™

DESIGN AND DEVELOPHENT DOCUBENT
POR
LISP ONK SEVERAL 5/360 CGPERATING SYSTEEKS

YOKKTOWN HEIGHTS, NEW YORK — 10598
TELEPHONE:914-945-3000

FRED W. BLAIR
JAMES H. GEIESHER
JOSEFPH HARRY
MARK PIVOVUNSKY

Revised June Z4, 1971

FAGE Z

CONTENTS

Introduction

I1i. Data Types

—
i

-

B Using LISP omn 0S5/360, 1SS/360 and CP/CHE
I

iv

V. Storage Organization

V. Linkage Conventions

VIi. The Compiler and LAP

ViIi. ZInput Output

ViIl. The Code Feature

1%. Automatic Binary Program Paging Pacility

y

Xe Evaluation—-——Lambda expressions, functions, and MACKOS
BPPENDIX A. Common LISP Function Descriptions
APPENDIX B. Arithmetic Punctions and Fredicates
EPPENDIX C. Input/Cutput Functions and Predicates
g:eﬁﬁ%ix D. Supervisory and Debugging Punctions
APPENDIX E. (HS Exec Files
AFPENDIX P. Syntax of a Datum.
APPENDIX 6. Assembler Symbol Table
AFPENDIX He The Permanent Environment of LISP
Gdﬁagﬁb% m e MG
Tae LPL Tarees
o

P
(2.8

-,

ECKROWLEDGEMERT

In writing this document the authors have relied heavily on the
wmaterial that appeared in other documents on the LISP programming
languagye and on implementations of LISP. In particular, the
system description rests heavily on the following documents:

1. #cCarthy, John, et al.
LISP 1.5 Programmers Hanual
The H.I.T. Press,
CRMBRIDGE., 1962

Ze Edmund C. Berkely and Daniel G. Bobrow
The Lisp Programming Language:
Its Operation and Applications
The M.1.T. Press,
CRMBRIDGE., 1964

3 LISP 1.5 RBeference Manual for ¢-32
5. L. Kameny
S.DCa (I'M Series TH-2337/101/00)
Santa Monica., 1965

. . .) - i Ao a
C 4. The BEN 940 LISF System INTERLIST Redecence | booad
- D. G. Bobrow, U.L. Murphy, W. Teitelman p lWavwen mg%hﬂﬁl»%’
Bolt Beranek and Newman Inc. Yer ox Cw?-ﬂwi\“”*flmm

5 VYarious documents describing the specification
and implementation of LISP Z.

6. The B44/44% LISP Systenm.

Private documents by the author:

Paul Abrahams

Courant Institute,

New York Univ., 1966

In addition, many of the functions present in the system axe

due in part to these previcus implementations and LISP persons
too numerous to mention.

PAGE 4

e

INTRODUCTION

Thie manual 1s i1ntended for those persons familar with the LISP
programming language who wish to refer to details of definition
and implementation pecuiiar to this system.

The beginning LISP user is directed to the ™LISP 1.5 Primer™ by
Clark wWelsman (pPickinson Publishing Co., Inc., Belmont, Caif.,
1967y, or ®LISPF 1.5 Programmer's Manual® by John KcCarthy, et
ala

The conventions for the specification of syntax are given in
APPERNDIX F.

As a guide to the user it is suggested that Chapter X. be read
fairst and Chapter II. read only when reguired for actually
getting on the machine.

PAGE 5

II. USING LISP ON 0S/360, TSS/360, RND CP/CHS.

<:*£ chapter is best read after Chapter X 1if the reader is
reading from begining to end.

2.1 General comments on running LISP:
Normally LISP runs are done in the following manner:

Ao 4 LISF module is loaded and given control in one
of the following modes:

hot-start: This is the users nodge of
operation. Major parts of the system (those

generated by the core-image generation process) are
read into a large area reserved by the LISP module,
from a dumped core-image (SOSTAP).

As the dumped core-image was written out 1in a
relativised form, the hot-start (or Bootloader)
derelativises. This process yields the state oi the
system at the time of dumping. Thus if the system was
dumped by evaluating the doublet:

FILELISP(«..)

the hot-start will cause execution to continue with the

(ﬁ return from FILFLISP imn which case,
- VALUE = gener (where gener is the current geperation

namber) will be printed, and *SUPV the main LISP
supervisor, will continue on to the next doublet.

The hot—-start process causes all files which were
opened at time of dumping to be reopened. This implies
that any system dependent file detinition requirements
must have been met before control is given to the LISP
rodule.

cold—start: In this mode, which is used for system
generation, LISP loads the core-image—generated parts
of the LISP systen from a file of patch-cards
(S03COR) . The core-image is then dumped to form a
binary core-image file (SOSTAP) for future hot-starts.
The state of this dumped system is such that upon
loading, the system dinput and the system output
files (LISPIT and LISEQT) are opened and
#*SUPERMAN (the overlord of *50PV) ig executed.
*5UPERMAN supplies the input and output filenames for
¥SUPV and exits only when *5UPV does an exit
RETURN upon encountering a FIN doublet.

B. The checkpoint (FILELISP ...) facility:

(j The FILELISP function which «creats a binary core-image

PAGE 6

file, provides the wuser with the ability to capture
. the state of the LISP system on a temporary file. This
(ﬂ file may then be used as SOSTAP in the hot-start mode.
The arguments of FILELISP, shown above as ®..." vary
with the system that LISPF is run on. On 0S5/360 there is
one argument, a ddname (usually S50S8THP). On CP/CHS
there are three arqguments: filename, filetype and
filemode.

2.2 Running LISP on 0S/360:

In order to run LISF on 05/360, the correct Job
Control Language (JCL) cards must be supplied.
Those who are unfamiliar with JCL should seek expert
help. The following JCL cards may be used to run
LISP at the IBM YORKTOWN HTS KESEARCH CIR. on the
S/360-91 with MVT/LASPE. (note: words written in

lower case are subject to change, the local LISP
expert will normally supply an up-to-date set of these
cardas)

//jobnam JUB ...

/¥PORMAY PR,CONTEOL=SINGLE,DDEANE=LISPOT

//stepnm EXEC PGH=LISPLDR,PARE=W,REGION=396K

//STEPLIE DD DISP=SHR,UNIT=2314,VOL=SER=555555,DSN=LISPLDR.G0O115
//508TAP DD DSNAKE=LISPTAP.GO115,

// UNIT=2314,VOLUNE=SER=555555,DISF= (SHR,KEEP),
(‘ V4 DCB= (RECPH=U,BLKSIZE=1024)
- //SGSLL¥ LD UNIT=2314,SPACE=(CYL, (1,1))

//SOSTHP DD DSNA#E=yourfilil,

S/ DCB=(BLKSIZE=1024 ,RECFNM=1),

7/ VOLUNE=(PRIVATE,RETAIN,SER=yourdisk) ,

/7 UNIT=4314,DISP=(NEW,KEEP) ,SPACE=(CYL, (3, 1))

//SYSUDUME DD SYSOUT=A
//LISEOT DD SYSOUT=3,DCE= (BLKSIZE=120,RECFM=F,LRECL=120)
//LISPIT DD *

Doublets, i.e. function (args*)

FIN JIXININNNNNNRNNDDDDINY)
FIN FIN FIN

/%

the above JCL illustrate the hot-start mode setup.
<3 HRunning LISP omn TSS:

Note: Because oif low interest, this Section has not been
updated, in any revision later than HMAY 18, 1971.

In order to rum LISP om TSS/360, the user must have sonme
familiarity with the TSS Command Language and terminal
operating conventions. For those who are unwilling to study
; TS8S by reading the T5S/360 System Reference Library, the
<j best alternative is the TS5S/360 Quick Guide and the tutelage

()

e et e R R ——

A . S S - o ——~.

PAGE 7

of an expert user. The user is particularly encouraged to
learn to use one of the available data set editors, he must
also be aware of the Data Management Commands.
. the method for acguiring LISP that is currently popular
i ag follows:
1. The local LISP expert BpERMITs™ his latest
core—image and LISP module.
2. ‘The user shares these data sets.
share lis,blair,cor 46
share 1ib,bleir,userlib
3. The user wmoves the LISP module into his USERLIB.
ddef fromliib,vp,1ib
ddef tolib,vp,userlib

movprg
when the gystem prompts for the module npame:
atnliss

4. The user makes his own copy of corl46:
vv lis,cor 16
5. The user deletes his references to the shared data
sets:
delete lis
delete 1ib

. The user can then hot-start the acguired system by:
ddef sostap,vs,corlis
iisyp
which will put him in the LISP supervisor with his keyboard
unlocked awaiting the next doublet. The user may exit by
typings:
FIN

Caution: ‘The LISP module is not reentrant,therefore, tihe
user must unload or abend before repeating the above
hot-start procedure.

C. The LISP attention conventions:

It is possible to interrupt LISP while it is running. This
is done Dby hitting the ATTN key (in the case of a 2741
terminal), in which case LISP will respond:

-

L

the user may then type:

C in which «case he will go to the Command Language

rode. (typing GO should then return him to LISP.)

u an UNWIND is caused. This will get the user out of

rost severe problems.
the EKROR routine is executed.

S the supervisor *5UPV 1is called. This may be used to

turn on function tracing or simply +to tix up global
parameters. A FIN will cause execution to resume from
the point of interruption.

U« The OBEY function: Obey iz a LISP <function of

T — —— ——" — | —— A ——— — . ——— —— —. ———" m——

<ol

PAGE 8

one argument, that argument being a LISP string datunm,
which contaims any legitimate 7TS8S/360 command; the
effect of the function is to operate that command. The
value of OBEY is GOG_OR. Below 1is illustrated the use
of OBEY to make the data set characteristics, of a
file named sostmp, kpown to the TSS5/360 system:

obey (#ddef sostup,vs,dspame,dcb=(lrecl=1024,rectin=1) #)

Running LISP on CP/CHS:

The following describes the operation of LISP on CHS. The current
metnod ailows any user who has at least 512K of virtual memory to
use LISP interactively or it allows any user to use it in the CHS
Batche.

1.

N
7
f

™

The interactive LISP command:

LiSPF cor vdisk mode
LISP115 1983 8

where: cor --- 1is the filename of the LISP systen
image that you wish to use, or it 1is the default,
LiISP115 the standard LISP system.

Notes: A1l such *"core images™ are the resgsult of some
previous checkpoint of the LISP system. Thus, running LISP
can be thought of as a restart. In operations which concern
core image files the filetype ™SOSTAP"™ 1is assumed unless
otherwise stated.

viigk ---— is the wirtual disk address that you wish
LISF to use for a read only extension to your P-disk.
If you have &no disks currently attached then the
default disk 193 should work.

mode —-- specifies the filemode (4,8,C,T) you wish the
extension to have. The default is mode H.

EXABPLE: LISP
In this case the user simply wishes to run the standard
LISP system, and is unconcerned about what disks and
modes are used.

The following lines will be printed:

*¥¥ 5 (193) READ-ONLY *=*

EXECUTION BEGINS..«.

LISP VERSION 115-0

CURE IMAGE: LISP115 SOSTAP P1

VALUE = 1
at which time your keyboard will unlock and you begin
to enter doublets to the *SUPV supervisor which calls
EVALQUOTE to evaluate each doublet. FNote: The

PAGE 9

supervisor reads two s-expressions and APFLY's the
first to the second.

it continues to read the doublet until all parentheses
are balanced in the second S—expression, then skips the
rest of the input record.

You may escape from the LISP supervisor by typing FIN.

At which time the following printout will occur:
END_OF_SUPV
END_OF_LISP
ERRORCHNT = n
DEV 193 DETACHED

The time messacge is printed and you are returned to
CHus.

EXAMPLE: LISP 194

This case 1s the same as above except that the user
wants to use 194 as the disk extension address,
probably because he already has a 193 attached.

EXZBRMPLE: LISF 194 A
The user already has 193 logged in as B, therefore he
wishes LISF to use 194 as 3.

‘v the benefit of system programmers at other installations: A
x=s5ting of the LISP EXEC file canm be found in APPENDIX E.

D

NHote: The LISP command iinks the user to the filez of the
user BLAIR1 (in the case of our installation) for those
files whose filenames are LISP115. The files that user
BLAIKT must must have allowed to be readshared are:

A. LISP115 SOSTAP P1 --- the LISP system standard core
image.

B. LISP11S TEXT P1 ——— the standard module.

C. LISP115 EXEC P1 --- an exec file consisting of the
following:

ETYPEGUT OFF {turns off CMS command typeout)
CHARDEFP T (no special character for tab)
CHARRUEF B {(no special character for backspace)
LINEND {(carrier return is the only line end)

LOAD LISP115
START LISPHOT €1 &2 &3

he Batch LISP command:

LISFOFF in ou cor sSav
out LISP115 KO

PAGE 10

where: in --- 1is the filename of an input file whose

X filetype is SYSIN and which contains a sequence of LISP

(j doublets terminated by a PIN card. There is no default
- for this parameter, it must be supplied.

ot ——— 1is & filename for the output. This file will
be created with filetype OUT and will be transmitted by
Batch back to the user. A DISK LOAD will be reguired
to put the file on the wusers p-disk. The default OUT
for this parameter causes an OFFLINE PRINT OUT OUT to
be executed by Batch and the output is not transmitted
back to the user.

cor ———- specifies the core image from which the user
wishes to restart. The default LISP115 is the basic
LISP systen.

savy ——- is the filename for a checkpoint core image
which will Dbe saved at the end of the run. The file
Wouv SOSTAP PI1® will be created and transmitted to the
user. The defauvlt N0 assumes that the user does not
wish to save the core image at the end of his run.

Note: As is generally true for the user of Batch, the

user must have a file containing: his CP userid

foilowed by at least one blank followed by his account
(“ number followed by at least one blank. This file must
. have the filename userid and the filetype BATCH.

For the benefit of systems progyrammers at other installations:

A. Contact C. J. Stephenson, 1BM Research (tr., Yorktown
Helights, about the C#S Batch facility.

B. The file LISPOPP FXEC can be found in APPENDIX E.

C. The file LISPBCH EBATCH is required and is also found in
EPPENDIX E.

3. (MS attention conventions:

For the users oi LISP at IBM Research attention interrupts are
created by the named interrupt facility. It is invoked by
attentioning twice, typing %%, and carrier return. This facility
is due to W E Daniels of the Research center and interested
parties should contact him. Por other installations the external
interrupt feature of CHS must be used. This means that one no
longer ends up in DEBUG and that one enters the LISP interrupt
_ wiler instead.

SN N, " a— — — s o e ettt et e Wi et et b s . e ' i e s ot ot ot e

PAGE 11

The LISP interrupt handlier only signals that an interrupt has

surred. The LISP interrupt services routine is given control on
the next function call. It is possible that a program is in so
tight & loop that there 1is no "aext®™ call! In this rare
circumstance the user has no recourse but to re-ipl.

Tre LISP interrupt service routine vwhen called, responds by
typing "%". (The response may be delayed by CHS stacked output.)
1f the user then hits carrier return, he will be prompted as to
what he may request. If the user is familiar with the attention
requests he may type the desired request immediately, in which
case there is no prompting.

The available requests are as follows:

C Puts the user in CHS subset command language.
U Unwind to the last errorstope.
Has the effect of canceling the last operation.
E Call ERROR for backtrace and diagnostics.
s Kecursively reenter the LISP supervisor *SUPERMAN.
A subsequent FIN causes the interrupted program to
resupe.
D Places the user in CHS DEBUG.
A RET causes him to resume.
2 To ignore interrupt amnd proceed.

a

M

PAGE 12

iII. DATA, TYPES AND TOKENS

3.1 Terminology
Field: An area, container, or Dbox capable of
holding information. ¥or example, a computer
worde.

Setting: The contents of a field.

Locator: R setting from which a field or collection
of fields may be found. (¢e.g., an address
constant) .

Pointer: & 32-bit field whose 24 low order bits are a
locator. Fointers are byte addresses.

Half-word word—-locator: A 16-bit field on a half-word
boundary from which a pointer may be
determined. (Note: 1In this system, the list
nodes are pairs of half-word word-locators,
not pointers. However, the half-word
word—-locators are always translated into
corresponding pointer values by CAR and
CDK.)

The LISP Language deals with data objects. The
e¥ternal representation of an object will be called a
datum. & datum is usuwally a sequence of characters but
it could conceivably be & seguence of sounds or
pictures. A data structure is the representation of
an object within the LISPF system as a collection of
fields with settincs. A value is & setting that is either
the locator oif a data structure or 1is itself a data
structure. In the latter case the value is said to be
literal.

3.2 DATA

it 1is the LISP KEAD and PRINT functions which provide the
interface capable of recognizing the data and transforming thenm
into data structures.

4 complete description of a datum in the sense of the KEAD
and PRINT functions can be found in APPENDIX F.

The functionS (RDCHR) and (FRINTCH x) vprovide an interface by
which any sequence of characters may be read and printed without
regard to that syntax.

The functions (*NEWLIN) and (TERPRI) allow the reception and
transmission of arbitrary records from/to currently selected
input and output devices.

PAGE 13

3.3 DATAR STRUCTURES

ks should be expected, data structures show a stronyg
correspondence to data. This correspondence is not, however, one
to cne. For example, integers are represented in three ways; one
for -1024 < integer < 1023; the other for all other positive and
negative integers in the interval

31 31
- < integer < 2 -1 ’

and yet another for positive and negative integers outside
this range but less than 9000 decimal digits.

It is therefore convenient to classify data structures on a
somewhat different basis than in terms of their data class.
principally, this is by their storage maintenpance properties.

A. Identifier structures
B. Small integers
C. Fixed size fields which contain no locators

1. Integers
2. PFloating point reals

D. Contiguous storage vectors

1. fThose which contain no locators
a. strings
b. assembled prograsms
c. integer vectors
d. real vectors
e. large integers
2. Those which contain locators
@. general vectors
b. n-tuples

E. Nodes

A. TIDENTIFIER STRUCTURES

Identifier data are represented uniquely by identifier data
structures, which contain the information commonly found on
descraiption lists in certain other implementations.

The identifier data structure consists of three one-computer—
word subfields. These three words are not contiguous but there
is a rule for finding any two words given the third. It will be

!/ ’ﬁ\’

PAGE 14
convenient to refer to these as #Wd-1 or the id-head, Wd-2, and
Wd~3 or the value-cell.

The id-head containg 2 half-word word-locators named b-list and
proplist, respectively.

The left hand locator (b-list) serves to locate
the next
identifier in the Dbucket chain. A pointer vector of

buckets OBLIST serves

to provide a mechanism for mapping an identifier datum
into a

unigue id—head.

proplist is the value of the property list associated with the
identifier.

proplist = (CDR id)
Wd 2 consists of 4 fields, namely:

1. type - this 6-bit field contains the following bit-field
settings:

H

Bit O No meaningful setting as yet reserved.
1 = No meaningful setting as yet reserved.
2 =1 - if this identifier is a literal-real valued function.

3 =1 - if this identifier is a free variable or
functicn name, referenced by compiled code.

g = 1 — if this identifier is the name of a function which
returns a literal value.

5 = 1 - if this identifier is the name of a function which
has an indefinite number of arguments.

6 = 1 - if this identifier is the name of a function which
receives its arquments unevaluated.
7 = 1 - if this identifier is a compiled function name.

2. mn—-i-arg - this 4-bit field contains the number of literal
arguments that this function expects, otherwise 0.

3. n-p-arc¢ - this 4-bit field contains the number of pointer
arguments that this function expects, otherwise 0.

4. pname - this half-word word-locator designates the string
data structure that contains the EBCDIC representation of
the identifiers datum.

it g Sm——" - e

PEGE 15

Wd 3 - This field is a pointer whose high order 8 bit subfield
is nonm-zerc only if this identifier is the name of a function
which has been called since the last garbage collection. The 24
low order bits contain a pointer value which is either the value
associated with this identifier (the so called SPECIARL value) or
is the locator of the assembled program associated with this

v
1

{

AL CIRL :),(\ Lt Ak

identifier. ok e &mMT;@J“ﬁa‘
1B
I
|—————=>] h-list I proplist { #d-1 - atom head
i l |
[type in—1ljn-pi pnage i Wd—Z2
I lacgiargi I
I O I I wWi—-3 - value cell
{ i |

Figure 4. The identifier structure.
See APPENDIX A for functions on identifiers.

be SHALL INTEGERS

Any pointer value which is a locator of any byte below the space
reserved for large integers and above that reserved for stacks,
is treated as a small integer by the arithmetic functions, and
also by Read and Print. The literal value of the small integer
is computed by subtracting QUOTE, and shifting right by 2. (See
Fig. 5)

S5mall integers are thus unigue and unalterable. As you might
have guessed, small integers are an implementor's trick for
consuming time instead of space, avoiding garbage collections,
and thus saving time.

C. FIXED SIZE FIFLUS WHICH CONTAIN NO LOCATORS

Two reqgions of memory are allocated to hold the numeric
values of active single-precision integers and floating
point reals. Equal numeric values may occnrﬁﬁmore than
once, that is they are not unigue. Unlike other programming
systems these cells are never intentionally altered in
place.

In both these regions, inactive values are reclaimable, i.e.,
garbage collectable.

U. CONTIGUOUS STORAGE VECTORS A region of memory bounded in the
low address region by the location FSTVEC and on the high end by
avairlable space, holds the data structures called vectors. {See
Fig. 6) Vectors are not unique and except for assembled

PRAGE 16

programs, they are alterable.

C | Fig 6.1 i

. | Vector object| s—-——->im| t | 1 I S | headerxr

| given by s. | 5l Bl it - -1

e i i)

I i)
= =}n words

I 1)

I 1)

Where m is a marking bit (generally ignored).
t is a 3 bit type code:

}

If s is a character string;
1f s is an assembled prodral;
If s is a vector of literal integers;
If s is a vector of literal reals;
I1f s is a large integers;
Unassigned;
If ¢ is an n-tuple;
If s is a vector of pointer values.
1 = 4n -1 (0 < 1 < 4096) , where n is the vector
length in words (not counting the header).
S is the half-word locator equivalent of s.
The header word must never be altered by the user (Note: the
system does not prohibit such alterations, therefore this
convention is in the hands of the user).

and

[aal o s Gl o A Sl o 8
(L7 O I | L O I

O BT B - O

<‘ [Pig 6.2 I s=——==>im| t | 1 I 5 I
- } an n-tuple | =11 i ———] ————
pmmmmmm ! l k 1
’ B B)
| [)r literal
= =} values
i 1)
s1———=>| 1)
= =)q pointer
I [} values
Where Kk = s1 -s -4 = 4r
. NODES

Nodes, commonly called list nodes or list cells, are one word
fields consisting of two half-word word-locators. The CAR field
is the left-most or lower addressed one. Let it be emphasized
again that the value of the function CAR is a pointer, not a
nalf-word word-locator.

Once again the implementor chose to consider space asg the more
valuable resource.

PAGE 17

— —

FAGE 18

IV. STORAGE ORGANIZATION

{(Wg—1 of id's ITédentifiers

| Fig. 5 | | Garbage collector | I
| Storage | | Bootloader, and I I
{ organization| | other assembly i I
] .} i1anguage programs,| {
*VALUE N1 _1I/0 blocks, etc. | i
“t value cells I |
*VALUEZ2 h Y | (Wd—-3 of id's) I |
1 I | the BELOW
| (Wd-2 of id's) | I
*EBS ———————— >{ ABSolute stack i |
I_ i I
I | l
¥PDP —=——m——e——>|_ 1 |
I I |
*FIYX |__Symbolic stack { |
4 | PIXED pgm space | I | i
Quorqggb'u S| i f_l___l_ =12 i 2 —1024
guote cells I Pl Pos. small integers
[D Y U R
I 1
Large integers = [|
t__1_1 Integers__
I I I
Floating pt reals= { | Reals
[I
{
|
|
I

FSTVEC

Strings
Variable lenath

|
|
|
l
|
*NIL I
I
I
I
I
I
} data types

|
{
| vectors
{
i

|
i
[
NXTAVEC-=| =—===————— e m e e e | = | = ~Atoms
= Available space |
NXTAVLST |
I |
| Nodes |
FETLSYT | }

in this implementation a =schema for using the CPU
legisters and particuiar layout of core memory have been
chosen. This we call the storage organization (See Fig. 5)

Because half-word word-locators are used 1in nodes, only
2%%16 words may be located beyond the address given in
*FI1X. Any word within this range 1is said to be Inside.
The stacks as shown 1in Pig. 5 are Below, and certain
other features of the system are also Below. Pointers
are usually Dbut not necessarily restricted to the Inside.
Any object which is outside (above or ©below) is not

Neg. small integers

I Numbers ___

Assembled programs

)

PAGE 19

subject to reclamation, nor can its value be CONS‘ed.

The section on data structures explains the contents of
some of the memory partitions and Fig. 5 illustrates
their relative order. The Dblocks labeled ABSclute stack,
Symbolic stack, ¢Quote cells, Fixed Pgm. Space, 1/0
Blocks, Available Space, and the BELOW, need further
explanation.

A. STARCKS

1. The Absolute Stack:
The absolute stack is a field in memory which is
used for the temporary storage of non-locator data structures and
for the transmission of non-locator arguments to functions. It
is bounded on the low address end by the fixed location ABSSTACK.
The current pointer to the stack is given by PABS = *ABS + 2048,
where *ABS is the ABSolute stack register. PABS is a value which
determines +the stack-region belonging to the calling functiosn.
PRBS 1s so designed so that references may be made in Dboth
positive and negative displacements from it. Each stack region
consists of an integral number of double words. The absolute stack
should not be used by the casual user. It is used by the systeu
in special and sometimes non-systematic ways. The current LISP
COMPILE function does not use it at all.
¥ig. 2 illustrates the ABS stack.
LUW HEMORY

ABSSTACK (begins on double word)

I
l
| (always a double wd boundary)
|
I

|
|
*ABS (f) ————— >1
l |
2048 bytes =
I i
BABS (£ ————— >|-—=-—=====——==-—] (the off-set stack pointer)
e —
| _former *ABS_ | (in the odd full word)
{ I (arguments of g)
{ Axgt of g §
l - I
I . | (stack region belonging to g)
! &rgn of ¢ I
{ I
| temp?t of g I
= : = (temporary values for qg)
| . I
PRES (g) —————> | ==—=————]
*ABS (£) (former stack ptr savedq)

(g uses this region to pass

I
]
I
| arquments or as temporary

I
I
I
I

PAGE 20

storage not safe over call)

—] ———] ——
)
|
|
|
!
)
|
}
}
|
}
|

i
i
RBSHAL~g———————" > I {("out of stack®™ when:
{ ¥PDL < ABSHAX where:
= ABSMAX = *ABS + 4096)
I
*PiL - > I

(see fig 3 for pointer stack detail)

N

“"(}C
L pointer
mubfields
address en

*#1X, and
pointer con

transferrin

The Pointer S5tack

is a 32-bit field
subfield containing a setting which is a locator
byte addresses. Thus,
are all pointers.

d by a fixed

on its low

the

whose 24 low or

pointer stack is

Th

is stack is bound

PAGE 21

der bits are a
. Pointers are
a field whose
eGé on its high

address permanently kept in register

address end by the current pointer stack

tained in register *pPDL. This stack i
transmission of pointer arquments to functions, for the temporary
storage of pointer values, and to provide a systematic method for
tion to function. Fig. 3

g control

from

func

illustrates the Pointer Stack.

LUOW MEMORY

ABSHAX——~——>

| Fig 3.

I THE FUNCTION £ CALLED g}

|

(stack region

i

{(av

I
I
i
|
|
|
I
|
I
|
|
|
I
|
|

*pDL for g ———--—->|_*REL for £
| _*RET for £
| *FDL _for f
Arq1 of g
- (ar
__Argn of g _
Templ of g
for g) : 1
Tempk of g
*IDL for f ————-——- >

| Fointer stack
| grows in higk
{ to low direction.

{
|

HIGH KENORY

)
1-
r
;
I
i
t
[
:
|
]

I
|
|
{
|
i
I

APIX ——mmmm e =

E. QUOTE CELLS

A field
for the

pointer va

These poin
compiler en

Quote cells
gquote cells

of 1024 wor

purposge of

iues of compiler

ters arise

counters and

are unigue
would Dbe

ds has
hol

from
are

and
a

be
ding
ge
guo

en permanently
directly ad

nerated data st

te expressions w

called guote cells.

unal
cata

terable. Running
strophic error

5 used for the

ailable stack)

(return block of g)

guments of q)

(stack region for g)

(tenporaries for f)

(stack used by other

active functions)

reserved
dressable
ructures.
hich the

cut of
Were it

PAGE 22

not for the (Quotes extension feature. This extension
feature uses vector space for additional guotes. The first
1024 guote cells are directly addressable because they all
lie within 4096 bytes of the address given by the register
cailed “QUUTE"™.

All values contained in guote cells are considered active
by the garbage collector.

Fixed Program Space

Pixed Program Space is a one page (4096 Dbytes) field
whicn is permanentliy allocated and for which addressability
is guaranteed by *PIX. Routines and functions which were
deemed ®most vital® share this page. There 1is also a
subfield of 1literal and pointer constants which are
needed by the system primitives. The contents of
fixed program space vere hand-—coded in 05/360
Assembly Language.

1/0 Blocks

i region has been allocated to whatever Input- Output
control block that the operating system reguires. In the
case of 0S/360 this allows room for & DBCB*s. This area
is now in the BELOW.

Available Space

keguests for new nodes or vectors must be satisfied
from available space or else a reclamation occurs.
because of the compacting pnature of the reclaim function,
available space 1is always a contiguous block of words.

