Q V\‘C L O c‘kez\,\,(_u

4 PAGEN \oP USING THEDYANANTIE RELOCATION

N oA ~ N e VIR B Y s
e v . [i . ' :_'{‘J‘
T A = TN S Ny PV -
' . v by l., PR PR /'u/

Rolect T. Berns Stantord University

The Tancuaze LIS? prasents ~ unicue challeanse

for the annlication of toechnicuns Jhich bavys hnann

lavala~ald Tor use in a sasing pvipanmant, Tha

atoras oF LISP with resnact to zceerssirT availznle

57 7 ant o the use a7 & ~arhaga anileector will o ha

ascoine ! in ralation o SYst> i iat sraviddace

cwrariar ot oA hardutrs leval, Tor confor eonhasis
Ll A~ on oche alzarichis sl o sest afficisntly
Aaxecuin In this snvironrarnt, o vantases Lained in

' - - H ~ -t v
L2 Tn.w eTTiciency o (Co o syste,

T, lrrrodaction

The Stanior | Comnutation Cantear "Nnarstas on 100 TELSET coi
wiltiale sartitions vwhich Inciude bhotr oot i Timh=Thopine
S5, fy tha “Sateh nartition there §s o LISD gygta- 1=t 2Ly o0

Tram aell starasae (1011 360 double words) ond 247 vords for
coinilad code. Under other confimurations these 1imits nay be
raisad as hish as 60X and 60X rnsnectipnly. t!sing only the
intarpretear it Is possible to wuake availahle to the user 90K of
free cell storage. For most LISP probleas solved locally these
sizes have been found to be quite sufficient.

A Time=Shared version of the LISP system has been written
which oparates under a monitor that uses the dynamiec reloeation
hardware of the 18™ 360/67. This version was originally written
to use only the physical memory provided for by the monitor,
Under this restriction, the LISP system can only access 15K of
Fraa cells with no room for the compiler, To make it nossible to
run larzor jobs such as those possible in the batch, a new
version of the Time=34Yared LISP was written, This version, usinz
services orovided for by the monitor, has the ability to use up
tn 64 pazes (4086 bytes per page) of drum space for virtual
.temory. The total physical core available is 24 pacges.

The uonitor allows the LISP system to manage its swapping to
some extent. In actuatity, all control of nage swanpping is done
by the monitor, and mearly provides the system writer with ihe
ability to define an algorithm for managing hls pazes.

To do the work described above, it was necessary to Jdo a
major re=write of the garbase collector and the CONS routine as
well as adding a new-routine to handle the swapping, Some of the

methods described are based partly on modifications of the work

af Robrow and Hurphy (3) with respect to the CONSing alzorithn,
This naper dascribes ndditiEnal alzorithms to select tha Hann
which should next leave physical core, and some snoacial
considerations for the zarbase collector,

In what follows | will be continunlly rnferring to the terns
UYEEPY and "HOLD"™. KEEP may be thouzht of as the process of
having a page of virtual memory currently residine on the drum
brouzht into physical core. The responsibility for modifying
relative addressing is shared between the hardware of the 360/G67
and the Time=Sharing Monitor, This work is not ‘lone by the LISP
system. "HOLD"™ may be thought of as the reverse process of

writing a physical page out onto the .(rum and makinz the physical

page available. Again, the responsibility of adddressing is

outside of the LISP system. Hence, a swap is HOLDing one page

and KEEPinz another.

2, Virtual Memory Allocation

Figure 1 shows a schematic of time shared LISP/350. This
version is described without the compiler Included. The addition
of the compiler will increase the size of the interpreter
slightly and will remove some pages from the total free-cell

‘space for the collection of compiled code. However, the

" fundamental swapping algorithm will remain intact. As is true in

BBM LISP the compller and interpreter nay Interact with one

héanother with compatibility over S-exprassions and function

definlitions. - -

Figure 1

System Schematic The addresses shown are hexadecinmal, Moties that the
ys '
of Virtual Memory aidress for the system code shous it Lo 5a in a jifferant nlace
Initial Physical Core than the reloacatable data. This is o ald the monitor in skarine
n
- the same copy of the subsystem amony many users, The initial
500000 object 1ist contains all atoms pre-defined hy tha LISP systen
T (charactér ohjects, function names atc,). The relocatahle
always
in KEyEP INTERPRETER : constants, push down stack, initial 05LIST, and the first naze of
506FFF free cells remain in virtual nemory at all times. Tris Jncislon
was based on the high usage of these jtems throushout & run.
700000
T Relocatable constants 7005FF liowever, the garbage collector must still collect over all items
5
push down stack starting from the Initial OBLIST. The rast of virtual aamory may
701AA0 be used for swappinzg.
initial object list .
always .
in KEEP .
1Y
703C58
: 3. Free Cell List Maintanence
Free Cells begin 703FFF
Free Cells 704FFF
' Initially , the user Is ziven seven pages of free=calls, the
705FFF .
first two being the Initial object list. A separate free 1ist
706FFF
pointer is maintained for nach available pagze. When a pace
. . - boundary is crosscd the old pointer is saved and the ons for tha
| . 1 713FFF
new page becomes active. This is to aid in concentrating the
Swappable drum space . v " creation of lists on single pages. Further work on doing this is
;googg' . ' handled by the CONSing algorithm. daving this compactness (or
OF e,
e linearity) is a deslrable property, for if lists can be kept from
701FFF R .
. A crossing page boundarys too freauently, then scanning these 1ists
702FFF » .
. . will cause fewer swaps.
. " As new space is required, and the current page has no more

