LISP/360 REFERENCE MANUAL

FOURTH EDITION

MARCH 1972

CAMPUS COMPUTER FACILITY
STANFORD COMPUTATION CENTER
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

DOCUMENT NUMBER SCC024

PREFACE

This manual is intended to provide the LISP 1.5 user
with a reference manual for the LISP 1.5 interpreter,
assembler, and compiler on the Campus Facility 360/67.
It assumes that the reader has a working knowledge

of LISP 1.5 as described in the LISP_1.5_ Primer by
Clark Weissman, and that the reader has a generail
knowledge of the operating environment of 0S 360.

Beginning users of LISP will find the sections The
LISP/360 System, Organization of Storage, Functions,
LISP_Job Set-up, and LISP/360 System Messages

post helpful in obtaining a basic understanding

of the LISP system. Other sections of the manual
are intended for users desiring a more extensive
knowledge of LISP.

The particular implementation to wvhich this reference
manual is directed was started by Mr. J. Kent while he
was at the University of Waterloo. It is modeled after
his implemention of LISP 1.5 for the CDC 3600.

Included in this edition is information on the use of
the time-shared LISP system available on the 360/67
which was implemented by Mr. Robert Berns of the
Campus Computer Facility staff.

OF CONTENTS

PREFACE . « « .+ «

TABLE OF CONTENTS . .

THE LISP/360 SYSTEM .

ORGANIZATION OF STORAGE o o
2.1 Free Cell Storage (FCS)
2.1.17 Atoms . . .«

2.17.2 Numbers . . .

2.1.3 Object List .

Push-down Stack (PDS)
System Functions
Binary Program Space (BPS)

Input/Output Buffers . . .

FUNCTIONS, PREDEFINED ATOMS AND CHARACTER-OBJECTS
3.1 LISP Functions . . « « « &
3.2 Atoms with Initial Values .

3.3 Character-obijects . . . « =

SPECIAL DIFFERENCES IN LISP/360

LISP JOB SET_UP . « o o

DATA MANAGEMENT IN LISP/360 . .
6.1 Data Management Functiomns .

6.1.1 OPEN(ddname,list,at)

CLOSE (ddname)
ASA(P) . - -
OTLL(n) . .
WRS (ddname)

INLL (D) . .

RDS (ddname) « o o o s o e
Checkpoint Facilities in LISP/360
CHKPOINT (ddname) .

RESTORE (ddname)
BPSCHKPT (ddname) .

BPSRESTR (ddname) .

THE LISP ASSEMBLER AND COMPILER
7.1 LISP Assembly Program (LAP) . . « . .

Differences Between LAP and OS
Assembler Lanquage . « + o« « «

Passing Arguments To and From LAP
ROUtINES « « o o o o o o o s s o« o

Register Usage . .

MACIOS o o« o s o o o s o s o
7.1.4.1 User Defined Macros
7.1.4,2 System Macros . . .

Sample LAP Program . .

Programming Space

The Atom BPS . . .
The LISP Compiler « « o ¢ o s o o o o =
7.3.1 LISP Job Set-up for the Compiler

7.3.2 Auxiliary Routimes

Examining the Compiled Code

Names of Compiler and Assembler Routines

THE GARBAGE COLLECTOR . « « o « &

TIME-SHARED LISP AT STANFORD . . .

9.1 Example of a Terminal Session

LISP/360 SYSTEM MESSAGES
10.1 EVALQUOTE Messages

10.2 Tracing in LISP/360 . . .
10.3 Garbage Collector Message

10.4 Interruption Messade . . .

10.5 Error Diagnostics . « .« =«

10.5.1 Syntax Errors . .
10.5.2 Execution Errors . o

10.5.3 Error Codes and Messages

APPENDIX: THE LISP INTERPRETER . . .

REFERENCES . - . . . L] - - . » . [} - e

Figure
Figqure
Figure
Figure
Figure
Figure
Figure

Figure

LIST OF ILLUSTRATIONS

Initial Organization of LISP System Memory

LISP Cell

Full Cell

Binary Markers . . .

LISP Atom With An Empty Property List .
LISP Atom With Associated Property List
Object List &

The Atcm BPS . « .« .

LISP 360 operates under the IBM System/360 Operating System (0S).
The operation of the LISP executive is best described as follows:

Read a function and list of arguments.
Start the timer.

pass the function and list of arguments to the function
EVALQUOTE for evaluation.

Print the execution time and the value of the function.
Start again at step 1.

The LISP system initially consists of a large body of predefined
functions and provides the facility to add additional function
definitions. Statements in the LISP language are evaluated
interpretively by the function EVALQUOTE to determine their value,
although some functions (such as COMPILE) are evaluated more for
their effect than for their value. A compiler and an assembler
are also available.

During execution, LISP data structures (including LISP function
definitions) are constructed in Free Cell Storage (FCS). The
push-down Stack (PDS) is used to store program parameters
dynamically during recurkion.

Other system areas are allocated as Binary Program Space (BPS) to
contain the machine code for all ccmpiled functions and as I/0
Buffers to be used by 0S. The general organization of systenm
memory is given in Figure 1.

System Programs
(LISP Interpreter
And All Predefined
Functions)

Push-Down Stack
(PDS)

Oblist

Free Cell
Storage Remainder of

(FCS) Free Cell Storage

Binary Program
Space
(BPS)

Given Back to 0S
for 1/0 Buffers

Figure 1: Initial organization of LISP System Memory

2. ORGANIZATION OF STORAGE

Within the LISP system, computer memory is subdivided into several
functional areas. The largest portion of system memory is devoted

to Free Cell Storage (FCS), the area used to contain all working data
structures. The remaining parts of memory are used for the Push-down
Stack (PDS), Binary Program Space (BPS), Input/Output Buffers, and
system functions.

2.1 PFree Cell Storage (FCS)

A large portion of LISP memory is devoted to the storage of workiag
data structures in Pree Cell Storage. Each word of FCS (called a LISP
cell) is a System/360 doubleword (64 bits) consisting of an upper word
(32 bits) and a lower word (32 bits). LISP cells, depending on their
use, may contain four fields as shown in Figure 2.

&
«—
<8

v

Sttt V/

Used for
Markers

Used for

Second Address Position
Markers

first Address Position

.24 >€ 2
T
[}
[}
t
1
]
]
]
!

31 32 39 40

~i
foc]

Figure 2: LISP Cell

Initially, all available words in FCS are in a free cell list. As
LISP cells are used to create data structures, they are removed from
the free cell list until removal of the last word forces the systenm
to perform a garbage collection in an attempt to restore words to the
free cell list.

A LISP cell is normally considered to contain pointers to other LISP
cells in both its upper and lower words, but a special type of LISP
cell is defined in which the upper word contains information other
than a pointer. This LISP cell is called a full cell and its format
is illustrated in Figure 3.

< 32 ><—38

h
2

This word may contain -

1. Four EBCDIC characters from a
print name.

2. A 32-bit number.
3. The address of a binary LISP routine.

.
N
|

]

i

)

]

0 Second Address Position
:

]

]

1

Figure 3: Full Cell

Since the length of the LISP cell is 64 bits and only 24 bits are
needed to express an address, the first 8 bits in the upper word and
the first 8 bits in the lower word are available for other uses.
Figure 4 indicates the uses for some of these bits as explained below,

24 —»

Address
Position

Address

First I
Position

|

2 3 4 5 6 7 3n2 33 2%4 35 36 37 38 39
Trgce Marker ? Full Cell Contents Indicator

Logical Marker Full Cell Marker
Floating-point Marker Garbage Collector Marker If this cell
Number Marker If this cell 1s an atomhead,
Atomhead Marker 1s an atomhead, this address

this address points to the
points to the property 1list.

full cell 1ist.

Figure 4: Binary Markers

Bit O - indicates that this cell is an atomhead (i.e.,
the first cell in an atom).

Bits 1, 2 and 3 - refer to a full cell list associated with an
atom. Bits 1, 2 and 3 are used as follows:

Bit 1 - Number Marker
Bit 2 - Floating-point Marker
Bit 3 - Logical Marker

For an atomhead (bit 0 is set to one), one of
the following bit patterns will be used to
describe the full cell 1ist associated with
the atom:

bit 0 bit 1 bit 2 bit 3

EBCDIC Characters
Fixed-point Number
Floating-point Number
Logical Number

indicates that a function is to be traced.

is used by the garbage collector to mark active
cells.

indicates that this is a full ceil.

is used in a full cell to indicate that the first
word (first 32 bits) contains EBCDIC characters
or a number. Bit 34 is not set im a full cell
when the first word contains an address.

An atom begins with a LISP cell (called an atomhead) that contains in
its first address position a pointer to a full cell list associated
with that atom. The full cell list contains either the printname

of the atom (in the case of a literal atom) or the binary value of
the atom (in the case cf a number).

The second address position contains a pointer to the list of
properties associated with that atom -- if it exists (numbers
never have properties). The first bit of the first word (bit 0)
is set to one to indicate that this cell represents the start of
an atom.

Figure 5 illustrates the atom EXAMPLE and its full cell 1list. The
property list is empty.

Figure 5: LISP Atom With An Empty Property List

Note: A pointer to the atom NIL is represented by a diagonal line
in the address portion of a LISP cell.

Figure 6 illustrates the atom FF and its property list. The property
iist includes all of the attributes associated with that atom. In
this example, the atom FF is a function, namely an EXPR, which starts
(LAMBDA « . .)

atom EXPR

Figure 6: LISP Atom With Associated Property List

Attributes of the atom are designated by flags or indicators on the
property list. Flags are atoms which by themselves indicate that
the atom (on whose property list the flag occurs) has some attribute
(¢e.g., COMMON). Indicators are atoms which identify the atom (on
whose property list the indicator occurs) as having a special value
which is found as the next item on the property list (e.g., SPECIAL,

APVAL) . Indicators used by the LISP system include:

APVAL -- The atonm is a constant whose value is the following
item in the property list.

The atom is a function name., The lambda expression
jefining the function is the following item in the
property list.

The atom is a special function name. The lambda
expression defining the function is the following

ijtem in the property list. An FEXPR differs fron

EXPR in that the FEXPR is defined with precisely two
arquments and may be called with an indefinite number

of arquments. When an FEXPR 1s called, the 1list of
arguments and the current association list are bound to
the lambda variables defined in the FEXPR expression, SO
that the arguments are not evaluated before the function
is called.

The atom is a compiled EXPR or a built-in function.
The entry address of the subroutine is the following
item in the property list.

FSUBR -~ The atom is a compiled FEXPR. The entry address of the
subroutine is the following item in the property list.