The BELOW

The BELOW consists of the reclaim function and
all its subfunctions, the bootloader, and various
other functions all writtemn in 0S/Assembly Language.
#hile some LISF data structures may occur in the

outside, they are undefined as members of a node (i.e.,
they cannot be cons'ed). All objects in the outside are
not reclaimable and are in fact immobile.

The Register Schema

KO — *NIL or *1ID ; contains NIL; origin of identifiers.

RT — *LINKEK; used to make a function call. (May be used by
subroutines (certain LAP360 coded functions which call
no other functions and use no pointer stack space) as

KZ — QUOTE or *IORG; permanently loaded register used to
provide addressability for quote cells;
small integer origin (zero).

PAGE 23

R3 - *VALUET)
o) permanently loaded registers used to
(K4 - *VALUEZ) provide addressability for the first 2048
‘ }y value cells.
RS - *FIX; permanetly loaded to provide addressability im
fixed program space.
K6 - *ABS; the absolute stack register.
R7 — *KEL; used to provide addressability within the
function currentiy in execution.
R8 — *RET; used when calling a function to provide a
return address.
B9 — *PDL or *PDP; the pointer stack register.
R10— *AC; used to transmit the first arqument of a function,
and to transmit a function value.
R11— *MQ; used to transmit the second argument of a function.
K1z—- *SCRE scratch.
R13— ¥SCRF scratch.
K14— *SCR1 or *RNARG: scratch.
k15— *SCRZ or *MNARG; scratch.

Thus, *N1L, QUOTE, *VALUE1, *YALUEZ, and *FIX are all
permanently loaded; *AES, *REL, and *PFDL are safe over function
calls; and the 7rest are unsafe over calls and may be used as
scratch registers.

The Floating Point Hegisters

<i 0 - floating point accumulator, used to transmit
one literal valued real value, and the valiue of a
real—-valued literal-valued function is returned in
it.

)

2 — used for floating point calculation.
4 - currently unused.

6 — scratch register used in moving arguments to
thelr respective stacks.

(v/ ‘\\

PAGE 24

V. LINKAGE CONVENTIORS

It one is to understand or interfere with this LISP systen
at the assembly language level, it is necessary to
understand the linkage conventions. Linkage conventions
are the manner in which control is passed from calling
function to called function, and what conditions each is
expected to fulfill in order that the system remain well
behaved.

As these conventions bear directly on how effectively
one can compile code, considerable thought has been
put into the conventions. The amalgam of compromises
which has resulted is due to the following considerations:

hssembled programs were regquired to&%eentrant, to need no
address constant modification when moved, to be as small as
possible, to be reclaimable, to be redefinable, and as
efficient as possible. Reentrancy of course begot the
stacks for alterable storage. It is possible to share such
programs provided that when reentered other alterable
storage areas pertain. The two stack decision was made
to simplify the marking and relocating phases of the
RECLAIEM function. This cost an additional register
(¥ABS) . Now it appears that there are basically two
methods of maintaining stacks. In oune method, the
calling program is responsible for pushing or bumping (in
any case updating) the stack by just the amount required
at the time of a call. The other method 1is that the
called function bumps the stack the maximal amount
reguired by itself just once when called. On one hand
the first method required only the amount of stack
currently holding stored information while the second
method would sometimes allocate space that was not
required in that particular pass through the function.
Gn the other hand the first method required a longer
calling sequence to encompass the variable stack bump.
The second method was chosen because stack space Was
relatively cheaper than binary program space, that
is, 1its permanent requirement for space was smaller. —

kgsembled programs contain no address constants;
therefore require no address relocation. They do,
however, contain relative addresses (Base—disp) of
value cells of identifiers, and of guote cells. But
these, once referenced by assembled code, remain in
place (i.e., their relative location never changes).
Note: While assembly language programs can be exchanged
from one copy of the system to another, assembled programs
cannot.

The reguirement for redefineability and subseguent
reclamation of *dead' assembled programs gives rTise to
storing them as vector data structures, and accessing

a

- x,x/‘::"q[]

’%M‘V e T\l

PO S S
o~

~ x,Qi‘;" Lal T Jd
oo ’
. ‘

D

)

T T— R T TR TR TR T e e R M T T T

PAGE 25

them via the value cell of the function's identifier.
Thus redefinition is merely the reassignment of the
value cell to a new value. The locator value of such an
assemnbled program vector data-structure is a pointer to
the header of the vector. The calling mechanism takes
this into account by transferring control into the vector
just beyord the header.

& linkage routine exists at the location speciiied by
the register *FPIX. The 05/360 version of this routine
consists of

LH *SCE1,0 (*RET) 1.4
STC *PLP,0 (*SCK1,*VALUET) 133 7
L *LINKR,O (*SCK1,*VALUE1) 1.2
B 4 (*LINKR) 1.2

5.13 u sec

and the calling seguence is as short as 1t can be (32
bitsg) :

(BALR *RET,*FIX) 1.2
16

16

where X% is @ half-word constant which is a locator
for the identifier wvalue cell. The STC imnstruction is
not necessary for linkage but is used in conjunction with
the RECLAIM function to measure the activity of a
function. The automatic expulsion of assembled progranms
which takes place dynamically when vector storage space
becomes scarce, makes use of this activity measure. The CHS
and TSS versions of the linkage routine contain an
additional instruction for fielding attention interrupts.

The total time for this sequence is about 6.33 u sec.

This iy mnot significant for functions which require a long
time themselves but it is for very short ones. As about
20% of the code produced by the compiler consists of
calls to the 1list accessing functions (CAE, CDE, eas,
CADR ...y £tc.) and these functions often occur inside
tight loops, they were treated specially and require
only a 1.2 u sec calling sequence. (The CAK routine
reguires = 6.53 u sec) The decision to use half-word word
pointers has resulted in a factor of 6 loss in time for
list accessing. The overall loss in time is probably
less than factor of 2 or 3. Hopefully, this can be

{ &
> LA e ¥
l,’/‘/ [2

Y. Nl

-,

~

PAGE 26

overcome completely by the addition of a new instruction
in the microprogram of the S/360.

The calling sequence only transfers control to the
desired function. The linkage conventions require a
systematic method of +transmitting arguments, returning
values, returning controi to the calling program, and for
maintaining the stack.

The convention for passing pointer arguments 1is that the
first and second are passed 1in Registers *AaC and *MQ,
while the third through 16th must be stored in fixed
program space locations RRG3 .« ARG16. This
convention dates to the 7094 implementation and is a
design error in this $/360 version. Fortunately, it is not
felt for functions of ¢, 1, or 2 arguments. k better
schere would be one similar to the one used for the
absolute stack, in which the ARG's block is unnecessary.
Upon entering a function G called by a function P, G
should reserve an area sufficient for its control
information, arguments, and the maximum number of
temporary locations that it may require. To accomplish
this, the assembler recognizes a macro (*MOVE mn n)
where mn 1is the number of bytes required for the stack
region of G and rm is 8 times the npumber of pointer
arguments that 6 expects. (Thus, if G has 4 pointer
arguments, rp = 3Z.)

The *HMOVE macro performs several functions. It
1. reserves a stack region for G.
Ze saves *REL, *RET, and *PLP which nmust be

restored
when returning coantrol to F.

3. copies the pointer arguments of G into its stack
region.

4. checks for out of stack condition.
5. initializes all allocated temporaries to NIL.
6. establisheg a new *REL and *PDL for G.

The stack is restored and control returned by the
following seguences:

LY *REL,*PLP,0 (¥PDP) restores *REL, *RET, *PDP
B 2 (*RET) -returns to F.

The function G is responsible for returring a pointer
value in *AC. This completes the descriptions of the

N

FAGE 27

iinkage conventions with regard to pointer vailues, Dbut
similar conventions are required for literal arguments,
temporaries and values.

The stack for literal values (absolute stack) is adso
based on the convention that called functions are
responsible for allocating a stack region
suificient for their maximal requirement. This stack
is somewhat better designed thaen +the pointer stack as
it utilizes an offset stack pointer PABS from which it is
possible to refer in both directions. Therefore, no ARG's
block is necessary. See Fig. 2 which illustrates the
absolute stack. The macro (*AESPUSH m) where m 1is the
number of bytes reguired for the stack region, 1is used in
the same manner as (*MOVE ...). Literal values are
returned in the ARG1 stack position. The absolute stack is
restored by:

L *ABS,4+2048 (*AES) .

)

8

M)

PAGE 28

Vi. THE CUMPILER AND LAP

6.1 Historically LISP has proven to be somewhat slow when
evaluated interpretively. This 1s due 1in some part to the
s—expression model of the evaluating machine and also in some
part to the many features that have been added to the language,
(i.e., the FROG feature, assignment, go to's, functional
arguments, etc.). In any case, it has been possible to implement
a compiler which creates code which runs from 40 to 100 times
faster than interpreted code. It has also been the case that
compiled code usually requires less space than the s—expression
representation of the function.

6.2 The Compiler Function

The compiler for LISP is itself a LISP function, or rather, a

whole family of functions. The argument of the COMPILE function

is a iist of defined function names. This list is also the value

of the function. The important side effect of the COMPILE function
is that for each argument function name an assembled or binary

program imade (BPI) of executable instructions has been created

and the properties associated with the name (identifier) have

been altered to reflect that fact. Subsequently that function

will be executed rather than interpreted.

It is a characteristic of this compiler that normally only
read—only code 1is generated. The exceptions to this could
resuit from using the *CODE function to create imbedded assembly
language instructions.
In this system it is possible to mix compiled and interpreted
functions.
6.3 LAF360: The LISP Assembler

(LAP360 listing sym)
The function LAP360 assembles the instructions in listing,
plants them 1in core, and may alter certain properties of
identifiers.
iisting: = (prologue instruction¥*) where:

Case 1: (Assembling a patch)

If prologue is a number then the instructions following
will be originated at the location computed by adding the number
to the system origin given in register *PFPIX. This is useful for
assembling absolute patches.

Case 2: (normal case)

1f prologue = (name class number) « then

PAGE 29

the instructions will be planted in a vector which the
assembler gets dynamically. The identifier data structure
for name will be modified to reflect class and number of
arguments.
class = (SUBE | SUBR* | PSUBR* | FSUBK)
Iindicating whether this function has a definite number of
arguments, evaluated (SUBR) or unevaluated (FSUBK); or whether it
has an indefinite number of arguments, evaluated (SUBLK*) or
unevaluated (PSUBR%*).

¥hen assembling functions an assembled program vector
of the reguired size is created, and a value pointer for that
vector is planted in the value cell for the identifier given as
name. In addition, the identifier structure is filled in with
the rest of the prologue information.
The format of the assembler's instructioans is
instruction = label
macro
call
pseudo—instr
{ rrop reqg reqg)
{ rxop reg addr reqg)
{ ssop reg addr reqg addr }
where
label 1is a literal-atom designation for the location of
the following 1instr. BAll labels are local to the current
listing.
macro = (mac-name args*) and mac-name is the name of
a previously defined assembler macro. Such macros can be
defined by the function MACLAP, their effect is to insert a
seguence of instruction into the listing.
call = (CALL fname number)
where fname is the called function's identifier.

pseudo—instr = {(=P number) for full word constants

(=H number } for half word constant

PAGE 30

(*DATAS addr } for base disp constants
(*8OVE nusber number)

(#*ALIGHN {f P | H 1}) to provide
alignment

addr = (reg disp*)
(CUOTE datum)
(PUNCTION id)
(SPECIAL id)
(LAEEL label)

The addr field produces a 16-bit field by shifting the reg field
value left 12 and Ok—ing it with the sum of the disp values.

{ QUOTE datum) creates the base—displacement setting appropriate
to locate a pointer value for the s-exp datum. Note - such
guoted structures are shared and must not be altered. 1024 such
QUOTE value cells have been reserved and when they are all used
the assembler resorts to less efficient methods. Namely the use
of a QUOTES-extension vector.

(FONCTION id) creates the base-displacement setting appropriate
to locate the value cell of id. Also bit (3)of the identifier
type code iz set to 1. g?

{ SPECIAL id) same as (PUNCTION id)

In general the symbols for :

rrop, Trxop, ssop, reqg, disp, and label are all either
numbers or id. The id are evaluated by lookup in the symbol
table environment given by sym.

sym = ((id . number)¥)

If a symbol does not occur on sym, the property 1list is
inspected for a permanent symbol value (called INTSYHM).

See APPENDIX G for a list of the assemblers permanent symbol
values.

v v— V— o— T — | — —— N ———— A — —r-. A —— t—a—{ T——"\ Yo— —_——— T_———" — " — " t——— "]——a | —_—r " it " N | o St i o O TSN WSSy T WO_—— T __—_—_ 1| S_—_—__—0 " —m— m— w— f—

'//\\

e

c

PAGE 31

Vii. INPUT/OUTPUT

L15P relies heavily on the operating system <for its 1I/0
capabilities. 170 functions are essential so that existing data
can be read and data structure in memory can be printed. Data
exist in records which occur in files, the file being a sequence
of records. The individual I/0 functions are described in
APFPENDIX C.

7.1 Describing a file.

The user may process only those files which have been made known
to LIiSP via the (OPEN*SEQ...) function. When the user begins
LISP execution two files are automatically made known:

LIS5PIT, the standard input <file, and LISPOT, the standard
output file.

The function (SHUT x disp) is provided to let the system forget
about a file.

Operating systems may impose demands and reguirenents

for files before they may be processed, when running under 05/360
DD cards describing any file which might be used

must be included in the Job Control Cards which describe the LISP

Job*. The LISP file names correspond to the DDname parameter.
A11 file and record characteristics must be specified on this
card. The one great good that comes is that the LISP progranmns

then become quite device independent.

*Needless to say that under 0S5 1t may become necessary for the
user to supply these cards. See Principles of Operation SRL.

7.2 Selecting Files

The datum and record reading functions are all written +to
operate upon the currently selected input file. The function
(kDS file-name) is available for selecting any known opened file
as the current input file. Likewise, (WKS file-name) selects an
output file. The following special variables describe the
selected input file:

Cﬂ‘ﬁ%ﬁﬁi‘i‘ = file—-name

CURINBUY = string data structure which received the
recorde.

CURIRDCE = lacacion of the DCB, data control block
o,

CURCOL = é)—~> n column of CURCHAR

CURCHAR = last character read.

\

UBUFLIN = ke (5 iy) o Ao ‘*#‘«'

The output file state is given by:

&

PAGE 32

CUROUTNAM = file-name
CUROUTDCE = DCB
CUROUTBUF = string for output record

CUROUTCL

]

0 -—> n current output column
7.3 Record Processing

The function (*NEWLIN) brings in that portion of the next record

of the currently selected input file that will £fit in the

CURINBUF vector. This allows one to read the n dinitial

characters of a record by specifying a CUORINBUF vector of n

characters. On the other hand, (TERPRI}) fills in blanks from
CUROUTCL to the end of the CUROUTEBUP buffer and then outputs the

record.

7.0 Character Stream Processing

The functionms (KEADCH) and (PRINTCH) allow one to proceed
character by character through a file as though it were all one
string and the records didn't exist. In this manner arbitrary
character strings may be processed without regard to the syntax
of LISP data.

T.5 Pile Positioning — not yet available.
7.6 (READ) the datum reader

(READ) is the function which starts at CURINCOL and continues
reading characters until an entire LISP datum has been passed,
the value of (KEAD) is the corresponding data—-structure. See
Section 3. (READ) employes (*RATOM) to recognize one token .
Unless that token was(or %(the value of READ is the data
structure for that token. If (or ¥{ was encountered (READ1) 1is
used to collect all the following data into a data structure
until an unbalanced) or %) token is encountered.

token = (|) | . | literal-atom | number | string | % |
%)

7.7 (PRINT x)

(PRINT %) outputs the datum x, filling out the final line with
trailing blanks.

(PRINO X) - same as (PRINT x) without any trailing blanks.

(PRINT x) - outputs any literal-atom, number or striang without
trailing blanks.

/“)

—

PAGE 33

Viii. THE CODE FEATUKRE

in this implementation of LISP it is possible to use LAP360 coded
expressions directly. This 1is possible through the use of a
code—exp where

code-exp = (code—-op instr-c%)
where

code-op = *CUD¥
*¥ICCGDE
*RCODE

corresponding to pointer valued, integer literal valued, and real
literal valued code—exp.

& code—exp can occur in any context that an exp is allowed, but
must obey the style conventions imposed by the register

allocation schema, the storage organization, and the schema for
value transmission.

instr-c = instr*

The code instr are just like reqgular LAP360 instructions
with the following additional addr field allowed.

addr—-c¢ = (*LOCATE id)

Which allows the instr to reference variable values that occur
in the context of the LISPF function 1in which the code—exp
OCCUrS. No provision currently exists for interpreting
code—eXp. Nor is any envisioned. The code feature is thus
purely a compiler artifact.

st —— " — — i — " —— \———_' !

PAGE 34

e i i i, i s P

PAGE 35

GETTING ALONG IN LFL ON CHS

This note assumes some Kknowledge of CHS.

The CHS command that puts one 1in the environment of the
basic LPL supervisor is:
LISP LPL

If this command does not work, then LPL is not available to

CMS. (you may make discrete inquires in this case)

If LPL is available and working, you may input one LPFL
expression. Assuming that the expression is syntactically valid,
it will be evaluated. All LPL expressions produce a value which
is printed, or they cause the ERKOR routine to be entered, or
they continue running.

This process is repeated until the expression:

+FIN

Cox

g

foliowed by a final:

brings one back to the environment of CHS.
This explanation gives rise to the following questions:

1. ¥®hat are LPL expressions?

2. How does one input an LPL expression?

3. What if my input is not syntactically correct?

4. Wwhat if the evaluation causes FRROK to be called?

5. bhow can I interrupt the evaluation process?

6. khat are the basic primitives and builtin functions
available in LPL?

We treate the above guestions briefly, in sections 1-6, and

then rTeturn to a fuller discussion of the meaning of LPL
expressions in section 7.

1. What are LPL expressions?

The following symbols are used for syntax description:

— { and } are used for metalinguistic grouping.
. [and] are used to indicate optionality.

| — — —t" Pt it |t et | et e | e

/\\\

DRAFPT COPY NOT YET COMPLETED PAGE 36

* iz used to indicate one or more.
| is used to separate alternatives.
Vertical alignment is also used for alternatives.

Expressions are the principal linguistic form of the LEL
language. An expression may be given an interpretation through
evaluation. This new interpretation of the expression, is in a
strictly narrow sense, merely a new symbol. The human interpreter
of this symbol may think of it as denoting an object. He may
consider the expressions themselves as denoting objects and
should do so whenever possible.

A conversation in LPL consists of a seqguence of expressions
received from a terminal or file. The LPL supervisor translates
each expression into a data-object (a LISP1.5 S-expression). It
then evaluates that object, outputs its value, and repeats this
process until a termination is signaled. Should the evaluation of
an expression require the reading of user input, then that input
must precede the next expression to be evaluated. In addition,
printing may occur before the expression's value is printed.

The value of an expression is a data-object. Data-objects
are characterized by their location and type. Data-objects may
have associated properties, some of which are more directly tied
to the location for purposes of efficiency. Data—objects are of
two classes:

constants: identifiers, numbers, and strings;
aggregates: pairs, lists and vectors.

It is convenient to give data objects &é linear
represeptation (for input and ocutput); this gives rise to a data
language. The data objects in this representation are
traditionally called symbolic expressions (S—expressions). In
LISE1.5 systems constants and vectors are usually refered to as
atoms. We shall perpetuate the use of this term, realizing that
it has the following operational definition: An ator is an object
for which the 1ist selectors CAR and CDR are not applicable. Of
ail the data objects the sine qua non has proven to be the pair.
Thus, the following definition of S—expression:

A data—object is either an atom or a pair of data—-objects.

S—expression = atom | (S5—expression . S—expression)

We reserve a special atom NWNIL (also "()"™ } to denote the
empty list. We prefer +to use list notation which results from
replacing all occurrences of dot followed by a left parentheses
with a blank, and deleting the balancing right parentheses.

(A « (B « (C . ()))) is the list (8 B C)

Names may be associated with values (data—-objects) and are

DEAFT COPY NOT YET COHPLETED FAGE 37

reterred to as variables. Functions {more properly
function closures) are parameterized definitions of their value
object. They are denoted in the LFL language by
procedure expressions and are themselves objects. The
application of a function closure to arguments is called an
operator—operands combinatione. Combinations in LPL are

represented by infix operators or by juxtaposition as described
below.

Each expression in the LPL language not only denotes a data
object but also has a representation as a S-expression. These
data representations include the well known LISFP1.5 S—expression
language. While not every S—expression is the representation for
a meaningful LPL expression, it is possible to represent every
LISP1.5 expression in LPL. For example:

A + B
has the data representation
{PLUS B B)

The guote operator (') followed by an LPL expression is used
to denote the representation of the expression.
' (2+B)
translates to
{GUOCTE (PLUS A B))
which evaluates to
(PLUS A B)

One may write expressions directly as an S-—expression by
prefixing the S—expression with the escape character ("), e.g.
"PLUS 3 4) evaluates to 7.

Expressions in LPL are written as sequences of tokens.
Tokens are represented by the machine dependent character set
which is assumed to contain:

letters, digits, space or blank, and a hopefully large set
of special characters called marks.

There are three classes of tokens:

Identifiers (id} which are strings of letters and
digits that start with a letter and are terminated by a
space Or a marke. The exclamation mark (!) has been
preempted from the set of marks to play a special role. Any
character it precedes will be considered a letter, hence we
call it the letterizer.

Literals - numeric constants and the string constants.
A1l npumeric constants start with a digit and string
constants are surrounded by (#) 's.

flark—symbols — marks and known strings of characters
that start with a mark. Compond mark—-symbols are made known
to the token recognizer as a special property of the initial

.

8

——

DRAPY COPY NOT YET COMPLETED PAGE 38

mark. The LPL system contains the following compound
mark-symbols:
{ ¥% =1 1= EQ .NE .GT .GE .LE }

Tokens are used as operators and delimiters. Operators are
used to form expressions. They may take other expressions as
operands and they may require certain delimiters. There are two
kinds of operators: Those which reguire an expression on the left
and those which do not.

LPL is said to have an operator precedence grammar because
precedence functions are used to determine the scope of
operators. Each operator or delimiter has a left binding power
(1bp); in addition, operators which take right operands have a
right binding power (rbp). Operators which have left operands
have an interpretation which is called a left denotation (led).
Operators with no left operand have a null denotation (nud). In
either case an operator may have optionally many right operands.
An operator may have a led or nud or both.

Tokens which are unknown to the grammar are assumed to be
variables. The Jjuxtaposition of expressions indicates function
application (combination). Combinations associate to the right.
For example,

A B C = ((E(C)))

In the case of tokens which are known to the (Jrammar as
operators the interpretation of +the operator vrequiring a left
operand is always preferred. Yor example,

a—b 1indicates subtraction,

a (-b) indicates application of a to minus b.

1If r is an operator that has a right operand, s a token with
& lbp, and £ is an expression in rEs, then if
rbp({r)2lbp(s) r gets E.

A set of name-value relations (the epvironment) gives values
to variables. EBnriching the environment with new name-value
relationships is known as binding. When functions are applied to
arguments the parameter variables of the function are bound to
the argument values. Binding may also occur by SPECIAL
declaration. This establishes a global or shared binding which
persists until explicitly removed.

Variables may be assigned any type of data object, provided
the name-value relation for that variable has been established in
the environment. As a matter of convenience the supervisor
creates SPECIAL declarations implicitly for variables that are
the subject of top level assignments. For example,

The expression
¥ := 7.2
ic used to assign the value 7.2 to the variable X.

A subseguent

p— oy . e . .

DRAFT COPY NOT YET COSPLETED PAGE 39

PRIRT X3
would print out
7-2

Arithmetic operators are indicated in the usual way. For
example,

X*72-4 .58

X#2-4 4/2-2.2

X+-X+5%5-15

3/2%X/7.2%10

(3.0/2-0.5)*x+2.8
all evaluate to 10.0 . The arithmetic infix operators used above
all associate to the left. Exponentation is 1indicated by the
compound mark-symbol ** which associates to the right. The use of
the token "-* aghove illustrates the use of an operator with two
possibie denotations.

Expression sequences are two or more expressions separated
by semicclons. The ¢ gressions of the sequence are evaluated in
left +to right orde:r The value 1is the valuwe of the last
expression evaluated.

The S—-expression selectors CAR and CDR are used to select
the first element of a list and the 1list of successors to the
first element respectively, for exanmple,

A:=Y"(K S T(U V));
would evaluate to
(R ST (0 V))

And then,
CAK CDE A:
would evaluate to
S -

The S—expression comstructor, CONS, is available either as a
function or as the infix operator period, for example,
A:= 'R . 'S . *T . ('U . 'V . NIL) . WNIL ;
evaluates to
(k S T (U V))

The 1lis constructor, LIST, is also available either as a
function or as the infix operator comma, for example,
A:=("R ,'S ,'T ,(*'0 , *V)) ;
or edquivalently
A := LIST('R , *S ,*T ,LIST('U ,*V)) ,
evaluates to
(k ST (U V))
and, A,; = LIST(B)

-

s

Vector_ data-obijects are denoted 1in a manner similar to
lists, except that angle brackets are used instead of
parentheses; for example both

B:= "D E F <F ¥ D>> ;

and
B:= <'D L'E ,'F WP E D> ,

"Proei”

S

DRAFT COPY NOT YET COMPLETED PAGE 40

evaluate to
<D E F <¥ E D>>

Elements of vectors and lists are selected by zero-origin
indexing: for exanmple,
LIST (A<1>,B<3>) 3
evaluates to
(5 <F E D>)

Vector and list elements may also be assigned: for example

as a result of

BL3,1>= "4 ;
B evaluates to

<D E P <F H D>>
The result 1is a change to the existing structure denoted by B
(all variables referencing that structure are affected). A
similar effect may be achieved on lists by use of the well known
LIS¥ functions KPLACA and RPLACD.

A character string of arbritary 1length may be denoted by
surrounding it with the character # for example,
= #A TYPICAL STRING¥ ;
The concatenation of strings is achieved by the use of the
dyadic operator _ for example,
B:= B _ #FPOLLOWED BY THIS# ;
would evaluate to
#4 TYPICAL STRINGPOLLOWED BY THIS#
In addition,
C:= SUBSTR(B,12,4)_ # # _ SUBSTR (B,21,6)
would evaluate to
#RING WED BY#

B procedure is a parameterized expression used to define a
function. It may be applied to =zero or more arguments and may
use as yet wundefined functions and variables. A procedure
expression evaluates to a function closure which has an
appropriate internal data form. As an example, the right-hand
side of:

SUEB:=* (FROC X,Y,%4;
COND(Y .EQ Z : X,

ATOM Z : Z,

T : SUB(X,Y,CAR Z) . SUB(X,Y,CDE 2)))
is a procedure to be assigned to the variable SUB. The variable
can then be used to evoke the procedure in the usual way.

SUB(*A ,*B , ('C ,'B ,'D ,'B))
evaluates to

(C & D &)

In the procedure SUB above notice the use of the Lisp
conditional CONL. LPL provides the IP ... THEN ... ELSE...
expression but COND may also be used in this direct manner. The
use of +the list-representation operator colon ¥:® ig aglso
illustrated. This operator is introduced in pursuit of the goal
of being able to have an LPL representation for every possible

e

BRA¥T COPY NOY YET COMFLETED FAGE 41

Lispl.5 s-—expression language expression.

The symbol :=: is provided as a simple way to define new
functions. It causes the Lisp representation to be prettyprinted,
compiles the PROC expression and associates the code with the
function name as a global definition.

The block expression 1in LPL introduces the sequential mode
of programming where statements are executed ome after another.
Labels and GO statements allow the usual alteration of flow of
control. RETUEN statements enable the user to indicate the value
of the block on exit.

As well as the elementary looping statements, the
DO—expression is provided. This may be used to give programs a
more understandable appearance through the elimination of labels
and GU-statements. The DO-expression 1is wused to express the
various classes of loops which one might otherwise construct
with labels and GU-statements.

In the simplest case no looping occurs and the DO-expression
is equivalent to a block-expression for example,

DO; X:=Y ;Y¥:=2;END; is equivalent to :
BEGIN;X:t=Y;Y:=2:END; -
THE UNTIL and ¥HILE phrases are used as wmodifiers which produce
loops with exit conditions, e.g.
DO WRHILE N .GT O;URTIL Y=CAR X ; UNLESS NOBLANK;
PRINT BELANK; N:=N—-1;X:=CDK X; END :
is equivalent to:
BEGIN;
A; IF NULL (N .GT () THEW GO B;
I¥ NOBLANK THEN GO C;
PRINT BLANK;
N:=K-1;
X:=CDR X
C; IF NULL (Y=CAEK X) THEN GO A:
b; END;

¥

The WHILE-phrases generate top-of-the-loop exit-tests. The
UNTIL-phrases generate bottom—of-the~loop exit-tests. The
UNLESS-phrases are used to conditionally execute the statements
cf the DO-ioop.

A DO-expression may be preceded by a POK-expression which
consists of FOR and a sequence of iteration control clauses. Rach
iteration control «clause specifies a control variable, and
possibly its initialization, the exit test, and the manner in
which they are reset for each repetition.

Syntacticaly:

YOR { name { := expression [BY-phrase]|
EY-phrase |
IN expression I

e

2

DEAFT COPY NOT YET COMPLETED PAGE 42

ON expression 1 : }* DO-expression
where, BY-phrase = BY expression [TO | UNTIL] expression .

