCR always stops interpreting and gives control back to the main

program, to read the next doublet. Sec LISP3600: Users Manual for

a complete listing of all error diagnostics.

S1?REJ; D

This subroutine is not available to the LIS?-programmer. SPRE1,D

can be regarded as a pseudofunction of one argument. The argument

is a list. SPRE!:D puts the individual items of this list into the stan

dard cells 1:, :;, f. RG3, .•. for t:::-ansmitting arguments to functbns.

3.9

\r:

,0

, 3.9. 1

3. '). 2.

- 41 -

The <:race fec:.ture

This feat'.::"·e has been implemented in an unconventional way in

1-IS1'3600. ThollSh externally operating in much the same way as in

LISP 1.5, iil.ternally tIle diHerence is marked. At present only EXPRa

can be tracecJ: and the EXPRo are only checked for tracing in EVA L.

The checking is only perfcrmed if the TRP, CEIND (bit 7 in the D

register) is on. If this indicator is off the checking is skipped and all

EXPRs are evaluated faster.

The TIll; :::E-IND can be set by executing SETBIT (7) and cleared by

executing CLSj.,RBIT (7).

Tra.cin~ is also controlled by the pseudofunctions TRACE and UNTRACE:

If an I~·XP::?. has been the argument of TR/,.CE and the TRACEIND is

on, the name and arguments of this EXPR will be printed when it is

entered recursively .and its name and value when it is finished. Thus

. there are in EVAL two checks for tracing of an EXPR. The first is

after evaluating its arguments, to see if they should be printed, and

the other is when returning with its value from A PP LY, to see if this

should be printed. Arguments are printed out via the subroutine

TRP,CEARG and value via the subroutine TRACEOUT. Both subroutin

es also print the name of the EXPR. The check for tracing is made

possible by saving a pointer to the EXPR in question while evaluating

its arguments and while finding its value. This pointer is also utilized

by TRACEARG and TRACEOUT when they print the EXPRs name.

TRACE SUBR

The argument of TRACE is a list of functions to be traced. TRACE set

bit 39 in the atomheads of all of them and this bit is then checked in

EV kL if the TRt.CElND is on.

UNTR.J;CE :SUBP.

This functicn removes tracing from all the functions in the list, which

iEl the argument c:E UNTRACE. This is done by clearing bit 39 in the

atomheads 0f the 5e functions.

-----~.

o

o

3. 10

- 42 -

Arithmetic functions

The arithmetic functions in LI:'::?3600 needs special mentioning. To

save space all functions which are equal in all respects save the actual

operation involved are combined into a single routine with different

entrypcint9. For instance the function "PLUS and TIM£S uses the

Game routine called DLU3TI1v1~', with the two entrypoints ?LU3 and

TllAES. "?LU3TIME (as the other combined rcutines) performs the

correct operation by executing it indirectly through the location/< DR.,

which is loaded with the add res s of the correct instruction at the entry

point. In other words the address of an addinstruction is placed b

P,D?.at the entryp'Jint ?LU3 prior tc transferring control to PLUS

·_'He:-. If the functions to be combined into .:lingle routines are F ::;UE;:Z,

the adjr~ss in I. DR. must be saved before evaluating an argument and

unsaved afterwards. The reason is obvious; for instance "PLUS may

very well have TIMES as an argument, and as they both use PLUS

TIME something must be d:.-..ne to preserve the operation while evalua

ting arguments •

For the Game reason intermediate results are saved, and unsaved while

evaluating arguments.

Functions with numbers as values transfer control to the routine

0Tc.F~E, when they have finished the computation. fhe result must be

place::l in "F'LU31 + I and some indicators sct prior to jumping to 5T C'~E.

STeRE then generates a nen-unique numberatom with the binary mar

kers in the atomhoad set acccrding to the indicators in the D-register.

~. II). 1 GTCRl?

This subrc.utine generates a non-unique number.

If the FLCf~TIND is on, the FLCIT marker is set in the number's

atomhead.

If C1e LCGIND iG on, the L':',G marker is set in the number's atom head.

If nunc c,f thene arc on a fixpr)int number will always be generated.

0

0

- 43 -

3. 10. 2 Arithmetic funci:ions in LI3"? 3600

Function

?LUS

TIME3·

DIFFEREN:::;E

'"'UC T'ISl'TT

I. .~ . .:., I

~UBI

EXPT

LFFTSHIF'I'

MINUS

LE30P

GREITERP

ZERC'-P

MINU:]P

ES~UPL

r'G~-:'

Type

F3UBR

F':;UBR

::;UBR.

:::;UBP.

~UBR

~UBR

:::;UBR

:::;UBR

:";'UBH.

,SUBR, pred

':;UBR, pred

SUBR, pred

~UBR, pred

3UBR, pred

;':;UBR,pred

Routine
uned

:::>LU'::;TIME

?LUSTIME

i.JIFFQUCT

DIFF0UCT

], D::J I.sUB I

IODI.sUBI

EXPT'

U~~FT3HIF

REMP,INDE

urINU~

GT. LT.

GT.LT.

