
. R

e :.
,

~._EII=.r.·~
-.~

LlSP/360 REFERENCE MANUAL

FOURTH EDITION

MARCH 1972

CAMPUS COMPUTER FACILITY

STANFORD COMPUTATION CENTER

STANFORD UNIVERSITY
STANFORD I CALIFORNIA

DOCUMENT NUMBER SCC024

•
PBEF'ACE

This manual is intended to provide the LISP 1.5 user
with a reference manual for the LISP 1.5 interpreter,
assembler, and compiler on the Campus Facility 360/67.
It assumes that the reader has a working knowledge
of LISP 1.5 as described in the LI2R_l~2 pri~E by
Clark weissman, and that the reader has a general
knowledge of the operating environment of as 360.

Beginning users of LISP will find the sections ~~~
11.2RL1§SL~Y~!,~, Q£gani~~!.io!L0f stQgg~, Fu!!ctiQ~,
~!~~Q~.2~t-~, and 1!SPLlQ~~stem ~essages
~ost helpful in obtaining a basic understanding
of the LISP system. other sections of the manual
are intended for users desiring a more extensive
knowledge of LISP.

The particular implementation to which this reference
manual is directed was started by ~r. J. Kent while he
was at the University of Waterloo. It is modeled after
his implemention of LISP 1.5 for the CDC 3600.

Included in this edition is information on the use of
the time-shared LISP system available on the 360/67
which was implemented by ~r. Robert Berns of the
Campus Computer Facility staff.

ii

section

1 •

2.

3.

4.

5.

6.

TABLE OF CONTENTS

Page

PREFACE · . . · . . ii

TABLE OF CONTENTS • iii

THE LISP/360 SYSTEM

ORGANIZATION OF STORAGE · · · · · ·
2. 1 Free Cell storage (FCS) · • . · · · · ·

2. 1. 1 Atoms . . . · · · · · · ·
2. 1.2 Numbers · · · · · · · ·
2. 1.3 Object List · · · · · ·

2.2 Push-down Stack. (PDS) · · · · · · ·
2.3 System Functions . · · ·
2.4 Binary Program Space (BPS) . · · · · · · ·
2.5 In pu t/Out. put Buffers · · · · · · ·
FUNCTIONS, PREDEFINED ATOMS AND CHARACTER-OBJECTS

3. 1

3.2

3.3

LISP Functions
Atoms with Initial Values ••

Character-objects ••••

· . .
· . .
· . .

· · ·
· · ·
· • ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· .

· . .
· . .
· . .

SPECIAL DIFFERENCES IN LISP/360

LISP JOB SET-UP

DATA MANAGEMENT IN LISP/360 · . .
6. 1 Data Management Functions •• · . . · . .

6. 1 • 1 OPEN(ddname,listrat)

iii

1

3

3

5

8

9

9

9

9

9

10

10

25

26

27

28

29

29

29

6. 1. 2 CLOSE (ddname) · · · · · · 30

6. 1.3 AS A (p) . . · · · · · · · · 30

6. 1.4 OTLL en) . . · · · · · · · · • · · · · 30

6. 1.5 WRS (d dna me) · · · • · • • · · · · · · • · 30

6.1.6 INLL (n) · · · • · · · · · 31

6. 1. 7 RDS (ddname) · · · · · · · · • · • 31

6.2 Checkpoint Facilities in LISP/360 · · · · · · · · 32

6. 2. 1 CHKPOINT (ddname) · · · · · · · · · 32

6. 2.2 RESTORE (ddna me) · · · · · · · · · · · 32

6.2.3 BPSCHKPT (ddname) · · · · · · · • · · · 32

6. 2.4 BPSRESTR (ddname) • • • • • • • · · • · 32

7. THE LISP ASSEMBLER AND COMPILER · • · · · 33

7.1 LISP Assembly Program (LAP) • · · · · · · 33

7.1.1 Differences Between LAP and OS
Assembler Language · · · · · · · · 33

7. 1.2 Passing Arguments To and From LAP
Routines . . · · · · · · · 34

7. 1.3 Register Usage . · · · · · · · 35

7.1.4 Macros . . . · · · · · · · 36

1.1.4.1 User Defined Macros • · • • • • · 36

7.1.4.2 System Macros · · · · · · 36

7. 1.5 Sample LAP program · · · · · · · · 38

7.2 Binary Programming Space · · · · · • • · · · 39

7.2.1 The Atom BPS · · · · · • · · · 39

1.3 The LISP Compiler . · · • · · · · · · 40

1.3. 1 LISP Job Set-up for the compiler · · · 40

7. 3.2 Auxiliary Routines . . · · · · · · · · 41

iv

..

8.

9.

10.

7.3.3

7.3.4

Examining the Compiled code
Names of Compiler and Assembler Routines •

THE GARBAGE COLLECTOR

TIME-SHARED LISP AT STANFORD •••
9. 1 Example of a Terminal Session

. LISP/360 SYSTEM MESSAGES

10.1 EVALQUOTE ~essages
10.2

10.3

10.4

10.5

Tracing in LISP/360
Garbage Collector Message • • • • • • • •

Interruption Message • • • ·
Error Diagnostics

· . .

· . .
· . .
· . .

· . .

10.5.1

10.5.2

Syntax Errors • • • • • •
Execution Errors · . . . · . .

10.5.3 Error Codes and Messages

APPENDIX: THE LISP INTERPRETER ·

42

43

44

45

47

49

49

49

49

49

50

50

51

53

56

REFERENCES • 58

v

LIST OF ILLUSTRATIONS

Figure 1 : In itial Organ izat ion of LISP System Memory · · • 2

Figure 2: LISP Cell . . · · · · . . · · · · · · • · · · 3

Figure 3: Full Cell · · · · · • · · · · 3

Figure 4: Binary Markers · · · . . · • · · · · · · · · 4

Figure 5: LISP Atom With An Empty Property List · · • · · · 5

Figure 6: LISP Atom with Associated Property List · · · 6

Figure 7: Object List . • · · · · · · · • · · · 9

Figure 8: The Atom BPS · · · · · · · · • · · · 39

vi

LISP 360 operates under the IBM system/360 Operating System (OS).
The operation of the LISP executive is best described as follows:

1. Read a function and list of arguments.

2. start the timer.

3. Pass the function and list of arguments to the function
EVALQUOTE for evaluation.

4. print the execution time and the value of the function.

5. Start again at step 1.

The LISP system initially consists of a large body of predefined
functions and provides the facility to add additional function
definitions. statements in the LISP language are evaluated
interpretively by the function EVALQUOTE to determine their value,
although some functions (such as COMPILE) are evaluated mOLe for
their effect than for their value. A compiler and an assembler
are also available.

During execution, LISP data structures (including LISP function
definitions) are constructed in Free Cell storage (FCS). The
Push-down Stack (PDS) is used to store program paramete~s
dynamically during recur~ion.

Other system areas are allocated as Binary Program Space (BPS) to
contain the machine code for all compiled functions and as I/O
Buffers to be used by as. The general organization of system
memory is given in Figure 1.

1

6,000
Words

Free Cell

Storage

(FCS)

r

"-

System Programs

(LI S P Interpreter

And A" Predefined

Functions)

'1

Push-Down Stack t
(PDS) ~

~

Oblist

Remainder of

Free Cell Storage

Binary Program

Space

(BPS)

Given Back to OS

for I/O Buffers

Figure 1: Initial organization of LISP System Memory

2

Within the LISP system, computer memory is subdivided into several
functional areas. The largest portion of system memory is devoted
to Free Cell storage (FCS), the area used to contain all working data
structures. The remaining parts of memory are used for the Push-down
stack (PDS), Binary Program Space (BPS), Input/Output Buffers, and
system functions.

2.1 Free Cell Storage (FcSt

A large portion of LISP memory is devoted to the storage of working
data structures in Free Cell storage. Each word of pes (called a LISP
cell) is a system/360 doubleword (64 bits) consisting of an upper word
(32 bits) and a lower word (32 bits). LISP cells, depending on their
use, may contain four fields as shown in Pigure 2.

~<~-------------------------~--------------------------~)
~8~~<'----------', 24)~8~~(~----24-------->~

Used for I

Markers

o 7 8

First Address Position Used for
Markers

31 32

1

Second Address Position

I

I

39 40

Figure 2: LISP Cell

63

Initially, all available words in FCS are in a free cell list. As
LISP cells are used to create data structures, they are removed fro.
the free cell list until removal of the last word forces the system
to perform a garbage collection in an attempt to restore words to the
free cell list.

A LISP cell is normally considered to contain pointers to other LISP
cells in both its upper and lower words, but a special type of LISP
cell is defined in which the upper word contains information other
than a pointer. This LISP cell is called a full cell and its format
is illustrated in Figure 3.

32

This word may contain -
1. Four ESCOIC characters from a

print name.
2. A 32-bit number.
3. The address of a binary LISP routine.

>< 8,

!
I

I
I

24

Second Address Position

Figure 3: Full cell

3

...

Since the length of the LISP cell is 64 bits and only 24 bits are
needed to express an address, the first 8 bits in the upper word and
the first B bits in the lower word are available for other uses.
Figure 4 indicates the uses for some of these bits as explained belovo

r----r_..---.-_r-"""'T"" __ .---.--.-+--24 --+ .-24 --.

[[[[[[III ~:~~:i!J IIIIII ! [!i:~i< J
o 1 2 3 4 5 6 7 r 32 33 34 35 36 37 38 39 ~

I [1 f Trtce Marker ", j FJll Cell Contents Indicator I
Logical Marker I Full Cell Marker

Floating-point Marker Garbage Collector Marker If this cell
Number Marker is an atomhead.

Atomhead Marker If thi s cell thi s address

Bit 0

is an a tomhead •
this address points to the
points to the property list.
full cell list.

Figure 4: Binary Markers

- indicates that this cell is an atomhead (i.e.,
the first cell in an atom).

Bits 1, 2 and 3 - refer to a full cell list associated with an
atom. Bits 1, 2 and 3 are used as follows:

Bit 7

Bit 32

Bit 1 - Number Marker
Bit 2 - Floating-point Marker
Bit 3 - Logical Marker

For an atomhead (bit 0 is set to one), one of
the following bit patterns will be used to
describe the full cell list associated with
the atom:

~it_Q !2i!_l bit ~ biLl

1 0 0 0 EBCDIC Characters
1 1 0 0 Fixed-point Number
1 1 1 0 Floating-point Number
1 1 0 1 Logical Number

- indicates that a function is to be traced.

- is used by the garbage collector to mark active
cells.

4

Bit 33

Bit 34

2. 1 • 1 ~!.Q!!l§'

- indicates that this is a full cell.

- is used in a full cell to indicate that the first
word (first 32 bits) contains EBCDIC characters
or a number. Bit 34 is not set in a full cell
when the first word contains an address.

An atom begins with a LISP cell (called an atomhead) that contains in
its first address position a pointer to a full cell list associated
with that atom. The full cell list contains either the printname
of the atom (in the case of a literal atom) or the binary value of
the atom (in the case cf a number).

