
Ii-

LISP 1. 5 IHPLD1E~TATIO:\

on the

CD 3600

and the

IBM SYSTEM /360 SERIES

by

J. G. Kent

------~-- _. ~

,
\ .

~

(i)

co ~ri'E?~TS

1 I~TRODUCTION

2 NEH FEATURES IN THE LIS?3600 SYSTE:·f

2.1 Organization of the system

2.1.1 Organization of storage on a ona b~nk CD 3600

2.1.2 Organization of storage on a two bank CD 3600

2.1.3 Arguments and registers

2.1.4 Object list

2.1.5 -Atoms

2.1.6 P~~pArty lists

2.1.7 Binary ~~rkers

2. 1 • 8 Fu 1 h'lo r d s

2.1.9 Printnames

2.1.10 Nwnbers

3 EXTENT OF IMPLEMENTATION

3.1 Extensions

3.2 Omissions

3.3 Differences

4 LISP3600 VERSUS OTHER LISP SYSTE}~

4.1 LISP 1.5 (IBM 7090)

:·.1.1 Sugg~sted reasons ~0r the i~creascd speed of
... TSP3600 systl2:-..

4.2 The }.l~/FSQ-32/V LlSP system (LISPQ32) (2)

1

2

2

3

4

\'

4

4

5

5

6

7

7

7

7

8

9

10

10

10

11

(ii)

5 SO)ffi USEFUL FEATURES OF Tr~ CD 3600 12

5.1 The D-register 12

5.2 Registers 12

5.3 Addressing

5.4 Instructions for operations on bits 13

5.5 Instructions for operations on bytes 13

5.6 The return jump instructions 13

5.7 Discussion of the locate list element instruction 14

5.8 Arithmetic instructions 15

5.9 The ECHO facility 15

5.10 SCOPE loading procedures 15

6 . THO FEATURES THAT HOULD HAVE HADE CD 3600 l'~ORE
SUITED TO LIST PROCESSI~G 16 I

6.2 Indexing with the A-register 16

7 PRELIHINARY REHARKS ABOUT LISP/360 16

7.1 Some conventions 17

7.1.1 LISP-cells 17

7.1.2 Register use 17

7. 1•3 Storage allocation 13

7.1.4 Relocation
/J

19

8 SOME USEFUL FEATURES OF THE IB:.·fj 360 19
./'

8.1 Regist~rs 19

8.2 Addressing 19

~efeX'enc:es 20

--'

;' ,
\

I' .\

1

" i
"'r

- 1 -

1 INTRODUCTION

This paper describes certain as?ects of the

implementation of a LISP 1.5 interpreter on the CD 3600.

Tho CD 3600 is a l's complement binary corn?utcr with A 4S-b1t

\.lOrdlength and 1 to 8 banks of 32768
10

1;·)Qrds 0: storage. Core

speed is 1.5 microseconds. SCOPE, the monitor for CD 3600,

occupies 6000
10

Hords of storage.

The machine has an accunu1ator A, an accunulator

extension Q, and a flag register D. A, Q and D are all 48 bits .'
long. In addition there are six 15 bits index registers BI-B6

i
and various other registers.

This paper also indicates some features of the

IBM System /360 Series "7hich vlill rnake it possible to ,·;rite .:l

more efficient interpreter for these computers.

The implementing of LISP 1.5 on CD 3600 to/as perfol."'r:',ed

at: the Kje11er Computer Installation, Kjcl1cr, ~orHay, .::is the .

main part of the author's thesis \'lork for his }i.A. dcgrC!e. As

~, several installations have asked me to r.'..:lke a LISP 1.5 interpreter

for the IBM S~tem 360, I have started to do this at the

University of Waterloo, Waterloo, Ontario, Canada.

It is a~sumed in the following that the rc~~cr has a

good 'vorking knowledge of the LISP 1.5 Progr.:i.'1r.lcr IS Y..anual, (5).

The readers ,.,ho want to look marc closely .:It the

implementation of LISP 1.5 on CD 3600 should obtain ny ~~.A.