Atoms are created in LISP 1n several ways. READ, GENSYM1, and MKATOH
all create literal atoms. READ creates atoms from the input text and
places them on the object list. GENSYM? creates an atom kut does not
place it on the object 1ist. MKATOM creates an atom on the object
list using the buffer filled by the function RLIT.

Numeric atons are created by every pumeric function., Thus, the sane
number may be different atoms. These numeric atoms are not placed on
the object list.

There are three kinds of numbers:

1. Fixed-point (integers)
2. Floating-point
3. Logical (hexadecimal)

All numbers are stored as 32 bit binary numbers with the help ot a
full cell and must be converted from EBCDIC characters on input and

to EBCDIC characters on output. (The EBCDIC representation of a
number is not stored.) The first word of a numeric atomhead points to
this full cell; the second word is NIL.

A fixed-point number is a signed or unsigned integer (written without
a decimal point) in the range -2%*371 < number < 2¥*31-1. For exampie:

0

91

-91

173
-2147483647

A floating-point number is a signed or unsigned string of decimal
digits with a decimal point. The string of decimal digits may be
followed by a decimal exponent., Floating-point numbers may have
absolute values in the range 10%¥*-75 < number < 10*¥*75, including
zero. For example:

7.

-3.4
2.5E+07
-3.2E-4
2.6E7

A logical number consists of from 1 to 8 hexadecimal digits
0,1,2,...,9,A,8,C,D,E,F) which may be followed Ly the letter 'X'.
If the number begins with one of the letters A through F, it must
be preceded by a zero to avoid ambiguity with character atoms.
Logical numbers need not be followed by *X' if they contain any

of the digits A through F. All numeric functions treat logical
numbers as integers. For example:

14X

-3 ABX

0ax
OFFFFFFFCX
14 AFS

2.1.3 Object List

Pointers to LISP atoms are chained together on a list called the
‘object list'. The system searches this list in order to tind atoms
referenced by the LISP program. The format of the object list is
shown in Figure 7. As literal atoms are added to the system, their
pointers are added to the front of the object list, immediately
following the pointer to the atom NIL except for literal atonmns
created by GENSYM1, which are not added to the object 1list. The
predefined atom OBLIST has an APVAL on its property list which
points to the object list. To print the object list, the following
statement can be used: EVAL(OBLIST NIL).

S
>

“«
>

atom NIl Z2nd atom 3rd atom

Figure 7: Object Llist

2.2 Push-down Stack_ (PDS)

The PDS is used to save active data structures and addresses during
program recursion. The size of the PDS is fixed at 6K words (32
bits/word), and it can only be changed by regenerating the LISP
systenm.

2.3
The system function area contains the contrcl program, the EVALQUOTE

interpreter, predefined systen functions, the garbage collector, and
the error handler.

2.4 inary Program_sSpace_ (BPS)

This area contains all compiled code not part of the standard LISP
syster (including LAP and the compiler).

2.5 Input/Qutput Butfers
This is an area of 8K bytes (8 bits/byte) returned to 05 for use as

input/output storage. The size of the area can be changed any tinme
LISP is loaded by using appropriate EXEC parameters.

3. FUNCTIONS, PREDEFINED ATOMS AND CHARACTER-OBJECTS

3.1 LISP Functionmns

This section gives the definitions of the functions available 1in
LISP/360. The letters that precede the function names are not part
of the function name. They are used to explain the functions as
follovs:

C This function is contained in the compiler.

I This function is contained in the compiler and is for internal
compiler usage. '

This function is not available in time-shared LISP.

This function is available in time-shared LISP but not in
standard LISP.

The symbols used for function arquments are defined as follows:

alst association 1list
at atom

ch character-object
ddname ddname

e valid LISP form
fn function

ind indicator

list list

n number

P predicate

b ¢ S~expression

ADD1 (n) ADD1 takes a number as its argument and
returns that number plus 1. If n is a
fixed-point number, the result is a fixed-
point number. If n is a floating-point
number, the result is floating-point.

AND(p1,P2,+++,PN) AND evaluates its arquments from left to
right until one is NIL or the end of the
list is reached. It returns NIL or T,
respectively.

APPEND (list1,1list?2) APPEND takes two lists as its arguments.
Its value is a list of the elements of list1
followed by the elements of list2.

APPEND((A B C) (D E F)) = (A BC D E F)

APPENDY {1ict, 1)

ASE{p)

ATOM {x}

BPSCHKPT {ddname)
BPSLEFT{ }
BPSHOVE (n}
BPSRESTR (adnane)
BPSUSED {p}

BPSWIPE {fn)

LPPEND1 causes the element x to be added
onto the end of *list'; the value 1s the
nodified list.

APPENDT1{((A B C) D) = (A B C D)

APPLY causes the function, fn, to be applied
to the arguments in the list; alst is used
as the association list.

{see Section 6.1.3)

ATOH returns T if x is an atom {eithaer
numeric or literal); otherwise it returns
NIL.

ATTRIB modifies listi by tacking on 1iist2 at
the end. The value is 1list2. ATTRIB has
the same effect as NCONC although the value
is different., Note that if listi is an
atom, list2 is added to the end of the
property list of listi.

{see Section 6.2.3)
(see Section 7.3.2)
(see Section 7.3.2)
{see Section 6.2.4)
{see Section T.3.2)
{see Section 7.3.2)

BPSZ takes no arguments. BPSZ deletes all
binary program space and adds that storage
to Free Cell Storage. Jobs not using

the compiler, LAP, or any user compiled
functions should call BPSZ for maxinum
storage. (See Section 7.3.2)

BREAKP is a predicate. If its argument is
one of these character-objects:

blank

left parenthesis {

right parenthesis)

comma v

period .
its value is T; otherwise its value is NIL.

CAAAR(x)

CAADR (x)

CAAR (x)

CADAR (x)

CADDR (x)

CADR (%)

CAR (X) These functions represent all possible
CDAAR (%) nestings of CAR and CDR up to three levels.
CDADR (x)

CDAR (x)

CDDAR {x)

CDDDR (x)

CDDR (x)

CDR {X)

b CHKPOINT (ddnaime} e Section
CLOSE(ddname) Section
> COMHMON {1ist) Section
COMPILE{list) : Section
COMT {x1,%x2,x3} COM1 is a function used by the compiler.
CONC (X1,X2, s «p XN} CONC is & function used by the compiler.

CONS (x71,x2) CONS obtains a new doubleword from the free
storage list ({see Section 2.1) and
places its two arguments in the first and
second words, respectively. It does not
check to see if the arguments are valid list
structures. The value of CONS is a pointer
to the word that was just created. If the
free storage list has been exhausted, CONS
calls the garbage collector to make a new
free storage list and then performs the
CONS operation.

N COUNWT{n) The argument n must be an integer. COUNT
turns on a counter which automatically causes
a trap when CONS has been done more than 'n'
times. Any CON5 performed by systen
functions are ailso counted. The counter
is turned off by UNCOUNT(NIL). The
counter is turned on and reset each time
COUNT (n} is executed. The counter can
be turned on so as to continue counting
from the state it was in when last turned
off by executing COUNT (NIL). The
function SPEAK() gives the current value
of the counter, which is decremented each
time a CONS occurs.

CSET is used to create a constant by putting
the indicator APVAL and a value on the
property list of the atom. The value

stored in the property list of the atom

is CONS(x,NIL). The value of CSET 1is its
first arqument, If 'at' already had an
APVAL, the o0ld value is removed.

C3ETQ(at, &) CSETQ is like CSET, except that the first
argument is quoted instead of being evaluated.

DEBUG {p; Currently, this function has no effect.

DEFING {(list; The argument 'list! of DEFINE is a list of
pairs

((ui vy {u2 v2) ... {(un vn))

where each u is a name and each v 1is a
lambda-expression for a function. For each
pair, DEFINE puts an EXPR on the property
list for u pointing to v. DEFINE puts
things on at the front of the property list.
The value of DEFINE is a list of the u's,

DEFLIST {1ist,at; DEFLIST is a more general defining function
than DEFINE, Its first argument is a list of
pairs as for DEFINE., 1Its second argument is
the indicator that is to be used. The

second argument should be a literal
atom. After DEFLIST has been executed
with (u v) as its first arqument, the
property list of u will begin with the
indicator, at, followed by v.

DEFINE (((FN (LAMBDA(X) (CAR X))))) =
DEFLIST (((FN (LAMBDA (X) (CAR X)))) EXPR)

DIFFERENCE(nT, D2} Both arquments of DIFFERENCE must be
pumbers. The value is n1 minus n2.
If either argument is a floating-point
number, the result is floating-point.

DIGP is a predicate, If its argument 1s one
of these character-objects: 0, 1, 2, ..., 9
its value is T; otherwise its value is NIL.

EJECT takes no arguments. It causes a line
to be written with a 'new-page' control
character in the first hyte (skip to new

page) .

FO(x1,x2)

BEGUAL {(x1,22)

&

ERROR {x}

EVCON (list,alst}

EVENP (n)

EVLIS{list,alst)

EXITERR (p)

EQ is a predicate which tests if its two
arguments point to the same location in
storage. Literal atoms are stored uniquely,
so that if x1 is an atom, EQ(x1,x2) will be
true if x2 is the same atom., List structures
and numbers are not stored uniquely, however,
and thus it 1s possible for two equivalent
list structures not to be EQ. EQ returas

T if its arguments are the same, otherwise

it returns NIL.

EQUAL 1s a predicate. It returns T 1if its
two arguments are equlvalent list structures.
FQUAL is recursive, using EQ to test literal
atoms. Two pumbers are assumed to be

EQUAL if they differ by less than 10%*-6.

ERROR 1is one way for a user to cause a LISP
error. The message '**% a1 - CALL TO ERROR?®
and the value of x will be printed, followed
by a trace-back as described in Section
10.5. ERROR does not return and so 1t

has no value.

The first argument e must be a valid LISP
expression. It is evaluated using alst as
an associlation list for values of variables.

The argument is a list of the form

{(p e1) (p2 e2) (p2 €3)...{(pn en)})
where the p's and e's are valid LISP
expressions. The p's are evaluated 1n
order until a non-NIL value 1s obtained.
Then the corresponding e is evaluated
and its value is returned as the value
of EVCON. For each of these evaluations,
alst is used as the association list.

EVENP returns T if the fixed-point number
*n' is even; otherwise it returns NIL.

The first argqument is a list of valid LISP
expressions. They are evaluated 1n order
using alst as the association list. The
list of the values is returned.

{see Section 7.3.2)

EXITERR (T) causes the run to terminate
after the occurrence of any error that
is generated in the execution of the
program. EXITERR(NIL), the default,
turns off this feature.