The second address position contains a pointer to the list of
properties associated with that atom -- if it exists (numbe~s
never ha ve prop erties). The first bit of t be first word (bit O)
is set to one to indicate that this cell represents the start of
an atom.

Figure 5 illustrates the atom EXAMPLE and its full cell list. The
property list is empty.

I

I

1 I

lJ :
bit 0

v
\~/

(bi ts 32-34

\ :
,tli ts 32-34

E X A MOll: P L E 011 V _
I

Figure 5: LISP Atom with An Empty Property List

Note: A pointer to the atom NIL is represented by a diagonal line
in the address portion of a LISP cell.

Figure 6 illustrates the atom FF and its property list. The property
list includes all of the attributes associated with that atom. In
this example, the atom FF is a function, namely an EXPR, which starts
(LAMBDA •••)

5

~-----------------------------------.

e
1 {T~--

, --

7 , , , I
, , , I I

1 I - -.~-~ : I I

, , , , I

Ii
,
I

, , I
-----1.

bit 0

f

, Lbits 32-34 ,

I;,{/ atom OPR ,
r

I
I

I

I

LAMBDA

Figure 6: LISP Atom with Associated Property List

Attributes of the atom are designated by flags or indicators on the
property list. Flags are atoms which by themselves indicate that
the atom (on whose property list the flag occurs) has some attribute
(e.g., COMMON). Indicators are atoms which identify the atom (on
whose property list the indicator occurs) as having a special value
which is found as the next item on the property list (e.g., SPECIAL,
APV AL). Indicators used by the LISP system include:

APVAL -- The atom is a constant whose value is the following
item in the property list.

EXPR The atom is a function name. The lambda expression
defining the function is the following item in the
property list.

FEXPR -- The atom is a special function name. The lambda
expression defining the function is the follow1ng
item in the property list. An FEXPR differs from
EXPR in that the FEXPR is defined with precisely two
arguments and may be called with an indefinite number
of arguments. When an FEXPR is called, the list of
arguments and the current association list are bound to
the lambda variables defined in the FEXPR expression, so
that the arguments are not evaluated before the function
is called.

SUBR -- The atom is a compiled EXPR or a built-in function.
The entry address of the subroutine is the following
item in the property list.

6

FSUBR -- The atom is a compilEd FEXPR. The entry address of the
subroutine is the following item in the property list.

Atoms are created in LISP in several ways. READ, GENSYM1, and MKATOM
all cr~ate literal atoms. RE~D creates atoms from the input text and
places them on the object list. GENSYM1 creates an atom tut does not
place it on the object list. MKATOM creates an atom on the object
list using the buffer filled by the function RLIT.

Numeric atoms are cLeated by every numeric function. Thus, th8 same
number may be different atoms. These numeric atoms are not placed on

the object list.

7

There are three kinds of numbers:

1. Fixed-point (integers)
2. Floating-point
3. Logical (hexadecimal)

All numbers are stored as 32 bit binary numbers with the belp at a
full cell and must be converted from EBCDIC characters on input and
to EBCDIC characters on output. (The EBCDIC representation of a
number is not stored.) The first word of a numeric atomhead points to
this full cell; the second word is NIL.

A fixed-point number is a signed or unsigned integer (written witbou~
d decimal point) in the range -2**31 ~ number ~ 2**31-1. For example:

o
91
-91
173
-2147483647

A floating-point number is a signed or unsigned string of decimal
digits with a decimal point. The string of decimal digits may be
followed by a decimal exponent. Floating-point numbers may have
absolute values in the range 10**-75 ~ number ~ 10**75, including
zero. For example:

7.
-3.4
2.SE+07
- 3.2 E- 4
2.6E7

A logical number consists of from 1 to 8 hexadecimal digits
(0,1,2, ••• ,9,A,B,C,D,E,F) which may be followed by the letter 'XI.
If the number begins with ODe of the letters A through F, it must
be preceded by a zero to avoid ambiguity with character atoms.
Logical numbers need not be followed by 'X' if they contain any
of the digits A through F. All numeric functions treat logical
numbers as integers. For example:

14X
-JABX
OAX
OFFFFFF'FCX
14 AF5

8

Pointers to LISP atoms ar~ chained together on a list called the
'object list'. The system searches this list in order to find atoms
referenced by the LISP program. The format of the object l~st is
shown in Figure 7. As literal atoms are added to the system, their
pointers are added to the front of the object list r immediately
following the pointer to the atom NIL except for literal atoms
created by GENSYM1, which are not added to the object list. The
predefined atom GBLIST has an APVAL on its property list which
points to the object list. To print the object list, the tollow~ng
statement can be used: EVAL(OBLIST NIL).

-

3rd atom
atom NiL 2nd atom

Figure 7: Object List

The PDS is used to save active data structures and addres~es during
progrdID recur.3ion. The size of the PDS is fixed at 6K words (32
bits/word), and it can only be changed by regenerating thE LISP
system.

The system function area contains the contrel program, the EVALQUOTE
interpreter, predefined system functions, the garbage collector, and
the error handler.

This area contains all compiled code not part of the standard LISP
system (including LAP and the compiler) •

This is an area of BK bytes (8 bits/byte) returned to OS for use as
input/output storage. The size of the area can be changed any time
LISP is loaded by using appropriate EXEC parameters.

9

This section gives the
LISP/360. The letters
of the function name.
follows:

definitions of the functions available in
that precede the function names are not part
They are used to explain the functions as

C - This function is contained in the compiler.

I - This function is contained in the compiler and is for internal
compiler usage.

N - This function is not available in time-shared LISP.

T - This function is available in time-shared LISP but not in
standard LISP.

The symbols used for function arguments are defined as follows:

alst - association list
at - atom
ch - character-object
ddname - ddname
e - valid LISP form
fn - function
ind - indicator
list - list
n - number
p - predicate
x - s-expression

ADD1 (n) ADD1 takes a number as its argument and
returns that number plus 1. If n is a
fixed-point number, the result is a fixed­
point number. If n is a floating-point
number, the result is floating-point.

AND(p1,p2, ••• ,pn)

APPEND(list1,list2)

AND evaluates its arguments from left to
right until one is NIL or the end of the
list is reached. It returns NIL or T,
respectively.

APPEND takes two lists as its arguments.
Its value is a list of the elements of list1
followed by the elements of list2.

APPEND ((A B C) (D E F» = (A BCD E F)

10

APf'END1(l tr,x)

•
ATOM (x)

N BPSCHKPT{ddnama

N 3PSLEf,][, {)

N BPSHOVE ~n:

N BPSRESTH(ddnarue)

C BPSlJSED(p}

[\\ DPS!HPE (fn)

N BP SZ r.)I

APPEND1 causes the element x to be added
onto the end of 'list'; the value is the
modified list .

APPEND1 «A B C) D) = (A BCD)

APPLY causes the function, fn, to be applied
to the arguments in the list; alst is used
as the association list.

(see section 6~1.3)

ATOt'l returns T if x is an atom {either
numeric or literal); otherwise it returns
NIL.

ATTRIB modifies list1 by tacking on list2 at
the end. The value is list2. ATTRIB has
the same effect as NCONC although the value
is different. Note that if list1 is an
atom, list2 is added to the end of the
property list of listl.

(see section 6.2.3)

(see section -, • 3.2)

(see Section 7.3. 2)

(see Section 6~2.4)

(see section 1.3.2)

(see section 7.3.2)

BPSZ takes DO arguments. BPSZ deletes all
binary program space and adds that storage
to Free Cell storage. Jobs not llsing
the compiler, LAP, or any user compiled
functions should call BPSZ for maximum
storage. (See section 7.3.2)

BREAKP is a predicate. If its argument is
one of these character-objects:

blank
left parenthesis (
right parenthesis)
comma
period

,

its value is T; otherwise its value is NIL.

11

CAAAR(x)
CAADR(X)
CAAR (x)
CADAR (x)
CADDR(x)
C ADR (x)
CAR (x)
CDAAR (x)
CDADB(x)
CDAR (x)
CDDAR (x)
CDDDR (x)
CDDR (x)
CDR (x)

t! CHKPOINT{ddname)

N CLOSE (ddname)

C COMMON (list)

C COMPILE (list)

C CONC(x1,x2u··.,xn)

CONS (xl 17 x2)

N COUNT (n)

These functions represent all possible
nestings of CAR and CDR up to three levels.

(see section 6.2.-1)

(see section 6. 1. 2)

(see Sect,ion 7.3.2)

(see section 7.3)

corn is a function used by the camp il er.

CONe is a function used by the corn pile r.

CONS obtains a new doubleword from the free
storage list (see section 2. 1) and
places its tva arguments in the first and
second words, respectively. It does not
check to see if the arguments are valid list
structures. The value of CONS is a pointer
to the word that vas just created. If the
f 1-ee stoIa ge list has been exh a uste d, CON S
calls the qarbage collector to make a new
free storage list and then performs the
CONS operation.

The argument n must be an integer. COUNT
turns on a counter which automatically causes
a trap when CONS has been done more than In'
times. Any CONS performed by system
functions are also counted. The counter
is turned off by UNCOUNT(NIL). The
counter is turned on and reset each time
COUNT(n) is executed. The counter can
be turned on so as to continue counting
from the state it was in when last turned
off by eH?cutiug COIUNT (NIL). The
function SPEAK() gives the current value
of the counter" which is decremented each
tim~ d CONS occurs.

12

CSET(at~-';1

C SET Q (2< 1. Ii ;:.)

N DE:SU~(Pf

(SET is used to create a constant by putting
the indicator APVAL and a value on the
property list of the atom. The value
stored in the property list of the atom
is CONS (x, NIL). The value of (SET is its
first argument. If 'at' already had an
APVAL. the old value is removed.

(SETQ is like CSET, except that the first
argument is quoted instead of being evaluated.

Currently, tbis function has no effect.

The argument ~lis~' of DEFINE is a 11st of
pairs

((u1 v1) (u2 v2) (un vn»

where each u is a name and each v 1S a
lambda-expression for a funct10n. For each
pair, DEFINE puts an EXPH on the property
list for u pointing to v. DEFINE puts
things on at the front of the property list.
The value of DEFINE is a list of the u's.

DEFLIST is a more general defining tunction
than DEFINE. Its first argument is a list of
pairs as for DEFINE. Its second argument is
the indica tor t ha t is to be use d. The
second argument should be a literal
a tom. After DE FL 1ST has been execu ted
with (u v) as its first argument, the
property list of u will begin with the
indicator, at, followed by v.

DEFINE « (FN (LAMBDA (X) (CAR X»») =
DEFLIST«(FN (LAMBDA(X) (CAR X»» EXPR)

Both arguments of DIFFERENCE must be
numbers. The value is n1 minus n2.
If either argument is a floating-point
number, the result is floating-point.

DIGP is d predicate. If its argument 1S one
of these character-objects: 0, 1, 2, ••• , 9
its value is T; otherwise its value is NIL.

