
LISP 1.5 IMPLEMENTATION

on the

CD 3600

and the

IBM SYSTEM /360 SERIES

by

J. G. Kent

J ~ f<L: C (lff ~kt
Li-Sf

(i)

CONTENTS

1 INTRODUCTION

2 NEW FEATURES IN THE LISP3600 SYSTEM

2.1 Organization of the system

2.1.1 Organization of storage on a one bank CD 3600

2.1.2 Organization of storage on a two bank CD 3600

2.1.3 Arguments and registers

2.1.4 Object list

2.1.5 Atoms

2.1.6 Property lists

2.1.7 Binary markers

2.1.8 Fu11words

2.1.9 Printnames

2.1.10 Ntnnbers

3 EXTENT OF IMPLEMENTATION

3.1 Extensions

3.2 Omissions

3.3 Differences

4 LISP3600 VERSUS OTHER LISP SYSTEMS

4.1 LISP 1.5 (IBM 7090)

4.1.1 Suggested reasons for the increased speed of
the LISP3600 system

4.2 The AN/FSQ-32/V LISP system (LISPQ32) (2)

Page

1

2

2

2

3

4

4

4

5

5

6

7

7

7

7

8

9

10

10

10

11

..
(ii)

5 SOME USEFUL FEATURES OF THE CD 3600 12

5.1 The D-register 12
t,

5.2 Registers 12

5.3 Addressing 13

5.4 Instructions for operations on bits 13

5.5 Instructions for operations on bytes 13

5.6 The return jump instructions 13

5.7 Discussion of the locate list element instruction 14

5.8 Arithmetic instructions 15

5.9 The ECHO facility 15

5.10 SCOPE loading procedures 15

6 TWO FEATURES THAT WOULD HAVE MADE CD 3600 MORE
SUITED TO LIST PROCESSING 16

6.1 Addressing 16

6.2 Indexing with the A-register 16

7 PRELIMINARY REMARKS ABOUT LISP/360 16

7.1 Some conventions 17

7.1.1 LISP-cells 17

7.1.2 Register use 17

7.1.3 Storage allocation 18

7.1.4 Relocation 19

8 SOME USEFUL FEATURES OF THE IBM/360 19

8.1 Registers 19

8.2 Addressing 19

References 20

· .
'. .

1

- 1 -

INTRODUCTION

This paper describes certain aspects of the

implementation of a LISP 1.5 interpreter on the CD 3600.

The CD 3600 is a' lis complement binary computer with a 48-bit

wordlength and 1 to 8 banks of 32768
10

words of storage. Core

speed is 1.5 microseconds. SCOPE, the monitor for CD 3600,

occupies 6000
10

words of storage.

The machine has an accumulator A, an accumulator

extension Q, and a flag register D. A, Q and D are all 48 bits

long •. In addition there are six 15 bits index registers Bl-B6

and various other registers.

This paper also indicates some features of the

IBM System /360 Series which will make it possible to write a

more e~ficient interpreter for these computers.

The implementing of LISP 1.5 on CD 3600 was performed

at the Kjeller Computer Installation, Kjeller, Norway, as the

main part of the author's thesis work for his M.A. degree. As

several installations have asked me to make a LISP 1.5 interpreter

for the IBM System 360, I have started to do this at the

University of Waterloo, Waterloo, Ontario, Canada.

It is assumed in the following that the reader has a

good working knowledge of the LISP 1.5 Programmer's Manual, (5).

The readers who want to look more closely at the

implementation of LISP 1.5 on CD 3600 should obtain my M.A.

Thesis (1). The thesis contains among other things a complete

description (with some flowcharts) of my implementation of

LISP 1.5 on CD 3600 (hereafter called LISP3600)g

~ ..
- 2 -

2 NEW FEATURES IN THE LISP3600 SYSTEM

The LISP3600 system is an interpretative LISP system

modelled after the original LISP 1.5 system for the IBM 7090.

Care has been taken to ensure compatibility between these two

versions.

The actual implementation of.this interpreter differs

in some 'important respects from the original version to increase

the efficiency.

The most marked differences are in the organization of

storage, where the idea of a separate block for "fullwordstorage"

has been abandoned, and in the organization of the internal

representation of LISP-atoms. Several of the indicators needed

on the property lists in LISP 1.5 has been rendered unnecessary.