EXPLODE {at)

EXPT{nl,n2}

FIX (n)

FIKP (x)

FLAG {List,at)

FLAGP{ati.atl}

FLOAT (n}

FLOATP (x)

FUNCTION {fuj

EXPLODE takes an atom as an argument and
has as its value a list of the characters
in the printname of the atomn.

EXPT takes two numbers as 1ts arquments.
The second argument must be a fixed-
point number. It returns nl to the n2th
power. The value is floating-point 1f nil
is floating-point or if n2 is negative.

FIX takes a floating-pcint number as 1its
arqument, The argqument is truncated to
an integer.

FIXP returas T if x is a fixed-point
number, otherwise it returmns NIL.

FLAG puts the flag 'at' on the property
list of every atomic symbol in the list.
Note that 'list' must be a list of atoms.
No atom ever receives a duplicate flag.
The value of FLAG is NIL.

FLAGP searches the property list of the atom
at1 (CDR at1) for an occurrence of an iten
EQ to at2,., If such an item is found, the
value of FLAGP is the rest of the list
beginning with that item. Othervise, the
value is NIL.

FLOAT takes a fixed-point number as its
argument., It returns that number
converted to floating-point.

FLOATP returns T if its argument is a
floating-point number; otherwise 1t
returns NIL.

FUNCTION is a special form. Its 'argument’
must be the name of a function or a lambda-
expression. FUNCTION is used to pass
functional argquments to other functions.
When the form

(FUNCTION (LAMBDA(X) ...))

is evaluated in interpreted LISP, FUNCTION
returns the special forn

(FUNARG (LAMBDA(X)...)) alst)

where alst is the current association list.
Then the FUNARG form 1s interpreted by

C GENSYM{)

GENSYM1 (at)

GET (ati,at2)

GO (at)

GREATERP (n1,1n2)

N INLL (n}

C LaP360(list,alst)

APPLY as a function, with the association
list taken from alst instead of taking the
association list at the time APPLY 1is
called. Thus, FUNCTION, in effect, saves
the current association list along with
'fn', so that later calls will use current
variable bindings.

GENSYM is a function used by the compiler.

GENSYM1 creates a new atom whose printname
consists of the first four characters of
the atom which is passed as its argument,
toliowed by four digits. The atoms that
GENSYM1 creates are NOT on the opject list,
unlike other atoms in the system. Thus,

GENSY#1{ALPHA) = ALPHO502

Even 1f there already exists an atom whose
name is ALPHOS02, the result of GENSYM1
will be unique.

GET searches the property list (CDR) of its
first argument for an indicator EQ to its
second argument. GET then returns the 1iten
following the indicator in the property
list, If no element of CDR (atl1) 1is EQ

to at2, GET returns NIL,

GO is a special form. Its one argubent
must be a label in the PROG in which GO
appears. Its arqgument is not evaluated.
GO causes PROG to branch to the label
specified. 1In compiled LISP, GO cannot
appear except as a statement in a PROG,
or in the top level of a COND which 1is

a statement in a PROG. Specifically, GO
cannot appear within a PROG2 within a
COND.

GREATERP is a predicate which takes two
numbers as its arguments. The value 1is
T if the first arqument is numerically
greater than the second, and NIL it they
are equal or the first is less than the
second.

(see Section 6.1.6)

(see Section 7)

LAST (list) The arqument is a list. LAST returns the
tail end of list which contains only the
last element:

LAST((A B C D)) = (D)

(This is the list of the last element, not
just the last element).

LEFTSHIFT (n1,n2) LEFTSHIFT takes two numbers as its
arquments. The second argument must be
a fixed-point number. The word (32 bits)
which contains the number given by the
first argument is shifted left the
number of places specified by the second
argument. If the second argument 1is
negative, the first argument 1s shifted
right. The value is a logical number.

LENGTH {11st) LENGTH returns the number of top-level
elements contained in the list given as
its argument.

LENGTH(((A B C) D (E. F))) = 3

LESSP(nl,n2) LESSP is a predicate which takes two
numbers as its arquments. The value is T
if the first argument is numerically less
than the second:; otherwise it is NIL.

LETP (ch) LETP is a predicate. 1If its argument is
one of the letters in the range A, B, «..,
%z, its value is T; otherwise its value is
NIL.

LIST(x1,X2,.0¢.4,%X0) LIST takes an indefinite number of
arquments, and returns a list of
those values.

LITP {ch) = NOT (OR (BREAKP (ch) ,DIGP(ch))) .

LOGAND (n1,02,...,0k} LOGAND takes an indefinite number of
arguments. LOGAND performs a bit-by-bit
logical AND on its arguments and returas
the logical number thus produced.

LOGOR(n1,n2,...,0k) LOGOR is similar to LOGAND, except that it
computes the bit-by-bit logical OR of its
arguments,

LOGP (x) It returns T if its argument is a logical
number, and NIL otherwise.

LOGXOR(n1,n2,...,0k)

C MAP(x1,x2)

MAPCAR (list,fn)

C MAPCON (x1,x2)

MAPLIST (list, fn)

MAX(R1,02,...,0k)

MEMBER (x,list)

MIN(n1,02,¢0.,0tk)

MINUS (n)

MINUSP (n)

MKATOMA{)

LOGXOR is similar to LOGAND and LOGOR,
except that it computes the logical
exclusive OR of its arguments.

MAP is a function used by the compiler.

MAPCAR takes two arquments: the tirst is a
l1ist and the second is a function of one
argument. MAPCAR applies the given function
first to the CAR of list, then to the CADR
of list, and successively to each element of
list until the end of the list is reached.
MAPCAR returns a list whose kth element is
the value of the function applied to the kth
element of the list given as an argument.

MAPCON is a function used by the compiler.

MAPLIST takes two arguments: the first 1is

a list and the second is a functional
argument. MAPLIST applies the given
function first to list, then to CDR list,
and successively to each 'tail end' of list,
until the end of the list is reached.
MAPLIST returns the list of the values

of those function evaluations.

MAX takes an indefinite number of
arquments. MAX returns the largest of 1its
arguments. TIf any of the arguments are
floating-point numbers, the result will

be floating-point.

MEMBER searches the list for an occurrence
of an element EQUAL to X. If such an
element is found, MEMBER returns T;
otherwise it returns NIL.

MIN takes an indefinite number of

arguments, and returns the smallest of

them. If any of the arguments are floating-
point numbers, the result will be a
floating-point number.

MINUS takes a number for 1its argument,
and returns the negative of that number.

MINUSP takes a number for its argument;
it returns T if that number is less than
zero and NIL otherwise.

MKATOM is a function with no arguments.

It is used to make atoms out of the
information put into the internal

18

NCONC(list, x)

NOT (x)

NULL (x)

NUMBERP (x)

OPEN (ddname,list,at)
OPTIMIZE (p)

OR(p1,pP2,.+.,p0)

ORDERP (at1,at 2)

OTLL (n)
OVOFF()
OVON ()

PAIR (list1,1list2)

character buffer by RLIT or RNUMB.
MKATOM returns the atom created.

The first arqument must be a list., NCONC
changes the end of 'list' to point to x.
In effect, NCONC is like APPEND except
that i1t actually changes its first
argument instead of copying it. NCONC
returns the modified first arqument.

NOT returns T if its arqument is NIL and
NIL otherwise. It is the same as EQ(x,NIL).

NULL is the same as NOT {x).

NUMBERP is a predicate which returns T

if its arqument is a number (logical,
tixed-point or floating-point); otherwvise
it returns NIL.

(see Section 6.1.1)
(see Section 7.3.2)

OR takes an indefinite number of arguments.
The arguments are evaluated from left

to right until one is reached whose value
is not NIL, or the end of the list is
reached. OR returns T or NIL respectively.

ORDERP imposes an arbitrary canconical order
on literal atoms. For character-objects
that order is alphabetic; for all other
atoms, the order depends on the actual
location in storage of the atomhead.

ORDERP returns T if the two arquments are
EQ or the first comes before the second in
this canonical order, and NIL if the first
argument comes after the second.

(see Section 6.1.4)
(see Section 7.3.2)
(see Section 7.3.2)

PAIR is a function used internally by the
LISP system to build association lists.
PAIR takes two lists as its arguments. The
lists must be of equal length; otherwise

an error will occur. PAIR matches the
elements of the first arqument with the
elements of the second argqument and returns

a list of dotted pairs; the CARs of the
pairs are the eiements of the first list
and the CDRs of the pairs are the elements
of the second list, The list of dotted
pairs is in the reverse order of the input
lists.

PAIR{(R B ¢} (b n F)) =
{(t¢ « F)(B . E) (& . D))

PRIG((A By (C b 8))
e kdw ¥J 0 P00 MANY ARGUMENTS - EXPR

PAIRMAP (x17,x2,x3,xi4) PAIRMAP is a functitlon used by the compiler.

PLANT (x1,x2)

PLANTDC (x1,x2) These tuncclons ace used by the compiler
PLANTSQ (x1,x2) to iusert code into BPS {Binary Progranm
PLANT1 (x1,%x2) Spacey .

PLUS{n1,82, 0.0k} PLUS takes aa isderinrte number ot
arguments, PiLU3 computes the algebraic
sum of 1ts avguwents and returns that
nusber, If any of twe arguments are
floatiug-point numbecs, the result will be
floating-point, PLUS() = 0.

PRBUFFER (p) PRBUFFER takes © o¢ NIL as an argument.
PRBUFFER(T) will cause READ and READCH to
print the input bufter every time a new
record is moved into 1t. R '=>' in the
margin <t a 1in~ indicates that the line
is a buffer priptout., PRBUFFER (NIL) will
stop the priating of the input bufter.
PRBUFFER is used when it 1s necessary to
show exactly w%hat was given as input to
LISP,

C PRINLAP(p) (see Sectlun ..}

PRINT (x) PRINT takes an arbitiary S-expression for
its argument., VFEINT causes that S-expression
to be writtem on the cutput device currently
write selected {default LISPOUT).

PRIN1{at) The argumernt of PRINT must be an aton
(numeric or literal}. PRINT translates
its arguwent iunts cutput format and
places it inm the output buffer. PHINT
does not terminate the line, however,
and suwceszive oalis to PRINT will place
the velues imwmediately following each
other in the ontput line,

20

PROG (list,el,e2,..

PROGZ{x1,x2}

QUOTIENT (n1,n2)

RDS {ddname)

READ {)

READCH (p)

« o €1)

PROG is a special form. It provides

the capability to perform iteration

by allowing looping and the use of
temporary variables. The list contains
the variables of the PROG required

by the statements el,e2,...,en. PROG
variables are initially NIL; they can

be reset with the functions SET or SETQ.
The "statements" el,e2,...,en must be
either expressions or literal atoms.

