C ¢

; (FG.DISAMBIGUATE-BANKS)

: This module implements the bank disambiguation. It assumes that the

. assertions have already been processed and that loop assignments have

; already been inserted for derivations to work ok.

; Each vector reference is exasined in turn. The residue of the derivation
; of the index is calculated, and if it is non-nil (known) the NADDR source
; operation is destructively modified to include the bank.

: Warning: 1If we ever change this to do non-destructive modification, then
; Temember to recalculate the hash table used in the disambiguator.

(include flow-analysis:flow-analysis-decls)

(defun fg.disambiguate-banks ()

(loop (for-each-stat stat)
(when (stat:property? stat °‘vector-reference) )
¢ (initial heading-printed? () )
do
(1f-1et ( (bank (de:residue (stat:index-derivation stat)
snumber-of—-banka#
stat) ) )
(then
(:= (cdr (nth (stat:source stat) 4) )
“(.bank) ) )

(else (if «fg.show-unknown-bank-references?* (then
(1f (! heading-printed?) (then
(lsg 0 t "Vector references to unknown banks:" t)
(:= headin -prlnted? t) ) )
(meg ¢t (h stnt§ ) ))

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>BANK-DISAMBIGUATOR.LSP.1



e

BBLOCK

Every basic block in the flow graph is represented by a BBLOCK. All
BBLOCKs are numbered and stored in a global array that maps the
nusbers onto the corresponding BBLOCKs.

SRS B B W NS B N W

def-struct bblock

number Number of this block.

dfo-nuaber Depth-first-order number of this block,
first-stat First STATement in this block.

last-stat The last statement.

(preds () suppress) ; List of predecessor blocks.

(suces () suppress) ; List of successor blocks.

(gen () suppress) ; STAT-SET used for flow analysis algorithms.
(kill () suppress) ; STAT-SET used for flowv analysis algorithms.

(reaching-in () suppreass)

: STAT-SET of definitions reaching this block
(reaching-out () suppresa)

; on entry and exit from this block.

(reaching-copies-in

() suppress)
(reaching-copies-out

() suppresa)

STAT-SET of definitions copy-reaching
this block on entry and exit.

(dopinators () suppress) ; BBLOCK-SET of dominators of this block.
(live-in () suppress)

NAME-SET of names live on entry and exit
{117a—ouh () suppress)

from this block.

B A T T T R T T TR T T T

: (BBLOCK:CREATE)
Creates a new BBLOCK and records it in the array
of BEBLOCKs. This is the only was a BBLOCK should
be created.

: (BBLOCK:DELETE BBLOCK)
Unsplices BBLOCK from the flow graph, forgetting it and all of

its STATs. A BBLOCK may be deleted only if it satisfies the conditions

of BBLOCK:UNSPLICE.

; (BBLOCK:SPLICE BBLOCK NEW-BBLOCK PREDS)
Splices NEW-BBLOCK between BBLOCK and each block in PREDS.
PREDS 1s assumed to be a subset of the preds of BBLOCK.

(BBLOCK : UNSPLICE BBLOCK)
Unsplices BBLOCK from the flow graph. A BBLOCK may be unspliced
only if it has 1 succesgsor and O, 1, or 2 predecessors; or 2
successors and O or 1 predecesgor.

; (BBLOCK:APPEND-STAT BBLOCK STAT)
Appends STAT to the end of BBLOCK.

; (BBLOCK:DELETE-STATS BBLOCK)

Deletes all of the STATs in the BBLOCK.

; (BBLOCK : MERGE-WITH-SUCCESSOR BBLOCK)
: Tries to merge BBLOCK with its successor. The merge can take place

only if BBLOCK has one successor, and that successor has only one
predecessor. If they are mergeable, the successor BBLOCK 1s deleted
and true is returned; otherwise nothing happens and false is
returned.

(BBLOCK : DOMINATES? BBLOCK BBLOCK1)
Returns true if BBLOCK dominates BBLOCKI1.

(BBLOCK :EMPTY? BBLOCK)
Returns true if BBLOCK has no STATs in 1t.

(NUMBER :BBLOCK NUMBER)
Returns the BBLOCK of a given number.

##B <number>
Easy, interactive syntax for (NUMBER:BBLOCK <number>).

(LOOP (FOR-EACH-BBLOCK BBLOCK) ...)
This is the only public way for enumerating through all the
BBLOCKs of the flow graph. The enumeration is in the original
order of the NADDR source. It i3 defined via LOOP's
DEF-SIMPLE-LOOP-CLAUSE.

(LoOP (FOR-EACH-BBLOCK-STAT BBLOCK STAT) ...)
This is the recommended way for enurerating through all the STAT's
of a BBLOCK. The enumeration goes from first stat to last.

(LOOP (FOR-EACH-BBLOCK-STAT~ BBLOCK STAT) ...)
Enunerates through the STATs of a BBLOCK in reverse order.

e M mE WE WA mE WA WS WE S WS WA W WA WA W s W B W W Ws e W WA BE WA Wa W wwa

(include flow-analysis:flow-analysis-decls)

(declare (apecial
+fg.total-bblockas*
+fg.nuaber:bblock#

;#ss Current number of BBLOCKs
;##* Array for mapping BBLOCK numbers onto
;#¢+ BBLOCKs.

;rg.enbry-bbloct- ;*¢+ Entry block (one with no predecessors)

(defun fg.initialize-bblocks ()
(vector-pap:initialize ‘sfg.number:bblock+ ‘#fg.total-bblocks+ 50 t) )

(defun bblock:create ()
(vector-map:add-element '#fg.number:bblocks ’#fg.total-bblockss
(bblock:new number #+fg.total-bblockss+)
&0
t) )
(defun bblock:delete ( bblock )
(assert (bblock:is bblock) )
;##s Delete each STAT that is part of the BBLOCK.
(bblock:delete-stats bblock)
;¢¢¢ Remove the BELOCK from the array of BBLOCKs.
C:= (0 ;rg.nulbar:bblockt (bblock:number bblock) ) () )

S:<C.S.BULLDOG.FLOW-ANALYSIS>BBLOCK.LSP.16




e

;##* Remove BELOCK from the flow graph.
(bblock:unsplice bblock)

(defun bblock:delete-stats ( bblock )
(assert (bblock:is bblock) )

(loop (initial stat (bblock:firast-stat bblock)
succ-gtat () )
(while stat)
Enext succ-stat (stat:succ stat) )
do
(stat:delete stat) )
(next stat succ-stat) )

(:= (bblock:first-stat bblock) () )
(:= (bblock:last-stat bblock) () )

bblock)

(defun bblock:splice ( bblock new-bblock preds )
(asgert (bblock:is bblock) )
(assert (bblock:1s new-bblock) )

;#*% Make each predecessor point at NEW-BBLOCK, and remove
;#** that predecessor from the preds of BBLOCK.

(for (pred-bblock in preds) (do
(top-level-dsubstq new-bblock bblock (bblock:succs pred-bblock) )
(:= (bblock:preds bblock)
(top-level-removeq pred-bblock (bblock:preds bblock) ) ) ) )

;*##* Add NEW-BBLOCK to the preds of BBLOCK
(push (bﬁloct:preds bblock) new-bblock)

;*#++ The preds of NEW-BBLOCK are PREDS, and the succs are
;#+# are just BBLOCK.

(:= (bblock:succs new-bblock) (1ist bblock) )
(:= (bdblock:preds new-bblock) preds)

new—-bblock)

(defun bblock:unsplice ( bdlock )
(assert (bblock:is bblock) )

(let ( (pred-bblocks (bblock:preds bblock) )
(succ-bblocka (bblock:succs bblock) ) )

;#s» BBLOCK has either 1 successor and O, 1, or 2 predecessors;
;*#*% or 2 successors and O or 1 predecessors;
;### or 0 successors and 1 predecessor.

(assert (1] (a8 (== 1 (length succ-bblocks) )
(>= 2 (length pred-bblocks) ) )
(2% (== 2 (length succ-bblocks) )

(>= 1 (length pred-bblocks) ) )
(e2 (== 0 (length succ-bblocks) )
(== 1 (length pred-bblocks) ) ) ) )
;#¢+ Make the successors of BBLOCK point back at its predeceasors.
(for (succ-bblock in succ-bblocks) (do
(:= (bblock:preds succ-bblock)
(uniong (top-levol-renoveq)bblock {77 3)
pred-bblocks) ) )
;e#+ Make the predecessors of BBLOCK point at the successors.
(caséq (length succ-bblocks)
(2 ;#%+ 2 puccessors and O or 1 predecessors.
(1£-let ( (pred-bblock (car pred-bblocks) ) ) (then
(assert (== 1 (length (bblock:succs pred-bblock) ) ) )
(:= (bblock:succs pred-bblock) succ-bblocks) ) ) )
(1 ;##+ 1 guccessor and O, 1, or 2 predecessors.
(1et ( (succ-bblock (car succ-bblocks) ) )
(for (pred-bblock in pred-bblocks) (do
(:= (bblock:succs pred-bblock)
(noduplesq (top-level-substq succ-bblock bblock
axg) ) ) ) )))
(o ;#*+ 0 puccessors, 1 predeccessor.

(:= (bblock:succs (car pred-bbdlocks) ) () ) ) )

i### Clear all pointers in BBLOCK.

(:= tbblocl:preds bblock) () )
(:= (bblock:succs bblock) () )
0))

(defun bblock:l;pand—atas ( bblock stat )
(assert (bblock:is bblock) )
(asgert (stat:is stat) )

(:= (stat:bblock stat) bblock)

(1¢ (! (bblock:first-stat bblock) ) (then
(:= (bblock:first-stat bblock) stat)

(bblock:last-stat bblock) atat) )

:= (stat:pred stat) (bblock:last-stat bblock) )
= (sba?:sncc (bblock:last-stat bblock) )

stat
= (bblock:last-stat bblock) stat) ) )

(
(else
(:
(:
(:
stat)

(defun bblock:serge-with-successor ( bblock )
(1f (a& (== 1 (length (bblock:succs bblock) ) )

== 1 (length (bblock:preds (car (bblock:succs bblock) ) ) ) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>BBLOCK.LSP.15

4




C

(then
(let*( (succ-bblock (car (bblock:succs bblock) ) )
(succ-bblock-stats
(loop (for-each-bblock-stat succ-bblock stat) (save
stat) ) ) )

(loop (for stat in succ-bblock-stats) (do
(stat:extract stat)
(bblock:append-stat bblock stat) ) )

(bblock:delete succ-bblock) )
t)

(elae
0O))y)

(defun bblock:doainates? ( bblock bblocki )
(assert (bblock:1s bblock) )
(assert (bblock:is bblockl) )
(bblock-set:member? (bblock:dominators bblocki) bblock) )

(defun bblock:empty? ( bblock )
(assert (bblock:is bblock) )
(x& (! (bblock:first-stat bblock) )
(! (bblock:last-stat bblock) ) ) )

(defmacro number:bblock ( nusber )
*([] +tg.nuober:bblock+ ,number) )

(def-sharp-sharp b
*((] *fg.nuober:bblock+ ,(read) ) )

(def-sinple-loop-clauge for-each-bblock ( clause )
(let ( ( (for-each-bblock var) clause)
(index (intern (gensym) ) ) )

(12 (! (&2 (= 2 (length clause) )
(1itatom var) )
(error (list clause "Invalid FOR-EACH-BBELOCK syntax.") ) )

‘( (initial ,var () )
(incr ,index from O to (+ -1 #fg.total-bblockas) )
(next ,var ([] #*fg.number:bblock+ ,index) )
(vhen ,var) ) ) )

(eval-when (eval compile load)
(def-sinple-loop-clause for-each-bblock-stat ( clause )
(let ( ( (for-each-bblock-stat bblock stat-var) clause)
(bblock-var (intern (gensym) ) ) )

(17 (! (2% (= 3 (length clauge) )
(1itaton stat-var) ) )
(error (11st clause “Invalid FOR-EACH-BBLOCK-STAT syntax.") ) )

‘¢ (initial ,bblock-var ,bblock
,stat-var () )
(next ,stat-var
(1f (! ,stat-var)

(bblock:first-stat ,bblock-var)
(stat:succ ,stat-var) ) )
5 (while ,stat-var) ) ) )

(def-simple-loop-clause for-each-bblock-stat™ ( clause )
(1et ( ( (for-each-bblock-stat bblock stat-var) clause)
(bblock-var (intern (genmsym) ) ) )

(1t (! (ak (= 8 (length clause) )
(11taton stat-var) ) )
(error (list clause “Invalid FOR-EACH-BBLOCK-STAT~ syntax.") ) )

*( (initial ,bblock-var ,bblock
,8tat-var
(next ,stat-var
(1f (! ,stat-var)
(bblock:last-gtat ,bblock-var)
(atan:;red ,8tat-var) ) )
(while ,stat-var) ) ) )

(defun bblock:print ( bblock Zoptional bblock-fields )
(assert (bblock:1s bblock)

(msg 0 (bblock:nuaber bblock) *: succs: "
(for (succ-bblock in (bblock:succs bblock) ) (save
(bblock:number succ-bblock) ) )
* preda: *
(for (pred-bblock in (bblock:preds bdblock) ) (save
) (bblock:number pred-bblock) ) )
t

(loop (for field in bblock-fields) (do
(caseq field
(gen
(msg * Gen: *
(; §stat—set:pr1nt (bblock:gen bblock) ) )
t
(xi11
(nsg * Kill: *
(; §atat—so=:pr1nt (bblock:kill bblock) ) )
t

(reaching-in
(psg * Reaching-in: "
(; §atat~not:print (bblock:reaching-in bdlock) ) )

t
(reaching-out
(mag * Reaching-out: "
(; §stat—sns:pr1nt (bblock:reaching-out bblock) ) )

t
(reaching-copies-in
(mag * Reaching-copies-in: *
(; ;eu;&-sab:print (bblock:reaching-copies-in bblock) ) )
t
(reaching-copies-out
(nag * Reaching-copies-out: *
(; §a=at-ne=:pr1nt (bblock:reaching-copies-out bblock) ) )
t
(dominators
(nag * Dominators: *

(; {hblock-set:prinb (bblock:dominators bblock) ) )
t

5
PS:<C.S.BULLDOG.FLOW-ANALYSIS>BBLOCK.LSP.156




c

(1ive-in
(nsg = Live-in: "
(g §nane—seb:prinu (bblock:1ive-in bblock) ) )
t
(1ive-out
(msg * Live-out: *
(; §nsne—seb:print (bblock:1ive-out bblock) ) )
t
)))

(loop (for-each-bblock-stat bblock stat) (do
(mag * * () (stat:number stat) 3) *: " (stat:source stat) )
(1f (memq °‘reaching-uses bblock-fields) (then
(mag (v 45) * *
(for (use-stat in (stat:reaching-uses stat) ) (save
(stat:number use-stat) ) ) ) ) )
(msg t) ) ) )

7
PS:<C.S.BULLDOG.FLOW-ANALYSIS>BBLOCK.LSP.156



BBLOCK-SETS

Sets of BBLOCKs are represented using BBLOCK-SETs, currently implemented
as BIT-SETs.

*FG .EMPTY-BBLOCK-SET#*
The empty BBLOCK-SET.

(BBLOCK~SET : UNIVERSE)
Set of all BBLOCKs.

(BBLOCK-SET : SINGLETON BBLOCK)
Creates a nev get containing BBLOCK.

(BBLOCK~SET : MEMBER? SET BBLOCK)
Returns true if BBLOCK is a member of SET.

(BBLOCK~SET : INTERSECTION SET! SET2 ...)
Returnse a new set that 1s the intersection of all the given gets.

(BBLOCK-SET:UNION SET! SET2 ...)
Returns a new set that is the union of all the given sets.

(BBLOCK-SET:UNION1 SET BBLOCK)
Unions a single BBLOCK into SET.

(BBLOCK-SET :DIFFERENCE SET1 SET2)
Returns a new set that contains all elements in SET1 not in SET2.

(BBLOCK-SET := SET1 SET2)
Returns true if the two sets are equal.

(BBLOCK-SET:SIZE SET)
Returns the number of elements in the set.

(LOOP (FOR-EACH-BBLOCK-SET-ELEMENT SET BBLOCK)
Enumerates BBLOCK through each element in SET. Uses
DEF-SIMPLE-LOOP-CLAUSE.

(BBLOCK-SET :PRINT SET)
Prints SET by printing out the statement numbers.

W WA B W We B mE WL WL S WL WS e W W e WA WS W WS WA WA WS WS B W WA WA Ba B wr wn mr mr e ws wr wn wa W wn W we wr W

(include flow-analysis:flow-analysis-decls)
(declare (special #fg.total-bblockss) )
(defvar sfg.empty-bblock-sets () ) ;##% the empty BBLOCK-SET.

(defun bblock-set:universe ()
(bit-set:universe *fg.total-bblocka*) )

(defun bblock-set:singleton ( bblock )
(bit-set:singleton (bblock:number bblock) ) )

(defun bblock-set:member? ( set bblock )
(bit-set:member? set (bblock:nuaber bblock) ) )

(defun bblock-set:intersection ar
(apply ’'bit-set:intersection (listify-lexpr-args args) ) )

(defun bblock-set:union ar%s
(apply 'bit-set:union (listify-lexpr-args args) ) )

(defun bblock-set:unionl ( set bblock )
(bit-set:unionl set (bblock:number bblock) ) )

(defun bblock-get:difference ( setl set2 )
(bit-set:difference setl set2) )

(defun bblock-get:= ( seti setZ2 )
(bit-get:= setl set2) )

(defun bblock-set:size ( set )
(bit-set:size set) )

(def-simple-loop-clauge for—each-bblock-set-element ( clause )
(let ( ( (for-each-bblock-set-element set bblock) clause)
(index (intern (gensym) ) ) )
(12 (! (22 (= 8 (length clause) )
(1itatom bblock) ) )
(error (1ist clause
®Invalid FOR-EACH-BBLOCK-SET-ELEMENT syntax.') ) )
*( (inivial ,bblock () )
(for-each-bit-set-elenent ,set ,index)
(next ,bblock (number:bblock ,index) )
(when ,bblock) ) ) )

(defun bblock-set:print ( set )
(bit-set:print set) )

1

PS:<C.S.BULLDOG.FLOW-ANALYSIS>BBLOCK-SET.LSP.9

2



c

;##+ (build +flow.build-module-1ist#)
;##+ (build.compile #flow.build-module-lists)

(:= #flow.build-module-1ist+ '(
flow-analysis:stat
flow-analysis:stat-set
flow-analysis:bblock
flow-analysis:bblock-set
flow-analysis:name
flow-analysis:name-set
flow-analysis:loop

flow-analysis:naddr-to-flow-graph
flow-analysis:remove—dead-code
flow-analysis:flow-graph-to-naddr

flow-analysis:temporary-nane
flow-analysis:collect-names
flow-analysis:depth-first-order
flow-analysis:reaching-defs
flow-analysis:reaching-uses
flow-analysis:reaching-coples
flow-analysis:live-names
flow-analysis:doninators
flow-analysis:find-loops

flow-analysis:loop~invariant-motion
flow-analysis:induction-variable-removal
flow-analysis:cse-node
flow-analysis:cse~hash-tables
flow-analysis:copmon-subexpression-elimination
flow-analysis:copy-propagation
flow-analysis:constant-folding
flow-analysis:variable-renaning

flow-analysis:derivations
flow-analysis:disambiguator
flow-analysis:disaabiguator-tool
flow-analysis:bank-disaabiguator

flow-analysis:statistica
flow-analysis:dependencies
flow-analysis:flow-analysis-optiona
;1gv-analysis:rlow-analysiu

(:= sbuild-podule-1list+ (append ¢build-module-liste¢ #flow.build-module-liats))

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>BUILD.LSP.4



T ¢

Rile
(e

;##* (FG.COLLECT-NAMES)

JHEE Collects all the scalar napes defined in the flow graph, doing

kR NAME:CREATE on each one. Sets :DEFINING-STATS for each name to
H A be the set of STATs defining that name, and :USING-STATS to be

(R the set of STATs using a nane.

IEEE

JER

(include flow-analysis:flow-analysis-decls)

(defun fg.collect-names ()
(f1g.inivialize-nanes)

(loop (for-each-stat stat) (do
(cageq (stat:operator stat)
(def-block
(for (name in (stat:part stat ‘in-variables) ) (do
(17 (litatom name) (then
(name:create naze ‘scalar 0)
¢ (naze:add~defining-stat name stat) ) ) ) ) )
dcl
(push #fg.all-vector-names* (stat:part stat °‘variable) )
(name:create (stat:part stat ’variable)
*vector
(stat:part stat “length) ) )

(let ( (defined-name (stat:part stat 'written) ) )
(1f defined-name (then
(name:create defined-name ‘scalar 0)
(name:add-defining-stat defined-name stat) ) ) )))))

(loop (for-each-stat stat) (do

(loop (for-each-stat-operand-read stat read-name) (do
(name:add-using-stat read-name stat) ) ) ) )

0O

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>COLLECT-NAMES.LSP.6



€ € C

jhhe sesbbbbe name) } ) )

;### Copyright (C) 1083 John R. Ellis. This file may be used for LTT e (loop (for oper in oper-list) (do

;##s educational and research purposes only, by the faculty, students, ##ssssss (loop (for name in (oper:part oper °'read) ) (do

;#¢» and staff of Yale University only. LI EE R (name:create name ‘scalar o? ))

T sebsbien (it (oper:part oper ‘written)

3 (name:create (oper:part oper °‘written) ‘scalar 0) )
: (bblock:append-stat bblock (stat:create oper) ) ) )

; COMMON SUBEXPRESSION ELIMINATION

: (bblock:eliminate-common-subexpressions bblock)

; This module implements basic block common subexpression ellmination.

; Currently, a VSTORE into a vector kills all previous values loaded from (bblock:print bblock)

; that vector.

; (FA.INITIALIZE-CSE)

H Initializes this module for the current flow graph.

= Jxk

; (FA.ELIMINATE-COMMON-SUBEXPRESSIONS) Rl

: Elinminates the common subexpressions in each BBLOCK of the flow ;#¢+ (BBLOCK:ELIMINATE-COMMON-SUBEXPRESSIONS BBLOCK)

> graph, destroying the old STATs of vhe BBLOCKs and replacing thenm i

H with new STATs. This invalidates all the flow information except ;#++ Eliminates the common subexpressions of a BBLOCK. All the old STATs
H the live variable info. ;#*+ in the BBLOCK are deleted and replaced by new ones. If BBLOCK
- ;#¢# 19 now empty (because of dead code that was removed), delete it.
; (CSE.TEST OPER-LIST LIVE-LIST) (e

3 A testing function that takes OPER-LIST, a 1list of NADDR, converts R

= it into a BBLOCK, eliminates the CSEs in the BBLOCK, and then prints

: the new BBLOCK. LIVE-LIST is a 118t of names that are live on exit (defun bblock:eliminate-conmon-subexpressiona ( bblock )

- from the block. (coe.initialize)

; (CSE.PRINT) (loop (for-each-bblock-stat bblock stat) (do

: Prints out the current DAG of CSE-NODEs. (cse.process—oper (stat:gource stat) ) ) )

H (cse.remove-useless-labels (bblock:live-out bblock) )

(coe.nake-copy-nodes-for-initial-nodes)
(cae.assign-nanes-and-add-pseudo-edges)
(eval-when (compile load) (cse.set-renaining-counts)

(include flow-analysis:flow-analysis-decls) )
(bblock:delete-stata bblock)

(eval-when (coppile) (loop (for oper in (cse.generate-code) ) (do
(build '(flow-analysis:cse-node) ) ) (bblock:append-gtat bblock (stat:create oper) )} ) )
(declare (special (12 (bblock:empty? bblock) (then
;cge.all—caa—nodest (bblock:delete bblock) ) )
0)
(defun fa.initialize-cse ()
(cse.initialize) e
0) T
j##+ (CSE.INITIALIZE)
R
(defun fa.elininate-common-subexpressions () ;#¢#s Initializes for the bullding of the next basic block DAG.
(fa.initialize-cse) Jene
(loop (for-each-bblock bblock) (do H

(bblock:elininate-common-gubexpressions bblock) ) )

(defun cse.initialize ()
(cse.initialize-cae-nodes)

(defun cse.test ( oper-list live-list ) (cose.initialize-hash-tables)
(fa.initialize) 0O)

(let ( (bblock (bblock:create) ) )

(loop (for name in live-1list) (do R
(name:create name ‘scalar 0) Ty
(:= (bblock:live-out bblock) ;#++ (CSE.PROCESS-OPER OPER)
(name-set:union1 (bblock:live-out bblock) ;eee
1 2

PS:<C.S.BULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1



e

;#¢#+ Adds a CSE-NODE representing operation OPER to the DAG being built.
Jeee

jeee

(defun cse.process-oper ( oper )
(caseq (oper:group opar?
(vload

(cse.process—-vload oper) )

(vstore
(cse.process-vstore oper) )

( (one-in-one-out two-in-one-out three-in-one-out if-compare
1f-boolean assert loop-assign vbase)
(caseq (oper:operator oper)
(fassign iassign)
( (cse.process-assign oper) )
t
(cse.process-n-in-n-out oper) ) ) )

(t
(cse.process-miscellaneous oper) ) )

0)

1
LT

;#*#% (CSE.PROCESS-N-IN-N-OUT OPER)

1l

;*##+ Adds a CSE-NODE representing operation OPER to the DAG. OPER should
;*#+ bo an operation that reads one or two variables and optionally writes
;*%¢ 3 result.

Rl

;#s¢ Firgt, the CSE-NODEs representing the operands of OPER are

;#*s found/created. Then, the hash tables are examined to see if a node
;**+ computing OPER already exists. If so, then the variable defined

;#*¢ by OPER is just added to the list of names on the found CSE-NODE.
;### If there 1sn't any previous CSE-NODE, then one is created.

JhEE

;‘i-

(defun cse.process-n-in-n-out { oper )
(let*( (children
(12 (== ‘'vbase (oper:operator oper) ) (then
¢ *(,(cse.nane:cse-node (oper:part oper ‘vector) ) ) )
else
(tfor (name in (oper:part oper ‘read) ) (save
(cse.name:cse-node nage) ) ) ) ) )
(expr-key
*(, (oper:operator oper)
,.children) )
(cse-node
(cse.expr:cse-node expr-key) ) )

(1t (! cse-node) (then
(:= cse-node
(cse-node:create-interior oper children) )
(cse.expr:define-cse-node expr-key cse-node) ) )

(1f (oper:part oper ’written) (then
" )(;ne-noda:asnign—bo—name cse-node (oper:part oper ‘written) ) ) )

Rt
(e
Ty
(e
ks

(CSE.PROCESS-MISCELLANEOUS OPER)

Adds a CSE-NODE representing operation OPER to the DAG. OPER is any
any miscellaneous NADDR operation that doesn't compute a value. The
CSE-NODE created for OPER is an "interior® node but it has no children.

L

(defun cse.process-miscellaneous ( oper )

(let ( (cse-node (cse-node:create-interior oper () ) ) )
E;=)(;se-noda:niscallaneouaf cge-node) t

il
L ¥Ee
L EER
Ll
e
ML
S
T
il
e
SRR

(CSE.PROCESS-ASSIGN OPER)
Adds a CSE-NODE representing operation OFER to the DAG. OPER should be
be an xXASSIGN.

The CSE-NODE containing the value being assigned is found, and that
node is assigned to the name being assigned by OPER (the name is added
to the 1ist of labels of the CSE-NODE).

e

(defun cse.process-assign ( oper )

(1et ( (coe-node (cse.name:cse-node (oper:part oper °‘readi) ) ) )
(cse-node:assign-to-name cse-node (oper:part oper ‘written) )
E;=)(§sa-noda:dauabype cse-node) (oper:dest-datatype oper) )

2 1 1

(ks

;##s (CSE.PROCESS-VLOAD OPER)

JhRE

;#%s Adds a CSE-NODE representing operation OPER to the DAG. OPER should be
;% a VLOAD.

H L

;%% If an unkilled CSE-NODE already exists that VLOADs from the same
;#%s vector and index, that CSE-NODE is used for OPER -- the destination
;##s of OPER 18 just added to the labels of the CSE-NODE.