Note that the interpreter and the initial object list are

assembled relocatable. LISP3600 operates under control of the

standard operating system SCOPE for the CD 3600.

2.1 Organization of the system

2.1.1 Organization of storage on a one bank CD 3600.

Core store is distributed according to this figure.

00000
8

714008
770008
777778

SCOPE

Pushdownlist

I
Freewordstorage

LISP interpreter
Various drivers

Figure 2.1 Organization of core store on a one bank CD 3600

- 3 -

The boundary between freewordstorage and the

pushdownlist is fixed though easy to reset when reassembling

the LISP-system.

One a onebank CD 3600 the length of the pushdown1ist

has been set to 4000
10

words. The interpreter occupies about

2S50
l0

words and freewordstorage the rest of core store, about

20000
10

words. This compares favourably with LISP 1.5 which by

excising LAP and the compiler has 16300
10

words of free- and

fullwordstorage and 2560l~ words of pushdownlist.
v

2.1.2 Organization of storage on a twobank CD 3600

Core store is distributed as follows.

Bank 0 Bank 1

OOOOOS OOOOOS------------------~

SCOPE

I
Pushdown1ist Freewordstorage

71400
S

1--________ 1

LISP interpreter
77000S 1------___ -1

77777 S ,--_V_a_r_i_o_li_s_d_r_i_v_e_r_s __ ,

Figure 2.2 Organization of core store on a twobank CD 3600

- 4 -

On a two bank CD 3600 the pushdownlist is in another

bank than the interpreter and freewordstorage. This means that

the length of freewordstorage is increased to 24000
10

words.

The length of the pushdownlist has been set to 20000
10

words.

2.1.3 Arguments and registers

Between LISP-functions arguments are transmitted

through the A-register, Q-register and the locations ARG3, •••

The A-register is used for transmitting information

to and from the pushdownlist. Only the contents of one word

is saved at a time.

The value of a function is always held in the

A-register when returning from the function. The D-register

contains several indicators (binary switches) needed in the

interpreter. Information about the status of the interpreter

can then be read out of the bit for bit displayed D-register on

the console.

2.1.4 Object list

That part of the object list which contains the

standard atoms has been generated in assembly language. The

object list is sequential in LISP3600, and not bucket sorted

as in LISP 1.5. This means it is very easy to generate the

object list by using the ECHO feature of COMPASS.

2.1.5 Atoms

The atoms and their property lists have been

reorganized in LISP3600. All LISP cells having bit 47 set

are so called atomheads. An atomhead contains in its upper

- 5 -

address a pointer to the atom's fu11word1ist and in the lower
J

address a pointer to the atom's property list.

The atom EXAMPLE with an empty property list:

11 71

~IE_~_W __ ~10_1_-_-~------~~Plli __ ~10_1~~~1

Figure 2.3 The atom EXAMPLE

2.1.6 Pr~perty lists

A typical property list might look like this:

11

j
)J

1
EXPR ~-}----L ___ l .) ...

IFF 101/J

LAMBDA

Figure 2.4 Property list of the atom FF

FF is as we see a function namely an EXPR which starts this

way (LAMBDA eX) .0.).

2.1.7 Binary markers

A LISP-cell is one word on the.CD 3600. Since the

word length is 48 bits, and only 15 bits are needed to express

an address, 9 bits in the upper ha1fword.and 9 bits in the

lower ha1fword are released for other uses. As mentioned above

jf-

- 6 -

bit 47 set indicates that this word is an atomhead.

47 46 45 44 47 46 45 44 f,

I I I I I

1 0 0 0 BCD ALFAMER
... - --

~
1 1 0 0 FIXPOINT

~ ~ ~
~ ~ ~ ~ 1 1 1 0 FLOATPOINT

~ ~
~

H

~ <t: 1 1 0 1 LOGICAL
~ 0

H:l 0
< z ~:l

Figure 2.5 Markers and their meaning in the atomhead

The bits 46, 45 and 44 refer to the fu11word1ist

associated with the atom.

A function that is to be traced has bit 39 set.

This means that the indicator TRACE is unneeded.