The literal atoms are used as statement
labels. PROG evaluates the statements
e1 through en in sequence, unless 1t
comes to the special forms GO or RETURN.
When a GO is evaluated, PROG continues
evaluation at the statement immediately
following the label given in the GO. When
a RETURN is evaluated, the expression
given in RETUBN is returned by PROG. If
no RETURN is reached before the last
statement, PROG returns NIL.

PROG2 takes two arguments and returns
the second as its value.

Both arquments of QUOTIENT must be numbers.
N1 is divided by n2 and the quotient is
returned. IF both nl1 and n2 are fixed-
point numbers, the value is truncated to

an integer; otherwise the result is a
floating-point number.

(see Sectiomn 6.1.7)

The execution of READ causes one
S-expression to be read from the current
input file (as defined by RDS). The value
of READ is the S-expression.

If the arqument is NIL, READCH will read
the next character from the input buffer
and return with the corresponding
character-object as a value. READCH(T)
causes a simulated backspace. The value
of READCH(NIL) after a READCH(T) has been
executed will be the same as that returned
by the previous READCH (NIL). The value of
READCH(T) is the same as that returned by
the next to last READCH(NIL). READCH(T)
should only be executed once before
calling READCH(NIL).

RECIP (n)

RECLAIN {)

RELINK (x1,x2)

REMAINDER (n1,n2)

REMFLAG (list,at)

REMOB(at)

REMPROP (at, ind)

RESTORE (ddnamej

RETURN (x)

REVERSE (list)

RLIT (ch)

For floating-pocint numbers, the value is
the reciprocal of n. For fixed-point
numbers the value is 0.

RECLAIM causes a garbage collection to
occur. The value is NIL.

RELINK is a function used by the compiler.

The value of the function 1s the remainder
given when dividing ni1 by n2.

This function removes all cccurrences of the
flag 'at' (a literal atom used as a flay

on atomic property lists) from the property
list of each atomic symbol in the list.

When the flag is found, the pointer in the
preceding element of the property list is
nodified to delete the flag from the list.
The value of REMFLAG is NIL.

This function removes the atom 'at' fronm
the OBLIST. It causes the symbol and all
its properties to be lost unless the
symbol is referred to by an active list
structure. When an atcmic symbol has been
removed, subsequent reading of its name
from input will create a different atomic
symbol.

REMPROP searches the property list of

‘at' looking for all occurrences ot the
atomic symbol 'ind'. If the atomic symbol
is found, it is removed from the list
along with the saucceeding element.

Removal is accowmplished as described 1in
REMFLAG. The value of REMPROP is NIL.

(see Section 6.2.2)

This function is used in the PROG teature.
RETURN is the normal end of a program. The
arqument of RETURN is evaluated and this is
the value of the program. No further
statements are executed.

REVERSE causes the top level of list to be
reversed. Thus, REVERSE((A (B . C))) =
((B . C) A).

RLIT takes a character-object as an
argument and puts the corresponding
character intc an internal character buffer.

BRNUMB (ch)

RPLACR (x1,%x2)

RPLACD (x1,x2)

SASSOC (x,alst, fn)

SELECT (g, (@1 x1),
(gn xn) ,X)

SET (x1,x2)

SETC (x1,%x2,%x3)

SETQ {x1,x2}

SPEAK()

»

¥

Executing RLIT sequentially will cause a
string of characters to be constructed in
the character buffer. MKATOM can then be
called to make a literal atom out of it.

RNUMB takes one of these character-objects
as an arqument: +, -, E, 0, 1, 24 o040 9.
RNUMB will construct a partially translated
number in the internal character buffer.
Remember that the character-cocbjects 0, 1,
2, +.., 9 are different from the numbers 0,
1, 24 ¢«ss 9. The sequence of charvacter-
objects presented to RNUMB, one at a time,
must represent a meaningful integer oOrC
floating-point number. MKATOM can then

be called to make a numeric atom out of

the information ip the character buifer.

RPLACA replaces the CAR of the LISP cell X1
with x2. This provides a method of
changing list structures without using
CONS, and thus creating no new LISP cells.
The value is the new x which can be
described as CONS (x2 (CDR(x1)) .

RPLACD replaces the CDR of the LISP cell
x1 with x2, as described in BPLACA. The
value is the newvw x which can be described
by CONS((CAR x1) x2).

SASSOC searches alst, which is a list of
dotted pairs, for the pair whose first
element is equal to x. If such a pair 1s
found, the value of the function 1is this
pair. Otherwise the value is the function
of no arguments, fn.

This function is used internally by the
compiler.

The value of x1 is bound to the value of
x2 on the current associatiom list. The
value is the value of x2.

This function is used internally by the
compiler.

SETQ is like SET except that the first
argument is quoted {(not evaluated).

SPEAK gives the number of CONS tfunction
calls since the CONS counter was last reset.

SPECIAL {list)

SUBLIS (alst,x)

SUBST (x1,%2,%3)

SUB1 (n)
TERPRI()

TINMES{n1,,00)

TRACE (list)

TREAD (1)

TTAB {n)

UNCOMMON (list)
UNCOUNT {)
UNSPFCIAL (list)

UNTRACE (list)

VERBOS (p)

N WRS{ddname)

(see Section 7.2.3)

Alst is a list of dotted pairs,
((ut.v1y (u2.¢2) ... (an.vn)). The value
of SUBLIS is the result of substituting
each v1 four the corresponding ul 1n X.

The value of SUBST is the result of
substitiuting x1 for all occurrences of
the S—expression x2 in the S-expression x3.

The value of SUBY is o1,
This Ffunction terminates the print liine.

The value of TIHMES is the product of the
arguments,

The argument of TRACE is a list or functions.
After TRACE has been executed, the arguments
and values of these functions are printed
each time the function is entered. The

valae of TRACE is NIL.

(see Section I)
TTAB Woves the current output cursor to
the nth positicn in the output bufter.

Whatever is PRINTed next will appear
starting at the given cclumn.

{see Section 7.3.2

UNCOUNT wurns off the CONS counter.
(see section 7.3.2)

This function removes TRACEing from all

fupnctions in the list. The value of
UNTRACE 1is NIL.

VERBOS concrels the printing of garbage
collection messages, VERBOS (NI1) turns
off the messages and VERBOS(T) turns the
messages on. The value of VERBOS 1is NIL.

(see Section 6.1.5)

XTAB (n) XTAB moves the current output cursor 'n!
characters to the right. The argument
must be a positive integer. Whatever 1is
PRINTed next will appear starting 'n'
columns to the right of the end of
whatever was last printed (using PRIN1).

ZEROP (n) ZEROP takes a number for its argqument.
It returns T if the absolute value of
its argument is less than 10**-6, and
NIL otherwise.

3.2 Atoms_With_ Initial Values

Several atoms have predefined values (APVALS) in LISP/360. These
atoms and their corresponding values are as follows:

Atonm alue

ALIST association list

BLANK tlank

BPS start and end of binary program space
(see Section 7.2)

COMMA '

DASH -

DOLLAR $

EQSIGN =

F N

LPAR (

NIL NIL

OBLIST object list

PERIOD

PLUSS

RPAR

SLASH

STAR

T

IL

3.3 cCharacter-obijects

The following character-objects are defined in the systen.
blank { ! X 4
A + $ Y 5

Z

unprintable

. Q v 2

< R W 3

The ‘unprintable® character has no graphic symbol on the printer.

Its punched card code is 12-11. READCH will translate any one of the
256 characters available on the IBM System/360 into one of the above-
mentioned 64 character-objects. Lower-case letters are translated
into upper-case letters. Note that READ does not perfornm this
translation.

4., SPECIAL DIFFERENCES_IN LISP/360

In LISP/360 there exist special differences of which the user
should be aware.

Several differences pertain to numbers:

1. Fixed-point numbers may have absolute values up to
2%%317,

Floating-point numbers may have absolute values
between 10%*75 and 10%** (-75), including O.

Floating-point significance on input is 6 digits.

Numbers are considered equal if the absolute value
of their difference is less than 10%*¥(-6).

Signs are ignored in reading logical numbers.

Some other differences refer to atoms, control cards, and
several functions:

1. Alphanumeric atoms in LISP/360 may have up to 80
characters,

CAR of an atom is not junk as in LISP 1.5, but the
address of the full cell list of that atom.

No control cards of any type exist in LISP/360.

If a PRINT is executed after PRIN1, the list generated
by PRINT follows the data output by PRINT.

GO can only be given atomic labels.

READ ignores extra right parentheses.

5. LISP JOB SET-UP

LISP statements can be written with a free-field format in columns
1-72. The following control statements are necessary to run the LISP
progranm:

// JOB Statement

/* KEY Statement (omit for remote jobs)
//stepname EXEC PGM=LISP

//LISPOUT DD SYSOUT=A

//LISPIN DD *

LISP Program

/*

Additionally, DD statements for using the compiler may be included.
An example of these statements is given in Secticn 7.3.1.

The user may also specify the percentages for allocation of core
between free cell storage and binary program space (BPS) in the PARM
field of the execute statement. The fcllowing statement

//Stepname EXEC PGM=LISP,PARM='F=66"

will cause 66 percent of the core available for the rumn to be
allocated to frez cell storage and 34 percent of the core to be
allocated to BP5. The statement

/stepname EXEC PGM=LISP,PARM='B=34"
p

will cause the same allocations to be made. If the user specifies
both parameters, the 'B' parameter will take precedence. The default
values are F=66 (B=34). Thus, if a user is running interpreted LISP
only and is not using the compiler, 'B=0' will give the user
considerably more core than the default values.

If the user RESTORE's from any file (including the compiler), the
values specified in the PARM field are overridden by the values
specified when that file was created. 1In this case, the F and B
options of the PARM field are meaningless.,

One additional PARM field entry may be made to indicate the amount of
core to be reserved by the system for opening and closing files. The
statement

//stepname EXEC PGM=LISP,PARM='R=8K'
will cause 8*1024 bytes to be reserved for OS OPEN's and CLOSE's.

This parameter may also be specified without the 'K'. For example,
R=7000 will reserve 7000 bytes. The default value for 'R' is B8K.

28

6.

6.1 Data_Management Functions

LISP/360 can read or write data sets on any 0S/360 supported device
with the aid of the functions OPEN, CLOSE, WRS, and RDS. The
handling of its buffers can be modified by the functions ASa, INLL,
and OTLL. It is assumed in the following paragraphs that the reader
has a working knowledge of 0S5/360 Data Management.

