
UTAH COMPUTATIONAL PHYSICS GROUP
OPERATING NOTE NO. 29

Appendi~ -- Utah Modifications
Stanford Lisp/3SB Reference Manual, Fourth Edition

by

Kevin R. Kay
Comput~tional Physics Group

University of Utah

Table of Contents, Utah Appendix

Al. Comments on the Stanford Manual

A2. LISPl Patches for ASMG, 360/91, and 370/

A3. Textual Re-arrangements in code.

A4. Bignums -- Arbitrary Precision Arithmetic

AS. Garbage Col lector, GC*, CONDENSE, SETSIZE

AS. New Checkpoint Faci lities

A7. New Partitioned Data Set input

AB. Other changes -- ERRORSET, etc.

AS. Summary of new functions, errors, and diagnostics

Work supported in part by the National Science Foundation under Grant
No. GJ-32181 and by the Advanced Research Projects Agency of the Office
of the Department of Defense under Contract No. DAHC1S-73-C-0363.

'$-

\

APPENDIX -- UTAH MODIFICATIONS 2

A1. Comments on the Stanford Manual

The fol lowing chapter-and-verse notes are intended as (a) clarit'ica
tions of certain statements in the existing manual, or (b) brief hints
of changes made at Utah, but not as a complete I ist of such changes.

Section

2.1

2.1.1

2.2

3.1

3.1

3.1
3.1

3.1

3.1
3.1

3.2

4.

5.

6.1

6.1.1

Page

4

7

9

15

19

21
22

23

23
24

25

27

28

28

29

(continued)

Comment

Bite 4 and 5 denote BIGPOS and BIGNEG numbers, as the
BIGNUM extensions to fixed-point representations;
see section A4.

Generated numeric values are not put on the object
list, but read-in numbers are currently (and thus they
are searched for before INTERNing).

Initial stacK length now ~s 3K words; this can
be altered by CONDENSE and SETSIZE, section AS.

EXPT(n1,n2) -- n1 may be a BIGNUM (section A4), but
n2 may not unless n1 • 0, +1, -1, +1.O, or -1.0 •

OVOFF/OVON routines deleted, since overflows now are
handled by the BIGNUM pacKage, and these routines can
confuse it.

REAOCH returns the atom SEOFS if end-of-fi Ie seen.
REMPROP now checKs every cel I on the property list,

instead of just the 1st, 3rd, 5th, etc.
RPLACA/O only replace the address portion of the cel I

pointed at (the lower 24 bits of the word), and Keep
the old high-byte with its flag bits. Thus they are
not quite analogous to CONS (which worKs on 32 bits),
and probably unsuitable for manipulating ful Icel Is, etc.

SPEAK (and UNCOUNT) use 2 CONS to return a value.
TRACE and UNTRACE have additional capabi I ities, to affect

function tracing and error tracebacks, section AB.
New atom GC* has an APVAL initially NIL, but can be

reset by user to affect garbage collections; see
section AS.

Fixed-point numbers may be of any magnitude internally
and any input/output length externally; section A4.

An initial checK is made for LISPOUT and LISPIN; if not
provided as DO statements, error messages are given
and the run is terminated (return code = 12); if
provided, LISPOUT wi I I use the JCL's BLOCKSIZ.

'B=0' now worKs; multiple PARM specifications now worK;
RESTORE affects the POS length as wei I as the initial

PARMs; see section AS.
AI I fi Ie-input related functions can now handle certain

partitioned data sets. See section A7 for detai Is
and the extended denotation of the ddname argument.

JCL-supplied LRECL and BLKSIZE are now used if given;
if not and if OPEN's second argument = NIL, say, then
the SYSFILE defaults are suppl ied.

APPENDIX -- UTAH MODIFICATIONS 3

Sect i on Page

6.1.1

6.1.2

6.1.3

S.1.4

6.1.5

6.1.7

6.2

7.1.3

7.3.2

7.3.2

30

30

30

30

31

31

32

35

41

41

(cont i nued)

Comment

SYSFILE is now blocked (80,1600); it was (133,665).
The DCB-address property is now cal led OPENFILE, to

distinguish it from APVALs or chance NIL references.
The value of the DCB OPENFILE is now a simple ful Icel I,

obtainable by CAR(GET{ddname,'GPENFILE», with the
campi ication of being negative for PDS DCB's.

Partitioned data sets are not really closed, unless the
user so requests explicitly; see section A7. .

If ASA is used in conjunction with an GTLL, the ASA
should precede the GTLL.