[: | 739FFF

R R R . -

e o

S i Y usane tinally it would bn bast for the larrer proopra~s
oace a chock S ade of the fre i o Y nagn ~AXists rrent usaece, no . : .
3 { S the ne ‘lSt tab‘ Te l a napne

< , ach is aad f f e

- . . . H
Ith soace it is used (again the CONSing alzorithm will try to to et pares rapidly at the bexinnint (a hiah prrcentata) an
w SO¢ ? >
i then less as the program's demands borin to level off,
i i ompactness)., VYhen no space is)
cat a narticular parme to incresase co
! isi . Vi i na: b moe

available on any active pasme a zarbagze collection takes nlace. tthen the decision to add 1 new nace is made a number of

1. <« 3 . i3 3 >
1f the =arbage collnctor decides more space is needad than the nossibilities exist, Thare may still ha

room in virtual ~enory

llected a new entry is made in the free list table and a to add a new mage without swappins an old one; if so, this is
amount collected a new e 2 e

becomes active and is inltialized. Initialization is : done. However, when no KEFP space is avallable some paze must bHe
new page i b E: . * s
h cess of linking each double word to the following one and but into HOLD so the page may be initialized and hence the
the pro g e
placing a special mark in the last cell indicating the end of swanping algorithm is azain used.

The swapping algorithm itself makas decisions as to which
space on that page.

i Pagze should be swapped out based on criteria to be discussed,

' However, the swapping done in a sarbaze collection

should not

S Collector ; affect these criteria as they are hased on the status of the
. 4, The Garbage Collecto %
) ' X running prozram and not the incidental sarbage collections.
- Hence, tables used in the swapping alzorithm are saved unon entry
* The sarbage collector must collect on all active pages ' ’
whether they are in KEEP or HOLD (the swapping algorithm is used iy to the garbage collector and restored upon exit.

to bring in HOLD paces as they are needed)., It is after the

garbage collection takes place that the decision is made whether .

y 5. Algorithms
a new page should be added to the list of active pages or not.

T i iol e a page i ed if the number)

he criterion used is that a new page is added i '
! SWAPPING OF PAGES, Whe eferenc . in

of cells collected is less than 10 percent of the total number of) : G n a referenced pagze Is not in KEEP

£ 10 t is arbitrary and i» ~ Status some decision is necessary as to which page should leave
current free-=cells. The cholce o percen E .

: « . " core to make room for the referenced age, h ? » i
seems to work well for most test cases. Two possibilities for o f ‘ P The obvious cholee s

h the page which has been referenced the least.
chanze exist here. Have the percentaze be a parameter set by the

However, to count

_the number of
user, and/or determine the percentage dynamically based on the

references to a page or the langth of time that has

requires either some

elapsed since a page has been referenced

o T s

special hardware or some intricate software simulation of that
hardware. COUEM (L) describes some of these tachniques in his
paper. |n it, he concludes that time éf inactivity Is one of the.
best criteria for cholce of the leavinz nage.

! propose a method for choosing a "reasonahble" page to leave
without computing an unreasonable number of statistics. Consider

the following two factors:

1) Pagme references tend to “clump".
Particularly as the result of‘
linearity. So it is preferable
to kéep in physical core "naw"

nages and throw out "old" ones.

2) Some nages are heavily referenced,
rezardless of age, and will be
required almost immediately If

they are thrown out.

-
.

The first factor c;n simply be measured by the number of paées
which have been brought in (number of page interupts) since the
page under consideration. The second factor can be based on
historical data, namely how many page interupts on the average
have occured between 'swap out and the next swap in of the page.
The ralative welights ziven these factors determine the

“eonservativeness" of the algorithm, i.e. how long a page is

tept in physical core simply on the basis of (perrhaps) ancient
swap Jata. If physical memory is small, it is prafarable to he
ahle to use all pares of physical cor» for swanpnine as onnosed to
keeping a page hecause of himh activity, so factor 1 should
dominatez With larse physteal memory, some "deadwood" can bhe
tolerated for better averase swappine hehavior,

With this in mind the following was Jdone. An in=-core tahle
with three entries for each available pate (in core or on the

drum) is created with the following information contained in it:

1) SC = The Swap Count = The number of
times the page has been swapped

out.,

2) SD = The Swap Differential = The total
number of swaps which have occurad
while the page was not in Physical

core.