6.1.1 OPEN(ddname,list,at)

All data sets must be 'opened' by the fumction OFEN before taey are
used. A DD statement is used to define the data set and OPEN uses the
ddname in the statemant to refer to the data set. The ddname is the
argument of OPEN. The record length (LRECL), blocksize (BLKSIZE) and
wheth=r or not the record's tirst character is a control character (A)
can be specified in the second argument of OPEN. The taira arguuent
of OPEN specifies whether the data set is to be used for input (INPUT)
or output (OUTPUT).

The following is an example of the opening of the data set defined by
the DD statement named DATA:

OPEN (DATA ((LRECL . 100) (BLKSIZE . 1000) (A))OUTPUT)

The second and third arguments of this OPEN indicate that the data

set has a record length of 100 bytes, a block size of 1000 bytes, that
the first character in each record is a control character, and that
the data set is to be used for output. The record length and

the blocksize can be given in the DD statement instead of in OPEN.

All other DCB parameters are fixed by OPEN and they cannot be changed
by the LISP user. The record format is set to fixed blocked (FB),

and tne error option (EROPT) is 'accept' (ACC) on input and 'skip’
(SKP) on output.

The thres ddnames LISPIN, LISPOUT, and LISPUNCH are given special
significance in OPEN. LISPIN and LISPOUT are opened automatically by
the interpreter and therefore need not be OPENed. The second and third
arquments are implied by LISPUNCH, and are therefore ignored when OPEN
is given LISPUNCH as its first argument. LISPUNCH implies a record
length of 80 bytes, a blocksize of 80 bytes, that the first character
in each record is data and not a control character, and that the data
set is to be used for output.

One of the atoms SYSIN, SYSOUT, SYSPUNCH and SYSFILE may be used as
the second argument of OPEN.

SYSIN implies a record length of 80 bytes, a blocksize of 80 bytes,
and that the data set will be used for input.

SYSOUT implies a record length of 133 bytes, a blocksize of 665
bytes, that the first character in each record is a control
character, and that the data set will be used for output.

SYSPUNCH implies a record length of 80 bytes, a blocksize of 80
bytes, and that the data set will be used for output.

SYSFILE implies a record length of 80 bytes and a blocksize of
1600 bytes. SYSFILE should be specified for all data sets used
by CHKPOINT or RESTORE.

OPEN puts an APVAL on the atom which is the filename, with a pointer
to the DCB for that file.

€.1.2

All data sets should be 'closed' by the function CLOSE after use.
CLOSE takes as its argument the ddname in the DD statement that
defines the data set. The two ddnames LISPIN and LISPOUT refer to
data sets that remain open throughout a LISP job. LISPIN and LISPOUT
cannot be closed by CLOSE. They are, however, closed automatically
at the end of a LISP job.

6.1.3 ASA(p)

A control character is normally prefixed to all ocutput records
produced by LISP/360. Executing ASA(NIL) stops the prefixing of

control characters. This is useful when LISP/360 is used to produce
output that will be input to LISP/360 later on. Executing ASA(T)
will cause LISP/360 to start prefixing control characters again.

6.7.4

For 'm' in the range 0 < n < 120, OTLL (out-line-length) specifies
how many character positions LISP/360 can use in each output record.
After OTLL(n) has been =valuated, LISP/360 will £fill in exactly 'n'
positions in each output record. Whenever necessary, atoms will be
split across two output records so that precisely 'n' positions are
filled in each output record. This is useful when LISP/360 1s used
to produce output that will be input to LISP/360 later on. 1In a few
cases, OTLL is called automatically by WRS.

6.1.5

WRS (write-select) is an output directing function that takes as 1its
argument the ddname from the DD statement that defines the desired
output data set. All output from LISP/360 will go to the data set
associated with the ddname after WRS(ddname) has been executed. The
two ddnames LISPOUT and LISPUNCH are given special significance 1in

WR5. 1In additicn to directing the output to LISPOUT, executing

WRS (LISPOUT) will have an effect similar to executing ASA(T) and
OTLL(100). Similarly, in addition to directing the output to
LISPUNCH, executing WRS (LISPUNCH) will have an effect similar to
executing ASA (NIL) and OTLL(72). For all other files, the user must
call OTLL explicitly - it does not occur automatically. WRS will
open LISPUNCH if it is not already opened. A data set produced by
PRINT when LISPUNCH was write selected (i.e., WRS(LISPUNCH)) 1s in
SYSIN format.

6.1.6

INLL (in-line-length) specifies how many character positions LISP/360
should scan in each input record. This is useful when LISP/360 1is
required to read data sets that are not in SYSIN format.

6.17.7 RDS(ddname)

RDS (read-select) is an input selecting function that takes as its
argument the ddname from the DD statement that defines the desired
input data set. All input to LISP/360 will be taken from the data
set associated with the ddname after RDS(ddname) has been executed.
The ddname LISPIN is given special significance in RDS. 1In addition
to selecting input from LISPIN, executing RDS(LISPIN) will have an
effect similar to executing INLL(72). For all other files, the

user must call INLL explicitly.

6.2 Checkpoint Facilities_in LISP/360

Free cell storage (FCS) and binary program space (BPS) can be saved
at any time by executing CHKPOINT. By executing RESTORE, free cell
storage and binary program space can then be reset to the state they
were in when saved. CHKPOINT and RESTORE should only use data sets
that were opened by using the DCB parameter SYSFILE.

6.2.1 CHKPOINT(ddname)

Execution of CHKPOINT (ddname) will cause free cell storage and binary
program space to be written into the data set associated with the
ddname. Only the data sets associated with LISPIN, LISPOUT, LISPUNCH
and the ddname given as an argument to CHKPOINT should be open when
CHKPOINT is executed.

6.2.2 ESTORE {ddname)

Execution of RESTORE(ddname) will cause free cell storage and binary
program space to be overwritten by the contents of the data set
associated with the ddname. RESTORE will check whether the data set
is compatible with the LISP system that executes RESTORE. Ounly the
data sets associated with LISPIN, LISPOUT, LISPUNCH and the ddnanme
given as an argument to RESTORE should be open when RESTORE is
executed.

6.2.3 BPSCHKPT (ddname)

BPSCHKPT (ddname) is essentially the same as CHKPOINT (ddnane) except
that only the binary program space is saved.

6.2.4 BPSRESTR (ddname)

BPSRESTR (ddname) reads back into core the data set which was created
by BPSCHKPT (ddname).

BPSCHKPT and BPSRESTR make it possible to define multiple BPS areas
with different functions in them (using some of the auxiliary
functions defined in the next section). Essentially, this means
that there is an infinite amount of BPS if the LISP program can be
segmented to use compiled functions in logically distinct blocks.

The user is cautioned in using BPSBESTR for two reasons:

1. SUBR pointers in function names are not removed, even if
the function is overwritten.

2. BPSRESTR of a function can only be done where free cell
storage contains the definition compilation of that
function. This is because no maintenance is done on the
linkage between free cell storage and binary program space.

32

7. THE_LISP_ASSEMBLER AND_COMPILER

Use of the LISP assembler (LAP) and compiler can decrease the running
time of a LISP program (formerly run interpretively) by a tactor of
from eight to twelve depending on the particular application. How-
ever, the theoretical differences between compilers and interpreters
impose certain restrictions on what can be compiled. These restric-
tions are easily bypassed and are mentioned in the following text

so that the user will be aware of them as they arise.

The compiler itself calls the LISP assembler so that once a tunction
is compiled it is immediately available for execution. LAP was
Written to resemble closely the 05 assembler language omn the IBN
System/360, with certain modifications. It should be remembered that
LAP is not only used by the compiler, but may be used independeatly by
the LISP user.

7.1 LISP_Assembly Program (LAP)

7.1.1 Differences_Between LAP and 0S Assembler lanquage

Of the instructions available in the 0S5 assembler language, the
following have been omitted from LAP:

Set Program Mask (SPM) Set System Mask (SSM)
Test 1/0 (TIO) start I/0 (SIO)

Test and Set (TS) Test Channel (TCH)

Read Direct (RDD) Write Direct (WRD)

Set Storage Key (SSK) Insert Storage Key (ISK)
Supervisor Call (SVC)

While these instructions are not directly available, they still may
be generated by use of the 'Define Constant' {(DC) instruction. Also,
no extended mnemonics are available. 2all sixteen of the registers
are available in LAP, but they must be referenced with an R prefix,
i.e., RO, R1, ..., R14, R15. 1In addition, the user may refer to
registers R8, R9, and R10 as A, Q, and M, respectively; R5 as NILRjJ
R4 as Ku; R15 as PDL; and R7 as PDS. These aliases will become

clear as LAP is described.

The major difference between LAP and 0S assembler language is the
availability of QUOTE cells and SPECIAL cells. These cells are
assembled as pointers to the particular quantities they represent.
Care must be taken in using QUOTE and SPECIAL cells. Examples are
includ2d in this section that illustrate the use of these cells.
Also, macros have been prepared to aid in their use.

‘Define Constant' and 'Address Constant' are defined in LAP in a
limited form. They may appear as (DC -logical number-) or

(AC -S—-expression-). No duplication factors or variations are
allowed. AC is assembled as the address of the atom minus the

address of NIL. As the garbage collector has no way of knowing
about internals of compiled functions, the expression must be an
atom on the OBLIST to prevent it from being collected.

DC's and AC'S must be on fullword boundaries and this is

done in LAP by assembling a NO-OP in front of the constants, 1if
necessary. If the user desires other instructions on fullword
boundaries, he may specify (CNOP) which inserts a halfword NO-OP
instruction (BCR RO RO), if necessary, to put the next instruction on
a fullword boundary. Also, a reference to an '*immediate' field, such
as an MVI, can only be a logical (hexadecimal) number. For example,
(MVI 4 (R1), O0BX).

There is no indirect referencing in LAP. The use of * or *+4, etc.,
fe.g., LA *+4 or LA NAM+U4) is not allowed. All locations referenced
nmust be labeled at the point of reference.

LAP is invoked by calling the routine LAP360. It takes two arguments.
The first is a 1list of LAP instructions, the second is a list of
dotted pairs representing an initial symbol table or NIL (usually
NIL). The first member of the first argument is a list of three
elements -- first, the name of the routine being defined; second, the
type of function (either SUBR or FSUBR); and the third, the number

of arguments. After this member comes the rest of the instructions,
each enclosed in parentheses.

Any technique can be used for passing arguments between two user
defined routines. However, since it is sometimes necessary to
communicate with the interpreter routines, the following schene is
preferred as it 1s the method used by the interpreter. As tor the
actual call to another routine (once the arguments are established),
this is done by the macro *LINK which will be described later.