Thesis (1). The thesis contains .:unong o~·'.cr things a cor.-.?letc

description (with some flowcharts) of wy im?lc~entation of

LISP 1.5 on CD 3600 (hereafter called LISP3600).

-----:------ -_.

~ __ . ..:..1. ___________________ -""'"

• ~'. I ,

- 2 -

2. l\clv FEATURES I~ THE LISP3600 SYSTEH

The LISP3600 system is an interpretative LISP system

modelled after the original LIS? 1.5 system for the IB}1 7090.

Care has been taken to ensure co~~)atibility bet\.)0en the~c t\VO

versions. \

The actual implementation of this interpreter differs

in Some important respects from the original version to increase

the efficiency.

The most rna. '~ed differences are in the organization of ..
'-'" storage, ",here the idea of a se;>arate block for "fulh'lOrdstorage"

has been abandoned, and in the organization of the internal

representation of LISP-atoms. Several of the indicators needed

on the property lists in LISP 1.5 has been rendered unnecessary.

Note that the interpreter and the initial object list are ; .
I

I

assembled re1ocatable. LISP3600 operates under control of the

\ standard operating system SCOPE for the 'CD 3600.

2.1 OrganiZation of the system

2.1.1 Organization of storage on a one bank CD 3600.

Core store is distributed according to this figure.

1240°8

2225°8

7140°8
770008
777778

SCOPE

PushdoHnlist
i

Free't'lOrds torage

LISP interpreter
Various drivers

Figure 2.1 Organization of core store on a onebank CD 3600
,.

'.

- 3 -

The boundary betHeen rreeHordstorage and the

pushdm·mlist is fixed though easy to reset ,·~hen reassembling

the LISP-system.

One a one bank CD 3600 the length of the pushdo,·mlist,

has been set to 4000
10

words. The interpreter occupies about

285010 words and freeHordstorage the rest of. core store, about

2000010 ~-1ords. This compares favourably Hith LISP 1.5 \vhich by

excising LAP and the compiler has 1630010 '·1Ords of free- and

ful1wordstorage and 256010 'vords of pushdo"m1ist.

2.1.2 Organization of storage on a twobank CD 3600

Core store is distributed as follo",s.

Bank °
000008r---------------~

SCOPE

124008 I---------l

Pushdown1ist

626208 t---------l

777778 ________ --'

Bank 1

000008~----------~

Free\vo rd s tor age

714008 t---------l LISP interpreter
770008 t---------~
777778 ,-_V_3_r_i_o_u_s_d_r_i v_c_r_s_--,

. Figure 2.2 Organization of core store on a twobank CD 3600

... _ .. _-_._--
" "

------------------------------.. ----............................ ~.~ ... ~",.

- 4 -

On a tHobank CD 3600 the pushdo\m1ist is in another

bank than the interpreter and frecH·70rdstorage. This r.1eans that

the length of freeHordstorage is increased to 2400010 Hords.·

The length of the pushdo\Ynl is t has been set to 2000010 "lOrds.

2.1.3 Arguments and registers

BetHeen LISP-functions arguments are transmitted

through the A-register, Q-register and the locations ARG3, •••

The A-register is used for transmitting information

tp and from the pushdoHn1ist. Only. the contents of one \vord

is saved at a time.

The value of a function is a1Hays held in the

A .. register when returning from the function. The D-register

. contains several indicators (binary switches) needed in the

interpreter. Information about the status of the interpreter

can then be read out of the bit for bit displayed D-register on

. the console.

2.1.4 Object list

That part of the object list \vhich contains the

standard atoms has been generated in assembly language •. The

object list is sequential in LISP3600, and not bucket sorted

as in LISP 1.5. This means it is very easy to generate the

object list by using the ECHO feature of CO}~ASS.

2.1.5 Atoms

The atoms and their property lists have been

reorg~rtized in LISP3600. All LISP cells having bit 47.sct

are so called atomheads. An atomhead contains in its upper

\.,

-iii"

- 5 ..

address a pointer to the atom's full\}ordlist and in the lo\vcr

address a pointer to the atom's pr(~erty list.