Some examples: '
FOR T:=1T BY 1 TO 10;D0 ... ;END;

= BEGIN; I:=1;
k; IP I .GT 10 THEN GU E;
=TI+
GO A
B ERD;
FOR 2 UN y; DO;FRINT x;END;
= BEGIN;
XI=Y;
A IP NULL x THEN GO B:
PRINT x:
x:=CDEk x;
GO A Bs END;

The syntax and semantics of LPL are completely specified by
the LPL to Lisp translator and by the semantics of Lisp. The
user of LPL should pursue such detailed information as he may
reguire +to those sources.

2. How does one input an LPL expression?

The initial state of the LPL system into which the user
enters upon administering the CHBS command LISP LPL, is as
follows:

A certain amount of +typing occurs which may usually be
ignored.

It the system is running in the "™history keeping®™ node a
sequence number followed by a colon is printed. In which case a
record of computed values and user text is kept. This file has
the filetype HISTORY and the default filename of LPLHIST. Text
and values may be recalled from this file.

The keyboard at the users terminal unlocks allowing the user
to type an LPL expression.

The global free variable SINGLINEMODE has the value true
which implies that a carrier return is sufficient to end +the
eXpression.

The underscore "_% at the end of a lime is the currently
defined expression-continued-on—-next-line symbol.

{ s o —— | —! W——— p—* ——— " _—— " —— - —— S——" ——" W — T— —_ i —— reae | oo———_ " | s r——

—~

2

DRAFT COPY NOT YET COMPLEYTED PAGE 43

The values of expressions will be printed at the terminal.

Phe Lisp translation of the expression may be printed if the
TLATEFLAG 1s so set.

3. What if my input is not syntactically correct?

Should the LPL expression input be syntactically incorrect,
an indication of the error is presented and the LPL editor is
entered. The behavior and use of the LPL editor is described
below.

The editor is entered with a segment of text that the user has
just typed. That segment 1is revealed to the user by ellipsis
printing, that is, as much of the segment as can be printed in 80
columns is displayed with missing parts indicated by« If
this did not present the user with enough text to correct the
error, the user may type FARIL, in which case a larger context
will be presented. That being the case the user may use the
editor commands to focus in wupon a fragment of the original
segment and perform deletions, insertions, and substitutions.

The following is a description of the editor commands:
Advance Af{n}] {* | v}
The 1left boumndary (LB) of the current fragment (FR) 1is

advanced n places. The default value of n is 1 and n may be
negative. The meaning of place is established by the last

argument:
* 1f any character is a place.
p If the string p is a place.
CHANGE C P [a] s

Equivalent to "Pind p" followed by "“Substitute [n] s" . IF p
is not found the command has no effect.
lelete 3]

The current fragment is deleted from the whole segment.

kcho B

The echo flag is flipped. If ON then all editor commands
which would not have otherwise caused printing, will cause
FK to be printed elliptically.

DRAFT COPY NOT YET COBPLETED FAGE 44

EXIT

Keturn from the editor ard reparse this segment.

FRIL
Keturn from the editor for a retry with a larger segment.
This gives a larger context 1in which to repair a bad
expression.
Pind F p
The string p may be an ellipsis string, e.g.

¥ #ab...rst#
PR is searched for the indicated string. If not found there
is no change, if found LB is readjusted and a new FR is thus
defined.
Left-insert L 5
The characters of s are inserted to the left of FR. A new FK
results which includes s.
Next N
A new FR is defined which consists of everything in the
whole segment to the right of PR.
Print P

FR is printed elliptically.

Right-insert K s

FE 1is extended to include the string & inserted on the
right.

Substitute S {n] s

Substitute s for FE n times. The default value of 1n is 1.
n must be positive.

Top T

PR ig set to the entire segment.

DRAFT COPY NOT YET COMPLETED FAGE 85

Whole %

FEK is printed in its entirety.

Extend X (n}] * I ¢}

The right boundary (kB) of PR is extended n places. (see
advance)

The text for previously written expressions may be retrieved
from the currently selected history file. To retrieve the text
for expression "n® one uses the form "(n)*" instead of an explicit
string for ®"s"™ in any of the above commands. By this means old
expressions may be revised and reevaluated or they may be
inserted into new expressions.

4. What if the evaluation causes ERROK to be called?

At the time ERROR is called you will be so informed and you
have several options.

1. You may hit carrier return to be prompted about what
your options are.

2. You may type ™u" meaning UNWIND. In which case you will
be in the LPL editor with the ability to correct or delete
the last expression evaluated.

3. You may get a diagnostic backtrace by typing "k® for an
abbreviated one or "1" for a long one.

5. How can I interrupt the evaluation process?

The LPL attention handler is invoked through the extermal
interrupt feature of CMS. To use it:

1. Hit Attention ounce.
2. Type E or EXTERNAL

When this external-interrupt is felt by LPL/Lisp a prompting
message 1is typed at which time the wuser may indicate which
interrupt service he desires or he may hit carrier return for
more prompting.

The available requests are as follows:

C Puts the user in CHS subset command language.
] Unwind to the last errorstop.

DRAFT COPY NOT YET COHPLETED PRAGE 46

Has the effect of cancelling the last execution.
B Call ERKROEK for backtrace and diagnostics.
S Recursively reenter the LISP supervisor.
A subsequent FIN will cause the interruptea
program to resume.
A subsequent RET gets him back.
P To ignore the interrupt and proceed.
? Types an expanded prompting messadge.

This attention handler takes effect at the time of function
call. 1t does not work for tight loops.

In such a situation one should try:
1. Hit attention once.
2. Type-—— B TAT790

6. What are the basic primitives and builtin functions available
in LPL?

The basic primitives and builtin functions are exactly those
available in the Lisp system. These are described in APPENDICES A
e B , C, and L.

2

DEAFT COPY NOT YET COBPLETED PAGE 47

7. WHAT DOES AN LPL expression mean?

in section 1 an informal overview of LPL was given. &
somewhat more complete and more formal definition will be given
in this section.

Recall that every LPL expression was sald to have a data
representation and that form of the expression was called an
expression of the Lispl.5 language. The Lispt.5 language 1is an
attempt to express programming languages in a quintessential
form. It provides us with an evaluation model which explicates
the notions of function and variable.

The syntactic form of the Lispl.5 language 1s practically
devoid of syntactic niceties. Informally these niceties aid in
the human recognition process. Sometimes in languages they are
there to aid 1in some other recognition process and could hardly
be thought of as niceties. The syntax of Lispl1.5 can be thought
of a= one which simplifies the recognition processes of the
evaluator.

The correspondence between LPL expressions and Lispl.5
expressions 1is what is described by the LPL to Lispl.5
translator. This formal system will be dealt with elsewhere. By
carefully describing the syntax of Lisp1.5 most of these
correspondences will become apparent.

In the past the semantics of Lisp has been given by the
process of self description. Perhaps this stems from a desire to
illustrate the power of the Lisp language or more pragmatically
because this is the method used 1in a bootstrap implementation of
Lisp1.5. Needless to say this approach has some shortcomings from
the point of view of definition. A tacit understanding of Lisp is
required to read the definition of Lisp and at least a primitive
Lisp system is reguired to begin the bootstrap.

We shall copy the method of P. Landin in creating a
metalingquistic description of a machine. The machine itself is
described as a complex space consisting of "states"™ and the state
transitions. The meaning of an expression is given by eambedding
it in the initial state of this machine and when a terminal state
is reached after repeated transitions the meaning of the
expression may be extracted. The states of the machine are
guadruples {S:E;C;D} whose components are called Stack,
Environment, Control and Dump respectively. The primary purpose
of this state language is to give meaning to the expressions of
Lispl.5. The model is also suggestive of implementation
strategies.

In the following syntax and semantics these additiomal
notational conventions will be used:

™, Mm", New , w.w , and blanks are all used as special

DRAFT COPY NOGT YET COHMPLETED PLGE 4B

C
LIS
- S

symbols in forming s—expression representations where an
s—expression (also g—exp or datum) is:
id 1 ¢ 1 O | (szexp* [¢ szexp])}

w-® jo ysed as a metalinguistic separator.

Superscripte will be used with brackets to indicate a
required one to one correspondence.

Lower case identifiers are used as metalinguistic variables
ranging over s-expressions.

Non s-expression constants of the metalanguage are indicated
by overprinting or bold italic. They are:
(op, ap, list, eval, pred, stmat, pop, and go).

Syntactic classes are represented by underlined lower case
identifiers or by italic.

Identifiers (names) given in all upper case letters are
Lisp1.5 data objects.

Underlined or italic wupper case letters will be used to
designate the metalinguistic state components. They are:

h

S = The value Stack, represented as a list.

E = The Environment, an updatdible function from id to

values (s-exp). In what follows this function will be

represented as a list: 2

either () or (hE ¢ tE) '
where hE = (id €« gs—exp)
tE is an E.
The list notation is meant to be suggestive, there is
no decree that E must be a list.

l/ . ‘(\.,4
& and

€ = The Control stack, represented as a list.
b = The Dump of a previous state, which is either () or
@ previous state {S';E';C';D'} .

The ellipsis "..."™ ig used to denote zero or more objects.

A Lisp expression e is one of:

)

€ a constant.

id is a variable name or identifier.

a lambda—exp which is either a Rracro represented by:

(YLAMBDR id body) or a procedure (LAMBDR bv body)
where bv the bound variables is ([id J*) and
body is an e. '

(LABEL {id e} ¥*) a label-expression.
(SETO id e) assignment.

(COHD [(p Q) %) a conditional-expresgion

< e

DRAPT COPY NOT YET COMPLETED PAGE 49

where the predicate p is an e, and
the consequent g is an €.
(PROG pv [s1%) a program—expression
where pv the program—variable part is ([id }¥*), and
each statement g 1s a:
ilabel which is an id, or
an e which is not an id.
(60 id) a go-expression.
{RETURN €) a return—expression.
(FUNCTION e) .
(QUOTE s-expression) a guoted s-expression
{(rator [rand J*) - a combination
where the operator rator is an e, and
each operand rand is an e.

It should be mnoted that except for constants and variables
every Lisp expression 1s a combination. Some of these
combinations are distinguished for semantic reasons.

It should also be noted that the data language of Lispt.5
s—exp's is somewhat richer than is given above. The full syntax
of s-exp is given in implementation documents. The syntax as
given is sufficient for the representation of Lispl.5 and for the
explanations of this section.

The following is a listing of the state transitions for the {S;
E; €3 D} machine.

Halting

{xe3; E; (s O} ===> X

Value return restoring the former state

{x+3; E; (s {5': E'*; C*'; D*'}} ===3> {xeZ3%; E*; C*'; D"}

#valuation of a variable

{8; E; ideC; D} ===> ({val{E; id}eS; E; C; D}

where val{E; id} is a semantic function which

gives the g-exp value denoted by id when it is defined

by E.
in the case that the variable id is not defined by
E a new state 1is produced to reflect the error
condition. This state is of the form:
{8; E: (GO ERROR)eC; D}

/‘r—\u

DRAFT COPY NOT YET CONBFLETED PAGE 50

Evaluation of a lambda-exp

{§; E; lambda-expeC; D} ===> {(FUNRKG lambda-exp E)e*3; E;
€ B

{S; E; ceC; D} ===> {ce*3; E; (5 D}

guotation

{S; E; (QUOTE gs-exp)e«C; D} ===> {s-expeS; E; C; D}

Label expression for self-reference

{S; E; (LABEL id! e![id? e? ...]eC; D}
===> {xle3; E; C; D}

where x1 = (FUNARG g EY)

and x2 = (PUNARG g2 E')

and E' = ((id'ex1)[(id2ex?)...] *E)
Re—evaluation

I
LLJ
b
L]
1y
©

Transmission list former

{xle... xne () ; E; listeC; D} ===> {(xne... xTe())* ()5 E; C;
D}

Operator operand evaluation (decomposition)

3; E; (rator [rand]}*)eC; B}
===> {§; E; rator=ope (rator [rand }¥*)+C; D}

Hepeated evaluation of operator until a closure valve results
{xeS; E; opeC; B} ===> ({57 E; Xxeope(; D}

where x # (PUNARG e E') or c.

Constant operator expressions form lists.

{c « S; E; op ¢ (rator {rand]*) « C; D}
===> {c & (); E; [rapd «I* list » (}; {S; E; C; D}}

S

b e, i} st bt st st et o i

DRAFPT COERY NOT YET COMPLETED EAGE 51

Closure forming function

v
i
0
©

{S; E; (FUNCTION g) ¢ C; D} ===> {(FUNARG g E) o

Operator Classification

Punction which expects its arguments all evaluated
(rand j*) «C; D}

{(PUNARG (LAMBDA bv body)E*)eS;: E; ope (rator

(); E; [rand J* list « (); {(PUNARG(LAMBDA bv body)E") =

ap ¢ C; D}}

It=s o
T

Basic function which expects its arguments all evaluated

{(FUNARKG id E*)*S; E; ope(rator [rand }*)«C; D}
where id is a basic function of type LAMBDA.

{(FUNARG 1d E")eS; E; apeC; D}}

{0: E: (randeJ* liste ();

Macro's
{(FPUNAKRG (MLAMBDA id body)E*)*S; E; ope (rator [rand J¥)eC; D}

{(rator [rand j*) « (PUNARG (MLAMBDA id body)E®) =« S; E; ap =
eval « C; D}

Basic macro's

; ope (rator [rand J*)eC; D}
asic function of type MLAMEDA.

{(FUNARG id E*)eS; E
where id is a b

===

{(rator [rand J*)e« (FUNARG id E®)eS; E; apsevaleC; D}

Other closure

* (zatorfrand J*)«C; D}

E; o
asic function and is not a lambda-ex

x
e

m

L}

m

o}
s
n
oo
o

o+
o
o

i E*; evope (); {S; E; ope (rator[rand]*)eC; D}}

ov;cu&ﬁuv?.m"m:c".ﬁ
X = (FUNARG e E'*) or ¢c

Application

{x ¢ (PUNARG(lambda—op bv body)E')*S; E; ap C; D}
where lambda-op is LAMBDA or MLAMED2

DRAFT COPY ROT YET COMPLETED PRGE 52

==
-~ {(); E"™; body « (0 {8 E; C; D)}
(where E® = pairlis{bv; x; E*}

pairliis is a semantic function which creats a new
environment E®*. It pairs the names of by with
corresponding values given by the 1list x. These
pairs(called hE) are appended to the left of the old
environment E' to produce E%.

Basic function application

: By ap ¢ C5 D}

It

{x ¢ (FUNARG id E") =
{z « 55 E; &5 D}
where z is the understood value of id{x}E"'.

Distinguished basic functions

The EVAL function

{(e E)« (FUNARG EVRL E*)e3; E; apeC; D}
===>{ (s E; e*(); {S; E; C; D }}
The APPLY function
<A {(fn args E) « (FUNARG AFFLY E*)e3S; E; ape(l; D}
===>» {args ¢ (FUNARG fn E) #5; E; ap*C; D}

Conditional Expression
Detfault valuwe of conditiconal is ()
{S; E; (COND) e C; D} ===> {(} * S5; E; C; D}
Process predicates sequentially
{S; E; (COND(pl el) (p< €2)...)sC; B)===
Es

pl « pred ¢ el «(COND(p2 e2)...)*C;3
pZ e2 c

Continue if false

{()eS; E; pred €1 ¢ (COND(p2 €2) ...)*C; D} ===>
{83 E; (COND(p2 ez)...)+C5 D}

<T Evaluate the consequent when the value of the predicate is true

DREAPYT COFY NOY YET COHPLETED PAGE 53

{xeS; E; predeels (COND (p2 e2) ---)+C; D} ===> {S; E; el+C; D}
for x # ()

Statement Evaluation
Enter statement context

{E: E: (PROG([id)Lsl®)«Cs D)
===> {(); E'; stmte(sl...}e(); {S; E; C; D}}
where E' =
({ (¥labell « label-closurel)...lf (id ¢« ())¢ ...]E)
where ¥ is a unique character reserved for this
purpose and
label—-closure = (LABELCLOSURE y,E*,{S; E; C; D})
y = the list of statements following the label.

Leave statement context
{S*; E*; stat « () « (; {S; E; C; D}} ===> {(} =+ 55 E; &;
o}
Process statements sequentially
C S; E; stmte (sl s2 ...)e(); D} ==> (S; E; slepopestmte (s2
~ --e}*(}; B}

Statement values are ignored

{xeS; E; popeC; D} ===> {37 E; & D}
Go To expression
{S; E; (GO label)s(; D} ===>
{S; E; ®labelegoeC; D} ===>
{ (LA BELCLUSBRB(C eee) E*,D")*5; E; goeC; D} ===>
{O;: E*; stmate(s ...)e(); D"

keturn expression

{5: E; (RETURN e)eC: D} ===> {(; E; e*(): D}

Assignment
(SETQ 1id ¢) =

(T (CUR (RPLACD (SASSOC (QUOTE id) E (PUNCTION ERKOR))e))

DRAFT COPY NOT YET CONMPLETED PAGE 54

(ERKOE) = (60 ERROR)

SASSOC = (LABEL SASSOC (LAMBDA (X Y Z) (COND
((NULL Y) (2))
((EQ (CRAR Y)X} (CAR Y))
(T (SASS0C X (CDR Y)Z)) 1))

It is assumfied that the basic functions Cik, CDR, NULL, EQ,
etc. are understood. The function KPLACD requires the concept of
a store as an addition to the model.

11 the transformations given above are in the form:
{87 Es €3 D} ===> {3'; E'; C'5 DY}

And will be though of as having taken place in a memory M.
{S; E; C; Dy ===> {5°*; E'; C*'; D*}u°

These memory concepts are described below.

Lisp Extended

The basic Lisp described above has every variable treated in
the same manner. They are all equally global and dynamic because
of their treatment in variable evaluation, application, and
statement context.

The model makes no ordinance about the process of
definition. Operator variables may have closures as values or
they may have lambda—expressions which evaluate to closures in
the run time environment.

In the interactive mode of program development new operators
are separately defined and compiled, resulting in an updated
environment. The currently popular style of definition is by
lambda—expression rather than by closure. When such "definitions™
contain free variables the ®function® defined cannot be known
until run time. Such definitions with free variables which must
be bound at run time are said to be more difficult to read and
understand than tightly bound definitions. A contrary position to
this is that such definitions are simply a short hand for implied
parameters and are easier to write, and yield a less verbose
pProgran.

As the model given above dictates that a free variable is
bound to the latest occurrence on E, the following problem may
arise: The binding is not the desired one but rather an
inadvertent binding of the same name. This occurs when a bound
variable has the same name as an implied parameter and because of
the shorthand the conflict went unnoticed. The usual prophylaxis
is the use of lexical variables. Lexical variables are textually

.

DRAFT COPY ROT YET CORPLETED PAGE 55

bound and are simply invisible to separately compiled functions.
Such variables have been the default for Lisp compilers for some
time, and the interpreter model (to my kunowledge) has never been
extended to include then.

An extended Lisp has been defined in terms of the basic
Lisp and does include lexical variables. Certain other common
features of Lisp systems are also shown to be definable
extensions to the basic Lisp model. These other features include
functions with unevaluated arguments, functions with indefinite
numbers of arguments, lexical and special variables, functions
with restrictions on their argument values, and functions with
structures as arguments.

A1l these extensions result from renaming LAMBDA in the
above rules to LAMBDAX and creating a macro operator LAMBDA.
This macro is of the form :

(LAMBDA bv' body)

where bv' = {var | (var* . var) | ([varl®}
where var = (QUOTE wvari) | vari
and where vari = ident

(: ident{ { e | :}[structurel)])

and ident = {
and structure

 maase.

| (LOCAL id) | (SPECIAL id) }
(vari¥*) | (vari* e« vari)

14
and undergoes the following expression to expression transitions.
Lexical variable renaming (alpha-conversion)
(LAMBDA (id*) body) ===> (LAMBDAX (id'*)body")

where id'is obtained by applying the mapping:

LEXNAM:ID > ID'" where
id # ID , and id" # ID*

and ID ¥ ID'is empty. T+

The inverse function:

UNLEXMAN:ID® > ID is also provided.
and body"' results from substituting id" for each free
occurrence of id in body, for each id in id* .
note: Substitution mnever proceedes inside of (SPECIAL id)
and (QUOTE s-exp).

Globals are not renamed.
(LAMBDA ((SPECIAL id))body) ===> (LAMBDA%X(id)body)

#ixed lexical and global variables.

.

PAGE 56

DRAFT COPY NOT YET COMPLETED
(LAMBDA ([{id | (SPECIAL id)}*J*)body) ===>
(LAEBDAX ([{id* | 1id}*J*)bedy")

Unevaluated arqguments.

{(LAMBDA ((QUOTE vari)) body)
(MLAMBGAE X ({LAMBDAX(Y Z) {CONS
(COND ((IDENTP Y) (REDEFX Y Z)) (T Z))
(LIST (QUOTE QUOTEX) (CADK X))))
(CAR X) (QUOTE (LAMEDA (vari)body))))

where REDEFP¥X = (LAMBDA (R B) (PROG (U)
(COND ((SETQ U (GET A (QUOTE REDEFX))) (RETURN U)))
(SETQ U (MKUNIQUEID¥ RB))

(KAKEPKOP A (QUGTE KEDEFX) U)
(COBPILE (DEFINE (LIST(LIST U B)))}
(RETURN U)))
and MKUNIQUEILX produces a unigue renaming of its

argument.

and (QUOTEX g—exp')===> (QUOTE s-exp)
where each id® in s-exp' becomes
id = (UNLEXNAH id*) in s—exp.

The effect of such a macro used as rator is:

((LAMBDA ((QUOTE vari))body)e)
((LAMBDA (vari) body) (QUOTEX e))

tfollowing transformations

Bote: In the only the rator use is
shown.
It should be understood that the LAMBDA-macro first produces
an MLAMBDA-expression.
Generai form for specific arguments unevaluated.
((LAMBDA ([{id| (SPECIAL id) | (QUOTE vari)}?! J*)body)[{elele} ! 1*)
((LAMBDA ([{id| (SPECIAL id) |vari} 1 *)body)
[felel (QUOTER e)} 1]*)

Indefinite number of arguments all evaluated.
===> ((LAMBDA (vari) body) (LIST e¥*))

===

((LAMBDA vari body) e¥)
Indefinite number of arquments all unevaluated.

((LAKBDA (QUOTE vari) body) e¥*)
((LAKEDA (vari) body) (QUOTEX (g¥)))
Indefinite number of evaluated trailing arguments.

((LAMBDA ({var*}? « vari)body) {e*} ! e*)
(" ((LhuBDA ({var*}? vari)body) {e*}]* (LIST g#))

- e T e ay w

DRAFT COFY NOT YET COMPLETED PAGE 57

Indefinite number of unevaluated trailing arquments.

((LAMBDA ({var*}* ¢ (QUOTE vari))body) {e*}! e*) ===>
((LAMBDA ({var*} *vari) body) {e¥} ! (QUOTEX (e%*)))

kRestricted arquments

((LAMBDA ({{ident| (: ident p [structure J*)}2|lstructure} 3*)
body) {{ele] 2 e} 3%) ===
((LAMBDA ({{ident|ident] 2 |xX] 3*)
(COND ((AND p*)
((LAMBDA ({[structure J'structure} 3*) body)
{[ident J1xX]} 3%))
{T (ERROR (QUCTE BAD—ARGUMENTY)))}
{{ele} 21e} 3%)
where the x¥ are uniquely generated names
and p is an e. List structured arguments.

((LAMBDA ({xIstructure] '*) body) {efe} 1*)
where x is any yvari other than structure
and structure = (vari*)| (vari* . vari)
B4
((LABBDA ({x]uX} t¥)
((LAMBDA ({{vari*} 2| {vari*}3 vari}*)body)
{{(CAR uX) (CAK(SETQ uX(CDR u¥)))*}=2
| {(CAR u¥) (CAR (SETQ ult(CDR uX)))*} 3 u¥j*) {eje}?¥)

These barogue extensions have been included because they are
commonly present in Lisp systems. They should in no way be
thought of as part of the guintessence.

Storage Hodel

In order to model the storage organization and management
concepts of the LISF system, it will be convenient to expand our
concept of a data object. The method used is mainly due to Kurt
walk (ref. SIGPLAN Notices, Peb. 19717). Thic expanded concept of
a value object shall encompass the fact that the object is
represented in a store or memory HB. It will be convienent to use
tH and call it memory to avoid confusion with the state
component *S*' (stack).

¥e¢ consider the state of a memory described by a mapping ¥ :
B :L —>¥V .
From a set L of locations to a set V¥ of values. We say

that 1 € L has the value v € ¥, or is associated with v, or has
the properties v, if

DRAPT COPY NOT YET COHPLETED PAGE 58

ul
#(l)y = v , also written v .
1

The data objects of LISP and also the LISP expressions are
called g—expressions which are either atoms or ordered pairs of
g—expressions called pairs. These are denoted by two kinds of
locations: atomic—-locations and pair-locations.

We call the two components of & pair the car and cdr,
respectively.

We may characterize ¥, the set of values for Lisp, as:

#"The set of rooted labeled directed graphs with vertices
with 0 outgoing edges (atoms), and vertices with 2
ocutgyoing edyes (pairs), each vertex labeled with & uniqgue 1
€ L, and the edges labeied with the component selectors car
and c¢dr, and with exactly one distinguished root vertex®.

Pictorially:
-=>
4 = =—=>(1) or &} for the atom % at location l.
t—J
le(x = y) = ——>(1) for the pair car (1)=x,
/1 cdr (1) =y at location 1.
car/ jcdr
x) Rzy)
as(b:(kec: (Reli))ec) = —>(a)
/1
car/ |eodr
Xb) %Rc)
VAV AR |
¥ ¥ ¥
IEl Al B}

L—d L=d L-J

Up to this point we have characterized ¥ as a set of
unique elements. It is usual that we provide functions on ¥ and
these give rise to the notion of equivalence relations. (ref.
sirkhoff, MaclLane. BAlgebra).

4

DRAFT COEFY NOYT YET COMPLETED

Given an equivalence
equivalence—class under K

relation R on s
of any element x € ¥ is:

PAGE 59

a set ¥V, the

p x = {yly€¥ and yEx}
E
The set of all possible equivalence classes for R isg
written as:
V/E = {CIC is a subset of ¥ and C=p x for some X€EV}

H

—

and is called the quotient set of ¥ by R.

Fach equivalence relation R
classes and we often choose to

partitions

¥V into equivalence

congider each of these classes as

a data object. We shall call these the RE-classes.

For example

~=>(a) and -=>»(c)
/| VAN
car/ | cdr car/ | cdr
r—¥ Ab) —f Xd)
¥ /1 IA] /|
t—-3car [cdx L-+ fcarjcdr
r—¥ ¥ r—¥ ¥
I1B1 1/1 -1 171
L | B [R | B |

This brings us

both represent the list whose linear form is

to the question of linear forms.

are list eguivalent,
or EQUAL in common
pariance.

(& B).

ntil now

LISE has survived on a linear form data definition as follows:

s—exp = atom | (s—exp* [+ s—exp])
but this definition only
subcomponents is undefined.
not revealed.

allows trees.
In practice

Thus,

The sharing of

sharing was allowed but

. .. e, .. Pt AN P, P St ot e, | e s i

DRAFPT COPY NOT YET CORFLETED PAGE 60

-->(a) EQUAL -—> ()
/| /1
car/ jcdr car/ jcdr
(b¥edr>Xc) (e¥ Xg) edr> r—
/ /| /| i I8l
car/ car/ fcdr car/ jcdr |jcar L—d
¥ r—¥ ¥ —¥ (TF ¥
121 1Al 1B IEL / | 1AL
(SN | L—2 L—d L—1 /car | cdr t—J
' 3 ¥
Y [BY
—t —d

and they both had the following linear form on printout.

({ EA . BY A . B)

We call +this representation the tree form of a 1list
structure without cycles. On input this form would generate a
structure similar to (d) rather than (a).

There is one equivalence relation namely EQ which is of
singular importance because it takes each element of ¥ into a
separate equivalence class.

WE =¥ .

The EQ fanction is defined as follows:

X JEQ vy is true for x =-->»(11) y =—-->(12)
/ I / |
* * * *

if and only if (1ty = (12) .

A iinear form for the EQ-class objects would require that
each node pair was appropriately labeled,

Thus, ——=> {11} would rTeguire the EQ-form:
/| It (x* . y")
car/ cdri where x%, y' are the linear
(x¥ £y) forms for x,y; and 11t isg

some unigueness preserving
canonical representation of 11t.

E¢-form expressions would require labels isomorphic to
locations. fThus, E¢-forms explicate not only the iuntrinsic
properties of a value object but also those properties attendant
to its addressability. Por this reason and for reasons of storage
management, ¥g-form is not supported as an external

DEAFY? COPY NOT YET COMPLETED PAGE 61
representation form.

The R-classes for other equivalence relations can be simply
understood in terms of a new linear form (R—form) which 1is the
result of some transformations om the EQ-form.

¥or imnstance in the case of list structures without cycles,
labels may be dropped and label references replaced by a copy of
the denoted subform. This yields the tree-form.

The following transformations will be applied to EQ-class
objects to produce the EQUAL-form:

1. Label renaming - The location (1) of 1:(x ¢ y) is
replaced by a label (L") according to some rule. Such a rule
will usually be desirable as it takes one from the domain ot
locations to the domain of structures. Unless otherwise
stated the convention wiil Dbe that labels will De
systematically renamed by READ and PRINT. Labels will be
issued from left to right from the 1list (L!,L2,...}) by
PRINT. READ on the other hand will uniformly substitute new
locations for labels.