OTLL(n) permits a ma~imum n of 129, but the user should
reetrlct it to <- LRECL, of course. For compactness,
at I datasets wi I I print up to their respective OTLL;

LISPOUT is permitted, however, to start a new I ine if
an atom prints to within 20 spaces of the selected
OTLL. To turn off this feature, do OTLL«n».

Note also that LISPOUT's linelength includes the ASA
control-character and the 4-space indentation, such
that the user-writable length is at most n-5.

WRS(LISPOUT) has the effect of ASA(T} and OTLL(12B}.
WRS(any-other-dataset) sets ASA(NIL} and OTLL(LRECL-8).
RDS(NIL) ie equivalent to ROSCLISPIN).
RDS(any-dataset) sets input linelength to LRECL-8.
The checkpoint faci I ities have been significantly

extended, but there are sti I I hazards; see section A6
for an exhaustive/exhausting discussion.

AI I checkpoint-related I/O functions automatically OPEN
the data set as a SYSFILE (if the user omits doing
so). and aleo automatically CLOSE it (unless it is
a member of a partitioned data set; see section A7).

R15 (POL) may be used freely, except when interacting.
with the ~'tMOVE and ')',REMOVE processes of the comp i I er,
which set up R15 as the local routine's stack;

R7 (POS) should never be changed, except indirectly
by means of one of the stack macros of 7.1.4 •

BPSMOVE and BPSZ now zero the old evacuated BPS area
to avoid thwarting the garbage col lector of its prey.

BPSMOVE(n) can give an error "BAD ARG OR TOO BIG" if n
is not an integer or would involve shifting BPS away
from the end-of-BPS (mustn't clobber FCS). For the
latter or to get more BPS, CONDENSE might be useful
(see section A5,2).

BPSMOVE wi I I normally return the relocation done as a
logical-number, signifying how far the BPS base was
shifted in #-of-bytes; this wi I I be 0 mod 8, in order
to maintain double-word alignment within BPS.

EXCISE(p) wi I I only function as EXCISE(T), because the
campi ler hae been re-arranged with LAP36B first.

;

APPENDIX -- UTAH MODIFICATIONS 4

Section Page

7.3.2 42

7.3.3 42

8. 44

10.4 S0

10.5.2 51

10.5.3 54

19.5.3 56

Comment

OVOFF/OVON routines deleted. since overflo~s now are
handled by the SIGNUM package, and these routines can
confuse It.

In addition to interpreter-assist routines 6ho~ing up
as IISAl 2. nn U3, R12) II, the fo I I o~ i ng common rout i nes
have been open-coded for less lAP space and greater
execution speed: APPEND1, ATOM, CONS, FLAGP, GET,
NCONC, NUMBERP, TERPRI, and two extra: NCONS, XCONS.

The garbage col lector has a user-variable (section AS)
to affect early job termination if space exhausted,
and an alternate CLEANing function has been added.

The register dump now prints a few extra word-contents,
but the average user needn't pay attention to these.

The IIOVER- OR UNDERFLOW II message should never occur,
in principle, ~hen using the BIGNUM pacKage ••• i.e.,
the system's arithmetic routines mentioned in section
A4. User-~ritten LAP code is not protected.

The tracebacK can be selectively turned off by doing
a prior UNTRACE(T); see section AB.4.

A new error has been added to OPEN, such that:
D1-FILE CANNOT BE OPENED - 00 STATEMENT MISSING •

Errors 05 and 06 no longer exist, since SYSFIlEs
wi I I be automatically OPENed.

Error message 07 has been updated to reflect the new
capabi lities discussed in section AS, and now reads:

"07: WRONG CHKPT FILE, OR NOT ENOUGH ROOM" .
Each such fi Ie (created by CHKPOINT, BPSCHKPT, WBLK)
has a TYPE and a DATE in its first record (as wei I as
some relocation information); the date is the LISP1
source edition or version date, e.g. II 12e174", and
is included as a precaution against users RESTOREing
old fi les subsequent to LISP! being patched and rebui It.

The possible reasons for IINOT ENOUGH ROOM" are:
RESTORE - the fi Ie's FCS+BPS is longer than the in

core FCS:end-of-BPS;
BPSRESTR- the fi Ie's BPS is longer than the in-core

BPS boundaries;
RBLK - the fi Ie's overlay length is longer than

the.in-core unused-BPS remaining.
Error RS now should apply only to long atom names,

since numbers may be any length (core permitting).