The atom EXANPLE \-lith an empty property list:

Lu 171

L-roo_XAM_''''_.L-1 O_l_-_-~----{PiE" !o.~ZJ

Figure 2.3 The atom EXANPLE

2.1.6 Property lists

A typical property list might look like this:

\
\

J
I .. { -=1~ ----+J--L-ll2l

EXPR C
t

-----4--..9

I

IFF 101~

LAHBDA

Figure 2.4 Property'list of the atom FF

.•. f'

FF is as \.,re see a function namely an EXPR which s tarts this

way (LAMBDA eX) "...).

2.1.7 Binary markers

A LISP-cell is one word on the,CD 3600. Since the

word length is 48 bits, and only 15 ~its are nccdcd to cxpress

a~ address, 9 bits in the upper halfword and 9 bits in the .f

" lower halfword~are released for other uses. As mentioned abov(

~
"

--------.---------------

' ..
't

- 6 -

bit 47 indicc:.tes tha~ this viOra is .1.n ato::-.head.

47 L,0 LIS 4L~ 47 46 45 44

I I ., 0 0 0- 3CJ Ll-:'A!-lliR J.

.1- 1 0 0 ;: IX? 0 I :\~i'

~~ :. 1 1 0 -:JLO.~.~::O I~~
~ . / ~.~
r' 2 .- ~ i. 1 0 1 LOGIC.':.L :.:/

::~ ;~ ,.-'
• ...l ~ t'j ".. i:~

8
l=-::' ~~

G § 0
H ~ 0
<: z ~ ~

Figure 2.5 ¥~rkers &nd their me~ning in the ~tc~he~d

The bits 46, 45 and 44 refer :0 the fullwordlist

associated with the atone

A function that is to be tr~ced has bit 3~ set.

This ~e~ns that the indicator ~R1.C: is unnceded.

When bit 22J is set 1:1'.is indica:cs th.:l: the \';0;:0

in question is a fullword. 3it 23 is u£ca by the ~arba3e

collector to mark active words.

2.1.8 Fullwords

The fu1l"tvo:cds in frecvlOrastorage replace the

"fulh·,orcsto:cage" in LIS? 1.5.

24 bits occupied by either:

in ,.._. -r-- '
0.1.1. \...:;.. /

o~

b) 24 bits fro~ a 48 bi: ~~~~~~.

or

c) The address of a binary LIS?-routine (SUS~ or FSU~R).

t • 1 •
• !

- 7 -

2.1.9 Printnames

All nonumeric atoms have in their upper address of

their atoIilhead the address of a linear list of their BCD

printnames. For instance the atom DIFFERENCE has this \

fullHordlist:

~!D_I_F_F __ ~I_o_l __ ~~+-----~>~;E_RE __ N __ ~i_o_l ___ -~~------}~iC_E ____ ~;O_l_£;(?1 __ ~

Figure 2.5 The fulhvordlist of the atom DIFFERENCE

2.1.10 Numbers

There are three' kinds of numbers:

a) Fixed point (integers).

c) Logical (octal).

All are stored as 48 bit binary numbers with the

help of two fullwords, and must be converted to BCD in input

and output. (The BCD representation of a number is not stored) •
. ..:, ;"

3 EXTENT OF IMPLEMENTATION

3.1 Extensions

a) Alphameric atoms may in LISP3600 have up to 82 characters.

'b) Fixed point numbers may have absolute values up to 247.,

c)' Floating point significance. on inp~t is 10 digits.

d)

e)

307 Fl~ating point numbers may have values between 10

and 10-307 •

Numbers are considered equal if the absolute values of

- ~ ~~ ~ -------~------------------------------~ ---------.. ~~~

", ~ .
• 1 , .

'0'

- 8 -

-8 their difference is less than 10 •

f) A completely new function called APPENDI is included as

a SUBR. See reference 1 for details.

g) CAR of an atom is not junk as in LISP 1.5 but the ad~ress

of the fulh.]ordlist of that atom.

h) Three peculiar new functions called SETBIT, CLEARBIT and

TESTBIT exist as SUBRs. They can be used to set, clear

and test bits in the D-register.

i) Tracing will only occur if SETBIT(7) has been evaluated

before tracing is to start. This means that evaluation

of functions are faster ,,,hen SETBlT (7) have not been

executed because all the tests for tra~ing in EVAL are

skipped •

. J) Hl1(~ngver nn error OCCU11 6 in LISPJ600 the lie t6 bound on

the pushdo~11ist is printed out. This holds true for all

runtime errors except the STACK EXCEEDED error. The most

recently used list in the stack (the list on top) is

printed last. The last printed lists will therefore give

a good indication of what caused the error.