When bit 22 is set this indicates that the word
:23

in question is a full word. Bit II is used by the garbage

co1lecto+ to mark active words.

2.1.8 Fu11words

The fu1lwords in freewordstorage replace the

"ful1wordstorage" in LISP 1.5.

A fu11word is a word with bit 22 set and the upper

24 bits occupied by either:

a) Four BCD characters from a printname. (If need be filled

in from the right with blanks.)

or

b) 24 bits from a 48 bit number.

or

c) The address of a binary LISP-routine (SUBR or FSUBR).

- 7 -

2.1.9 Printnames

All nonumeric atoms have in their upper address of

their atomhead the address of a linear list of their BCD

printnames. For instance the atom DIFFERENCE has this

fullwordlist:

~ID_IF_F __ ~lo_I __ --~----~)~IERE __ N __ I~o_I __ -~+---~)1~c_E __ ~I~OI~~~1

Figure 2.5 The fullwordlist of the atom DIFFERENCE

2.1.10 Numbers

There are three kinds of numbers:

a) Fixed point (integers).

b) Flo~ting point.

c) Logical (octal).

All are stored as 48 bit binary numbers with the

help of two fullwords, and must be converted to BCD in input

and output. (The BCD representation of a number is not stored).

3 EXTENT OF IMPLEMENTATION

3.1 Extensions

a) Alphameric atoms may in LISP3600 have up to 82 characters.

b) Fixed point numbers may have absolute values up to 247.

c) Floating point significance on input is 10 digits.

d) Floating point numbers may have values between 10307

and 10- 307 •

e) Numbers are considered equal if/the absolute values of

i

- 8 -

-8 their difference is less than 10 •

f) A completely new function called APPEND 1 is included as

a SUBR. See reference 1 for details.

g) CAR of an atom is not junk as in LISP 1.5 but the address

of the fullwordlist of that atom.

h) Three peculiar new functions called SETBIT, CLEARBIT and

TESTBIT exist as SUBRs. They can be used to set, clear

and test bits in the D-register~

i) Tracing will only occur if SETBIT(7) has been evaluated

before tracing is to start. This means that evaluation

of functions are faster when SETBIT(7) have not been

executed because all the tests for tracing in EVAL are

skipped.

j) Whenever an error occurs in LISP3600 the lists bound on

the pushdownlist is printed out. This holds true for all

runtime errors except the STACK EXCEEDED error. The most

recently used list in the stack (the list on top) is

printed last. The last printed lists will therefore give

a good indication of what caused the error.

3.2 Omissions

a) The following functions are not implemented: LAP, COMPILE,

EXCISE, ARRAY, ERRORSET, RECLAIM, COUNT, UNCOUNT, TRACECOUNT

and SPEAK.

b) No control cards of any type exists in LISP3600. A LISP3600

run consists of a single packet ending with a card containing

a 4-8 punch in column 1. This last card acts as an end-of-file

to LISP and prevents LISP from reading into the next job.

· ,

- 9 -

3.3 Differences

a) The scale factor in a logical number is an exponent to

the base 2.

b) A minus sign preceding a logical number will cause the

logical number to be complemented after an eventual

shifting.

c) Blanks are used as fill-in in the fullwords. This makes

it impossible to print more than one blank at a time.

But this means that the constant $$ B$ will print as a

single space.

d) The function CLEARBUFF has not been implemented because

it is never needed.
I'tKWHl-\

e) The functions INTERN and 3 have been combined into

a single function namely MKATOM.
kKN"flM

MKATOM ;::; INTERN (t • no
f) Because of the reorganization of all property lists, the

printname is CAR of the atom.

g) UNPACK takes an atom as its argument.

h) PRINT should not be used directly after PRINI without

executive TERPRI in between, because PRINT sets the

output buffer to blanks before printing thereby destroying

what was put in by PRINl o

i) GO must only be given atomic labels.

j) + and - should never be used as characters in an atom.

- 10 -

4 LISP3600 VERSUS OTHER LISP SYSTEMS

4.1 LISP 1.5 (IBM 7090)

Identical LISP programs have been run on the

IBM 7090 using the LISP 1.5 system, and on the CD 3600

using the LISP3600 system o The execution times thereby

obtained showed that programs are executed from 15 to 20

times faster under the LISP3600 systeme Even if we allow

for the difference in speed between IBM 7090 and CD 3600

the LISP3600 system should be about three times as fast as

the LISP 1.5 system.