Jene

;¢3¢ If there 1s no such previous VLOAD, but there is an unkilled VSTORE
;#*+ into the same vector and index, that CSE-NODE node 15 used. The
;#%¢ destination of OPER is added to the labels of the CSE-NODE that
;#*+ represents the value being VSTORE4, not to the VSTORE CSE-NODE itself.
Rl

;##¢ If there is no previous VLOAD or VSTORE cse, then a new CSE-NODE 1is
;#%s created. A pseudo-edge is added between the new CSE-NODE and any
;#*s previous unkilled VSTORE into the same vector. This ensures proper
;#*s evaluation order. The new CSE-NODE is added to the list of VSTOREs
;#+s and VLOADs of the initial node representing the vector.

Jeee

(defun cse.process-vload ( o?ar )

(lets( (vector-cse-node (cse.name:cse-node (oper:part oper ‘vector) ) )

3

4

PS:<C.S.BULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1




(index-cge-node (cse.name:cse-node (oper:part oper ‘index ) ) )

(children *(,vector-cse-node ,index-cse-node) )
(expr-key *(vload ,,children) )
(cse-node (coe.expr:cse-node expr-key) ) )

(¢ C (Il (! cse-node)
(cse-node:killed? cse-node) )
(:= cso-node (cse-node:create-interior oper children) )
(cse.expr:define-cse-node expr-key cse-node)
(cse-node:assign-to-name cse-node (oper:part oper ‘written) )

(loop (for vload-vstore-cse-node in
(cse-node:vliocads-vstores vector-cse-node) )
(vhen (! (cse-node:killed? vload-vstore-cse-node) ) )
(when (== ‘*vstore (oper:group
@ (cse-node:source vload-vstore-cse-node))))
o

(cse-node:add-pseudo-child cse-node vload-vatore-cse-node) ) )
(push (cse-node:vloads-vstores vector-cse-node) cse-node) )
( (== ‘'vatore (oper:group (cse-node:source cse-node) ) )
(cse-node:assign-to-name (caddr (cse-node:children cse-node) )
(oper:part oper ‘written) ) )

(v
(cse-node:assign-to-name cse-node (oper:part oper ‘written) ) ) )

0))

MLl
1l
M1
1¥%%
Hill
BT
il
11
Rl

(CSE.PROCESS-VSTORE OPER)
Adds a CSE-NODE representing operation OPER to the DAG. OPER should be
a VSTORE.

A new CSE-NODE is always created for a VSTORE. All previous VLOADa
and VSTOREs into the same vector are killed. The new CSE-NODE is
added to the list of VLOADs and VSTOREs stored in the initial node
for the vector. Note the trickiness of hashing the new CSE-NODE
under VLOAD instead of VSTORE -- this lets future VLOADs find this
VSTORE as a cse.

We can make VSTOREs smarter by having theam kill only those previous

Ewhen (! (cse-node:killed? vload-vstore-cse-node) ) )

do
(cse-node;add-pseudo-child cse-node vload-vstore-cse-node)
(:= (cse-node:killed? vload-vstore-cse-node) t) ) )

(push (cse-node:vloads-vstores vector-cse-node) cge-node)
Ega;.;xpr:define-cse-node expr-key cse-noda)

IRRE
I
;#++ (CSE.REMOVE-USELESS-LABELS)

ML)

;##* For each CSE-NODE, removes all labels (names) that are not live on
;##+ oxit from the BBLOCK. This guarrantees we will not do any useless
;*#%% agsignments.

1)

(defun cse.remove-useless-labels ( live-out )
(loop (for cse-node in *cse.all-cse-nodes*) (do
%loop (for name in (cse-node:labels cse-node) )
(initial new-labels () )

(do
(if (k& (name-get:member? live-out name)
(! (mezq name new-labels) ) )
(then
(push new-labels name) ) ) )
(result
& 3 (:= (cse-node:labels cse-node) new-labels) ) ) ) )
HA
;eee
;#*¢ (CSE.MAKE-COPY-NODES-FOR-INITIAL-NODES)
il
1ok P
LkEe

i 1

(defun cse.make-copy-nodes-for-initial-nodes ()
(loop (for cse-node in ¢cse.all-cse-nodess) (do
(1¢2 (cse-node:initial? cse-node)
(cse-node :make-copy-cse-nodes cse-node) ) ) ) )

;#%% VLOADs and VSTOREs that could possibly have the pame index as this
;#%* VSTORE. We would call the disambiguator oracle for this info.
R o*
' MLl
;#%¢ (CSE.ASSIGN-NAMES-AND-ADD-PSEUDO-EDGES)
(defun cse.process-vetore ( oper ) T
(let*( (vector-cse-node (cse.name:cse-node (oper:part oper ‘vector) ) ) ;##% For each CSE-NODE that produces a value:
(index-cso-node (cse.name:cse-node (oper:part oper ’index ) ) ) L
(value-cse-node (cose.name:cse-node (oper:part oper 'read2) ) ) ;#*% 1, One of the names in :LABFLS 1s assigned as the :NAME of this
(children *(,vector-cse-node ,index-cse-node Rl node; this nane will be used to hold the value of the node,
,value-cse-node) ) BRIl If there is no suitable name, a tepporary is created.
(expr-key *(vload ,vector-cse-node ,index-cse-node) ) ke
(cse-node (cse-node:create-interior oper children) ) ) ;8% 2. A paeudo-edge 15 added between this node and all uses of the
Hoa il initial node of the name picked in step 1. This guarrantees
(loop (for vload-vstore-cse-node in H AL that the name won't be assigned into until all uses of its
(cse-node:vloads-vstores vector-cse-node) ) Hbd previous value have been evaluated.
5 6

PS:<C.S.EULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1




C

T
;#*# 8. ASSIGN nodes are created for all other names that label the node;
1EEE each ASSIGN assigns its name with the value of this node. Pseudo
il edges are added between each nev ASSIGN node and the uses of

SRR the initial node of its name (as in step 2).

1

’

+ ¥

(defun cse.assign-names-and-add-pseudo-edges ()
(loop (initial rest-cse-nodes scse.all-cse-nodes#
name 0
(vhile rest-cse-nodeg)
(bind cse-node (pop rest-cse-nodes)
oper (cse-node:source cse-node) )
(when (]| (cse-node:initial? cse-node)
(22 (! (cse-node:mlscellaneous? cse-node) )
(!== ‘*vatore (oper:group oper) )
(oper:part oper 'written) r ))

(do
(:= name (cse-node:pick-a~good-name cse-node) )
(:= (cse-node:name cse-node) nanme)
(:= (cse-node:labels cse-node)
(top-level-removeq name (cse-node:labels cse-node) ) )
(cse-node:add-initial-nane-edges cse-node)
Eloop (for copy-cse-node in (cse-node:make-copy-cse-nodes cse-node) )
do
(push rest-cse-nodes copy-cse-node)
0) (cse-node:add-initial-nane-adges copy-cse-node) ) ) ) )
2L
(e
;*#*+ (CSE-NODE:PICK-A-GOOD-NAME CSE-NODE)
JEE

;#%% Picks one of the names labelling CSE-NODE (:LABELS) as the name that
;*##%# will be used to hold the value of CSE-NODE. For initial nodes, the
;##+ initial name 13 returned.

11

;##¢ For interior nodes, one of the names of :LABELS is used if there

;#%% 13 an eligible name. A name is eligible if every use of the initial
;*#+x value node of that name is not a ancestor of this CSE-NODE (if one
;*¥#% of the uses of the initial value of the name were an ancestor,

+ %%+ computing CSE-NODE into the name would destroy its initial value

;¥%# before all uses of it were evaluated). If there 18 no eligible naame,
;%%% a new tepporary is created.

i)

;*#%% If CSE-NODE does not compute a result (e.g. it is a cond jump), then
;##s () 18 returned. .

TRER
¥

(defun cse-node:pick-a-good-nane ( cse-node )
(assert (cse-node:is cse-node) )

(? ( (cse-node:initial? cse-node)
(cse-node:initial-name cse-node) )

" (initial all-initial-uses-ok? () )
do
(:= all-initial-uges-ok? t)

Eloop (for initial-use-cse-node in (cse.name:initial-uses name) )
do
(:= all-initial-uses-ok?
(2% all-initial-uses—ok?
(! (cse-node:ancestor? initial-use-cse-node
cse-node) ) ) ) ) )

(1f all-initial-uges-ok?
(return name) ) )

(result
(1f (cse-node:source cse-node)
(fa.temporary-nane (oper:part (cse-node:source cse-node)

*written) )
; (ta.temporary-name () ) ) ) ) )

%

0)))
e
1]
;#%+ (CSE-NODE:ADD-INITIAL-NAME-EDGES CSE-NODE)
T

;#*+ Adds a pseudo-edge between CSE-NODE and all nodes that use the initial
;#*+ value of the :NAME of CSE-NODE. This guarrantees that CSE-NODE will
;##¢ be evaluated (and will destroy the initial value of :NAME) only after
;#%¢ all uses of :NAME have been evaluated.

2T

(defun cse-node:add-initial-name-edges ( cse-node )
(1f (! (cse-node:initial? cse-node) )
(loop (for initial-use-cse-node in
(cse.name:initial-ugses (cse-node:name cse-node) ) )
(when (!== initial-use-cse-node cse-node) )

(do
(cse-node:add-pseudo-child cse-node initial-use-cse-node) ) ) ) )
ees
;#¢+ (CSE.SET-REMAINING-COUNTS)
ee

;*#%% Sets the :REMAINING-COUNT of each CSE-NODE to be the sum of the nuaber
;¢#s¢ of children and paseudo-children. This count indicates the number of
;##% children of a node reamaining to be evaluated.

(EEE

1

(defun cse.set-remaining-counts ()
(loop (for cse-node in #cge.all-cse-nodeas) (do
(:= (cse-node:remaining-count cse-node)
(+ (length (cse-node:children cse-node) )
(length (cse-node:pseudo-children cse-node) ) ) ) ) ) )

( (oper:part (cse-node:source cse-node) ‘written) Hbbd
(loop (for name in (cse~ncde:labels cse-node) ) Hddd
7 8

PS:<C.S.BULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1




C

;#%% (CSE.GENERATE-CODE)

;#*+ Traverses the DAG in topological order (from the leaves up),
;*+#% converting DAG nodes back into NADDR operations. A 1list of NADDR
;#%% 1g returned.

;*#** There 18 one slightly tricky thing going on here --

;¥%% *CSE.ALL-CSE-NODES* is in reverse order of creation. When we

;*#** enumerate through looking for all leaf nodes, a list of those leaf
;¢*# nodes 18 created (reversed again) containing those nodes in original
;*##+ gource order. Those nodes are processed in depth-first manner. This
;#** all guarrantees that miscellaneous pseudo-ops at the beginning or
;#*+ end of block maintain their relative position. Neat how that falls
;%% out.

BRI

;#*% But it 18 slightly more tricky than that. Induction variable removal
;*#** vorke best when the induction statments (I := I +/-/# C) are evaluated
;*#%* ag late as possible with respect to statements that use the older
;#*+ value of I. So when we are picking the next node off of the to-do
;**» gtack, 1f the first node on the stack is a possible induction

;¥*+ gtatenment, we ignore it and look deeper into the stack for a non-
;*** induction node.

I

ML

(:= ccse.beginn1ng-§saudo-operatorsa
*(def-block dcl) )

(defun cse.generate-code ()

(let ( (to-do-1ist () )
(code ) )
0))

(cond-code
;%% Build the TO-DO-LIST of nodes with no children. Put all
;*#+* DEF-BLOCKs and DCLs at the very beginning of the 1list.
MLl
(loop (for cse-node in #cse.all-cse-nodess)
(when (== 0 (cse-node:remaining-count cse-node) ) )
(when (! (memq (oper:operator (cse-node:source cse-node) )
¢ *cge.beginning-pseudo-operatorss) ) )
do
(push to-do-11ist cse-node) ) )

(loop (for cse-node in #cse.all-cse-nodeas)
(wvhen (== 0 (cse-node:remaining-count cse-node) ) )
(vhen (memq (oper:operator (cse-node:source cse-node) )
@ scge.beginning-pseudo-operatorss) )
o
(push to-do-list cse-node) ) )

(loop (while to-do-1ist)
(initial cse-node () )

(do
;*##% Pick the next node. If the first node in the remaining list
;#** 13 not a possible induction statement, use it. Otherwise
;#*# gee 1f there 1s a non-induction and non-pseudo-op node
;#+* later on in the list; 1f not, then just use the first
;*#** glement of the list.
yEER

(1f (! (cse-node:possible-induction? (car to-do-1ist) ) ) (then

(:= cse-node (pop to-do-list) ) )

(:= cse-node
(loop (for cse-node in to-do-list)
(unless (k& (cse-node:source cse-node)
(Il (oper:property?
?cse—node:sourca cse-node) °‘pseudo—o
(cse-node:possible-induction? cse-node

(do
(return cse-node) )
(result (car to-do-1ist) ) ) )
(:= to-do-1ist (top-level-removeq cse-node &&&) ) ) )

;#¢% Now generate NADDR for the node.
ThRE
(1f (! (cse-node:initial? cse-node) ) (then
(caseq (oper:group (cse-node:source cse-node) )
( (1f-true if-compare goto atop)
(push cond-code (cse-node:generate cse-node) ) )
(push code (cse-node:generate cse-node) ) ) ) ) )
(loop (for parent-cse-node in (cse-node:parents cse-node) ) (do
(1f (= 0 (-- (cse-node:remaining-count parent-cse-node) ) )
(push to-do-list parent-cse-node) ) ) ) )
(result
(1f cond-code (then
(assert (= 1 (length cond-code) ) )
(push code (car cond-code) ) ) )
(dreverse code) ) ) ) )

P

il

;#s% (CSE-NODE:POSSIBLE-INDUCTION? CSE-NODE)

1l

;#+# Returns true if CSE-NODE describes an operation of the form:
LR

IT1L] I:=I+/-/#C or I:=C+/-/s1
Ll

;es» for any C.

1l

(defun cse-node:possible-induction? ( case-node )
(let+( (name (cse-node:nane cse-node) )
(children (cse-node:children cse-node) )
(oper (cse-node:source cse-node) ) )

(22 (memq (oper:operator oper) °(iadd isub imul) )
4] ?== name %cae-aoﬁe:nano (car children) ) )
(== name (cse-node:name (cadr children) ) ) ) ) ) )

o

ieee

;#s% (CSE-NODE:GENERATE CSE-NODE)

ML L

;ttt Constructs a NADDR operation for CSE-NODE, substituting in the name
;#¢+ of this node and its children for the old variable names.

R i1

.
ML

(defun cse-node:generate ( cse-node )

9

10

PS:<C.S.BULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1




3 -

0)
(let ( (oper (cse-node:source cse-node) ) )
(?( (== "vbase (oper:operator oper) )
*(vbage ,(cse-node:nane cse-node) ,(oper:part oper °'vector) ) )
(defun cse-node-list:numbers ( list )
( (cse-node:children cse-node) (for (cse-node in list) (save
(:= oper ; (cse-node:number cgse-node) ) ) )
(oper:substitute-for-part
oper
Eloop (for child-cse-node in (cse-node:children cse-node) )
save
(cse-node:name child-cse-node) ) )
*read) )

(1f (cse-node:name cse-node) (then
(:= oper (oper:subatitute-for-part oper
(cse-node:name cse-node)
*written) ) ) )
oper)

(v
oper) ) ) )

X Tl
L

R
;#+# (CSE.PRINT)

1]

;*#¢+ Prints out the current DAG.
skeE

)

(defun cse.print ()

(loop (for cse-node in #*cse.all-cgse-nodes*) (do
(zsg O (cse-node:number cse-nods) ":% t)

(1f (cse-node:name cse-node)
(msg * name: ® (cge-node:name cse-node) t) )
(if (& (! (cse-node:name cse-noda) )
(cse—node:initial-name cse-node) )
(msg * 4initial-name: " (cse-node:initial-name cse-node) t) )
(12 (cse-node:labels cse-node)
(nsg ® 1abels: " (cse-node:labels cse-node) t) )
(1t (cse-node:source cse-node)
(msg * source: " (cse-node:source cse-node) t) )
(1f (cse-node:parents cse-node)
(msg * parents: ®
(cse-node-11st:nunbers (cse—node:parents cse-node) ) t) )
(1f (cse-node:children cse-node)
(msg ® children: o
(cse-node-1list:numbers (cse-node:children cse-node) ) t) )
(1f (cse-node:pseudo-children cse-node)
(msg * p-children: u
(coe-node-list:numbers (cse-node:pseudo-children cse-node) ) t))
(1f (cse-node:remalning-count cse-node)
(naf ® remaining-count: " (cse-node:remaining-count cse-node) t) )
Ei; (! (bit-set:= sbit-set.empty-set+ (cse-node:descendants cse-node)))
then
(nsg * descendants: "
(g §b§b;sgt:pr1nb (cse-node:descendants cse-node) ) )
t

11 12
PS:<C.S.BULLDOG.FLOW-ANALYSIS.TEST>COMMON-SUBEXPRESSION-ELIMINATION.LSP.1



c

(FG.FOLD-CONSTANTS)

Does constant folding, using an iterative algoritha similar to that
in in the Dragon Book. Given a constant assignment S: A := C (where
C 13 a constant number), we substitute C for A in all uses of S that
have S as the only reaching definition of A. If the use now has all
constant operands, we evaluate the right hand side and replace it by
an assignment statement. We keep iterating over the flow graph until
we can't do any more substitutions.

Constant folding also includes the following transformations (for both
integer and real arithmetic):

A{* / AND} 1 ==> A
A{+ -0R} 0==>4
O {* / AND} A ==> 0
A/ A ==> 1
A - A==>0

; Eventually, we'll want to do congtant folding on conditional jumps also.

Unintuitively, it is faster to keep iterating over the flow graph in

in depth-first order, rather than using a statment-propagation algorithm.
The reason is that enumerating in depth-first order causes

STAT :REACHING-DEFS to be evaluated very efficlenty (since it 1s
calculated on the fly from the basic block reaching defs). Whereas

a statement- propagation algorithm, Keeping a stack of statements that
have changed, evaluates STAT:REACHING-DEFS in random order, causing
esgentially N+#2 behaviour with lots of consing.

WA WA e WA M Wa mA M WA WA WA Wa we W s Wy W M s My e M ME W A EE WA WE ME WA ows

(eval-when (compile load)
(include flow-analysis:flow-analysis-decls) )

(defun fg.fold-constants ()

(loop (initial change? t)
(while change?)
(incr pass from 1)
(do
(:= change? () )

%goop (for bblock in (fg.depth-first-ordered-bblock-list "forward) )
o

(loop (for-each-bblock-stat bblock stat)
(when (!== ’"live (stat:operator stat) ) )
¢ (bind any-substitutions? () )
do
(loop (for-each-stat-operand-read stat operand)
(bind operand-reaching-defs
(stat:operand-reaching-defs stat operand) )
(vhen (== 1 (stat-set:size operand-reaching-defs) ) )
(bind def-stat (stat-set:choose operand-reaching-defs) )
(vhen (== 'assign (stat:operator def-stat) ) )
(bind constant (stat:part def-stat ‘readl) )
" (when (numberp constant) )
do
(:= (atat:source stat)
(oper:substitute-operand &2k

constant

operand

‘read) )
(:= any-substitutions? t) ) )

(1t (I| any-substitutions?
(== 1 pass) )
(then
(1f (cf.stat:simplify stat) (then
(:=change? ) ) ) ) )))))))

0)

jean
;#*% (CF.STAT:SIMPLIFY STAT)

JeER

;#¢% Destructively simplifies the source of STAT using the rules described
;#s* above. Returns true if STAT is now a constant assignment (or was
;#*% already).

jeen

;#s% This code relies on (EQUAL 0 0.0) returning true.

]

Rt

(defun cf.stat:simplify ( stat )
(let*( (operator (stat:operator stat) )
(read (stat:part stat 'read) )
(written (stat:part stat 'written) )
(identity (cf.operator:identity operator) ) )

(?( (z& (== 'assign operator)
: (numberp (stat:part stat ‘readi) ) )
1

( (22 (menq (stat:group stat) °'(one-in-one-out two-in-one-out) )
(for-every (operand in read)
(nunberp operand) ) )
(:= (stat:source stat)
‘(asaign ,written
., (apply (operator:execute-function aperator) read) ) )
t)

( (a2 (memq operator °'(imul fmul iand) )
(member O read) ) _
(:= (stat:source gtat)
‘(assign ,written 0) )
v)

( (2 (memq operator °(idiv fdiv isub fsub) )
(== (car read) (cadr read) ) )
:= (stat:source stat)
; ‘(assign ,written ,identity) )
%

( (e (memq operator ’(imul fmul iadd fadd iand lor) )
(nember identity read) )
(:= (stat:source stat)
‘(agsign ,written ,,(top-level-remove identity read) ) )

( (x& (memq operator ‘(idiv fdiv isub fsub) )

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSTIS>CONSTANT-FOLDING.1LSP.1




c

(= identity (stat:part stat ‘'read2) ) )
(:= (stat:source stat)
‘(assign ,written ,(stat:part stat 'read1) ) )

(t
(ONDIDID D]
1]
TERE
;##% (CF.OPERATOR:IDENTITY OPERATOR)
IEEE

;#*% Returns the identity constant for the glven operator.
JHEs
R ====

(defun cf.operator:identity ( operator )
(caseq operator

( (1mul idiv iand)
1)

( (fpul fdiv)
1.0)

( (1add 1sub ior)
0)

( (fadd foub)
0.0)

(o
0)))

3

PS:<C.S.BULLDOG.FLOW-ANALYSIS>CONSTANT-FOLDING.LSP.1



¢ ¢

(FG.PROPAGATE-COPIES)

. Propagates copies produced by assignment statements through the flow
. graph. For each statement S: A := B, all the uses of S are examined;
; 1 S copy reaches a use, then B can be substituted for A in the use.

The assignment statements are processed in depth-first order so that
; coples are propagated through chains of assignments.

; This algorithm differs slightly from that of the Dragon Book. The

. Dragon Book requires that every an agsignment copy-reaches every use

. before we substitute in any of the uses; thus, after substitutlon, the
; assignment can be deleted since it 1s useless.

; This algorithm subsitutes into each use of the assignment independently
of whether it copy-reaches every use; we count on dead-code removal

; to remove any useless assignnents so created. Doing the substitution

. wherever possible can potentially reduce the depth of the data precedence

; graph and eliminate needless write-after-conditional-read conflicts,

; even if we can't substitute an assignment into ALL of its uses.

(eval-when (compile load)
(include flow-analysis:flow-analysis-decls) )

(defun fg.propagate—copies ()
(1ets(P(ags§gn-stags 0))

;*##+ Set ASSIGN-STATS to be all assignments. The list 1is
;#*+ created in depth-first order, so that we can propagate
;#*+ coples through long chains of assignments.

Elooé (for bblock in (fg.depth-first-ordered-bblock-list ‘forward) )
do

(loop (for-each-bblock-stat bblock stat)

( (when (== "assign (stat:operator stat) ) )

do

(push assign-stats stat) ) ) ) )
(:= assign-stats (dreverse assign-stats) )

;#*+ For each assignment A := B, substitute B into each use
;#*+ of the assignment that has it as a reaching copy. We

;#** destructivel change STAT:SOURCE instead of creating a

;*%% new STAT so that we preserve the reaching-uses of the

;#** changed STAT; otherwise, we couldn't propagate through
;*#*% chains of assignments.

(loop (for assign-stat in assign-stats) (do
(loop (for use-stat in (stat:reaching-uses assign-stat) )
(when (!== "live (stat:operator use-stat) ) )
(when (stat-set:member? (snat:reaching-copies use-stat)
assign-stat)
(do
(:= (stat:source use-stat)
(oper:subatitute-operand (stat:source use-stat)
(stat:part assign-stat °'readi)
(stat:part assign-stat *written)
01) ‘read) ) ) ) )

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>COPY-PROPAGATION.LSP.1



3 3 €

BRIt TTTITEY
;##s Copyright (C) 1688 John R. Ellis. This file may be used for T
;*¥#% educational and research purposes only, by the faculty, students, #sssxs+s
;##* and staff of Yale University only. thkbdbds

*#% Note: 1In the conversion to ELISP, we had to sacrifice some efficiency
#+% in hashing. See CSE.EXPR:CSE-NODE-HASH below.

s maows e e

1EEE kEhkkEEE

CSE~-HASH-TABLES

This module implements the hash tables used by basic block coammon
subexpression elimination. There are three such tables,

one for mapping operators and operands onto previously found
CSE-NODEs with the same operator and operands;

one that maps a NAME onto the CSE-NODEs currently holding the value
of the NAME;

one that maps a NAME onto the initial (leaf) CSE-NODE whose
:INITIAL-NAME is NAME (the CSE-NODE that represents the NAMEs value
on entry into the basic block).

(CSE.INITIALIZE-HASH-TABLES)
Initializes the hash tables.

(CSE .EXPR:CSE-NODE KEY)
Maps KEY, a 1ist of the form (OPERATOR OPERANDi OPERANDZ) onto the
CSE-NODE in the CSE DAG that has that operator and operands. Returns
() 1f there is no such node.

(CSE .EXPR:DEFINE-CSE-NODE KEY CSE-NODE)
Asgoclates the CSE-NODE wivh KEY (see previous function) in the
hash table.

(CSE.NAME:CSE-NODE NAME)
Returns the CSE-NODE cnrrentl; representing the value of NAME (NAME
is in the :LABELS of CSE-NODE). A nevw initial node representing
NAME 15 created if there 1s no node currently holding NAME.

(CSE.NAME :DEFINE-CSE-NODE NAME CSE-NODE)
Associates CSE-NODE with NAME in the hash table that maps NAMEs
to the CSE-NODEs currently holding those NAMEs.

(CSE.NAME: INITIAL-CSE-NODE NAME)
Returns the initial CSE-NODE that represents the value of NAME on
entry to the basic block. Returns () if there i1s no such node.

(CSE.NAME : DEF INE-INITIAL-CSE-NODE NAME CSE-NODE)
Asgoclates CSE-NODE as the initial node of NAME.

(CSE.NAME:INITIAL-USES NAME)
Returns the parents of the initial CSE-NODE of NAME; that is, all
the direct uses of the initial value of NAME.

(CSE-NODE: ASSIGN-TO-NAME CSE-NODE NAME)
Moves the label NAME to CSE-NODE; if a previous node contained NAME
a8 & label, NAME i1s removed from that node. After calling this
function, (CSE.NAME:CSE-NODE NAME) will return CSE-NODE.

(eval-when (compile load)
(include flov-analysis:flow-analysis-decla) )

(eval-when (compile)
(build *(flow-analysis:cse-ncde) ) )

(declare (special
*Ccge.name:cse-nodes ;#+#+ a HASH-TABLE mapping a NAME to its
;##% current node

scpe.name:initial-cse-nodes ;*+* a HASH-TABLE mapping a NAME to 1its
:#%% initial node. NAME in this specilal
;%% cage may a constant number.

#cge.eXpr:cse-nodes ;#%% a HASH-TABLE mapping expressions onto
;#s% CSE-NODEs.

;h?sh—table.not—tonndt

(defun case.initialize~hash-tables ()
(:= #cse.name:cge-nodes
(hash-table:create "equalt 'sxhash) )

;¢¢¢ These two use EQUALT
;#%% because we want to
;¢¢¢ distinguish 1.0 froam 1.
(:= #cse.name:initial-cse-nodes* Y
(hash-table:create 'equalt °sxhash) )  ;sé+

(:= *cge.expr:cse-node*
(hash-table:create 'cse.eXpr:cse-node-compars
*cge.expr:cse-node-hash) )
0)

(defun cge.expr:cse-node-hash ( (operator operanda operandb) )
(sxhash operator) )

Ettt Note: In MACLISP, we did MAKNUMa on the three items here
;##% to hash. But since ELISP doesn’t have MAKNUM (it's a copying
;#¢s GC), we just hash on the operator. This isn’t so nice,

;¢*# but will probably suffice for now; eventually, we could put
;#¢% unique numbers in each node and use that as the hash.