3.2 Omissions

a) The following functions are not implemented: LAP, COMPILE,

EXCISE ~ ARRAY, ERRORSET, RECLAIM, COUNT J UNCOUNT, TRACECOtTh"L

and SPEAK.

b) No control cards of any type exists in LISP3600. A LISP3600

run consists of a single packet ending with a card containing

a 4-8 punch in 'column 1. This last card acts as an ehd-of-file

to LISP and prevents LISP from reading into the next job.

Ii

"

,',

- 9 -

3.3 Diffe~c~ccs

a) The scale facto~ in a logic~l n~~ber is ~n exponent 'to

the b.:.se 2.

b) A r,1i~\;5 sigi.1 prcccGing n llo~icll.l nu.l1bcr \-lill cause trH,~

logical n~mbc~ to be co~?lc~c~~ed ~~~cr ~n evcntu~l

shifting.

c) Bl"nks ere usee ~s fill-:'n it: t~e :::~llworGs. ':: .. is ~:~es

~ut this me~ns conscz,::-..t $$$

d) The function CLZi~~BU2F h.;:.s not ~een i~?le~ented becQuse

it is never needed.

e) ':11e functions IKTE~~\ ",no l~C~.~.M h.:lve been cOLlbined into

c:. single func-cion na::.:;ly ~J{.t\TG:-~.

f) Eec~USe of the reorg.;:.nization of all ?~operty lists, the

output buffer to bl",n~s before ?~~nti::-..g thereby destroying

what was put in by P~IX1.

i) CO must only be given ato~ic l~bcls.

j) + and - should nave~ ~e used .:......

-,,'

...

- 10 -

4 LISP3600 VERSUS OTHER LISP SYSTENS

4.1 LISP 1.5 (IB~l 7090)

Identical LISP programs have been run on the

IBM 7090 using the LISP 1.5 system, and on the CD 3600

using the LISP3600 system. The execution times thereby

obtained showed that programs are executed from 15 to 20

times faster under the LISP3600 system. Even if He a110,.,

for the difference in speed betHeen IB~1 7090 and CD 3600

the LISP3600 system should be about three times as fast as

the LISP 1.5 system.

A few runs that could not be run under LISP 1.5

were run successfully under LISP3600 on a onebank CD 3600,

because of the slight increase in the length of freeword-

storage and the pushdo~mlist in the LISP3600 system. Several

runs with extremely heavy recursion that could not be run under

the LISP 1.5 sys tern 'vere run success fu lly under LISP3600 on a

t"lobank CD 3600, the reason being the very long pushdownlist

:available on a two bank CD 3600.

4'.1.1 Suggested reasons for the increased speed of the LISP3600 sys tem

a) Better instruction repertoire on the CD 3600. This is

discussed in the next section.

b) CD 3600 has six index registers as opposed to IBM 7090's
three.

c) The reorganization of property lists that eliminates the'

search for an atom's printriame. This is especially important

in the handling of numbers •. The address of the fullvX)tdltat

'containing the number is always CAR of its atom. The type of

.....

. \" ~

" , . .
\

- 11 -

the number in question is indicated by binary markers in

that number's atomhead.

d) The slightly larger freewordstorage in the LISP3600 system,

'~lich means that garbage collections do not occur as often

as in the LISP 1.5 system.

It must hOHever be remembered that in the LISP 1.5

system there exists a compiler. By having the most important

functions compiled, the execution time of big programs can be

significantly reduced. The LISP3600 system does not have a

compiler.