ZGROP

MINU~P

NUMBED

FIXP

Numb
of
args

indefi-
nite

indefi-
nite

2

2

2

2

2

2

2

2

1

Result

xl +xZ+··
+xn

xI·xl·· •
• xn

Remarks

Result is
always
floating
point

Remain- Take s only
der of fixed-point
xI/x2 args

x is a fix
point -
number

~-======.;,=~_~=.= .. ~L==~".=_'='==============" __________ ~ ____________________ _

I
!

I
1

1
'I
!
j

I
o

3. 11

o

•

Function Type Foutine
used

Numb Result
of

Remarks

FLC1.TP GUBR, pred

LeGP .sUBR, pred

LOGAND F':;UBR

LeGOR F,sUBR

LCGXOP. F::::UBR

The ?;-J:.CG feature

FLC.JTP

LCGP

LC;GFUNG

LCGFUNC

LOGFUNC

args

inde
finite

inde
finite

inde
finite

x is a
float
point
number

x is a
logical
number

The "?RCG feature gets control when EV P.L discovers the atom FROG

as the first clement of a form.

a) 1.s soon as ~~OG is entered the ?ROGIND (bit 4 in the D-register)
is oct and the list of its program variables is used to make a new
list in which each one is paired with NIL. fhis list is then put on
top of the current association list. (The a980cii'l.tion list is a sort
of workine stack used by the interpreter to find the values of va
riableG.) Thus all program variables have the value NIL at the
entrance t'J the prograr,l.

b) The remainder of the program is searched for atomic symbols that
are understood to he lahels. l' go-list is formed in which each
label is paired with a pointer into the remainder of the prcgram.

c) Then the execution of the program proper is started. If we skip
the two first elements (:=':?_OG and the list of program variables)
from the program, it can be regarded as a list of statements.
The statements may he preceeded by a label. Since labels are al
ways atomic and statements are not, a test for atom. is neces sary
to discern between them.