Le Unmentioned label removal - any label which occurs only

once will be removed, i.e. 1t names a bracket but 1is not
referenced elsewhere in the s—expression.

3. Acyclic label removal - any label which is not mentioned
within the scope of parenthesis labeled by that label may be
removed, and the resulting expression substituted for any
occurrences of that label as a reference outside that scope.

Examples:
(ecece Ci(R ® BY ... ©)
(cee (A ¢ B} <.. (& ¢ B)).

This transformation will be considered optional. If omitted
all sharing is revealed. If applied only the oriented cycles
are revealed. For normal Lisp usage the application of this
transformation is appropiate. Indeed one must apply it to
remain consistant with past usage. We call this
list-structure forwm.

DRAFT COPY NOT YET COMPLETED PRGE 62

{ B complex exawmple:
N -=>{a)
car/ jocdr
Jcar|
(bFe-——HAc)
car/ | / Jcdr
r—¥cdrf / l
1Bl fe) €———XdF-——

L—3 I car | jcdr
cdr | Lot
—¥
I/t
| W

has the following list-structure form with canonical labels.
(LY:(B ¢ L2z ((LY ¢ L3:(LZ ¢ L3))})L1 e L3)

We intend that the LISP functions READ, PRINT, and EQUAL
should be upgraded as foilows:

RERD should allow arbitrary use of labels.
(‘ PRINT should normally write List-structure-form.
BQUAL should define List-structure-equivalence.
There are three major operations on storage: allocation,
freeipng, and storing.

Allocation is the inclusion of new locations in the set
of current locations of M. Allocation 1is described as a
operation on an initial K. Let 1 be a location which 1
independent of all locations in L°¢ of N©,

Utk

then allocate (1) (B%) = pHot
where HO' : LO |_| {1} —> ¥

HY* (1) is undefined --- i.e. no value is assigned.

5°* (1*) = #O(1') for 1* € LO

. the independence relationship (indep) between two locations

ey . mpmase i e T it sttt | S g O i W, ot Y ot ot i, ! e e |ttt et

DRAFT COPY NOT YET COMPLETED PAGE 03
1 and 1' has the following properties:

(1 .indep 1) is false,
if (1 .indep 1') , then also (1' .indep 1)

if (1 .indep 1v') , then also (1 .indep 1Y)
i
for all components 1Y of 1% .
i

The major problem of allocation is that memory is finite, so
the supply of new 1 becomes exhausted. The solution to this
problem is reclamation, which is described later. Alloccation is
otherwise well bDehaved. Yhe set of value objects remain
unaffected.

Freeing a location 1 € L® correspondingly ic defined by:
free (1) (#°) = pot
met : Lo - {1} ---> ¥

pov (1v)y = MO(L*) for 1' € L® - {1} .

—

&~ The problem associated with freeing is that:

40 pmov
EQUAL(vV ¥) may become undefined.
iy 1iv

MOt Ho

This is because v may contain a subcomponent v which is
i® 1

no longer defined.

Thus freeing must be done with some care.

The process of reclamation occurs when the set of locations
from which we are allocating becomes exhausted. The set L© is
defined as {1|-~(1 .indep (S;E;:;C;D)) and 1€ L}. The available
cells are then L — LC.

Storing a value v in a location 1 of #H, v € range(l), 1 € L,
is defined by:

store(l;v) () = #*
(ﬂ; where

DRAFT COPY NOT YET COMPLETED PAGE 64

Bt : L --=> ¥

a—

Hr(l)y = v

.
MY (l') = M(1*) for 1* € L, (1* .indep 1) .
However,
B o4t
BEQUAL(v ;v) may be false because of a changed
i1
subcomponent.
In Lisp two storing functions RPLACA and KPLACD are provided
and defined by:
“ ue e
RPLACA({v ;v)} =V
ir 12 11
where 1* is a pair-location, and 8 becomes M' and,
4(1Y) = {(x = y)
ne
B (1) = (v ¢ Y)
- 12
N
MY (1Y) =M@Y for 1' € L, (1 .indep 1) .
similarly
H B ne
RPLACD(V ;v) = ¥
ir 12 iz

E(lt) = (x « vy)

&l
gr(lty) = (x» v)
12
vl = 51(1Y) for 1' € L, (1' .indep 1)

Iscues and Comments

The model given above is dintended to model the LPL-Lisp
systen in‘its present state (extending slightly into the future).
(ﬂ Certain important notions namely, val, pairlis, and error

DrAPT COPY NOT YET COMPLETED PAGE 65

recovery, were treated somewhat informally.

The introduction of two classes of function
abstraction (LAXBDA, and HELAKBDA) has led to a more complex formal
definition than is usual for Lisp. It seems important however to
bring these long term denizens of Lisp systems to first class
status.

The model described above treats G0, and RETURN as first
class objects. This is at variance with current pragmatics wherin
they are treated as strictly local to a PROG.

It is noted that the formation of label-closures in this
formalism is somewhat restricted and that a label-closure forming
expression should be added to the language to make labels first
class citizens.

It has been suggested by H. P. Ledgard (ref. HAC-TE-60
{(Thesis)) that the lambda-calculus formalism should be combined
with a rewrite or production system. That these "Markov
algorithms® expliicate the notion of an algorithm operating om a
string and are ideal for describing structure transformations.
The productions are used to define primitive structure
transformations, and the lambda-calculus is used to define new
functions ifIrom these primitives. The current model does not
describe such a combined formalism because pragmatically it does
not yet exist. It should.

,f\

s

DRAFT COPY NOT YET COMPLETED PAGE 66

APPERDIX BA.

Comaon LISP Punction Descriptions: In the following description
all functions are shown as rator (operator) in a (rator rand¥)
combination.

(AND x1T X2 ... XD) Predicate

(APPEND x

(APPLY fn

(APFLY In

AND is a special form with an indefinite number of
arguments. Its arguments are evaluated in succession
until one of them is fouund to be NIL. In this case the
value of AND is NIL (false). 1f no argument evaluates
to KIL, the value of AND 1is not NIL. The value of
(AND) with no arquments, is true.

Y) SUBR

if x is not an atom, APPEND returns a copy of x
in which y replaces the CDR of the last cell at the
top level. If x is an atom, APPEND returns y.

Examples: 1) AFPPEND ((R B) (C D)) = (A B C D)
2) APPEND ((h E) C) = (A B . C)
3) APPEND ((A . B) C) = (A . C)
4) APPEND (R (B C)) = (B C).

Por both arguments in the form of 1lists (Example 1),
the result is the same as in 7090 LISP. The other
cases are undefined and cause errors in 7090 LISP.

arge) SUBR

APPLX applys the function fn to the arqguments given in
list args. The arqguments are not evaluated but are
given to fn directly. 1f fn does not directly
denote a function (i. e. it is not the name of a
assembled program, or if it has no such property
as EXFk, EXPR¥*, PEXPR, or FEXPR*), then f£n is
treated as an expression (forr) to be evaluated and
that value is APPLX*ed to args.

During this application the SPECIAL free
variable $ALIST defines the environment.

args aj SUEBR

APPLY applys fn to args in the environment a.

&

DRAFT COPY NOT YET COMPLETEU FAGE 67

(ATOM x)

(ATTRIB X

(CAR x)

(CASEGO e

(CDR x)

(COMMON x)

SUBR Predicate
ATOM rTeturns *T#* (true) if ¥ is any atom, and
NIL otherwise. (ATOH X) evaluates to RIL if and only if
¥ is a node.
e} SUBR

ATTRIB concatenates x to e using NCONC. The value oi
ATTRIB is e.

SUBR
CAR gives the first element of a list x, or
more precisely, the 1left element of a node (node

means dotted pair). CAR assumes that x is a node, i.e.
a pair of contigquous half-word word-locator fields;
the value of CAR is the pointer equivalent of the
contents of the first of these fields.

CARR _ CDDDDR are all defined in LISF as composition
functions of CAK and CDR.

(a1 1b1) (g2 1ib2) ...{gn 1ibn}) MACKO

This CASEGO operator is equivalent to the expression
(COND ((EQ E (QUOTE g1)) (60 1b1))
((EQ E (QUOTE ¢2)) (GO 1b2})
ees ((EQ E(CUOTE gn)) (GO 1lbn))) but is some what more
efficient. As CASEGO expands into a *CODE expression
it cannot be executed interpretively.

SUBR

CDR gives the tail of a list x (the rest of the 1list
after the <first element). More precisely, CDR
gives the right element of a node. CDR assumes that
X 1s a pointer to a @pair of contiquous half-word
word-locator fields. The value of CDR 1is pointer
equivalent of the contents of +the second of these
fields.

CAAR-CUDDDR are all defined in LISP as composition
tfunctions of CAH and CDR.
SUBR

The list X contains the pames of variables that are to
be declared COFMON. The flag COMKON iz put on the

N

DRAFT COPY NOT YET COMPLETED PAGE 68

(COMPILE

property list of each literal-atom 1in Xx. it compile
time variables which have been declared common are
bound on the A-list. Assignment and variable evaluation
by the compiled function takes this into consideration.
(See chapter X, section I. Environment conventions,
representations and problems.)

X} SUBEK

The list x contains the names of previously defined
functions. They are compiled. A name denotes a defined
function if it has the property EXPR or FEXPRFE 7

COMPILE also recogniégég the property FEIPR¥ for
functions which rec§§Ve a list of unevaluated
arqguments. FEIPR* is equivalent to the FEXPR of M.I.T.
LISP 1.5, ﬂcCarth@?’ et. al, that is, they are treated
as two—argument functions. The first argument is a
list of unevaluated rands; the second 1is the A-list
which pertained at the time the combination was
evaluated.

(CONP360 x) SUBR

The 1list x 1ig the same as for DEFINE. & list of
function defining forms. They are compiled directly.

(CONC x71 %2 x3 ... Xn) SUBR*

(COND

(p1

CONC acts like an APPEND of many arguments and
concatentates ite arguments onto one new list. The
first n-1 arguments are copied; the last argument is
nct -

el} (p2 e2) o..(pn en}) Special form PSUBR*

The special form COND takes an indefinite number of
argument clauses in the form of pairs (pi ei), where pi
is a predicate and ei is an expression.

The parentheses in COND have a different meaning than
they do in any other LISP form in that (pi ei) does
not mean to apply function pi +to arguments. Instead,
pi's are evaluated from left to right until the
first one, say pt, is found that evaluates to
true (more precisely, whose value is not EQ to
NIL). The value of the entire COND is +that of the
associated form et; all other ei (i # t) and pi (i >
t) are not evaluated. pi may be any form im LISP
except the specific statement forms (GO label) or

" —— —— i ————— S—— Wyttt tblslnim et Sl = Ytisiment' " SR— S ——

)

&

DRAFT COPRPY NOT YET COHPLETED PAGE 69

(CONS x ¥)

(COPY x)

(CS5ET a wv)

(RETUKN value) since these vield no value.

If COND 1is used anywhere except as a top level
statement within PROG, then at least one of the pi must
be true (typically, the last pn 1is the atom ¥%). If
none are true, an error will be detected at operate
time. (If none of the pi are the atom T, the compiler
inserts the pair (T (*CONKDERR)) at the end of the
COND.)

If COND is used at the top level of & PEOG, then it is
a statement executed for effect not value (except when
an ei is of the form (RETURN value)), and the following
differences occur:

1. The requirement that one of the pi be true is
waived. If all pi are NIL, the COND falls through to
the next statement.

2. Any of the forms ei may be of the form (RETURN V),
where v 1is an expression to be evaluated and is the
value of the PROG.

3. Any of the forms ei may be a statement of the form
(GG 1) where 1 must be a label which is used in
this PROG (see PROG).

SUEBR

CONS is the basic function for allocating list nodes.
It creates a node whose CAR is x and whose CDR is y and
returns that node as its value. More precisely, CONS
takes a full word field from available space, wmaps
the pointer values x and y into half-word
word-locators, and places these in the left and right
half-word portions of the word, respectively, and
returns the pointer to the word as value.

SUBR

This function makes a copy of the list x.
{(COPY (LAMBDA (X) (COND
((ATOH X) X)
(T (CONS (COPY (CAR X)) (COPY (CDE X)))) 1))

SUBR

This function is used to establish a zero-level
special binding of an identifier. It also creates an
APVAL property (see Chapter X. section on the APVAL
kludge) .

DRAFT COFY NOT YET COHPLETED PAGE 70

CSET (PI 3.14159) sets the value of the i1d Pl to the
value 3.M14159, (Note that both arguments of CSET are
guoted by Evalguote.

The form (CSET a v) produces the following results:
1f a is not an id (i.e., does not have a literal id as
its value) an error is detected; otherwise a is treated
like a Special and the value cell of the id which is
the value of a is given the vaiue of v.

(CSETQ a v) Special Form

This special form ig like CSET except that it guotes
its first arqument which must be an atom.

(DEFPINE x) SUBEK
The argument of DEPINE, ¥ is a list of k pairs
((n1 ¢1) (nz d2) ... (nk dk})),

where each ni is a name of a function and di is the
corresponding LAMBDA—expression for the function.

The execution of DEFINE is as follows:

(DEFINE (LAMBDA (L) (DEFLIST L (QUOTE EXPR))))

(DEFLIST x ind) SUBEK

The first arqument of DEPLIST x is a list of pairs ((n1l
a1 (n2 d42) «se), as for DEFINE, and the second
argument ind is an &atom. DEFLIST ©places each
expression di on the property list of the corresponding
id i under the indicator ind.

If DEPLIST is used twice on the same id with the sanme
indicator, the old expression on the property list is
replaced by the new one. DEFLIST places new
properties on the property list to the left of all old
properties.

For example:

DEPLIST (((RA (1 B))) P1) DEFLIST (((BR (3 4))) P2)

results in the following structure for id A&

)

DRAPT COPY NOT YET COBPLETED BAGE 71

id head for AA N i T e B L e B

=== S DR D U N DU B SN SRR I A4 VAN
wd 2 Tor AA ftiif --t>Pname i /

f I / /
value cell for RA { | / [

— [PV SENR PRSP USRS N NN U AT

Y,
13
I

DEPLIST treats the ind values EXPRK, EXPER*, FPELPE, or
FPEXPR* as very special cases 1in which case it also
resets the type code t of id n to no longer indicate
that n is the name of a compiled function. It also
sets the value cell of n to point to the assembled
function INTERFACE.

(DELETEL b m) SUER
DELETEL deletes from 1list m all elements which are
members of list b, and reCOKSes the remaining elements
into a new list. It does not change m. (DELETEL
(LAMBDAE (B H) (BMAPCON M (FUNCTION {LAMEDA (J) (COND
((MEMBER (CAR J) B) ©NIL) (T (LIST (CAR J)))))))))-
The new list is returned as the value of DELETEL.

(ED £n) SUBR CHS

Iinvokes the file editor CEDIT (a CHS command) for
filename fn whose filetype is assumed as SYSIN.

(ED (LAMBDA (X) (PROGZ (SETQ INFILE X) (EDIT))))

{EDIT) SUBR CHS
Invokes the file editor CEDIT for the SYSIK file named
by the special value INFILE.

(EFFRCE x 1) SUBR
Deletes the first occurrance of x from the list 1.
Note: +this function alters the existing structure 1.
Example: EFFACE(A (B B C R)) = (B C 1)

(ELT vec n) SUBE
ELT 1is the Dbasic indexing function for contiguous

storage vectors. The first argqgument vec nust be a
vector, otherwise an error will occur. The index n is

st/ 1YL B /i
S Py > JENENY V40 R DU D >SRN PN |

-

DRAEFT COPY NOT YET CONMFLETED PAGE 72

zero—origined. i.e. the first element of a vector is
given by the index 0. Index n should be less than
4095 for string data, otherwise less than 10Z3.

(EMBED fname redef) s

(EQ x y)

The EMBED function provides an unusual facility
whereby one may redefine a function whose name is fname
and get to use the o0ld definition of fnawe in the
redefinition. The redefining LAMBDA-expression is
given as the s-expression value of redei. Furthermore,
the UNTRACE function will cause the previous definition
to be restored. PFor example, to cause the single
argument of a function FOO to print out before
execution, one might issue the following doublet:

EMBED (FOO (LAMBDA (X) (PROGZ (PRINT X) (FCO X)))) .
To later remove this embedded definition one issues
UNTEACE ((F0OO)) .
SUBER
EQC tests for equality of two pointers. If the values x

and y are the same pointer, the result 1is T.
Otherwise, the result of EQ is NIiL.

(EQUARL 2 ¥) SUBR

EQUAL tests x and y for equality. Two data structures
are EQUAL if and only if:

X and y are the same pointer value,

or if x and y are numbers, then (*EQP x y) is true,

or if x and y are list nodes, then (EQUAL (CAR x)
(CAR y)) and (EQUAL (CDE x) (CDR y)),

or if x and y are vectors whose type, length and
contents are identical,

or x and y are pointer vectors oif the same length
whose corresponding elements are EQUAL,

or x and y a n—tuples and (N*TUPLEQ x y) is true,

or x and y are vectors of reals whose corresponding

elements are *EQP.

{ERROK mSsQ) SUEBR

ERROR causes the value of its argument msg to be
printed and then induces an error unwind f the LISP
systen.

M

DRAFPT COPY WNOT YET CONFLETED PAGE 73

(ERRORZ msal msgZld) SUBR

(EVAT exp)

FRROR causes the value of both of its arguments to be
printed and then induces an error unwind of the LISP
system.
SUBR

EVA1 performs the evaluation of the s-expression exp.
The evaluwation is performed with respect to the
environment (as represented by the current state of
special values, APVAL's and $ALISTY.

(See chapter X EVALUATIOK...)

(EVAL exp a) SUBR
EVAL simply sets $ALIST to a and returns (EVA1 exp)
(EXCISE 1id) SUBR CRAUTION
The literal atom 1id 1is destroyed and its space 1is
returned to the list of available identifiers. EXCISE
is used intelligently by the UNTRACE function. Users
beware.
{(FLAG k 1indg) SUBEK
PLAG puts the flag ind on the property list of every ia
in the 1list k. The value of flag is WIL. No property
list ever recieves a duplicate flag. (see RENFLAG)
(FUNCTION fn) Special Form

FUNCTION is used to transmit functional values. fn can
be the name of a true function (not a Macro or Special
Form) or & LAMBDA or LABEL expression for a function.
The value of such a PURCTION expression 1is the
closure:

(FURAKG fn $alist)

where Jalist 1is the wvalue of the special wariable
PALIST at the time the closure was formed. NKote, this
is not a complete adequate representation of the
environment as it captures only a-list or COMMON
variables. EKefer to the section on LAMBDA expressions

DRAPT COPY HOT YET COMPLEYTED PAGE 74

for naming conventions which should overcome the
systenms inability to capture the name—value
relationship for other than a—list variables.

FUNCTION expressions may occur anywhere an expression
is allowed.

(GENSYH) SUBR

Bach call to (GENSYH) generates a fresh and distinct
atomic symbol of the form %GO00C1T. GENSYMS are not
placed on the OBLIST and are collected by the garbage
collector if they are not in use. The initial letter g
for gensyms is given by the special value GENSYMCH
which is normally G.

{(GET x v) SUBR

GET searches list x for an element EQ to y. 1t the
test succeeds, GET returns the CADR of the list (i.e.,
the next element on the list). If the test fails, GET
returns the value NIL. GET treats the properties,
APV¥AL, PNAME, SUBR, SUBEK*, PSUBK, FSUBE* in a special
manner as they are indicated in the identifier
structure itself instead of occurring on the property
list. The use of GET does not change because of this,
but the user must refrain from altering the property
list directly to achieve these properties. The simplest
advice is to use HAKEPROP for attributing values to
identifiers.

{GETBFI n) SUBR MACRO

GETBPI gets <from available vector space an enmpty
assembled program vector sufficient to accommodate n
bytes of code. (see section P on Contigious Storage
Yectors) .

(GETCH strng n) SUBR
GEICH 1is a character string indexing function. an = 0
to retrieve the initial character of the string. The

value of GETCH is the corresponding character object.
No check is made to see if n is too large.

(GETCVEC n) SUBR

Returns a symbolic vector of n/4 elements. Each element
is initialized to NIL.

ot i st o e el i et et i it . St " st el i i et ——

DRAFT COPY NOT YET COMPLETED PAGE 75

(GETDEF 1) SUBR CHS
Retrieves and defines the definitions of the functions
whose names are given in the list 1. The definitions
are retrieved from the file named by the special
variable INFPILE. The value of INFILE is of the form :
{(filename {filetype | * })

Note: D leaves INFPILE selected to the last file
edited.

(GETIVEC n) SUBR HMACRO
GETIVEC gets from available vector space an emapty

vector sufficient to accomidate n/4 integers. The
vector is of type 2 (a vector of integer literals).

{(GETRVEC n) SUBR HACRO
Same as GETIVEC except the returned vector is of type 2
(a vector of literal reals).
(GETSTR n) SUBR
GETSTR returns as value a string vector sufficient to
hold n characters. The last word of the vector is
initialized to zeros, the fill code for strings.
(GETSVEC n) SUBK MACRO

Returns an uninitialized pointer vector. See GETCVEC.

(GG 1) Special Porm PROG only
GO is a special form valid only within PEOG. (GG 1)
causes the flow of the program to move to the label 1
within the PROG. See PROG.

(IDENTP id) SUBR

IDENTF is *T#* if id is an identifier else HNIL.

DRAPT COPY NOT YET COMPLETED PAGE 76

(INTEKFACE) SUBK LAP

INTERFACE is a routine which allows the compiled code
to call interpreted functions.

DEFINE puts the address of INTERFACE into the special
value cell for each identifier being defined.

tThe compiler treats all calls as though they were to
compiled functions. INTERFACE assumes control and
performs the interfacing tasks.

(IVECE v} SUBR MACRO
Returns true if v is a vector of literal integers.
(LABEL name (LAHBDA (bv*) body)) Special Form

LABEL is a special form used to give a
LAMBDA-expression a name so that it can be called
recursively fror within the LAMBDA-expression. LABEL
causes compilation to occur in a manner similar to
DEFINE in LISP, but with two differences:

1. the name used in LARFL 1is local, and can be seen
only within +this LABEL form. It +thus can cause no
conflict with other functions or atoms used in the
System.

2. LABEL defines a single function, while DEFINE can
take many function expressions.

(LAMBDA (bv*) body) LAMBDA-expression Special form

A LAMBDA-expression is used to specify a LISP
function. The bv are bound variable names, which are
identifiers in the normal case where the corresponding
argument expression 1is assumed to be pointer valued.

A LANBDA-expression 1is not by itself a complete (or
closed) specification of a function. Variables which
occur free in body must have their name—value
relationship specitfied for the function specification
to be closed.

The LAMBDA-expression can be considered as an
expression which evaluates +to a closure. The closure
is given as the s—expression form (FURAKG

LAMBDA-expression environment) which combines the
LANBDA-expression with the environment. The environment
gives the name-value relationships for variables which
occur free in body.

/”j

URAFT

COPY NOT YET COMPLETED PAGE 77

In interpreted LISP, variables are bound on the a-list.
The a-list has several desirable characteristic as a
model of the environment: PFirstly, all name-value
relationships which pertain are captured by a single
pointer value. Thus, saving the environment 1is a
simple matter of saving this pointer. Secondly,
binding does not destroy existing environment but just
appends new name-value relationships to it. The
drawback of wusing the a-list is that evaluation of a
variable requires a search.

In compiled LISP variables are treated in several
ways:

1. Bound variables which are not declared SPECIAL or
COHMON are treated as purely 1local (or dunny)
variables. The compiler assigns a stack location
relative to the stack frontier to contain the value of
the local variable. Such variables are said to occur
vacuously and cannot be referenced by name as free
variables in functions called by the defined function.
The use of these wvariables by compiled <functions 1s
very direct and efficient.

2. Variables declared SPECIAL have their values
associated with their corresponding identifier
structure in the value cell. These identifier value
cells can be referenced directly by any function and
thus provide an efficient device for free variables for
compiled code. it is necessary that any compiled
function which binds such a variable must first save
the old value and restore it upon exit. While this
gives this global enviornment the same binding
characteristic a=s the a—-list, & given environment
cannot be captured so easily.

Remark: This presents a rather serious problem in
forming closures. 7The traditional solution in LISP has
been to reguire that the user declared COMMON any
variable which reguired the correct closure mechanisn.

3. Variables which occur free as operator in
combinations are treated by compiled functions as if
they were SPECIAL, and furthermore they were assumed to
have a value which is an assembled program.

4. Variables which have been declared COMMON are bound
orn the a-list and the interpreter ig used to evaluate
them. The form (SETQ I J) where I has been declared
COMBON is transformed to (SETC (QUOTE I) J) which uses
the a-list.

Remark: If only unusual names are used for SPECIAL

DRAFT COPY NOT YET COMPLETED FAGE 78

variables which are bound by functions having
. functional arguments {arguments that are
L closures), then the usger avoids conflicts with

SPECIAL wvariables that may be bound at the time the
closure 1is applied. If such is the case the necessity
of catching the environkent at argument
evaluation time 1is removed.

(LAP360 ...) see chapter VI, The Compiler and LAP.

(LAST x) SUBR

LAST scans a list x and returns the last element at
the top level of the list. It will cause an error if
applied to an atom or to a list terminated by a
non-NIL atom.

. ¢ , i, A [T 1‘ .
el _{Q;M \ lau ‘L:ca{s_“ I iy
Example: ’ R o
T .
[xl‘f"‘""l, PO B AL S S

LAST ((& B C)) = C hwu[aﬁgﬁll~»cérﬂlj

- ” * ahoe Lede L] 3= 8Ly
LAST ((A B (C))) = (C) o boci [ede LU

LAST (&) = LAST ((C . B)) = LAST ((A B . C)) = error.

"
I

C {LENGTH x) SUBK
LENGTE applied to a list ¥ returns an integer equal to
the number of elements in the top level of the list.
Applied to an atom it yields zero.
(LENGTH (LAMBDA (M) (FROG (N) (SETQ K O)
A (COND ((ATOM ¥) (RETURN K)))

(SETQ B (CDR M)) (SETQ N (ADDT N)) (GO RA)))).

(LENGTHCODE vec) SUBR

If vec is a vector, and kK is the number of bytes in
vec then LENGTHCODE returns the value k-1. If vec is
not a vector datum, the value will Dbe some unexpected
integer x, where 0<x<40945

(LIST x1 %2 ... xnj Special Porm
LIST takes an arbitrary number of arquments, and

constructs a 1ist ocut of them. The compiler handles
(j the special form LIST by constructing open code using

5

DRAFT COPY NOT YET COMPLETED PAGE 79

the function *LIST.
*LIST calls CONS and the effect is the same as
(CONS x1 (CONS X2 (... (CONS xn BIL) ...)))

kemark: the actual method employed is considerably more
efficient in terms f length of compiled code and
speed of operation if n > 2.

(LISTP Xx) SUBR Predicate

LISTPYs value is *7T% if x is a node, otherwise NIL.
Thus LISTP is false for numbers, strings, vectors,
n—tuples, literal atowms, and NIL.

(LISTZIVEC 1) SUBK

Creates an integer vector whose elements are the
literal values of the integers of the 1ist 1. VNo
integer vector may be longer than 1023 elements.

(LISTZRVEC 1) SUBER

Creates a real vector whose elements arve the literal
values of the reals of the list 1. #o real vector may
be longer than 1023 elements.

(LISTZ8VEC 1) SUEBR

Creates a pointer vector whose elements are the
elements of the list 1. No pointer vector may be
longer than 1023 elements.

(LIST2Z2VEC 1) SULBR

Transforms a list 1 of the form:
. (INTEGER x1 X2 ... Xn)

where the xi are integers into & vector of =
literal integers.
Z. (HEAL r1 rZ2 ... £n)

where the ri are reals, into a vector of n reals.
3. (S5YHBOL 51 82 ... Sn)

where the si are anpy S-expression values,

into & symbolic(pointer) vector of n elements.
4. (51 s2 ... sn)

where s1 is not INTEGER,RERL, or SYWBOL,

into a symbolic vector of n elements.

C

2

DRAPT COPY NOT YET COHPLETED PAGE 80

(MACLAFP listing) SUBK

(MAKEFKOP

(MAP x £fn)

(MAPCAR x

Expands the LAP HMACROS which occur as 1instructions in
iisting. LAP MACRO definitions are one argument lambda
expressions which produce a list of instructions as
value. These instructions are in turn expanded.

id attr val) SUBR Pseudo—function

MAKEPROP makes val the value of the attribute attr on
the property 1iist of id. The attributes PNAME,
$SUBR, SUBR*, PSUBR , and FPSUBE* do not occur on the
property 1list, but their values are embedded in
the three word identifier data structure as illustrated
for DEFLIST. (see also sec. II1-C)

SUBR Punctional

MA¥ applies the function fn to x and to successive
CDRe of x until x is reduced to a single atom (usually
NIL) which is returned as the value of MAP.