(defun cse.expr:cse-node-compare ( (operator!l operandia operandib)
(operator2 oparand2a operand2b) )
(2% (== operatori operator2)
(== operandia operand2a)
== operandib operand2b) ) )

(defun cse.expr:cse-node ( key )
(let ( (cse-node (hash-table:get #cse,expr:cse-nodes key) ) )

(if (== shash-table.not~found* cse-nods)
Q)

2

S:<C.S.BULLDOG.FLOW-ANALYSIS>CSE-HASH-TABLES.LSP. 156



e «

cse-node) ) )

(defun cse.expr:define-cse-node ( key cae-node )
(assert (cse-node:is cse-node) )
(hash-table:put #cse.expr:cse-node* key cse-node) )

(defun cge.name:cse-node ( name )
(let ( (cse-node (hash-table:get #cse.name:cse-nodes naze) ) )

(1 (== rhagh-table.not-founds cse-node) (then
(:= cse-node (cse-node:create-initial name) )
(hash-table:put #*cse.name:initial-cse-node+ name cse-node)
(hash-table:put *cse.name:cse-node* nape cse-node)
cse-node)

(else
cse-node) ) ) )

(defun cse.name:define-cse-node ( name cge-node )
(assert (cse-node:1s cse-node) )
(hasnh-table:put #cse.name:cse-node+ name cse-node) )

(defun cse.name:initial-cse-node ( name )
(let ( (cse-node (hash-table:get #cse.name:initial-cse-nodes name) ) )
(1f (== #*hash-table.not-found+ cse-node)

cse-node) ) )

(defun cse.name:define-initial-cse-node ( name cse-node )
(assert (cse-node:is cse-node) )
(hash-table:put #*cse.name:initlal-cse-nodes name cse-node) )

(defun cse.name:initial-uses ( name )
(let ( (initial-cse-node (hash-table:get #*cse.name:initial-cse-nodes

name) )
(1t (;=)thash-table.not—toundt initial-cee-node) (then

(else
(cse-node:parents initial-cse-node) ) ) ) )

(defun cse-node:assign-to-name ( cse-node name )
(assert (cse-node:is cse-node) )
(let ( (old-cse-node (hash-table:get ¢cse.name:cse-nodes name) ) )

(if (!== shash-table.not-found#+ old-cse-node) (then
(:= (cse-node:labels old~cse-node)
(top-level-removeq name (cse-node:labels old-cse-node) ) ) ) )
(push (cse-node:labels cse-node) nanme)
(hash-table:put #cse.nane:cse-nodes nane cse-node) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>CSE-HASH-TABLES.LSP.156



C

Hill LAl E L L L]
;#s¢ Copyright (C) 1088 John R. Ellis. This file may be used for EEREERES
;#*+ educational and research purposes only, by the faculty, students, #s#sxsss
;#++ and staff of Yale University only. trEdhbed
L L EEEEERE

: CSE-NODE

; subexpression elimination.
; modules implementing CSE.

(def-struct cse-node

name

nunber
labels
(children
() suppress)
(pseudo-children
() suppress)

(parents

() suppress)
repaining-count

(descendants
s+bit-set.empty-gets)

datatype

source

niscellanecus?
killed?

initial-nane

(vloads-vatores
() suppress)

This module implements the nodes of the DAG built for basic block common

Everything here is private to the few

;#¢#+ Flelds used by each variant of CSE-NODE

The final symbolic name given to this node.

This may be a constant number for initial nodes.
Unique number identifying this node.
List of scalar NAMEs whose value is this node.
List of CSE-NODEs representing the operands.

List of nodes which must precede this node
in any linear order but which aren't in
:CHILDREN.

List of nodes for which this node is in
:CHILDREN or :PSEUDO-CHILDREN.

Nunber of children (including both :CHILDREN
and :PSEUDO-CHILDREN) that remain to be
evaluated before this one can be.

Bit set of descendants (via :CHILDREN
and :PSEUDO-CHILDREN) of this node.

The datatype of this node, INTEGER, FLOAT, or
() for unknown.

;*#*» For interior nodes

The source operation for this node; () 1f not
an interior node.

True 1f this node doesn’t do anything useful.

True if this node is a VLOAD or VSTORE and
its value is no longer available (because
a subsequent VSTORE invalidated 1t).

;#++ For initial nodes

L T IS I

#CSE.ALL-CSE-NODES+

of a new one.

For initial nodes, the NAME: () otherwise.
This may be a constant number.

For a vector name initial node, the list
of CSE-NODEs that are VLOADs or VSTOREs froa
the vector.

A 118t of all CSE-NODEs in the current DAG.

(CSE.INITIALIZE-CSE-NODES)
Forgets the previous DAG of CSE-NODEs and prepares for the building

M W B W W e W e W WA WA WL WS WE W WA WA WA We W WA e W e W W WE W WS

(CSE-NODE : CREATE)
Builds a new CSE-NODE.

(CSE-NODE :CREATE-INITIAL INITIAL-NAME)
Creates a leaf node in the DAG with name INITIAL-NAME (either a
variable name or a constant).

(CSE-NODE : CREATE-INTERIOR SOURCE CHILDREN)
Creates an interior node in the DAG with NADDR operation SOURCE
and with CHILDREN, a list of chlld CSE-NODEs that form the operands.

(CSE-NODE : ADD-PSEUDD-CHILD CSE-NODE CHILD-CSE-NODE)
Makes CHILD-CSE-NODE a pseudo-child of CSE-NODE (a pseudo child
is one that must be evaluated before the pareant, but is not an
operand of the parent).

(CSE~NODE : MAKE~-COPY-CSE-NODES CSE-NODE)
For each label of CSE-NODE, builds a parent xASSIGN node that coples
the value of CSE-NODE into the label. :LABELS of CSE-NODE is set
to ().

(CSE-NODE:INITIAL? CSE-NODE)
True if CSE-NODE 1s an initial node (leaf node).

(CSE-NODE : ANCESTOR? CSE-NODE1 CSE-NODE2)
True if CSE-NODE1 is an ancestor of CSE-NODE2.

(eval-when (compile load)

(include flow-analysis:{low-analysis-decls) )

(declare (special

;*#¢¢ A 1ist of all CSE-NCDEs created.
;*%» Total number of CSE-NODEs created.

*Cge.all-cse-nodos+
*cge.total-cse-nodess

(defun cse.initialize-cse-nodes ()

(:= #cge.all-cse-nodes* () )
(:=)tcse.total-cse-nodest 0)

(defun cse-node:create ()

(let ( (cse-node (cse-node:new) ))
(push #cse.all-cse-nodea* cse-node)
(++ scge.total-cse-nodess)
(:= (cse-node:number cse-node) #*cse.total-cse-nodess)
cse-node) )

(defun cse-node:create-initial ( initial-nane )

(let ( (cse-node (cse-node:create) ) )
(:= (cse-node:initial-name cse-node) initial-name)
cse-node) )

(defun cse-node:create-interior ( source children )

(assert (consp source) )
(let ( (cse-node (cse-node:create) ) )

b v I S PP

S:<C.S.BULLDOG.FLOW-ANALYSIS>CSE-NODE.LSP.12

2




g”‘

(cse-node:source cse-node) source)

(cse-node:datatype cse-node) (oper:dest-datatype source) )
(cse-node:children cse-node) children)
(cse-node:descendants cae-node)
(cse-node:calculate-descendants cse-node) )

L
nuwnn

(loop (for child-cse-node in children) (do
(push (cse-node:parents child-cse-node) cse-node) ) )

cge-node) )

(defun cse-ncde:calculate-descendants ( cse-node )
(assert (cse-node:is cse-node) )
(let ( (descendants *bit-set.empty-sets) )

(loop (for child-cse-node in (cse-node:children cse-node) ) (do
(:= descendants
(bit-set:union
(bit-set:unionl (cse-node:descendants child-cse-node)
(cse-node :number child-cse-node) )
descendants) ) ) )
(loop (for child-cse-node in (cse-node:pseudo-children cse-node) ) (do
(:= descendants
(bit-get:union
(bit-set:unioni (cse-node:descendants child-cse-node)
(cse-node :nunber child-cse-node) )
descendants) ) ) )

descendants) )

(defun cse-node:add-pseudo-child ( cse-node child-cse-node )
(assert (cse-node:is cse-node) )
(asgert (cse-node:is child-cgse-node) )

(push (cse-node:pseudo-children cse-node) child-cse-node)
(push (cse-node:parents child-cse-node) cse-node )
Egs;-noda:propa;ate-neuvdeacondanus cse-node)

(defun cse-node:propagate-new-descendants ( cse-node )
(let ( (new-descendants (cse-node:calculate-descendants cse-node) ) )
(1f (! (bit-set:= new-descendants
(cse-node:descendants cse-node) ) )

(then
(:= (case-node:descendants cse-node) new-descendants)
{loog (for parent-cse-node in (cse-node:parents cse-node) ) (do

cse-node : propagate-nev-descendants pareant-cge-node) ) ) ) ) )

0)

(defun cse-node:make-copy-cse-nodes ( cse-ncde )
(assert (|| (! (cse-node:labels cse-node) )
(cse-node:datatype cse-node) ) )

(loop (for name in (cse-node:labels cse-node) )
(initial result-list
copy-cse-node () )
(do
(:= copy-cse-node
(cse-node:create-interior
(12 (== ’"integer (cse-node:datatype cse-node) )
*(iassign duaomy dumny)

'(rassign dunny dumny) )

*(,cse-node} ) )
(cse-node:assign-to-nane copy-cse-node naae)
(push result-list copy-cse-node) )

(result
(:= (cse-node:labels cse-node) () )
result-1ist) ) )

(defun cse-node:initial? ( cse-node )
(assert (cse-node:1s cse-node) )
(cse-node:initial-name cse-node) )

(defun case-node:ancestor? ( cse-nodel cse-node2 )
(assert (cse-node:1s cse-nodel) )
(assert (cse-node:i1s cse-node2) )

(bit-set:nember? (cse-node:descendants cse-nodel)
(cse-node:number

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>CSE-NODE.LSP.12

4

cge-node2) ) )




¢

¢

DEPENDENCIES

This module implements a simple Unix MAKE-1ike facility for keeping
track of which transformations and copputations on the flow graph are
still valid. For exaople, FG.MOVE-LOOP-INVARIANTS destroys several
computed values, such as the dominator info, because it changes the
block structure of the flow graph. Any succeeding function that needs
the loop information will first have to recompute the loop info. We
want to automate the process of recompuating values so that we have
the flexibility of reordering or turning off transformations.

(DEF-DEPENDENCY FUNCTION
(NEEDS N-F1 [N-F2 ...] )
(DESTROYS D-F1 [D-F2 ...] )
(REINITIALIZE R-F) )

States that FUNCTION needs the values computed by the functions

N-F1 before it can be executed: the values computed by the functions
D-F1 are destroyed by invoking FUNCTION. The functions N-Fi and
D-Fi should have been declared in DEF-DEPENDENCYs. If another
dependency function destroys the values computed by FUNCTION, the
reinitializing function R-F will be called after the destroying
function finishes. R-F is also called at the very beginning of
flow analysis.

(FG.INITIALIZE-DEPENDENCIES)
Forgets all previous dependencies declared by DEF-DEPENDENCY.

(FG.INITIALIZE-DEPENDENT-FUNCTIONS)
Forgets about any previously computed dependency functions, lavoking
all the reinitializers whether the corresponding function was
previously computed.

(FG. INVOKE-DEPENDENT-FUNCTION FUNCTION)
If FUNCTION has already been invoked and not subsequently destroyed,
this will do nothing. Otherwise, it calls the specified function,
which should have been declared in a DEF-DEPENDENCY. Before invoking
FUNCTION, all the functions specified in the NEEDS clause of the
corresponding DEF-DEPENDENCY are recursively invoked if they have
not been previously computed. After FUNCTION terminates, the
functions specified in the -DESTROYS clause are forgotten; that is,
the next time they are invoked by FG.INVOKE-DEPENDENT-FUNCTION either
directly or implicitly by a NEEDS clause, the destroyed functions
will be called to recompute their values. Any functions depending
on the destroyed functions are recursively destroyed.

(FG .DESTROY-DEPENDENT-FUNCTION FUNCTION)
"Forgets® the fact that FUNCTION may have been previously computed.
Any functions that depend on FUNCTION via a NEEDS clause will also
be recursively destroyed. The next time FG.INVOKE-DEPENDENT-FUNCTION
is called, the a "forgotten® function will actually be recomputed.

WEWS WO BE NS N WS T NS B NI WA WS RS M W BE B WS WS WS B s B W RE W WA WS WS WL B B Wa B e B B WA Wa W4 WA ML WE e v e Me wo by oW mo o

(1nclude flov-analysis:flow-analysis-decls)

(defvar *dep.computed-functions* () )
;#%+ List of all function names that
:**s have been previously computed
;*%#% and not subsequently destroyed.

(def-struct dep.dependency ;#*** One guch record per DEF-DEPENDENCY.

function ;#** The name of the function.

needs ;¢###% The list of functions needed.
degtroys :##* The list of functions destroyed.
reinitialize ;#¢% The reinitializing function.

(defun dep.function:dependency ( function )
(loop (for dep in #fg.all-dependenciess) (do
(1f (== function (dep.dependency:function dep) ) (then
(return dep) ) ) )
(result () ) ) )

(defmacro def-dependency args
*(dep.define-dependency ',args) )

(defun dep.define-dependency ( (function . clauses ) )
(let % (dep (dep.dependency:new function function) ) )

(assert (litatom function) )

(loop (for clause in clauses) (do
(assert (consp clause) )
(caseq (car clause)

(needs

(:= (dep.dependency:needs dep) (cdr clause) ) )
(destroys

(:= (dep.dependency:destroys dep) (cdr clause) ) )
(reinitialize

(:= (dep.dependency:reinitialize dep) (cadr clause) ) )

(v
(error (1ist clause
*Invalid DEF-DEPENDENCY syntax.®) ) ) ) ) )

(:= sfg.all-dependenciess
(top-level-remove (dep.rnnction:dapandencg function)
*fg.all-dependenciest)
(push *fg.all-dependenciess dep)
function? )

(defun f£g.initialize-dependencies ()
(:= #fg.all-dependencies* () ) )

(defun fg.inivialize-dependent-functions ()
(loop (for dep in ¢fg.all-dependencies+) (do
(let ( (reinitialize (dep.dependency:reinitialize dep) ) )
(if reinitialize (then
(msg 0 "Invoking " reinitialize t)
(funcall reinitialize)
0¥y

(:= sdep.computed-functions* () )

(defvar *dep.nesting* 0)

(defun fg.invoke-dependent-function ( function )
(let ( (dep (dep.function:dependency function) )

(+dep.nestings (+ 1 sdep.neatings) ) )

bl

2

PS:<C.S5.BULLDOG.FLOW-ANALYSIS>DEPENDENCIES.LSP.17



C c

(assert dep)

(12 (! (nemq function sdep.computed-functions+) ) (then
;#*+ Recursively invoke any needed functions

(loop (for needed-function in (dep.dependency:needs dep) ) (do
(1g.invoke-dependent-function needed-function) ) )

;¢+¢ Invoke the function.

(msg 0 (t (+ 2 +dep.nesting*) ) “"Invoking * function t)
(funcall function)

;##+ Destroy the specified functions

Eloop (for destroyed-function in (dep.dependency:destroys dep) )
do
(fg.destroy-dependent-function destroyed-function) ) )

;*s+ Remepber the function as computed

(1t (1 (éalq function #dep.computed-functions*) ) (then
(push edep.computed-functions* function) ) ) ) ) )

*dep.conputed-functionss)

(defun fg.destroy-dependent-function ( function )
(1et ( (dep (dep.function:dependency function) )
(sdep.nestings (+ 1 ¢dep.nestings) ) )
(assert dep)

;**+ Recurgively destroy all functions that NEED this
;¢¢+ function

(loop (for next-dep in *fg.all-dependenciess) (do
?1! (memq function (dep.dependency:needs next-dep) ) (then
(fg.destroy-dependent-function
(dep.dependency:function next=dep) ) ) ) ) )

;##+ Call this functions reinitializer if it has one.

(let ( (reinitialize (dep.dependency:reinitialize dep) ) )

(1f (2% reinitialize
¢ (memq function *dep.computed-functionss) )
then

(aag 0 (t (* 2 s+dep.nesting*) ) "Destroying "

function t)
(funcall reinitialize)
0)))

;#*¢ Remove the funtion froam the list of remembered functions.

(:= sdep.computed-functionss
(top-level-removeq function #*dep.computed-functiocnas) )

0))

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>DEPENDENCIES.LSP.17



JREE
IREE

;#++ This module orders the bblocks of the flow graph by depth first order.
LEER

;#*+ (FG.SET-DEPTH-FIRST-ORDER)

;##3+ (FG.INITIALIZE-DEPTH-FIRST-ORDER)

e This should be called each time the basic block structure of the

JhEs flow graph changes. The two functions are synonyas for clarity
jese in the function dependencies (ughh).
TR

;*** (FG.DEPTH-FIRST-ORDERED-BBLOCK-LIST ORDERING)

JkEk Returns a list of BBLOCKs in depth first order (ORDERING i1s either
b REVERSE or FORWARD). The results of the last call to this function
H are remembered, so that a depth first search is actually done

b Ll only once. The :DFO-NUMBER of each BBLOCK 1s set to its position
il in the forward ordering.

1

iEEE
(include flow-analysis:flow-analysis-decls)

(declare (special
*dfo.current-orders ;#++ one of (), REVERSE, or FORWARD
*dfo.ordered-iist+ ;##* order list of BBLOCKs.
*dfo.visited-bblockss ;*#*#+ bit set of currently visited BBLOCKs.

*bit-get.enpty-sets
))
(defun fg.set-depth-first-order ()
(fg.initialize-depth-first-order) )
(der%n fg.initialize-depth-first-order ()

sdfo.current-orders () )
(:= #dfo.ordered-list* () ) )

(defun fg.depth-first-ordered-bblock-list ( ordering )
(assert (2 (1itatom ordering)
(nemq ordering '%ravarso forward) ) ) )

(12 (! sdfo.current-order+) (then
(:= sdfo.visited-bblocks+ sbit-set.empty-sets)
(dfo.search ¢fg.entry-bblocks)

(:= sdfo.visited-bblocks* *bit-get . empty-sets)
(:= sdfo.current-order* °'forward)

(loop (for bblock in *dfo.ordered-11st+)
( (incr 1 from 1)
do

(:= (bblock:dfo-number bblock) 1) ) ) ) )
(12 (== ordering #dfo.current-orders) (then
*dfo.ordered-11ist*)
(els?

(:

#dfo.current-order* ordering)
sdfo.ordered-11st* (dreverse *dfo.ordered-liat*) ) ) ) )

(defun dfo.search ( bblock )
(:= #dfo.visited-bblocks* (bit-set:unioni *dfo.visited-bblockss*
(bblock:number bblock) ) )

(for (succ-bblock in (bblock:succs bblock) ) (do
(if (! (bit-pet:member? *dfo.visited-bblocks#
(bblock:number succ-bblock) ) )

(dfo.search succ-bblock) ) ) )

(push #dfo.ordered-1ist+ bblock) )

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DEPTH-FIRST-ORDER.LSP.6



eg’“

DERVIATIONS

This module provides "derivations® of integer variable definitions.

A derivation of a variable is an expression for the variable in terms
of the induction variables of the innermost loop containing the
variable's definition; if the definition 18 not contained in a loop,
then the expression is in terams of initial program inputs.

The derivation expressions are diophantine expressions, which are defined
elsevhere; the recognized operators are +, #, -, and &. & expresses
alternative -- its operands are the alternative derivations for a
definition.

Derivations are computed by first, for each loop, finding the get of
induction variables of that loop and splicing in a dummy BBLOCK loop
header at the top of the loop that looks like:

(LOOP-ASSIGN I1)
(LOOP-ASSIGN I2)

(LOOP-ASSIGN In)

where the Il are the loop's induction variables. In this module, a
variable I is an induction variable of a loop if:

1. The variable has a definition in the loop.
2. That definition reaches the loop header via one of the back-edges.
3. The variable is live on entry to the header of the loop.

After the dummy loop assignments are inserted, reaching definitions
are re-calculated. This lets us easily identify which reaching
definitions that reach an operand are induction variables defined in
the previous iteration of the loop body.

A derivation for a definition 18 found by recursively tracing the
reaching definitions for each operand backwards. The backwards chaining
stops at definitions that aren’t one of the following known operators:
IADD, IMUL, ISUB, INEG, and ASSIGN. Note specifically that the backwards
chaining stops at a LOOP-ASSIGN that doesn't specify an equivalent
expression for the loop induction variable. The unknowns of the
derivation are the STATs for which a derivation cannot be derived.
Multiple reaching definitions for a variable are included in the
derivation using the & operator.

Derivations for a definition are remembered as they are found in the
field STAT:KNOWN-DERIVATION, so getting a derivation for all expressions
is linear in the size of the flow graph.

(FG.INITIALIZE-DERIVATIONS)
Initializes this module.

(FG.INSERT-LODP-ASSIGNMENTS)
Inserts a (LODOP-ASSIGN I) for each induction variable of the loop
at the beginning of the loop header.

(STAT:DERIVATION STAT)
Returns the diophantine expression representing the derivation of
the variable defined by STAT. The leaves of the expression are
STATs and constants.

(STAT :OPERAND-DERIVATION STAT OPERAND)

e ma e Baowa wa we

Returns the derivation of an operand of STAT. OPERAND 18 just a
variable name that is read by STAT.

(STAT : INDEX-DERIVATION STAT)
Returns the derivation of the index operand of STAT, which should

be a vector reference.

(include flow-analysis:flow-analysis-decls)

ML
JEeS

;4% (FG.INITIALIZE-DERIVATIONS)
JEEE

.

(def%? gs.1nibislize‘dor1vatlons 0

ML
skkE

is*s (FG.INSERT-LOOP-ASSIGNMENTS)
k%S

;¢#*¢ This might be speeded up (who cares?) and simplified (I care) by .
;#*+ Just looking at the definitions that reach the loop header; it isn’'t

;#%% necessary to consider each back edge individually.

(eRE

(defun fg.insert-loop-assignments ()
(loop (for-each-loop loop)
¢ (initial induction-vars () )
do

(:= induction-vars () )

;#*% Gather the set of induction variables of the loop

(loop (for-each-bblock-set-element (loop:back-edges loop)
back-edge-bblock)
(do
(:= induction-vars
(unionq induction-vars
(der.loop:back-edge-bblock:induction-vars
loop back-edge-bblock) ) ) ) )

;*++ Ingert a (LOOP-ASSIGN I) at the top of the loop header
;#++ for each induction variable I.

(loop (for var in induction-vars) (do
?stat:insart-sbat
(bblock:first-stat (loop:header loop) )
(stat:create °(loop-assign ,var) ) ) ) ) ) )

0)

L
HL Ll
;e%+ (DER.LOOP:BACK-EDGE-BBLOCK : INDUCTION-VARS LOOP BACK-EDGE-BBLOCK)

"U T L e e 0 e

S:<C.S.BULLDOG.FLOW-ANALYSIS>DERIVATIONS.LSP.8

2



¢

C

ok

-*#% Returns a list of the induction variables of LOOP that have

** definitions reaching the loop header via the back-edge whose tail
;*#* 18 BACK-EDGE-BBLOCK.
LkEE
IhEk

(defun der.loop:back-edge-bblock:induction~vars ( loop back-edge-bblock )
(let ( (induction-names () )
(edge-reaching-defs
(stat-set:intersection
(loop:stats loop)
(bblock:reaching-cut back-edge-bblock)
(bblock:reaching-in (loop:header loop) ) ) ) )

EDGE-REACHING-DEFS 1is the set of definitions contained
in the loop that reach the loop header via the back
edge.

I
(k%
(eEE
IeEE
BT
TeER
ik
R

Enumerate over all the variables that are live on
entry to the loop header, and if any one of them
has definitions in EDGE-REACHING-DEFS, it 18 an
induction variable.

(loop (for-each-name-set-element (bblock:live-in (loop:header loop) )
¢ live-nane)
do

(1f (! (stat-set:= #fg.empty-stat-set+
(stat-set:intersection
(name:defining-stats live-name)
edge-reaching-defs) ) )
(then

(push induction-names live-name) ) ) ) )

induction-names) )

11

;#*+ (STAT:DERIVATION STAT)
T

(defun stat:derivation ( stat )
(asgert (stat:is stat) )

(1f (stat:known-derivation stat) (then
(stat:known-derivation stat) )
(elge
(:= (stat:known-derivation stat)
(cageq (stat:operator stat)
( (1add 1isub imul)
*(.(caseq (stat:operator stat)
(iadd '+)
(igad *-)
(ioul *#) )
. (stat:operand-derivation
stat (stat:part stat ‘readl) )
. (stat:operand-derivation
stat (stat:part stat 'read2) ) ) )
(ineg

‘(- .(atat:operand-derivation

stat (stat:part stat ‘readl) ) ) )
(assign
(stat:operand-derivation
stat (stat:part stat ‘readl) ) )
(loop-assign
(11-let ( (read2 (stat:part stat ‘read2) ) )
(stat:gperand—derivatlon stat read2)
stat)

stat) ) ) ) ) )

;‘t-
1eRe
JEEE
e

(STAT :OPERAND-DERIVATION STAT)

Jek
(defun stat:operand—derivation ( stat operand )
(1t (nunber? operand) (then

(1f-1et ( (varkderivation
(assoc operand (stat:known-operand-derivations stat) ) ) )

(then
(cadr varkderivation) )
(else
(let*( (reaching-defs (stat:operand-reaching-defs stat operand))
(derivation
(loop (for-each-stat-set-element reaching-defs
def-stat)
¢ (initial result () )
do
(push result (stat:derivation def-stat) ) )
(result *‘(& ,,(dreverse result) ) ) ) ) )
(push (atat:known-operand-derivations stat)
‘(.operand ,derivation) )
derivationg )))))
JEEe
;#*% (STAT:INDEX-DERIVATION STAT)
I

(defun stat:index-derivation ( vector-stat )
(stat:operand-derivation
vector-stat
(stat:part vector-stat ‘index) ) )

3

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DERIVATIONS.LSP.6

4




C

c

. DISAMBIGUATOR

This module implements the interface functions of the "disambiguator”

: as described in DOC:DISAMB.DOC. The description of the interface won't

; be repeated here (to make sure that there is one, and only one,
description that 18 kept up to date).

+ (FG.INITIALIZE-NADDR:STAT-MAPPING)
(FG.INITIALIZE-DISAMBIGUATOR)
Initializes this module, clearing any old data structures.

(FG.DISAMBIGUATE)
Prepares for disambiguation by:

1. Adding all the assertions to the assertion database.
2. Obtaining and storing derivations for each vector index.

; (FG.CREATE-NADDR :STAT-MAPPING)
: Creates the mapping from source NADDR to STATs.

(START-TRACE)
See DOC:DISAMB.DOC.

(PREDECESSORS SOURCE-OPERATION TRACE-DIRECTION DATUM)
See DOC:DISAMB.DCC.

: (OPER:LIVE-IN OPER)
H See DOC:DISAMB.DOC.

(OPER:LIVE-OUT OPER)
See DOC:DISAMB.DOC.

; (OPER:LIVE-OUT-ON-EDGE OPER DIRECTION)
See DOC:DISAMB.DOC.

.
.
.
*
.
[
.
.
.
.
.
.
.
»
.
.
.
"
.
.
.
.
.
.
.
.
.
.
.
.
.
»
.
.
.
.
.
.
.
O
.
.
.

(include flow-analysis:flow-analysis-decls)

HAd

MLt

;#*% DIS.RW

BT

;*#¢% Each read and write of a variable on the trace presented to the

;%¢+ digambiguator via PREDECESSORS is represented using a DIS.RV (read/write)
;*#** record.

LR

AL I ISP T T

(def-struct dis.rw ;s

8tat ;##x The STAT reading/writing.

name ;#+* The scalar or vector variable being read/written
;#*+  (or name of of the vector).

name-type ;#%+ SCALAR or VECTOR.

operand-number ;#¢+ Operand number of the variable in the NADDR
;#s+  operation (STAT:PART numbering).