3) M = The Maximizing statistic = This is
described below. The page with the

largest M is the paze to leave core.

e ¥ e o

Other variables used below in Jdescribine the alzorithm are:

4) €CI = The Current Count In = The total
number of swaps which have taken
place when the paze was last

brought into physical core.

5) § - Swans - The total number of swaps

which have taken nlace.

6) K = A constant of proportionality.

The value of SD/SC is then the average number of times a page has

been out of core. Hence, the nage with the maximum SD/SC would
be the paze to throw out. However, a page could get a very small
SD/SC by having an early high actlvityland never be swapped out.
To compensate for this we may add to this figure the number of
times the paze is ip core. This would be the total number of
swaps which have oqcured (S) less the count when the page was
brought in (CCl). So the longer the page is in core the greater
(S=CCi) will be., Eventually, this value will become large enough

- to dominate the followingz =xpression:

SD/SC+K#(S=CCH)

Thin pase with the largest value for this expression is the nazn
to lrave nhysical core., The constant ¥ is used as the wrichting
factor Jescribed in the nrevious raracranh, Ffor our system a ¥
of &4 was chosen. The camputation of S, SC, and CCl are c¢hvious
by dnfini}ion, SN may be comnuted by subtracting S from the
current SD when the pame is taken out, 3nd adding S when the nare
is brousht in. From an examination of the 2quation we can saee
that S and K are constants for each nace per swap and may bhe
eliminated from the computation. Also, the vé!ue obtained is
constant while a page is in keep and hence we may compute it once
when a page is brought into KEEP and the value stored in the

table. The algorithm becomes therefore:

Compute the maximum value of M for those pages
which are in KEEP. M is computed from
M=SD/SC-4*CCl each time a paze is brought

into KEEP,

This table can serve additionally to sive the status of the
because M contalning a non-zero value aeans the page is in KEEP,
M of zero can be used to mean the page is In HOLD, and an SC

which is negative can be the iInitlalization to show a nage which

has never been referenced.

CONSING ALGORITIM, Since CONS is the only LISP function uhich
requires tettine new space, it is ot this point that the Adecision
as to what page to fet the space from éhould ha made, Yn want to
keep the lists which are created linear and on as few pagzes as
possible so that references to lists do not cause an excessive
amount of swapning. Therafore, CONS should try to smat new space
from the same page that the items it is CONSing are on.
Preference should zo ta the second argument as most lists are
scanned by moving along the CDR elements. The method above is
described by BOBROW and MURPHY in their paper. Their method is
slightly more sophisticated due to some additional information
about the nature of ATOMS, For the system being described here
all that is done is the following:

To construct Z=CONS(X,Y), if there is room on Y's page put I
thefe, else if there is room'on X's page put it there, else
choose a page with space on it that is in core. Z is placed on
X's or Y's page if there is room regardless of whether the page
Is in physical core or not. This is because the number of times
we scan this list will usually be considerable as compared to

single swap necessary to get X's or Y's page.

6. Discussion

In examining some test cases, for which statistics are glven

below, it was found that 2 major problem Is in the object list.

PR R

i

The scan for a particular item requirns a linear search »f ORLIST
and the comparison requires that cach page on which an item of
the list occurs be brought into core, resultins in much
additional swapping. A hashing method for storing objects could
consideraply reduce the number of swaps, The system being
discussed in this paper is a modified version of the RATCH LISP
being used at Stanford and under normal conditions it was found
that the changing over to a hashing scheme fot the object tist
did not increase the efficiency of the batch system. It was
declded that to do this for the timeshared system would involve
too much of a program re-write, and so we decided to put un with
the OBLIST problem until anoéher method for solving it could be
employed. As the OBLIST is scanned only during the initial
reading in of functions where pazinz activity due to other
sources Is usually relatively low, this problem has not created a

serious threat to the overall efficiency of the system.