If there is only one argument, it is passed in register A (alias for
R8) . 1If there are two arguments, they are passed in A and Q (aliases
for R8 and R9). If there are more than two arguments (up to a maximum
of twenty-two), there is a reserved area in core twenty words long
called ARGS in which the user can place the third, fourth, etc.,
argquments. ARGS may not be referenced directly, but its address 1is
permanently located at eight bytes past R12. Therefore, to store the
contents of RO as the third argument, code

(L M 8(RO R12)) (ST RO O (RO M))

The value of a function is always returned in register A.

Although all registers have been defined as usable, care wmust be taken
in the use of some of them. The following describes those of special
interest:

R3 is used as a base register to cover the extent of
the LAP routine.

RS (NILR) contains NIL and should never be altered from that
value. It may be used to store NIL in locations
or to load other registers with NIL.

R15 is the temporary pointer to the push-down list
for compiled code.

R8, R9 (A,0Q) as mentioned above, are used for passing
arguments. These registers may be used freely
in routines and need not be restored.

R10 (M) is completely free for any general use,

R4 (K4) contains the number 4. It may be used locally but
must be restored outside the scope of the
immediate routine.

R7 (PDS) has meaning only for the compiler and may
be used freely in LAP. It must be restored
if it is used in conjunction with the
compiler,

R6 points to the next available free cell. It
should never be changed.

R11, R12, R13 are used as base registers for the interpreter.
They must be restored.

RO, R1, R2, R14- are completely free for general use.

It should never be assumed that any free register will be saved when
calling another function, even between two LAP defined user routines.

7.1.4 Macros

7.1.4.1 User Defined Macros

Macros may be defined for LAP by doing a DEFLIST of a LAMBDA
lefinition with the property MC. The LAMEDA definition must have
one argument which will become a list of the arguments to the
macro. The value of the macro should be a list of instructions to
be inserted. For example:

DEFLIST (((*SAVE (LAMBDA (x) (LIST (CONS (QUOTE ST) (CONS (CAR X)
(QUOTE (0 (R7))))) (QUOTE (BXH R7 K4 0 (R12)))))))HC)

Then the instruction (*SAVE R15) becomes

(ST R15 0 (R7))
(BXH R7 K4 0 (R12))

Macros may be given any name that the user desires, except, of course,

it cannot be the same as a valid instruction mnemonic. The systen
defined macros all begin with '*!' for ease of recognition.

7.1.4.2 System Macros

(¥*SAVE Rx) - saves register x on an internal push-
down stack. It should be used with
care.

(*UNSAVA RYy) - pops up the top item on the stack and
stores it in register y.

(*SAVE Rx) and (*UNSAVE Ry) are used principally in recursive functions.

(*LOAD Rx (QUOTE...)) - ig used to load QUOTE cells. QUOTE
cells are in core relative to NIL.
Therefore, this macro expands to

(L BRX (QUOTE...))
(AR Bx NILR)

(*LOAD Rx (SPECIAL 2)) is used for loading SPECIAL cells.
The macro expands to

(L Rx (SPECIAL Z))
(L Rx 0 (NILR RX))

(*STORE Rx (SPECIAL 2)) is used for storing SPEC1AL cells.
The macro expands to

(L M (SPECIAL 2))
(ST Rx 0 (NILR M))

Note: M is changed when using this
RAacro.

‘ (*RETURN NIL) is used to exit a LAP routine. This
macro branches to a particular place
in the interpreter. It expands to

(BC 15 48 (RO R12))
Note: *RETURN is the only way to
end a LAP routine. 'Falling through

the end' of a routine is incorrect.

(*LINK FN 1) is used to call function FN wita 'i"
arguments,

Two other macros, *MOVE and *REMOVE are used principally by the
compiler and will be described in that section.

7.1.5 Sample LAP Program

Define SETC such that (SETC X ((2,1) (X,2) (Y,L)) 7) modifies the
second argument to ((&,1) (¥,7) (Y,L)), i.e., if the second argument
is the ALIST, we are changing the binding of variable X.

LAP360 (((SETC SUBR 3) 1.
(L M B(RO R12)) 2.

(L RO O (RO M)) 3.

(ST RO TEMP) 4.

(ST NILR O (RO M)) 5.
(*LINK SASSOC 3) 6.

(L RO TEMP) 7.

(ST RO 4 (RO a)) 8.
(*RETURN NIL) 9.

TENP (DC 0X) 10.
) NIL) 11.

Explanation:
1. Defines SETC as a SUBR with 3 arguments.

Picks up the address of ARGS to find the 3rd argument.
Puts 3rd argument in RO.
Stores RO in temporary location.
Sets 3rd arqument to NIL.
Calls SASSOC which has the same first two arguments as does
SETC, hence they remain in A and Q and SASSOC's third
arqument remains in NIL for this case. SASSOC will return a

pointer to the dotted pair whose CAR contains the first
arqument.

Picks up the saved value in RO (this was SETC's 3rd argument),

and stores it in CDR of the dotted pair.

Returns from the functions. Note that SETC's value 1s the
dotted pair since that is what is in A.

Definition of the temporary location.
11. Closes the routine with NIL in the symbol table.
It should be pointed out here that the value of LAP360 1s the
final symbol table of local labels relative tc the beginning of

the routine in bytes -- hence, in the above example, LAP360 returns
((TEMP.24X)) -- assume that *LINK takes 8 bytes.

7.2 Binary Programming_Space

7.2.1 The Atom BPS

An area is set aside for binary programs produced by LAP. The

size of this area is set when LISP/360 is assembled. However, the
area may be eliminated by calling the function BPSZ which increases
free cell storage. The atom BPS has two pointers indicating how much
binary program space is available at any given mcment.

The atcm BPS mentioned above is slightly different from most atoms as
is indicated in Fiqure 8.

ADDR2

Figure 8: The Atom BPS

ADDR1 and ADDR2 are pointers to the beginning and the end of binary
program space, respectively.

The function COMPILE takes as its arqument a list of function names
which are EXPR's or FEXPR's. It compiles code in BPS for those
functions and replaces the EXPR or FEXPR with an appropriate SUBR or
FSUBR property. It returns the list of function names. Functions
to be compiled are restricted as follows:

GO statements within PROG2's are not allowed.

GO statements within COND's which are within COND's are
not allowed.

Free variables must be declared SPECIAL before coumpilatioOi.
A function called SPECIAL (defined in Section 7/.3.2) can
be used for this purpose.

Variables used which communicate with the interpreter
must be declared COMMON before compilation. A function
called COMMON (defined in Sectiom 7.3.2) can be used
for this purpose.

Oonce compiled, the function is called exactly as it would have been
called before compilation.

7.3.1 LISP Job Set-up for the Compiler

The following control statements should be used to access the
compiler:

/7 JOB Statement
Vi KEY Statement (omit for remote jobs)
//stepname EXEC PGH=LISP
//LISPOUT DD SYSOUT=A
//CMPL DD DSN=SYS3.LISPCMPL,DISP=0LD
//LISPIN DD *

OPEN (CMPL SYSFILE INPUT)

RESTORE (CMPL)

CLOSE (CMPL)

LISP Progran

7.3.2 Auxiliary Routines

BPSLEFT () - returns as 1ts value an integer indicating the
number of words remaining in BPS.

BPSMOVE (n) provides the ability to move the current BPS to
within *n' words of the end of all BPS. The space
vacated is returned to free cell storage. 'n'
must be greater than six and less than the current
amount of binary program space left.

BPSUSED (p) takes one arqument. If p is true, LAP and the
compiler will print the size of the program
complled. BPSUSED(NIL) turmns off this message.

BPSWIPE (fn) takes as its argument the name of an FSUBK or
SUBR previously compilled using the COMPILE runc-
tion. For example, BPSWIPE (ARGNAME) would cause
all functions which have been compiled since
ARGNAME and including ARGNAME to be erased from
BPS. The next function compiled after BPSWIPE
has been called will be located in BPS in the
same space in which ARGNAEME had been compiled and
future compiled functions will follow it.

The use of this function is two-fold. First, it
can be used for functions whose use 1is short-
lived enabling them to be erased after some point
in the run. Secondly, it can be used in conjunc-
tion with the routine BPSCHKPT to create multiple
BPS files. Since these BPSCHKPT files may comne
into use at various times in the run, the SUBR
pointers are never destroyed. Therefore, the user
must be sure that the function he calls does
exist in his current BPS. If not, erroneous
rasults will occur,

BPSZ () takes no arguments. Returns all BPS to free cell
storage (for jobs requiring a lot of free cell
storage and not needing the compiler cor LAP).

COMMON (list) takes a list of variables as arguments and gives
UNCOMNON (1list) or takes away the property ®'common' for each ot
them.

EXCISE (p) takes one argument., If the arqument is NIL, the
compiler is EXCISED and the space added to free
cell storage. If the argument is true, the
compiler and LAP are EXCISED. The user may call
EXCISE twice. For exanmple,

EXCISE (NIL) EXCISE (T)

OPTIMIZE (p) takes one argqument, If the arqument is T,
the function causes optimization of compiled
code., However, it does slow down the compilation
process. OPTIMIZE(NIL) is the default.

OVOFF () takes no arguments. In compiling, a type-8
overflow or underflow error may occur frequently.
This is not an error, but OVOFF will stop the
message from printing.

OVON () takes no arguments. This function restores the
overflow message.

PRINLAP (p) takes one argument. If the arqument 1s true,
the LAP produced by the compiler will be printed.

SPECIAL (list) takes a 1list of variables as arquments and gives

UNSPECIAL (list) or takes away the property 'special' for each of
then.

7.3.3 Examining the Compiled Code

If the user wishes to see the code produced by a compiled function he
can do this by saying PRINLAP(T) before the compilation. Two
compiler macros *MOVE and *REMOVE will be noticeable in all compiled
routines. These macros set up and restore the push-down list upon
entering and leaving the routines. The user will also notice many
BAL's to a number of bytes past R12. This area contains interpreter

defined routines to handle SPECIAL, COMMON and FUNCTIONAL arguments.

The following table is a list of the names of the routines used by

the compiler and assembler.

care should be taken in using routines

with the same names as these, for if they are redefined by the user,
the compiler will call the wrong routine.
** ¢ apd '**' are part of the atom's nanme,

COMMON
COMPILE
coM1

CONC

MAP
MAPCON
OPTIMIZE
OVOFF
OVON
SELECT
SPECIAL
UNCOMMON
UNSPECIAL
**%CALL
**COMCOND
**COMPLY
**CCMPROG
**PAFORN1
%P A1
¥%*pPHASE2
**SPECIAL
**[JNSPECIAL

* ASSEMBLE
* ATTACH
* CALL

* CEQ

* CHCOMP
* COM2
*_COMBOOL
* COMCOND
* CCMLIS
*_COMP

% COMPACT
* COMPLY
* _COMPROG
* COMVAL
* DELETEL
* LABLER
* LAC

* LAP360
*_ LOCAL

* LOCATE
*_LONG
*_LOOK

* QPTFN

* PAFORM
* PAFORM1
* PATRMAP

Where indicated, the

* PALAM
* PASSONE
* PA1

* PA2
*_PA3

% PAL
*_PAS

* DPA6

* _PAT

* PAS

* _PA9

* PAT1

* PA12

* _PA1G

* PHASE2
* PI1

* PROGITER
* P12

* P13

* (SET
*_OTCL

* REGSET
* SPCL

* STORE

8. THE GARBAGE COLLECTOR

Garbage collection refers to the process by which currently unused
LISP cells in FCS are returned to the free cell list. The process
is initiated whenever the free cell list is empty.