LRk

IHEERRERREERRREREE D REE

HlL)

;#*# All the DIS.RW records representing read/writes on the trace that
:##% haven't yet been killed by new read/writes are stored in an

;#+* agsociation 11st mapping a name onto the DIS.RW records

;*#% reading/writing the name. As each new element in the trace is
;*##% presented, the papping is updated -- DIS.RW records representing
;#+# killed variables are removed, and records representing the reads
;#** and writes of the new element are added.

sEER

JEERRRERERRR R R R R Rk

(declare (special  ;**x
*dis.name:rws* ;+*++ Hash table mapping varlable names onto list of the
)

;#4% form: =
R

(R (RW1 RW2 RWS ...)

JHEk

;e#% where RW1 are DIS.RW records representing the
;#s% reads/writes of a variable VAR (scalar or vector).
JEEERERRR R R EE kR kR

Lt

;#+% (DIS.NAME:RWS NAME)

il Maps a name to a 1ist of DIS.RW records describing reads and writes
(EEE of that name. NAME may be a vector.

RALL

;*++ (DIS,NAME:DEFINE-RWS NAME RWS)

Jeek Assocliates a 1ist of DIS.RW records (RWS) with NAME, removing any
Hb b previous assoclation.

il

;¢¢+ (DIS.NAME:ADD-RW NAME RVW)

JhEE Adds RV to the list of DIS.RW records associated with NAME.

JEEs

L

(defun dis.name:rws ( name )
(let ( (rws (hash-table:get #dis.name:rws+ name) ) )
(12 (== rws shash-table.not-founds)

0
rws) ) )

(defun dis.name:define-rvs ( name rws )
(hash-table:put #dis.name:Trws* name rws) )

(defun dis.nape:add-rw ( name rvw )
(let ( (rws (hash-table:get #dis.name:rws+ name) ) )
(1f (== rws shash-table.not-found+) (then R
(hash-table:put #dis.nane:rws+ name ‘(,rw) ) )
(else
(hash-table:put *dig.name:rws+ name ‘(,rw ,,rws) ) ) ) ) )

Ll

(EE

;##* The client of PREDECESSORS identifies operations by handing in the
;#%% 118t8 representing the NADDR operations, and the disambiguator needs
;#** to find out which STAT that corresponds too. So we use a hash table:
L

type ;#++ READ, CONDITIONAL-READ, WRITTEN T T T
(datua ;#++ Random codegenerator value associated with :STAT, (declare (special H b ad
() _suppress) ;ss+ : +dis.oper:stats ;##% A hagh table created by HASH-TABLE:CREATE
1 2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATDR.LSP. 10




r

-

;##* that has NADDR operations (lists) as EQ keys,

: [ ;%4 and STATs as associated values.
SEEREREE A RRE R R R AR R R AR AR AR R
DREES

(defun fg.initialize-disambiguator ()
(:= *dis.name:rwss () )

(defun fg.initialize-naddr:stat-mapping ()
(:=)tdls.opar:statt (hash-table:create) )

(defun fg.disambiguate ()

;##+ Collect all the assertions in the prograa.

.

(Iooﬁ (for-each-stat stat)
@ (vhen (== ‘assert (stat:operator stat) ) )
{+]

(de:assert (stat:part etat 'compare-op)
(stat:operand-derivation stat (stat:part stat ‘readl) )
(stsg:gp;rand-derivat1on stat (stat:part stat ‘read2) )
stat

;*+¢ Obtain derivations for the indices of vector references.

(looﬁ (for-each-stat stat)

@ (vhen (stat:property? stat °vector-reference) )
o

(stat:index-derivation stat) ) )
0)

(defun fg.create-naddr:stat-mapping ()
(loop (for-each-stat stat) ?do
](hash—aahle:pua #dig.oper:stats (stat:source stat) stat) ) )

(defun start-trace ()
(;=)td1s.nanu:rust (hash-table:create) )

(defun predecessors ( source-operation trace-direction datua )
(let ( (stat (hash-table:get *dis.oper:stat* source-operation) ) )
(assert (!== stat s+hash-table.not-founds) )

(dis.stat:conflicts

;#s% This 18 a test function for testing out this module. STAT-NUMBER-LIST
;#%% 18 a list of STAT numbers that are to be the trace; conditional jumps
;*#* are always assumed to go to the right. The trace predecessors of each
;*### trace STAT are printed out in complete, gory detail.

TR

P —
14

(defun dis.test ( stat-number-1ist )
(fg.initialize-disambiguator)

(loop (for nuamber in stat-number-list)
(initial stat () )
(next stat (numher:stat. nunber) )
(do
(asg 0 t number ": ® (gtat:source stat) t)
(loop (for (pred reason source-operand source-type
pred-operand pred-type)
( in (dis.stat:conflictas stat 'right stat) )
do
* (j (stat:nuaber pred) 2)
* (J (stat:source pred) -20)
(J (1t (== 'operand-conflict reason) °'yes 'maybe) -E)
()} source-operand 2)
(caseq source-type (read 'r) (written ‘w) (t 'c) )
(] pred-operand 2)
(caseq pred-type (read °'r) (written 'w) (t ‘c) ) ) ) )

(msg

)))

;xs% (DIS.STAT:CONFLICTS STAT TRACE-DIRECTION DATUM)

;#+#+ Returns the conflicts between STAT (the next element of the trace)
;*++ and previous trace elements. The returned conflicts are in the form
;*#¢» a3 specified for PREDECESSORS by DISAMB.DOC. TRACE-DIRECTION is
;%s% the direction a conditional-jump takes, and DATUM 1s the arbitrary
;#*s client value associated with STAT.

;#s*+ Ag a side effect, the mapping between nages and read/written variables
;#++ 15 updated to reflect the reading/writing done by STAT.

(X ]

(defun dis.stat:conflicts ( stat trace-direction datum )

(let*( (stat-written-rv
(dis.stat:create-written-rv stat datuam trace-direction) )

Ettt The DIS.RW record representing the variable written
;#%% by STAT ( () 1if there is no written variable).

(stat-written-naame
(1f stat-written-rw (dis.rw:name stat-written-rw) () ) )

stat ;ttt The variable nape written.

trace-direction

datum) ) ) (stat-read-rvs

(dis.stat:create-read-rws stat datum trace-direction) )

¥ ;ttt The DIS.RW records representing the variables read
Rt ;#*% by STAT.
;#++ (DIS.TEST STAT-NUMBER-LIST)
leas (conflicts 0)
3 4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATOR.LSP. 10



C

;**+ The conflicts that will be the result of this function.

(new-prev-rws () ) ) ;
;##+ The new 1ist of DIS.RW records representing the
;#*# read/writes of the variable written by STAT. This
;#+# 1ist 18 the old such list, plus any reads of the
;### variable by STAT, minus all reads/writes killed by
;%% by STAT.

;#*+ Construct the conflicts between the operands read by
;#%% this STAT and previous STATs. Add the STAT's RW to the
;*#+#+ mapping NAME:RWS for each read name (only if the name
;#*% 18n't also defined by this stat).

(loop (fér stat-read-rv in stat-read-rws) (do
Eéoop (for prev-rw in (dis.name:rws (dis.rw:name stat-read-rw) ) )
]
(1f-let ( (conflict (dis.rw:rw:conflict stat-read-rw prev-rw) ) )
(push conflicts conflict) ) ) )

(1f (!== stat-written-name (dis.rw:name stat-read-rw) ) (then
(dis.name:add-rv (dis.rv:name stat-read-rw) stat-read-rw) ) ) ) )

;#*s Construct the conflicts between the operand written by
;**% this STAT and previous STATs. Remember all the previous
;##% RWs listed under the name written by STAT that weren't
;##+ definitely known conflicts, forgetting all others (the
;#%% ones killed by STAT); add the the write RW to the list.

(if stat-written-rw (then
(loop (for prev-rw in (dis.name:rws stat-written-naame) ) (do

Eii—let ( (conflict (dis.rw:rw:conflict stat-written-rw prev-rw)))

then
(push conflicts conflict)
(if (== ‘possible-operand-conflict (cadr conflict) ) (then

(push new-prev-rws prev-rw) ) )

(else

(push new-prev-rws prev-rw) ) ) ) )

(push new-prev-rws stat-written-rv)
(dis.name:define-rva stat-written-name new-preav-rws) ) )

conflicts) )

2R

;##s (DIS.RW:RW:CONFLICT RV PREV-RVW)

M

;*#*#s Returns the PREDECESSORS-format conflict representing the conflict,
;*%+ 1if any, between a read/write of a variable by one trace element and
;*#** the read/write of the same variable by anotheér previous trace element.
;*#+s For example, a read of a variable (PREV-RW) followed by another read
::t# (RW) 13 not a conflict, but a write after a read would be.

ML

;::0 The form of the conflict (from DISAMB.DOC) 1s:

» *

f::: (PRED REASON SOURCE-OPERAND SOURCE-TYPE PRED-OPERAND PRED-TYPE)

‘R
.

(defun dis.rw:rw:conflict ( rw prev-rw )
(let ( (conflict-type () ) )

(1f (I| (== *written (dis.rw:type rv) )
(e

(== ‘'read (dis.rw:type rw) )
(== 'vritten (dis.rw:type prev-rv) ) ) )

(then

(? ( (!== *vector (dis.rw:name-type rv) )
(:= conflict-type
(1f (== 'conditicnal-read (dis.rw:type prev-rw) )
‘conditional-conflict
*operand-conflict) ) )

( (== *conditional-read (dis.rw:type prev-rw) )
(:= conflict-type ‘'conditional-conflict) )
(t
(let ( (equal? (de:possibly-equalf?

(stat:index-derivation (dis.rw:stat rw) )
(stat:index-derivation (dis.rw:stat prev-rw))
(dis.rw:stat rv) ) ) )
(1f (Il (== °*maybe equal?)
(== 'yes equal?) )
(then
(:= conflict-type
(if (== °maybe equal?)
‘possible-operand-conflict
*operand-conflict) ) ) ) ) ) ) ) )

(1f conflict-type (then
*(,(dis.rw:datun prev-rw)

,conflict-type

, (di8.rw:operand-number rw)

. (dis.rw:type rv)

,(dis.rw:operand-nusber prev-rw)

.(dis.rw:type prev-rw) ) )

(else
00X )y

ML
Rl
;##% (DIS.STAT:CREATE-READ-RWS STAT DATUM TRACE-DIRECTION)
Rl
;#%+ Returns a list of DIS.RV records representing the variables read
;### by STAT, including the “conditional-reads™ of variables that are
;#%s live on the off-trace edge. For now, we assume that every vector
;#%¢ 18 1live on every off-trace edge.
Rl
;#%# «*+ But we now do live analysis of vector names. A vector write
;#++ sx+ ghould move up a above a conditional jump if the vector is dead
;#%% &%+ on the off-trace edge, no?
Ril

(defun dis.stat:create-read-rws ( stat datum trace-direction )
(let ( (result () ) )

;##% If this 1s a conditional jump, make a record for every
;%% variable that 1s live on the off-trace edge. Also make
;#¢s make a record for every array name, agsuming for now
;##* that every vector that is read on the off-trace edge.

(1t (stai:progerty? stat 'condlttonal-)nug) (then
(lets( (bblock (stat:bblock stat) )

5

6

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATOR.LSP.10




C

(succ-bblock (if (== ‘'left trace-direction)
(cadr (bblock:succs bblock) )
(car (bblock:succs bblock) ) ) )
(succ-stat  (bblock:first-stat succ-bblock) ) )

;e¢x Firgt the off-trace live scalars.
(loop (for-each-name-set-element (stat:live-in succ-stat)

live-name)
(when (!== ‘vector (nagze:type live-name) ) )

(do
(push result
(dis.rw:new
stat stat
naze live-nane
nage-type (name:type live-name)
operand-number ()
type ‘conditional-read
datua datum) ) ) )

;#++ Then all array names.

(loo? (tar—each—vector—nane vector-name) (do
P

ush result
(dis.rw:new

stat stat
naoe vector-nane
nane-type ‘vector
operand-nuzber ()
type ‘conditional-read
datun datum) ) ) ) ) ) )

;**s Make a record for each read variable.

(1°°f (for-each-stat-operand-read stat operand operand-number) (do
P

ush result
(dis.rw:new
stat gtat
naze operand
nane-type (name:type operand)
operand-number operand-number
type ‘read
datua datum) ) ) )
result) )
(%%
JHEk

f::: (DIS.STAT:CREATE-WRITTEN-RW STAT DATUM TRACE-DIRECTION)
;*¥*#% Returns a DIS.RW record representing the variable written by STAT,
E::: () 1f STAT doesn’t write a variable.

(defun dis.stat:create-written-rvw ( stat datua trace-direction )
(let ( (oper (stat:source stat) ) )
(1¢ (oper:part oper ‘written)
(dis.rvw:new

stat stat
name (oper:part oper °written)
nage-type (name:type (oper:part oper ‘written) )
operand-nunber (oper:part-description oper ‘written)
type ‘written
datun datun)

0J))

1T
ITIT]

;#*% (OPER:LIVE-IN OPER)

;#*+ (OPER:LIVE-OUT OPER)

;*#% (OPER:LIVE-QUT-ON-EDGE OPER DIRECTION)

ikEh

Rl

(defun oper:live-in ( oper )
(let ( (stat (hash-table:get *dis.oper:stats oger) ))
(assert (!== stat #hash-table.not-founds)
(d1s.name-get:1ist-scalars (stat:1live—in stat) ) ) )

(defun oper:live-out ( oper )
(let ( (stat (hash-table:get #dis.oper:stat+ oper) ) )
(assert (!== gtat *hash-table.not-found#) r
(dis.name-get:1list-gcalars (stat:live-out stat) )} ) )

(defun oper:live-out-on-edge ( oper direction )

(assert (memq direction °(left right) ) )

(let ( (stat (hash-table:get *dis.oper:stat+* oper) ) )
(asgsert (!== stat *hash-table.not-founds)
(dis.name-pet:11st-scalars

(name-get:intersection
(stat:1ive-out stat)
(stat:1ive-in
(caseq direction
(left (car (stat:succs stat) ) )
(right (cadr (stat:succs stat) ) ) ) ) ) ) ) )

1 EE
il

;#++ (DIS.NAME-SET:LIST-SCALARS SET)

H L1

;#+¢ Returns a list of all the scalar variable names in SET.
Rl

ML

(defun dis.name-set:list-scalars ( set )
(loop (for-each-name-set-element set nane)
(when (!== ‘*vector (name:type name) ) )
(save name) ) )

7

8

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATOR.LSP.10




C

C

(include flow-analysis:flow-analysis-decls)

(declare (special
*dt.de-calla*
+dt.de-successes*
;d;.conflicts*

(defun fg.disambiguator-tool ()
(let#( (vector-stats (dt.collect-vector-stats) )
(total-vector-stats (length vector-stats) )

(*dt.de-callss 0)
(*dt.de-puccesses* 0)
(*dt.conflicts* 0O))

(msg 0 t (j (length vector-stats) 4) * vector STATs" t)

(loop (incr 1 from 1 to (length vector-stats) )
¢ (bind statl (nth-elt vector-stats 1) )
do

(loop (inmcr J from (+ 1 1) to (length vector-stats) )
( (bind stat2 (nth-elt vector-stats j) )
do
(1f (dt.conflicting-vector-stats? statl stat2) (then
(at.print-conflicting-vector-stats statl stat2) ))))))

(msg 0 v (] total-vector-stats 4) " vector STATs." t)
(wsg (§ (- (// é* total-vector-stats (+ -1 total-vector-stats) )

i *dt.de-callss)
4
" pairs were trivial (different vectors, different loops).® t)
(meg () #dt.de-callss 4)
" pairs required the diophantine equation solver.® t)
(msg () #*dt.de-successes* 4)
" of those pairs were possibly conflicting.” t)
(nsg (] (length *dt.conflicts*) 4)
0) ; unique conflicting pairs of indices.® t)

(defun dt.conflicting-vector-stats? ( statl stat2 )
(&2 (i1== stati stat2)

== (stat:part statl 'vector)
(stat:part stas2 °vector) )

(== (dt.stat:containing-loop statl)
(dt.stat:containing-loop stat2) )

(let ( (derivi (stat:index-derivation statl) )
(deriv2 (stat:index-derivation stat2) ) )
(:= #dt.de-callgs (+ 1 *dt.de-calls+) )
== 'maybe (de:possibly-equal? derivi deriv2 stat2) )

;*#*+ Papsing in STAT2 is a crock -- it just usually
;#%+ happens that STAT2 comes "after™ STATi. Sigh,
;#*% vhich stat should we pass in %0 pick up which

;*#%% “valid® assertions?

(:= #dt.de-puccesses* (+ 1 edt.de-succesges+) ) ) ) ) )

(defun dt.print-conflicting-vector-stats ( statl stat2 )
(lets( (derivi %stat:index-derivatlon statl) )
(deriv2 (stat:index-derivation stat2) )
(dexpr (de:normalize-equation *(~ ,derivi ,deriv2) ) )
(prev-conflict (assoc# dexpr #dt.conflicta*) ) )

(nsg 0 ¢ (stat:number statl) ": * (stat:source statl)
(t 40) (stat:number stat2) ": " (stat:source stat2) t)

(1 prev-conflict (then

(nog "Same as "

(stat:number (nth-elt prev-conflict 2) ) *//"

¢ (stat:number (nth-elt prev-conflict 3) ) "." t) )
elge

(push #dt.conflictss ‘(,dexpr ,statl ,stat2) )

Ehprint)(dt.de:pretty (de:normalize derivi) ) )

terpri

(hprgni (dv.de:pretty (de:normalize deriv2) ) )

(terpri)

)(?prini ‘(= 0 ,(dt.de:pretty dexpr) ) ) ) )

(defun dt.collect-vector-stats ()
(loop (for-each-stat stat)
(when (stat:property? stat ‘vector-reference) )
(initial result ()
(do
(push result stat) )
(result (dreverse result) ) ) )

(defun dc.stat:containing-loog ( stat )
(loop (for-each-loop loop
i (initial containing-lcop () )
do
(12 (loop:bblock:member? loog (stat:bblock stat) ) (then
(:= containing-loop loop) ) ) )
(result containing-loop) ) )

(defun dt.de:pretty ( expr )
(* ( (consp expr)
(loop (for sub-expr in (cdr expr) )
(initial result

¢ sub-result () )
do

(:= sub-result (dt.de:pretty sub-expr) )

(caseq (car expr)

(+ (1f (i= O sub-result) (then
(push result sub-result) ) ) )
(+ (¢ ( (= 0 sub-result)
(return 0) )
( (!= 1 sub-result)
(push result sub-result) ) ) )
(& (push result sub-result) ) ) )

(result

(?* ¢ (! resuls)

(12 (== '+ (car expr) ) 0 1) )
( (=1 (length result) )
(car result) )

?(.(car expr) ,,(dreverse result) ) ) ) ) ) )

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATOR-TOOL.LSP.11



http://dt.de
http://dt.de
http://dt.de

¢ ¢

( (stat:1s expr)
(if (== 'loop-assign (stat:operator expr) )
*(.(stat:part expr ‘'written) ,(stat:number expr) )
*(.(stat:source expr) ,(stat:number expr) ) ) )

(v
expr) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>DISAMBIGUATOR-TOOL.LSP.11



B
TEEE

;*#+ This module gets the :DOMINATORS field of each BBLOCK to be the set
;##+ of BBLOCKs that dominate that BBLOCK. See chapter 13 of the Dragon
;*#+ Book for the definition of dominators and an explanation of the
;**# algorithm used to calculate then.

(include flow-analysis:flow-analysis-decls)

(defun fg.set-dominators ()

(loop (for-each-bblock bblock)
¢ (initial universe (bblock-set:universe) )
do
(:= (bblock:dominators bblock) universe) )
(result
(:= (bblock:dominators #fg.entry-bblock#)
(bblock-set:singleton #fg.entry-bblocks) ) ) )

(loop (initial change () )
E:ext change () )
o
(loop (for bblock in (fg.depth-first-ordered-bblock-1ist ‘forward) )
« (initial new-dominators () )
o
(:= new—dominators
(bblock-set:unioni
(apply 'bblock-set:intersection
(for (pred-bblock in (bblock:preds bblock) )
(save (bblock:dominators pred-bblock) ) ) )
bblock) )

(1f (! (bblock-set:= new-dominators
(bblock:dominators bblock) ) )
(:= change t) )
(:= (bblock:dominators bblock) new-dominators) ) ) )

;ahila change) )

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>DOMINATORS.LSP.b6



'
»
.
.
.
.
’
»
I
.
.
.
.
.
.
»
.
.

C

C

; Find Loops

; This module finds the loops in the flow graph. A loop is defined

: here differently than in the Dragon Book. Each loop has a loop header
; that dominates all the nodes in the body of the loop. A loop header

: 18 1dentified by an edge T -> H in the flow graph such that H

; dominates T. A loop consists of the header H, ALL the backedges

] ; => H, and all the predecessors of each T that are dominated by

; (FG.FIND-LOOPS)

Finds all the loops in the flow graph.

: (FG.PRINT-LOOPS)

Prints out all the loops.

(include flow-analysis:flow-analysis-decls)

(defun fg.find-loops ()

(fg.1init1alize-loops)

;#+% Congider each edge in turn; 1if the head of the edge

;##+ dominates the tall, then the edge ig a backedge of a loop.

(loop (for-each-bblock bblock) (do
(loop (for succ-bblock in (bblock:succs bblock) ) (do
(12 (bblock:dominates? succ-bblock bblock) (then
(loop:create bblock succ-bblock) ) ) ) ) ) )

;*##+ For each loop, find all the BBLOCKs in the loop.
;##+ Create the :STATS of the loop (the set of all statements
;*##* within the loop.
(loo% (for-each-loop loop) (do
f1.loop:find-body loop)

(loop (for-each-bblock-set-element (loop:bblocks loop) bblock) (do
(loop (for-each-bblock-stat bblock stat) (do
(:= (loop:stats loop)
(stat-set:unionl (loop:stats loop) stat) } ) ) ) ) ) )

;#*s For each loop, find all the BBLOCKs of the loop that
;#e¢ are exits (having at least on successor not inm the loop).

(loop (for-each-loop locop) (do
(loop (for-each-bblock-set-slement (loop:bblocks loop) bblock) (do
(1°°¥ (for succ-bblock in (bblock:succe bblock) ? (do
i1f (! (loop:bblock:member? loop succ-bblock) ) (then
(:= (loop:exits loop)
(bblock-set:uniont (looY:axits loop) bblock) )
(retara 0 ) ) ) ) ))))

;##% Sort the loops according to containment
§tg.aorﬁ-1oops)

(defun f1.loop:find-body ( loop )
(loop (fog—each-bblgct-sat—alement (loop:back-edges loop) back-edge-bbdlock)
(do

(1f (t== back-edge-bblock (loop:header loop) ) (then

(loop (initial bdblock ()
stack (list back-edge-bblock) )
(while stack)
(do
(pop stack bblock)
(loop (for pred-bblock in (bblock:preds bblock) ) (do
(1f (! (loop:bblock:member? loop pred-bblock) ) (then
(:= (loop:bblocks loop)
(bblock-set:unioni (loop:bblocks loop)
red-bblock) )
(push stack pred-bblock) ) ) ) ) ) ) ) ) )))

(defun fg.print-loops ()
(loop (for-each-loop loop) (do
(msg 0 t)

(nsg “Header: * (bblock:number (loop:header loop) ) t)

(msg "Bblocksa: = (e (bblock-set:print (loop:bblocks loop) ) ) t)
(msg "Stats: * (e (stat-set:print (loop:stats loop) ) ) t)
(asg "Back edges: " (e (bblock-set:print (loop:back-edges loop) ) ) t)
(msg “"Exits: = (e (bblock-set:print (loop:exits loop) ) ) t)

(msg "Invariants:
(for (stat in (loop:invariants loop) )
(save (stat:number stat) ) )

t)
0)))

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FIND-LOOPS.LSP.7

2



U

4

(include flow-analysis:flow-analysis-decls)
(build *(flow-analysis:dependencies) )

L EE
JEEE

;*xx (FG.INITIALIZE)

S FEE

;*#% Initializes the flow-graph by forgetting all previous STATs and BBLOCKs,
;*** and prepares for the creation of a new flow-graph.

(RS

1]
(defun fg.initialize ()
(fg.initialize-naddr-to-flow-graph)
(fg.initialize-stats)
(fg.initialize-bblocks)
(fg.initialize-temporary-naae)
E;gi1n151al1ze-dopendent—tunctions)

i
JEES
;*#+ (FG.ANALYZEROPTIMIZE NADDR)
JREE

o *

(defun fg.analyzekoptimize ( naddr )
(let ( (result-naddr () ) )

(£g.1nitialize)
(fg.naddr-to-flov-graph naddr)

(1t sfg.rename-variables?s (then
(fg.invoke-dependent-function 'fg.rename-variables) ) )

(1t #fg.move-loop-invarianta?s (then
(fg.invoke-dependent-function 'fg.move-loop-invariants) ) )

(if =fg.remove-induction-variables?* (then
(1f +fg.elininate-common-subexpressions?* (then
(fg.1nvoke-dependent~function
‘fg.elininate-common-subexpressions) ) )
(1f sfg.propagate-coplea?* (then
(fg.invoke-dependent-function ‘fg.propagate-copies) ) )
(1f sfg.remove-dead-code?+ (then
(let ( (#fg.remove-assertions?* () ) )
(fg.invoke-dependent~function 'fg.remove-dead-code) ) ) )
(fg.invoke-dependent-function 'fg.remove-induction-variables) ) )

(1f *fg.fold-constants?+ (then
(1g.invoke-dependent-function °fg.fold-constants) ) )

(11 sfg.elininate—common-subexpressions?* (then
(fg.1nvoke-depsndent-function
'fg.elininate-conmon-subexpressions) ) )

(1f sfg.propagate-copies?+ (then
(2g.1nvoke-dependent—-function °fg.propagate-copies) ) )

(1f +skex.compact?+ (then
(fg.invoke—-dependent—function 'fg.disanbiguate)
(1f ¢fg.disanbiguator-tool?#* (then
(fg.invoke-dependent-function 'fg.disambiguator-teol) ) )
(1t *fg.disambiguate-banks?* (then
(tg.invoke-dependent—function 'fg.disambiguate-banks) ) ) ) )

(if *fg.remove-assertions?* (then
(g.invoke-dependent-function 'fg.remove-agsertions) ) )

(1t +fg.remove-dead-code?+ (then
(g.invoke-dependent-function 'fg.remove-dead-code) ) )

(:= result-naddr (fg.flow-graph-to-naddr) )

(1f sskex.compact?+ (then
(tg.invoke-dependent-function °*fg.create-naddr:stat-mapping)
(fg.invoke-dependent-function 'fg.set-live-names) ) )

result-naddr) )

..
R

;##s (FG.PRINT-FLOW-GRAPH)

Ll

;#+* Dumps out the current flow graph in semi-readable format.
R

J*

(defun fg.print-flow-graph ( &optional bblock-fields )
(loop (for-each-bblock bblock) (do
(bblock:print bblock bblock-fields) ) ) )

JEe

;#+» DEPENDENCIES

Jhee

;#*+ The dependencies between the different modules that crunch on the
;##s flow graph are recorded here to keep them all together for

;#+#¢ paintainability. See DEPENDENCIES.LSP for detalils of

;#+s def-dependencies.