Q

APPENDIX -- UTAH MODIFICATIONS 5

A2. LISP1 Patches for different Assemblers and Computers:

1) Many of the extended definitions of BeR instructions have been used
in the source code to enhance legibi lity, and the MACROs for these
have been included in the fi Ie. These are needed for users doing
the assembly with ASMF and should be retained as is by such users.
For users doing the assembly with ASMG. these MACROs are redundant
and must be deleted ••• the following cards wi I I do the tricK:

.1 N 10

.1 R 102840 193279

FOR ASMG ASSEMBLY, THE EXTENDED-DEFINITIONS
OF BCR-INSTRUCTIONS HAVE BEEN DELETED.

2) The modification above will suffice on most 3S0 computers. However,
those models with "imprecise" interrupts (in particular, the 360/91)
wi I I need the fol lowing additional insertions:

.1 N
· / I

· I I

2
212952
Cll
BH
Cll
BH

212719
BNER

S(l),X'9F'
TRAPSCAR
S(l),X'9S'
TRAPSOVF

e

IMPRECISE NON-OVERFLOW?
YES.

IMPRECISE OVERFLOW?
YES.

NO-OP; PIPELINE DRAIN FOR 191.

3) The modifications above for the 3S0/91 are reputedly sufficient for
the 370 series; however. the fol lowing-alteration to CONS may be
used (instead of the "pipeline drain" card) if an explicit test is
needed rather than relying on the "specification exception" trap:

• / N 2
./ 0 2120S9
.1 R 212559
CONSINST C FREE. FOUR
.1 R 212799 212719

CONS

CONSOK
· / I
CONSAV

C
BNl
STM
BAL
lM
ST

212760
OS

lOW COMPARISON HERE, TO SIGNAL NEED TO Ge.
FREE, FOUR
CONSOK
7,S,CONSAV
14.CONSe
7,5,CONSAV REG S EaU "FREE", OF COURSE.
A,CAR(FREE)

15F

APPENDIX -- UTAH MODIFICATIONS 8

A3. Textual and Programming re-arrangements in LISP1

1) Nul Is (X'BB') have been removed from the source code, so the ECHO
and ECHOKRK macros have been amended to supply nul Is in atom names.
In addition, ECHO wi I I handle names written as hexadecimal and al low
names of any length, fol lowing a design by Owen Saxton of SLAC.

2) The arrangement of the functions is sl ightly shuffled but
hopefully handier and more commented for new programmers who have
to read the code. The sections of the fi Ie have been renumbered.

3) In I ine with the modifications to the checkpoint functions, the
treatment of type '40' cel Is (APVALs, SUBRs, BPS, etc.) is now more
comprehensive; the internal BPRELOC functions have been accordingly
deleted or amended.

4) _Users who patch LISPl with extra atoms or initializatioA code
probably ~I I I need to increase the STACKSIZ. The present method of
assigning core aesumes no user routines are LKEO above the LISP1
assembly module, eo terminal-Interaction code should 'be first.

5) Assembl ies doing LIST and XREF may need more tracks al located for
SYSUT2, SYSUT3, SYSPRINT. The LISPl source currently takes 98 tracks.

8) The codes returned from the LISP! module upon termination now have
some sign if i cance, and i nd i cate the fo I low i ng cond it i.ons:

B - normal termination (e.g. after EOF on LISPIN);
4 - termination after non-fatal error, because EXITERR(T);
8 termination after fatal error (e.g. FCS exhausted);

12 - termination after serious error whi Ie initial izing LISP.

7) N.B. Although the garbage-col lector now checks the POS for unboxed
numbers (e.g. the result of CAAR 3), it sti II assumes (for speecJ) that
arbitrary unboxed numbers are never stored as part of FCS structures.
They are safe on the stack and can usually be passed safely as computed
arguments to SUBRs or FSUBRs, but should not be bound to atoms or
appear on the ALIST, etc. Otherwise, the next GC wi I I either complain
CAR TAKEN OF FULLCELL or abort with a ece system error.

Usually, if LISP blows up with a ace and if no interrupt message or
register-contents are printed, a GC was in progress (prior interrupt)
which suddenly found a spurious or unboxed number (non-ful Icel I) and
was led astray.

APPENDIX -- UTAH MODIFICATIONS 7

A4. SIGNUMe -- Arbitrary Precision Arithmetic

A4.1 Effects to user

Lisp functions accepting a fixed-point number previously were limited
to integers in the range -<2t31>: <2t31>-1. With the current SIGNUM
code, this restriction is void; an integer may be of any magnitude •••
I imited only by the number of cel Is in FCS (@ roughly 9 decimal digits
per ce I I) •
Hence the fol lowing functions accept arbitrary integers with impunity:

ADD1, SUB1, MINUS, PLUS, TIMES, DIFFERENCE, QUOTIENT,
REMAINDER, MAX, MIN, ZEROP, MINUSP, LESSP, GREATERP,

-EVENP, FIXP; EQUAL, RNUMB/MKATOM, READ, PRINT.
The fol lowing and their ilk (and perhaps some compi ler functions)
are sti I I restricted to the old range (for speed):

LENGTH, COUNT~ SPEAK.
The fol lowing are partially restricted or special:

FIX(n) a large floating-point number does not become
an imprecise SIGNUM, but returns e as before.