EJECT takes no arguments. It causes a line
to be written with a 'new-pagel control
character in the first byte (skip to new
page) •

13

EQ(x1,x2)

EI2UAL (xl cx2)

EHROH (x)

EV(ON(list.alst)

EVErJP (n)

E \j L I:::; ~ 1 i:; t l' a 1 s t }

~ EXCiSE(p)

EXIT ERR (p)

EQ is a predlcate which tests if its two
arguments point to the same locatlon in
storage. Literal atoms are stored uniquely,
so that if x1 is an atom, EQ (x1 ,x2) will be
true if x2 is the same atom. List structures
and numbers are not stored uniquely, however.
and thus it is possible for two equivalent
list structures not to be EQ. EQ returns
T if its arguments are the same, otherwise
it returns NIL.

EQUAL is a predicate. It returns T if its
two arguments are equivalent list structures.
EQUAL is recursive, using EQ to test literal
atoms. Two numbers are assumed to be
EQUAL if they differ by less than 10**-6.

ERROR is one .a y for a user to caus e a L1 SP
error. The message 1*** a1 - CALL TO ERROR'
and the value of x will be printed, followed
by a trace-back as described in section
'10.5. ERROR does not return and so lt
has no value.

The first argument e must be a valid LISP
expression. It is evaluated using alst as
an association list for values of variables.

The argument is a list of the form
«p1 e1) (p2 e2) (p3 e3) •.• (pn en»)

where the piS and e's are valid LISP
expressions. The piS are evaluated in
order until a non-NIL value is obtained.
Then the corresponding e is evaluated
and its value is returned as the value
of EVCON. For each of these evaluations,
alst is used as the association list.

EVENP returns T if the fixed-point numb~r
'n' is even; otherwise it returns NIL.

The first argument is a list of valid LISP
expressions. They are evaluated in order
using alst as the association list. The
list of the values is returned.

(see Section 7.3.2)

EXITERR(T) causes the run to terminate
after the occurrence of any error that
is generated in the execution of the
program. EXITERR (NIL), the default,
turns off this feature.

14

EXPLODE (at)

EXPT{n1~n2)

FIX (n)

FIXP(x)

FLAG (list,atl

FL1I.GP(ac'i"at2)

FLOAT(n)

FLOA TP (x)

FUNCTION(fn)

EXPLODE takes an atom as an argument and
has as its value a list of the characters
in the printname of the atom.

EXPT takes two numbers as its arguments.
The second argument must be a fi~ed­
point number. It returns n1 to the n2th
power. The value is floating-point if n1
is floating-point or if n2 is negative.

FIX takes a floating-point number as its
argument. The argument is truncated to
an integer.

FlXP returns T if x is a fixed-point
number, otherwise it returns NIL.

FLAG puts the flag 'at' on the property
list of every atomic symbol in the list.
Note that 'list' must be a list of atoms.
No atom ever receives a duplicate flag.
The value of FLAG is NIL.

FLAGP searches the property l~st of the atom
at1 (CDR at1) for an occurrence of an item
EQ to at2. If such an item is found, the
value of FLAGP is the rest of tbe list
beginning with that item. otherwise, the
value is NIL.

FLOAT takes a fixed-point number as its
argument. It returns that number
converted to floating-point.

FLOATP returns T if its argument is a
floating-point number; otherwise it
ret urns NIL.

FUNCTION is a special form. Its 'argument'
must be the name of a function or a lambda­
expression. FUNCTION is used to pass
functional arguments to other functions.
When the form

(FU NCTIO N (L AM BDA (X) •••))

is evaluated in interpreted LISP, FUNCTION
returns the special form

(FUNARG (LAMBDA (X) ••• }) alst)

where alst is the current association list.
Then the FUNARG form is interpreted by

15

C GENSYM ()

GENSYMl (at)

GET(at1 f at2)

GO(at)

GREA'rERP(n1 7 n2)

N INLL (n)

C LAP360(list~alst)

APPLY as a function, with the association
list taKen from alst instead of taking the
association list at the time APPLY is
called. Thus, FUNCTION, in effect, saves
the current association list along with
'fn', so that later calls will use current
variable bindings.

GENSYM is a function used by the compiler.

GENSYMl creates a new atom whose printname
consists of the first four characters of
the atom vhict is passed as its argument,
followed by four digits. The atoms that
GENSYMl creates are NOT on the aDject list,
unlike other atoms in the system. Thus,

GENSYMl (ALPHA) = ALPH0502

Even if there already exists an atom whose
name is ALPH0502, the result of GENSYM1
will be unique.

GET searches the property list (CDR) of its
first argument for an indicator EQ to its
second argument. GET then returns the item
following the indicator in the property
list. If no element of CDR (at 1) is EQ
to at2, GET returns NIL.

GO is a special form. Its one argument
must be a label in the PROG in which GO
appears. Its argument is not evaluated.
GO causes PROG to branch to the label
specified. In compiled LISP, GO cannot
appear except as a statement in a PROG,
or in the top level of a COND which is
a statement in a PROG. Specifically, GO
cannot appear within a PROG2 within a
CONDo

GREATERP is a predicate which takes two
numbers as its arguments. The value is
T if the first argument is numerically
greater than the second, and NIL it they
are equa.l or the first is less than the
second.

(see Section 6.1.6)

(sf'e section 7)

16

LAST (list)

LEFTSHI.FT (n 1,02)

LENGTH (list)

LESSP(n1,n2)

LETP(ch)

LIST(x1,x2, ••• ,xn)

LITP(ch)

LOGAND (n1 <1n2~ ••• , nk)

LOGO R (n 1 w n 2 v ••• , n k)

LOGP (x)

The argument is a list. LAST returns the
tail end of list which contains only the
last element:

LAST «A BCD» == (D)

(This is the list of the last element, not
just the last element) •

LEFTSHIFT takes two numbers as its
arguments. The second argument must be
a fixed-point number. The word (32 bits)
which contains the number given by the
first argument is shifted left the
number of places specified by the sEcond
argument. If the second argument is
negative, the first argument is shifted
right. The value is a logical number.

LENGTH returns the number of top-level
elements contained in the list given as
its argument.

LENGTH(((A B C) D (E. F») = 3

LESSP is a predicate which takes two
numbers as its arguments. The value ~s T
if the first argument is numerically less
than the second; otherwise it is NIL.

LETP is a predicate. If its argument is
one of the letters in the range A, B, ••• ,
z, its value is T; otherwise its value is
NIL.

LIST takes an indefinite number of
arguments, and returns a list of
those values.

= NOT (OR (BREAKP (ch) , DIGP (ch») •

LOGAND takes an indefinite number of
arguments. LOGAND performs a b~t-by-bit
logical AND on its arguments and returns
the logical number thus produced.

LOGOR is similar to LOGAND, except that it
computes the bit-by-bit logical OR of its
arguments.

It returns T if its argument is a logical
number, and NIL otherwise.

17

LOGXOR (n1 ,n2, •.• ,nk)

C MAP(x1,x2)

MAPCAR (list,fn)

C MAPCON(x1,x2)

MAPLIST(list,fn)

MAX (01 gn2 ,nk)

MEMBER (x,list)

MIN(nl,n2 Q o ••• n k)

I1INUS(n)

MINUSP (n)

l"IKATOM ()

LOGXOR is similar to LOGAND and LOGOR,
except that it compute~ the logical
exclusive OR of its arguments.

MAP is a function used by the compiler.

MAPCAR takes two arguments: the tirst is a
list and the second is a function of one
argument. MAPCAR applies the given function
first to the CAR of list, then to the CADR
of list, and successively to eacn element of
list until the end of the list is reached.
MAPCAR returns a list whose kth element is
the value of the function applied to the kth
element of the list given as an argument.

MAPCON is a function used by the compiler.

MAPLIST takes two arguments: the first lS
a list and the second is a functional
argument. ~APLIST applies the given
function first to list, then to CDR list,
and successively to each 'tail end' of list,
until the end of the list is reached.
MAPLIST returns the list of the values
of those function evaluations.

MAX takes an indefinite number of
arguments. MAX returns the largest of its
arguments. If any of the arguments are
floating-point numbers, the result will
be floating-point.

MEMBER searches the list for an occurrence
of an element EQUAL to x. If such an
element is found, MEMBER returns T;
otherwise it returns NIL.

MIN takes an indefinite number of
arguments, and returns the smallest of
them. If any of the arguments are floating­
point numbers, the result will be a
floating-point number.

MINUS takes a number for its argument,
and returns the negative of that number.

MINUSP takes a number for its argument;
it returns T if that number is less than
zero and NIL otherwise.

MKATOM is a function with no arguments.
It is used to make atoms out of the
infoLmation put into the internal

18

• NeONC (list, x)

NOT(x)

NOLL (x)

NOMBERP (x)

N OPEN(ddname,list,at)

C OPTIMIZE(p)

OR (p1, p2, ••• ,pn)

ORDERP (at 1, at 2)

N OTLL(n)

C OVOFF()

C 0 VON ()

PAIR (list1,list2)

character buffer by RLIT or HNUMB.
MKATOM returns the atom created •

The first argument must be a list. NeONC
changes the end of 'list' to point to x.
In effect, NCONC is like APPEND except
that it actually changes its first
argument instead of copying it. NeONe
returns the modified first argument.

NOT returns T if its argument is NIL and
NIL otherwise. It is the same as EQ(x,NIL) .

NOLL is the same as NOT {x} •

NUMBERP is a predicate which returns T
if its argument is a number (logical,
fixed-point or floating-point); otherwise
it returns NIL.

(see Section 6.1.1)

(see Section 7.3.2)

OR takes an indefinite number of arguments.
The arguments are evaluated from left
to right until one is reached whose value
is not NIL, or the end of the list is
reached. OR returns T or NIL respectively.

ORDERP imposes an arbitrary canonical order
on literal atoms. For character-objects
that order is alphabetic; for all other
atoms, the order depends on the actual
location in storage of the atomhead.
ORDERP returns T if the two argUIDen ts are
EQ or the first comes before the second in
this canonical order, and NIL if the first
argument comes after the second.

(see Section 6.1.4)

(see Section 7.3.2)

(see Section 7.3.2)

PAIR is a function used internally by the
LISP system to build association lists.
PAIR takes two lists as its arguments. The
lists must be of equal length; otherwise
an error will occur. PAIR matches the
elements of the first argument with the
elements of the second argument and returns

19

C PAIRMAP(x1.x2,x3 wx4)

N PLA.NT(x18X2)
N PLANTDC(x1,x2)
N PLANTSQ(x1 q x2)
N PLAN'll (x1,x2)

PLUS (n'1,n2, ••• ",nk)

PRBOFFER (p)

C PRINLAP (p)

PRINT (x)

PRIN 1 (at)

a list of dotted pairs; the CARs of the
pai~s arE the eleillents of the first list
and the CDRs of the pairs are the elements
of the second list, 'l'he list of dotted
pairs is io the reverse order of the input
lists o

PAIR«A lJ q (D f~ .f}) -
He. F)(B. E) (I. D»

PAIRMAP is a function used by th0 complier.