17

R
(fg.initialize-dependencies)

(def-dependency fg.collect-nanmes
(reinitialize fg.initialize-names) )

(def-dependency fg.set—depth-first-order
(reinitialize fg.initialize-depth-first-order) )

(def-dependency fg.set-reaching-defs
(needs £g.collect-nanes
fg.set-depth-first-order)
(reinitialize fg.initlalize-reaching-defs) )

(def-dependency fg.set-reaching-copies
(needs fg.collect-nanes

fg.set-depth~first—order) )

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FLOW-ANALYSIS.LSP.8




:f-dependency fg.set-reaching-uses
(needs fg.set~reaching-defs)
(reinitialize fg.initialize-reaching-uses) )

(def-dependency fg.set-live-names
(needs fg.collect-names
fg.set~depth-first-order) )

(def-dependency fg.set-dominators
(needs fg.set-depth-first-order) )

(def-dependency fg.fird-loops
(needs fg.set~-doninators)
(reinitialize fg.initialize-loops) )

(def-dependency fg.set-loop-invariants
(needs fg.set-reaching-defs
fg.set-reaching-uses
fg.find-loops) )

(def-dependency fg.zove-loop-invariants

(needs fg.set~reaching-defs
fg.set-reaching-uses
fg.set-live-naces
fg.set~loop~-invariants
fg.find-loops)

(destroys fg.set-reaching-defs
fg.set-reaching-copies
fg.set-1live-nanes
fg.set-dopinators
fg.tind-loops
{g.set-depth-first-order) )

(def-dependency fg.remove-induction-variables

(needs fg.set-reaching-defs
{g.set-reaching-uses
fg.set-reaching-copies
fg.set~doninators
fg.find-1loops)

(destroys fg.collect~nanes
fg.set~doninators
fg.find-loops
fg.set-depth-first-order) )

(det-dependency fg.eliminate-conmon-subexpressions
(needs fg.set~1ive-nanes)

(destroys fg.collect—nazes)

(reinitialize fg.initialize-cse) )

(def-dependency fg.propagate-coples

(needs fg.set-reaching-uses
fg.set-reaching-copies)

(destroys fg.collect~names) r

(def-dependency fg.fold-constants

(needs fg.set-reaching-defs
fg.set-reaching-uses)

(destroys fg.collect-names) )

(def-dependency fg.remove-assertions
(destroys fg.collect-nanes
fg.set—dominators

fg.find-loops
tg.set-depth-first-order) )

(def-dependency fg.rename-variables

(needs fg.set-reaching-defs
fg.set-reaching-uses)

(destroys fg.collect-names) )

(def-dependency fg.remove-dead-code

(needs fg.set-reaching-dels
fg.set-reaching-uses)

(destroys fg.collect-names
fg.set-dominators
fg.find-1loops
fg.set-depth-first-order) )

(def-dependency fg.insert-loop-assignments

(needs fg.find-loops
fg.set-reaching-defs
fg.set-1ive-nanes)

(destroys fg.set—depth-first-order
fg.find-loops
fg.collect-names)

(reinitialize fg.initialize-derivations) )

(def-dependency fg.create-naddr:stat-napping
(reinitialize fg.initialize-naddr:stat-napping) )

-dependency fg.disambiguate
(det(gegds v ‘fg.1nsar§21009—aasignnents ;*##% This pust be first
fg.set-reaching-defs
fg.set-dopinators)
(reinitialize fg.initialize-disambiguator) )

(def-dependency fg.disambiguator-tool
(needs fg.disambiguate
fg.find-loopa) )

(def-dependency fg.disanbiguate-banks
(needs fg.disambiguate

3

4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FLOW-ANALYSIS.LSP.6




C

; complle time.

: Inter-module declarations for the flow analysis modules.

; Modules that manipulate the flow graph should INCLUDE this file at

(declare (specisal
*hash-table.not—founds*
*bit-set.empty-sets
*nupber-of-bankg#

sfg.total-gtatas
#fg.nunber:stat*

*fg.total-bblockas
sfg.nuaber:bblocks
«fg.entry-bblocks

*{g.enpty-otat—gets

+fg.nuaber:nane#*
+fg.total-naness
efg.all-vector-naness
*{g.enpty-nane—gots

+fg.all-dependenciess
+fg.all-loopar
¢{g.renane-variables?s
¢«fg.nove-loop-invariants
+fg.fold-constantats
+fg.propagate-copiests
*{g.renove~dead—-code?s
*fg.remove-asgertionats

#fg.disanbiguator-tool?s
*{g.disanbiguate-bankats

;s;ex.conpsct?t

(declare

;#%+ From UTILITIES:HASH-TABLE.
;##¢ From UTILITIES:BIT-SET.

;##*» The nunber of mepory banks we are
;*#¢+ compiling for.

:*##» Current number of STATs
;*#% Array for mapping STAT nuambers onto
;**+ STATs.

;*##+ Current number of BBLOCKs

;#%s Array for mapping BBLOCK numbers onto
;*#++ BBLOCKs.

;#*s Entry block (one with no predecessors)

;#%s The empty STAT-SET.

#fg.nunber-of-reaching-iterationss

;*#*+ 8 of iterations used for calculating
;**¢ reaching defs

+fg.nane:nase-descriptors

;#¢+ A hagh table mapping variable names onto
;*#*% NAME-DESCRIPTORS.

;*** An array sapping numbers to names.

;#%+ Total nunmber of names.

;#*x Ligt of all array names.

;*++ The empty NAME-SET.

;##*% List of all dependency descriptors.

;*#% List of all loops.

+fg.elininate-connon-gubexpressions?s

P*

¢{g.renove-induction-variableats

*{g.show-unknown-bank-referencests

;#%s Options defined in FLOW-ANALYSIS-OFTIONS

(lexpr vector-map:initialize)

(lexpr vector-map:add-element)
(lexpr bblock:print)
(lexpr fg.print-flow-graph) )

(eval-when (compile)

(build *(
interpreter:naddr
utilities:bit-set
utilities:sharp-sharp

flow-analysis:stat
flow-analysis:stat-set
flow-analysis:bblock
flow-analysis:bblock-set
flow-analysis:nane
flowv—-analysis:name-get
§1gw;analyslazloop

t

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FLOW-ANALYSIS-DECLS.LSP.14




{f"

€

* FLOW ANALYSIS OPTIONS

: This module contains the definitiona of options dealing with flow
. analysis.

»

(eval-when (compile)
(build *(utilities:options) ) )

(def-option *fg.rename-variables?s t flow-analysis: ®
I§ T then variables are renamed wherever possible.
-

(def-option sfg.eliminate-common-subexpressions?s t flow-analysis: *

If T then comzon subexpression elimination is done on NADDR basic blocks
d?ring optimization.

-

(def-option #fg.move-loop-invariantsf+ t flow-analysis: *
If T then invariants are moved out of loops during NADDR optimization.
L]

)

(def-option #fg.remove-induction-variables?+ t flow-analysis: *
I; T then induction variables are eliminated and simplified.
-

(def-option #fg.fold-constants?+ t flow-analysis: *
I§ T then constant folding 1s performed.
L]

(def-option #fg.propagate-copies?s t flow-analysis: "
E; T then copy propagation is performed.

(def-option #¢fg.remove-dead-code?s t flow-analysis: "
£§ T then unreachable or uselesa code is removed from the flow graph.

(def-option ¢fg.remove-assertions?* t flow-analysis: *©
I§ T then assertions are removed during dead code removal.
-

(def-option #fg.disambignator-tool?+ () flow-analysis: *
If T then the disambiguator tool is invoked, printing out all possible
r;ctor conflicts in the prograa.

(def-option ¢fg.disambiguate-banks?+ () flow-analysis: *
If T then the bank disambiguator is invoked, modifying vector references to
contain the bank they refer to.

")

(def-option *fg.shov-unknown-bank-references?+ () flow-analysis: *
If T then the bank disambiguator will display all vector references that

have unknown banks.
*)

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FLOW-ANALYSIS-OPTIONS.LSP.8



g

1RER ====
1t
;##% This module converts the current flow graph back into NADDR. It

;#+% 1ip primarily useful for testing.
JEES

(include flow-analysis:flow-analysis-decls)

1
i1

;**+ (FG.FLOW-GRAPH-TO-NADDR)

ML

;#¢% Returns the 1ist of NADDR corresponding to the current flow-graph.
Rl

;##% The conversion is done in a single pass. Each basic block has a LABEL
;#*% generated of the fora L<number> where <number> is the number of the

:#+s block. This lets us convert edges in the flow graph into GOTOs easily.
;*#% A GOTO 18 never generated for a block that “falls through® to another
;*##+ block.

s

:**+ The :SOURCE field of each STAT is replaced by the new source operation
;#+* generated for it. At present, only conditional jumps generate new
;%** gource (because the labels have changed).

SRR

LEe

(defun fg.flow-graph-to-naddr ()
(let ( (naddr 0))

(loop (initial prev-succ-bblock () )
Efor-aach-bbloct bblock)
do
(1f (k& prev-succ-bblock
(t== prev-succ-bblock bblock) )
(then
(push naddr *(goto ,(fgtn.bblock:label prev-succ-bblock) ) ) ) )

(1f (bblock:preds bblock)
(push naddr *‘(label ,(fgtn.bblock:label bblock) ) ) )

(loop (for-each-bblock-stat bblock stat)
@ (initial new-source () )
o

(:= new-source
(caseq (stat:group stat)
(1f-then-else
‘(. (stat:operator stat)
.(stat:part stat ‘readl)
.(stat:part stat 'read2)
. (stat:part stat 'probability)
. (fgtn.bblock:label (car (bblock:succe bblock) ) )
., (fgtn.bblock:1abel (cadr (bblock:succs bblock)))))
(cond-jump
* (. (stat:operator gtat)
. (stat:part stat ‘readl)
.(atat:part stat ‘probability)
.(fgtn.bblock:label (car (bblock:succs bblock) ) )
,(fgtn.bblock:1label (cadr (bblock:saccs bblock) ))))

) (stat:source stat) ) ) )

h nadd e)
E?:s(stat::oﬂgzzag::g} new-source) ) ) )

(next prev-succ-bblock
(12 (>= 1 (length (bblock:succs bblock) ) )
(car (bblock:succs bblock) )

0))
(result
(1f prev-succ-bblock (then

ush naddr
i ‘(goto ,(fgtn.bblock:label prev-succ-bblock) ) ) ) )

(dreverse naddr) ) ) ) )

(defun fgtn.bblock:label ( bblock )

(atomconcat "1 (bblock:number bblock) ) )

1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>FLOW-GRAPH-TO-NADDR.LSP.7




c

: INDUCTION VARIAELE REMOVAL

This module implements the induction variable removal algoriths of the
Dragon book with some minor modifications.

(FA.RENOVE-INDUCTION-VARIABLES)
Simplifies induction variables, munging the whole progras.

Hero 15 a sumpary of the algorithm. Dstails of the implementation are
; provided in the procedurs comments below.

A pripary induction variable of a loop is a variable wvhose only
agsignments within the loop are of the form:

I:=1I+/-C

vhere C is a loop invariant. Each such agsignment to I in the loop
is called a primary induction statement. This module assumes a name
1s loop invariant 1ff there are no agsignaents to it within the loop.

A secondary induction variable 1s a variable K that is assigned exactly
once within the loop by a statement of one of the forms:

K:=Caofe/~J K :=Js/+/-C K :=~-J

vhere J is either a primary induction variable or a secondary induction

; variable. If J is secondary, there are more requirements. Let I be
primary variable of J. There can be no assignment to I between the
single assignment to J and the single assignment to K, and the definition
of J in the loop must be the only reaching definition of J reaching

the assignment to K.

Each secondary variable 1s expressed as a linear function of its primary
variabdle:

K:sAesI+B

All the secondary induction statesents of a primary with the sase linear
function are grouped together.

: A secondary or priamary induction variable is "useless® if its only uses
are for calculating other induction variables in the sase family or
vithin comparisons and conditional jumps.
The progras is rewritten as follows: Each group of secondary induction
statements with the sase linear function are assigned & new unique name.
Each assignment to a secondary i1.v. K is replaced by:

K =K'

vhere K* is the new name. Then at the oend of the loop hoader, each
nevw secondary variable is initislized:

K* :=AeI+B
Then after esch sssignment to the primary induction variable within
the loop, all the new secondary varisbles are stepped in parallel, If
the assignment 1s of the fora:

I :=I+C

W e W W s W W W W e WA W WS W WE WA WA W WS W W WS W4 B W B WS WA W M W W WS W W W WS W

the secondary assignments added right after 1t have the fora:

K* ;= K"+C+#+P
Then conditional jumps and comparisons are rewritten to use the
"simplest® non-useless secondary induction variable possible; this will

possibly allow us to delete the original secondary induction variable.
Suppose there 13 a comparsion:

J RELOP X

vhere J 1s either & primary induction variable or else a secondary 1.v.
with linear function:

J=sAJ+sI+BJ
¥We look for another useful secondary 1.v. K° that has the fors:
*= Ak ¢ I + BX vhere AK = R ¢ AJ for some constant R.
If we find such a K°, we can rewrite the conditional test to be:

TEMP :=R* X-R» BJ + BK
K® RELOP TEMP

The code for TEMP can be placed in the loog header if X i3 a loo
constant. If there are many choices for K', we favor ones that have
R=1orBK=0.

; After all this rewriting, many of the secondary snd primary induction
variables may now bes truly dead -- dead code resoval vill eliminate

them entirely from the program.

When writing the asasignments to the new secondary 1.v.s and vhen
revriting comparisions, we rely on the fact that constant folding/
simplification will clean up the code considerably later on.

jeew
;##» An IV-FAMILY represents one grllsry induction variable and its family
;#¢s of pecondary induction variables.
jeee
2]
(def-struct iv-faaily ;se¢
nsae ;#s¢ Name of the prisary induction variable.
primary-stats ;#*s STAT-SET of primary induction statements.
secondary-stats ;e¢* STAT-SET of secondary induction statesents.
(secondary-ivs ;e#® List of SECONDARY-IV records representing
() suppress) ;#e» the secondary induction variasbles of this faaily.
;e
1888
11

;#ss A BECONDARY-IV represents all the secondary induction variables that
;#¢¢ are the oame function of the primary induction variable.
jeee

(def-astruct secondary-iv;sss

2

S:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




6{“

¢

stats ;#s¢ BTAT-SET of secondary induction STATs all with
:#*¢ the sane linear function of the primary variable.
name :##¢ The new variable name gonerated for these

11
;eee
(eee
iees
(iv-family Jees

() suppress) iees
a ieee
b H 113
R
1eee
Jese
Ty
;80
;e8e
;88
jees
T11)
71
) ;980

induction STATs.

original-nases List of names of original secondary i.v.s.

The induction family to vhich this belongs.

Constants of the linear function for these
names, of the fora AI + B for I the primary
induction variable. Constants are represented
a8 normalized diophantine expressions.

a-address

The loop-invariant variable names holding these
b-address

constants’ values, or else the numeric value
of the constant if known.

ugeful? True if any of the STATs forming thia secondary
induction variable are used for anything other
than computing other induction variables.

- e
-

(oval-when (compile load)
(1nclude flov-analysis:flow-analysis-decls) )

(defvar sivr.debugte () ) ;eee If T, then dump out debugging info,.

(declare (special
*1ivr.loops

;*#¢¢ Current loop being optimized.
sivr.iv-fasiliens

;#¢% List of all IV-FAMILYs for curreat loop.

*ivr.name:8defae
¢ivr.nane:defining-statse
*1vr.name:using-statass

;#¢s Hash tables used in our local loop
;ess flow analysis.
see

¢ivr.nage:iv-fanilys

;¢+% Hagh tables mapping 1.v. names oato
;1;r.naaa:seccndarr—1vt

;ees JV-FAMILYs and SECONDARY-IVs.

(defun fa.remove-induction-variabdles ()

(loop (for-each-loop loop)
(bind tivr.loog-
eivr.iv-fasiliese 0
eivr.name:#defae (
sivr.name:defining-states ()
¢ivr.name:using-statse Q
eivr.name:iv-fanilys Q)
tdn sivr.nane:secondary-ive () )
givr.lnnlylo-nseslﬂefs)
ivr.collect-primary-ivs)
(1vr.collect-secondary-ivs)

(loop (for iv-family in sivr.iv-familiess) (do
(ivr.iv-fasily:simplify-induction-variables iv-fasily) ) )

(12 eivr.debug?s (then
(msg O t "Loop: * t)
(bblock:print (loop:pre-header loop) )
(loop (for-each-bblock-set-element (loop:bblocks loop) bblock) (do
0) ?bbloct:prlnt bblock) ) ) ) ) ) )

(defun ivr.print-iv-families ()

(msg 0 t "Loop: " t)
(loop (for-each-bblock-gset-element (loop:dbblocks ¢ivr.loops) bblock) (do
(bblock:print bblock) ) )

(loop (for iv-family in sivr.iv-familiess) (do
%nsg ot
*Primary iv: * (iv-fanily:naame iv-family)
(e (if (ivr.iv-fasily:uaeful? iv-faaily) * useful" **) )
t

"Primary stats: *

(b (loop (for-each-stat-set-element
(iv-fanily:primary-stats iv-faaily)
stat)

(save otat) ) )

t)

Eloop (for secondary-iv in (iv-family:secondary-ivs iv-fasily) )
do
(asg 0 ¢
*Secondary nase: * (secondary-iv:name secondary-iv)
(¢ (1f (secondary-iv:useful? secondary-iv) ® useful® °¢) )

t
"Secondary names: * (secondary-iv:original-names

gecondary-iv)
v
“Second state: *
(h (loop (for-each-stat-set-element
(secondary-iv:stats secondary-iv)
stat)
(save stat) ) )
%
=Second a = * (secondary-iv:a secondary-iv) ¢
. =T b = * (secondary-iv:b secondary-iv) ¢) ) ) ) )
0
E-ct
;#¢+ LOCAL LOOP FLOW ANALYSES
el
;e¢+ Optimization of nested 1oogs requires incremental flow analysis,
;#s¢ pince optimizing an outer loop affects the analysis of an inner one
;e¢s and vice versa. Bo we do our own simple, special-case analysis at
;#¢s the beginning of optimizing each loop. Groaa.
ieee

(12 eivr.dedbug?s (then ieee (IVR.ANALYZE-USESADEFS)
(meg 0 ¢ ® * t) jese Perforas the analysis accessed by the two functions below on
(ivr.print-iv-fasilies) ) ) 1088 the current loop. Motice that whe recalculate LOOP:STATS, since
;e the optimization of an outer loop may have added nev stats to
3 4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4



¢

C

;s
seee
Jees

1890
1]
T
T
H 1]
168
H i1}
Ml
ML
R
I
H 1]
%08
K1l
T
M1

the loop.

(IVR.NAME:LOOP-DEF-COUNT HAME)
Returns the number of defs of NAME in the current loop.

(IVR.NAME:LOOP-DEFINING-STATS MAME)
Returns the set of STATs that define MAME in the curremt loop.

(IVR.NAME :LOOP-USING-STATS NAME)
Returns the set of STATs that use NAME in the current loop.

(IVR.NAME:CONSTANT? NAME)
True 1f NAME 1s a constant within the loop (either a namber or
else not defined in the loop —- we rely on the fact that loop
invariants have already been moved out.)

(IVR.NAME:IV-FAMILY NAME)
If NAME has been identified as a primary induction variable,
returns the corresponding IV-FAMILY; otherwise, returns ().

(IVR.NAME:SECONDARY-IV NAME)
If NAME has beon identified as a secondary induction variable,
returns the corresponding SECONDARY-IV; otherwise, returns ().

(IVR.NAME:IV-FAMILYACONSTANTS NAME)
NAME must be an induction variable.

(IV-FAMILY A B)
where IV-FAMILY is the primary family of MAME, and A and B are

it; linear function constants (1 and O if NAME is a primariy
v).

Returns a list of the fora:

(defun ivr.analyze-usestdefs ()

(:= eivr.name:#defse

(hash-table:create () () 0) )
(:= sivr.name:defining-statse

(hash-table:create () () estat-set.empty-sets) )
(:= eivr.name:using-statse

(hash-table:create () () estat-set.empty-sets) )
(:= sivr.name:iv-fanilys

(hash-tabdble:create () () (0 ) )
(:= sivr.nane:secondary-ive

(hagh-table:create () () () ) )

(:= (loop:stats eivr.loops) estat-set.empty-gets)

(loog (for-each-bblock-set-element (loop:bblocks sivr.loops) bbloek) (do
loop (for-each-bblock-stat bblock stat)
7 (vhen (i== ’loop-assign (stat:operator stat) ) )
o

(:= (loop:stats #ivr.loops) (stat-set:unioni &% stat) )

(12-1et ( (written (otat:part stat 'written) ) ) (thea
(let ( (count (hash-table:get sivr.name:#defse written) )
(def-gtats (hash-table:get sivr.name:defining-atatse
vritten) ) )
(hash-table:put sivr.nasme:defining-statse written
(stat-pet:unioni def-stats stat) )

(hash-table:put ¢ivr.name:#defss written
(+ 1 count) ) ) ) )

(loop (for-each-stat-operand-read stat operand)
(bind using-stats (hash-table:get #ivr.name:.using-statss
operand) )
(do
hash-table:put ¢ivr.name:using-statas operand
. " (stat-set:unioni using-stats stat))))))))

0)

(defun ivr.name:loop-def-count ( name )
(hash-table:get sivr.name:8#defss name) )

(defun ivr.name:loop-defining-stats ( name )
(hash-table:get #ivr.name:defining-statss name) )

(defun ivr.name:loop-using-stats ( nase )
(hash-table:get *ivr.name:using-statss name) )

(defun ivr.name:constant? ( name )
(Il (numberp name)
(== 0 (hash-table:get *ivr.name:#defse name) ) ) )

(defun ivr.name:iv-family ( name )
(hash-table:get sivr.name:iv-faailys name) )

(defun ivr.name:secondary-iv ( name )
(hash-table:get sivr.name:secondary-ive name) )

(defun 1ivr.name:iv-familyiconstants ( nase )
f-let ( (iv-fanily (hash-table:get ¢ivr.name:iv-familys naae) ) ) (then
‘(.iv-family (&8 (+ (¢ 1) ) )
& (+(+0)))))

(else (1f-1et ( (secondary-iv (hash-tadble:get tivrjn;l;:sacondtry-lvt

nase
(then
*(,(secondary-1v:iv-family secondary-iv)
. (secondary-iv:a sacondary-1iv)
. (secondary-1v:d secondary-iv) ) )
(olse

(error (118t name "Name is not an induction variadle.®) ) ) ) ) ) )

;ttt Discovers all the primary induction variables and creates an IV-FAMILY
;oss for each one,
jeee

(defun ivr.collect-primary-ive ()

&

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




C

é?‘\

(:= eivr.iv-faniliess

(loop (for var in (ivr.primary-induction-variables) )

(bind iv-faaily
(1v-family:new
nase var
¢ primary-stats (ivr.name:loop-defining-stats var)))
save
(hash-table:put ¢ivr.name:1v-familys var iv-family)

0) iv-fasily) ) )

.
.

11

;#ss (IVR.PRIMARY-INDUCTION-VARIABLES)

1T

H b Eoturns & 1ist of the primary induction variables of the current
Je8e loop.

M1l »

;o8

(defun ivr.primary-induction-variables ()

(loop (for-each-stat-set—element (loop:stats sivr.loops) stat)

(initial candidate-vars
@ candidate-atats () )
o
(1f (ivr.stat:possible-primary-induction? stat) (then

candidate-varas (unionql &% (atat:part stat 'written) ) )
candidate-stats (otat-set:unioni &&8 atat) ) ) ) )

(resuls
(loop (for var in candidate-vars)
(vhen (stat-set:contains? candidate-stats
(ivr.name:loop-defining-stats var) ) )
(save var) ) ) ) )

;t.t
f::: (IVR.STAT:POSSIBLE-PRIMARY-INDUCTION? STAT)
;4ss Returns true 1ff STAT is a primary induction STAT; that is, STAT

f::: 18 of the form I := I +/- C, where C 18 a constant or loop invariant.

ey

(defun ivr.stat:possible-primary-induction? ( stat )
(agsert (stat:is sauzr )

(let ( (vritten (stat:part stat ‘written) )
(operator (stat:operator stat) ) )
(&2 (memq operator °'(iadd isub) )
(let ( (readi (stat:part stat °‘readl) )
(read2 (stat:part stat ‘read2) ) )
(Il (a8 (== written readi)
(1vr.naae:constant? resd2) )
(&2 (== ’iadd operator)
(== written read2)
(ivr.name:constant? readi) ) ) ) ) ) )

;#++ (IVR.COLLECT-SECONDARY-IVS)

H 11

;ess Finds all the secondary induction variables, creating SECONDARY-IVa
;ee¢s for them.

1]

:
J8e

(dm 1vr.collect- econdm;e:s 0 ‘
(v 5“#»3*“% Py lhkﬂk I
'f}u Scan each ©f th sucnamma of the blocks of the

;#¢+ loop, looking for possible secondary ivs.
HlL)

;#¢s Checks to see if BTAT qualifies as a soconcar{ induction stat of
;#+¢ gome IV-FAMILY; 1f 8o, a the secondary 1.v. 1s added to the fasmily
;#%% and true 1s returned.

1l

;#s¢ To be secondary i.v., STAT sust have the form:
H11]

1488 BTAT: K ;= J +/=/¢ C or K :i=-]

jeee

;#¢s vhere J is an already-discovered primary or sscondary 1.v.

;e¢¢ If J 18 & secondary i.v., then only one definition of J may reach
;¢#¢ K and no assignment of the primary variable, I, of J occurs between
;¢s¢ the asoignment to J and BTAT.

Rl

;¢ Because an complicated analysis is needed to check this requirsaeat
;#¢¢ in general (using reaching copies, vhich would need to be

;#¢s incrementally coaputed), we use more restricted criteria suggested
;¢¢s by the Dragon Book:

ieee

T If the assignments to J and K are in the same block, then the
iee8 assignzent to J must occur first and there aust be no assignzent
HL to I in between.

1]

1T If the assignaents to J and K are in different blocks, thea J's
1808 block must dominate K's block, and all the assignments to I must
B be in back-edge blocks of the loop (blocks whose successor 1s

H the loop header); there must bs no assignment to K in those

;oo back-edge blocks after the assignment to I.

(loop (for-each-bblock-set—element (loop:bblocks #ivr.loops*) bbdlock) (do
%1009 (for-each-bblock-stat bblock stat) (do
(ivr.stat:secondary-induction? stat) ) ) ) )
;#%s Reverse the lists of SECONDARY-IVs, for prettiness.
;eee
(loop (for iv-family in sivr.iv-familiess) (do
¥:= (iv-fanily:secondary-ivs iv-family) (dreverse &28) ) ) )
;o¢¢ Mark the "useful®™ SECONDARY-IVs.
1088
(loop (for iv-family in sivr.iv-familiess) (do
gleog (tor aecondlr{-iv in (iv-fasmily:pecondary-ivs iv-fasily) ) (do
o) ivr.secondary-iv:mark~if-useful secondary-iv) ) ) ) )
21
T
;o¢s (IVR.STAT:SECONDARY-INDUCTION? STAT)
R 1l

gi:' i::: Both of these conditions satiofy the more general requirement. The
7 8
PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




C

C

seee
1]
;e
Jees

first condition ig suggested by the Dragon Book. The second condition
adds a little more generality needed for unrolling loops and "folding®
the induction variable.

(let

(defun ivr.stat:second induction? ( stat ) ( 4]
(assert (stat:is s&ut}ifrb =

L E; Q
(c QO
(readi Q)
(rosd2 QO

Nl Sl Nl N it

)

(17 (! (memq (stat:operator stat) °(iadd imul isub ineg) ) ) (then
(return () ) ) )

(desetq (readi read2) (stat:part stat ‘read) )
(?( (ivr.name:constant? readi)
(:= ¢ readl)
:= § read2) )
ivr.naze:constant? read2)
:= ¢ read2)
:= § readl) )

retura () ) ) )

Ifsﬁ::: a:t stat ‘vritten) )

il (1=="1 (ivr.name:loop-def-count k) ) )
(retara () ) ) )

(¢ (1 (1vr.utsﬁ:i:t:aocondlry-lndncstoa? stat J k) ) (then
(return () ) ) )

-~

1

-~
I Ot e,

~ e~
[
U

Eizzégga:;ngd;s;condnry-iv stat k § c)

H L
;¢¢s These requirements identify a subset of the following general
;##s condition required for K-STAT to be a secondary iv:

T

LT J is primary, or if J is a secondary, then only one definition
;888 of J may reach K and no assignment of the primary variable, I,
H L of J occurs between the assignaent to J and STAT.

Jeee

;¢¢¢ The more goneral condition can be checked using reaching copies,
;#¢¢ but 1t needs incremental flow analysis (ugh). BSo we use these
;#¢¢ restricted conditions which are easier to check and will get most
;ee% cases.

H 1)

.