(AP (LRMBDA (X FN) (PROG (M) (SETQ M X) LP (COND
((ATOM H) (RETURN H))) (FN M) (SETC M (CDR H)) (GO
LE))))

MAP cannot be 1input as the top level <function to
Evalgquote since the functional argument must be
evaluated, unless written as in the following
examnples:

BAP ((R B C) (PUNARG PRINT ()))
produces the foilowing lines of printout:
(A B Q)
(8 C)
(€)
VALOE = ()

£n) SUBR Punctional

MAPCAR constructs a new list whose value is a list of
elements each of which is obtained by applyvirg the
function fn to the corresponding element of the list
X. MAPCAR is non-recursive, and uses ATOM to find the
end of the list. MAPCAR cannot be 1input as the top
level function to Evalquote, except as illustrated for
MAP. Examples of the use of MAPCAR are:

(LAMBDA (L) (MAPCAR L (PUNCTION SUB1})) ((0 1 2 0.3))=(-1
01 -0.7)

a

DKAFT COFY NOT YET COMPLETED PAGE 81

(LAMBDA (L) (MABCAR 1L (FUNCTION (LAMBDA (J) (COND
((2TOM J) (QUOTE ATOM)) (T NIL))))})) ((R B (C) D))
= (ATOM ATOM NIL ATOM)

BAPCAR ((0 1 2.3) (PUNARG SUB1 ())) = (-1 0 1.3)

(BAPCOR x In) SUBEK Punctional

MAPCON maps list x onto a new list ((fn xi)*) wusing
NCONC, so that the resulting list 4is formed by
concatenation, and uses ATOH to find the end of list x.

(8ABCON (LAMBDA (X FN) (COND ((ATOM X) X) (T (NCONC (FN
i) (MAPCON (CDR X) FN)))))) .

The top level restrictions on the use of functional
values as 1llustrated in MAP hold for MAPCAR also.
Because of the wuse of NCONC, MAPCOR will damage the
system or will cause an endless loop or both, unless
the function fn is chosen carefully. (See DELETEL for
an example of the use of HAPCOR.)

(MAPLIST x fn) SUBR Punctional

 MAPLIST maps the list x onto the list ((fn xi)*). It

performs the same function as HAP except that it
produces an output list by CONSing together all of the
results of the form (fn xi) computed during the
mapping.

MAPLIST is non-recursive, and uses ATOM to find the end
of list x. MAPLIST has functional arguments so the
restriction on its use at the top level is the same as
MAY.

Example:
{LAMBLA (%) (MAPLIST X (FUNCTION (LAKBDA {(J) (CONS
(QUOGTE B)Y J))))) ((8 B C D)y = ((BA BC D)y (BB CD)
(B C D) (B D)).

{HLEF exp) SUBK
The expression exp is macro—expanded. The result is
that expansion. (See chapter X. III. MACROS)

(MEMBER a b) SUBR Predicate
MEMBER is a predicate which 1is true if a is a member

of 1list b, and NIL otherwise. EQUAL is wused to
perform the eguality test. Hence MEMBERK (1.0 (B B 1

)

DRAPT COFY NOT YET COMPLETED

2yy = T.

(N*TUPLEG ntuplel ntuplez)

The corresponding literal
compared for

ntupleZ are
corresponding pointer
they are EQUAL.

FAGE 82

SUBR

elements of ntuplel and
exact identity. The
elements are compared to see ii

If all elements correspond in this

manner N*TUPLFQ has the value true, otherwise NIL.

(NCONC x y) SUBEK

NCONC appends list y
copying x. The value
The ATON test is used
If » is atomic, NCORC
property list of atom

(NCONC (LAMBDA (X Y)

onto the end of list x without
of NCONC is the nevw value of x.
to find the end of the list x.
appends a y onto the end of the
Xe

(PROG (M) (COND ((NULL X} (RETURN
Y))}) (SETQ M X) A (COND

((ATOX (CDR ¥)) (GO B)}) (SETQ

M (CDR M)} (GO B) B (RPLACD M ¥} (RETURW X) })) e

{NOT X) Special Form

This is regarded as a Special Form by the Compiler and
ig always changed to the equivalent form (NULL x).

(NOSUBST x y 2z) SUBR

Substitutes x for all occurrances
when z is inside a QUOTE expression.

of v in z, except
Example: NQOSUBST (

A B (A B (QUOTE (A B)) A B)) = (A A(QUOTE(A B))A A)

{(NULL x) SUBR

NULL is compiled as open code when used as a predicate.
Ffor other uses, the ﬁefin%;%gg used is:

(zg x/

(NULL (LAMBDA (X) (COND ((NULL X)T) (T NIL})))

(OBEY strng) SUBR

The string strang
language for the
must not use
above 16000x.

those

contains a
time shared system. On
commands
The command is obeyed (operated).

CMS,TSS

command of the command
cpb7-CHS one
which overwrite memory

—
e

&

(PAIR x ¥)

DRAFT COPY NOT YET COMPLETED PAGE 83

(OR pl1 p2 «.. pn) Special Form

The arguments of OR are evaluated from left to right

until the first true (mon-NIL) predicate is found. If

a true predicate is found, the value of OR is T; it the

end of the list of arguments 1is reached, the value of

OK is NIL. The value of (0OR) of no arguments is NIL.
SUBR

PRIR requires its inputs x and y to be 1lists of equal
length.

X = (X1 X2 eee ¥n) ¥ = (Y1 Y2 oo« yn).
PAIR returns a list of dotted pairs:
((x1 « y1)(x2 . ¥2) «.. (xn . ¥yn))

as its value if this condition is nmet.

If the two lists are of wunequal length, PAIR induces
an error.

(PROG vars s1 S22 ... Sh) Special Form

PHOG is a Special Form that permits LISP programs to
be written in the form of a series of statements to be
executed. In form, PROG looks like a function of an
indefinite number of arquuments.

Its first argument vars must be either an empty list or
a 1list of bound variables (vl vZ ... vn), called
program variables. Any program variable which is not
in SPECIAL status at compile time is wmerely a cell on
the pushdown stack. If a program variable is in
SPECIAL status during compilation, its previous SPECIAL
binding is saved on the pushdown stack at entrance to
the PROG and 1is restored at exit, and the current
binding is stored in the corresponding identifier value
cell. Thus in either case, the binding of & program
variable is visible only within the PROG. However, if
the variable is SPECIAL, it is also visiblie when used
free by any <function called from within the PROG. IIi
not SPECIAL, it is invisible except in the body of the
PROG.

The other arguments s1 =2 ... sn of & PROG can be
either identifiers (id) or statements.

A statement may be any standard LISP combination (rator
rand*) but it may also include GO or RETURN statements.
It there are no GO or RETURN statements, the statements

243 IO ¥4A¥D 2Y3 ST IALond ®Iog TeTdsads S¥3 JO onTeA IYJ

mIiog TeIOBdS ¥yE0S

‘g > u *pajuerd 8Ir S834q U I9DpIO-uUbHTIY
2yl yoTYA J0 ‘(se3hq g¢) bHurilzes 3ITq g B WIOT 03
PSIBUBILOUOCD HIP SITY 9| ISDPIO-AO0T HsSoym sIsbajur axe
€y ‘zZy ‘1LY *27geTIRA TRIDAAS B ST 9j0dd “D0T + 9¥o0dd
gOTARDOT 32 Hhuriaeis psruerd 212 s91ig U *8I0d By}
uT 8pod> 3ueld 03 (9E£4Y¥T AQ DPOSN UWOTIIOUNT B ST gNOKNNd

{a 33100D)

o4ans (u D07 €49 7Y LY gNOMNQdT)

4 IO SOnTrA 959y} UO 2WPS HY} YIOR 70U
ITTA dou¥d ‘3st7 £332doad o4y3 uo paIaInODd0 ATIAWIOT YOTUA
HENSA PUR “xNanSd ‘x¥9AS ¥4NS ‘IYAAY ‘AWHVNd SoT3a9doad
2Y3 JO 3JUDHEIESIY} TeRIOS4S ayy} IO asnenaqg THION

*S3ULENDIR OU JO uoTIDUNI ® f(ujy) ST J0HF IO
anTeA 3431 ‘punojy 130u ST £318doad 8|yl IT *3ISTT Oy} IO
HaD 9243 03 193uTtod B ST JOHd IO SnTRA 9Y3l ‘punoy ST Dduo
31 & o3 03 L3yzedoird v 307 X 3ISTT 9YI S8YdDILSS JONd

TRPUOTIODUNG Hans (o3
({(x(x ¥) yagrv1)7o0ua) :4q pauryep

ST 3T -a3uswnbir puUODdSS SIT IO 2nTRA DY3 SUINIOI UdY}
puPR PpolenIeRA® o4 03 3JuUdWNLIP ISITF S3IT SOSNELdD Z90Hd

£ x aoud)

qans {g » z90u4)

*3UBWDILIS
3X9U 9243 03 »Ybnoay3l sSTTPIs ATdETS TOIFUOD 8OUIS
153Pua93Te I ® 21ITnbal jou S30P ANOD 9084 ' UTUITA

*H0¥d 9493 JO SnTRA 9Y3} SB A UYITA DOHd DU
®OII 31TXS pue ‘pajenrteas ¢ 01 A 595ned Ing (T 09) se
STUOTITPUOD AWES Y3 Iapun IndO0 ued (A NYAIAY) wIOT Y]

*nO¥d DY UT T TSGRT 9Y3 03 TOIJUOD JO ISISURIY} SISDRO
{1 09) “‘pejenyeaa 3IT “90Nd dY3} Jo 12497 dol a2yl 3e
ST ITOS3IT UYOTYA 4HOD B JO ToA9T dol ayY3 3e pasn sg ued
J0 ¥S 9Y3 JO @u0 S® 90¥4 Y3} IO T2a8T do3 8y} 3} INndOHO
ued 90Md SY3 UTYITA [oqe] ® ST T axeys ‘(I 09) mIOT YL

*anTeA 24931 S ITH YITA 5084
I0 DU2 9Y} HUYDHNOIYF STIRIe TOI3u0D 245 (*20uanbasuod
ouU IO ST AnIea HY3} HUTIPILDSIP PuUR PT Ue DHUIIRNTRAS
9OUTS pPAPIRDBISTP HiIe pI) *anTesa oY1 bHuTIOULT DpuUR
1U2WRIRIS YoOed HurtaivrnTeas Ag DPLOINDAX2 DIR US *°° 7S LS

he ID¥dI JHLITAROD LHA LON

X300 LAYHO

A
)i
j——

7

e

URAPFT

(RECLATIE)

{REHPLAG

e o— ———S———— AI— ——— — 1 —— W—"

CCPY NOT YET COMPLETED PAGE 85

list whose CAR 1g the id (QUOTE. Thus, when evaluated,
(QUOTE A) = A

(QUUTE (A B)) = (A BY , etc., but

(QUOTE A B) = (QUOTE A . B) = A

A quoted expression stands for itself, and is not
evaiuated.

In compiled LISP the form (QUUTE A)Y is represented by a
quote cell which contains the pointer value A;
similarly the form (QUOTE (A B)) has a guote cell which
contains the value (& §). NOTE: Quote cells are
shared and must not be altered.

Constants, T, F and NIL need not be quoted inm LISP
because such a constant n is treated as (QUOGTE n). (¥
becomes (QUOTE NIL))

¥seuvdo-function

causes an explicit garbage Collection.

1 flg) SUBR

REMFLAG removes all occurrences of the flag flg from
the property list of each identifier in the list 1.

(REMOB 1d) Pseudo—function

This function 1is used by the system to remove literal
atoms which are known to be inactive. It should not be
used by the casual user.

{(REMEFRGP x ind) Pseudo-function

Removes the attribute and value of x for the attribute
ind. This function alters property lists to undo the
effects of ordinary HAKEPROP's.

(RETURN exp) Special Form

It (RETURN exp) is encountered in evaluation of a
PROG, the expression exp is evaluated and its value is
the value of the PROG.

MR WAMAME VBRI WS N p—" S ——————" ! {— — v S — — —_— —

DRAF¥T COPY NOT YET COMPLETED PAGE 86

(REVERSE a) SUBR

The function REVERSE has for its value a 1list whose
elements are the top level elements of list a taken in
reverse order, €.d.,

REVERSE ((A (B C) D (EF))) = ((EF) b (B C) B).

when applied to an atom or to a list terminated by an
atom other than NIL, REVEKSE is undefined.

{RPLRCA X Y¥) SUBR
RPLACA replaces the CAR of the cell pointed to by x
with the half-word word-locator equivalent to pointer
Y. Its value is x but X has been replaced by (CONS ¥y
(CDR %)) .
The use of RPLACA on an id or vector can be
disastrous. Likewise, altering guoted data structures
can be disastrous.

(RPLACD x y) SUBR
RPLACD replaces the CDR of the cell pointed to by x
with the half-word word locator equivalent to pointer
¥« Its value is x but x has been replaced in value by
(CONS (CAR x) y).
The use of RPLACD on an id will alter its property
list and this may be disastrous. The use of RFLACD on
the header oi a vector probably will be disastrous.

(RVECP vec) SUBKR MACKO

{SASS0C x

RVECP returns the value +true if vec is a vector of
literal reals. For any other argument the value is
false.

y £n) SUBk functional

SASSOC searches y which is a 1list of pairs (usually
but not necessarily dotted pairs), for the first pair
whose first element 1is EQ to x. If the search
succeeds, the value of SASSOC is the pair. If the
search fails, the value of SASSOC is the value of (fn),
a function of no argquments.

Because of 1its functional argument, SASSOC cannot be
input as a function at the toplevel of Evalquote.

~

~—

DRAPT COPY ROT YEYT COMPLETED PAGE 87

(SASSOC (LAMBDA (X Y PN} (PROG () B (COND ((NOULL Y)
(RETURN (FN))) ((EQ (CARR Y) X) (RETURN (CAR Y))))
(SETQ Y (CDR Y)) (GO A)))).

(SELECY ao (a1l el) (a2 €Z2) ... {an en) eo} Special Form

{SETC a b)

The expression a&ao is evaluated, then each of the ai
are evaluated in turn and tested until the first one is
found that satisfies (B¢ ao ai). The value of SELECT
is then the corresponding ei. If no such ai is found,
the value of SELECT is eo.

SELECT can be used at the top level of PROG in much the
same way as COND. In this application GO and RETUKRN
forms are not legal for ei and eo. Also, eo cannot be
omitted, but mavbe NIL. The compiler converts SELECT
to the equivalent form

((LABSBDA (G) (COHD ((EQ G aT)y e1l) ((EQ G a2) €2) ..
({(EQ G an) en) (T eoc))) acu)

where G is an arbitrary gensym. (If eo were omitted,
the syntax of the COND would be incorrect.)

or (SET a b} SUBR

SETC may be used in compiled functions, but it only
alters the values which occur on $ALIST. SETC searches
the ALIST until the pair (a . ¢) is found. It then
uses RPLACD to change the pair to (a . b).

(SETIV vec n val) SUBR

Thig 1is the primitive assignment statement on integer
vectors. n is the zero-origin index, vec is an integer
vector, and val is a pointer-valued integer. SERIV
checks for out of range, and for the correct type of
val. The value of SETIV is val.

{(SETRV vec n val) SUBEK

S

SETRV is the primitive assignment statement for real
vectoers. n is the zero—origim index, vec is a real
vector, and val is a pointer-valued real. SETRV checks
for out of ramnge, and for the correct type of val.

(Sﬁﬁy vec n val) SUBER

-

DRAFPT COPY NOT YET CONPLETED PAGE 88

SETY is the primitive assignment statement for pointer
— vectors. n is the zero-origin index, ¢vec 1is a
C pointer vector, and val is any datum. SETV checks for
out of range.

{S5BTQ a v) Special Form

SETQ is a special form which evaluvates its second
argument v and assigns this value, which is also the
value of SETQ, to the variable given as 1its ftirst
argument a. In general, a 1is treated as if it were
quoted. If a is not an atom, an error results. If a
is not in SPECIAL status and is bound in a function by
LAMBDA or PROG, SETQ affects only the cell on the
pushdown list of the function. In which case it is
said to be a local variable.

If a 1is in SPECIAL status and has had a previous CSET
binding SETQ changes the value of that binding.

SETQ can be used in series to set many variables to
the same value as (SETQ X (SETQ Y Z)) which sets both X
and Y to the value of Z.

(SPECIAL x) SUBEHE
<‘ The argument of SPECIAL x is a list of identifiers.

SPECIAL sets a flagq in the identifier structure of each
id of x, and puts the attribute SPECIAL on the property
list of each id of x, and returns the list x as value.
The SPECIAL flag on an identifier serves mainly to
tell the compiler that if this atom is bound by LAKBDA
or PROG, the old binding of the atom must be saved and
the current binding stored in the value cell (rather
than in the pushdown list).

(STRCONC sT 52 ... s1D) SUBR*
STRCONC concatenates the strings given as arguments and
creates the resultant string as value.

(STRINGY =) SUBR

STRINGP is *T* if s is string datum, otherwise NIL.

(STRLENGTH s) SUBK

(’ Returns the number of non-fill characters in the string

N U — —— o o v———— o — " i, 10" it it . e e st st et e At e

DRAPT COFY NOT YET COMPLETED PAGE 89

. (Fill characters are trailing 00X bytes.)

(SUBST x v 2) SUBK
SUBST substitutes x for each occurrence of the list
structure y in the list structure z. The function
EQUAL is used to perform the test, so that x and y
can have the most general form. But z must be a list.
Examples:
SUBST (A B (B C E)} = (& C E)
SUBST (B B (B (B . C) (B))) = (A (2 . C} (&)

SUBST (A (B) (C B)) = (C . B)
since (C B) = (C . (B.NIL))

SUBST (A (B) (B C))y = (b Q)

SUBST (2 3 (3 4 . 5)) = (24 . 5).

(SVECE vec) MACRO - *CODE
SVECP is the predicate used to test 1f vec is a pointer
vector.

{(TERPUS-FPUGIT) SUBR CHs,05

TEMPUS—~PUGIT returns the elapsed task-time in
thousandths of a second.

(UNCOMMON 1id) SUER
Definmed by: (UNCOMMON (LAMBDA (L) (KEMPLAG L (QUOTE
COKHKOR))))

(ONSPECIAL x) SUBK
UNSPECIAL is similar to SPECIAL. x should be a list
of identifiers. For each atom in x, UNSPECIAL removes
the attribute SPECIAL and its value from the FROP list.
The value of UNSPECIAL is x.

(VECP vecC) MACRO — SUEBR

The predicate VECP is true if and only 1if vec 1i=s a
pointer into vector space.

C

C

DRAFT COPY BNOT YET COMELETED PAGE 90

APPENDIX B.
ARITHHETIC FUNCTIOKS AKD PEEDICATES
The syntax of numerical objects is given below:
number = integer | hex | octal | real
integer = ddigit ddigit#*
octal = odigit odigit* ¢ { integer]

hex = ddigit hdigit* X

11

odigit = 0 | Y [2} 3 1 &} 541617

]

ddigit odigit | & | 9

hdigit =ddigit | & | B t C | D | E | F

real = integer { E [dinteger J | . [integer I E
{ integer 1]}

Semantically, hex and octal numbers are treated 1like integers.
On input they become integers MOD 2%%32. Large integers may only
be input as integers. The reals are stored as floating point
numbers and are currently stored as 32-bit words: & bits of
character plus 24 bits of mantissa.

Arguments of all functions described below are assumed to be
numrbers unless otherwise stated.

SUBK*s:

The following arithmetic functions allow an indefinite
number of arvuments:

MAZ, HKIN, LOGOR, LOGAND, LOGXOR, PLUS and TIHES.

Unless otherwise stated the arithmetic functions are
defined for integers, reals or combinations of reals
and integers. The result is real if any argument is
real, integer only if all arguments are integers.
LOGOR, LOGAND and LOGXOEK wuse 3FIX on thelilr arguments
and produce integers as answers. These logical
functions also 4 not work on large integers.

Other Arithmetic Punctions

(ABSVAL X)

DRAPT COPY NOYT YBT COHPLETED PRGE 91
Computes the absolute value of the number Xx.

(ADL1 x)

Adds 1 to X, e.u. (ADD? (LAMBDA (X) (PLUS X 1)))

(DIFPPEKENCE X ¥)
Subtracts v from X, e.g. (DIFFERENCE (LABBDA (X Y) (PLUS
X (MINUS Y))))

(DIVIDE 2 v)

Equivalent to (LIST (QUOTIENT x y) (REMAINDER x ¥))

(EXPT x ¥y)

Raises x to the y power. The result is an integer 1if x
is an integer and y is a positive integer; otherwise
the value is a floating point number.

($FIK Xx)

Computes the integer part of x for ©positive x and -
integer-part of -x for negative x.

(LEFTSHIFYT x ¥}

(LEFISHIFT =x y) produces an integer number equai to
the 1literal value of x shifted left by y bits, with
zero brought in at the 1right to replace the shifted
hits. If vy is negative, a right =shift results and
zeros are brought in at the left end of the word. It
both x and y are negative, the sign of x 1is not
extended, and the resulting value of LEFTSHIPT willi be
positive. The acceptable range for y is -31 <y <
31.

(HIKUS x)
Returns -x for number x.
(COCTIERT x y)

For fixed-point arguments, the valwue 1is the number
theoretic guotient, i.e. the value is an integer ¢

s

C

DRAFT COPY NOT YET COMPLETED FAGE G2

such that x=gy+r where r is the number theoretic
remainder, 0<r<y-1 . If either x or y is a floating
point number, the answer is the floating point
guotient.

(REMAINDER x y)

(SUB1 x)

(¥*EON x ¥)

(*ECP x v)

(*EQP x ¥)

(PIXP x)

Computes the number theoretic remainder for
fixed-point arguments, and floating point residue for
floating— point arguments. (see QUOTIENT)

Subtracts 1 from %, €.g.

(SuB1 (LAMBDA (X) (PLUS X —-1)))

Arithmetic Predicates:

Tests two numbers for eguality of representation.
Thus

(*EQN 0 -0)
(*EQON 1 10)
(*EON 1 1.0)

T (*EQN O ()

T (*EOK -0 -0)

NIL (¥EQN 1.0 1.0)
(*EQON 10 1.0) N1L (*EQN 10 1Q)

(*EON 304 3003) T (*EON 1.0 1.0EQ)=
(*EQN 1.0 1.00000000001) = 7T.

oo
e e e

(L I I T |
n

The last case holds because the last decimal place is
lost in the internal representation.

Tests two number for approximate equality. In
general:

(T if jx — vyl < 3.E-6)

()

(T if |x - y|)

{ | === | < 3.0E-6 , }

= (Ef +¥lo)
(NIL otherwise.)

DRAFT COPY NOT YET COBPLETED PAGE 93

Is true if x is a fixed point number, and false
othewise.

-

{(FLOAT®? x)
Is true if x is a floating point number, and false
otherwise.

(GREATERP X ¥)
Is true if x > y and falise if x € y.
Note: that it 1is possible for both (*EQP x vy) and
(GREATERP x ¥) to be +true simultaneously, but (ANL
(LESSP x y) (GREATERP x y) is always NIL.

{LESSP x y)
Is true it x < y and false if x = y.
Note that it is possible for both (*EQP x y) and (LESSP
X y) to be true if either x or y is a floating point
nukber.

<j (MINUSP x)

Is true if x is negative, and false otherwice.

(NUMBERP x)
Is true if x is a pointer denoting a LISP number,
and false otherwise. In particular, NUMBERP (NIL)
evaluates to NIL.

(ZEROP x)
Is true 1f x = 0 and false otherwise.

(ZEROP (LAMBDAR (X) (*EOP X 0)))

Y

LY

ORI ¢ R Y M\ Y ST —" S— V—— " Ot S} U " NG UM——" " T ! WU AN " (DT ARG ma—"—— T — —— R R T T

DRAFT COPY NOT YET COMPLETELD PAGE 94

RPPENDIX C.

Input/Output Punctions and Predicates

_(BACKCHR) SUBR Pseudo—~function

Three global special variables CURINBUF, CURCOL and
CURCHAR describe the currently selected input file. The
value of CURINBUF is the input buffer string; the value
of CURCOL is a number n=0,%1,2,3,..-. which serves as an
index pointing to a character within CURINBUF; the
value of CURCHAER is the character object corresponding
to the character in CURINBUF indexed by CURCOL.

BACKCHR reduces the value of CURCOL by one, and
sets CURCHAR to the appropiate character object. This
allows backup within the current input record. BACKCHK
returns the new value of CURCOL.

BACKCHR does not work properly if CURCOL by any
chance is not a small integer. Since BACKCHE 1is used
extensively by read routines, this limits the input
buffer size to a maximum of 1028 characters.

If the value of CURCOL is zero or negative, BACKCHR
may be issued, but the resulting values are meaningles
and should not be used for anything until an
application (possibly repeated) of EDCHR makes CURCOL
nonnegative again. A backup from one input record into
another is not possible.

{BUCKET 1d) SUBR Caution!!!

(CEARP <)

BUCKET is normally not to be invoked by the user.
BUCKET returns a pointer to the pointer within the
OBLIST vector for the bucket corresponding to the
identifier id. This is formed by hashing the first 8
bytes of the PNAME of id, dividing by 599 and using the
remainder as an offset.

The garbage collector 1is gquite sensitive to
pointers into vectors. BUCKET should be used in such a
way that the garbage collector does not see the pointer
returned by BUCKET. Otherwise, a garbage collection
may lead to a program interrupt.

BUCKET is wused by KEMOB which is used by the
garbage collector.

SUBR, MACRO Predicate
CHARP is a predicate that tests for character

atoms. The value of CHARP is *T% if ¢ is a character
object and NIL if ¢ is not.

B R A A

DRAPT COFPY NOT YET COBFPLETED PAGE 95

. (CHRZFIX c) SUBR

P

Converts the digit character object ¢ to its
fixed point integer equivalent. Undefined if ¢ 1is
not a digit.

(CLEAKBUFF) SUBR Pseudo-function
Clears the string which is the value of special
variable BUPPG. Clearing consists of setting
contents of the string BUFFO to all hex zeros and

setting special CURCOLX to ©O. CLEARBUFF 1is used for
side eftects only, the value returned by it 1is
unpredictable.

The string BUFFO is used by PARCK, INTERNX, MKNAH
and NUNOB for the creation of numbers and literal
identifiers. It is initialized by *SUPERMAN as a
string vector capable of holding 132 characters. The
value of CURCOLX is a number n=0,1,2,3,.... which
serves as an index pointing to the first unused
character position in the string BUFFO.

(CLOSE dcb opt) SUBK Pseudo-function 05, TSS
(& CLOSE issues an 0SS or TSS CLOSE macro ané returns
KIL. CLOSE is used by SHUT to close an input or output

file. The parameter dcb is the address of a DCB (data
control block). The parameter opt is DISP, LEAVE or
REREAD for 0S, irrelevant for TSS (REREAD being assumed
regardless of the value of opt).

CLOSE is normally not to be invoked by the user;
SHUT should be called to close files.

{DD £n £t fm) SUBR Pseudo—-function CHS

Opens the file described by the identifiers fn, ft,
tm, and returns a list of the names of the open files.
Opening a file consists of assigning a string as an 1/0
buffer for the file, creating a CHMS file control block,
and placing information about the file 1into the
OPENEDFILES list. If fn is the name of an already open
file, DD just returns a list of the names of the open
files.

An asterisk or a WIL 1is acceptable in any arqument
position (a NIL is interpreted ag an asterisk). If
filename is unspecified for a new file, the default
filename is LISPOUT. If filetype is unspecified for a
new file, the default filetype is 0UT. 1f filemode is
unspecified for a new file, the default filemode is P1.

(ﬂ if the tfile exists, the 1I/0 buffer length is as

COPY NOT YEYT COMPLETED PAGE 96

needed for the file, otherwise it is set to the default
vailue of 120. the useful input record lemgth for the
file is set to 71 for <filetype SYSIN, and to <full
record length for all other filetypes. The useful input
record length determines the number of characters read
from each record. It is ignored while doing output.

input files may be of either ¥ or V record format.
Cutput files are always of P record format. Input
records may not be longer than 1024 characters.

The filetypes LOAD, TiIN, and TOUT are reserved for
special purposes.

The filetypes TIN and TOUT are used to open
terminal input and terminal output files, respectively.
& filename for a TIN or TOUT file is needed so that
other LISP functions could refer to the file after it
is opened. Such filename has no sigynificance for the
CMS operating system. A filemode for a TIN or TOUT file
determines the mode of input or output line processing
by CHS3, as follows:

Input:
[§] Bditing, upper-—case translation,
blank filling

* same as U

NIL same as U

s Editing and blank filling

v BEditing and upper-case translation
T Editing only

X Input line read exactly as is

Qutput (CHNS/360):
K Type line directly frow CURCQUTBUF
* same as K
NIL same as K
B Move line to free storage before typing

Cutput (CMS/370):
B Type line in black

* same as B
NIL same as b

R Type line in red

Piletype LOAD causes a core image file to be
opened. One issues a function to open a core image file
in an anticipation of **pDUHP, **LOAD or DUMPOVEE. Core
image files are not described in the OPENEDPILES list
and for that reason their filenames may duplicate those
of other open files. However, reqgardless of name, only
one core image input file and only one core image
output file may be open simultaneously.

Issuing

(DD fn (QUOTE LOAD) (QUOTE INPUT))

TN

DRAFT COPY NOT YET COMPLETED PAGE 97

is equivalent to
(DISKDEF fn (QUOTE SOSTAP) (QUOTE *) U (QUOTE LOAD}))
Issuing
(bD fn (QUOTE LOAD) (QUOTE OUTPUT))
is equivalent to
(DISKDEF fn (QUOTE SOSTHP) (QUOTE F1) O (QUOTE FILE))
Filemodes other +than INPUT or OQUTPUT are not
allowed with filetype LOAD.
The list of the names of the open files returned as
value by DD function is obtained from the OPEKEDFILES

list. 1If a core image file 1is being opened the value
returned does not contain the name of that file.