FLOAT(n) a SIGNUM larger in magnitude than 4.3E68 or so
will give the error "BFL T OVFL".

BIGP(n) gives TI if n is internally represented as a
SIGNUM (see below); gives NIL if anything else,
including an integer < 2t31 in magnitude.

EXPT(n1,n2} -- n1 may be a SIGNUM, but

A4.2 Implementation

n2 may not, unless n1 = B,+1,-1,+1.B,-1.0, else
you' I I get an "EXPT- SIGNUM EXPONENT" error.

A new numeric atom-type is defined, using bits 4 and 5 to denote
positive and negative BIGNUMs: BIGPOS (X'C8') and BIGNEG (X'CC') types
respectively. The arithmetic routines, and others (mentioned above) as
appropriate, make software or hardware checks for atom-type or overflow
and perform necessary conversions and arithmetic operations for those
integers requiring more than 32 bits to express (roughly 2 bi I I ion in
magnitude). The actual code is derived from that written for Lisp 1.6
(Stanford A.I. Lab's Lisp for the PDP-1B), with the necessary changes
for a 32-bit machine, different overflow mechanism, etc., etc.
The principal routines are almost exactly 1:1 in content, with the
exception of the BIG:FLOAT conversion which uses a hexadecimal
representation. The code therefore has the virtues and fai I ings of the
Lisp 1.6 rendition, which appears to be model led after Col I ins' SAC
system. At any rate, the intermediate scratch cel Is are generally
returned to the FREE list to reduce GC frequency, and the 3 special
cases of the divide routine are handled a la Knuth.

APPENDIX -- UTAH MODIFICATIONS

A5. Garbage col lector, GC*, CLEAN, CONDENSE, SETSIZE

AS.! Changes to the garbage collector

AS.l.l The g I oba I var i ab Ie "GC·tt ll may be set by the user to force a
terminating error when FeS runs low, instead of going on and on

8

co I I ect i ng a few ce II s at a time before dy i ng wi th "STORAGE EXHAUSTED".
The variable's APVAL is initially NIL, which means run to exhaustion
as previously; if set to some integer, say S0e, then the system wi t I
abort (error GC2) if a future GC fai Is to reclaim that many cel Is.

A5.1.2 A new function has been added as a more powerful alternative
to doing RECLAIM() and should only be invoKed at the top-level because
it clears the ALIST and all other internal holding areas to ensure that
everything collectable is GC'd. The function is CLEAN() and causes
pass 1 of the garbage col lector (marKing eel Is in use) to first make
an extra checK on user-introduced atoms: if they aren't pointed to
by some FCS cel I and do not have a property-list either, then they wi I I
be GC'd. If they do have some property, they are retained (presumably
for future reference). This check/purge gets rid of numbers,
intermediate atom names from the compiler, etc.

AS.!.3 The FREE list has its CARs cleared when collected, with a subtle
indirect intent of reducing those ece or car-of-ful Icel I errors which
occurred during GCs or tracebacks (see also section A3.7).

AS.2 New functions affecting PDS and FCS sizes

AS.2.1 SETSIZE(nl,n2) wi I I try to set the PDS length to n1 words and
the FCS area to n2 eel Is, if the space exists. AI I Lisp space not in
use, including high BPS, wi I I be taken as needed; hence equivalents
of "FCSMOVE" and BPSMOVE are done, but SETSIZE cannot reduce the
actual size of FCS ••• to do that, use CONDENSE below.
I n de ta ii, SETSIIZE re locates the FCS and BPS core blocks and the i r
inter-blocK pointers to atoms and SUBRs; then resets al I system
worK eel Is to a, the ALIST to NIL, the PDS to its origin, and does a
RECLAIM; finally exits to the top-level EVALQT and reads a new doublet.

AS.2.2 CDNDENSE(nl,n2) wi I I compact FCS cel Is down in core towards
the POS, with the FREE list becoming linear in high FCS; then it uses
SETSIZE(nl,n2) being able to reduce FCS (up to the number reclaimed)
if so desired.
In detal I, the compacting method involves: marking al I cel Is in use,
moving high cel Is down to the lowest unused FCS areas or niches,
updat i ng FCS and BPS po inters to the moved atoms and ce I Is (error'-prone),
and completing the GC to rebui Id the FREE list (above the active area).