STATISTICS. The test cases used to zain some representative
statistics were the Expression Recosnition Routine (ERR)
described by ROSEN (5); the METEOR language written in LISP
described In Information International inc.'s book (6); a
" polynomial simplifaction program; and some highly interactive
4student problems. The polynomial simplification prosram was used
because of its size (approximately equivalent to a card deck of

- 800 cards). This was to check the effect the object list problem

R

would bhave, METFOP and FRR tend to create rather lonx lists and
hance help in checkineg how well the algorithms linearize lists,
The student problems are primarily exersises in defining and
testing functions so that much interaction was required and
response time would be more observable,

One important fact should be mentioned at this point, and
that is with reguard to "number of swaps", While | have talked
about moving a page from physical memory (KEEP) to the drum
(HOLN) as constituting a swap, there may Indeed be no drum
reference made. This may be true for one of two reasons. First,
if the page beling put in HOLD has not been changed then no drum
reference to store the page is made. Secondly, the monitor,
which may at one time be handling many sub=processors may find
that even though a request for putting a page in HOLD Is made,
there is sufficient core available to avoid making the drum
ref;rence a2t that time (which means essentially that the size of
ohysical wemory can vary). Since frequently in LISP large lists
are scanned but not changed, it is quite plausible that the)
actual number of drum references may therefore be somewhat less
than the number of'"IogIcal swaps"”. |Indeed, under controlled
conditions this seemed to be true for a considerable number of
test cases. For the test cases mentioned above the number of
swaps was about 30 percent areater then the actual number of drum
references. For other tests this figure varled from 15 to 40

percent,

"u:uwxiiliuquwa$f~.-

To test the officency of the system counters were nut in to
count the number of CAR's, CDR's, CNNS's, swaps, ~arbaze
collections, and swans done in the ~arbare collector.
Additionally, time of run, time spent in swapping, and time spent

in «arbage collection were recorded, As is mentioned in (3) it
would be‘expected that if storase wera distributed randomly then
the percentage of cell references which caused swaps would be
about the same as the ratio of amount of physical space available
for the program to the amount of virtual space used. It should
be pointed out that the number of CARS and CDRS is actually
greater than the number shown in the statistics. This is because
the LISP system does its internal CARS and CORS "in line". The
number shown are those called for by the user program. To zet a
true relationship Becween CARS, CDRS, and swaps the swaps counted
are also only those swaps encountered during user calls to CAR
and CDR,

A test of the linearity of lists can be made by checking how
many swaps were necessary during a zarbage collection. The more
linear the lists the fewer swaps necessary. Since cach active
page must be referenced, the minimum would be one swan for each

paze that could not reside in KEEP space.

Figure 2 describes the values for the above mentioned

" factors. The size of physlical memory for these runs was 10

. pages. Cases 1,2, and 3 represent the ERR and METEOR orograms

run tocether, the polynomial simplification pro=ram, and the
student nrohlems resnactively. Lines Q. and H, show that the
paging algorithm seems to be rather efficient for all three
cases. For cases 1 and 3 it also appears that the lists formed
in the system are rather nicely linear, as shown in 1. for the
reason stated above.

he problam In case 2 demonstrates that the progzram is rather
larme and most activity Is durlng the reading in of functions

where the 0BLIST problem mentioned above takes its toll.,

Though the statistics show that the algorithms used are
quite e?fective, it is the response time for the user which
actually determines'the systems usafullness. For small programs
and. larger ones with much interaction, response time is good.

For larger, compute hound lobs, respoﬁse time is too long to make
the system effective, This problem is due to the complexity of

the Stanford system and its requirement of serving many diverse

users in a multi-programming environment. It is felt that a LISP

system such as the one described above would work remarkably well

in general on a machine with a much more single-minded purpose.

Figure 2
- Statistics
case 1 case 2 case 3
ERR-METEOR| POLY. SIMP.| STUDENTS
A. number of 172,128 141,2
CAR-CDR-CON's 1268 | 31,398
B. .CAR-.CDR-CON‘S 1,560 3,239 191
page interrupts
C. number of garbage 131 81 22
Collections
D. Garbage Collection
e Dt 4,597 27,507 484
E. Number of pages 19 35 2
used (512 cells ’ 0
per page)
F. Average number of 1,400 1,800 1,700
cells collected
G. Percentage of 1.01 .
CAR-CDR-CON'S 2.29 0.6
which caused
page interrupts
H. Expected value of 47.37 .
G, assuming random 71.43 50.00
cell distribution
" 1. Average number 35 339 22
of interrupts per
garbage collection
J. Total time spent 67
handling interrupts 377 18
(seconds)
5 - K. Total run time 272 1,191 130
(seconds)

Y.~ NP Y; Y S

	Berns-Paged_Lisp-19670001_a
	Berns-Paged_Lisp-19670002_a
	Berns-Paged_Lisp-19670003_a
	Berns-Paged_Lisp-19670004_a
	Berns-Paged_Lisp-19670005_a
	Berns-Paged_Lisp-19670006_a
	Berns-Paged_Lisp-19670007_a
	Berns-Paged_Lisp-19670008_a
	Berns-Paged_Lisp-19670009_a