The first phase invclves marking within the confines of the free
cell storage area all LISP cells which are in use as part of sone
list structure. The group of pointers in the LISP system which
reference all active data structures are referred to as base
pointers. For each base pointer, the system starts with the LISP
cell pecinted to by the base pointer and marks all LISP cells
reached by chaining through the CAR part or the CDR part (both
recursively). All cells having an address within the free cell
storage area are marked by turning on bit 0 of the CDR part of
the cell. Fullword cells are detected and only their CDR parts
are chained through. Cells on common sublists which have already
been marked are chained through only once,

The second phase consists of collecting all unused cells and
placing them on the free word list. The free cell storage is now
traversed linearly. Each cell which is marked has its mark bit
turned off. Each cell which is unmarked is placed on the free
cell storage list, and the number of cells thus collected is
counted.

9.

To use the ORVYL version of LISP, the user must te familiar with the
Stanford time-sharing system and with the WYLBUR text-editing
facilities.

Once the user has logged on, typing the word LISP in response to a
COMMAND? prompt will cause the message 'ENTERING STANFORD/LISP' to be
typed. The user is then ready to start a LISP session. The commands
which are available are the following:

1. DO <range> This command causes the <range> indicated to be
executed. <range> can be any valid WYLBUE range
{e.g., DO ALL, DO 10/LAST, DO 5, etc.). The
program to be executed must reside 1in the «YLBUR
working data set.

This command causes execution to be continued atter
an interrupt which was caused by hitting the
attention key.

3. SET LONG When executing a function, LISP will print the
SHORT following if LONG 1is in effect:
NONE
ARGS
<name of function>
<list of arquments>
VAL
<resulting value of function>

If the SHORT option is in effect, only the resulting
value of the function will be printed.

If NONE is in effect, none of the above will be
printed and the only output to the terminal will be
from a user call to the PRINT function.

SET LONG is the default option.

This command provides an immediate mode of
execution. For example, if the user types

EVC CAR{(A B)) CDR((B C))
these two functions will be evaluated immediately
as opposed to being executed by a DO command and
existing in the WYLBUR data set.

This command terminates the LISP session.

To facilitat= I/0 to the terminal, a function called TREAD is
available to permit dynamic reading of data from the terminal.
TREAD is defined as follows:

TREAD (NIL) will prompt an '!' and read one S—-expression from
the terminal. This S-expression will become the
value of the TREAD function.

TREAD(T) assumes that the user has previously executed the
function PRIN1. The argument of PRIN1 will then
become the prompt in place of the 'I!°.

TREAD (0) is a dummy call to TREAD which initializes the
input buffer so that the next TREAD will read
from a newly prompted line.

As is implied above, more than one S-expression may be typed on am
input prompted line and successive use of TREAD will read these
expressions consecutively (unless there is an intermittent TREAD (0)).

The time-shared version of LISP has no file I/0 capabilities or
checkpoint and rastore facilities. Therefore, all functions
pertaining to these features do not exist in the time-shared
version. This also applies for the compiler, as well as for
certain other functions which would have no meaning in the
time-shared envircnment.

One additional feature is the use of the character-object '>' to

indicate *put enough right parentheses to balance the left parentheses
up to this point'. For example,

CAR(((((X Y)))))
may be written as
CAR(((((X ¥Y>

To use '>' for other purposes, use $$$>%.

The following is an example of a simple LISP program using the time-
shared LISP system available on the 360,67 at Stanford. The program
finds the last element of a list. Text typed in all upper case letters
indicates system responses and prompts. Lower case letters have been
used to indicate information typed by the user.

STANFORD 33 10/18,71 12:06z34
NAME? 'w. woodpecker'

ACCOUNT? NHMRR

KEYWORD? NNN

TERMINAL? p0O

COMMAND? set terse

? lisp
:ENTERING STANFORD/LISP

? collect 10 by 10
10. define (((last (lambda (1)
20. ? (cond ((null 1) nil)
30. ? ((null cdr 1)) (car 1))
40. { t (last (cdr 1))))

50.))))
60. 2 ATTN***

? do all

ARGS
DEFINE
(((LAST (LAMBDA (L) (COND ((NULL L) NIL) ((NULL CDR L)) (CAR L))
(T (LAST {(CDR L)))))))
VAL
(LAST)

2 evg last((a bcdeg h j Bnpgqgr s))

ARGS
LAST
((A BCDEGHUJIKL QR S))
«** AS-UNDEFINED VARIABLE
* CDR
* (LABCDEGHUJIK S))
x¥ TRACE-BACK FOLLOWS
* NIL
((LABCECEGHUJIEK s))
(CDR 1)
NULL
((L ABCDESG
((LABCDESG®G
(((NULL CDR L))
(((NULL L) NIL)

NPCRS))
NP QR S))

R L))

ULL CDR L)) (CAR L))

H
H
(
(

J M
J M
CA
(N

? mod 30
30. (NULL CDR L)) (CAR L))
ALTERS ? i
30. (NULL (CDR 1)) (CAR 1))
ALTERS ? cr

? do all

ARGS
DEFINE
(((LAST (LAMBDA (L) (COND ((NULL L) NIL) ((NULL (CDR L))
(T (LAST (CDR L))))))))
VAL
(LAST)

? evqg last({(a b cd e g h jJ k 1l mnpgtcts))

ARGS

LAST

(AR BCDEGHJIKLHMHNPOQRS))
VAL

S

? set short
? evq last((z y x w vutsrg d a))
A

? logoff

EDITING TINE
COMPUTE TIME
MEMORY USAGE
I/0 ACTIVITY

0.06 SECONDS

2.06 SECONDS

92.14 PAGE-SECONDS
0 UNITS

ELAPSED TIME = 00:04:36
END OF SESSION

(CAR 1))

10. LISP/360 _SYSTEM MESSAGES

10.1 EVALQUOTE Messages

The message 'ARGUMENTS FOR EVALQUOTE ...'" and the two S-expressions in
the last doublet are always printed before entering EVALQUOTE.

If no errors occur during the evaluation of the doublet, the message
'"PIME xxxxMS, VALUE IS ...' and the value of EVALQUOTE for this
doublet are printed upon return from EVALQUOTE. The time indicated in
the above message gives the time spent in EVALQUOTE not including time
spent in garbage collection. The time is in milliseconds.

10.2 TIracing in_ LISP/360

Tracing is controlled by the pseudo-function TRACE, whose argument is
a list of functions to be traced. After TRACE has been executed,
tracing will occur whenever these functions are entered. However,
because of the nature of the linkage between compiled functions,

once a call by a compiled function to a comgiled function has

been executed untraced, it can never be traced again.

The trace-handler prints out the name of a function and a list of its
arquments when it is entered, and its name and value when it 1is
finished unless that function is a FEXPR or a FSUBR. When

tracing of certain functions is no longer desired, it can be
terminated by the pseudo-function UNTRACE whose argument is a

list of functions that are no longer to be traced.

10.3 Garbage Ccllector Message

The message 'COLLECTED xxxxx CELLS AND STACK HAS xxxx UNITS LEFT' is
printed after every garbage collection. The message gives an
indication of the amount of free cell storage freed, and the size

of the push-down stack at each garbage collecticn. The printing

of this message can be controlled by the function VERBOS.

10.4 Interruption_ Message

An interrupt supervisor takes care of all progran interruptions in
LISP/360. See the IBM manual System/360 Principles_of Operation for
information about System/360 interruptions. The program status word
(PSW), the contents of registers 0-15 and the message '***ERROR: CAR
TAKEN OF FULLCELL' are printed if the interruption code is 1 to 7.

A trace-back is then given of the same type as described in Section
10.5.2. This type of interruption is usually caused by indiscriminate
use of CAR and CDR past the atomic level. The execution of the doublet

that caused the interruption is halted and a new doublet is read in for
evaluation. Note that many functions (EQUAL, etc.) which chain

through the CDR of lists do not check for the full cell mark. Thus,

if these functions are applied to the CAR of an atom or a property

list which contains an FSUBR or SUBR, this type of interruption can
occur. Additionally, this type of interruption can occur during

the trace-back of another error.

An interruption code of 8 to F means that an overflow or underflow
occurred. This type of interruption causes the message '***QVER- OR
UNDERFLOW OF TYPE xx' to be printed. xx is the interruption code.
Execution of the function that caused the overflew or underflow 1is
resumed after the interruption.

10.5 Error Diagnostics

10.5.1 Syntax Errors

If the scanner finds syntactical errors in an S-expression, it inserts
special atoms at appropriate places in the S-exrression. These
special atoms are used as fcllows:

Atonm eaning

ERRB A '.' (dot) encountered as the first non-blank
character after a '('.

DOTERR1 The second S-expression in a dotted pair is not
followed by a right parenthesis.

DOTERR2 A '.' or ')' encountered as the first non-blank
character after a dot.

The message '***R1-SYNTAX ERROR' precedes the printing of the
S-expression with the error. A doublet containirg one or more
syntactical errors causes the following message to appear '***ERRORS
ENCOUNTERED WHILE READING. CONTINUING WITH NEXT DOUBLET' and
evaluation of the doublet is skipped.

10.5.2 Execution Errors

when an error occurs during execution, the following type of error
. diagnostic is printed:
***error code-error message
S-expression 1
S-expression 2
***TRACE~-BACK FOLLOWS
S—-expression 3

S-expressions 1 and 2 are related to the type of error encountered
and are described below with the error messages. The trace-back
includes the lists bound on the stack at the time the error occurred.

The most recently used list in the stack (the list on top) is printed
first. Therefore, the first few lists will usually give a good
indication of what caused the error.

As an example, assume that none of the functions being interpreted are
using the PROG-feature and that TRACE has not been executed. Under
these conditions, the lists bound on the stack will be alternately
function calls and association lists. When reading the stack,

the user should keep in mind that the innermost functions are
evaluated first, even though the functions are interpreted from the
outside in. Therefore, the call on the function being evaluated when
the error occurred will be near the top of the stack, if the call to
that function is being interpreted.