A few runs that could not be run under LISP 1.5

were run successfully under LISP3600 on a onebank CD 3600,

because of the slight increase in the length of freeword-

storage and the pushdownlist in the LISP3600 system. Several

runs with extremely heavy recursion that could not be run under

the LISP 1.5 system were run successfully under LISP3600 on a

twobank CD 3600, the reason being the very long pushdownlist

available on a two bank CD 3600.

4.1.1 Suggested reasons for the increased speed of the LISP3600 system

a) Better instruction repertoire on the CD 3600. This is

discussed in the next section.

b) CD 3600 has six index registers as opposed to IBM 7090's
three o

c) The reorganization of property lists that eliminates the

search for an atom's printname. This is especially important

in the handling of numbers. The address of the fullwordlist

containing the number is always ,CAR of its atomo The type of

- 11 -

the number in question is indicated by binary markers in

that number's atomhead.

d) The slightly larger freewordstorage in the LISP3600 system,

which means that garbage collections do not occur as often

as in the LISP 1.5 system.

It must however be remembered that in the LISP 1.5

system there exists a compiler. By having the most important
I

functions compiled, the execution time of big programs can be

significantly reduced. The LISP3600 system does not have a

compiler.

One of the reasons why the interpreter in the LISP3600

system could be made shorter than its LISP 1.5 counterpart, is

the introduction of so-called "combined arithmetic routines".

All functions which are equal in all respects save the actual

operation involved are combined into single routines with different

entry points o For instance the functions PLUS and TIMES both use

the same routine PLUSTIME, with the two entry points PLUS and

TIMES. PLUSTIME (as the other combined routines) performs the

correct operation by executing it indirectly through the location

ADR., which is loaded with the address of the correct instruction

at the entry point. In other words the address of an addinstruction

is placed in ADR. at the entry point PLUS prior to transferring

to PLUSTIME.

4.2 The AN/FSQ-32/V LISP system (LISPQ32) (2)

An algebraic simplification program (3) written in

LISPQ32, has been modified (4) so that it may be run on the

LISP3600 system. Comparing almost identical examples run on

- 12 -

both systems has shown that the program is between ten and

thirty times slower when run on the LISP3600 system. Even

though the computers are of approximately the same speed the

result is very favourable for the LISP3600 system. This may

seem a strange conclusion until one considers the fact that

the LISPQ32 system is a compiler oriented system while the

LISP3600 system is completely interpretative.

5 SOME USEFUL FEATURES OF THE CD 3600

5.1 The D-register

The D-register cannot load words from or store

words in memory directly. It was however very useful as a

flag register. The D-register keeps track of the status of

the interpreter by various bit combinations, which are set,

cleared or tested by the interpreter. An added advantage of

the D-register is the fact that it is displayed bit for bit

on the console of the CD 3600. Information about the status

of the LISP3600 system is therefore readily available.

This made debugging easier and was also used to

time certain routines in the interpreter such as the garbage

collector.

5.2 Registers

The increased number of index registers (6) and the

very good inter-register instructions in many cases made the

storing and restoring of registers unnecessary.

..

- 13 -

5.3 Addressing

Double indexing and indirect addressing is always

useful when one is doing list processing.

'5.4 Instructions for operations on bits

Instructions for setting, clearing and testing

(ZBJP and NBJP) any bit in any register made it easy to test

for the various markers used in some LISP-cells.

5.5 Instructions for operations on bytes

The instructions SBYT and LBYT, which can store and

load a byte from the A-register or the Q-register, and the

instruction SCAN which can compare any byte in storage with a

byte in the A-register or in the Q-register, were used

frequently throughout the interpreter. A byte may be specified

to be of any length between 1 bit and 48 bits in these

instructions.

5.6 The return jump instructions

Almost all linkages in the interpreter utilize the

return jump instructions. These instructions store the

return address in the first instruction in the routine they

are jumping to. Control is then transferred to the second

instruction in the routine in question. By executing a jump

back to the first instruction in the subroutine a correct

jump will be made from there back to the calling program with

the aid of the address stored there by the return jump

instruction.