N.B. Because the compacting affects the locations of atomheaders,
some caution is needed if CONDENSE's are done in proximity with
checkpointing functions; see section AG.S for detal Is.

· APPENDIX -- UTAH MODIFICATIONS

AS. New ChecKpoint Faci lities

AS.l Old I imitations superseded

AS.l.l Reading BPS files was essentially restricted to those fi les
deriving immediate ancestry from the Lisp core which generated the
most recent RESTORE. That is, the sequence

BPSCHKPTCX1), CHKPOINTCX), RESTORECX), BPSRESTR(Xl}
worKed in a bare Lisp, but the sequence

RESTORECCMPL), BPSCHKPT(Y}, BPSRESTR(Y}
would blow up without warning.

9

AS.l.2 A BPSCHKPT from an EXCISEd Lisp (campi ler and LAP3GB deleted)
could safely be BPSRESTR'd only into a simi larly EXCISEd Lisp, because
of the old relocation methods.

AS.1.3 LiKewise, without some knowledgeable tinkering by the user,
a BPSCHKPT from a lisp-with-compi ler could not be BPSRESTR'd into an
EXCISEd Lisp.

AS.2 General comments about Utah faci I ities

With the present Utah system, the I imitations of AG.I have been removed
and new features have been added, mainly the functions WBlK and RBLK
for creating and restoring partial-BPS overlay fi les. My comments in
paragraphs AS.3-5 are directed mostly to system bui Iders trying to
conserve core, and the fol lowing should suffice for most users:

AS.2.l A RESTORE wi I I reset th~ POS length to whatever it was when
the fi Ie was CHKPOINT'd. Thereafter the length can be changed by doing
SETSIZE (section AS) wLthout adversely affecting future BPSRESTRs. If
a CONDENSE were used Instead, the caution below appl ies.

AG.2.2 Restores may be done without regard for the particular
sequence of ancestry (in the sense of AS.1.1l. The only remaining
need for caution is if a CONDENSE is used in proximity with a BPS
fi Ie function.

A6.2.3 Re S.1.2 and .3, BPSRESTRs wi I I restore the BPS properly, but
not the pointers in FCS; a RBLK wi I I do the trick correctly.

AS.2.4 BPSRESTR (and RBLKl wi I I now accept a fi Ie created by CHKPOINT
as wei I as by their output counterparts, and wi I I restore just the BPS
related portions from the fi Ie. A trivial example would be:

RESTORE (CMPL), use CMPL, EXCISE(T}, other, BPSRESTR(CMPL},
which would retain the FCS structures built up but reset BPS with just
the campi ler routines.

APPENDIX -- UTAH MODIFICATIONS 10

AS.3 CONDENSE caution

As noted in section AS, a CONDENSE involves relocating atomheaders
(and other FCS eel Is) and updating in-core FeS and BPS pointers to
them accordingly; however, BPS code in a previously-output BPSCHKPT
'fi Ie cannot be eo updated and, if now BPRRESTR'd, might erroneously
and fatally reference some FCS address whose contents were moved.
Two solutions around this inconvenience are:

AS.3.1 If the user's BPS code references only system atoms and
functions (and no numbers expl icitly), CONDENSE can probably be used
safely since anything referenced in FCS is compacted already.

AS.3.2 One general solution is to do al I CONDENSE's in the ancestral
system prior to involved CHKPOINT's, BPSCHKPT's, or RBLK's. That is
bui Id your system, shrink it using CONDENSE to the minimal size anyone
might want (want ae a user after a RESTORE), and do the appropriate
checkpoint function(s} immediately.

AS.4 New functions

In the Stanford and Utah systems, BPSCHKPT and BPSRESTR are used to
write and re-read entire contents of BPS. Two new functions have been
implemented to handle the bookkeeping for segmenting BPS into indi
vidual overlay areae. Logical blocke of code (presumably containing
logical blocks of functions) may be arbitrarily relocated in BPS,
regardless of Intervening BPSMOVE's and SETSIZE's, as long as the
blocks and their storage territories either overlap completely or not
at all. If this condition is met and the CONDENSE caution is heeded,
the W/RBLK pair wi I I handle relocations and maintenance of BPS-FCS
I inkages. In addition, RBLK "remembers" where a block was read in
previously; if the block or another of its overlay "fami Iy" is read
to the same origin subsequently, the function is quite fast; a future
relocation taKes a bit more time, once-only for each fami Iy.