{bD strng) SUBEK pPseudo-function TSS

Pertorms the TSS command
DDE¥ strng
where strng iz a string containing a 7SS parameter
list for the DDEF command. Returns *T* if successful.
In case of an error, prints an explanatory message and
returns a number which is a TSS error code (See DLDEF
macro in TSS manuals). DD function defines a data set
but does not open it; to open a data set, 1issue DD
first and then either DISKDEF or OPEN*SEQ.

{(DDEF strng) SUBR Pzeudo—-function TSS8

Identical to (DD strng)

(DDIN fn) SUBE Pseudo-function CHsS

DDIN is a function used to open a LISP input file
given by filenawme only. If a file named fn is already
open, DDIN Fjust returns NiL. Otherwise, it searches
for an existing disk file with filename fn. If none is
found it types a message to that effect and returns
NiL. If one is found, the function DD is executed to
open that file and DDIN returns a list of the names of
the open files.

1f several files with filename fn exist, the first
file in the order of precedence of filetypes is opened.
The order of precedence of filetypes for DDIN is
determined by special variable INTYPELIST which is
initially set to (LISP SYSIW), giving the highes

DEAFT COPY NOT YET COMPLETED PAGE 98

-~
N
/ \
i i

(DDOUT £n)

(DIGIT <)

precedence to filetype LISP, next highest to filetype
SYSIN, and the lowest to any other filetype.
SUBR Pseudo-function CHKS
(DDOUT (LAHMBDA (X)
(COND ((SASSOC X OPENEDPILES WIL) NIL)
(¢ (DD X (QUOTE OUT) (QUOTE PT1})) })))
SGER, HKACRO Predicate

The value of DIGIT 1is NIL if ¢ is not a
digit character obiject, otherwise the value is c.

(DISKDEF ddnam org opt1 optZ n) SUBR Pseudo-function 05,TSS

The arqguments of DISKULEF are:

ddnam the ddname of the file to be opened
org QUEGED | LOAD (for ©5),
LINE | VI | VS | QUEUED | LOAD {(for TSS)
opt1 INPUT | OUTPUT | RDBACK | UPDAT (for 0S)
INPUT | OUTPUT | OUTIN | UPDAT (for ISS)

optZ LEAVE | RERERD | DISP (for 05)
ignored (for TsS)
n the length in bytes of 1/0 buffer

DISKDEP opens a file for reading or writing and
returns a list of the names of the open files. The file
must have been declared to the system by means of a JCL
bbb statement (05), DD command {rss), or LISP DD
function (ISS). Opening a file consists of assigning a
string as an 1I/0 buffer for the file, creating a data
control block, and placing information about the file
into the OPENEDFILES list. If ddnam is a name of an
already open file, DISKDEF is unpredictable.

If the value of org is LOAD, the file opened is a
LISPF core image file, and its name is not inciuded in
the list of names of open files returned by DISKDEF.
LOAD is used only before issuing **LOAD, **DUMPER or
DUMPOVER. Open core image files are not described in
the OPENEDPILES list. Only one core image file may be
open at a time. If org is LOAD, opt?1 must be either
INPUT or OUTPUT.

The value QUEUED denotes segquential file
organization for 0S5, 1is a synomnym of ¥S for TS5 (more
about TSS file organization and I/0 buffers in a
separate memo) .

Por the significance of optl1 see OPEN macro in OGS
and TSS manuals.

The value of opt2 is used as the szecond arqument of

URAPT COPY NOT YET COMPLETED FAGE 99

SHUT when SHUT isg called by PINCLOS, which is invoked
automatically at the normal exit <from LISP. For the
significance of optZ see CLGSE macro in 0S8 manuals.
The option optZ is ignored if the user issues SHUT or
CLOSE before exiting from LISP.

The argument n should be a multiple of 4. If it is
not, the next higher multiple of 4 is assumed. If it is
Gesired to read only a part of each input record, a
value of n smaller than the record length may be used.
E.g. the value 72z is freguently used while reading 80
column card images. For LOAD files, n should be Y
(although no LISF buffer is needed for LOAD (files,
GETSTR in the definition of DISKDEF chould be given a
valid argument) .

(UISKDEF £fn £t fm urecl n) SUBR Pseudo—~function CHS

(**DUNPER)

This function opens a file for input or ocutput.
it is similar in 1its operation to
(bb £n £t £m)
The first three arquments are the same as for the
DD function. The additional arguments are:

urecl := integer | NIL n = integer | NIL |
string | PILE | LOAD

For output operations and all core image saving and
loading, wurecl is irrelevant. For input operations,
urecl determines the number of bytes actually read in
each record. 1f urecl is NIL or 0, the number of bytes
read is 71 for filetype SYSIN and eqgqual to the buffer
length for all other filetypes.

if n is a string, that string is used as an 1/0
buffer. If n is a positive integer (not greater than
1624) , it determines the length of the I/0 buffer
assigned to the file. If n is not a multiple of 4, the
actual buffer length is the next higher multiple of 4.
Por input fileg, +the buffer length should not be less
than the record length of the file. For output files,
the buffer length determines the output record length.
If n 1is NIL, the buffer length 1is determined by the
same rules as in the DD function.

If the value of n is LOAD, a LISP core image file
is opened for input. If the value of n is FILE, & LISF
core image file is opened for output. LOAD should be
issued only before a **LOAD. FILE should be issued only
beiore **DUHF or DUMPOVER.

SUBER Pseudo—~function

**¥DUKPER saves the current LISP core image as a
new LISP system on the core image file open for

DRAFT

(DUNEOVER)

EQODAD

COPY NOT YET COHPLETED FAGE 100

output. The file must have been opened via the DD
(CMS), DISKDEF or OPEN*SEQ <function. The following
evalouote doublets will open a file, save a core
image on it and close it:

On 0OS or TSS:

DISKDEF (ddname LOAD OUTPUY NIL 4)
**DUMPER ()
SHUT (ddname LOAD)

On CHS:

DISKDEF (fn ft fm 0 FILE)
**DUMPER ()
SHUT (fn LOAD)

There is a global special variable GENER
(veneration number), the value of which is increased by
one 1im every saving-loading cycle. The value of
**DUKFER 1is the generation nukber of the systenm
currently in wuse. When the saved system is later
loaded, the first occurring VALUE=n printout shows the
generation number increased by one.

SUBER Fseudo—-function

DUHMPOVER is similar to **DUKPER. It is used to
create overlaying systems which have the same DCB or
File Control ©Block environment. Such overlay core
images when loaded by LOADLISFE or **L0OAD do not get
their files reopened. As the DCBs and FCBs of a systen
are "helow" and not saved with a core image, while the
OPENEDPILES 1list is saved, strict agreement in the
control block environment must be maintained Dbetween
the system being overlayed and the overlay. One way of
guaranteeing this agreement is to write a function to
open all the shared files and to have that function
executed very early in the creation of each overlay.

i1f an overlay core image saved by DUMPOVER is used
for imnitial loading, then its files are all opened, as
they always are for regular core images saved by
**DUMPER.

DUMPOVER should be used after a DISKDEP or OPEN*SEQ
function has opened a file for saving. e.g.

CHS —=—- (DISKDEF fn ft £m (¢ FILE)

0S5 --—- (DISKDEF ddname LOAD OUTPUT NIL 4)

As core image files are not included in the OPENEDFILES
list, the «control block enviromment restriction does
not apply to then.

Special variable 08, TSS

— p— — S it i iy —"" St e g i it | ' Mt AN W et it Ay bl oy Mo et (i) ! i T et " | et A ey SN W it S s s

C

DRAPT COFY NOT YET COMFPLETED PAGE 101

(ERASE fn

Contains the name of @& function of no arguments
which will be executed when the end—-of-file condition
is encountered.

The value of EODAD is reset from the special value
EODADIN by *NEWLIN before a new record is read. EODADIN
is initialized to STANDEODADIN.

The value of FEODAD is reset from the special value
EODADOUT Dby TERPFRI prior to writing out a record.
BEODADOUT has STANDEODADOUT as its initial value. Which
is of no conseguence since 0S5 and TSS never reflect an
output end-of-file condition to LISP.

£t £m) SUBR Pseudo-function CHs

1f a file ¥fn £t fm* exists, a CHS command
YRERASE fn £t fm®
is typed and obeyed, and *I* 1is returned as the value.
If no such file exists, ERASE returng NIL without
typing a message. Asterisks and NILs are acceptable as
arguments (NILs being converted by ERASE to asterisks).

(**EXYEL n) SUBK Pseudo—function

Causes the binary program for the function named
by the identifier whose delta is T, to be
copied from vector space to auxiliary storage (0S,
CHS) or upper core (ISS). The original copy of the
function becomes subject +to removal by the garbage
collector. fThere are numerous conditions which nmay
block expelling of a function. **EXPEL returns the
length 1in bytes (including the header) of the function
just expelled, or ¢ if expelling did not take place
(C¥s, 0S). Delta is the displacement (in bytes) of the
intended identifier from NIL. (MKFN id) will return the
delta for a given id. Should the expelied function be
called, it will be automatically brought back into
vector space for execution (0SS, CHAS) or executed 1in
place (TSS). DBinary programs residing outside of the
LiSpP~addressable space are never expelled.

(*¥*EXPEL fn) SUGBE Pseudo-function

Expels the binary program for the function named
in. Keturns its argument whether the expelling occurred
or was blocked. Calls **¥EXPEL to do the work.

(EXPELFHN list) BXPE Pseudo~function

(EXPELFN (LAMEDAR (L)

DRA¥T COPY NOT YET COHPLETED FPAGE 102

(MAPCAR L (FUNCTION *EXPEL))))

(EXPLLOC n) SUBR Pseudo-function

Identical to HEXEIP.

(EXFLUDE a) SUBER Pseudo-function

(EXPLODE

1f EXPLODE'Ys arqument is a number (of any type) or
an identifier which is not a gensym, its value is a
list of the character objects which comprise the
printed representation of the atom a. 1f the arqument
is a generated symbol, EXPLODE's value is NIL. Por all
other data types, the argument®s hexadecimal location
is returned as a list of 8 character objects. EXPLODE
uses UNPACK for identifier arguments and EXFLOGDE1 for
all others.

Note: If an argument is an object outside of the
LISP-addressable space, the hex 1location is correct
oniy if the argument has never been CONSed and then
restored by CARK or CDK, before being passed to EXPLODE.

1) SUBER Pseudo-function

EXPLODE1 is wused by print routines +to convert
numbers from the internal LISP representation to
character string representation. EXPLODEY returns as
value a string containing the representation of the
nukber n in terms of EBCDIC characters. If n 1is not a
number, it returns a string containing the
representation of the hex location of 1n in terms of
EBCDIC characters. EXPLODET uses string named PRIBUFP as
working storage, and unless n 1is a long integer,
returns its value in that string.

Note: If an argument is an object ocutside of the
LiISp-addressable space, the hex location returned by
EXPLODE1 is correct only if the argument has never been
CUONSed and then restored by CAR or CDK, before being
passed to EXPLODEI1.

The exploding of numbers cam be controlled by
changing the value of the free variable PRTCONTL.

PRTCONTL is a special variable whose value is an
integer of the form 65536%h+w
If both h and w are 0, the print format is <free (the
default case). The quantity w indicates the print field
width. If a number does not fit in w columns its
high-order digits are truncated. If a number has less
than w digits, it 1is Jjustified +to the right. The
guantity h controls exploding of floating point
numbers. It indicates the location of the decimal point

e i s i o e e . i o . e e V| et e et | e e s s N

—Bo——" " p———t | — o— —_— i it K" WA . A bt et Yo o e s

DRAFT COPY NOT YET COHRPLETED PAGE 1063

within the print field of w columns. 1f w=0, h is
ignored. However, if h=255 all floating point numbers
are exploded into the E format, regardless of w. 1f
h=255, w should be either 0 or at least as large as 10.
PRTCONTL does not affect +the exploding of long
integers.

(FILELISP f£n £t £fnm) SUBR Pseudo function CHS
(PILELISP ddname) SUBR pseudo—-function 0S,%S5S
A LISP restart core image 1is saved. FILELISP opens
the file, performs a garbage collection, issues
*%DUMPER, and shuts the file. The arqument(s) identify
the saved LISE file.
(FINCLOS) SUBR Pseudo—function 05, TSS
Causes all open files to be shut. This function is
automatically executed on exit from LISP.
(FINCLOS) SUBK Pseudo~function CHS
Performs CES command
FINIS % * %
thus closing all files as far as CMS 1is concerned and
writing out all directories from core to disk. The
files remain open as far as LISP 1is concernede. No
reopening is necessary to continue input or output,
since CHS will reopen automatically.
(*¥*PINIS Tch) SUBER Pseudo-function CHS
Performs CHS PINIS function on the file described
in the file control block fcb and returns NIL. *FINIS
is used by RDS and WRS functions when the operation is
switched from reading to writing or vice verssa.
{FOETLOAD name n) SUBkR Fseudo-function

Generates a calling seguence for the FORTHAN

compiled fumnction
name (al a2 ... an)

so that it can be called by LAP instruction
(CALL name n)

The only possible arqument types are
single—precision fixed and floating point numbers.
Small integers may be not used as arguments. Any small
integers must be converted by LAP code to the regular
LISP integer representation before a call to name is

/»)

DRAPT COPY NOT YET COBPLETED PAGE 104

made. Long integers are not permitted as arquments
either.

The value of the FORTRAN function is returned ac a
true integer in *AKC, or as a floating—-point number 1in
fi.point registers 0,1 . The caller should issue

(LA *SCR1 (0 618))

(BAL *RET (EXTERNAL S$PLANTNH))
where 6 idicates an integer and 8 indicates a floating
point number, in order to convert the returned value to
LISP representation.

The PORTEKAN function should reside in a program
library suitably defined to the operating systen.
FORTLOAD uses the operating system LOAD macro to bring
the PORTRAN function into the core.

In OS and TSS systems, functions established by
FORTLOAD are not preserved by FILELISP, **DUMPER or
DUNPOVER; PORTLOAD has to be issued again every time a
LISP system is loaded.

In CMS systems, functions established by FORTLOAD
are preserved in the core images.

(HEXEXP n) SUbBR Pgeudo-function

Resets the string named PK1BUF to hex zeros, then
stores in it the print representation of the hex
location of n, and returns the string as the value.

Note: 1f n is an object outside of the
LISP-addressable space, the hex location is correct
only i1if n has never been CONSed and them restored by
CER or CDR, before being passed to HEXEXP.

(INITIALOPEN) SUBK Pseudo-function

INITIALOPEN is issued automatically at LISP loading
time (unless LISP is being overlayed by an overlay core
image, see DUMPOVER) +to open files for input and
output. The files LISPIT and LISPOT are always opened
by INITIALOPEN. The file REPLY is always opened for a
conversational task. Purthermore, all files are opened
which were open at the time the core imadge being loaded
was saved.

A user may embed around INITIALOPEN any operations
which should occur at LiISP loading time before any LISP
doublets are read.

(INTERN strng) SUBR Pseudo—-function
Pinds, and if not found, creates the anigue

identifier, whose print name 1is given by the string
strng. The value of INTEEN is that identifier.

e e e et st S et e et e it ¢ s A Bt 428 ottt ot i} e ' e et et it et sttt o i e s e et st it et S T | e i o

'

DRAFY COERY NOT YET COHRPLETED PAGE 105

{INTERKX) SUBK Pseudo-function
Same as INTERN except that it uses the current
contents of the string BUFFO between its beginning and
the point indicated by the index CURCOLX, for the print
name of the identifier it finds or creates.
(LINPUPINPUT)
Not longer in the systen.
(LINTEXY n) S5UBR Pseudo-function
If n is a large integer, LINTEXP returns a string
containing its print representation. If n has more than
4096 digits, the low-order digits are truncateda and a
message to that effect is printed. If n is not a large
integer, LINTEXP is unpredictable and hazardous. The
predicate LINTP may be used prior to issuing LIRTEXP to
check whether an item is a long integer. LINTEXP uses
PRI1BUF as working storage.
(#**LOAD) SUBER Pseudo-function

**LOAD loads a LISP core image frow a file where it
was saved. The file must have been opened via the DD
(CMS), DISKDEF or OPEN%SEQ function. The following
evalquote doublets will open a file and load a LISF
core image from it:

Oon 0S or TSS:
DISKDEF (ddname LOAD INPUT NIL 4)
**LOAD ()

On CHS5:
DISKDEF (fn £t fam O LOAD)
**LOAD ()

**LOAD is used both for restart core images (saved
by PILELISPF or **DUMNPER) and overlay core images (saved
by DUMPOVER). See DUNPOVER for the distinction. **LOAD
is automatically invoked for the initial loading of
LISP. **LOAD returns the value of special variable
GENER, which 1is at this time greater by one than its
value at the time the core 1image was saved. Control
returns to the point in the new core image where
*#LUAPER, DUMPOVER or FILELISP was called when the core
image was saved.

C

C

DEAPT COPRPY ROT YET COMPLETED PAGE 106

(LOADLISE
(LOADLISP

(MKNAHM)

(*NEWLIN)

(NGTE £fn)

(NUREZFLU

fon £t fm) SUBR Pseudo-function CHS
ddname) SUER Pseudo-function 05, TSs

LOADLISP loads a LISP core image from a file where
it was saved. 1t operates by first opening the file
and then invoking **LOAD. LOADLISP is used both <for
restart core images (saved by FPILELISP or **DUHPER) and
overlay core images (saved by DUMPOVER). See DUNMFOVEK
for +the distinction. LOADLISP returns the value of
special variable GENER, which is at this time one
greater than it was at the time the core image was
saved. Control returns to the point 1in the new core
image where **DUMPER, DUMPOVER or FILELISP was called
when core image was saved.

SOEBR Pseudo~function

This function copies the contents of the string
BUOFFO, between its beginning and the point indicated by
the index CURCGLX, into a new string, which it returns.
BUFPFO is cleared to hex zeros and CURCOLX is reset to
(0. MKNA# is a subroutine of INTERNX.

SUBR Pseudo~function

*NEWLIN causes a record to be read from the file
whose name is the value of CURINNAM, i.e. the file
curently selected for input. The record is read into
the string CURINBUP. CURCOL is set to O ang CURCHAR
remains unchanged. The value returned by WLIN is
undefined and may easily change from one release of
LISP to another. See BACKCHR for the description of the
special variables.

If *NEWLIN encounters an end-of-file condition, it
fills the buffer CURINBUF with the repeated occurrences
of the string X*401340135C*, where X*'40' is of course a
blank, X*5C* is @& right paren, and X*13' is the PNAME
ot the character object which is the value of special
$EOFS .

SUEBR cus

if fn is a name of an open disk file, NOTE returns
the record sequence number of the last record read or
written on the file. If fn is a name of an opexn
terminal file, NOTE is undefined. If fn is not a name
of an open file, there is an error condition.

«ee Implementation subroutine with non-standard
calling sequence.

-~
\\

DRAFT COFY NOT YET COHBPLETELD FAGE 107

(NUMOB)

(OPEN*SEQ
{OPEN%SEQ

NUBMEXPLD ie the underlying gubroutine used by
the exploding functions EXPLODE1 and LINTEXP to create
the print representation of numbers. The value of
NUMEXPLD is the string which 1is the value of PRI1BUF,
which string contains the exploded number. NUMEXPLD is
normally not to be invoked by the user.

SUBR

Creates the LISP number representation irom the
EBCDIC representation of the number datum contained in
the string BUFPO, between its beginning and the point
indicated by the index CURCOLX, and returns the created
LISP number. NUMOB is used in conjunction with PACK by
*¥KATOM to produce numbers.

fn £t fm urecl g) SUBR Pseudo—function CHS
ddnam org optl opt2 s) SUBR Pseudo-function 0S,TSS

OPEN*SEQ opens a file for input or output and
returns the value of OPENEDPILES 1list describing
currently open functions. If the file being opened is a
core image file, OPEN*SEQ opens it and returns NIL (0S5,
TSS), or a the value of OPENEDFILES 1list (CHMS).
OFEN#*SEQ is used by DD (CMS) and DISKDEF functions to
do the actual work. The first four arguments of
OPEN%*SEQ are the same as for DISKDEF.

For 08 and TSS, the fifth argument s is a string
which will serve as the 1/0 buffer. The length of the
string may not exceed 1024 bytes. For output files, the
length of s determines the output record size. For
input files, the Ilength of s determines the number of
characters actually read in each input record. For a
LOAD file (whether input or output), s is ignored.

Foxr CHS,

£ := NIL | string | FILE | LOAD
with the same sigpnificance as in DISKDEF.

UPENEDFILES Special variable

OPENEDFILES is a special variable whose value is a
list of descriptions of currently open files (except
core image files). Bach description is a list of 13
items. To check whether a file is open, issue

(SASS0C fn OPENEDPILES NIL)
It the file fn is not open, SASSOC will return NIL, if
it is open, SASSOC will return a list of 13 items
describing the file. The OPENEDFILES list is maintained
by OPEN*5EQ, RDS, WES and SHUT functions. The format of
the description of an open file is different for each

P

a

N

DRAPT COPY NOT YET COMPLETED PAGE 108

operating systém:

For CNS:
item 1: filename (an identifier)
item 2Z: an identifier whose special value is fcb
(a CHS file control block)
item 3: 170 buffer (a string)
item Gz tnused
item 5: saved CUORCOL (input), unused (output)
item 6: unused
item 7: saved CURCHAR (input), unused (cutput)
item B: unused
item 9: unused (input), saved CUROUTCL (output)

item 10: saved UBUPLIN (input), unused (output)
item 11: filemode (disk files),

CHMS terminal control character (terminal files)
item 12: filetype | TIN | TOUT

item 13: unused
For 0S5:
item 1: ddname (an identifier)
item 23 an identifier whose special value is dcb
(an 0S data control block)
item 3: 1/0 buffer (a string)
item 4: unused
item 5: saved CURCOL (input), unused (output)
itewm 6: unused i
item 7: saved CURCHAR (input), unused (output)
item 8: unused
item 9: unused (input), saved CUROUTCL (output)
item 103 opt2 (see DISKDEF function)
item 11: opt1 (see DISKDEF function)
item 1Z: QUEUED (the only value supported)
item 13: unused

FPor TSS:

item 1: ddname (an identifier)
item Z: an identifier whose special value is dcb
(& TSS data control block)
item 3: 1/0 bufter (a string)
item 4: gnused
item 5: saved CURCOL (input), saved LINENO (output)
item 6: gnused
item 7: saved CURCHAK (iaput), unused (output)
item 8: unused
itew 9: unused (input), saved CUROUTCL (output)

item 10: unused

item 11: opt1 (see DISKDE¥ function)
item 1Z: LIRE | VI | V5 | QGUEUED
item 13: unused

e — it o i s . e S s

/")

Y

™

DRAFT CUPY NOT YET COMPLETED PAGE 109

(OSOFN dch optl) SUBK Pseudo~function 6s, TISS

OSOPR issues an 0SS or TSS macro OPEN for the data
control block dch. See DISKDEF for the supported
values of optl. OSOPN returns *T* if it succeeds in
opening the file and NIL otherwise. OS0PN is used by
OPEN*S5EQ. It is not normally invoked by the user.

(PACK <) SUEBR
PACK ccncaté&at&s the character ¢ to the right hand end

of the composition buffer BUFFO. Used in conjunction
with UNPACK, MKEAM, NUMOB, and INTEEKNX.

(FLANTDDNAK name dcb) Psuedo-function 05

(PLANTNAHE name block displ length) FPsuedo—function CHS
On 0S5 the function is used to modify/prepare the ddname
field of the DCB. On CHES it 1is used to prepare file
control blocks.
These functions are used by OPEN*SEQ.

(PRETTYPRINT 1) SUBK
The function defipnitions given in the list 1 are
printed in a more readable fashion. The list 1 has the
same form as the argument of DEFINE. T
This function uses the subfunctions PRINDEF,
SUPERPHINT, and ENDLINE.

(FRIKNHEX mn) SUBR
The 16 loworder bits of the number n is printed as 4
hex digits.

{PRINSCHE Xx) SUBR
Prints the atom x unless x is FQ to LBRAC or KBKAC, in
which case %(or %) is printed.

(PRINT x) SUBR

(PEINT (LAMBDZ (S) (FROG () (PRINO S) (TERFRI) (RETURN
5)))) -

PRINT prints one S—expression in standard format.

LNTNI) (Y LNTINd) {9 LNTIHA) (¢ synyT19) (3 LNINg)

(MNyTE INIHd) (LNTug) () »08d) (g ¥) ¥yaguyT)

¥¥ uUT s3Tnsex (¥) LNTH4g

corduexy

*® ST (» LNI¥4) FO 2nT®A 3YL *¥DOTq HUTIPTITRY DISRq
dY3 s® INTHd osn (ONI¥4 S yons) suorjduny buriurid
asy3o ITY 393130 3ndino oyl syoerd yoTym w33s54Ls
a8Yy3} JOo 9UoT3Iouny ulTRW B4y} ST 33T ~I8zIng 3IUTId 8yl
03uT 2ueu 3utid 53T syoed pue » wmolr Aue s3dosor N4

q40s

*TIN =
NODES LSY¥YId
11n03UIId BUTMOTTOF ©Y3} UT ITNSDI TITA STYL

* (aNodas
TeuT4) ((((g INTHd) (¥ onrad) {) »oud) (g v¥) ¥gauyD)

*b-o *(g In1ud) Lq (v ONINJ)
AOTTOF uU®BD BUO ’HUTT 2WRS 2y} U0 § PUPR { SUOTISSIIJXD-G
onl 3utad og X ST (x ONTHA) JO aniea ayL
* (I¥4AN4L) TeUuTI 243 I07 3d20X2 INTHA JO ¥Iom 243 JO TIP
S0P ONIHd *I973nq 3JUTId 8Y3} TTTIF O3 LNINd STTeD 1T
‘saoeds pue s30p ‘sosdyjuaaed ‘swoler Jo HUTIIS B O3UT
X uorsssidxs-g5 uer asodmodap 03 ININd AQ DOsSn ST ONTINd

JqENS

"LAGOTAXA
pumn 'ATAXANAN PAXHAXTE YITA pasn ST PpuUe NIV
JO UOTIDUNFYNS B ST STIYL *I3IFRg HYl STIII 2IT UaYA
THANAYL P burgnsst “‘xeyyng 3Indlno Y3 03UT SIIISURIY
3T YOTYM ‘FAa3102IRYD JO HUTIIS B DG 02 HUIS SIWNSSY

(» LuTHg)

(x pNTH4)

UOTIDUNI-OPNISA (buls AYTLNTIHAI)
*7d obesseom JOII9 SYl UT SITNSHI WOIER JIHIDPIRYD » uey}
I3yjo buryrdue HOHINTHI O3 u&swwvw AUy "aNTeA S31T SB
O s5UIAINIAI HOINING “uoT3TSod 934 ITGRITIRAR 31X2U 2Y3 3v
I933I0q 3Ind3no |yl o3uT (¥) I9310PIRYD HUTDPUOdSHSIIOD BY3
SIDIUD HOINIMNI “{¥, S yYdInsS) WO I3JOVIBYD B ST D JI

¥a0s (o anINIHg) ;J
LY d9Y4a dALATIVOD I3A LON X300 JAYHC

~

-

DRA®T COFY NOYT YET COBELETED PAGE 111

(PRIN1B a)

PERIGD)

{TEXPERI))) (FIEST SECOND) results in the following
printout:

FPIRST SECOND SECONDFIRSET.

= KI1L (the value of the PKOG) .

SUEBR

Defined by: (paié%(LAﬁst(A)(Pﬁos(;(pﬁ1ﬁ1 A) (PRINT
BLANK)))) A

(PRINV vec) SUBX

Prints all vectors except ntuples. It prints strings,
vectors of literal integers, vectors of literal reals,
large integers, pointer vectors and ¥KIL. If vec is an
assembled program vector PRINV attempts to print it as
a string. If vec is not a vector the location vec is
printed as a hex location.

(PRISTRG stng) SUBR

Same an PRINTEXP, except PRTSTRG tests stng to see if
it is a string datum.

(*RATON) SUBK

*KATOM is the LISP token reading function, which
always returns a single atom whenever called. *RATON
uses KDCHR to provide it with a stream of input
Ccharacters. *RATOM scans the input and returms a single
atom which is either LPAR, RPAR, LBRAC, RBERAC, PERIOD,
a npumber, strin¢ or symbol. An identifier not already
there is added to the OBLIST. (See Section VII on
Input Output.)

(KDCHR) Pseudo—function

(KUS in)

RDCHR reads the next character from the current input
file. Returns CURCHAR as value, updates CURCOL and
CURCHAR, using (*NEWLIWN) to bring in more characters as
needed.

Pseudo-function

DRAFT COPY

(READ)

(KEALQ)

NOT YET COMPLETED PAGE 112

1f in is already the currently selected input file RDS
simply returns in, otherwise, RDS puts the CURCHAR and
CURCGL information for the current file CUKINNAHE back
in its entry on the OPENPILES list. (see OPEN*SEQ for
the format of OPENFPILES.) KDS then establishes in as
the currently selected file by filling in the following
global variables from the OPENFILES entry corresponding
to in:

CURINDCB CURINBUP EGDADIN CORINNAE CURCOL SYNADIH 4 0
CUKCHAR in any case it returns the value in. \Jyy)FLJAJ AP

SUHR

KEAD «calls for one S—-expression to be read iIronm
CURINNAM, using functions (READ1) and (*RATOH). RERD
calls ERRGR if a right parenthesis or period (not a
decimal point) occurs, and calls READT every time it
sees a left parenthesis.