These tUficcious a~e used by the compiler
to iusert code into BPS (Binary Program
Space) •

PIUS takes di!. LHiGtinJ.te Ilumber of
arguments. PUb computes the algebraic
sum of its dcguruents dud returns that
nuwber. It ani uf the argument~; are
floa t iug-- pain t AhlHlbec s, the res ul t 'ilil1 be
f loating- poin L PLlJS () = o.

PRBUfFEH tdK(:;:":., ',' ur: NIL as an arguillent.
PRBUFFER (Tl wi l! ,iiHse READ and READCH to
pr irtt the in pu t b uf fer- every ti me a new
record is moved into it. A ,=) I in the
mar-gin (;t ,1 lin" irdicates that the line
is a buffer lid \ d111. PRBUFFER (NIL) will
stop the pJ:illtin(j of the input buffer.
PRBUFFER is used when it is necessary to
show exactly What was given as input to
LISP.

(see 5 E: ci." i (» n I, J, <',I

PRINT ta,kes dPld.Ltrary S-expLEssion for
its a.r9\lm(:j~~·L, l'FIN"I' causes that S-expression
to be 'tIci tten on the output device currently
wr} te selected Uhofault LISPOUT).

The argument ot PHINi must b~ an atom
(nulOeri(~ Oi:."] it",'rdl). PRIN1 translates
its '1rgUll!~311tillb,). output format and
places It in the output buffer. PUINl
dotO'S Hvt tt'rmLndtE' the line, however r

and suc0~siv0 C~]J3 to PRIN1 wiLL place
the ~alues immediately following each
utile! til the ontput line.

20

..

PBOG(listfe1ie2~ ..• ,en) PROG is a special form. It provides
the capability to perform iteration
by allowing looping and the use of
temporary variables. The list contains
the variables of the PROG reguired
by the statements e1,e2, ••• ,en. PROG
variables are initially NIL; they can
be reset with the functions SET or SETQ.
The "statements" e1,e2, ••• ,en must be
either expressions or literal atoms.
The literal atoms are used as statement
labels. PROG evaluates the statements
e1 through en in sequence, unless 1t
comes to the special forms GO or RETURN.
When a GO is evaluated, PROG continues
evaluation at the statement immed1ately
following the label given in the GO. When
a RETURN is evaluated, the expression
given in RETURN is returned by PROG. If
no RETURN is reached before the last
statement, PROG returns NIL.

PROG2(xl~x2) PROG2 takes two arguments and returns
the second as its value.

QUOTIENT(n1.n2) Both arguments of QUOTIENT must be numbers.
N1 is divided by n2 and the quotient is
returned. IF both n1 and n2 are fixed­
point numbers, the value is truncated to
an integer; otherwise the result is a
floating-point number.

N RDS(ddname) (see section 6.1.7)

READ ()

READCH(p)

The execution of READ causes one
s-expression to be read from the
input file (as defined by RDS).
of READ is the s-expression.

current
The value

If the argument is NIL, READCH will read
the next character from the input buffer
and return with the corresponding
character-object as a value. READCH(T)
causes a simulated backspace. The value
of READCH(NIL) after a READCll(T) has been
executed will be the same as that returned
by the previous READCH(NIL). The value of
READe H (T) is the same as that retur ned by
the next to last READCH(NIL). READeH(T)
should only be executed once before
calling READCH(NIL).

21

..

RECIP(n)

• RECLAIM()

C RELINK(x1,x2)

REMAINDER(n1,n2)

REMFLAG (list l1 at)

REMOB(at)

BEMPROP (at, ind)

N RESTORE(ddname)

RETURN (x)

N REVERSE (list)

8LI1' (ch)

For floating-point numbers, the value is
the reciprocal of n~ For fixed-point
numbers the value is o •

RECLAIM causes a garbage collection to
occur. The value is NIL.

RELINK is a function used by the compiler.

The value of the function is thE rema1nder
given when dividiu9 n1 by n2.

This function removes all occurrences of the
flag 'at' (a literal atom used as a flag
on atomic property lists) from the property
list of each atomic symbol in the list.
When the flag is found, the pointer in the
preceding element of the property list is
modified to delete the flag from the list.
The value of REMFLAG is NIL.

This function removes the atom 'at' from
the ORtiST. It causes the symbol and all
its properties to be lost unless the
symbol is referred to by an active list
structure. When an atomic symbol has been
removed, subsequent reading of its name
from input will create a different atomic
symbol.

REMPROP searches the property list of
'at' looking for all occurrences at the
atomic symbol 'ind u. If the atomic symbol
is found, it is removed from the list
along with the succeeding element.
Removal is accomplished as described in
BEI'lFLAG< The value of BEMPBOP is NIL.

(see section 6.2.2)

This function is used in the P80G teature.
RETURN is the normal end of a program. The
argument of RETURN is evaluated and this is
the value of the program. No further
statements are executed.

REVERSE causes the top level of list to be
reversed. Thus, REVERSE ((A (B • C») =
«(Ii • C) A)"

RLI~ takes a character-object as an
argument and puts the corresponding
character into an internal character buffer.

22

• RNUMB(ch)

RPLACA (xl,x2)

RPLACD (x1 ,x2)

C SELECT(g. (g1 x1), ••• ,
(gn xn) .x)

SET(x1 g x2)

C SETC(x1.x2~x3)

SETQ (x1wx2)

N SPEAK()

Executing RLIT sequentially will cause a
string of characters to be constructed in
the character buffer. MKATOM can then be
called to make a literal atom out of it.

RNUMB takes one of these characteL-objects
as an argument: +, -, E, 0,. 1, 2, ••• , 9.
RNUMB will construct a partially translated
number in the internal character buffer.
Remember that the character-objects 0, 1,
2, .•• , 9 are different from the numbers 0,
1, 2, ••• , 9. The sequence of character­
objects presented to RNUMB v one at a time,
must represent a meaningful integer or
floating-point number. MKATOM can then
be called to make a numeric atom out of
the information in the character buffer.

RPLACA replacEs the CAR of the LISP cell xl
with x2. This provides a method of
changing list structures without using
CONS, and thus creating no new LISP cells.
The value is the new x which can be
describEd as CONS (x2 (CDR (x1» .

BPLACD replaces the CDR of the LISP cell
x1 with x2, as described in RPLACA. The
value is the new x which can be described
by CO N S ((C A R x 1) x 2) •

SASSOC searches alst, which is a list of
dotted pairs, for the pair WhOSE flrst
element is equal to x. If such a pair is
found, the value of the function is this
pair. otherwise the value is the function
of no arguments, fn.

This function is used internally by the
compiler.

The value of x1 is bound to the value of
x2 on the current association list. The
value is the value of x2.

This function is used internally by the
compiler.

SETQ is like SET except that the first
argument is quoted (not evaluated) •

SPEAK gives the number of CONS function
calls since the CONS counter was last reset.

23

C SPECIAL (list)

SUBLIS (alstvx)

SUB1 (n)

TERPRII[

TIMES (n 1 ~ ••• ,nn)

TRACE(list)

T TREAD{X)

TTAB (n)

C UNCOMMON(list)

N UNCOUNT ()

C UNSPFCIAL(list)

UNTRACE (list)

V ERBOS (p)

N WRS(ddname)

(see section 7.2.3)

llst is a list of dotted pairs,
((uLv1) (\12.112) ".~ (un.vn). The value
of SUBLIS is the result of substltuting
each v1 fOL the corresponding u1 in x.

The value of SUBST is the result of
substituting xl for all occurrences at
the S-expression x2 in the S-expression x3.

This function terminates the pr~nt l~ne.

The value of T10ES is the product of the
arcplruentso

The argument of TRACE is a list or funct1ons.
After TRACE has been executed, the arguments
and values of these functions are printed
eaeil t} ItIf! 'lhe f',;:mction is enter.ed. The
val~~ 0t TRACE is NIL.

(sep SectlOl1 9)

TTAB moves the current output cursor to
the nth position in the output buffer.
Whatever 15 PRINTed next will appear
starting at the given celumn.

(see section 103.2)

ONCOUNT turns off the CONS counter.

(see section "7;3. 2)

This function Lemoves TRACEing tram all
functions 1D the list. The value of
UNTRACE is NIL.

Vlmnn:j ,-CdiLlOLs the printing of garbage
collection mes~32Lg(?S," VERBOS (NIL) turns
off the me~;sages and VERBOS(T) turns the
messages 00. The value of VERBOS is NIL.

(see ~~ection 60 'i" 5)

24

XTAB (n)

ZEROP (n)

XTAB moves the current output cursor 'n'
characters to the right. The argument
must be a positive integer. Whatever is
PRINTed next will appear starting In'
columns to the right of the end of
whatever was last printed (using PRIN1) •

ZEROP takes a number for its argument.
It returns T if the absolute value of
its argument is less than 10**-6, and
NIL otherwise.

Several atoms have predefined values (APVALS) in LISP/3bO. These
atoms and their corresponding values are as follows:

ALIST
BLANK
BPS

COMMA
DASH
DOLLAR
EQSIGN
F
LPAR
NIL
OBLIST
PERIOD
PLUSS
RPAR
SLASH
STAR
T

association list
blank
start and end of binary program space
(see Section 7.2)
,

$

=
NIL
(
NIL
object list

+
)

/
*
T

25

3.3 ~h£I££ter-objQ~ts

The following character-objects are defined in the system.

blank { X 4

A + $ y 5

B * Z 6

c & unprintable 7

D J ; , 8

E K -. % 9

F L

G M I > #

H N S ? iiJ

I 0 T 0

It P U 1 =

Q V 2 11

< R W 3

The 'unprintable' character has no graphic symbol on the printer.
Its punched card code is 12-11. READCH will translate anyone of the
256 characters available on the IBM System/360 into one of the above­
mentioned 64 character-objects. Lower-case letters are translated
into upper-case letters. Note that READ does not perform this
translation.

26

In LISP/360 there exist special differences of which the user
should be aware.

Several differences pertain to numbers:

1. Fixed-point numbers may have absolute values up to
2**31.

2. Floating-point numbers may have absolute values
between 10**75 and 10**(-75), including O.

3. Floating-point significance on input is 6 digits.

4. Numbers are considered equal if the absolute value
of their difference is less than 10**(-6).

5. Signs are ignored in reading logical numbers.

Some other differences refer to atoms, control cards, and
several functions:

1. Alphanumeric atoms in LISP/360 may have up to 80
characters.

2. CAR of an atom is not junk as in LISP 1.5, but the
address of the full cell list of that atom.

3. No control cards of any type exist in LISP/360.

4. If a PRINT is executed after PRIN1, the list generated
by PRINT follows the data output by PRIN1.

5. GO can only be given atomic labels.

6. READ ignores extra right parentheses.

27

LISP statements can be written with a free-field format in columns
1-72. The following control statements are necessary to run the LISP
program:

II JOB Statement
1* KEY Statement (omit for remote jobs)
Iistepname EXEC PGM=LISP
IILISPOUT DD SYSOUT=A
IILISPIN DD *

LISP Program

1*

Additionally, DD statements for using the compiler may be included.
An example of these statements is given in section 7.3.1.