One of the reasons ,.my the interpreter in the LISP3600

system could be made shorter than its LISP 1.5 counterpart, is

the introduction of so-called "combined arithmetic routines".

operation involved are combined into single routines with different

entry points. For instance the functions PLUS and TINES both use

the same routine PLUSTIME, '-lith the t'·10 entry points PLUS and

TINES. PLUSTINE (as the other combined routines) performs the

correct operation by executing it indirectly through the location

ADR., which is loaded with the address of the correct instruction

at the entry point~ In other words the address of an addinstruction

is placed in ADR. at the entry point PLUS prior to transferring

to PLUSTIME.

4.2 0 The AN/FSQ-32/V LISP system (LISPQ32) (2)

An algebraic simplification program (3) written in

LISPQ32, has been'modified (4) so that it may be run on the

LISP3600 system. Comparing almost identical examples run on

.'

____ ._. __ .00

l •

- 12 -

both systems has sho,·m that the program is betueen ten and

thirty times slouer Hhen run on the LISP3600 system. Even

though the computers are of approximately the s~e speed the

result is very favourable for the LISP3600 system. This. may
\

seem a strange conclusion until one considers the fact that

the LISPQ32 system is a compiler oriented system while the

LISP3600 system is completely interpretative.

5 SOrffi USEFUL FEATURES OF THE CD 3600

5.1 The· 'D-regis ter

The D-register cannot load ",ords from or store

,yords in memory directly. It was however very useful as a

flag register. The D-register keeps track of the status of

the interpreter by various bit combinations, which are set;

cieared or tested by the interpreter. An added advantage of

the D-register is the fact that it is displayed bit for bit

on the console of the CD 3600. Information about the status

of the LISP3600 system is therefore readily available.

This made debugging easier and ,.,as also used to

time certain routines in the interpreter such as the garbage

collector.

5.2 Registers

The increased number of index registers (6) and the

very good inter-register instructions in many cases made the

storing and restoring of registers unnecessary.

•

'----

'" ,
To • .

- 13 -

5.3 Addressing

5.4

Double indexing and indirect addressing is always

useful \~len one is doing list processing.

Instructions [or operations on bits
\
\

Instructions for setting, 'clearing and testing

(ZBJP and NBJP) any bit in any register made it easy to test

for the various markers used in some LISP-cells.

5.5 Instructions for operations on bytes

The instructions SBYT and LBYT, l-lhich can store and

load a byte from the A-register or the Q-register, and the

'instruction SCAN ,.,hich can compare any byte in storage ,.,ith a

byte in th,e A-register or in th,a Q-register, ,yere used

frequently throughout the interpreter. A byte may be specified

to be of any length bet,,,een 1 bit and 48 bits in these
~, 0'

instructions.

5.6 The return Jump instructions

Almost all linkages in the interpreter utilize the

return jump instructions. These ins~T".!ctions store the
:I~ ~

return address in the first instruction in the routine they

ax'e jumping to. Control is then transferred to the second

instruction in the routine in question. By'executing a jump

back to the first instruction in the subroutine a correct

jump will be made from there back to the calling progrrum with

the aid of the address stored there by the return jump

instruction.

44- 1

•
It

- 14 -

5.7 Discussion of the locate list element instruction

TI1e locate list element instruction (LSTU/L) has

not been used in the interpreter at all. LSTU/L_scans a

liststructure containing tHO 18 bit addresses in each ,·}ord
\

in the same ,-laY as ·the tHO 15 bit addresses carried in all

LISP-cells. LSTU/L scans do\-m a liststructure for the n'th

element. This is done by either using all upper addresses (LSTU)

or all lOHer addresses (LSTL) in the n-l preceding elements in

the liststructure. It \.,ill in other 'vords simulate a CAR chain

or a CDR chain. The instruction requires ho\o/ever the setting

up of t,.,o index registers and is fairly slow. If going down

only one or tHO elements in a liststructure it is much faster

to use the index register load instructions with indexing. '
I

Another disadvantage of LSTU/L is t;he f~ct ~h'!t it <;:onsid~r8

a word containing an address of zero to b~ ~he last word in a

list. This ,.,ould have been very well indeed if the atom NIL

c()uld have its atomhead in address zero. This is ho\vever

impossible since the word with address zero in storage is used

by the interrupt system on the CD 3600. If LSTU/L reaches a

word containing an address of zero before the n'th element has'

been found it will terminate scanning and give as a result

address zero instead of the address of the word ,"hich contained

the address zero J ,.,hich would have been more useful.