(defun ivr.stat:)]:k:secondary-induction? ( k-stat j k )

aas TN |
L]
(j-atat 0))

(?( (;vr.nalezlv-ttlily »
17

( (:= secondary-iv (ivr.name:secondary-iv j) )
(:= i-ettﬁ (stat-set:choose (ivr.naae:loop-defining-stats §) ) )
(:= 1 (iv-family:name (secondary-iv:iv-family secondary-iv) ) )

(1 (== (etat:bblock j-stat) (stat:bblock k-stat) ) (then
(ivr.bblock:no-asgignments? j-stat k-stat 1) )

(elae
(a& (stat:dominates? j-stat k-stat)

(loop (for-each-stat-set-clement
(ivr.name:loop-defining-stats 1)
i-atat)

. (bind 1-bdlock (stat:bblock i-stat) )

o
(1f (! (bdlock-set:member? (loog:bact-adgan ¢1vr.loope)
1-bdlock) )
(then

1T (return () ) ) )

;::: (IVR.BTAT:J:K:SECONDARY~INDUCTION? K-STAT J K) (e (1 (1vr.:bloct:na-asslgnnense?

: -8tat

f::: K-8TAT is a stat of the fora: E?b?oct:la&t-atu& 1-bdlock)

ieee K:i=J+/-C or K:i==~-7J (then

;eee (retarn () ) ) ) )

5::: This function checks the following conditions: (result t) ) ) ) ) )

ees J 18 a primary iv; OR (¢

H 1l 0))))

:::: J 18 a secondary iv, with these requirements:

;ttt If the assignmonts to J and K are in the same block, then He,

H AL the assjignment to J must occur first and there must be no H b

:::: assigonent to I in between. ;ses (IVR.BBLOCK:NO-ASSIGNMENTS? STAT1 STAT2 I)

: iee

LS If the assignments to J and K are in differont blocks, then ;¢+# Roturns true if STAT2 is in the same block as STATi, STAT! comes after
H2l J's block must dominate K's block, and all the assignments ;¢¢¢ STAT2 in the block, and there are no assignments to variable I in between
Hdid to I aust be in back-edge dlocks of the loop (blocks whose ;es¢ STAT1 and BTAT2.

e successor is the loop header); there must be no assignment H b

Hibad to K in those back-edge blocks afver the assignment to I. Haids

9 10

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4



«

(defun ivr.bblock:no-assignments? ( statl stat2 1 )
(100? (initial stat (stat:succ statl) ) (do

i1f (! stat) (then
(return () ) ) )

(12 (== stat stat2) (then
(return t) ) )

(12 (== 1 (stat:part stat °'written) ) (then
(return ()

(:= stat (etat:succ stat) ) ) ) )

O

;#»s¢ (IVR.STAT:ADD-SECONDARY-IV STAT K J C)

il

;#¢¢ A secondary induction variable is created corresponding to BTAT

;*+# vhich is of one of the foras:
il

;eee 2 K= J+C K:i=C+1J
;88 K:=J-¢C K:=C-1J
188t K:i=-1J

HLL K:=J=+C K:i=CsesJ
ieee

:::: where J is an already-known induction variable whose fora is:
iess  J=JAe I+ JB
H11]

f::: JA=1and JB =0 1f J is » pricary induction variable,

;#+¢ The linear function constants of the new secondary induction variable
E::: K are calculated by substituting iz the constants of J.

;##¢ Note that if there is already a secondary induction variable with
;%% the same constants, ve just add STAT to the set of STATs of that

;#+s gecondary variable.

T

(tor primary induction variadble I)

M 1]
.

(defun ivr.stat:add-secondary-iv ( stat k § ¢ )
(agsert (stat:is stat) )

(lete( E (1v-fanily ja jb) E}vi.aalc:1v-zal117lconstsntl )
a

(b 0O)

(secondary-iv 0))
:#%¢ Calculate the linear function constants of STAT by
::Ot substituting in for the constants of the induction variable.
H 1T

(caneq (stat:operator stat)

(1add  ;ese K :=J+C ==> JAs I+ (JB+C)
ens
{(:= a ja)
(:=b *(+ ,Jb ,e) ) )
(lsub ;88 K := J~-C == JAeI+ (JB =-C)
;88 K :=C=J ==> =JAsI+ (-JB +C)
It
(12 (== c (stat:part stat ’‘read2) ) (thea
= 8 is)

(:=b *(- .yb .e) ) )

(else
(:=a *(s -1 ,j3) )
(:=b *(- ,c,I®) ) ) ))

ess K 1= =J==> =JAeI-JB
;o0

(:=a *(s -1 ,ja) )

(:=b *(s -1 ,jb)))

(1ineq

(imal :s#s K :=C e J==> Cs JAsI+Ce¢ JD
18ER
(:=a ‘(s ,c ,J2) )
(:=b °*(» ,c ,ib) ) )
(t

(error (1iat stat "Unexpected operator.®) ) ) )

;#¢¢ Add STAT to the SECONDARY-IV that already has the same
:#%s constants, or else create a new SECONDARY-IV for STAT
;ess if no previous secondary iv has the same constants.
H11]

(:= » (de:normalize a) )

(:= b (de:normalize b) )

(:= secondary-iv (ivr.iv-family:a:b:secondary-iv iv-fasily a b) )

(push (secondary-iv:original-names secondary-iv) k)
(hash-table:put ¢ivr.name:secondary-ive k secondary-iv)
(1f (! (secondary-iv:name secondary-iv) ) (then
(:= (secondary-iv:nase secondary-iv)
(fa.temporary-name (stat:part stat ‘written) ) ) ) )

(:= (secondary-iv:stats secondary-iv)
(stat-get:unionl &&& stat) )

(:= (1v-family:secondary-astats iv-family)
(stat-set:unioni &&8 stat) )

(IVR.IV-FAMILY:A:B:SECONDARY-IV IV-FAMILY A B)

Searches IV-FAMILY for a secondary induction variable record with
constants A and B, If one is fourd, it is returned. Otherwvige
& nev one is created, added to the IV-FAMILY and returned.

(defun 1vr.17-!::111:s:b:seconds:{-;v)( iv-fasily a b )
8 J

(assert (iv-fanily:is iv-fom

(loop (for secondary-iv in (iv-family:secondary-ivs iv-faaily) )
(vhen (8% (= a (secondary-iv:a secondary-iv) )
. (= b (secondary-iv:b secondary-iv) ) ) )
do
(return secondary-iv) )
(result
(let ( (secondary-iv (secondary-iv:nev iv-faaily iv-fasily
gtats sptat-set.onpty-gets
a a
b b) ))
(push (iv-family:secondary-ive iv-family) secondary-iv)

11

12

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




C

¢

secondary-iv) ) ) )

.

Eo-s

;#*+ (IVR.SECONDARY-IV:MARK-IF-USEFUL SECONDARY-IV)

Ml

;#¢s Sets the :USEFUL? fileld of SECONDARY-IV. A secondary variable is
;#+¢ ngeful if at least one of the secondary induction STATs is used for
;¢+¢ sorething other than calculating other secondary induction variables
;¢s¢ in the same family or conditional jumps.

ML

(defun ivr.secondary-iv:mark-if-useful ( sscondary-iv )
(sssert (secondary-iv:is secondary-iv) )

(11 (for-some (var in (secondary-iv:original-names secondary-iv
(ur.u-funy:ndncuon-m:uﬁun 2
(nm):o;dury-u:n—ruuy secondary-iv)
var
(then
(:= (secondary-iv:useful? secondary-iv) t) ) )

0)

fews

: t:' (IVR.IV-FAMILY:USEFUL? IV-FAMILY)

iz

;¢¢+ Returns trus if the prisary induction variadble is used for something
;##s other than conditional jumps, asgerts, or computing induction

;#¢¢ variables within the family.

Jeee

iv-stats)
stat)
” (vhen (! (memq (stat:group stat) ‘(if-compare assert))))
o
(retura t) )

(resalt () ) ) ) )

»

sees
Jeee
Jeee
Je88
iees
1eee
Jeee
ie8e
188
1ees
Rl
1088
Rl
1888

(IVR.IV-FAMILY:SIMPLIFY-IKDUCTION-VARIABLES IV-FAMILY)

Replaces all assignments to secondary induction variables of IV-FAMILY
in the current loop by assignments rewritten in terss of their linear
functions of the primary variable, decoupling secondary variables

from the primary ones.

Then all conditional-jump uses of the prim variable and secondary
variables are revritten to use the simplest secondary induction
variable that is being used for something other than conditional
jumps. This will leave the primary and/or some of the secondary
induction variables useless, to be deleted by dead code removal.

]

; o=

(defun ivr.iv-family:useful? ( iv-family )
(agsaert (iv-fasily:is iv-family) )

(ivr.iv-family:induction-var:useful?

1?-!&:11{
(iv-fanily:name iv-family) ) )

.

Ettt

5::: (IVR.IV-FAMILY: INDUCTION-VAR:USEFUL? IV-FAMILY VAR)

;¢##¢ Returns true if VAR is used for something other than conditional
;#%¢ jumps, asgerts, or coaputing other induction variables within the
ieee fanily.

1868

L
’

(defun 1vr.1v~—!u1ly:suzlurtndnct.ion-mublu ( iv-family )

(assert (iv-family:is iv-family) )

;¢es Generate code in the pre-header for the linear constants
;s¢s A and B of each secondary variable if needed, sssigning
;#es :A-ADDRESS and :B-ADDRESS.

H L

(1007 (for secondary-iv in (iv-family:secondary-ivs iv-faaily) ) (do
= (1vp.secopdary-1v:generate-constant-code secondary-iv) )

At g B Pk s P ' k - i,
%8s Generste pset o-o‘g:du the p header that relate the
;¢¢+ pacondary variables to the primary variable, for use by the
;#¢s agsertion facility.
H11]
(loop (for secondary-iv in (iv-family:secondary-ivs iv-faaily) ) (do
zE.vr.uconﬁsrrlv:guorsﬂ-loop—uup secondary-iv) ) )

A e e/ each ¢

;#¢¢ the primary iv is used on

;%% gacondary 1ivs.

H 1)

(! (ivr.iv-family:useful? :I.v—uan{) ) (then

(loop (for-sach-stat-gset-element (iv-family:primary-stats iv-family)
induction-stat)

itional {up use of the primary iv, provided
y for conditional jumps and

(12

£}
(loop (for-each-stat-set-element
(1vr.naae:loop-using-stats (iv-family:name iv-faeily) )
use-stat)
(vhen (== 'if-compare (stat:group use-stat) ) )

(do

(defun ivr.iv-family:induction-var:useful? ( iv-faaily var ) -~ (1vr.iv-fanily:induction-var:jump-stat:sieplify

(sssert (iv-family:is iv-family) ) iv-fanily (iv-faaily:name iv-family) use-stat) ) ) ) ) ) )

(let ( (iv-state (stat-set:union (iv-family:primary-stats iv-fanily) ;#es Rewrite each conditional jump use of & useless secondary iv.

(1v-fasily:secondary-stats iv-family)))) ;e
(loop E!or secondary-iv in (iv-family:secondary-ivs iv-fasily) )
(loop (for-each-stat-set-element when (! (secondary-iv:useful? secondary-iv) ) )
(stat-set:difference (ivr.name:loop-using-stats var) (do

13 14

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




O

C

(loop (for var in (secondary-iv:original-names secondary-iv) ) (do

Eloop (ft:u--au:]:—snt--se{:em-eng1
(1vr.name:loop-using-stats var)
use-stat)

- (vhen (== 'if-compare (stat:group use-stat) ) )

o
(1vr.iv-fasily:induction-var: jusp-stat:simplify
iv-fasily var use-stat) ) ) r; })

;¢¢¢ Gonerate code for each of the secondary ivs that decouples
;#¢¢ them froam the primary iv.
1688

(1oo¥ (for secondary-1v in (iv-family:secondary-ivs iv-fasily) ) (do
ivr.secondary-iv:eimplify secondary-iv) ) )

0))

;¥ee

ises (IVR.SECONDARY-IV:GENERATE-CONSTANT-CODE SECONDARY-IV)

;*¢s QGenerates code in the loop pre-header for evaluating each of the linear
i*¢s function constantas of the secondary induction variable SECONDARY-IV,
;*»*¢ and gets :A-ADDRESS and :B-ADDRESS of SECONDARY-IV to contain the

;#¢s temporary NADDR names holding the constants. (If a constant is

;%ss a known nusber, then the -ADDRESS field will contain that number

:": directly and no code vill be generated.

L

(defun ivr.secondary-iv:generate-constant-code ( secondary-iv )
(assert (secondary-iv:is secondary-iv) )

(lets( (a-address (ivr.de:generate-and-insert-naddr
(secondary-iv:s secondary-iv)
‘pre-header () ) )
(b-address (ivr.de:generate-and-insert-naddr
(secondary-iv:b secondary-iv)
‘pre-header () ) ) )
(:= (secondary-iv:a-address secondary-iv) a-address)
E ):=) (;econdlrriv:&-udrus secondary-iv) b-address)

;#s¢ (IVR.SECONDARY-1V:GENERATE-LOOP-ASSIGN SECONDARY-IV)

;%¢s Generates information in the loop header that relates a secondary
;#*¢ variabdle to its primary. The pseuod-op generated looks like:

;s TEMP ;= Ae¢ I+ B
;#¢¢  (LOOP-ASSIGN J TEMP)

;*%% yhere I 1s the pria iv, and J the second iv with linear
;*#%% conotants A udp;. i -

:#¢s LOOP-ASBIGN 18 & pseudo-op that has meaning to STAT:DERIVATION, which
;88 treats it as & regular assignaent (to all other code, it is & no-op).
;#¢s The effect of this 1s to produce derivations for the secondary ive
:*#8s in teras of the primary ivs.

;#ss If we didn't do this, the assertion facility would have 10 way to
;#¢s relate the secondary ivs to the prograamer’s assertions that are
;#¢¢ in terms of the primary ive, because wve have decoupled the secondary
;#ss froa the primary ivs.

sese

(defun ivr.secondary-iv:generate-loop-assign ( secondary-iv )
(assert (secondary-iv:is secondary-iv) )

(lete( (iv-family (secondary-iv:iv-fanily secondary-iv) )
i {(iv-family:name iv-family) )
( (temp naddr)
(ivr.dexpr:generate-naddr
*(+ (+ ,1 ,(secondary-iv:a-address second: iv) )
, (secondary-1v:b-address secondary-iv) ) ) ) )

(ivr.insert-naddr
(append1 naddr
*(loop-assign ,(secondary-iv:name secondary-iv) ,temp) )
‘before
(bblock:first-stat (loop:header sivr.loops) ) )

0))

o

;#ss (IVR,IV-FANILY:INDUCTION-VAR:JUMP-STAT:SIMPLIFY IV-FAMILY J JUMP-STAT)
Jese

;#¢¢ Bimplifies a conditional jump that uses a useless secondary or priasary
;#¢s induction variable by rewriting the conditional jump to use a siapler
;¢¢s secondary induction variable.

jene
;es¢ The conditional juamp test has the fora:
;o8

il J RELOP X

11

;99s yhere J 18 either a secondary or primary iv and expresced in teras
;#¢s of the primary as:

BT

H 11 J=AIsI+BJ

1T

;#%% We look for another useful secondary iv K that has the fora:

I

;880 K=AK ¢ I+ BX vhere AX = R & AJ for some known nuaber R.

R 11

:ese If ve find such a K, ve can rewrite the conditional test to be:
18

1900 TEMP =R ¢ X-R * BJ + BX
ieen X RELOP TEMP {1¢ R is positive)}
T TEMP RELOP K {if R is negative}
R11

;¢s¢ The code for TEMP can be placed in the loop header if X is & loop
;¢ss constant.

;ese

;#¢¢ Note that vhen we "replace® a STAT, we really only change its source,
;#%¢ 80 that reaching uses, etc. will continue to bs available (sigh).

H 11

(defun ivr.iv-family:induction-var:juap-stat:sisplify

16

( iv-family ) jusp-stat )
i8

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4



http://lvr.de

C

(

(assert (iv-family:is iv-family) )
(assert (stat:is Jump-stat) )
(lete( ( %nnp—oper (stat:source jump-stat) )
( (O aj b)) (ivr.name:iv-fanilykconstants j) )
( (secondary-iv r)
(ivr.iv-family:a:simplest-gsecondary-ivir iv-faaily aj) ) )

(1¢2 secondary-iv (then
(lev+( (k (secondary-iv:name secondary-iv) )
(bk (secondary-iv:b secondary-iv) )
(x (1f (== ] (stat:part jump-stat ‘read2) )
(stat:part jusp-stat "readi)
(stat:part jump-stat 'read2) ) )
(tezp () )

(:= temp (ivr.de:generate-and-insert-naddr
‘(¢+ (¢ ,v ,x)
(+ =1 ,r ,bj)
bk

(1f (ivr.name:constant? x)
‘pro-header
*before)

jump-stat) )

(:= (stat:source jump-stat)
(12 (> r 0) (then
(oper:substitute-operand
(oper:substitute-operand jump-oper k j ‘read)
temp x °'read) )
(else
(oper:substitute-operand
(oper:substitute-operand jump-oper temp j ‘'read)
53 3 kx‘read) ) ) ) )))

Kl
MLl

::-0 (IVR.IV-FAMILY:A:SIMPLEST-SECONDARY-IVAR IV-FAMILY)

MLl

;#¢s Finds the SECONDARY-IV K in IV-FAMILY that has the simplest linear
;#¢s function constants AK and BK such that AK = R » A for some constant
:*:0 number R. If such a secondary iv is found the result returned is:

4 11

;:-- (SECONDARY-IV R)

1]

;#ss Othervise, () 1s returned. R must be a compile-time number, since
:::: we'll be using it in rewriting relops above, and we'll need its sign.
Eo-o Only secondary induction variables marked as "useful®” (that have

:::: :n:l other than computing other induction variables) are considered

: ere.

T

:::0 The possibilities are ranked as follows, the simplest first:

e 1]

(defun ivr.iv-fanily:a:simplest-secondary~ivar ( iv-family » )
(assert (iv-family:is iv-faaily) )

(loop (for secondary-iv in (iv-family:second ivs iv-family) )
d (vhen (neco::!ry-iv:usotnlf aecond;ry-ivl )

(bind r-exp (de:divide (secondary-iv:s secondary-iv) s) )
(vhen r-exp)

(bind r-sum (cadr r-exp) )

(vhen (== 2 (length r-sum) ) )

(bind r-prod (cadr r-sum) )

(vhen (== 2 (lengtk r—prod) ) )

(bind () r) r-prod)

(bind b (secondary-iv:b sacondarghiv) )
(initial simplest-secondary-iv ()

simplest-r (
simplest-cost 10000
cost 0)
(do
(:= cost 0)

(12 (!==r 1) (then
(:= cost 2) ) )

(12 (t=1b (& (+ (*+ 0) ) ) ) (then
(:= cost (+ cost 1) ) ) )

(12 (< cost simplest-cost) (then
(:= simplest-cost cost)
(:= simplest-r r)
(:= simplest-secondary-iv secondary-iv) ) ) )

(result
(1f simplest-secondary-iv
;§.g1;p§e§t-secondary-1v ,8implent-r)

;;t‘
;ses (IVR.SECONDARY-IV:SIMPLIFY SECONDARY-IV)

HL L

;*¢+ Replaces all assignaents to secondary induction variables of IV-FAMILY
;#¢s in the current by assignments revritten in teras of their linear

;ees functions of the primary variable, decoupling secondary variables

;#ss froa the primary ones.

H 1]

;ess Each assignpent of a secondary variable in SECONDARY-IV is replaced by:
il

H b J := NEW-NAME

2L

;o¢¢ vhere HEW-NAME is the name of a new induction variable created to

;#¢s replace the set of all the second ivs that have the same linear
;e¢s function of the primary (SECONDARY-IV represents that set).

1800

;e8¢0 After each primary induction statement I := I + C, we insert

1889

seee R =1,BK =0 H 1L KEW-HAME := NEW-NAME + A+ C
i R =1,BK I=1 1808
R RI=1,BX =0 ;¢¢s In the loop header, NEW-NAME is initialized to be:
H A4 Ri=1, BK 1= 0 11
Rl jeee NEW-MAME := A+ I + B,
H L jeee
;eoe Kote that vhen we "replace® a STAT, we really only change its source,
17 i8

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




C

:#%% go that reaching uses, etc. will continue to be available (sigh).
e

»

(defun ivr.secondary-iv:eimplify ( second iv )
(assert (neond{;y-iv:tg aa":ondnry-u) !

(lete( (iv-family (secondary-iv:iv-family secondary-iv) )
(1 (iv-family:name iv-family) )
(now-name (secondary-iv:name secondary-iv) )
(a-address (secondary-iv:a-address secondary-iv) )
a (secondary-iv:a secondary-iv) )
(4] (secondary-iv:d secondary-iv) ) )

:::: }epiu:;w ::::lm ?.aslgnnent of secondary variables J by
(loo;.z;or-oun-un-us—olennt (secondary-iv:stats secondary-iv)
- (bind j (stat:part stat 'vr:::::):) )

(:= (stat:source stat) °‘(iassigan ,j ,new-name) ) ) )

;¢¢s Generate statements in the pre-header of the fora that
;%09 gvaluate:

jeee

Hlad NEW-NAME := A+ I+ B

11

:#¢¢ vhere I is the prisary induction variable and A and B are
;#es the linear function constants of the secondary variable.

l1 I‘) lb)
b r;-?e;ﬂer
(bblock:append-stat (loop:pre-header eivr.loops)

;¢¢s After oach primary statement I := I +/- C, insert
;e*s 3 ptatoment of the fors:

(stat:part primary-stat ‘readi) )
(stat:part primary-stat ‘read2)
(stat:part primary-stat ‘readl) )
address (ivr.de:generato-and-insert-naddr
‘(s ,a~address ,c)
(12 (ivr.name:constant? c)
‘pre-header
*aftor)
grnu-rstat)
(12 (== *isud (stat:operator primary-stat) )
*(isud ,new-name ,nev-name ,address)
*(iadd ,new-name ,nev-nage ,address) ) )

oper

(a
Oo) (:Jlnt:nppand-ar.n primary-stat (stat:create oper) ) ) )

T PO Md-
(lot ( (address (1vr:%::f:norne-nd-xnaert-nudr ‘6 M

(stat:croate ‘(iassign ,new-name ,address))))

feve KEV-HAME := NEV-HAME + A & C é/;,gmfﬁwa

BT -
(loop (for-each-stat-set-element (iv-fasily:primary-stats iv-faaily)
primary-stat)
(bind ¢ (12 (== (stat:part primary-stat ‘written)

R
Hl2

;eee (IVR.DE:GENERATE-AND-INSERT-NADDR DEXPR VHERE? STAT)

1]

;®4s Genorates NADDR for an unnormalized diophantine expression and inserts
;#¢¢ it somevhere in the current, returning the name of the temporary

;#¢+ variable holding the expression’s value (or a number if the value

;#¢¢ of the expression is constant). WHERE? and STAT specify wvhere the
;##¢ NADDR is to be inserted:

H L

;#s+ WHERE? = "BEFORE Right before BTAT.

;*#¢¢ WHERE? = °AFIER Right after BTAT.

;#¢¢ VHERE? = °PRE-HEADER At the end of the pro-header of the curreant loop.
Ml

(defun ivr.de:generate-and-insert-naddr ( dexpr where? stat)
(assert (|| (stat:1s stat)
(! stat) ) )
(let ( ( (address naddr) (ivr.dexpr:generate-naddr dexpr) ) )
(ivr.insert-naddr naddr where? stat)

address) )
L
11
;#e¢ (IVR.INSERT-NADDR NADDR WHERE? STAT)
;eee

;o¢¢ Inserts & list of NADDR cperations into a spot in the curreat loop.
;#¢¢ VHERET and STAT have the same meaning as above.
;88

(defun ivr.insert-naddr ( naddr vhere? stat )
(assert (|| (stat:is stat)
(! stat) ) )

(caseq vhore?
(betore
(loop (for oper in naddr) (do
( ?sut.:insort.—staﬁ stat (stat:creats oper) ) ) ) )
after

(loop (for oper in (dreverse naddr) ) (do
gsnﬁ:sppcnd-snt stat (stat:create oper) ) ) ) )
(pre-header
(loop (for oper in naddr)
(1nitial pre-header (loop:pre-hesder #ivr.loop¢) )

do
(bblock:append-gtat pre-header (stat:create oper)))))

i (error (11st vhere? "Invalid VHERE? position.®) ) ) )
QO)
Hhods
;#s¢ (IVR.DEXPR:GENERATE-NADDR DEXFR)
1008

;os¢ Qonerates NADDR for unnormalized diophantine expression DEXPR, which
;#¢¢ represents s linear function constant of an induction variadle. The
;¢s¢ result roturned has the fors:

19

20

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4



http://ivr.de
http://lvr.de

C

C

HLL 2
sese (ADDRESS HADDR)

1)

;#s+ vhere ADDRESS is the temporary name generated to hold the constant
;#¢¢ and NADDR 1s » 115t of NADDR operations generating that comstant.
;#+¢ If DEXFR represents a single known number, then ADDRESS will be that
;#*¢ pumber and NADDR will be ().

{11

(defun 1ivr.dexpr:generate-naddr ( dexpr )
(1vr.dexpr—+:generato-naddr (cadr (de:normalize dexpr) ) ) )

(defun ivr.dexpr-+:generate-naddr ( (() (() conmstant) . prods) )
(1f (t prods) (thenm
*(,constant () ) )
(else
(:= prods (sort prods
(£:1 ( prodi prod2 )
(12 (> (cadr prodi) (cadr prod2) )

t
(lexorder (cddr prodi) (cddr prod2) ) ) ) ) )
(loop (for zrod in prods)

initial address (if (== O constant) () constant)
naddr ()

toRp 0)
(bind (prod-address prod-naddr) (1vr.da:g:-t:genoraﬁe-naddr
P
address) )
(do
(az ?dcrosn (t%:n 5% )
1= temp a.teomporary-namse
(:= naddr (appendpgaddi-
prod-naddr
*C (,(12 (> O (cadr prod) ) 'isud 'iadd)
,tenp
.address

.prod-address) ) ) )
(:= address temp) )
(else
(:= naddr prod-naddr)
(:= address prod-address) ) ) )
(result ‘(,address ,naddr) ) ) ) ) )

(defun ivr.dexpr-s:generate-naddr ( (() constant
(let ( (address ()
(naddr ()
(temp () ))

(11 1 -pign? (th
(EEO::n:SE:t Esb:nconutant) )))

. vars) ignore-sigm? )

(?( (== -1 constant)
(:= temp (fa.temporary-nase () ) )
(:= naddr *( (ineg ,temp ,(car vars) ) ) )
E = address tenp)
= vars (cdr vars) ) )
( (== 1 constant)
(:= address constant) ) )

(loop (for var in vars) (do
(1f sddress (then

= fa.t 0O))
E:= :::gr %n;po:=p::;§;-§:.gtnul .temp ,sddress ,var) ) ) )
i (:= address temp) )
else

(:= mddress var) ) ) )
(result °‘(,address ,naddr) ) ) ) )

21

22

PS:<C.S.BULLDOG.FLOW-ANALYSIS>INDUCTION-VARIABLE-REMOVAL.LSP.4




;#+% LIVE

;¥** This module computes live variable information, using the algorithm
;#** in the Dragon Book, Chap. 14. As a special hack, the live-out of
;*#* avery exit BBLOCK is set to be the set of names deflined in any LIVE
;#*+ paeudo-ops in the exit block. This guarrantees that common

;#*+ gub—expression elimination will optimize the exit block correctly.
JhkE

;*#+ (FG.SET-LIVE-NAMES)

I Sets :LIVE-IN and :LIVE-OUT of each BBLOCK to be the NAME-SETs
H A d of names live on entry and exit to the block.

JRER

;#*+ (STAT:LIVE-IN STAT)

Il Returns the NAME-SET of names live on entry to STAT.