The user may also specify the percentages for allocation of core
between free cell storage and binary program space (BPS) 1.D the PARM
field of the execute statement. The following statement

Iistepname EXEC PGM=LISP,PARM='F=66'

will cause 66 percent of the core available for the run to be
allocated to fre2 cell storage and 34 percent of the core to be
allocated to BPS. The statement

Iistepname EXEC PGM=LISP,PAR~='B=34'

will cause the same allocations to be made. If the user specifies
both parameters, the 'B' parameter will take precedence. The default
values are F=66 (B=34). Thus, if a user is running interpreted LISP
only and is not using the compiler, 'B=O' will give the user
considerably more core than the default values.

If the user RESTORE's from any file (including the compiler), the
values specified in the PARM field are overridden by the values
specified when that file was created. In this case, the F and B
options of the PARM field are meaningless.

One additional PARM field entry may be made to indicate the amount of
core to be reserved by the system for opening and closing files. The
statement

Iistepname EXEC PGM=LISP,PARM='R=8K'

will cause 8*1024 bytes to be reservpd for as OPEN's and CLOSE's.
This parameter may also be specified without the 'K'. For example,
R=7000 will reserve 7000 bytes. The default value for 'R' is 8K.

28

LISP/360 can read or write data sets on any OS/360 supported device
with the aid of the functions OPEN, CLOSE, WRS, and RDS. The
handling of its buffers can be modified by the functions ASA, INLL,
and OTLL. It is assumed in the following paragraphs that the reader
has a working knowledge of OS/360 Data Management.

All data sets must be 'opened' by the function OPEN before tbey dre
used. A DD statement is used to dEfine the data set and OPEN uses the
ddname in the stat~ment to refer to the data set. The ddoame is the
argument of OPEN. The record length (LRECL), blocksize (BLKSIZE) and
.. he t h? r or not the record's fir st character is a can trol char acter (A)
can be specified in the second argument of OPEN. The thira argu~ent
of OPEN specifies whether the data set is to be used for input (INPUT)
or out put (OUTPUT).

The following is an example of the opening of the data set deflned by
the DD statement named DATA:

OPEN {DATA «LRECL • 100) (BLKSIZE • 1000) (A)) OUTPUT)

The spcond dnd third arguments of this OPEN indicate that the data
set has a recorrt length of 100 bytes, a block size of 1000 bytes, that
the first character in each record is a control character, and that
the data set is to be used for output. The record length and
the blocksize can be given in the DD statement instead of in OPEN.
All other DCB parameters are fixed by OPEN and they cannot be changed
by the LISP user. The record format is set to fixed blocked (FB),
and th~ '?rror option (EROPT) is 'accept' (ACe) on input and 'skip'
(SKP) on output.

The three rldnames LISPIN, LISPOUT, and LISPUNCH are given spEcial
significance in OPEN. LISPIN and LISPOUT are opened automatlcally by
the intpLpreter dnd therefore need not be OPENed. The second and third
arguments are impli2d by LISPONCH, and are therefore ignored when OPEN
is given LISPUNCH as its first argument. LISPUNCH implies a record
length of 80 bytes~ a blocksize of 80 bytes, that the first character
1n each record is data and not a control character, and that the data
set 15 to be used for output.

One of the atoms SYSIN, SYSOOT, SYSPUNCH and SYSFILE may be used as
the second argument of OPEN.

SYSIN implies a record length of 80 bytes, a blocksize of 80 bytes,
and that the data set will be used for input.

29

SYSOUT implies a record length of 133 bytes, a blocksize of 665
bytes, that the first character in each record is a control
character, and that the data set will be used for output.

SYSPUNCH implies a record length of 80 bytes, a blocksize of 80
bytes, and that the data set will be used for output.

SYSFILE implies a recanl length of 80 bytes and a blocksize of
1600 bytes. SYSFILE should be specified for all data sets used
by CHKPOINT or RESTORE.

OPEN puts an APVAL on the atom which is the filename w with a pointer
to the DCB for that file.

All data sets should be 'closed' by the function CLOSE after use.
CLOSE takes as its argument the ddname in the DD statement that
defines the data set. The two ddnames LISPIN and LISPOUT refer to
data sets that remain open throughout a LISP job. LISPIN and LISPOUT
cannot be closed by CLOSE. They are, however, closed automatically
at the end of a LISP job.

6.1.3 !~!J£L

A control character 1S normally prefixed to all output records
produced by LISP/360. Executing ASA (NIL) stops the prefixing of
control characters. This is useful when LISP/360 is used to produce
output that will be input to LISP/360 later on. Executing ASA(T)
will cause LISP/360 to start prefixing control characters again.

6 • 1 • 4 Q1~!d!!.1.

For In' in the range 0 < n < 120, OTLL (out-line-length) specifies
how many character positions LISP/360 can use in Each output record.
After OTLL(n) has been ~valuated, LISP/360 will fill in exactly In'
positions in each output record. Whenever necessary, atoms will be
split across two output records so that precisely In' positions are
filled in each output record. This is useful when LISP/360 1S used
to produce output that will be input to LISP/360 later on. In a few
cases, OTLL is called automatically by WRS.

W R S (w r i t e - s e 1 e c t) is a n 0 u t put d ire c tin g f un c t ion t hat t ak e s as its
argument the ddname from the DD statement that defines the desired
output data set. All output from LISP/360 will go to the data set
associated with the ddname after WRS{ddname) has been executed. The
two ddnames LISPOUT and LIS PUNCH are given special significance in

30

...

WRS. In addi tien to directing the output to LISPO(JT, executing
WRS(LISPOUT) will have an effect similar to executing ASA~) and
OTLL(100). similarly, in addition to directing the output to
LISPUNCH, executing WRS (LISPUNCH) will have an effect similar to
executing ASA (NIL) and OTLL (12). For all other files, the user must
call OTLL explicitly - it does not occur automatically. WRS will
open LISPUNCH if it is not already opened. A data set produced by
PRINT when LISPUNCH was write selected (Le., WRS (LISPUNCH» is in
SYSIN format.

6. 1 • 6 JJ!1!dnl..

INLL (in-line-length) specifies how many character positions LISP/360
should scan in each input record. This is useful when LISP/360 is
required to read data sets that are not in SYSIN format.

RDS (read-select) is an input selecting function that takes as its
argument the ddname from the DD statement that defines the desired
input data set. All input to LISP/360 will be taken from the data
set associated with the ddname after RDS(ddname) has been executed.
The ddname LISPIN is given special significance in RDS. In addition
to selecting input from LISPIN, executing RDS(LISPIN) will have an
effect similar to executing INLL(72). For all other files, the
user must call INLL explicitly.

31

Free cell storage (FCS) and binary program space (BPS) can be saved
at any time by executing CHKPOINT. By executing RESTORE, free cell
storage and binary program space can then be reset to the state they
were in when saved. CHKPOINT and RESTORE should only use data sets
that were opened by using the DCB parameter SYSFILE.

Execution of CHKPOINT(ddname) will cause free cell storage and binary
program space to be written into the data set associated with the
ddname. only the data sets associated with LISPIN, LISPOUT, LISPONCH
and the ddname given as an argument to CHKPOINT should be open when
CHKPOINT is executed.

Execution of RESTORE(ddname) will cause free cell storage and binary
program space to be overwritten by the contents of the data set
associated with the ddname. RESTORE will check whether the data set
is compatible with the LISP system that executes RESTORE. Ouly the
data sets associated with LISPIN, LISPOUT, LISPUNCH and the ddname
given as an argument to RESTORE should be open when RESTORE is
executEd.

BPSCHKPT (ddname) is essEntially the same as CHKPOINT (ddname) except
that only the binary program space is saved.

BPSRESTR(ddname) reads back into core the data set which was created
by BPSCHKPT (ddname) .

BPSCHKPT and BPSRESTR make it possible to define multiple BPS areas
with different functions in them (using some of the auxiliary
functions defined in the next section). Essentially, this means
that there is an infinite amount of BPS if th~:! LISP program can be
segmented to use compiled functions in logically distinct blocks.

The user is cautioned in using BPSRESTR for two reasons:

1. SUBR pointers in function names are not removed, even if
the function is overwritten.

2. BPSRESTR of a function can only be done where free cell
storage contains the definition compilation of that
function. This is because no maintenance is done on the
linkage between free cell storage and binary program space.

32

Use of the LISP assembler (LAP) and compiler can decrease the running
time of a LISP program (formerly run interpretively) by a tactor of
from eight to twelve depending on the particular application. How­
ever, the theoretical differences between compilers and interpreters
impose certain restrictions on what can be compiled. These restr1c­
tions are easily bypassed and are mentioned in the following text
so that the user will be aware of them as they arise.

The compiler itself calls the LISP assembler so that once a tunction
is compiled it is immediately available for execution. LAP was
written to resemble closely the as assembler language on the IBM
system/360, with certain modifications. It should be remembered that
LAP is not only used by the compiler, but may be used independently by

the LISP user.

Of the instructions available in the as assembler languag~ the
following have been omitted from LAP:

Set Progr am Mask (S PM)
Te st I/O (TIO)
Test and Set (TS)
Read Direct {RDD}
Se t storage Key (S S K)
SuperviEor Call (SVC)

Set system Mask (SSM)
start I/O (SIO)
Test Channel (TCH)
write Direct (WRD)
Insert stora.ge Key (ISK)

While these instructions are not directly available, they still may
be gen er ated by use of the 'Def ine Consta nt' (DC) instruction. Also,
no extended mnemonics are available. All sixteen of the registers
are available in LAP, but they must be referenced with an R prefix,
i.e., RO, R1, ••• , R14, R15. In addition, thE~ user may refer to
registers R8, R9, and R10 as A, Q, and M, respectively; R5 as NILR;
R4 as K4; R15 as PDL; and R7 as PDS. These aliaEes will become
clear as LAP is described.

The major difference between LAP and as assembler language is the
availability of QUOTE cells and SPECIAL cells. These cells are
assembled as pointers to the particular quantities they represent.
Care must be taken in using QUOTE and SPECIAL cells. Examples are
included in this section that illustrate the use of these cells.
Also, macros have been prepared to aid in their use.

'Define Constant' and 'Address constant' are defined in LAP in a
limited form. They may appear as (DC -logical number-) or
(AC -s-expression-). No duplication factors or variations are
allowed. AC is assembled as the address of the atom minus the

33

address of NIL. As the garbage collector has no way of knowlng
about internals of compiled functions, the expression must be an
atom on the OBLIST to prevent it from being collected.

DC's and AC'S must be on fullvord boundaries and this is
done in LAP by assembling a NO-OP in front of the constants, if
necessary. If the user desires other instructions on fullvord
boundaries, he may specify (CNOP) which inserts a halfword NO-OP
instruction (BeR RO RO), if necessary, to put the next instruction on
a fullword boundary. Also, a reference to an 'immediate' field, such
as an MYI, can only be a logical (hexadecimal) number. For example,
(MYI 4(R1), OBX).

There is no indirect referencing in LAP. The use of * or *+4, etc.,
~e.g., LA *+4 or LA NAM+4) is not allowed. All locations referenced
must be labeled at the point of reference.