If TRACE is executed within a LISP job, the name of an EXPR that was
called will be found on the stack between the definition of the EXPR
and the corresponding association list, If a function using the PROG-
feature was called, it will cause the fclloving lists to appear in the
stack printout:

The association list.
The GO-list.

A list of the uninterpreted statements in the function starting
with the one to be =svaluated when the error occurred.

The complete argument of FROG (omitting the name of the
function).

The following is an example of the error that might occur when using
the PROG definition shown. After the function has been defined and
called, the error messages given below would be printed. Note that
the four items after the trace-back message are the ones described

above.

DEFINE(((TEST2(LAMBDA (X) (PROG (Y)
(SETQ Y (CAR X))

(SETQ Y (CONS X Y))

(SETQ Y (CAR Y))

(SETQ (CAR Y)))Y)))

TEST2((A B Q))

After execution has started, the following will appear:

***A5-SET VARIABLE UNDEF (see Section 10.5.3)
x 7
* ((t A BC) (XA BC))
**x*TRACE-BACK FOLLOWS
* ((A BC) (X2 BC))
* NIL
* ((SETQ Z (CAR Y)))
% ((Y) (SETQ Y (CAR X)) (SETQ Y (CONS X Y)) (SETQ Y (CAR Y)) (SETQ
Z (CAR Y)))

10.5.3 Error_ Codes_and Messages

A1-CALL TO ERROR
This message is given if a LISP program calls ERROR. The argument
(if any) of ERROR is printed (s-expression 1). The trace-back is
not given with this message.

A2-FUNCTION NOT DEFINED
This message occurs when an atom given as the first arqument of
APPLY does not have a function definition either on its property
list or on the association list.

S-expression 1 is the atom in question.
S-expression 2 is the association list.

A3-NC ARGS OF COND TRUE
None of the prepositions following COND are true.

S-expression 1 is the 1list of the arguments given COND.
S-expression 2 is the association list.

AS-SET VARIABLE UNDEF
The function SET or SETQ was given an undefined program variable.

S-expression 1 is the program variable.
S-expression 2 is the association list.

A6-UNDEF LABEL IN GO
The labzl given as the argument of GO has not been defined.

S—expression 1 is the label.
S-expression 2 is the list of the labeled statements.

A7-MORE THAN 22 ARGS
More than 22 arguments were given to an EXPR cr a SUBR.

s-expression 1 is the list of arguments to the function.
ASB—-UNDEFINED VARIABLE

A variable is not bound on the association list, nor does it bhave
an APVAL. This error occurs in EVAL.

s-expression 1 is the variable in question.
s-expression 2 is the association list.

A9-FUNCTION NOT DEFINED
The form given as the first argument to EVAL has as its first
element an atom with no function definition either on its
property list or on the association list.

S-expression 1 is the atom in question.
s-expression 2 is the association list.

D2-FILE CANNOT BE OPENED - NO STORAGE AVLBL
OPEN was asked to open a data set (file) when there was no storage
available in which to put the DCB for that data set. CLOSE
releases the space taken up by the DCB of the data set that it
is closing.

S-expression 1 is the ddname given as the first argument to OPEN.

D3-RDS FILE NOT OPENED

DU-WRS FILE NOT OPENED
A data set (file) must be opened by OPEN before LISP/360 can write
or read from it.

S-expression 1 is the ddname given as the argument to RDS or WKRS.

D5-CHKPOINT FILE NOT OPENED

D6-RESTORE FILE NOT OPENED
A data set (file) must be opened by OPEN before CHKPOINT or RESTORE
can use 1it.

S-expression 1 is the ddname given as the argument to CHKPOINT or
RESTORE.

D7-RESTORE GIVEN FILE INCOMPATIBLE WITH SYSTEM SPECIFIED

F2-TOO MANY ARGUMENTS—-EXPR
F3-TOO FEW ARGUOMENTS—-EXPR
The wrong number of arquments has been given to a defined function.

S-expression 1 is the list of the function variables.
S-expression 2 is the list of supplied arguments.

F2-TOO MANY ARGUMENTS-~SUBR
F3-TCO FEW ARGUMENTS-SUBR
The wrong number of arguments has been given to an SUBR.

expression 1 is the function.
expression 2 is the list of arquments,

S_
S_

G2-PUSHDOWN STACK OVERFLOW
Recursion is very deep. Non-terminating recursion will cause this
error. S-expressions 1 and 2 will, if given, depend on where in
the interpreter the stack was last used. The trace-back is not
given on this error. The message 'IN THE GAREAGECOLLECTOR' may
follow immediately after this message. This means that there was
not enough stack left for the garbage collector to work with when
the garbage collector was called. This is a fatal error and
LISP/360 gives up control to O0S.

GC2-STORAGE EXHAUSTED
The garbage collector is unable to find any unused cells 1in free
cell storage. S-expressions 1 and 2 are the arguments of CONS.
The trace-back is not given on this error. This is a fatal error
and LISP/360 gives up control to 0S.

I3-BAD ARITHMETIC ARGUMENT
An arithmetic routine was given a non-arithmetic argument.
S-expressions 1 and 2 will depend on which arithmetic routine
found the error.

I5-ATTEMPT TO RAISE 0 TO O
This error is caused by trying to execute either EXPT (0,0) or
EXPT(0.0,0).

I6—ATTEMPT TO RAISE 0O TO NEGATIVE POWER
This error is caused by trying to execute either EXPT (0,n) or
EXPT(0.0,n), where n is negative.

I8-EXPT CANNOT TAKE REAL EXPONENT
This error occurs when the second arqument of EXPT is a floating-
point numkter,

R1-SYNTAX ERROR
A syntax error has occurred while reading an S-expression.
S-expression 1 is the S-expression in gquestion. The trace-back is
not given on this error.

R2-BAD BRACKET COUNT

An end-of-file was reached while reading an S—-expression.
S-expression 1 is the list as read with needed brackets (i.e., right
parentheses or terminating character in the '$3' notation) generated.
The trace-back is not given on this error. This 1is a fatal error

and LISP/360 gives up control to 0S.

R3-BAD BRACKET COUNT ON USER FILE
An end-of-file was reached while reading an S—expression from a
data set other than IISPIN., S-expression 1 is the list as read
with needed brackets generated. The trace-back is not given on
this error. The error causes LISP to start reading from LISPIN.

R5-NAME OR NUMBER TOO LONG
An EBCDIC printname or a number is longer than that accepted by the
interpreter. Truncation occurs on the right. Only the message
appears for this error.

APPENDIX

THE LISP INTERPRETER

valquote[fn;args] = [get[fn;FEXPR] V get[fn;FSUBR] ->
eval[cons{ fn;args];NIL]
T -> apply[fn;args;NIL]]
apply[fnjargs;a] = [
null{ fn] -> NIL;
atom[fn] -> [get[fn;EXPR] -> apply[expr;largs;a];
spread[args]:3
get[£n;SUBR]} -> ALIST:=a;
BAL subr!?
T -> apply[cdr] sassoc{ fn;a; [[Jserror[A2]]]];args;a];

eq(car[fn J; LABEL] -> apply[caddr[fn];args;cons[cons[cadr[fn];caddr[fn]];a]]

eq[car[fn]; FUNARG] -> apply[cadr[fn];args;caddr[fn]];

eq[car[fn]J; LAMBDA] -> eval[caddr[fn]);nconc[pair[cadr[fn];argsjia]l;
T -> apply[evall fn;a];args;a]]
evalf form;al = [
null{ form] =-> NIL;
numberp[form] -> form;
atom[form] -> [get[form; APVAL] -> car[apvall];
T -> cdr[sassoc[form;a; [[Jserror[A8]]]11]11;
eq[car[form];QOUTE] -> cadr[form];2
eq[{car{ form]; FUNCTION] -> list[FUNARG;cadr[form];a ;2
eq[car[form]J;COND] -> evcon[cdr[form];a];

eq[carf form];PROG] -> prog[cdr{ form];a};?

atom[car[form]] -> [get[car[form];EXPR]) -> apply[expr;levlis[cdr| form;a]J;a]l;

' get[car[form];FEXPR] -> apply[fexpr;tlist[cdr| formjs;ajs;al;

spread[evlis[cdr[form]};a]]l);:3
get[car[form];SUBR] -> (ALIST:=aj;
BAL subri
A:=cdr[form];
get[car{ form }J; FSUBR] -> :=ALIST:=a
BAL fsubr1?
T -> eval[cons[cdr[sassoc{car[form};a; Jserror[A913])]];
cdr{ form]]sall:
T -> applylcar{form];evlis[{cdr[form]ia]lsal]
evcon[c;a] = [null{c] -> errorfA3];
eval[caar[c];a)] -> eval[cadar[a];a];
T -> evcon[cdr[c];a]]
evlis{m;a] = [null{m] -> NIL;

T -> cons[eval[car[m];a);evlis[cdrf{m];a]]]

1The value of get is set aside. This is the meaning of the apparent free
or undefined variable.

2In the actual system this is handled by an FSUBR rather than as the
separate special case shown here.

3vspread' loads the appropriate registers with the values given it.
Note: Some modification of the definition is necessary where actual

machine instructions are shown to give the representation for the IBM
System/360.

REFERENCES

LISP_1.5 PRIMER, Clark Weissmanm, Dickenson Publishing Company

The_ Programming Langquage LISP: Its Operation and Applicatioans,
Berkeley, E. C. and Bobrov, D. G., editors, M.I.T. Press

LISP 1.5 Programmer's Manual, McCarthy, J., M.I.T. Press

Programming_Systems and Languages, Rosen, S., editor, McGraw
Hill Publishing Company, pp. 455-490

An_Introduction to LISP, criffith, A. K., University of Florida

The BBN-LISP System, Bobrow, D. G., Murphy, D. L., and
Teitelman, W., Bolt Beranek and Newman, Inc.

Stanford LISP 1.6 Manual, Quam, L. H., Stanford Artificial
Intelligence Project

A_Paged LISP Using_the Dynamic Relocation Hardware of an_IBM_360/67,
Berns, R. I., (soon to be published)

IBM System/360_Principles of Operation, Form No. A22-6821

	Preface

	Table of Contents

	1 The LISP/360 System

	2 Organization of Storage

	3 Functions, Predefined Atoms and Character-Objects

	4 Special Differences in LISP/360
	5 LISP Job Set-
up
	6 Data Management in LISP/360

	7 The LISP Assembler and Compiler

	8 The Garbage Collector

	9 Time-Shared LISP at Stanford

	10 LISP/360 System Messages

	Appendix: The LISP Interpreter

	References