Jhes

;#¢¢ (STAT:LIVE-OUT STAT)

AL Returns the NAME-SET of names live on exit to STAT.

e

Ll

(include flow-analysis:flow-analysis-decls)

(defmacro bblock:def ( bblock ) °*(bblock:gen ,bblock) )
(defmacro bblock:use ( bblock ) *(bblock:kill ,bblock) )

(defun fg.set-live-nazes ()
(1n.set-def&use)

(locop (for-each-bblock bblock) (do
(:= (bblock:live-in bblock) #fg.empty-name-set+)
(:= (bblock:live-out bblock) #fg.empty-name-set+) ) )

(loop (initial change () )
E:axt change () )
(+]
(loop (for bblock in (fg.depth-first-ordered-bblock-list ‘reverse) )
(initial new-out ?) )
(do
(:= new-out
(apply °‘name-set:union
(tfor (succ-bblock in (bblock:succs bblock) ) (save
(bblock:1ive-in succ-bblock) } ) ) )

(1f (! (name-set:= new-out (bblock:live-out bblock) ) )
(:= change t) )

(bdlock:1ive-out bblock) new-out)
(bblock:1ive-in bblock)
(name-get:union (name-set:difference (bblock:live-out bblock)
(bblock:def bblock))
(bblock:use bblock) ) ) ) ) )
(wvhile change) )

(1n.hack-exit-bblocka)
0)

il

;##s We could do gome cacheing here of results, like was done for
;#*+ STAT:REACHING-DEFS, but it might not be worth it.

2T

(defun ln.set-defuse ()

Eloop (for-each-bblock bblock)
do
(loop (for-each-bblock-stat™ bblock stat)
(initial def »fg.empty-name-sets*
uge *fg.empty-name-set+)
(do
(12 (stat:definition? stat)
(let ( (defined-name (stat:part stat ‘written) ) )
(:= def (name-set:unionl def defined-name) )
(:= use (name-set:difference use
(name-gset:singleton defined-name) ) ) ) )

(loop (for-each-stat-operand-read stat name) (do
(:= use (name-set:unioni use name) ) ) ) )
(result
(:= (bblock:def bblock) def)
0) (:= (bblock:use bblock) use) ) ) ) )

(defun 1ln.hack-exit-bblocks ()

(loop (for-each-bblock bblock)
¢ (when (! (bblock:succs bblock) ) )
do

(loop (for-each-bblock-stat bblock stat)

" (when (== 'live (stat:operator stat) ) )

o
(loop (for name in (stat:part stat ‘read) ) (do
(:= (bblock:live-out bblock)
(name-set:unionl &2& name) ) ) ) ) ) ) ) )

(defun stat:live-in ( stat )

(ln.stat:live-in—-exit stat t) )

(defun stat:live-out ( stat )

(1n.stat:1ive-in-exit stat () ) )

(defun 1n.stat:live-in-exit ( stat entry? )

(assert (stat:is stat) )

(loop (initial bblock (atat:bblock stat)
live-out (bblock:live-out bblock) )
(for-each-bblock-stat™ bblock succ-stat)
(until (& (! entry?)
(== stat succ-stat) ) )
(do

(17 (stat:definition? succ-stat) (then
(:= live-out
(nane-get:difference live-out
(nane-set:singleton (stat:part succ-stat 'written) ) ) ) ))

1

PS:<C.S.BULLDOG.FLOW-ANALYSIS>LIVE-NAMES.LSP.b

2




(loop (for-each-stat-operand-read succ-stat name) (do
(:= live-out (name-set:unioni live-out name) ) ) ) )

(until (&2 entry?
(== stat succ-stat) ) )
(result live-out) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>LIVE-NAMES.LSP.5



C

Loop

A LOOP describes one loop in the flow graph:

def-struct loop
header
found-pre-header

A BBLOCK that is the single entry into the loop.
A BBLOCK that is the pre-header of the entry
(this 18 filled in on the fly).

back-edges ; BBLOCK-SET of BBLOCKs in the loop whose
; successors include the header.
bblocks ; BBLOCK-SET of all the BBLOCKs in the loop,
; include the header and the back edges.
stats ; STAT-SET of stats in the loop.
invarianta ; Ordered 1list of STATz that are invariant.
exits ; All the BBLOCKs in the loop that have a
) ; successor not in the loop.

(FG.INITIALZE-LOOPS)
Forgets all previous loops.

(LOOP :CREATE TAIL-BBLOCK HEAD-BBLOCK)
TAIL-BBLOCK and HEAD-BBLOCK describe a backedge of a loop. If
there is already a loop with HEAD-BBLOCK as the head, then this
backedge 18 just added to the loop. If not, a new loop is created
(and resembered) .

(FG.SORT-LOOPS)
Sorts the loops by order of containment (outer loops come first)
and secondarily by source order of the headers.

(LOOP : BBLOCK : MEMBER? LOOP BBLOCK)
Returns true if BBLOCK is part of LOOP.

(LOOP :STAT :MEMBER? LOOP STAT)
Returns true if STAT is part of LOOP.

(LOOP :NAME :DEFINING~STATS LOOP NAME)
Returns the STAT-SET of definitions of NAME within the loop.

(LOOP : PRE-EEADER LOOP)
Returns the pre-header BBLOCK of LOOP (creating one 1if necessary).
A pre-header 18 a block that is a predecessor of the header and that
has only one successor, the header. The pre-header is where any
invariants will be moved to.

(LOOP (FOR-EACH-LOOP LOOP) ...
Enumerates LOOP through each loop of the flow graph, in order of
containment (outer loops first).

W M WA WA wE WA ®E WA WA WE WA e W WA W WE mE WL WA WE W Ba WA WA WET NE B W W W W WA ws WA WE

(include flow-analysis:flow-analysis-decls)
(defvar #fg.all-loops* () ) ;#%+ List of all the loops.

(defun fg.initialize-loops ()
(:= #fg.all-loops* (? ) )

(defun loop:create ( tail-bblock head-bblock )
(loop (for loop in *fg.all-loops*) (do
(1f (== head-bblock (loop:header loop) ) (then
(:= (loop:back-edges loop)
(bblock-set:uniont (loop:back-edges loop) tail-bblock) )
(:= (loop:bblocks loop)
(bblock-get:unionl (loop:bblocks loop) tail-bblock) )
(return loop) ) ) )
(result
(push *fg.all-loops#
(loop:new header head-bblock
back-edges (bblock-set:singleton tail-bblock)
bblocks (bblock-set:unioni
(bblock-set:singleton head-bblock)
tail-bblock) ) ) ) ) )

(defun loop:bblock:member? ( loop bblock )
(assert (loop:is loop) )
(assert (bblock:1is bblock) )
(bblock-set:member? (loop:bblocks loop) bblock) )

(defun loop:stat:member? ( loop stat )
(assert (loop:is loop) )
(assert (stat:is stat) )
(loop:bblock:member? loop (stat:bblock stat) ) )

(defun loop:name:defining-stats ( loop name )
(assert (loop:1s loop) )
(assert (litatom name) )
(stat-set:intersection (name:defining-stats nane)
(loop:stats loop) ) )

(defun loop:pre-header ( loop )

(1f (loop:found-pre-header loop) (then
(loop:found-pre-header loop) )

(else
(loop (initial non-loop-preds () )
(for pred in (bblock:preds (loop:header 100;) ))
E:hen (! (loop:bdblock:member? loop pred) )

(+]

(push non-loop-preds pred) )
(result
(:= (loop:found-pre-header loop)
(12 (= 1 (length non-loop-preds) ) (then
(car non-loop-preds) )
(elge
(bblock:splice (loop:header loop) (bblock:create)
non-loop-preds) ) } )} ) ) ) ) )

(defun fg.sort-loops ()
(:= #fg.all-loops+
(sort *fg.all-loops#
O‘ilanbds ( loopi loop2 )
(11 (loop:bblock:member? loopi (loop:header loop2) )
(< (bblock:number (loop:header loopl) )
o3 (bblock:nusber (loop:header loop2) ) ) ) ) ) )

4
PS:<C.S.BULLDOG.FLOW-ANALYSIS>LOOP.LSP.7




§(def—sinple—1oop-clausa for-each-loop ( clause )
(let ( ( (for-each-loop var) clause) )

(if (! (22 (= 2 (length clause) )
(1itatom var) ) )
(error (1ist clause "Invalid FOR-EACH-LCOP syntax.") ) )

*( (for ,var in #fg.all-loops*) ) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>LOOP.LSP.7



@?“

C

LOOP INVARIANT MOTION

This module moves invariant code out of loops, closely following
the algorithms in the Dragon Book, Chapter 13.

(FG.SET-LOOP-INVARIANTS)
Sets the :INVARIANTS field of each LOOP to be an ordered list
of STATs that compute values that are invariant for each execution
of the loop. The 118t 18 ordered by order that the invariant
statements are found.

(FG.MOVE-LOOP-INVARIANTS)
Moves as many of the invariants as possible out of each loop.
*#% WARNING #*+ Most of the flow analysis information 1is
invalidated after this; the only thing guarranteed to be correct
is the BBLOCK, STAT, and NAME information.

L R I L T .

(include flow-analysis:flow-analysis-decls)

(defun fg.set-loop-invariants ()
(loop (for-each-loop loop) (do
(lin.loop:set-invarianta loop) ) ) )

(declare (special
#lion.moved-invariants* ;##¢ This is a global set of all invariants
) ;*#+ that have been moved out of their loopa.

(defun fg.move-loop-invariants ()
(let ( (*lim.moved-invariantss () ) )

(loop (for-each-loop loop) (do
%11:.1oop:novo-lnvaxiants loop) ) ) ) )

L
SRS

;##+ (LIM.LOOP:SET-INVARIANTS LOCOP)

L L

;¢%+ This sets the :INVARIANTS field of LOOP to be the ordered list of

;#%s invariants found within the loop body (that includes contained loops).
:#%#s If def S1 defines a name A that 1s used by def S2, and both Si and
:::: 52 are invariant, S1 is guarranteed to come before S2 in :INVARIANTS.
;*#% Conceptually, repeated passes are made over the stats of the loop

;*¢s parking invariants, until no new invariants are marked. For

;##s efficiency, statements are only rechecked for invariancy if at least
:*%% one of their reaching definitions were marked as invariant.

s EE

- ]

(defun lim.loop:set-invariants ( loop )

;¥#¢ First check every statement in LOOP for possible invariancy.

;*s+ Nov make repeated passes over the using stats of the

;**% invariants so far discovered, adding any newly discovered
;##+ invariants to LOOP, stopping when we make an entire pass
;#%% without discovering a new invariant.

(1ooﬁ (initial change () )
Enext change () )
do
(loop (for invariant-stat in (loop:invariants loop) ) (do
(loop (for stat in (stat:reaching-uses invariant-stat) )
(when (stat-set:member? (loop:stats loop) stat) )
(do
(if (lim.loop:stat:process-possible-invariancy loop stat) (then
(:=change t) ) ) ) ) ) ))

(while change) )

(:= (loop:invariantas loop)
(dreverse (loop:invariants loop) ) ) )

i*
Il

;##+ (LIM.LOOP:STAT:PROCESS-POSSIBLE-INVARIANCY LOOP STAT)

JREE

;##+ This checks to see if STAT (assumed to be in LOOP) is an invariant
;#++ in LOOP that isn’t now marked as invariant. If it is, it is added
;#%% to the :INVARIANTS of LOOP, and true is returned. False 13 returned
;**% otherwise.

JHEE

ML

(defun 1im.loop:stat:process-possible-invariancy ( loop stat )
(12 (2x (stat:definition? stat)
(! (memq stat (loop:invariants loop) ) )
(1im.loop:stat-invariant? loop stat) )

(then
(;ush (loop:invariants loop) stat)
v

(else
0))y)

11

;#%% (LIM.LOOP:STAT-INVARIANT? LOOP STAT)

1hEE

;#%#% Returns true i1f STAT is invariant in LOOP, that is, if each operand
;#+¢ of STAT 18 invariant.

ML L

L

(defun 1lim.loop:stat-invariant? ( loop stat )
(loop (for-each-stat-operand-read stat name) (do
fif (! (1im.loop:stat-operand-invariant? loop stat name) )
(return () ? ))
(result t) ) )

H I
(loop (for-each-stat-set-element (loop:stats loop) stat) (do seee
(1im.loop:stat:process-possible-invariancy loop stat) ) ) ;##% (LIM.LOOP:STAT-OPERAND-INVARIANT? LOOP STAT NAME)
% 2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>LOOP-INVARIANT-MOTION.LSP.7




C

f“

LT EER

;i#*» Returns true if the operand NAME of STAT is invariant in LOOP.

;#%% An operand is invariant if either:

ekk

;##¢ 1. It 18 a constant, or

;%% 2. All of 1ts reaching defs are outside of the loop, or

;¥#% 3. There 1is exactly one reaching def and it 1s already marked invariant.
T

1hEE

1R% ====

(defun 1im.loop:stat-operand-invariant? ( loop stat name )
;*##% Ig the operand a constant?
(i (nunﬁerp name)
;¥¢+ Or are all the reaching defs outside of the loop,
;#%+ or 1s there exactly one reaching def and it is parked
;#s+ invariant?

(loop (initial all-outside?
all-invariant? t

count 0)
(for-each-stat-set—element (stat:operand-reaching-defs stat name)
def-stat)
(do
(++ count) "

(:= all-outside?
(2& all-outgide?
(! (loop:stat:menber? loop def-stat) ) ) )
(:= all-invariant?
(k& all-invariant?
(aemq def-stat (loop:invariants loop) ) ) ) )
(result
(Il all-outside?
(e& (= 1 count)
all-invariant?) ) ) ) ) )

;#*s (LIM.LOOP:MOVE-INVARIANTS LOOP)

;*#* Moves as many invariant STATs out of LOOP as possible. An invariant
;*#* gtatement S that defines name A may be moved out of the loop if:

:*#% 1. A 18 not defined elsewere in the loop.

;##% 2. a) A 1p dead on every exit from the loop, or b) S dominates every

R i1 exit of the loop.

;##+ 3. Each use of this definition of A is reached only by this definition
Jene and has no other defs of A reaching it.

;*%% 4. If the reaching definitions of the operands of S come from inside
Rl the loop, then those definitions have been previously moved out
Hebdd of the loop as an invariant.

%4+ Condition 2b) is "dangerous®, in that the order of computation is
;#%% now changed relative to conditionals. E.g. a division A/B could
;*#** be moved out of a loop, up past a conditional that tests to see if
:*#¢% B i3 non-zero. The Dragon Book recommends prograzmer-accessible
;*#%% gwitches for disabling it.

Jees
Bl

jees
JEeE
Jeek

;#++ predecessor invariants have been considered;

that they were marked invariant (in the order of LOOP:INVARIANTS).
This insures that we consider an invariant only after all its
if a def has operands

that depend on previous invariants, those invariants must have been
moved out in order for def to be moved out.

k%
+ TR

(defu
(
(

n lime.loop:move-invariants ( loop )
loop (initial nane 0)
for stat in (loop:invariants loop) )

(when (! (stat-set:member? #lim.poved-invariantss stat) ) )
(do

(1f (stat:definition? stat) (then

(:= name (stat:part stat ‘written) )
(if (&2 (lim.loop:name-not-defined-elsewhere? loop name)
(Il (lim.loop:name-dead-on-exit? loop name)

(1im.loop:stat-dominates-all-exits? loop stat) )
(11a.loop:def-reaches-all-uses? loop stat nanme)
(1im.loop:operand-defs-moved? loop stat) )

(then
(stat:extract stat)
(bblock:append-stat (loog:pre—header loop)
stat
(:= #lim.moved-invariantss*
(stat-get:unioni #lim.moved-invariants+ stat) ) ) ))))))

B
il
Rl
BT
]
JEER

(LIM.LOOP :NAME-NOT-DEFINED-ELSEVHERE? LOOP NAME)
Returns true if there 1s only one definition of NAME within LOGP.

(defun 1im.loop:name-not-defined~elsewhere? ( loop name )
(=1

(stat-get:size (stat-set:intersection (loop:stats loop)
(nane:defining-stats name) ) ) ) )

Jess
Jeee
Jess
Jess
Jess

(LIM.LOOP:NAME-DEAD-ON-EXIT? LOOP NAME)
Returns true if NAME is dead on every exit from LOOP.

(defun 1lim.loop:name-dead-on-exit? ( loop name )

(loop (label 1)
Etor-each-bblock-set-cla:ent (loop:exita loop) exit)
do

(loop (for exit-succ in (bblock:succs exit) )

Ewhen (! (loop:bblock:member? loop exit-succ) ) )

do

(it (nanme-get:member? (bblock:1ive-in exit-succ) name)
(leave 1 () ) ) ) ) )

(result t) ) )

i

jess

;*#*+ Note that invariants are tested for moving eligibility in the order

4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>LOOP-INVARIANT-MOTION.LSP.7




¢ ¢

;#¢% (LIM.LOOP:STAT-DOMINATES-ALL-EXITS? LOOP STAT)
Il

;#*+ Returns true if STAT dominates every exit of LOOP.
1

JEE

(defun lim.loop:stat-dominates-all-exits? ( loop stat )
(loop (initial stat-bblock (stat:bblock stat) )
Efor-each-bblock-seb-elenent (loop:exitas loop) exit-bblock)
do
(1f (! (bblock:dominates? stat-bblock exit-bblock) )
(return () ) ) )
(result t) ) )

ThE
1RNE

;#¢* (LIM.LOOP:DEF-REACHES-ALL-USES? LOOP DEF-STAT NAME)

T

;##% DEF-STAT 18 assumed to define NAME. Returns true if each use of
;#%+ DEF-STAT within LOOP has DEF-STAT as the only reaching def that
;#¢% defines NAME.

1hEE

(defun 1im.loop:def-reaches-all-uses? ( loop def-stat name )
(loop (label 1)
(for use-stat in (stat:reaching-uses def-stat) )
Ewhen (stat-set:penber? (loop:stats loop) use-stat) )
do
(loop (for-each-stat-set-element
(stat:operand-reaching-defs use-astat name)
reaching-stat)
(do
(1f (!== reaching-stat def-stat)
(leave 1 0 ) ) ) ) )
(result t) ) )

L
11

;##+ (LIM.LOOP:OPERAND-DEFS-MOVED? LOOP STAT)

(#ee

;*#¢ Returns true if each reaching def of every read operand of STAT 1is
;*#%+ outside of the loop (either because it was outside originally or
;*#++¢ because it was an invariant that was poved).

1]

HE

(defun 1im.loop:operand-defs-moved? ( loop stat )
(loop (for-each-stat-operand-read stat name)
« (1nitial loop-reaching-defs () )
o
(:= loop-reaching-defs
(stat-set:intersection (stat:operand-reaching-defs stat name)
(loop:stats loop) ) )
(12 (! (stat-set:= sfg._empty-stat-sets
(stat-set:difference loop-reaching-defs
#lin.moved-invariants+) ) )
(return () ) ) )

(result t) ) )

5
PS:<C.S.BULLDOG.FLOW-ANALYSIS>LOOP-INVARIANT-MOTION.LSP.7



¢

i
EEE
;#¢+ This module contains functions for converting NADDR to flow graphs.
JhEE

¥

(include flow-analysis:flow-analysis-decls)

J#f¥====S====SsSsSS==s==

iR

;*#s¢ (FG,INITIALIZE-NADDR-TO-FLOW-GRAPH NADDR)
JEEE

;##+ Initializes this module.

s RES

e

(defun fg.initialize-naddr-to-flow-graph ()
E;:)tf;.entry—hblockt 0)

jae
R

;##+ (FG.NADDR-TO-FLOW-GRAPH NADDR)

11

;#++ Constructs a flow-graph from NADDR (a list of NADDR operations).
SRR
1t

(defun fg.naddr-to-flow-graph ( naddr )
(ntfg.naddr-to-stats naddr)
(ntfg.stats-to-bblocka)
}rg.remove—nnrenchshle-bblocka)

ML
s ERR

;##+ (NTFG.NADDR-TO-STATS NADDR)

1R

:*##+ Conatructs the graph of STATs corresponding to NADDR (a list of NADDR
;##s operations).

Jhee

;**+ Two passes are used. The first pass creates a STAT for each NADDR
;#¢+ operation (except LABEL and GOTO) and installs the "value® of each
;##+ NADDR label in a symbol table. The second pass goes over each STAT
;*** and replaces the symbol labels in the :SUCC field with the

;#%+ corresponding STAT successgor.

R

;##s When we are finished, the :SUCC and :PRED fields are lists of STATs
;#%¢ that are the predecessors and successors of the STAT in the flow

;*#% graph., When we make basic blocks, those fields will be set to single
;*##+ STATs (the pred and succ within the BBLOCK).

(RS

(defun ntfg.naddr-to-stats ( naddr )

(1et ( (labels (hash-table:create) ) )

;#%# LABELS ig a hash table mapping NADDR labels onto either
;*%+ the STATs representing the NADDR operation attached to
;#s¥ that label, or else other labels. For example, if L6
;*##+ 13 mapped onto L8, then L5 and L6 reference the same
;#%% NADDR operation.

;#%¢ The first pass creates a STAT for each operation, and

;s%¢ gets its SUCCS fleld to be a list of the symbollc NADDR
;#%s labels of the successor. Fall-through successors that
;*++ have no NADDR label are stored directly in the SUCCS

;##+ field of the predecessors. Labels and their corresponding
;#%¢ STATs/other labels are installed in the table as they

;#%% are encountered.

(loop (initial stat Q
current-labels ()
prev-stat (

(for oper in naddr)

(do

(caseq (oper:operator oper)

(1abel ;#+% Remember this label on the list of current
;%% equivalent labels. If the previous operation
;##% falls through to here, set 1ts successor
;#%% to be this label.

(push current-labels (oper:part oper 'labell) )
(1f prev-stat (then
(push (stat:succ prev-stat)
(oper:part oper ‘labell) )
(:= prev-stat () ) ) ) )

(goto ;#s+ Equate all current equivalent labels with
;##% the destination of this GOTO. If the previous
;#++ operation falls through to here, set its
;#%% guccessor to be the destination of the GOTO.

(for (label in current-labels) (do
(hash-table:put labels label
(oper:part oper ‘labell) ) ) )
(:= current-labels () )

(12 prev-stat (then
(push (stat:succ prev-stat)
(oper:part oper "labell) )
(:= prev-stat () ) ) ) )

(¢ ;#++ Some random operation: Create a STAT for
;#¢¢ 1t and equate all current equivalent labels
;#¢# to it. If the previous operation falls
;#*+ through to here set its successor to be the
;#%# new STAT. If STAT is a conditional juap,
;##¢ get 1ts successora to be the true/false
;%%% labels.

(:= stat (stat:create oper) )

(for (label in current-labels) (do
(hash-table:put labels label stat) ) )

(:= current-labels () )

(1f prev-stat

1)

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>NADDR-TO-FLOW-GRAPH.LSP.7




C

¢

(push (stat:succ prev-stat) stat) )

(if (stat:property? stat ‘conditional-jump) (then
(push (stat:succ stat)
(oper:part oper ‘labell) )
(if (oper:part oper ‘label2) (then
(push (stat:succ stat)
(oper:part oper ‘label2) )
(:= prev-stat () ) )
(else
(:= prev-stat stat) ) ) )
(else
(:= prev-stat stat) ) ) ) ) ) )

;#** Now make a second pass over all STATs, replacing symbolic
;*##+ label successors with actual STATs, and setting the
;##¢ predecegsors field of each STAT.

(100p (for-each-stat stat) (do
;*¢+ Replace labels with actual STATs

(loop (initial rest-succe (stat:succ stat) )
(while rest-succs)
(do
(1f (litatom (car reat-succs) )
(:= (car rest-succs)
(ntfg.label:stat labels (car rest-succs) ) ) ) )
(next rest-succs (cdr rest-succs) ) )

;*#*#+ The :SUCC field was built in reverse (tricky!).
(:= (stat:succ stat) (dreverse (stat:succ stat) ) )

;*#*+ Set the predecessor field of each successor to
;*#+ include this stat.

(for (succ-stat in (stat:succ stat) ) (do
i %5 (push (stat:pred succ-stat) stat) ) ) ) )

iHRE

;#*+ (NTFG.LABEL:STAT LABELS LABEL)

Il

;*** Returns the STAT associated with LABEL in the hash table LABELS.
;#%¢ Labels can be equated with other labels in the table, so we have
+*#¢ to follow such chains until we find an actual STAT.

Rl

L

(defun ntfg.label:stat ( labels label )
(loop (vhile (litatom label) ) (do

(:= label (hash-table:get labels label) ) )
(result label) ) )

s

;*%x Constructs the basic blocks corresponding to the graph of STATS built
;#%% by NTFG.NADDR-TO-STATS. Once the BBLOCKs are bullt, the :SUCC and
;*#% :PRED field of each STAT are changed to form a doubly linked list of
;#%* STATs within the BBLOCK.

;#** Seta *FG.ENTRY-BBLOCK* to the first STAT's BBLOCK (we assume 1t is
;#%+ the entry node of the graph).
JHEE

ihEk
(defun ntfg.stats-to-bblocks ()

;#** For each STAT in the graph (in source order), if it is
;##* the leader of a basic block, start a new basic block.
;#*+ If 1t 1sn’t a leader, add it to the current basic block.

(loop (initial bblock () )
(for-each-stat stat)
(do
(if (ntfg.stat:bblock-leader? stat) (then
(:= bblock (bblock:create) )
(:= (pblock:first-stat bblock) stat)

Eloop (initial next-stat stat)
do
(:= (stat:bblock next—stat) bblock)
(:= (bblock:last-stat bblock) next-stat) )
(next next-stat (car (atat:succ next-stat) ) )
(while (&& next-stat
(! (ntfg.stat:bblock-leader? next-stat) ) ) ) ) ) ) ) )

;e#% For each BBLOCK, set its predecessor and successor blocks.
;##s Also sets the entry BBLOCK to be the firat one.

(:= #fg.entry-bblocks () )
(loop f!or-each*bblock bblock) (do
(12 (! *fg.entry-bblocks)
(:= +fg.entry-bblocks+ bblock) )

(:= (bblock:preds bblock)
(for (stat in (stat:pred (bblock:first-stat bblock) ) ) (save
(stat:bblock stat) ) ) )
(:= (bblock:succs bblock)
(for (stat in (stat:succ (bblock:last-stat bblock) ) ) (save
(stat:bblock stat) ) ) ) ) )

;%% Currently :PRED and :SUCC of each STAT are lists of
;##+ of the successor and predecessor STATs of that STAT.
;**% Change :PRED and :SUCC so that they now foram a doubly
;%#% linked 1list of STATs within a BBLOCK. :PRED of the
;#%% first stat in a BBLOCK is (); 1ikewise of :SUCC of the
;##+ lagt STAT.

(loop (for-each-bblock bdlock) (do
(loop (initial stat (bblock:first-stat bblock)
prev-stat () )
(while stat)
(wvhile (== bblock (stat:bblock stat) ) )
(while (1istp (stat:succ stat) ) ) ;+#*+ have we done this STAT yet?

e (do

;#*¢ (NTFG.STATS-TO-BBLOCKS) (:= (stat:pred stat) prev-stat)
b (1 prev-stat

3 4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>NADDR-TO-FLOW-GRAPH.LSP.7



¢ ¢

(:= (stat:succ prev-stat) stat) ) )
(next prev-stat stat
stat (car (stat:succ stat) ) )
(result
(:= (stat:succ prev-stat) () ) ) ) ) )

0)

(hEE
JEEE

;#%% (NTFG,STAT:BBLOCK-LEADER? STAT)

Rl

;##+ Returns true if STAT is the leader (beginning) of a basic block.
;e#+ A STAT 18 a leader 1f 1t has O or more than 1 predecessors or if
;¢#+ 1ts predecessor has more than one successor.