LAP is invoked by calling the routine LAP360. It takes two arguments.
The first is a list of LAP instructions, the second is a list of
dotted pairs representing an initial symbol table or NIL (usually
NIL). The first member of the first argument is a list of three
elements -- first, the name of the routine being defined; second, the
type of function (either SUBR or FSUBR); and the third, the number
of arguments. After this member comes the rest of the instructions,
each enclosed in parentheses.

Any technique can be USEd for passing arguments between two user
defined routines. However, since it is sometimes necessary to
communicate with the interpreter routines, the fellowing scheme is
preferred as it is the method used by the interpreter. As for the
actual call to another routine (once the arguments are established),
this is done by the macro *LINK which will be described later.

If there is only one argument, it is passed in register A (alias for
R8). If th ere are two arguments, they are passed in A and Q (aliases
for R8 and R9). If there are more than two arguments (up to a maximum
of twenty-two), there is a reserved area in core twenty words long
called ARGS in which the user can place the third, fourth, ~tc.,
arguments. ARGS may not be referenced directly, but its address is
permanently located at eight bytes past R12. Therefore, to store the
contents of RO as the third argument, code

(L M 8(RO R12» (ST RO O(RO M»

The value of a function is always returned in register A.

34

Although all registers have been defined as usable, care must be taken
in the use of some of them. The following describes those of special
intere st:

R3

R5 (N ILR)

R15

R8, R9 (A,Q)

R10 (M)

R4 (K4)

R7 (PDS)

R6

- is used as a base register to cover the extent of
the LAP routine.

- contains NIL and should never be altered from that
value. It may be used to store NIL in locations
or to load other registers with NIL.

- is the temporary pointer to the push-dowu list
for compiled code.

as mentioned above, are used for passing
arguments. These registers may be used treely
in routines and need not be restored.

- is completely free for any general use.

- contains the number 4. It may be used locally but
must be restored outside the scope of the
immediate routine.

- has meaning only for the compiler and may
be used freely in LAP. It must be restored
if it is used in conjunction with the
compiler.

- points to the next available free cell.
should never be changed.

It

R11, R12, R13 - are used as base registers for the interpreter.
They must be restored.

RO, R1, R2, R14- are completely free for general use.

It should never be assumed that any free register will be saved when
calling another function, even between two LAP defined user routines.

35

7.1.4 .tl~£ros

Macros may be defined for LAP by doing a DEFLIST of a LAMBDA
• ef ini tion wi th the propert y MC. The LAM EDA def i ni tion must ha ve
one argument which will become a list of the arguments to the
macro. The value of the macro should be a list of instructions to
be inserted. For example:

DEFLIST («*SAVE (LAMBDA (x) (LIST (CONS (QUOTE ST) (CONS (CAR X)

(QUOTE (0 (R7»») (QUOTE (BXH R7 K4 0 (R12»»»)MC)

Then the instruction (*SAVE R15) becomes

(ST R15 0 (R7»
(BXH R7 K4 0 (R12»

Macros may be givEn any name that thE user desires, except, of course,
it cannot be the same as a valid instruction mnemonic. The system
defined macros all begin with '*' for ease of recognition.

(*SAVE Rx)

(*UNSA v-.. Ry)

- saves register x on an internal push­
down stack. It should be used with
care.

- pops up the top item on the stack and
stores it in register y.

(*SAVE Rx) and (*UNSAVE Ry) are used principally in recursivE:: functions.

(*LOAD Rx (QUOTE ••• »

(*LOAD Rx (SPECIAL Z»

(*STOR E Rx (SPECIAL Z»

- is used to load QUOTE cells. QUOTE
cells are in core relative to NIL.
Therefore, this macro expands to

(L Rx (QUOTE ••• »
(AR Rx NILR)

- is used for loading SPECIAL cells.
The macro expands to

(L Rx (SPECIII.L Z»
(L Rx 0 (NILR Rx»

- is used for storing SPECIAL cells.
The macro expands to

(L M (S PEe I AL Z)}
(ST Rx 0 (NILR M»

36

•

(*RETURN NIL)

(*LINK FN i)

Note:
macro.

M is changed when using this

- is used to exit a LAP routine. This
macro branches to a particular place
in the interpreter. It expands to

(BC 15 48 (RO R12»

Note: *RETURN is the only way to
end a LAP routine. 'Falling through
the end' of a routine is incorrect.

- is used to call function FN with Ii'
arguments.

Two other macros, *MOVE and *REMOVE are used principally by the
compiler and will be described in that section •

37

Define SETC such that {SETC X «A,l) (X,2) (y,L}) 7) modiflt:S the
second argument to ({A, 1) (X,7) (Y,L», i.e'/I if the second argument
is the ALIST, we are changing the binding of variable x.

LAP360 (((SETe SUER 3) 1.
(L [1 8(RO R12» 2.
(L RO O(RO M)) 3.
(ST RO TEMP) 4.
(ST NILR 0 (RO M» 5.
(*LINK SASSOC 3) 6.
(L RO TEMP) 7.
(ST RO 4(RO A}) 8.
(*RETURN NIL) 9.

TEMP (DC OX) "10.
} NIL) '11.

Explanation:

1. Defines SETC as a SUER with 3 arguments.

2. picks up the address of ARGS to find the 3rd argument.

3. Puts 3rd argument in RO.

4. Stores RO in temporary location.

5. sets 3rd argument to NIL.

6. Calls SASSOC which has the same first two arguments as does
SETC, hence they remain in A and Q and SASSOC's third
argument remains in NIL for this case. SASSOC wiil Ieturn a
pointer to the dotted pair whose CAR contains the first
argument.

7. picks up the saved value in RO (this was SETC's 3rd argument),

8. and stores it in CDR of the dotted pair.

9. REturns from the functions. Note that SETC's value 1S the
dotted pair since that is what is in A.

10. Definition of the temporary location.

11. Closes the routine with NIL in the symbol table.

It should be pointed out here that the value of LAP360 is the
final symbol table of local labels relative to the beginning ot
the routine in bytes -- hence, in the above example, LAP360 returns
«TEMP.24X» -- assume that *LINK takes 8 bytes.

38

An area is set aside for binary programs produced by LAP. The
size of this area is set when LISP/360 is assembled. However, the
a~ea may be eliminated by calling the function BPSZ which increases
free cell storage. The atom BPS has two pointers indicating how much
binary Frogram space is available at any given memento

The atem BPS mentioned above is slightly different from most dtoms as
is indicated in Figure 8.

, , 1 :
J :

\bi t 0

B P s

,bltS 32-34

\ I /

011V~

I :

1
APVAl

,

i
: /1
~/~ I

!~' , I

I I
I I
l I

.---_--L-.----.--------.j
ADDRl ADDR2

Figure 8: The Atom BPS

ADDR1 and ADDR2 are pointers to the beginning and the end of binary
program space, respectively.

39

I

I

The function COMPILE takes as its argument a list of function names
which are EXPR's or FEXPR's. It compiles code in BPS for those
functions and replaces the EXPR or FEXPR with an appropriate SUBR or
FSUBR property. It returns the list of function names. Functions
to be compiled are restricted as follows:

1. GO statements ~ithin PROG2's are not allowed.

2. GO statements within COND's which are within COND's are
not allowed.

3. Free variables must be declared SPECIAL before compllat~oil.
A function called SPECIAL (defined in section 7.3.2) can
be used for this purpose.

4. Variables used which communicate with the interpreter
must be declared COMMON before compilation. A function
called COMMON (defined in section 7.3.2) can be used
for this purpose.

Once compiled, the function is called exactly as it would have been
called before compilation.

The following control statements should be used to access the
compiler:

II JOB Statement
1* KEY statement (omit for remote jobs)
Iistepname EXEC PGM=LISP
IILISPOUT DD SYSOUT=~
IICMPL DD DSN=SYS3.LISPCMPL,DISP=OLD
IILISPIN DD *

OPEN (CMPL SYSFILE INPUT)
RESTORE(CMPL)
CLOSE (CMPL)

LISP Program

1*

40

BPSLEFT()

BPSMOVE (n)

BPSUSED (p)

EPSWIPE (fn)

BPSZ()

COMMON (list)
UNCOMMON (list)

EXCISE (p)

- returns as its value an integer indicatLng the
number of words remaining in BPS.

- provides the ability to move the current BPS to
within In' words of the end of all BPS. The space
vacated is returned to fD=e cell storage. 'n'
must be greater than six and less than the current
amount of binary program space left.

- takes one argument. If p is true, LAP and the
compiler will print the size of the program
compiled. BPSUSED(NIL) turns off this m~ssase.

- takes as its argument the name of an FSUBR or
SUBR previously compiled using the COJl'lPILE runc­
tiona For example, EPSWIPE (ARGNAME) would cause
all functions which have been compiled SLDce
ARGNAME and including ARGNAME to be erased from
EPS. The next function compiled after BPS~IPE
has been called will be located in BPS in the
same space in which ARGN1ME had been compiled and
future compiled functions will follow it.

The use of this function is two-fold. FLrst, it
can be used for functions whose use is short­
lived enabling them to be erased after some point
in the run. Secondly, it can be used Ln conjunc­
tion with the routine BPSCHKPT to create multiple
BPS files. Since these BPSCHKPT files may come
into use at various times in the run, the SUBR
pointers are never destroyed. Therefore, the user
must be sure that the function he calls doe~
exist in his current BPS. If not, erroneous
r~sults will occur.

- takes no arguments. Returns all BPS to free cell
storage (for jobs requiring a lot of free cell
storage and not needing the compiler or LAP).

- takes a list of variables as arguments and gives
or takes away the property 'common' for €ach of
them.

- takes one argument. If the argument is NIL, the
compiler is EXCISED and the ~pace added to free
cell storage. If the argument is true, the
compiler and LAP are EXCISED. The user may call
EXCISE twice. For example,

EXCISE (NIL) EXCISE (T)

41

...
OP'l.'I MI ZE (p)

OVOFF ()

ova N ()

PRINLAP(p)

SPECIAL (list)
UNSPECIAL(list)

- takes one argument. If the argument is T,
the function causes optimization of com~lled
code. However, it does slow down the compllation
process. OPTIMIZE (NIL) is the defaul t.

- takes no arguments. In compiling, a tYPt-8
overflow or underflow error may occur frequently.
This is not an error, but OVOFF will stop the
message from printing.

- takes no arguments. This function restores the
overflow message.

- takes one argument. If the argument is true,
the LAP produced by the compiler will be printed.

- takes a list of variables as arguments and gives
or takes away the property 'special' for each of
them.

If the user wishes to see the code produced by a compiled function he
can do this by saying PBINLAP~) before the compilation. Two
compiler macros *MOVE and *REMOVE will be noticeable in a~ compiled
routines. These macros set up and restore the push-down list upon
entering and leaving the routines. The user will also notice many
BAL's to a number of bytes past 812. This area contains interpreter
defined routines to handle SPECIAL, CO~MON and FUNCTIONAL arguments.