WBLK(ddname at n) this function performs like BPSCHKPT, except
that a range is specified by the second and
third argument~ for the amount of BPS to be
written:

at= name of the very first F/SUBR compi led in
the block. You may get a "NOT FOUND" error.

n = the address of the end of this block; e.g.,
the numeric equivalent of (CAR BPS) just
after the last function was compi led.
Or, n may - NIL, in which case the current
value of BPS is used; i.e., write from at to
the end of active BPS.

The value WBLK returns is the end-of-block
address used.

APPENDIX -- UTAH MODIFICATIONS 11

RBLK(ddname at n) -- this function performs like BPSRESTR, except
that the second and third arguments specify
what block is being read and where to store:

at- name of the F/SUBR routine which heads the
block when restored. It may be "NOT FOUND"
if no common ancestry exists.

n - the BPS address of the origin of the blocK
when read into core and stored; e.g., the
address portion of GET (at F/SUBR) as a number.
Or, n may = NIL, in which case the current
value of BPS is used as the origin.

The value RBLK returns is the first free BPS
location above the block read. BPS's APVAl
is unchanged even if RBlK'd above active BPS.

AS.4.1 Note that W8lK blocKs can be fil led in by the campi ler in any
sequence and at arbitrary (non-overlapping) ranges in 8PS. A fami Iy
of overlays, later to be R8LK'd to some common origin point, need not
be bul It from that exact origin in the ancester's BPS; each member can
have a different origin when bui It, if that is more convenient to the
user, but if the bui Iding-grounds overlap at al I, they must have the
same origin.

AB.4.2 Moreover, once one member of a fami Iy is created or RBLK'd
with the same origin as another member, it is not as free to relocate
about in BPS as previously. Instead, the longest member of the fami Iy
must move first (be RBLK'd first at the new origin). If you have
trouble or want to know why, paragraph A6.5.4 may help.

AS.4.3 Examples of this last proviso:
a) The X fami Iy has two members, Xl and X2, which were bui It

in and WBlK'd from two separate areas of the ancestral BPS. In the
user's Lisp, both are RBlK'd to origin Y; if later they are to come
in at origin Z, the longer of the two members should be RBLK'd first
there.

b) The V fami Iy has two members, Vi and Y2, which were bui It
at the same ancestral origin (at separate times). When first RBLK'd
into another Lisp (or into the same lisp at another origin), the
longer of the two blocks should be read in there first.

c) The Z fami Iy also has two members which were bui It at the
same ancestral origin (at separate times) but, after these were
WBlK'd, sti I I more functions ABC were combi led at the same origin. If
later a Z member is RBLK'd over these, al I is wei I except ABC are not
recoverable. If the Z's were RBLK'd to some new origin not
overlapping ABC, you might suppose ABC could sti I I be used. They
cannot, however, because their FCS addresses were relocated as if
part of the Z fami Iy.

d) Simi larly, if Xl were RBLK'd at one origin and X2 at
another, both could be safely referenced by other user code; but if
Vi were RBlK'd at one origin and then Y2 at another, only Y2 could be
cal Jed safely because Vl's addresses were relocated. VI would have
to be re-RBlK'd somewhere before trying to cal I it, and so on.

APPENDIX -- UTAH MODIFICATIONS 12

e) You might asK now "In (d), if the longest of the Y's must
be RBLK'd first at any new location, how could Yl be read here one
time and Y2 elsewhere the second? Shouldn't Yl be read there first,
and then Y2 on top of it?" This is true except if you use the
fol lowing trick: determine ahead of time (or over-estimate) the
longest member's length, add this to the effective origin of each
member, and set your third argument to their WBLK's accordingly.
Then, each member of the fami Iy wi I I be the same length as far as
RBLK Ie concerned, and any can be read at an arbitrary new origin.

f) Note. If you are trying to shoehorn overlays into lower
BPS areas below other code, leave a smal I slop-over area above the
block because the fi les are read in SB-byte chunks.

AS.S Implementation detai Is

AS.S.l Perhaps a few detai Is on campi led-code I inkages wi I I bear
mentioning here for completeness, since these are not discussed in the
main manual. The initial links generated by the compi ler to cal led
functions really might be called "slowl inKs", as they search the
property-list of the function named for a F/EXPR or F/SUBR attribute,
and dispatch accordingly to the APPLY interpreter or to the BPS or
system-routine code. If a SUBR or FSUBR is I inked to, the address of
the actual function code (relative to NIL) is inserted in the slowl ink,
1l1aking it a "fastcall".