LSTU/L would however have been very useful if the

LISP3600 system had been designed for a multibank CD 3600. As

the system is now, freewordstorage must be wholly contained in

• •

il
" . ..

- 15 -

a single bank, because the LISP-cells only contain 15 bit

addresses. A 15 bit address can only address 32768
10

",ords

of storage Hhich is one memory bank on the CD 3600. To address'

any Hord in any of the eight possible memory banks an ad~ress of

18 bits is required. LSTU/L Hould come in very handy in this

case because this instruction scans liststructures containing

18 bit addresses. A liststructure containing 18 bit pointers

could "leave in and out of banks "'ith no difficulty.

5.8 Arithmetic instructions

The arithmetic instruction set is very good. It is

for example possible to convert a number from integer to

floating point or vice versa using only three instructions.

5.9 The ECHO faci1itx

As already mentioned above, the EOtO facility in

CD 3600's assembly language made the generation of the initial

object list easy. The ECHO feature is a macro-like feature

whereby a specified number of instructions can be repeated a

specified number of times with parameter substitution.

5.10 SCOPE loading procedures

Because of the loading procedures in SCOPE, the

monitor for CD 3600, it is very easy to find out at run time

how much storage is left over. The interpreter will there~ore

always utilize all available space for freewordstorage. This

is only partly true on a multibank CD~3600, where only the

highest numbered bank will be fully utilized.

\.

,
t

• to. • .

6

6.1

- 16 -

THO FEATURES THAT HOULD HAVE }lADE CD 3600 }lORE SUITED TO
LIST PROCESSIi\G

Addressing

It ,",ould have been easier to make a LISP syst~m

\
utilizing all available banks if the index registers had

been 18 bits long, and addressing had been performed via

an indexregister to get the required 18 bit address. The

banksHitching that has to be perfoli-:1ed nOH '-lith the aid of

special 3 bit bank registers is cumbersome.

6.2 Indexing with the A-register

Some of the functions in LISP such as CAR and CDR

could have been made shorter and faster if it had been possible

to use the lower 15 bits of the A-register as an index register.

A-register to and from index registers t~ very frequent.

7 PRELININARY REMARKS ABOUT LISP/360

The implementation of LISP 1.5 on IBH System /360

(LISP/360) has already started. The system will be modelled

after the LISP3600 system. It is however our hope that the

system '\o1il1 eventually contain all the unimplemented functions

of LISP3600 including LAP and CO~1PILE. He will also try to

make the garbage collector compacting and the object list

bt.:tcket sorted. The LISP/360 system \vill be made in such a

way that it can utilize the so-called Large, Capacity Storage

th.at is available for the IBM System /360 Series computers.

. • .. , • ." • .
'. I ..

- 17 -

7.1 Some conventions

7.1.1 LISP-cells

A LISP-cell will in the LISP/360 system be one

doubleHord. This has several advantages: \
\

a) Each LISP-cell can then contain tHO full 24 bit addresses,

Hhich means that freeuordstorage may utilize all available

s tore on any IB:-t/360 computer.

b) Single precision numbers c.an be stored in a'single fulb-1ord.

This 'tvill increase the speed of arithmetic in LISP/360

considerably.

c) Space is left over in the LISP-cell for binary markers as

in the LISP3600 system. Since the space left over is one

byte in the upper word and one byte in the lower word, 'the
i

"test under mask instruction (TN) makes it easy to test.'

these markers.

7.1.2 Register use

Some of the 16 registers available on the IBM/360,

has been assigned special tasks.