42

The following table is a list of the names of the routines uS8d by
the compiler and assembler. Care should be taken in uSlng routines
with the same names as these, for if they are redefined by the user,
the compilor will call the wrong routine. Where indicated, ~he
'* , and '**' are part of the atom's name.

COMMON * ASSEMBLE * PAL AM -
COMPILE * ATTACH * PASSONE

COMl * CALL * PAl - -
CONC * _CEQ * PA2 -
MAP * CHCOMP * PA3
MAPCON * COM2 * PA4 -
OPTIMIZE :4< COMBOOL * PA5 -
OVOFF * COMCOND * PA6 -
aVON * CCMLIS * PA7 - -
SEL ECT * COMP * PA8 -
SPEcr AL * COMPACT * PA9 -
UNCOMMON * COMPLY * PA 11 -
UNSPECIAL * COMPROG * £>A12 - -
**CALL * COMVAL * PA14 -
**COMCOND * DELETEL * PHASE2

- -
**COMPLY * 1ABLER * PIl -
**CCMPROG * LAC * PROGITER

-
**PAFORMl * LAP)60 * 1'12 -
**PAl * LOCAL * P13 - -
**PHASE2 * LOCATE * _QSET -
**s PECIAL * LONG * (2TC1 -
**UNSPECIAL * LOOK * HEGSET

- -
* OPTFN * 5PCL --
* PAFORM * STORE -
* PAFORMl -
* PAIRMAP

43

...

Garbage collection refers to the process by which currently unused
LISP cells in FCS are returned to the free cell list. The process
is initiated whenever the free cell list is empty.

The first phase invclves marking within the confines of the free
cell storage area all LISP cells which are in use as part of some
list structure. The group of pointers in the LISP system which
reference all active data structures are referred to as base
pointers. For each base pointer, the system starts with the LISP
cell pointed to by the base pointer and marks all LISP cells
reached by chaining through the CAR part or the CDR part ~oth
recursively) • All cells having an address within the free cell
storage area are marked by turning on bit 0 of the CDR part of
the cell. Fullword cells are detected and only their CDR parts
are chained through. Cells on common sublists which have already
been marked are chained through only once.

The second phase consists of collecting all unused cells and
placing them on the free word list. The free cell storage is now
traversed linearly. Each cell which is marked has its mark bit
turned off. Each cell which is unmarked is placed on the free
cell storage list, and the number of cells thus collected is
counted.

44

To use the ORVYL version of LISP, the user must be familiar with the
Stanford time-sharing system and with the iYLBUR text-editing
facilities.

Once the user has logged on, typing the word LISP in response to a
COMMAND? prompt will cause the message 'ENTERING STANFORD/LISP' to be
typed. The user is then ready to start a LISP session. The commands
which are available are the following:

1. DO <range>

2. GO

3. SET LONG
SHORT
NONE

4. EVQ

5. EX IT

This command causes the <range> indicatEd to be
executed. <range) can be any valid WYLBU~ rang8
(e.g., DO ALL, DO 10/LAST, DO 5, etc.). The
program to be executed must reside in the ~YLBUR
working data set.

This command causes execution to be continued atter
an interrupt which was caused by hitting the
attention key.

When eXEcuting a function, LISP will prl.nt the
following if LONG is in effect:

ARGS

VAL

<name of function>
<list of arguments>

<resulting value of function)

If the SHORT option is in effect, only the resulting
valuE of the function will be printed.

If NONE is in effect, none of the above will be
printed and the only output to the terminal will be
from a user call to the PRINT function.

SET LONG is the default option.

This command provides an immediate mode of
execution. For exam~le, if thE user types

EVQ (AR«A B)) CDR«B C»

thesE two functions will be evaluated immediately
as opposed to being executed by a DO command and
existing in the WYLBUR data set.

This command terminates the LISP session.

45

To facilitate I/O to the terminal, a function called TREAD is
availablE to permit dynamic reading of data from the terminal.
TREAD is defined as follows:

TREAD(NIL)

TREAD (T)

TREAD(O)

will prompt an 'I' and read one s-expression from
the terminal. This S-expression will become the
value of the TREAD function.

assumes that the user has pn~viously executed the
function PRIN1. The argument of PRIN1 will then
become the prompt in place of the 'I'.
is a dummy call to TREAD which initializes the
input buffer so that the next TREAD will read
from a newly prompted line.

As is implied above, more than one S-expression may be tYFed on an
input prompted line and successive use of TREAD will read these
expressions consecutively (unless there is an intermittent TREAD(O».

The time-shared version of LISP has
checkpoint and restore facilities.
pertaining to these features do not
version. This also applies for the
certain other functions which would
time-shared environment.

no file I/O capabilities or
Therefore, all funct10ns
exist in the time-shared
compiler, as well as for
have no meaning in the

One additional feature is the use of the character-object I>' to
indicate 'put enough right parentheses to balance the left parentheses
up to this point'. For example,

CAR««(X Y»»)

may be written as

CAR««(X Y>

To use ,>, for other purposes, use $$$>$.

46

The following is an example of a simple LISP prog~am using the time­
shared LISP system available on the 360/67 at stanford. The program
finds the last element of a list. Text typed in all upper case letters
indicates system responses and prompts. Lower case letters have been
used to indicate information typed by the user.

STANFORD 33 10/18/71 12:06:34
NAME? 'w. woodpecker'
ACCOUNT? III ••
KEYWORD? III
TER rUN AL? pOO
COMMAND? set terse

? lisp
:ENTERING STANFORD/LISP

? collect 10 10 by
10. ? define« (last (lambda (1)

20. ? (cond ((null 1) nil)

30. ? { (null cdr 1»

4 o. ? (t (last (cdr

50. ?) »)
60. ? ATTN***

? do all

ARGS

(car 1))

1))))

DEFINE
(((L AS T {L AM B D A (L) (C 0 N D « NUL L L) NIL) (I: NUL LCD R L» (C A R L»
(T (LAST (CDR L»»»)

VAL
(LA ST)

? evq last« abc d € g h j kIm n p q r s»

ARGS
LAST
«A BCD E G H J K L M N P Q R S»

*** A8-UNDEFINED VARIABLE
* CDR * «L ABC D E G H J K L M N P Q R S»

*** TRACE-BACK FOLLO~S

* NIL
* «L ABC D E G H J K L M N P Q R S»
* (CDR L)
* NULL
* «L ABC D E G H J K L M N P Q R S»
* «L ABC D E G H J K L M N P Q R S»
* «(NULL CDR L» (CAR L»
* «((NULL L) NIL) «NULL CDR L» (CAR L»

47

? mod 30
30. (NULL CDR L» (CAR L))

i (ALTERS ?
30. ((NULL (CDR L» (CAR L))

ALTERS ? cr

? do all

ARGS
DEFINE
« (LAST (LAMBDA (L) (COND «NULL L) NIL) «NULL (CDR L» (CAR L»
(T (LAST (CDR L»»»»

VAL
(LAST)

? evg last«a bed e g h j k 1 m n p g r s»)

ARGS
LAST
«A BCD E G H J K L M N P Q R S»

VAL
S

? set short
1 evg last«z y x w v u t s r q d a»

A

? logoff
EDITING TIME = 0.06 SECONDS
COMPUTE TIME = 2.06 SECONDS
MEMORY USAGE = 92.14 PAGE-SECONDS
I/O ACTIVITY = 0 UNITS
ELAPSED TIME = 00:04:36
END OF SESSION

48

The meEsage 'ARGUMENTS FOR EVALQUOTE •••• and the two S-expressions in
the last doublet are always printed before entering EVALQUOTE.

If no errors occur during the evaluation of the doublet, the message
'TIME xxxxMS, VALUE IS ••.• and the value of EVALQUOTE for this
doublet are printed upon return from EVALQUOTE. The time indicated in
the above message gives the time spent in EVALQUOTE not including time
spent in garbage collection. The time is in milliseconds.

Tracing is controlled by the pseudo-function TRACE, whose argument is
a list of functions to be traced. After TRACE has been executed,
tracing will occur whenever these functions are entered. However,
because of the nature of the linkage between compiled functions,
once a call by a compiled function to a com~iled function has
been executed untraced, it can never be traced again.

The trace-handler prints out the name of a function and a list of its
arguments when it is entered, and its name and value when it is
finished unless that function is a FEXPR or a FSUBR. When
tracing of certain functions is no longer desired, it can be
terminated by the pseudo-function UNTRACE whose argument is a
list of functions that are no longer to be traced.

The message 'COLLECTED xxxxx CELLS AND STACK HAS xxxx UNITS LEFT' is
printtd after every garbage collection. The message gives an
indication of the amount of free cell storage freed, and the size
of the push-down stack at each garbage collection. The printing
of this message can be controlled by the function VERBOSe

An interrupt supervisor takes care of all program interruptions in
LISP/360. See the IBM manual ~y§temL360_PrinciEles_of QEer~.t.ioQ. for
information about system/360 interruptions. The program status word
(PS~), the contents of registers 0-15 and the message '***ERROR: CAR

TAKEN OF FULLCELL' are printed if the interruption code is 1 to 7.
A t race- bac k is t h",n given of the same type as dlescr ibed in Sect ion
10.5.2. This type of interruption is usually caused by indiscriminate
use of CAR and CDR past the atomic level. The execution of the doublet

49

that caused the interruption is halted and a new doublet is read in for
evaluation. Note that many functions (EQUAL, etc.) which chain
through the CDR of lists do not check for the full cell mark. Thus,
if these functions are applied to the CAR of an atom or a property
list which contains an FSUBR or SUBR, this type of interruption can
occur. Additionally, this type of interruption can occur during
the trace-back of another error.

An interruption code of 8 to F means
occurred. This type ot interruption
UNDERFLOW OF TYPE xx' to be printed.
Execution of the function that caused
resumed after the interruption.

that an overflow or underflow
causes the message '***OVER- OR

xx is the interruption code.
the overflew or underflow is

If the scanner finds syntactical errors in an s-expression, it inserts
special atoms at appropriate places in the S-exp:ession. These
special atoms are used as fellows:

ERRB

DOTERR1

DOTERR2

A '.' (dot) encountered as the first non-blank
character after a '('.

The second s-expression in a dotted pair is not
followed by a right parenthesis.

A '.' or ')' encountered as the first non-blank
character after a dot.

The message '***R1-SYNTAX ERROR' precedes the printing of the
S-expression with the error. A doublet containiIg one or more
syntactical errors causes the following message to appear '***ERRORS
ENCOUNTERED WHILE READING. CONTINUING WITH NEXT DOUBLET' and
evaluation of the doublet is skipped.

50

When an error occurs during execution, the following type of error
diagnostic is printed:

***error code-error message
S-expression 1
S-expression 2

***TRACE-BACK FOLLOWS
S-expression 3

s-expressions 1 and 2 are related to the type of error encountered
and are described below with the error messages. The trace-back
includes the lists bound on the stack at the timE! the error occurred.

The most recently used list in the stack (the list on top) is printed
first. Therefore, the first few lists will usually give a good
indication of what causEd the error.