•

; .

- 14 -

587 Discussion of the locate list element instruction

The locate list element instruction (LSTU/L) has

not been used in the interpreter at all. LSTU/L scans a

liststructure containing two 18 bit addresses in each word

in the same way as the two 15 bit addresses carried in all

LISP-cells 8 LSTU/L scans down aliststructure for the nfth

element: This is done by either using all upper addresses (LSTU)

or all lower addresses (LSTL) in the n-l preceding elements in

the liststructure. It will in other words simulate a CAR chain

or a CDR chain. The instruction requires however the setting

up of two index registers and is fairly slow. If going down

only one or two elements in a liststructure it is much faster

to use the index register load instructions with indexing.

Another disadvantage of LSTU/L is the fact that it considers

a word containing an address of zero to be the last word in a

list. This would have been very well indeed if the atom NIL

could have its atomhead in address zero. This is however

impossible since the word with address zero in storage is used

by the interrupt system on the CD 3600. If LSTU/L reaches a

word containing an address of zero before the nfth element has

been found it will terminate scanning and give as a result

address zero instead of the address of the word which contained

the address zero, which would have been more useful.

LSTU/L would however have been very useful if the

LISP3600 system had been designed for a multibank CD 3600. As

the system is now, freewordstorage must be wholly contained in

- 15 -

a single bank, because the LISP-cells only contain 15 bit

addresses. A 15 bit address can only address 32768
10

words

of storage which is one memory bank on the CD 3600. To address

any word in any of the eight possible memory banks an address of

18 bits is required. LSTUjL would come in very handy in this

case because this instruction scans liststructures containing

18 bit addresses. A liststructure containing 18 bit pointers

could weave in and out of banks with no difficulty.

5.8 Arithmetic instructions

The arithmetic instruction set is very good. It is

for example possible to convert a number from integer to

floating point or vice versa using only three instructions.

5.9 The ECHO facility

As already mentioned above, the ECHO facility in

CD 3600's assembly language made the generation of the initial

object list easy. The ECHO feature is a macro-like feature

whereby a specified number of instructions can be repeated a

specified number of times with parameter substitution.

5.10 SCOPE loading procedures

Because of the loading procedures in SCOPE, the

monitor for CD 3600, it is very easy to find out at run time

how much storage is left over. The interpreter will therefore

always utilize all available space for freewordstorage. This

is only partly true on a multibank CD 3600, where only the

highest numbered bank will be fully utilized.

. .

- 16 -

6 TWO FEATURES THAT WOULD HAVE YJADE CD 3600 MORE SUITED TO
LIST PROCESSING

6.1 Addressing

It would have been easier to make a LISP system

utilizing all available banks if the index registers had

been 18 bits long, and addressing had been performed via

an indexregister to get the required 18 bit address. The

bankswitching that has to be performed now with the aid of

special 3 bit bank registers is cumbersome.

6.2 Indexing with the A-register

Some of the functions in LISP such as CAR and CDR

could have been made shorter and faster if it had been possible

to use the lower 15 bits of the A-register as an index register.

As it is now the transmission of the lower address of the

A-register to and from index registers is very frequent.

7 PRELIMINARY REMARKS ABOUT LISP/360

The implementation of LISP leS on IBM System /360

(LISP/360) has already started. The system will be modelled

after the LISP3600 system. It is however our hope that the

system will eventually contain all the unimplemented functions

of LISP3600 including LAP and COMPILE. We will also try to

make the garbage collector compacting and the object list

bucket sorted. The LISP/360 system will be made in such a

way that it can utilize the so-called Large Capacity Storage

that is available for the IBM System /360 Series computers.

- 17 -

7.1 Some conventions

7.1.1 LISP-cells

A LISP-cell will in the LISP/360 system be one

doubleword. This has several advantages:

a) Each LISP-cell can then contain two full 24 bit addresses,

which means that freewordstorage may utilize all available

store on any IBM/360 computere

b) Single precision numbers can be stored in a single fullword.