SUBKR
v
Subfunction of READ which uses the spécial value GENL
which is bound by READ. REARDO is the 'ecur#sive part of
READ. GENL provides a list which alloWws gensySs with the
sawe spelling to be EQ. Fote: such gensymrs are
guaranteed EQ only over a single read, and not between
S—expressions read separately.

(READ 1) SUBER

READT is a function used by HREAD to read nodes and
nron—-synbol elements. READ? isg entered after one left
parenthesis has been encountered. It calls *RATOM or
READT successively until the matching right parenthesis
is read and calls CONS to tie @atoms together
appropriately to build the corresponding list structure
in core. If an illegal structure is encountered, KREAD1
produces a diagnostic and calls ERKOk. READ? has been
extended to read vectors.

(SHUT ddnamr opt2y Pseudo—-function

Closes the file whose name is ddnam with the
disposition optZl. Removes the entry for ddnam from the
OQFENEDPILES list, and restores the name of the dch
area, (B0OX?) to the list EMPTYBOXES.

(STANDEOUADIN) Psuedo-function 0S5,CHs

DRAPT COPY NOT YET COMPLETED PAGE 113

Used as the dtardard end of data set encountered on
input routine. CURINBUF is filled with the sequence
blank, tape-mark,blank, tape-mark, ")™. i.e. 1in hex
EG13401354 .

This function causes the value $EOFE to be returned as
the value of *NEWLIN and RDCHR.

(STANDECDADCGUT) unnecessary function CHS,0S8
(STANDSYNADIN) Psuedo—-function CES,05
(STANDSYNALDOUYL) Psuedo~function CHsS,08

SYNAD

{TAE n)

These standard error routines are executed on imput or
output error respectively. On 0S an error g message and
backtrace is printed and & dump taken. on CHS the
error code is analyzed and an action appropiate to that
code taken.

Special variable oS

Contains the name of the routine that is to be applied
on imnput or output error.

Reset Dby TERPRI from the special value SYNARDIN. br
Keset by *NEWLIN from SYNADOUT.

The nominal values of SYNADIN and SYNADOUT are
STANDSYNADIN and STANDSYNADOUT.

SUBR

Resets CUKCUTCL to n.

(SNAPS x y z)Pseudo-function

(TERKAD

SNAPS 1is a desperation debugging device which hag
proved useful for the system debugging. It gives a hex
dump of the registers, locations in memory between
X+PIXED and y+FIXED, where x and y are LISP numbers.
If (NULL z) then SNAPS will return NIL, otherwise SNAPS
will terminate the task.

) SUBR

TEREAD causes the read buffer to be reset so that the
next call to READ (or to *BRATOH) will call (*NEWLIN).
If READ 1is called without TEREAD and if at the last
READ there were any right parentheses left in the
buffer, KEAD would call EREOR. TEREAD prevents this.

)

DRAFYT COPY

NOT YET COMYLETED PAGE 114

The velue of TEREAD is NIL.

(TERBKI) SUBR
TERPRI causes the contents of the priant buffer to be
printed, and resets the print buffer.
Consecutive TERPKIs result in skipping print lines.
The value of TERPRI is WNIL.

(UNPACK strg) Pseudo—function
Returns as a list of character objects the contents of
the string strg.

(WRS out) Pseudo—function

Selects out as the currently selected output file after
first saveing the CUROUTCL parameter for the file
CUROUTNAM, which out replaces as the selected {file.
WRS sets the following global Special variables with
parameters obtained from the OPENEDFILES list entry for
out: CUROUTLDCE CUHOUTBUY CUROUTNAM EODADOUT CUROUTCL
SYNADOUT ,the value of WRS is the file name out.

DRAFPT COPY NOT YET COMPLETED PAGE 115

APPENDIX D.

SUPERVISORY AND DEBUGGIRNG FUNCTIONS

(EMBED fname redef) S5UBk

The EMBED function provides an unusual tfacility
vhereby one may redefine a function whose name is fname
and get to use the old definition of fname 1in the
redefinition. The redefining LAMBDA-expression 1is
given as the s—expression value of redef. Furthermore,
the OUNTRACE function will cause the previous defimition
to be restoq&.
e

(ERROK msg) SUBK

ERROR causes its argument msg to be evaluated and its
value printed and them induces an error unwind of the
LISP systenm.

(ERROKZ msgl msg2) SUBR

befined by: (ERROR2 (LAMBDA (A B) (PROGZ (PRINT A) (ERROR
BY)))

(ERROKSET ¢ n m a) SGER

The arguments n and m are ignored and are present only
for compatability with 7094 LISP. If no error occurs
then ERRORSET can be defined as (LIST (EVAL e a)). 1If
an error occurs inside of ERROKSET then the value is
NIL. If variable bindings bound outside of ERRORSET
have not been damaged by CSET, SET, DEFINE and other
such pseudo-functions, it 1is wusually possible to
continue with some other computation. ERRORSET is
useful for building supervisors.

(EVALQUOTE fn args) SUEBR
EVALQUOTE is defined by:

(EVALQUOTE
(LAMBDA (FN ARGS) (COND
((OR
(GET FN (QUOTE FEXPR))
(GET PN (QUOTE FSUBR)))
(EVAL (CONS FN ARGS) NIL))
(T (APPLY PN ARGS NWIL)))))

c

)

DRAFT COPY NOT YET COHFLETED PAGE 116
This ¢&efinition shows that EVALQUOTE is capablie of
handling special forms (such as COND, PROG, etc.) as a
special case. An alternate definition of EVALQUOTE is
simply:
(EVALOQUOTE
(LAMBDA (FN ARGS) (EVA1 (CONS FN ARGS)))).
{SKAPS x v %) Pseudo—-function

SNAPS 1is a desperation debugging device which has
proved useful for the system debugging. It gives a hex
dump of the registers, locations in memory between
X+PIXED and y+PIXED, where x and y are LISP numbers.
If (NULL z) the SNAPS will return NIL, otherwise SNAFS
will terminate the task.

(*SUPV a b)

The supervisor *SUPV selects file a for reading
Evalgquote doublets and for input to user READs, file b
is selected for printing the value of the doublets,
and b is selected for user PRIKTs.

The user may change the file selected for input to his
READs by executing +the doublet RDS(c), or evaluating
(RDS ¢) from within a doublet. The users output file
may likewise be switched, in which case the file
selected for doublet input resmains unchanged as does
the file on which the doublets value 1s printed.

If instead of a doublet the didentifier PIN is
encountered this function returns the value T. 1 side
effect of this function is that the user input and
output file selection remains in effect, even though
the return to a higher level *5UPV means that doublet
input and output files revert to a former selection.
*SUPV is defined by:

(%XSUPV ‘ A (:{
(LAMBDA (IN OUT) (PROG (X,Iq@?}
(sETQ (O oUT)
(RDS IN)
. (WRS 0UT)
A (SETQ XERMAN (READ))
(COND ((EQ XERMAN (QUOTE FIN)) (RETUKN
))) (“2TR YVEAMAN (KEAD)
(COND ((EQ CURINNAM (QUOTE LISPIT))
(TEREAD))) (g mr yLR(EY)
(PRINT BLANK)
(PRINT YERMNAN)
(RDS I)

DRAFT COPY NOT YET COMPLETED PAGE 117

(WRS 0)
(SETO X (CAR (ERRORSET (LIST
(QUOTE EVALOUOTE)
(LIST (QUOTE QUOTE) XERMAN)
(LIST (QUOTE QUOTE) YERMAN)) 1000000 T NIL)))
(SETO I CURINNAN)
(SETO O CUKOUTNAH)

(RDS IN)

(WRS 0UT) o A
(PRINT (QUOTE VALUE =)) }ov YTRINLD (Qﬁﬂgwﬁﬁﬁfn
(PRINT X) (PRINIR (QUetE =
(GO0 2))))

(TRACE x) SUBR y
The argument of TRACE x, is a list of fupnction namesg
(£, £2, £f3 ... fn). The effect of +tracing 1is to
EMBED a redefinition of f. The redefinition of £ is
such that if f is called while being traced, a trace
printout occurs.

Example:
ARGUMENTS of f argl

argz

YALUE of f wvalue

TRACE uses TRACE1 to effect a trace of this format.
Tracing must be done with some caution to avoid
excessive printout, it is usually not possible to trace
special forms, also tracing of the print functiouns or
BAPCAR will surely result in infinite printout.

(IRACET1 x redef)

TRACE1 is a more general tracing mechanism than TRACE
as the redefipition prototype of the functions, whose
names are given by the 1list x, is given as the
argument redef. redef is a s-expression representation
of a LAMNBDA-expression (it is not a functional
arqument) . The s—-expression redef may contain the
identifiers ARG*, PUN¥, RAGS and FNAKGS. TRACE1
substitutes for ARG*, a list of generated symbols (g1,
92, ...} corresponding to the number of arquments that
the function expects. The name of the function being
redefined fn for FUN*, (LIST g1, g2, ...) for KAGS, and
(fn, gt, g2, eea) for FNARGS. The resulting

DRA¥T COPY NOT YET COMPLETED PAGE 118
<:: redefinition redef of fn 1is embedded for fun by (EHMBED

fn redef).

This is done for each function named in x.

(UNTRACE x) SUBR

UNTRACE undoes the effect of & previous EMBED.

C

DRAFT COPY NOT

%
% THIS
%

PARSER :=:PROC

ELEFPT :=
By 1IF¥ RBF LT

GC B 3 EN
LBP:=: PROC kgj

NUD:=: LAMBDA
IF NUMBERP
CASEGO (TOK

: IF TOK .EQ
IF '{TEM :

o
L]

YET COHMPLETED PAGE 119

APPENDIX E.

THE LPL PARSER
PARSER WAS SUGGESTED TO RE BY VAUGHAN R. FRATT

KBP; BEGIN !&LEFT;

ROD () 3
LBP TOK THEN !6LEFT := LED() ELSE RETURN !6LEFT ;
D3

IF NUMBERP A THEN 99 ELSE

IF Y|TEN := GET(A,'LBP) THEN !|TEA ELSE 99 ;

s BEGIN

TOK THEN GG A ;
e (P18 :STR) , (™I™ :DAT), ("!. : DOT)) H

®EEOFY THEN (PRINT 'ENDOFFILE ; URWIND()) ELSE
= GET (TOK,'NUD) THEN GO B ELSE

1P -~ GET (TOK,'LBP) THEKR GO R ELSE

1F GET (TOk
PRINTEXP
PRINT TOK
Ry }ITER:=TOK
E; I¥ NUMBERP
IF GET (TOK
I¥ GET (TOK
I¥ GET(TOK
G; RETUERN(!}
By NXTTOK()
'{TEBM:= 50

+YLED) THEN RETURN ((
MISSING LEFT OPERAND, ASSUMED NIL, INSERTEDL BEFORE
s Y|DUBMMY)) H
3 NXTTOK () ;
TOK THEKR GG G ELSE
+ *LED) THEN RETURN !|TEM ELSE
»YNUD) THEN GO G ELSE
+*LBP) THEN RETURN !|TRM
TEM . NUDQ ())3

BRFUN (() ,! | TEN) ; GO B;

STH;! |TEM :=LFLSTRING () ;G0 E;
DAT;QUOTSWT := *NXTCHR;!|TEM:=READ () ;QUOTSWT:=() ;NXTTOK () ;60 E;
DOT;IF COMPSEQ('"™(!. P I N)) THEN UNWIND(}; GO H;

END;
LED:z=: PROC ;

I¥ AND (~NUMBERP TOK,! |TEN:=GET (TOK,*LED)) THEN

(NXTTOK () ;SUBRFUN (() ,!|TEN)) ELSE (!6LEFT,PARSE 50) ;

DEF ("THEN ,0)
DEF ("ELSE ,0)
DEF ("END ,0)
DEF ("EOL ,0)
DEF ("IN ,0)
DEF ("ON ,0)
DEF ("BY ,0)
DEF ("TO ,0)
DEF ("UNTIL ,0)
DEF (*WHILE ,0)
DEF ("UNLESS ,0
DEF (") ,0)
DEF ("1> ,0)
DEF("!; , 1,

DEF (*!, ,2,LED, 'LISS . !G6LEFT . GEFLIST (*»!, ,

NUD,
DEF("!: , 3,LE
DEF(™!. ,14 ,L

-

)

B WME RE N NS WS W 9 M G W B

LED, *PROGN . !ELEPT . GETLIST (*"!; ,1))

).

e

'LISS . NIL . GETLIST('"Y, ,2)
D, !6LEPT . GETLIST("*"!: ,3))
ED, (*CONS,!SLEFT,PAKSE 13))

ws ™ Aleae

-

L 4

e

DRAFT COPY NOT YET COAPLETED PRGE

DEF (»*!- ,20,LED, (*DIFPFEKENCE,!SLEFT,PARSE 20),
NUD, (°MINUS, PARSE 20))

t*1% ,22,LED, (*EXPT, !6LEFT,PARSE 21))
DEP (®t:1= ,36,LED, (*GSET(Q,!8LEFT, PARSE 2))
DEF("':'=!: , 40,LED, ("GDEF ,!S&LEFT, PARSE 2)) ;
DEF(®!(, 99,NUD, IF TOK .EQ *"!) THEN (NXTTOK(),NIL) ELSE

ANDDO (PARSE O,RPAREN *%1)) ,

LED , (!SLEFT . ANDDO(GETLIST("™!, ,2),RPAREKR 'M!))))
LEF(®!< , 99,NUD, ANDDO('VECTOR . GETLIST(®*"!, ,2),RPAREN '¥WI>),
LED,*GELT . !CELEFT . ANDDO(GETLIST('™!, ,Z2),RPAREN

DEF ("'% , 99, NUD, NUD())

DEF (*!® , 99, NUD, NUD()) :

DEF ("FROC ,99,NUD, (*"™LAMBDA . DCLRZ()))
DEF ("LAMBDA ,99,NUD, *“LAMBDA . DCLR2())
DEF ("FPROC ,99, NUD,'"FLAMBDA . DCLR2())
DEF ("PLAMBDA ,99,NUD,'™FLAMEDA . DCLR2())

ne Wwr @n

UEF ("IF ,99,NUD, (YCOND .((PARSE 2,PROG2 (RPAREN "®THEN ,PARSE

. ELSEEXPR()))) :
DEF ("BEGIN , 99, NOD, BEGIN !|PV ;
YIPV := IF TOK .EQ "®; THEN PRGGZ(NXTTOK(),,) ELSE
ANDDO (GETVAR ("™!,) ,RPAREN '"™;)

RETUKRN (*PROG . (! [PV . FLAT!&(ANDDO(GETLIST('“' v 2)

RPAREN "®END)))) : END)
INFIX ("!_ ,19,STECONC)
INFIX ("!.EQ ,19,EQ)
INFIX ("!.NE ,19,NE)
INFIX (*!.GT ,19,GT)
INPIX (*!.GE ,19,GE)
INPIX ("!.LE ,19,"*LE)
INPIX ("!.LT ,19,LT)
INPIX ("!+ ,20,PLUS)
INFPIX ("1% ,21,TIHES)
INPIX ("!/ ,21,QUOTIENT)
PREFIX ("!~ ,10, NOT)
PREFIX ("!' ,99, QUOTE)
FIN

APPENDIX E.

CMS EXEC Files.

LISP EXEC

GTYPECGUT OFF &MODT = 0 &IF G&INDEX GT 4 6G0OTO -BDEARM &IF
GINDEX EQ 3 &GARGS €1 62 &3 LISF115 &IP &EINDEX EQ 2 &ARGS &1
&2 B LISP115 &6IF LINDEX EQ 1 SGARGS &1 193 B LISP11S &1F
EINDEX EQ O &ARGS LISP115 193 B LISP115 CP LINK BLAIR1 191
EQ P

2 (NOPASS) ©&IF GINDEXO NE O &GOTO —-BDLINK &IF &3

120

¥

&GO0TO —BDHMODE &IF &3 EQ A 680D1 = A,F &IF &3 EQ B &HOD1

B,P &IF &3 EQ S &G0OT0O -BDMODE &IF &3 EQ C &MOD1 = C,P &IF
&3 EQ T &M0D1T = T,P &IF &EMODT BEQ 0 &GOTO -BDMODE LOGIN &2

L33

IN.

-4

*: ms

"

LERE TN TR R E N LRE X)

we we we

s o9

-t

(:7

DRAPT

COPY NOT YET COMPLETED PAGE 121

&MODT LISE115 EIF SINDEXQ NE O EGOTO -BDLOG EXEC &4 &1 &X =
0 -FIN GCONTINUE RELEASE &2 &3 CP DETACH &Z GEXIT §&X
—~BDPAKM &FRINT BAD PARAMETERS €&X = 1 &G0T0 -FIK -BDLINK
SPRINT BAD LINK SINDEXO SPRINT TRY IT AGRIN &X = 2 6GOTO
~-FIN ~BDMODE EPRINT £3 IS B EAD MODE SPRINT TRY IT AGAIN &X
= 3 &GOTO —-PIN -BDLOG &PRINT BAD LOGIN, ERROR CODE &INDEXO
&X = 4§ BGOTO -PIN

LISPOFF EXEC

&TYPEOUY OFFP &IF SINDEX GT 5 &GOTO —BDPAKM &IF SINDEX EQ 4
GARGS &1 &2 &3 &4 LISP &IF SINDEX EQ 3 HARGS &1 &2 &3 NO
LISP &IF EINDEX EQ 2 &ARGS &1 &2 LISPI15 KO LISP &IF SINDEX
EQ 1 &ARGS &1 OUT LISP115 NO LISP &IF SINDEX Eg 0 &GOTOC
-ERE 6IF &1 EQ &2 &GOTO -TRZ BATCH (NOPILE) LISPBCH &3 &1
£2 &4 65 BEEXIT GINDEXO —-RRR &PRINT NO INPUT FILE PARANETER
GIVEN —E2 EPRINT THE CORRECYT PORMAT IS : GPRINT LISPOFF IN
OU COR SAV EPRINT WHERE: IN IS INPOUT PILE NAME GFRIKNT QU IS
CUTPUT FILE NAME IF IT IS TO BE KEPT. GPRINT OU DEFAULT IS
PRINT OPFLINKE AS OUT OUT &SPRINT COR IS LISPY CORE IMAGE FILE
THAT YOU WISH TO KUN FPROM. &PRINT COR DEFAULT ... LISP115
GPRINT SAV IF YOU WANT B PFILELISP (SAV SOSTAP P1) AT THE
END. GPRINT SAV = NO IS THE DEFAULT SEXIT 10 -BDPARE GPRINT
TOO HMANY PARAHMETERS &GOTO0 -E2 -TRZ &PRINT ERROR ARG1 = ARGZ
SEXIT 11

LISPFBCH BATCH

CPF LINK SUSERID 191 194 (NOPASS) LOGIN 194 A,P GBEGSTACK
CSET (QUIET ()) '

EMEED (CONVERSATIONAL (LAMBDA() ())} RDF(&END STACK SSTACK
&2 6STACK &3 &BEGSTACK)))

UNTRACE ((CONVERSATIONAL)) &END STACK SIF &4 E¢ NO &GOTO
~SKP &BEGSTACK PILELISP(SEND STACK &STACK &4 &BEGSTACK

SOSTAP P1) SEND STACK -SKP GCONTINUE &STACK FIN &ERROR
£GOTO —-ERE EXEC &5 &1 &§GOTO -END —-ERR CP XSG GUSERID ERROR
IN LISP BATCH COMPILATION-- &INDEX0 &GOTO -FIN —-P1 OFFLINE
PRINT OUT OUT £GOTO -P2 —END &IP §3 EQ OUT £GOTO -P1 DISK
DUMP &3 OUT —-PZ ECONTINUE &IF &4 EQ NO &GOTO —-FIN DISK DUMP
&4 SOSTAP P1 —-PIN SERROR SCONTINUE RELEASE 194 A CP DET 194
CF MSG SUSERID BATCH JOBE PINISHED

DRAFT COPY NOT YET COMPLETED PAGE 122
APPENDIX F.

datum = nil | node | literal-atom } non—symbol-element 1/
pnil = () | NIL
node = (datum*+1 [. datum])}

literal-atom = identifier | genid | special-spelling |
$$-artifact | guoted 7‘}

identifier = letter }/ietter | digit | é;t@
genid = % G digit*+1

special-spelling = % string

$$~agﬁifact = $% a {(any_character_axgﬁpt a)¥+1 a X ?
quoted = ' character | quoted @1&1:*:&: | digit | .“:f

¥ @fQOﬁ—string—&elimiter | ! character ()*+1 #

I

strind
non-string-delimiter = any_character_except { ' [# }
non-symbol-element = number | string | vector | n-tuple
vector = %([vector-typer] vector—element¥ %)
vector-element = datum

vector—typer = SYMBOL | INTEGER | REAL
n—tuple = %(n-tuple-name datum*+1 %)
n—tuple name = identifier

number = integer | octal | real | hex

Throughout this document ®|%w,6 ®w 8} nufw win nx4_ zpd ke
are used for the specification of syntax.

Underlines and capitals are used to denote literal occurrance.

| 1is used to separate alternatives.
{ and } are used for meta-linguistic groupers.
[and]} are used to denote optionality.
* ag a suffix indicates an indefinite number of.
*+1 as a suffix indicates one or more.
1/ Data are required to be separated by at least one blank.
Blanks can be eliminated by the rules shown in Table 1.

i

e

— — L —— " S —— ——— ——) " — " T ——o " N —" = s ottt @ ekl | | Ve | S Mgt S A —— AU Mo mammem CeMmemlTmemmRe pm—— e T e/ T

DRAPT CURY NOT YET COHPLETEL PAGE 123

Table 1. Optional transformations for the elimination ol spaces
between a and b.

b 1

[
)

e

1 string
naode
0
$3-artifact
n—-tuple
vector

b

2 number

3 genid
guoted
special-spelling
identifier

W O W G T gu— - S W W WK WSS VNG G TN G VMO WU WO G- oo _—

— O — W Tv— W SO W WOWT) NOWE Sk MGS UREY NOWNS WOR G MU WA S—
W G WA, NOWD SWWD ST U RN WS WS G gmex AW WO VNS GUNGR GO AN NGNSt
. DO O ——— Y, W, J—y SnOWt WS . WS W G Mo WU VW N AW qo— V—"
—— SO O N W W W oo wm—y SWMD SN e WD WSS AN U N ASN SN MO WS-

An “XM™ indicates that a space is reguired between a and b, no g
nX® indicates that the space may be eliminated. ®Y"™ indicates and
unallowed syntax condition.

URAFT

COoPY NOT

The

attribute
asgembler is not

assembler
found on

YET COHPLETED

AFPPENLDIX G.

tssembler symbol table

LAY uses

the property

INTSYH.

It is

required. The current settings

in the following table:

$ALIST
$KOUND
*1D
*HNARG
*PDP
#5SCRE
*VALUE1
ABOTTEND
AER

ARG 10
ARG 14
ARG3
ARG7
ATTON

% e
S

BE

B

BNZ

BZ
CAAAR
CARR
CADDAK
CALL
CDAADR
CDADR
CDDAR
CDDR
CER
CHZ55
CLR

i’}

DDk

DK

EX
FSTCHAR
PSTLST
FSTVAL3
FSTVEC
INFCB
LA

LD

Lk

LK

0208
0668
0000
GGOF
0009
¢0ocC
0003
0 1FC
3400
0230
0240
0214
G225
0188
4700
4780
4740
4710
4780
03B4
G36C
0480
0585
O4E6
G40E
03EA
G342
3900
0258
1500
5000
2b00
1D00
4500
01BC
01p8
025C
01CC
0108
4100
6800
4800
1100

$FLOAT
*ABS
*IORG
*KEL
*SCRF
*VALUE2
ABS

AL

ARG 11
ARG 15
ARGY
ARGS

B

BCK

BH

BNE

BO

C
CRADAR
CADAAR
CADDER
CAR
CDAAR
CDAR
CDLDAK
CDR

CH

CL

CONS
DBPLTONE
DER
DSPHSK
EXTERNAL
FPSTFIX
FSTQT
PSTVALY
FSTWDZ
INLIS
LABEL
LDR
LINKR
LOGDISK

a

permanent symbol table
each identifier as
remove these

list

of

possible to

garéa
0006
G002
0008
0007
000D
0004
0006
5800
0234
0244
0z18
0228
g7FP0
0700
872G
4770
4710
5900
Gu8C
o468
U540
034C
(3Cce6
0378
o4cz
¢35¢C
4900
5500
058¢C
00u0
3ID0o
ao74L
6065
Glas
019¢
0260
0144
g 15¢C
Q007
2800
0001
0p4ao

$NUKVAL
*uC
*LINKR
*NIL
*RET
*SCR1Y

A

AD

AR
ARG12
ARG16
ARGS
ARGY
BAL

BCT
BIG1
BNH

BXH
CAAAAR
CAADDR
CADADK
CADDR
CARMASK
CDADAR
CLDAAR
CLDDDR
CDRMASK
CHAROES$
CLC

CR
DELWD
DISKFPBL
EIGHT
FIVE
FSTFLT
FSTVALY
FSTVRLS
Ic
ICRG
LCDR
LE

LK

LYER

u6ag
0004
0001
G600
00608
UOOE
5K00
600
1400
G238
024¢&
g21C
622C
4500
4600
0104
4700
8600
Gaay
051C
04rs
ouzo
g07C
GUgE
o474
0552
G080
01BC
D500
1900
60Co
0CaL
cooh
0058
U1B4
019C
0264
4300
0002
2300
7600
3800
3000

PAGE 124

which

is
the
if the

are given

$PLANTS M
*FIX
*LIST
*PDL
*RNAKG
*SCR2
AASYSKEF
ADK

ARG 1

ARG 13
ARGZ2
ARG6
ASAVEARE
BALR
BCTR

BL

BRL
BXLE
CAAADR
CAADR
CADAR
CADK
CDAAAR
CDADDR
CDDADR
CDDDR
CE
CHAR46
CLI

CVD
DBL4ERO
DISPATCH
EXKORSTP
FOUR
FSTID
FSTVALZ
FSTVALG
ip

L

LCR

LEK
LNDER
LER

G766
GOG5S
GSFO
0609
000K
OOOF
G158
ZR00
6z206C
¢23C
0210
0220
¢17¢C
6500
0600
4740
4780
8700
GuDy
G3¥C
U3ps
G390
0456
052K
G50a
G432
7960
0100
9500
4E0O
o040
G32C
G1E4
0054
0188
0140
0268
040U
5800
1300
3800
2160
1000

DRAFT COPY NOT YET COMPLETED PAGE 125
LK 1800 LSTID 01C8 LSTQT 0198 LTR 1200
M 5C00 MAXAVID 01C4 MD 6C00 HDE 2C00
BINUSONE 006C MOVE 0284 &R 1C00 MvC D200
MV 9200 N 5400 NI 9400 NILF o1pc
NILE 00E0 NINE 00686 NINEDIGIT 0170 NUMTEMP1 0028

NUBTEMPZ (02C NOUOHTEMES 0038 NITAVEC 01pG NXTAVFIX O1AC
NXTAVFLT 0O1BO0 NITAVID 01C0 NYTAVLST ©1D4 RYEITAVOT 0194

o 5600 OGBEYICOR opas 01 4600 ONE 0048
OX 1600 OUFCB 0C#0 FILLOC G18C PwROFPI0 0180
QUOTESE 0190 REL 6007 =S 5B00 SCANEF 0164
SCRE gooC sCr1 GGOE SDE 2B00 SER 3800
SEVEN 06060 SIX 05C SLDA 800 SLL 8900
SLE 1¥F00 SPCBASES 019C SPECBIND 0564 SPECKSTR (588
SPH o400 Sk 1860 SEaA 8A00 SHDA 8EGU
SKDL 8C00 SEL 880GO0 57 50006 sS7TC 4200
STD 6000 STE 7000 STH 4000 sTa 3000
SvC 06A00 TERMEPEL 0C84 TERHWPBL 0OC94 THREE 0050
TH 9100 TWZ 477G TOLRKCE COEL TRAFPOFF 0ChH8
THO 004C TZE 47830 UNPK F300 VALUE1 G003