As an example, assume that none of the functions being interpreted are
using the PROG-feature and that TRACE has not been executed. Under
these conditions, the lists bound on the stack will be alternately
function calls and association lists. When reading the stack,
the user should keep in mind that the innermost functions are
evaluated first, even though the functions are interpreted from the
outside in. Therefore, the calIon the function being evaluated when
the error occurred will be near the top of the stack, if the call to
that function is being interpreted.

If TRACE is executed within a LISP job, the name of an EXPR that was
called will be found on the stack between the definition of the EXPR
and the corresponding association list. If a function using the PROG­
feature was called, it will cause the fcllowing lists to appear in the
stack printout:

The association list.

The GO-list.

A list of the un interpreted statements in the function starting
with the one to be ~valuated when the error occurred.

The complete argument of FROG (omitting the name of the
function) •

51

The following is an example of the error that might occur when using
the PROG definition shown. After the function has been defined and
called

r
the error messages given below would be printed. Note that

the four items after the trace-back message are the ones described
above.

DEFINE(«TEST2 (LAMBDA (X) (PROG (Y)
(SETQ Y (CAR X»
(SETQ Y (CONS X Y))
(SETQ Y (CAR Y»
(SETQ Z (CAR Y» »»»

TEST2«A B C»

After execution has started r the following will appear:

***A5-SET VARIABLE UNDEF (see Section 10.5.3)

* Z * «Y ABC) (X ABC»
***TRACE-BACK FOLLOWS
* ((Y . ABC) (X ABC»
* NIL
* «SETQ Z (CAR Y») * «Y) (SETQ Y (CAR X» (SETQ Y (CONS X Y» (SETQ Y (CAR Y» (SETQ

Z (C AR Y»)

52

..

A1-CALL TO ERROR
This message is given if a LISP program calls ERROR. The argument
(if any) of ERROR is printed (S-expression 1). The trace-back is
not given with this message.

A2-FUNCTION NOT DEFINED
This message occurs when an atom given as the first argument of
APPLY does not have a function definition either on its property
list or on the association list.

s-expression 1 is tbe atom in question.
s-expression 2 is tbe association list.

A3-NO ARGS OF COND TRUE
None of the prepositions following COND are true.

s-expression 1 is the list of the arguments given CONDo
s-expression 2 is the association list.

AS-SET VARIABLE UNDEF
The function SET or SETQ was given an undefined program variable.

s-expression 1 is thE program variable.
s-expression 2 is the association list.

A6-UNDEF LABEL IN GO
The label given as the argument of GO has not been defined.

s-expression 1 is the label.
s-expression 2 is thE list of the labeled statements.

A7-MORE THAN 22 ARGS
More than 22 arguments were given to an EXPR or a SUBR.

s-expression 1 is the list of arguments to the function.

A8-UNDEFINED VARIABLE
A variable is not bound on the association list, nor does it have
an APVAL. This error occurs in EVAL.

s-expression 1 is thE variable in question.
s-expression 2 is the association list.

A9-FUNCTION NOT DEFINED
The form given as the first argument to EVAL has as its first
element an atom with no function definition either on its
property list or on the association list.

s-expression 1 is the atom in question.
s-expression 2 is the association list.

53

D2-PILE CANNOT BE OPENED - NO STORAGE AVLBL
OPEN was asked to open a data set (file) when there was no storage
available in which to put the DCB for that data set. ~OSE
releases the space taken up by the DCB of the data set that it
is closing.

S-expression 1 is the ddname given as the first argument to OPEN.

D3-RDS FILE NOT OPENED
D4-WRS FILE NOT OPENED

A data set (file) must be opened by OPEN before LISP/360 can write
or read from it.

S-expression 1 is the ddname given as the argument to RDS or WRS.

D5-CHKPOINT FILE NOT OPENED
D6-RESTORE FILE NOT OPENED

A data set (file) must be opened by OPEN before CHKPOI~ or RESTORE
can use it.

s-expression 1 is the ddname given as the argument to CHKPOINT or
RESTORE.

D7-RESTORE GIVEN FILE INCOMPATIBLE WITH SYSTEM SPECIFIED

F2-TOO MANY ARGUMENTS-EXPR
F)-TOO FEW ARGUMENTS-EXPR

The wrong number of arguments has been given to a defined function.

S-expression 1 is the list of the function variables.
s-expression 2 is the list of supplied arguments.

F2-TOO MANY ARGUMENTS-SUBR
F)-TOO FEW ARGUMENTS-SUBR

The wrong number of arguments has been given to an SUBR.

s-expression 1 is the function.
s-expression 2 is the list of arguments.

G2-PUSHDOWN STACK OVERFLOW
Recursion is VEry deep. Non-terminating recursion will cause this
error. S-expressions 1 and 2 will, if given, depend on where in
the interpreter the stack was last used. The trace-back is not
given on this error. The message 'IN THE GAREAGECOLLE~OR' may
follow immediatEly after this message. This means that there was
not enough stack left for the garbage collector to work with when
the garbage collector was called. This is a fatal error and
LISP/360 gives up control to os.

54

GC2-STORAGE EXHAUSTED
The garbage collector is unable to find any unused cells in tree
cell storage. s-expressions 1 and 2 are the arguments of CONS.
The trace-back is not given on this error. This is a fatal error
and LISP/360 gives up control to OS.

I)-BAD ARITHMETIC ARGUMENT
An arithmetic routine was given a non-arithmetic argument.
S-expressions 1 and 2 will depend on which arithmetic routine
found the error.

I5-ATTEMPT TO RAISE 0 TO 0
This error is caused by trying to execute either EXPT(O~O) or
EXPT(O.O,O) •

16-ATTEMPT TO RAISE 0 TO NEGATIVE POWER
This error is caused by trying to execute either EXPT(O~n) or
EXPT(O.O~n), where n is negative.

18-EXPT CANNOT TAKE REAL EXPONENT
This error occurs when the second argument of EXPT is a floating­
point numcer.

R1-SYNTAX ERROR
A syntax error has occurred while reading an s-expression.
s-expression 1 is the s-expression in question. The trace-back is
not given on this error.

R2-BAD BRACKET COUNT
An end-of-file was reached while reading an s-expression.
s-cxpression 1 is the list as read with needed brackets (i.e.~ right
parentheses or terminating character in the '$$' notation) generated.
The trace-back is not given on this error. This is a fatal error
and LISP/360 gives up control to as.

R3-BAD BRACKET COUNT ON USER FILE
An end-of-file was reached while reading an S-expression trom a
data set other than IISPIN. S-expression 1 is the list as read
with needed brackets generated. The trace-back is not given on
this error. The error causes LISP to start reading from LISPIN.

R5-NAME OR NUMBER TOO LONG
An EBCDIC printname or a number is longer than that accepted by the
interpreter. Truncation occurs on the right. Only the message
appears for this error.

55

APPENDIX

THE LISP INTERPRETER

gy~lg1!otf.[fn;args] = [get[fn;FEXPR] V get[fn;FSUBR]-)

eval[cons[fn;args];NILJ

T -) apply[fn;args;NIL]]

~E1y[fn;args;a] = [

null[fn] -) NIL;

atom[fn] -) [get[fn;EXPR] -) apply[expr;largs;a];

{

spread[args];3

get[fn;SUBR] -) ALIST:=a; ;

BAL subr 1

T -) apFly[cdr[sassoc[fn;a; [[];errorI[A2]]]];args;a];

e g[carr fn]; LABEL] -) apply[caddr[fn]; args; cons[cons[cadr[f n]; c addr[fn]]; a]]

eq[car[fn];FUNARG] -) apply[cadr[fn];args;caddr[fn]];

eg[car[fn];LAMBDA] -) eval[caddr[fn];llconc[pair[cl.dr[fn];args];a]];

T -) apply[eval[fn;a];args;a]]

f.yal[for-m;a] = [

null[form] -) NIL;

numberp[form] -) form;

atom[formJ -) [get[form;APVAL] -) car[apval 1];

T -) cdr[sassoc[form;a; [[];error[A8]]]]];

eg[ca r[form]; QOUTE] -) cadrE form]; 2

eg[car[form];FUNCTION] -) list[FUNARG;cadr[form];a];2

eg[car-[form];COND] -) evcon[cdr[form];a];

eg[car[form];PROG] -) prog[cdr[form];a];2

56

•
a tome ca r[form]] -) [get[carr form]; EXPR] -) apply[E:xpr; lev lise cdr[form; a]; a];

get [car [for m] ; FE X P R] -) a p ply [f e x p r; IIi s t [cd r [fo r m] ; a] ; a] ;

spread[ev lise cdr[form];a]]; 3

get[car[form];SUBR] -) ALIST:=a;

BAL subr 1

{

A:=cdrr form];

get[car[form];FSUBR] -) Q:=ALIST:=a

BAL fsubrl

T -) eval[cons[cdr[sassoc[car[form];a; [[J;error[A9J]]J;

cdr[form]];a]];

T -) apply[car[form];evlis[cdr[form];a];a]]

~YfQg[c;a] = [null[c] -) error[A3];

eval[caar[c];a] -) eval[cadar[a];a];

T -) evcon[cdr[c];a]]

~y!is[m;aJ = [null[m] -) NIL;

T -) cons[eval[car[m];a];evlis[cdr[m];a]]]

IThe value of get is set aside. This is the meaning of the apparent free
or undefined variable.

2In the actual system this is handled by an FSUBR rather than as the
separate spEcial case shown here.

3'spread' loads the appropriate registers with the values given it.

Note: Some modification of the definition is necessary where actual
machine instructions are shown to give the representation for the IBM
system/360 •

...

e·

REFERENCES

1. LI~f_l~_PRI~ER, Clark Weissman, Dickenson Publishing Company

2. Ih~_fIQgI~ming_Lall9~g~1!~g~!1~_Q~~ratiQ~~~~!EElif~tiQ~§,
Berkeley, E. C. and Bobrow, D. G., editors, M.I.T. Press

4. pr£gra~~igg~lstems and Langgage§, Bosen, 5., editor, McGraw
Hill Publishing company, pp. 455-490

5. ~!L.±n..t£od.!!£tio~_to_1±SP, Griffith, A. K., University of Florida

6. Th~_~~li-LIs£~yste~, Bobrow, D. G., Murphy, D. L., and
Teitelman, W., Bolt Beranek and Newman, Inc.

7. St~rr1~LI~l~Ma~!, Quam, L. H., stanford Artificial
Intelligence Project

8. !-£~g~~_1Is£_Q§ing-1h~Dyna!if-Eelof~!i2n-~~IQ~~~_Q1~n IB~_1§QL§I,
Berns, R. I., (soon to be published)

58

	Preface

	Table of Contents

	1 The LISP/360 System

	2 Organization of Storage

	3 Functions, Predefined Atoms and Character-Objects

	4 Special Differences in LISP/360
	5 LISP Job Set-
up
	6 Data Management in LISP/360

	7 The LISP Assembler and Compiler

	8 The Garbage Collector

	9 Time-Shared LISP at Stanford

	10 LISP/360 System Messages

	Appendix: The LISP Interpreter

	References