Re·gister Task

2 Internal linkage register

6 Contains the address of NIL

7 Stack pointer

8 A-register
Used for transmitting arguments,

9 Q-register

12 Base register for the interpreter

13 Contains a pointer to a save area used by

systemprograms ,for. storing the registerblock

" c .. • l' . , t·
•

- 18 -

1.1.3 Storage allocation

A system for storage allocation for freel1Ordstorage

and the pushdo\mlist that ,",ould suit everybody's needs has not

been found. TIlree proposals have been made:

a) Let the amount of space set aside for the LISP/360 system

be an assembly parmneter.

b) Issue the GETNAIN macroinstruction continuously immediately

after loading, until all available space is under control ' ..

of the LISP/360 system. Since total amount of core needed

for a job must be specified on the job card, this proposal

is just another way of doi.ng scheme a) ,,,itb' the added

advantage that the space set aside for freewordstorage and

the pushdo,.,nlist is a job parameter. Operating System /360

will not allow a job to u§o morG §PUCg than what i§ §pflGlfl~d
\.

on the job card.

c) Issue the GETHAIN macroinstruction only when more space is

needed. A certain amount of ~torage will be made available

initially as an assembly parameter.

The GE1}~IN macroinstruction codes in a call to an

Operating System /360 routine, which ,.,il1 try to assign the

specified amount' of storage available to the program issuing the

GETMAIN.

The very first version of the LISP/360 system wif1 use

proposal a) for its storage allocation.

Other ways of ~llocating storage may be necessary when

one wants to utilize the Large Capacity Storage.

. .
~ ' ,

- 19 -

7.1.4 Relocation

Several relocation schemes have been considered.

Hore information is needed about Operating System /360

Option 4 and the Roll in - Rollout featurc G In tho first

version of the LISP/360 system every LISP-cell will carry

full 24 bit physical addresses. This means that no relocation

of frecHordstorage or the pushdm·mlist will be possible once it

has been loaded into storage. .

8 seNE USEFUL FEATURES OF THE IBH/360

8.1, Regis ters

The 16 general registers in ~mich both indexing,

,arithmetic and logical operations may occur. Ho\.;evcr register

o cannot be used for indexing. In the routines so far written

t:h@ Iftef~iUH! in ttl€! fiumbef 6f registers and the fact that they

can be used for indexing has reduced the number of instructions

considerably.

8.2 Addressin&

The addressing scheme of the IBH System /360 which

makes bytes and words just as easily addressable, have made

programming of ,the interpreter simpler.

The 24 bit address of the IBH System /360 which mcans

that about 16 'million bytes are immediately addressable seem~ to

be just what is needed in list processing. This fact coupled with

the availability of Large Capacity Storage whereby present IBH/360

computers can get up to 8 million bytes of continuously addressable

core store~ may prove to be of great importance in LISP processing.

1. Kent, J. G.

2. Saunders, S. A.

3. Korsvold, , K.

4. ¢dmansson, E.

5. McCarthy, J G et. ale

6.

7.

- 20 -

Re ferences

An Interpretative System for the
Pro£;r c1j~ing 0 f Rec'ur s i ve Funct ions

','

on a Digital Com~uter, Intern rapport
E-88, ~or,~gian Defc~ce Research
Establishr.1ent, Kjeller, ~\on.jay. (1966)

The LISP Sys tem for the Q- 32 Co~?uter,
in the book, "The Prosrar..;ning Langua.ge
LISP: Its O?eration and A;>plica.tions ll ,

InfolTl,ation International Inc.,
Carnbridge;l }tassachusetts. (1964)

An On-line Algebraic Sim?lify Program,
Stanford Artificial Intellicence Project
Memo 37, California. (1965)

Applications of the PrograiTtiling Language
LISP, Intern rapport E- J :\onvegian
Defence Research Estab1islunent.

The LISP 1.5 Programmer's Hanual,
HIT Press, Cambridge, Hassachusetts.
(1962)

Control Data 3600 Computer System
Reference Manual, Pub. No. 60021300.
(July 1964)

IBM System /360 Principles of Operation,
Fonn A22-6821-4. (1966)

	Contents
	1 Introduction
	2 New features in the LISP3600 system
	3 Extent of implementation
	4 LISP3600 versus other LISP systems
	5 Some useful features of the CD 3600
	6 Two features that would have made CD 3600 more suited to list processing
	7 Preliminary remarks about LISP/360
	References