YALUEZ oo IC D700 ZERO 0044 ZERODIGIT (G16C

e . e i, i+ bt — "~ m———

DREAPT COPY NCT YET CUBPLETED PRAGE 126
N APPENDIY H.
N The Permanent Envirorment of LISP.
The permanent Enviromnment of LISP is given by the following
table. Rach identifier is given allong with its attributes. A
series of flags, labeled bits 1 - 5, have the following meanings:
it 1T : 1 if that identifier is a compiled function.
Bit 2 ¢ 1 if that function recieves unevaluated arguments.
2it 3 ¢ 1 if indefinite number of argquments.
Bit 4 : 1 if function with literal value.
Bit 5 : 1 if is used free in a compiled function.
After the five flags is given the number of arguments if «
function.
The last thing on the line is the current special value setting.
If the value VECTOR is printed, it indicates a pointer into
vector space. In the case of compiled functions it indicates the
adress of the assembled program. If BELOW is given it indicates a
pointer to the area below fixed program space.
if +the identifer has a property list that is printed on the
following line.
(.
11111 1] NOVAL
FALINES GO 001 0
(SPECIAL (NiL))
$ALISBT g 0 00 1 0 NIL F
(INTBYHK 520 SPECIAL (NIL))
PRRGSCHTER 000 1 g BELOW
$EOF3 0 00061 O
(SPECIAL (NIL))
3PIX 10000 1 VECTOR 91
**DUMPER 1000 1 0 BELOW 99
*XEXPEL 16 6 01 0 BELOW Al
**LOAD 10001 0 BELOW 185
*CONDERE 10000 O VECTOR
*¥EGC 1606060 2 VECTOK
*BON 10000 2 VECTOR 22
*EQP 10000 2 VECTOR 9z
*EQUAL 1000 ¢ 3 VECTOR
*EAPAND 106 00 1 2z YECTOR
*EXPEL 1000 1 1 VECTOR 141
¥PINIS 100 ¢ C 1 VECTGOR l¢3
WAL 10001 2 VECTOR
*MIN 1010 1 2 VECTOR
*NEWLIN 10000 0 VECTOR 196
—— *RATOH 10000 G VECTOR 144
*SUPERMAN 1060060 0 VECTOR
*SUpv 100061 2 VECTOR 1%@
ARHSVAL 10000 1 VECTOHR 0

o~

7,

DRA®T COPY NOT YET COMPLETED

B e i i e T

PAGE 12

a

AC 00 0 01 0 NOVAL
ADD1 106001 1 VECTOR N AND o
APOSTROFPHE 0 0001 ¢ '
(SPECIAL (NIL))
APPEND 10606 0 1 2 VECTOR 66
APPLX 10000 2 VECTOR 66
APPLY 10000 3 VECTOK 66
ATOM 106000 1 VECTOUR (=
(2ACRO %G-859)
ATTACH 10000 1 VECTOR
ATPRIB 10000 2 VECTOR c?
B 00001 0 NOVAL
(INTSYH 18416)
BACKCHR 10000 0 VECTOR %24
BIGUNWIND 100600 0 VECTOR
BKTKCE 1006 01 O VECTOR
BLAKK 0 G060 1 0
(SPECIAL (NIL))
BOMB 10000 0 -9§
BPI$DIR 6 6001 0 BELOW
BPORG 060G 1 0 VECTOR
LUCKET 10000 1 VECTOR a
BUPFO 00001 0 VECTOR 95,165, 10¢, 163, 1
(SPECIAL (NIL))
BUFFO2 00001 0 VECT UK
(SPECIAL (NIL))
B 00001 0 BELOW
BX&2 ¢ 0001 0 EELOW
BX@3 G 0001 0 BELOW
BXal 000G 01 0 BELOW
BX@5 06001 0 BELOW
EXa6 00001 0 BELOW
BXa7 0 ¢ 001 0 BELOW
BXa6 00001] BELOW
CARARR 10000 1 VECTOR 67
(INTSYH 1092 MACRO %G-916) /
CAARADK 10000 1 VECTOR 1
(INTSYH 1236 MACRO %G-892) ‘
CABAR 100600 1 VECTOR
(INTSYM 948 HACRO %G-940)
CAADAR 10000 1 VECTOR
IKTSY# 1164 MACRO %G-904)
CRADDE 10000 1 VECTOR
(INTSYM 1308 MACKRO %G-880)
CAADK 106000 1 YECTOR
(INTSYM 1020 MACRO %G-928) :
CAAR 1060600 1 VECTOR f
(INTSYH 876 MACRO %G-952) ;
CADARAR 1060600 1 VECTOK |
INTSYM 1128 MACRO %G-910) ;
CADADR 106000 1 VECTOK ;
(INTSYH 1272 MACRO %G-886) !
CADAK 100600 1 VECTOR 61

(INTSYH 988 MACRO %G-934)

e e e e S e s e e e et it i it Nt it | s i el o o

-

DEA¥FT COPY NOT YET COMPLETED

CADDAR
(INTSYH
CADLDR
(INTSYH
CADDR
(INTSYH
CADK
(INTSYH
CALL
(INTSYH
CALLEDFNNAM
CAK
(INTSYH
CDARAAR
(INTSYH
CDAADR
(INTSYM
CDAAR
(INTSYH
CDADAR
(INTSYH
CDADDR
(INTSYHM
CDADR
(INTSYH
CDAR
(LHTSYH
CDDAAK
(INTSYHN
CUDADR
(INTSYH
CDDAR
(INTSYH
CDDDAR
(INTSYH
CDDDDER
(INTSYH
CDDDR
(INTSYH
CDDR
(INTSYH
COR
(INTSYH
CEQ
CHARP

(4ACRO %G6-797)

CHRZFIX
CLEARBUF¥Y
COBBIRD
COMBOOL
CONCODE
COHCOND
COMLIS
COMEA

100660 1
1200 MACKO %G-8698)
10000 1
1348 MACKO %G-874)
10000 1

106001 1
912 MACRO %G-946)
10000 2
1413)
G 0001 0
10001 1
844 MACRO %G-866)
10000 1
1110 MACRO %G-913)
10000 1
1254 MACRO %G—869)
100060 1
966 MACKO %G-937)
106000 1
1182 MACRO %6-901)
10006 0 1
1326 MACRC %G-877)
100600 1
1038 KACRO %G-=925)
10000 1
894 MACHO %G-949)
1000¢ 0 1
1146 MACRO %G-907)
10000 1
1290 MACRO %G-883)
10000 1
1002 MACRO %G-931)
10000 1
1218 MACRO %6-895)
10000 1
1362 MACRO %G-871)
10000 1
1074 MACRO %G-919)
10600 1 1
930 MACRO %G-943)
1000 1 1
8§60 MACRO %G-865)

10000 2
10000 1
10000 O
106001 G
100061 2
1T000¢0C 4
10000 1
10000 2
10000 1
¢ G001 0

0 U U S U VISPV PRSI M

PAGE 126

VECTOR 67
VECTOR
VECTOR
VECTOR .7
VECTOR

ZEROP

VECTOR 67
VECTGQk—A»M(WMMCA%ao
VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR I

VECTOR
VECTOR A4

VECTOR as
VECTOR__ 95 _ CQloSE
VECTOR

VECTOK

VECTOR

VECTOR

VECTOR

14

1

s

gt
9

2

62

89

¥¥D) TYAF) ANTAAY)

29

89

89

9

671 A9V

HOIDHA
TYAON
HOIDFA
BOIDIA
JOIDEA
___HO0IDIA

ano
®OTEE
0
JOLDEA
4034401
MOTIA

JOI0HA

19

(
JOLDHA
ANLDEA
HOLD3A
T0L2EA
HOLDHAA

HOLDEA

(((x zoq>uv {

HOLOEA

e Y N

(= - B - B -

o

NmoreaNs ©

Z

e -y

RS Ak

29-0%

m
x
0
(0L

(1In (T TI0N)) annd)

HJOLOTA
HOLIEA
HOLDHAA
JO.LOHA
JOLDAA
T0LIHA
HOIDAA

TYAON
HOLIHEA
HOLOHA
q0.LDHA
JOLI3FA
HOLOHA
HOLOAA

OO e) D e oo NGO

COLOTDTOTOoOoemw

< DO OOD

D o]

o D

ool

)

ol
MO DD DODTODODDOT O™

—

DéQOOQQQOOOGOQ’DAAONGMOO%?DQ'?DQ

OHLITAHOD

o~ o~ -~ -~ — -~ oo —~ — -~

—

HOD) LDONOD)

P b ke b e R R e b
NEr e 20202020 B0 EZ0Z0ZOROZORT T O

.
~

TIEATAC
A LETAT
ISTTLHD
ANTAAD
L0044g
NTaq

S

TY¥IDIAS)

A d

TYIDEAS)
HYNLAONOD
TYIDAAS
4230100800
TYIDF4S)
I2IN0UND
TYINIAS)
AnaInoEnd
TYIDALS)
HYNNIYND
TYID9ds)
gOANINND
TYIDAAS)
ADENTEAD
TYIDAAS)
XTO0HAD
TYINAAS)
02800
TEINAIS)
AYHDIIAD
O1ASD
LISH
ATX30D
40D
TYNOTLYSHIANDD

L Y . ™ .

- e

074L HISINT)

-

SN
gHYT) HAYTZ)

-

aONOD
(v (7

Yaauy 1) #dvg)

HODOOOOODDOO0™O

IH)

0 LDONOD
1 JNOD
L ZROD
! XL HOD
L TYAROD
{ SLSHUOD
i O3FEIHOD
0 OASAROD
) SONIR0D
L ETAW0D
t ATIAHOD
L TIDYAH0D
1 AWOD
1 NOEROD
N) 1¥IDF4A8)

J4% LOK X240D Lavag

a

o i e vt - e s s i i . st s et ettt ! e Vrmmmmt i e st s s s St e

DRAFT COPY NOT YET COMPLETED

DEXP
DIPFERENCE
DIGLT
(BACKO %G-85
DISKDEF
DIVIDE
DLOG
DOLLAK
(SPECIAL (
DUMPEX
DUHFOVEE
ED
EDIT
EFFACE
ELT
EMBED
ENPTYBOXES
PLANTUDNAM)
(SPECIAL (I
ENCODE
ENDLINE
EUDAD
£Q
EQUAL
EQUALW
ERINLAP
ERROR

e

CCOCCOOTO~OOoD QO

I

QU T S S g~ e S R S s o SR QIS
COLoOQOooltooo oMo OO
gt

—

CoOooOooULOvoLoOgoooLL Lo oooTroOTooooooaoo™

[oo COQLOOHQo oo

T ot

b

PR o T QRIS O o [G N
COrMoLooowNoooooooooolhoGoorcoo oo Colt!

(RENAME %G-667
ERROKCNT
(SPECIAL (
ERKORSET
ERROR2
ERKOR 3
ESCAYE
(SPECIAL (

I

ot

T

A

EVAL
EVALQUOTE
EVA1
EVCON
EVLIS
EVLIS1
EVPKOG
EXCISE
EXPLLOC
EXPLODE
(RENAME %G—

U S O " ™Y YU Wit . oo VK s e W~

i

373

L

EXTENDOT
PENCE

(SPECIAEL (
FILELISP
FINCLOS

I

PR < A o JU SR S Sy
oot

O

[l e BN wo e o Y o i
[V o SRR - ST SRS an B 64

COOOOOCm
-t o K mad

<

<

ot wed d d

-

-t -y O

m OO OO0 -0

RN o QS SN

[l 3 I S e g R O e b LN -t DN -

- N BN

[

[VR S S

R I G O S S

o L [JCR TR (S Y

FAGE 130

VECTOR

VECTOR 91
VECTOR 98
VECTOR 939,
VECTOR 91
VECTOR

%

BELOW

VECTOR 10
VECTOR Ed|
VECTOR Edl
VECTOR EY
VECTOK H
VECTOR 7.

|5
(BXa5 BXa6 B%%% BX®#8 EODAD SYNAD
1

VECTOR

VECTOR

BELOW 106

VECTOR 72

VECTOR t2

YECTOR . ERASE. 1051
NOVAL —

VECTOR 12,115

0

VECTOR 15

VECTOR 3,145

VECTOR

%

VECTOR EX!

VECTOK 115

VECTOR 0

VECTOR

VECTOR

VECTOR

VECTOR

VECTOR 13 X 1
VECTOK 162 BN A
VECTOR Adt

VECTOK 162

VECTOR 91

VECTOR

VECTOR

¥

VECTOR 1¢3

VECTOK 143

/f'

ODRAPT COPY NOT YET COMPLEYTED

100
(RENARE %G-398)
100

FIXP

FLAG
PLOATLARGE
FLOATP 1
(MACRCG %G-78
PN O G
FORH
FORTLOAD
FSUBEPUN
FUNC
FUNCTION
(PEXPR

—

@ oo
'

[l o)

[P QN R G Y]

(LAMEDA

G

GENER

GENL

GENNUK

GENSYH

GENSYMCH
(SPECIAL (NI

GET

GETBPI
(MACRO %G-84

OO oOoCoC cCOoOCoQQ

ok B o OO OO E

UdQQC:QC}QOGQLﬁQOEQQOQQQC‘-iC?C‘OC’&CL

b

GETCH
GETCVEC
GETDEF
GETPLT1
GETFLIZ
GETFXD ¢
GETQIVEC
GETSTR
GETTYP

GO

- ok ot wd sk (D ok ek o b (O

OGO OCOC OO
MOOOOCOOOCOOO
D LD ok oawd $0 o €0 it C ok

(FEXPR (LAHMBD
£)y))
GOLIST
GREATERYF
G5
G12288
G1387%2
140800
G1r1482
G184 16
G2
G2719
G2T22

1? (36864

. C:ajﬁﬁﬁa

G4462

GBE236

G45324

G4555

GLE4L4y

G851

A

ook amk wh ok wd wd o mmd o awd O b ek ook el et G0 b O
DO OOOOOOLOOOOCOO
OO OO oL

OQQQQQQQGCJOGQ

(

oo

b

RIS W S = ST wy i P Y [oo QT WY

o QY

&5

COQQOOLOHMNNNOSO

- B

-t B

JE QU T QTN o B T G O

(KKSPCVAL (MKSP

[BRI o RIS o RPN G S O o I G S g« 3 S N o

e - e . e i ' e St . 't St " St i il e v i i

PAGE 131
VECTOR 9z
VECTOK 7
VECTOR
VECTOR 9t
ROVAL
NOVAL
EELGW 143
VECTOR
YECTOR
VECTOR 73
(QUOTE FUNARG) (CAR X) ¥)))

NOVAL
1
HOVARL 11z
298
VECTOR 4
6 34
VECTOR 4
YECTOR 4
VECTOR 4
VECTOR 14
VECTOK 15
VECTOR
NOVAL
VECTOR
VECTOR, 15 gryevic 45
BELOW 1S crqe 7
VECTOE —— > GETevEC S
VECTOR 95

(QUOTE EBROGGO)) (CAR

NOVAL

VECTOR
NOVAL

VECTOR
VECTOR
VECTOR
VECYTOR
VECTOR
NOVAL

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
YECTOR
VECTOR

Az

DRE¥T COPY NOT ¥YET

GH9Z8
G4985
GL995
5011
55062
t50e4
GH2692
G6320
66304
G76 11
HEXEXP
-
INFILE
(SPECIAL (
INITIALOPEN
INTERFACE
INTERN
INTERNE
INTZLINYT
JUNIT
TUNITT
3
1

T

(INTSYH 2252
LAC
LAPEVAL
LAPLISTPLAG
(APVAL (NI
LAP360
LAKGEEXET
LAST
LBKTRCE
LBKAC
(APVAL (<)

)

3 b ot od wwd P LD wed ed (T L D KD ek o oond ok ek KT D ok amd ek el ond and e b b wd wd

wn

LCOPY
LDIFF
LEPTSHIPT
LENGTH
LENGTHCODE
LESSP
LINENO
LINEUPINPUT
LINTEXP
LINTP

(5ACRO
LINTZINT
LIST

(i ACRO
LISTING
LISTOPOBJECTS
LISTP

<3
COQCUQOOCSMOLOCCOCOOCOCO

28 af
§F

PRI AR O o J S S O O ST N <o S S S S T Y
.

(MACRO %G—
LIST2IVEC
LISTZRVEC

7

Moo oo SCoOoCROOoOoOLOoOOOUrFCLOCOoOOoOCcCOoCCOOC

by
CoCcCOQLooLOMmoaCoOmnoOC

COMFLETED

QU o I wo B e wo I oo B v B wrc B o o B e 3 on]

)

d et b i b S OO LD

)

Y I

COCOLOLLOQLPEpOoOLLOOoCo
-t 3 ek O OO

I

[RCQUITRE o QRSN wn JE < B o SIS

Nt L&é S
Q™
fon e i el Lo I e

- -t o

[e=RE e
oD
o

L (NIL

L (NIL))

0 € et o b ot et 0 wd €O ok ke

O i DI O vk DO DD O OO

b RS b b N OB

- N e

- b

VECTOR
VECTOR
VECTOK
VECTOR
VECTOK
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
NOVAL
NOVAL

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
NOVAL
KOVAL
ROVAL
ROVAL

VECTOR ™
VECTOR
NIL

VECTOK
VECTOR
VECTOR
NOVAL
<

VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
NOVAL

VECTOR
VECTOR
VECTOR

VECTOR
VECTOR

NOVAL
VECTOR
VECTOR

VECTOR
VECTOR

PAGE 132

18 pevre 35

i
it

IVECP 36

oo i e .,LMSEL :IG

g _AMBDA ¥

18

12

S
% S

9z

165
188

13

9

)

LDEAPY COFY NUT YET

LISTZSVEC
LISTZVEC
LNCDOF
LOARDEX
LOADLISF
LOC
LOCATE
LOGAND
LOGUR
LOGXOR
LEAK

(SPECIAL (NIL)
LPLUS
LouoT1
LTIMES
LYIMES1
MACLAF
HACRO
MAKEPROF
HAP
MAPCAR
KAPCOW
MRELIST
AKX

(MACRO %G-426)
MOEP

MEBGER
MENGTH

MIN

- OO
[on] [B o]

(HECRO %G-424)

9

o BT wed Tl wed FT b o o) wed ond ok o wd ek wod wd md LD ok enk b sk) e o md e med

MINUS
(RENAME %G-35
HINUSLINT
HINUSLINTP
HINUSP
(RENAME %G-3

ool wnk o

S
MKNAM
HKQT
40DE
MYGKEATE®
N*TUPLEQ
NAME
NCONC
NILPN
NODESLESSP
NOT
NOVAL
(SPECIAL (
NUVALUE
NOSUBST
NULL
NUKEBERE
(RENANE %G—4
NUBEXPLD 1

“owt?
D OO CO™QOCOOLOOQOOO™ oo™ O

L OO

o]

b

PR K QAT (i TR o S SN o S QT i JE G

1

oo ooo oo

SO OoCOLOC OO oo

AR e i T o I s QU QRN B e Y o)

b OO b ok G2 DD O T el weh ek wed

C ot b &

-

PR s U s ST S e ST QP Y R S

R av Bl e SN

. it i i S

COMPLETED

BB B NI DO LA el e BN B B NG I R o O3 L L0 ek wd

- SR v I G RSN

-t ek

C o RO M RO - O

- bl

[

VECTOR
VECTOR
VECTOR
BELOW

VECTOK
NOVAL

VECTOR
VECTOR
VECTOR
VECTOR
{

VECTOK
VECTOKR
VECTOR
¥VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOK
VECTOR
VECTOR

VECTOR
¥ECTOR
NOVAL

VECTOR

VECTOKR

VECTOR
VECTOER
VECTOR

VECTOR
VECTOR
HOVAL
VECTOR
VECT:OR
NOVAL
VECTOR
VECTOR
KOVAL

VECTOR

NOVAL
NOVAL
VECTOR
VECTOR
VECTOKR

BELOW

4

7}
3¢

8
21
8
9

gl
81

W
a1

A2
146

8z

Q2

R

gL

Syd
9

106

PAGE

—— NoIE

133

ige

A\

o

UDRART COPY NOT YET COMPLEYTED PAGE 134
NUMOB 10006 0 BELOW lgz
OBEY 106 06 0 1 1 VECTOR
GBLISY O 0 6 0 1 4] VECTOR
(SEECIAL (NIL))
OLDERRORSTE g0 00 1 4] HELOW
(SPECIAL (NIL))
UPER¥*SEQ 106 0 0 1 5 YECTOK 7
GPEREDFILES 0 00 0 1 0 ((IDPROF BXoL #TEST() 1¢?

G0001280# NIL
1023 NiL KIL O 71 BP1 SYSIN NIL) (OUU BXa@3 #1023 NIL FIL O 7% P1 5¥sI
NIL 1023 NIL NIL
U 72 P1 OUT NIL) (LISPOT BXwzZ #

NIL 1023 NIL NIL O 120 * TOUT NIL) (LISPIT bXa1 #RDF (IDPRCP
oub)
§ NIL 133 NIL
) NIL O 130 * TIN NIL))

(SPECIAL (NIL))Y _ Ok i
p 00001 0 NOVAL © oSopy 199
PACK 10000 1 VECTOR 199
PAFORM 10000 2 VECTOR
PAFORN1 100060 2 VECTOR
PAIK 106000 y VECTOR 3
PRIRMAP 10000 4 VECTOR
PALAM 10000 2 VECTOK
PART 10001 1 VECTOR
PASSONE 10000 2 VECTOR
Pa1 10000 1 VECTOR
PA11 10000 2 VECTOR
PA1Z 100060 1 VECTOR
PATH 10000 1 VECTOR
PA15 1000G 1 VECTOR
PAZ 10000 1 VECTOR
PR3 10000 1 VECTOR
Fa4 100600 3 VECTOR
PAS 10000 2 VECTOR
PRG 10000 2 VECTOR
PA7 10000 2 VECTOR
PAS 10000 3 VECTOR
PAY 16000 2 VECTOR
PERIOD 00001 0 .
(SPECIAL (NIL))
PHASEZ 10000 2 VECTOR
PI1 106000 1 VECTOR
P12 10000 2 VECTOR
P13 10000 3 VECTOR
PLANTDDNAM 000G 1 0 BELOW 109
PLANTNABE 10000 4 VECTOR
PLUS 10101 2 VECTOR ap
(KACRO %G—430)
FLUSS 06 001 0 +
(SPECIAL (NIL))
PRETTYPRINT 10060 1 1 VECTOR 169
PRINHEX 100 0 1 1 VECTOR %9

DRAFT COPY NOT

PRINSCHE
PRINT
PRINTARG
FRINTCH
PRINTDEF
FRINTEXE
PRINTVAL
BRINV
PRING
PHIN1
PHINTG
PRO

PROG

MO COOEOOQC

COCOoOoCOoOOOCooooooOMOoLooOCLoooCOoQGoo

(FEXPR (LA
PROGGO
PROGITER
PROGR EF
FROGVAL
PKOG 2

PROP
FROPEKTIES
PROPHDPENT
PROPS
PRTCONTL
PRTSTRG
PRIBUF

PT

PUNWOKRD

0

BBA (

COCOOOOCOlaCQOCOOOCooooe

(SPECIAL
OSORT
OTEXTEN-NUY
QTEXTEN-VEC
QUIET
(SPECIAL
QUOTE
(FEXPR (LA
QUOTED
QUOTTENT
RBRAC
(REVAL (>)
RDCHR
RDF
RDS
KEAD
READNCH
READO
READT
RECIP
RECLAIH
RENAINDEK
KEAFLAG
REMOB
REMPROP

4
ot

o~

——
C oomd C3 LK ok B LD md LT ot 0D wd O ok ok wd ot vod CO 0 o B0 TH ek G0 ewd b ok aed ook o kot ok ek
foed

D
G oS COOoOQoOODoC oo OooCw

BDA

L and

W

COoOQoLooRoooooONoCOlemPFoGCorIoCcoCo oo

ECT

LKoo ooooCOooe

L e e R e B T T W TS R '

LOCQOLQCOQOOQOCQlOQOOCNMKG [T sl R

f o B e T JPE SN o Y s Y s T e SR S S

- v o O e ol 5 ot KD ok etk C0 b PG O ad) S ek O e GO - O

P e

e S ey

YET COMPLETED

it st ot it St b i e e ks it et et e it | s | o | et iom e

PRGE 135
1 VECTOR 109
1 VECTOR 149
0 VECTOR
1 VECTOR 110
1 VECTOR 169
1 VECTOR 110
0 VECTOR
1 VECTOR
1 VECTGR {1¢
1 VECTOR 118
g ;g;;gﬁw M PRINN 111
P VECTOR 82
) (EVPROG %)))
0 NOVAL {31
Z VECTOR
0 NOVAL
0 KOVAL
2 YECTOR 24
3 VECTOR 24
1 VECTOR
1 VECTOR
; gbLiﬁH 102 Lﬁracuw,?T]
1 YECTOR
0 ~-556 %}éijos’
3 VECTOR
5 VECTOR °4
0 NOVAL
1 VECTOR SVITREItS
) NOVAL
0 NOVAL
0 *T%
1 VECTOR 94 15
)} (CAEK X))}
0 NOVAL
2 VECTOR 91
0 >
(NIL))
0 VECTOR 11y
2 VECTOR
1 VECTOR 111
0 VECTOR 112
2 VECTOR
0 VECTOK 1z
] VECTOR 142
1 VECTOR
0 BELOW %5
2 VECTOR 91
2 VECTOR
1 VECTOR 25
2 VECTOR e

DRAFPT COPY NOT YET COMPLETED

RETN 6 00 1 U

REVERSE 10000 1

KEAR 00606601]
(SFECIAL (NIL))

RPLACH 100606 0 2
(MACRO %G-979)

RPLACD 10000 2
(RACRO %G-976)

SASSOC 106001 3

SAVLIS 10 G 0 0 2

SCRUB 0000 1 0

SELECT 11101 2

SELECTZ 00001 0

(EXPR (LAMBDA (B M)
((EQUAL B (EVA1 (CAAR M)))
#})1)3))
SETC
SETIV
SETQ

(FEXPR
SETRV
SETSV
SHUT
SLASH
SNAPS
SPECIAL
ST

(LABBDA

~—

COCO COoOCOC CoOQoaoOMOC

} (SET

- D e O OO

o o]

(IHTSYs 204
STANDEODADIN
STANDEOGDADOUT
STANDSYNADIN
STANDSYNADOUT
STAK

4

- OO

(SPECIAL (
STOMAP
STORE
STRCONC
STRINGE
(MACRO %G-
STRLENGTH
SUBKPUN
SUBSYT
SuB1
SUPERPRINT
SUPVINFILE
(SPECIAL (
SUPVOUTFILE
(SPECIAL (
SWITCH
SYNAD
TERPUS-FUGIT
TEREAD
TERPRI
TEST

I

—r

Z
3
2
3
3
2
G
3
1
0
O
0
1
1
0
0
2
2
1

Lan QP e S

Lot
COoOOQOOrNoCNoCOCQO oo oL OO COOORLCU WO O

b d

PR w JUSIS QTS o QY

I

o

I

L
OO OoOOO™OoOLOoOoC Qo SO OOOQOC cCoooooo [oncll Rl oo

- ood owd b D R O TR CD eed wed ok ek vt] emd el wd OO R Ol et o o B) ek CD el o e LR e el

CLOOoQCOO < cCoaQooo
ry
CoCOoo < L R L L Y

U o N S

(COND ((NULL
(EVA1 (CADAR M))) (T

(CAR X)

PAGE
HOVEL)

4 RETJURN 94 9
YECTOR g RETV y
)

VECTOR e

VECTOR 26

I CPVECP R

VECTOK o W

VECTOR

NOVAL

VECTOR 37

VECTOR

(EVAE1 (CAR H)))
(SELECT2 B (CDE

(CDR H))

VECTOR 59
VECTOR 87
VECTOR 28
(EVA1 (CADR X)))))
VECTOR 31
VECTOR g7
VECTOR 11
A LOW
SELOW
VECTOR %
NOVAL
VECTOR e
VECTOR 113
VECTOR 112
VECTOR 11%
*
NOVAL
VECTOR
VECTOR]S
VECTOR $8
VECTOR €3
VECTOR
VECTOR 29
VECTOR 92
VECTOR 109
IDPROP
ouu o
—— _ SVECP 3
NOVAL Ve
BELOW , 1% 112
e A ?
VECTOR 11%
VECTOR 114

VECTOR

136

g

UDRAFT COPY NOT YET COBPLETED FAGE 137
TIMES 16101 2 VECTOR ¢
(BECRO %G-428)
THE*PRINT 100 0 ¢ 1 VECTOR
TRACE 1006 00 1 VECTOR 111
PRACECOL 00 0 01 0 NOVAL
TRACEMARGIN 00001 0 NOVAL
TRACE1 106000 2 VECTOR 114
UBUPLIN ¢ 0001 0 71 109
(SPECIAL (NIL))
UNCOMMON 100 6 G 1 VECTOR <9
UNPACK 1000 1 1 VECTOR 11
UNSPECIAL 10000 1 VECTOR g
UNTRACE 100600 1 VECTOR 32,118
UNWIRD 1000 1 U -494
UPI-FLOAT 0 6001 0 NOVAL
VECGTE 1000 1 2 VECTOR
VECP 106000 1 VECTOR 9
(MACRO %G6-761)
VECTLESSP 0 0G0 0 1 7 NOVAL
WRS 1000 1 1 YECTOR 114
X 0 000 1] NOVEL
KERMAN 0 GO 01 0 TEST
(SPECIRL (nilL))
YERMAN 0000 1 o NIL
(SPECIAL (NIL))
ZEKMAN G 60 01 0 DONE
(SPECIAL (NIL))
ZEROP 1000 1 1 VECTOR 9
(RENAHE %G-385)

	Contents
	Acknowledgement
	I. Introduction
	II. Using LISP on OS/360, TSS/360, and CP/CMS
	III. Data, Types, and Tokens
	IV. Storage Organization
	V. Lineage Conventions
	VI. The Compiler and LAP
	VII. Input/Output
	VIII. The Code Feature
	Getting Along in LPL on CMS
	1. What are LPL Expressions?
	2. How does one input an LPL expression?
	3. What if my input is not syntactically correct?
	4. What if the evaluation causes ERROR to be called?
	5. How can I interrupt the evaluation process?
	What are the basic primitives and builtin functions available in LPL?
	What does an LPL expression mean?

	Lisp Extended
	Storage Model
	Issues and Comments
	Appendix A. Common LISP FUnction Descriptions
	Appendix B. Arithmetic Functions and Predicates
	Appendix C. Input/Output Functions and Predicates
	Appendix D. Supervisory and Debugging Functions
	Appendix E. The LPL Parser
	Appendix E. CMS EXEC Files
	Appendix F. Syntax of a Datum
	Appendix G. Assembler Symbol Table
	Appendix H. The Permanent Environment of LISP
	CMS-LISP I/O Supervisory Functions