This will increase the speed of arithmetic in LISP/360

considerably.

c) Space is left over in the LISP-cell for binary markers as

in the LISP3600 system. Since the space left over is one

byte in the upper word and one byte in the lower word, the

test under mask instruction (TM) makes it easy to test

these markers.

7.1.2 Register use

Some of the 16 registers available on the IBM/360

has been assigned special tasks.

Register

2

6

7

8

9

12

13

Task

Internal linkage register

Contains the address of NIL

Stack pointer

A-register
Used for transmitting arguments

Q-register

Base register for the interpreter

Contains a pointer to a save area used by

systemprograms for storing the registerblock

~ ..

- 18 -

7.1.3 Storage allocation

A system for storage allocation for freewordstorage

and the pushdownlist that would suit everybody's needs has not

been found. Three proposals have been made:

a) Let the amount of space set aside for the LISP/360 system

be an assembly par&~eter.

b) Issue the GETMAIN macroinstruction continuously immediately

after loading, until all available space is under control

of the LISP/360 system. Since total amount of core needed

fqr a job must be specified on the job card, this proposal

is just another way of doing scheme a) with the added

advantage that the space set aside for freewordstorage and

the pushdownlist is a job parameter. Operating System /360

will not allow a job to use more space than what is specified

on the job card.

c) Issue the GETMAIN macroinstruction only when more space is

needed. A certain amount of storag~ will be made available

initially as an assembly parameter.

The GETMAIN macroinstruction codes in a call to an

Operating System /360 routine, which will try to assign the

specified amount of storage available to the program issuing the

GETMAIN.

The very first version of the LISP/360 system will use

proposal a) for its storage allocation.

Other ways of allocating storage may be necessary when

one wants to utilize the Large Capacity Storage.

f,

- 19 -

7.1.4 Relocation

Several relocation schemes have been considered.

More information is needed about Operating System /360

Option 4 and the Roll in - Rollout feature. In the first

version of the LISP/360 system every LISP-cell will carry

full 24 bit physical addresses. This means that no relocation

of freewordstorage or the pushdownlist will be possible once it

has been loaded into storage.

8 SOME USEFUL FEATURES OF THE IBM/360

8.1 Registers

The 16 general registers in which both indexing,

aritr~etic and logical operations may occur. However register

o cannot be used for indexing. In the routines so far written

the increase in the number of registers and the fact that they

can be used for indexing has reduced the number of instructions

considerably.

8.2 Addressing

The addressing scheme of the IBM System /360 which

makes bytes and words just as easily addressable, have made

programming of the interpreter simpler.

The 24 bit address of the IBM System /360 which means

that about 16 million bytes are immediately addressable seems to

be just what is needed in list processing. This fact coupled with

the availability of Large Capacity Storage whereby present IBM/360

computers can get up to 8 million bytes of continuously addressable

core store, may prove to be of great importance in LISP processing.

1 '

I

1 • Ken t, J. G.

2. Saunders, S. A.

3. Korsvold, K.

4. ¢dmansson, E.

5. McCarthy, J. et. a1.

6.

7.

- 20 -

References

An Interpretative System for the
Programming of Recursive Functions
on a Digital Computer, Intern rapport
E-88, Norwegian Defence Research
Establishment, Kjel1er, Norway. (1966)

The LISP System for the Q-32 Computer,
in the book, liThe Progranuning Language
LISP: Its Operation and Applications",
Information International Inc.,
Cambridge, Massachusetts. (1964)

An On-line Algebraic Simplify Program,
Stanford Artificial Intelligence Project
Memo 37, California. (1965)

Applications of the Programming Language
LISP, Intern rapport E- , Norwegian
Defence Research Establishment.

The LISP 1.5 Programmer's Manual,
MIT Press, Cambridge, Massachusetts.
(1962)

Control Data 3600 Computer System
Reference Manual, Pub. No. 60021300.
(July 1964)

IBM System /360 Principles of Operation,
Form A22-682l-4. (1966)

f,

	Contents
	1 Introduction
	2 New features in the LISP3600 system
	3 Extent of implementation
	4 LISP3600 versus other LISP systems
	5 Some useful features of the CD 3600
	6 Two feature that would have made CD 3600 more suited to list processing
	7 Preliminary remarks about LISP/360
	References