Future use of this I inkage no longer checks the atom and its
property-I iet but just jumps directly between subroutines with minor
bookkeeping (adding the current NIL, etc.). This is faster, with less
overhead, but a fastcs II I I nKage can no longer be traced nor wi I lit
respond to lambda re-deflnltions of the particular cal led function.
In the Stanford version of 3SB/Lisp, no means was provided to uncal I
these I inkages back to slowl inks. You can now use TRACE, however, to
perform desired uncal Is (section A8.3J; an UN TRACE can be done
whenever you're ready to let LISP make it into a fastcal I again.

Be careful if you redefine system routines and compi Ie them,
since the LAP3SB generator rei inks any older code-definitions to the
new routines in BPS. Usually this is safe, but occasionally the code
for several system routines is intertwined such that the RELINK patch
could wipe out part of another routine. In such a case, you're better
off not trying to redefine although LAP36B can be tricked.

AS.S.2 With that by ~ay of history, you wi I I see that fastcal Is in a
WBLK would not work when RBLK'd into a different Lisp (or a BPSMOVEd
Lisp). Therefore WBLK uncal Is any fastcal Is within the blocK it's
working on (i.e., any cal Is outward from the block or between functions
within the block). Likewise, if a block is read in by RBLK to a new
fami Iy origin than previously, al I fastcal Is from the rest of BPS to
this faml Iy are uncal led. On subsequent RBLK's to the same origin,
there is no need to uncal I, and alii inkages remain speedy.
RBLK can also read fi les made by CHKPOINT or BPSCHKPT, if you have a
need to, but remember that the latter fi les aren't internally uncal led.

•

APPENDIX -- UTAH MODIFICATIONS
13

A6.5.3 This mechanism handles the most general cases, subject to the
rules of AS.4c to eliminate this uncal I ing altogether would, however,
place too many (more) restrictions upon the user. Granted the first
RBlK of a fami Iy wastes time checking the campi ler if it hasn't been
EXCISEd, but subsequent RBlK's pay no overhead and instead (hopefully)
enjoy the greater generality.

AS.S.4 Finally, a brief discussion of how FCS relocation is handled
may aid the perplexed user and explain the need for the AS.4 provisos
concerning block origin and movement.

Each logical block of functions has in' its WBlK fi Ie a few
figures about length and position, if only so RBlK can decide if room
is avai lable. Strictly, a WBlK doesn't know whi9h FCS atoms point to
its campi led functions nor what quoted atoms it references, any more
than a BPSCHKPT does; only the ancestral FCS remembers this (or
retains this information in a CHKPOINT). Compi led functions in core
(and in CHKPOINT and BPSCHKPT fi les) can have SYS or FCS or BPS
addresses relative to NIL's atomheader, but a WBlK fi Ie wi I I have
just relative FCS addresses because the rest are specially uncal led.
Therefore, when RBlK'd to some origin, eome FCS addresses (type '40'
cel Ie) must be relocated appropriately to again reference ttle block.
Namely, only those address-eel Is refering to this fami Jy and by the
amount the new origin differs from the previous or ancestral origin.
This delta is easi Iy calculated from RBlK's second argument~ but to
shift al I fami Iy references (sharing its old origin) requires the
longest most-inclusive member to move first.

• •

APPENDIX -- UTAH MODIFICATIONS 14

A7. New partitioned data set facilities

A7.1 POS fi les can now be read, though not written, with blocking of
(80,1600); this is also the standard blocking for the various SYSFILE
functions (RESTORE, RBLK, etc). However, because only one 1603 byte
buffer is used in this implementation, a few provisos:

A7.1.1 Text and checkpoint files apparently should not be members in
the same PDS as LISP(LISP). The latter would require an unformatted
buffer of 7283 bytes, which didn't seem necessary for this version.

A7.1.2 ROS's of text-PoS members should be closed or de-selected
before doing any restore-type function involving a second PoS member.
Otherwise the single'buffer wi I I be pre-empted and a subsequent read
of the RDS file will get ,a software-forced EOF.

A7.1.3 Note: whenever a member is ROS'd, reading always restarts at
its beginning, and not at the point reached when last read; this is
mostly for bookkeepin~ ease and avoids confusing the buffer.

A7.2 To invoke just one specific member of a POS, use the current
method of a specific DO statement.

A7.3 To invoke a general POS fi Ie for subsequent input of any member,
supply a DO statement for the fi Ie itself; then within Lisp, refer
to the desired member name wherever you'd currently use an atomic
ddname, as the dotted-pair: (ddname. rnernbername).

The output functions (WRS, CHKPOINT, BPSCHKPT, WBLK} wi I I give a
non-fatal ERROR message if you try to output to a general POS fi Ie.

The input functions wi II I ikewise protest, e.g., if you 'try to
read a member which isn't in the fi Ie.