Before executing:t statement by calling EVAL, the go-list, the asscci

atbn list and a p')inter to the statement in question followed by the rest

:f t~le ~ro8ran1, is saved.


~~~~ ====~==~~~~~~--~~---=~1=V 

3.11. 1 o 

3.11.2 

- 45 -

.All statements are executed by calling EV p. L and ignoring the value. 

This also applies to the functions ::::ET, SETQ, GO and RETURN, all 

of which can only be used in ?ROG. 

The function CGNa is acting somewhat differently inside a "PROG 

feature, i c, if CCND runs out vf clauses error diagnostic 1:3 will 

not occur. Instead the next Gtatement is executed. However, as all 

statements o.re executed by calling EV.A L, EVC ON is used to evaluate 

the COND in both cases. 

EVC(jN tests the -r:JRSGIND to sec if it should call ERROR or simply 

return if there arc no true clauses. 

:'ut the T-'~.C.GIl'T D is turned;£[ when leaving a ;-:"ROG, and EVCON may 

call upon a new ?RGG when eV::lluating an if-cla.use. This problem 

was solved by making EVC eN save the D-register before evaluating 

an if-clause. 

The use of EVCCI'I to eV'3.luate both types of C0ND introduces a new 

problem: if a conventional functi':m {not using PROG} is used within 

a function using "?RC>G, the --::1T:!.GGn\lD will be on while the conventional 

functi()n is evaluated. This means that error diagnostic A3 will not 

occur in the conventional function either. This problem has not yet 

been solved. 

SST :';UBR 

The first aq~ument of SST should be the name of a variable. The 

s~c:::nd argument is thenew value to be given to this variable. 

:':;ET locates the name of the variable on the association list, and re

places its old value with the new. 

If :-JET cannot find the variable on the association list, control is trans

ferred to T~R':;.CR. 

SET:-- evaluatec its second argument (the value) and jumps to SET. 

I 

! 

0; 

I o 3. 12 

- 46 -

GC unS3.vec frum the pushd:)\'mlist until the address in "?I(CG which 

calls j:O'V! L to evaluate statements is found. This address is set 

aside and the next three locations, containing statement under execu

tion, associati~n list and gc-li3t respectively, unsaved. The GC locat

es its :;:.rgument ~n the go-list and preserves the pointer it finds there. 

The pushdownlict is then built up aGaia by saving the go-list, the asSo

ciation list, the pre served pdnter {the new statement to be executed} 

and the abc.vementicl1ed addrcGG. Lastly control is returned to EV J l._, 

"lith i!_l'" rre::;erved pointer in the I-register, and EVIL starts execut

in~~ t:l':~ c(.rre::;:'·_'ndinf~ statement. If the bbel occurring in GC cannst 

be {Dun..:} ~'Jl the r,o-list, conLr:-l is transferred to F~RO:? .. 

-·:1..GTU.::-'.N 3.5 the GC unsaves from the pushd:::>wnlist until the address 

in ~-=-:,::.CG which calls EV / • .l. to evaluate statements is found. Ylhen 

thi::; ad:lresG is fr:und and fcur more locations have been unsaved, 

contrcl is returned to EV /, L with the argument of RETURN in the A

register. This will in fact return control b the function calling "PRCG, 

with the ilq~urnent of PETU.'.N a!i value. 

1...1 iscellanecu s functions 

3.12. 1 :";ET.EI r '::';UBR 

3. 12. 2. 

:jETBIT sets bit no x in the iJ- register, where x is the argument of 

.';ETBIT. 

TF:::;TBIT'::UBR 

TS~TBIT has value T if bit no x in the O-register is on, and Fif it is 

cff. x is the argument c.f TE::::TBIT. 

3.12.3 CLJ~JP.EIT ~UBH 

C J_ F:I. T: EIT clears bit no x in the D -register, where x is the argument 

d r: 1_ l~':I FE IT. 

,. 



o 
I 

1 

; 
i 
1 
t 
! 

I , 
I 

I 
d . I 

1 

I 

- 47 -

GETBIT, TE'=TBIT and C LEP RBIT should net use the bits 0 - 5 and 

10-17 in the D-registcr as they are reserved for other uses. 

arguments should be fixpoint numbers. 

Their 

3.12. 4 GEN~YM ~UBI\ 

4 

GENGYrv1 generates a unique atom each time it is called, and returns 

with this as its value. 

The new atom is of the form G;:,,~xxxxx where xxxxxxx is a number in 

the range 0-99,)S99'"). GFN:::;Yl'.1 works by having a number in the speci

fied range in the location ~Y''IH3CL. This number is initially zero. 

The number is then converted to decimal and prefixed a G. GENSYM 

then changes an instruction in JTORE, and calls it. rhe modifying of 

'~TC'1.E makes this routine ~enerate the new symbol as an alphameric 

at:~m n)t attached to the object list. When control is returned tJ 

GEN~YI',;I the instruction in '::;T011.E is corrected and the number in 

:JYMECL increased with 1. Thereafter control is returned to the call

ing function. 

3Tl.TUC CF THE SYSTEi\f1 

COS 3600 has an in struction repertoire which is particularly well 

suited to list-processing, and this together with the new ideas intro

duced has increased the speed of the interpreter. The functions that 

are implemented as SUBR and FJUBRs are chosen so that all LSlt' 1. 5 

functions can be defined in LI'::;P 3600. There are five major excep

tions to this rule: IPRI\Y, E;:~CrtSET, CCUNT, UNCOUNT and 

SPEJ: K have not been implemented. 

.All LI~9 1. 5 programs not using these functions can be run in LIJ?3600, 

with only trivial changes. .:Jce LIS'='3600: Users Manual for particulars. 

:..Jeveral LI;:::P 1. 5 programs have in fact been run on CDC 3600 with no 

changes. Come notes ab:iut these and other LIGP-programs can be 

f:::un-:l.in LI;]'?3600: Users Manual 

o 

I 

°1 

I 
I 
1 
I 
! 
! 

4. 1 

~--

- ~8 -

rhe unvv"rittcn funci:ic:1s mentioned above, should be implemented. 
p, 

control c;:t::-d intc:i'~)l'ctl;r shou!.:} be written. The control card should 

. t· limit, and some controlwords, be optional, and might C()n':al:l a Ime 

such <is TI{ICE, ~FT and ;';ET:::E.L 

A routine should b2 written which w;::uld call ERROR when the pre-

6criced time had elapsed. 

The contrdword TRI CE. should indicate that the TRACEIND should 

be set, and 0ET and SETSE:T would write cut on tape the freeword--

storage after ct.!mputation. 

/-. contrC)lword for reading in such a tape made by SET should also be 

incr-.Juccd. 

There are provlslons in LI:J'='3600 for using the usual mathematical 

/ )(- and .:-*_ meaning exponentiation. An interpreting funcsymbols +, -, , 
ti8n that could take arithmetic expressions in infix notation using these 

symbols might be written. 

LISP3600 was written for a onc-b3.nl~ CDC 3600, and must be used as 

such on multibank versions of CD-=: 3600. 

'.)n a CDC 3600 with two or more bai1ks, numbered commen (the push

downlist) tn'ly be placed in its own bank, if SJ> VF and UNSP. VE are 

slightly n)'Jdified. By doing this it should be possible to increase 

freewordstorage to about 29 008 10 words. 

The main problems connected with the ideas mentioned above have all 

been solved in thc-:.1ry, but unfortunately there has been no time to try 

them out in practice. 


	Kent-Interpretive_System0001_a
	Kent-Interpretive_System0002_a
	Kent-Interpretive_System0003_a
	Kent-Interpretive_System0004_a
	Kent-Interpretive_System0005_a
	Kent-Interpretive_System0006_a
	Kent-Interpretive_System0007_a
	Kent-Interpretive_System0008_a
	Kent-Interpretive_System0009_a
	Kent-Interpretive_System0010_a
	Kent-Interpretive_System0011_a
	Kent-Interpretive_System0012_a
	Kent-Interpretive_System0013_a
	Kent-Interpretive_System0014_a
	Kent-Interpretive_System0015_a
	Kent-Interpretive_System0016_a
	Kent-Interpretive_System0017_a