A7.4 Note: the buffer is only al located once and each general ros
fi Ie is really opened only once and never closed, for speed irl
processing subsequent member requests in the same general POS.

The OPEN function (sti I I only expl icitly needed for a RDS or WRS)
has the form, OPEN(ddname.member) SYSFILE INPUT), where the member
name Is optional for commenting. OPEN wi I I protest however if you try
opening the same ddname as both a simple and a POS fi letype.

CLOSE«ddname.member}) is ignored as a commenting cal I. To
expl iei tly close the POS i tsel f, do CLOSE ((ddname)}.

APPENDIX -- UTAH MODIFICATIONS 15

AB. Other Changes

AB.1 ERRQRSET(e,at) provides a means, as in other Lisps, to evaluate
an e~pression within an environment protected against ERRORs. Fatal
errors· wi I I terminate the job or return to the top-level EVALQT as
before (according to EXITERR), but other errors, diagnostics, and user
cal Is to ERROR are caught and contained within the current innermost
ERRORSET. If none is active, the stack unwinds to the top.

As far as the user is concerned, he calls ERRORSET with an expression e
and a flag at. If EVAL of e produces no errors, LIST(e) is returned:
i.e., a non-atomic value.
If the user invokes ERRORCat2) during the EVAL, the PDS and ALIST are
restored, and the ERRORSET returns at2. Likewise, if an internal error
occurs, NIL is returned. If the user's flag at -NIL, the error message
and back trace printout wi I I be omitted; if nonNIL, they wi I I be printed
as usua I.

AB.2 POSN() returns the current cursor position of the PRINT functions;
e.g. returning 1 after a TERPRI (). Heavy use of this function wi I I
cause more frequent GC's, as with any arithmetic routine, since each
integer returned requires 2 CONS's to construct.

A8.3 TRACE(~) has been e~tended in the fol lowing ways:
TRACE(' let) - in addition to flagging each function's atomheader to

signal LISP to trace it when cal led, in-core BPS is
searched and any fastcal Is to these functions are now
uncal led to permit tracing campi led code (see section
AS.S.l). However, for simpl ici ty, fastcal J s to RELINKed
functions are only uncal led if they address the latest
re-compi lation of the function; older references aren't
checked for presently, and are therefore sti I I untraced.

TRACE(T) - enables tracing of any previously-speci fied functions;
TRACE (I i st) automat i ca I I Y sets TRACE (T) for you.

TRACE(NIL) - temporari Iy disables tracing in general unti I another
TRACE(T) is given, but retains al I passivated functions.

AB.4 UN TRACE (x) , if given an atomic argument rather than a I ist, wi I I
affect the printing of tracebacks (after errors) in the fol lowing way:
UNTRACE(T) - turns off the traceback, though not the error message;
UN TRACE (NIL) - turns on the traceback printing (the initial state).

A8.5 Two au~i liary CONS functions have been added, and are also open
coded during campi lations:
NCONS(x) - performs CONS(~,NIL};
XCONS(xl,x2) - performs CONS(x2,xl).

A8.S SSS S(p), the ABEND function, now takes one argument to specify
an immediate dump (if T) or a deferred dump {if NIL}; if deferred, the
dump is taken for return codes >= 4, but not for a normal termination.

APPENDIX -- UTAH MODIFICATIONS

AS. Summary of New Functions, Errors, and Diagnostics

AS.l New functions in Utah lisp/3SB are:
CONDENSE, SETSIZE, WBlK, RBLK,
BIGP, POSN, NCONS, XCONS, CLEAN

A9.2 New system atoms are:
GC*

AS.3 New fatal error messages are:
lISPOUT 00 STATEMENT MISSING - RUN ENDED
lISPIN DO STATEMENT MISSING - RUN ENDED

AS.4 New non-fatal error messages are:
01-FILE CANNOT 8E OPENED - DO STATEMENT MISSING
07. WRONG CHKPT FILE, OR NOT ENOUGH ROOM
BPSMOVE - BAD ARG OR TOO BIG
UNCALL FAILED TO FIND ATOM FOR THIS ADDR
R/WBlK -- FIRSTFUN F/SUBR NOT FOUND
BFLT OVFL
EXPT- BIGNUM EXPONENT
ZERO DIVISOR
OPEN: POS NOT SYSIN OR SYSFILE (88,1688)
POS OONAME/ARG INCORRECT
POS MEMBER NOT FOUND OR lID FAULT
POS NOT SELECTABLE FOR OUTPUT
POS BUG - SYSFILE HIT EODAD

A9.S New diagnostic messages are:
SOFTWARE EOF FORCED ON RDS

16