Ral

R

(defun ntfg.stat:bblock-leader? ( stat )
(Il (! (stat:pred stat) )
(< 1 (length (stat:pred stat) ) )
(< 1 (length (stat:succ (car (stat:pred stat) ) ) ) ) ) )

5
PS:<C.S.BULLDOG.FLOW-ANALYSIS>NADDR-TO-FLOW-GRAPH.LSP.7



C

c

. type ;#+s SCALAR or VECTOR.
: length ;#+* Length of a VECTOR.
. NAMES defining-stats ;#++ The STAT-SET of definitions defining this stat.
H using-stats ;+###% The STAT-SET of statements using this stat.
; This module defines the type “name®. A name 15 a variable )
; name used within the flow graph. For now, names are
; represented externally as symbols to make handling NADDR (declare (special
: straightforward; a hash table 1s used to map names Onto +fg.nane:nane-descriptor*
; descriptive information. We'll see how much we pay for this ;##+ A hash table mapping varlable names onto
: hashing. ;#%% NAME-DESCRIPTORS.
H #fg.nuober:names* ;#%% An array Rapping numbers to names.
; (FG.INITIALIZE-NAMES) *fg.total-namess ;#+#+ Total number of names.
H Forgets all previous names and prepares for the creation tfg.all-vector—nnnes* ;#%% List of all vector nazmes.
3 of new ones. )
; (NAME:CREATE NAME TYPE SIZE) (declare (special
H Creates a new name with symbolic name NAME. TYPE 18 either shash-table.not-founds*
: SCALAR or VECTOR. SIZE 1s the declared size of a vector.
; (NAME:DEFINING-STATS NAME)
: Returns the STAT-SET of definitions that define NAME (initially empty). (defun fg.initialize-names ()
; (:= ¢fg.all-vector-nanes# 0)
; (NAME:ADD-DEFINING-STAT NAME STAT ) (:= +fg.name:name-descriptor* (hash-table:create) )
: Adds STAT to the set of definitions defining NAME. E;e;tor-uap:iniﬁialize '#fg.nuaber:name+ 'sfg.total-names* 100)
; (NAME:USING-STATS NAME)
: Returns the STAT-SET of statements reading NAME (initially empty).
; (defun name:create ( name type length )
; (NAME:ADD-USING-STAT NAME STAT ) (let ( (desc (hash-table:get *fg.name:name-descriptors name) ) )
: Adds STAT to the set of statements using NAME.
: (1f (== shash-table.not-found+ desc) (then
; (NAME:TYPE NAME) (hash~table:put *fg.name:name—descriptor+ name
: The type of a name, either VECTOR or SCALAR. (naze-descriptor:new name nase
H number +fg.total-nages*
; (NAME:LENGTH NAME) type type
: The declared size of a vector name. length length
: defining-atats +fg.enpty-atat-gets
; (NAME:NUMBER NAME) using-stats  ¢fg.empty-stat-sets) )
; Maps NAME to a unique nuaber. (vector-map:add-element '#fg.number:nases+ '¢fg.total-names+
: nage 100 t) )
; (NUMBER:NAME INDEX) (else
H Returns the name with :NUMBER INDEX. ;#¢# 1f wo have just discovered NAME to be a vector,
; ;#s+ override any previous guess; 6igh, PARAM for
s 88N I ;#¢s for vectors seems bogus?
H Syntax for (NUMBER:NAME I) :
: (1¢ (== ‘vector type) (then
; (LOOP (FOR-EACH-NAME NAME) ... (:= (name-descriptor:type desc) type)
: Enunerates through each known NAME. (:= (nape-descriptor:length desc) length) ) ) ) )
; (LOOP (FOR-EACH-VECTOR-NAME NAME) ... nage) )
: Enuperates through each known NAME declared to be a vector.
; (FG.PRINT-NAMES) (defun name:defining-stats ( name )
; Prints out all known NAMEs and thelr associated info. (1et ( (desc (hash-table:get *fg.name:name-descriptors name) ) )
; (assert (!== desc shash-table.not-founds)
; “NAME : DEFINING-STATS: name = " name)
(name-descriptor:defining-stats desc) ) )
(include flow-analysis:flow-analysis-decls)
(def-struct name-descriptor ;+¢+ A NAME-DESCRIPTOR 18 an internal record (defun name:add-defining-stat ( name stat )
;#¢% describing the information about a name. (let ( (desc (hash-table:get *fg.name:nane-descriptors name) ) )
name ;#*+ The name this describes. (aggert (!== desc *hagsh-table.not—founds)
nugber ;#*+ The unique number asgaigned to this name. “NAME:ADD-DEFINING-STAT: name = * name * stat = * (h stat) )

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>NAME.LSP.12

2



C

C

(:= (name-descriptor:defining-stats desc)
(stat~set:unioni (name-descriptor:defining-stats desc)
stat) ) ) )

(defun name:using-stats ( name )
(let ( (desc (hash-table:get #fg.name:name-descriptor* name) ) )
(asgert (!== desc *hash-table.not-founds)
“NAME:USING-STATS: name = " nane)
(name-descriptor:using-stats desc) ) )

(defun name:add-using-stat ( nape stat )
(let ( (desc (hash-table:get *fg.name:name-descriptors name) ) )
(assert (!== desc *hash-table.not—-found#)
“NAME : ADD-USING-STAT: name = " nape ® stat = * (h stat) )
(:= (name-descriptor:using-stats desc)
(stat-set:union! (name-descriptor:using-stats desc)

stat) ) ) )

(defun nane:type ( name )
(let ( (desc (hash-table:get #fg.name:name-descriptor# name) ) )
(assert (!== desc *hash-table.not-founds)
"NAME:TYPE: name = ® name)
(naze-descriptor:type desc) ) )

(defun name:length ( name )
(et ( (desc (hash-table:get #fg.name:name-descriptor* name) ) )
(assert (!== desc *hash-table.not-founds)
"NAME :LENGTH: name = " name)
(nape-descriptor:length desc) ) )

(defun name:number ( naze )
(let ( (desc (hash-table:get +fg.name:name-descriptor# name) ) )
(asgert (!== desc *hash-table.not-founds)
"NAME:NUMBER: name = " name)
(name-descriptor:number desc) ) )

(defun nunmber:name ( index )
([] *#fg.number:name+ index) )

(def-sharp-sharp n
‘([] #fg.number:name* ,(read) ) )

(def-simple-loop-clause for-each-name ( clause )
(1et ( ( (for-each-name var) clause)
(index (intern (gensym) ) ) )

(12 (! (a2 (= 2 (length clause) )
(1itatom var) ) )
(error (1ist clause "Invalid FOR-EACH-NAME syntax.*) ) )

*( (1nitial ,var () )
(incr ,index from O to (+ -1 *fg.total-namess) )
(next ,var ([] #fg.nuaber:name* ,index) )
{when ,var) ) ) )

(def-simple-loop-clause for-each-vector-name ( clauge )
(let ( ( (for-each-vector-name var) clausge) )

(if (! (&% (= 2 (length clause) )
(1itatom var) ) )

0)

(error (1ist clause "Invalid FOR-EACH-VECTOR-NAME syntax.") ) )

*( (for .var in #fg.all-vector-namess) ) ) )

(defun fg.print-names ()
(loop (for-each-name name) (do

0 “:% (¢ 10) ( :type name) (t 17) (name:length name)
taig (tn;:; (e (gbat—let?;::nty%nsne:de!lning—stats name) ) ) t) ) )

3

PS:<C.S.BULLDOG.FLOW-ANALYSIS>NAME.LSP.12




C ¢

c

NAME-SETS

Sets of NAMEs are represented using NAME-SETs, currently implemented
as BIT-SETs.

*FG .EMPTY-NAME-SET*
The enpty NAME-SET.

(NAME-SET : UNIVERSE)
The set of all NAMEs.

(NAME-SET : SINGLETON NAME)
Creates a new set contalning NAME.

(NAME-SET :MEMBER? SET NAME)
Returns true 1f NAME is a member of SET.

(NAME-SET: INTERSECTION SET! SET2 ...)
Returns a new set that is the intersection of all the given sets.

(NAME-SET:UNION SET1 SET2 ...)
Returns a new gset that is the union of all the given sets.

(NAME-SET :UNION1 SET NAME)
Unions a single NAME into SET.

(NAME-SET :DIFFERENCE SET1 SET2)
Returns a new set that contains all elements in SET1 not in SET2.

(NAME-SET:= SET1 SET2)
Returns true if the two sets are equal.

(NAME-SET:SIZE SET)
Returns the nupber of elements in the set.

(LOCP (FOR-EACH-NAME-SET-ELEMENT SET NAME)
Enumerates NAME through each element in SET. Uses
DEF-SIMPLE-LOOP-CLAUSE.

(NAME-SET:PRINT SET)
Printa SET.

(NAME-SET:LIST SET)
Returns a list of the names in SET.

WA WE WA WA M WA WA WA e By s WA Wa Be WA WA W W WE WL ME WA WA ms WA WA M WA WA B S WA B e Ma wr wr e By wa e We e wa s

(include flow-analysis:flow-analysis-decls)
(declare (special #fg.total-namess) )
(defvar #2g.enpty-naze-set+ () ) ;#+% the empty NAME-SET.

(defun name-get:universe ()
(bit-set:universe *fg.total-names:) )

(defun name-get:singleton ( name )
(bit-gset:singleton (name:number name) ) )

(defun name-gset:member? ( set name )

(defun name-set:intersection args
(apply 'bit-set:intersection (listify-lexpr-args args) ) )

(defun name-set:union args
(apply 'bit-set:union (1istify-lexpr-args args) ) )

(defun name-set:unionl ( set name )
(bit-set:unioni set (name:number name) ) )

(defun name-set:difference ( setl set2 )
(bit-set:difference setl set2) )

(defun name-set:= ( setl set2 )
(bit-get:= setl set2) )

(defun name-set:size ( set )
(bit-get:size get) )

(def-simple-loop-clause for-each-name-set-element ( clause )
(let ( ( (for-each-name-set-element set name) clause)
(index (intern (gensym) ) ) )
(1f (! (22 (= 8 (length clauge) )
(11taton name) ) )
(error (118t clause "Invalid FOR-EACH-NAME-SET-ELEMENT syntax.®)))

*( (initial ,name () )
(for-each-bit-get-element ,set ,index)
(next .name (number:name ,index) )
(when ,name) ) ) )

(defun name-set:print ( set )
(nag ={*)

(loop (for-each-name-set-element set naae)
(initial first t)
(do
(12 (! first) (then
(msg = *) ) )
(:= firat () )
(nsg name) ) )

(nsg *}*)
O ?
(defun name-set:list ( set )

(loop (for-each-name-set-element set name) (save
naae) ) )

(bit-get:nember? set (name:number name) ) )
1

PS:<C.S.BULLDOG.FLOW-ANALYSIS>NAME-SET.LSP.11



c

REACHING COPIES

This module implements the flow analysis algorithas that finds the “reaching
copies® of each basic block. The definition of a reaching copy used here
is a 1little more general than that used in the Dragon Book on page 487.

The set of reaching copies at point S2 is the set of statements S1 of
the forn:

S1:; A := t( B, B2, ...)
such that for every path from the initial node to S2:
1. The path includes S1.
2. After the last occurrence of S1 on the path, there are no
definitions of the varlables A or any of the Bi.
Intiutively, if S1 18 a reaching copy at S2, S1 could be copied right
before S2 without affecting the progran.

(FG.SET-REACHING-COPIES)
Does the flow analysis of reaching copies, setting the
:REACHING-COPIES-IN and :REACHING-COPIES-QUT of each BBLOCK.

(STAT :REACHING-COPIES STAT)
Returns the STAT-SET of definitions that are reaching copies at STAT.

B M mE M N4 R WA BA WA WA W s mE W WA WA R WS BE B M WS WA WE mE WA A WA WA WA WA WS

(include flow-analysis:flow-analysis-decls)

(e
(eee
;##+ (FG.SET-REACHING-COPIES)
R

R

(apply ‘stat-set:intersection
(for (pred-bblock in (bblock:preds bblock) ) (save
(bblock:reaching-copies-out pred-bblock) ) ) ) )

(12 (! (stat-set:= new-in (bblock:reaching-copies-in bblock) ) )
(:= change t) )

(:= (bblock:reaching-copies-in bblock) new-in)
(:= (bblock:reaching-copies-out bblock)
(stat-set:union
(stat-set:difference (bblock:reaching-copies-in  bblock)
(bblock:kill bblock) )
(bblock:gen bblock) ) ) ) ) )
(while change) )

0)

b
JEEE

;#s+ (RC.SET-GENRKILL)

eeE

;#+¢ Sets the :GEN and :KILL fields of each BBLOCK to be the definitions
;*%% copy-generated and copy-killed by that BBLOCK. A definition of
;%%s the fora:

e

jeee A:=¢(B1, B2, ...)

Jeee

;#*+ 1p copy-generated i1f it 1s contained in the BEBLOCK and follows any
;#%+ aggignments to the variables A or Bl in the same BBLOCK. The

;e definition 1s killed by the BBLOCK if 1t isn’t in it and if there
;##+ 15 an assignment to at least one of the variables A or Bi.

18eE

R

(defun rc.set-gen&kill ()
(loop (for-each-bblock bblock) (do

(loop (for-each-bblock-stat bblock stat)
(initial gen +fg.empty-stat-set+
kill «fg.enpty-stat-sets)

(do
(defun fg.set-reaching-copies () (1f (stat:definition? stat) (then
(let ( (killed-defs (rc.stat:killed-coples stat) ) )
(rc.set-genkkill) (:= ki1l (stat-set:union kill killed-defs) )
(:= gen (stat-set:unionl
(loog (for-each-bblock bblock) (do (stat-set:difference gen killed-defs)
= (bblock:reaching-copies-in bblock) (stat-set:universe) ) stat) )} ) ) ) )
(:= (bblock:reaching-copies-out bblock) (result
(stat-set:difference (stat-set:universe) (:= (bblock:gen bblock) gen)
(bblock:kill bblock) ) ) ) ) 53 (:= (bblock:kill bblock) kill) ) ) ) )
(:= (bblock:reaching-copies-in #fg.entry-bblocks) sfg.empty-stat-sets)
(:= (bblock:reaching-copies-out *fg.entry-bblocks)
(bblock:gen sfg.entry-bblocks) ) b
H
(loop (initial change () ;#+¢ (STAT:REACHING-COPIES STAT)
new-in () ) jaen
(next change () ) ;#** Returns the STAT-SET of definitions copy-reaching STAT. If need
(do ;#%% be, we might have to implement some sort of cacheing scheme here as
Eéoop (for bblock in (fg.depth-first-ordered-bblock-list 'forward) ) ;##* was done for STAT:REACHING-DEFS.
o Rl
(:= new-in seee
1 2

PS:<C.S.BULLDOG.FLOW-ANALYSTS>REACHING-COPIES.ILSP.1




a ¢

(defun stat:reaching-copies ( stat )
(assert (stat:is stat) )

(loop (initial reaching-copies (bblock:reaching-copies—in
(stat:bblock stat) ) )
(for-each-bblock-stat (stat:bblock stat) pred-stat)
(while (!== pred-stat stat) )
¢ (when (stat:definition? pred-stat) )
do
(:= reaching-copies
(stat-set:unionl (stat-set:difference 2%k
(rc.stat:killed-copies pred-stat) )
fred-statj ))
(result reaching-copies) ) )

;ttt

;#%% (RC.STAT:KILLED-COPIES STAT)

HLEL

;*#*¢ Returns that STAT-SET of definitions that are copy-killed by STAT.
;*##+ STAT is assuzmed to be a definition.

JEEE

Bl

(defun rc.stat:killed-copies ( stat )
(let ( (written (stat:part stat ‘written) ) )
(stat-get:union
(name:defining-stats written)
(nane:using-stats written) ) ) )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>REACHING-COPIES.LSP.1



c

REACHING DEFINITIONS

This module implements the flow analysis algoritha that finds the
defintions that reach each basic block. See chapters 12 and 14 of
the Dragon Book for explanation of the algoritha.

(FG.SET-REACHING-DEFS)
Does the flow analysis of reaching definitions, setting the
:REACHING-IN and :REACHING-OUT of each BBLOCK in the flow graph
to be a STAT-SET of definitions reaching that BBLOCK.

(STAT :REACHING-DEFS STAT)
Returns the STAT-SET of definitions reaching STAT.

(STAT : OPERAND-REACHING-DEFS STAT NAME)
Returns the STAT-SET of definitions of NAME reaching STAT.

; (FG.INITIALIZE-REACHING-DEFS)
Initializes this module.

(STAT :KILLED-DEFS STAT)
Returns the STAT-SET of definitions possibly killed by STAT (which
is assumed to be a definition).

M ma M WA A M s W e s WA RS WA WA WE WA WS WA WS W Wa e W me W ome ws

(include flow-analysis:flow-analysig-decls)

(declare (special
+fg.number-of-reaching-iterationss
;#*% 8§ of iterations used for calculating
;#%% reaching defa

*rd.last-reaching-stats ;#+% The last STAT given to STAT:REACHING-DEFS.
*rd.last-reaching-defas ;#*+ The last result of the lagt call to
;#*+ STAT:REACHING-DEFS. These two variables
;##+ form & one-result cache (hack).

))

feee
;#s% (FG.INITIALIZE-REACHING-DEFS)
T

ieEe

(defun fg.initialize-reaching-defs ()
(:= erd.last-reaching-stats () )
;:z *rd.last-reaching-defs* () )

JhEE
T
;*##s (FG.SET-REACHING-DEFS)
I

ML

(defun fg.set-reaching-defs ()

(rd.set-gentkill)
(loop (for-each-bblock bblock) (do
(:= (bblock:reaching-in bblock) #fg.empty-stat-sets)
(:= (bblock:reaching-out bblock) (bblock:gea bblock) ) ) )

(:= *t%.nunher-of—reaching-iterationst 0)
1

(loop (initial change ()
new-in () )
(next change () )

(do
(++ *fg.nuaber-of-reaching-iterations#)

(loop (for bblock in (fg.depth-first-ordered-bblock-1ist ‘forward) )
(do
(:= new-in
(apply 'stat-set:iunion
(for (pred-bblock in (bblock:preds bblock) ) (save
(bblock:reaching-out pred-bblock) ) ) ) )

(17 (! (stat-set:= new-in (bblock:reaching-in bblock) ) )
(:= change t) )

(:= (bblock:reaching-in bblock) new-in)
(:= (bblock:reaching-out bblock)
(stat-set:union
(stat-set:difference (bblock:reaching-in  bblock)
(bblock:kill bblock) )
(bblock:gen bdlock) ) ) ) ) )
(while change) )

0)

.
R

;#++ (RD.SET-GEN&RKILL)

H1 Sets the :GEN and :KILL fields of each BBLOCK to be the definitions
H generated and killed by that BBLOCK.

JhEe

(defun rd.set-gen&kill ()
Eloop (for-each~-bblock bdlock)
do
(loop (for-each-bblock-stat bblock stat)
(initial gen +fg.enpty-stat-gset+

K111 *fg.enpty-stat-set+)
(do
(12 (stat:definition? stat) (then
(let ( (xilled-defs (stat:killed-defs stat) ) )
(:= k111 (stat-get:union kill killed-defs) )
(:= gen (stat-set:unioni
(stat-set:difference gen killed-defs)
stat) ) ) ) ) )
(result
(:= (bblock:gen bblock) gen)
0) (:= (bblock:kill bblock) kill) ) ) ) )

(fg.initialize-reaching-defs)
1

2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>REACHING-DEFS.LSP.5




c

kR
.

cEEE

;#+* (STAT:REACHING-DEFS STAT)

H i Returns the STAT-SET of definitions reaching STAT. Computes the
LEE set by starting with the defintions reaching STATs BBLOCK, and

JEEE working down to STAT. As a hack, the argument and the result

M S of the previous call to STAT:REACHING-DEFS 18 remembered; if STAT
Jhn happens to be the successor of the previous argument, we can

(ke quickly compute the reaching defs of STAT. This handles the common
s case where we enumerate through the statements of a BBLOCK.

(HEE

SEEE

(defun stat:reaching-defs ( stat )
(assert (stat:is stat) )

(1f (== stat +rd.last-reaching-stats*) (then
*rd.last-reaching-defss)

(else
(loop (initial reaching-defs ()
defined-name ()
pred-stat 0)
(begin
(1 (22 ¢rd.last-reaching-stats
== (stat:bblock stat)
(stat:bblock srd.last-reaching-gtats) )
i (== #rd.last-reaching-stat# (stat:pred stat) ) )
en
(:= pred-stat srd.last-reaching-stats+)
reaching-defs #rd.last-reaching-defas) )

(elge

(:

(while (!== stat pred-stat) )
(do

pred-stat (bblock:first-stat (stat:bblock atat) ) )
reaching-defs (bblock:reaching-in
(stat:bblock stat) ) ) ) ) )

(1f (stat:definition? pred-stat)
(:= reaching-defs
(stat-get:unioni
(stat-set:difference reaching-defs
(stat:killed-defs pred-stat) )
pred-stat) ) ) )

(next pred-stat (stat:succ pred-stat) )
(result
(:= srd.last-reaching-stat* stat)
(:= #rd,last-reaching-defs* reaching-defs)
reaching-defs) ) ) ) )

R
BT
;##% (STAT:0PERAND-REACHING-DEFS STAT NAME)
(e

1%k

(defun ssau:operand-roachini—ders ( stat name )
(stat-set:intersection stat:reaching-defs stat)
(nane:defining-stats name) ) )

T

ML
;##% (STAT:KILLED-DEFS STAT)
ShEd

L

(defun stat:killed-defs ( atat )
(nane:defining-stats (stat:part stat ‘written) ) )

3

=

PS:<C.S.BULLDOG.FLOW-ANALYSIS>REACHING-DEFS.LSP.5




¢ ¢

REACHING USES

This module sets :REACHING-USES of each STAT to be the set of STATs that
use the value of the STAT.

The reaching uses are calculated by inverting STAT:REACHING-DEFs, not
by a separate flow-analysis pass. A separate flow analysis pass would
require a representation for uses and use-sets, and measurements Show
that this representation (lists of STATs stored in each STAT) will
consunme less space as long as the average number of uses reaching a
STAT 15 less than sbout 4 (for most programs it appears to be 2).
Besldes, this was a lot easier to implement.

(FG.INITIALIZE-REACHING-USES)
Clears the :REACHING-USES of each STAT in the flow graph.

(FG.SET-REACHING-USES)
Calculates the :REACHING-USES of each STAT.

M ma ma WA ma R A R R WA WA W WA WS WS Wa WA WA M M ma wa

(include flow-analysis:flow-analysis-decls)

(defun fg.initialize-reaching-uses ()
(loop (for-each-stat stat) (do
0 )(:= (stat:reaching-uses stat) () ) ) )

(defun fg.set-reaching-uses ()
(fg.initilalize-reaching-uses)

;*#+ For each STAT in the flow graph, STAT 1s pushed on the the
;*#+ list :REACHING-USES of the STATs whose definitions reach
;**% the given STAT and are actually ugsed by it. The STATs are
;*%* enumerated in basic block order so that STAT:REACHING-DEFS
;#¢+ will go fastest (due to 1ts cache of previous results).

(loop (for-each-bblock bblock) (do
(loop (for-each-bblock-stat bblock stat)
(bind used-reaching-defs
(stat-set:intersection
(stat:reaching-defs stat)
(loop (for-each-stat-operand-read stat name)
(reduce stat-gset:union #*fg.empty-stat-sets
@ (name:defining-stats name) ) ) ) )
Le]
(loop (for-each-stat-set-element used-reaching-defs def-stat) (do
(push (stat:reaching-uses def-stat) stat) ) ) ) ) ) )

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>REACHING-USES.LSP.b



c

c

Dead Code Removal

(FG.REMOVE-ASSERTIONS)
Repoves assertions and LOOP-ASSIGNs from the flow graph; a following
(FG.REMOVE-DEAD-CODE) will remove any support code needed for the
assertions.

(FG .REMOVE-DEAD-CODE)
This function removes "dead code®” from the flow graph. First all
ugseless STATs are removed, then all unreachable BBLOCKs are removed.
A STAT 18 useless 1f:

1) It is a definition and 1ts value isn’t used in ultimately
producing the final live values of the flow graph.

2) It 18 a conditional jump both of whose branches jump to the
same spot.

(FG .REMOVE~UNREACHABLE-BBLOCKS)
Removes all BBLOCKs froe the flow graph that cannot be reached from
the entry point.

e ma me e oms mE WA W WS WA WS WA WS WA WL BE WE Wa ma B s Wy W WA W WE

(include flow-analysis:flow-analysis-decls)

hEd

T
;*#*% (FG.REMOVE-ASSERTIONS)
1

R

(defun fg.remove-assertions ()
(loop (for-each-stat stat)
@ (vhen (memq (stat:;operator stat) °’(assert loop-assign) ) )
o

(rdc.stat:delete stat) ) ) )

+ R E

1 E%

;*#+ (FG.REMOVE-DEAD-CODE)
ML L

(defun fg.remove-dead-code ()
(loop (while (rdc.remove-useless-stats) ) )

Eggjremove-nnreachsble-bbloctn)

(defun fg.remove-unreachable-bblocks ()
(let ( (unprocessed () ) )

;*#% Find all BBLOCKs that have no predecessors and are
;*** not the entry node.

(loop (for-each-bblock bblock) (do
(1f (2% (!== bblock *fg.entry-bblockk)
(! (bblock:preds bblock) ) )
(push unprocessed bblock) ) ) )

;##% While there are BBLOCKs with no predecessors, pick
;#** one and delete it, noticing if any of its successors now
;*#*% have no predecessors.

(loop (while unprocessed)
( (initial bblock () )
do

(pop unprocessed bblock)
(bblock:delete bblock)
(for (succ-bblock in (bblock:succs bblock) ) (do
(1f (&k (!== succ-bblock #fg.entry-bblocks)
(! (bblock:preds succ-bblock) ) )
y (push unprocessed succ-bblock) ) ) ) ) )

;#*» Merge adjacent BBLOCKs that should really be one.

(looﬁ (for-each-bblock bblock) (do
(loop (while (bblock:merge-with-successor bblock) ) ) ) )

0)

il

;#++ (RDC.REMOVE-USELESS-STATS)

(R

;*#+ Removes all useless STATs from the flow graph.
;#*s definition of "useless”.

il

;#*+ A park-and-sweep algorithm is used to collect useless definitions.
;##* Marking begins with all non-definition STATs and works out following
;#** the reaching-definition chains. Any unnarked STAT is then deleted.
1

;#*#+ Next any conditionals whose branches jump to the same spot are

;#%¢ deleted.

JhEs

;**+ Deleting a conditional jump could cause more definitions to become
;#%¢ upeless, causing more conditional jumps to become useless. So this
;#%+ procedure is called repeatedly until no more conditional jumps are
;#+¢ deleted (ugh). It returns true iff at least one conditional jump
;#%¢ was deleted.

Bl

R

See above for the

(defun rdc.remove-useless-stats ()

s (let ( (stack () )

E::: (FG .REMOVE-UNREACHABLE~-BBLOCKS) ittt A stack of statements that are useful but haven't
E*ti ;*#+* been marked from yet.

e (visited #fg.empty-stat-sets)

1 2

PS:<C.S.BULLDOG.FLOW-ANALYSIS>REMOVE-DEAD-CODE.LSP.6




«

¢

;‘*' The set of all STATs that have been marked as useful
s¢%¢ go far.

(deleted-cond-jump? () ) )
i#ss True 1f we deleted a conditional jump.

;¥*#% Initialize STACK to be all statements that aren’t one-
;*#%+ or two-in-one-out or vector references.

(looﬁ (for-each-stat stat)
(wvhen (! (memq (stat:group stat)
*(one-in-one-out two-in-one-out vstore vload
e loop-assign induction-assign) ) ) )
0
(push stack stat) ) )

;##* Now iteratively mark the reaching definitions of STATs
;**+ that are on the stack, pushing the reaching definitions
;#%% onto the stack for eventual recursive marking. We never
;##* trace fronm INDUCTION-ASSIGNs (sigh).

(loop (while stack)
(bind stat (pop stack) )
i (wvhen (! (stat-set:member? visited stat) ) )
o
(:= visited (stat-set:unionl visited stat) )
(loop (for-each-stat-operand-read stat name) (do
(loop (for-each-stat-set-element
(stat:operand-reaching-defs stat name)
reaching-stat)
(do
(push stack reaching-stat) ) ) ) ) ) )

;##s Delete all unmarked STATs.

(loop (for-each-stat-set-element
(stat-set:difference (stat-set:universe) visited)
stat)
(do
(rdc.stat:delete stat) ) )

;*#+ Now delete any cond-jumps whose left and right branches
;##%+ go to the same spot.

(loop (for-each-stat stat)
(vhen (stat:property? stat ‘conditional-jump) )
(bind succ-bblocks (bblock:succs (stat:bblock atat) ) )
(vhen (|| (&% (== 2 (length succ-bblocks) )
(== (car succ-bblocks) (cadr succ-bblocks) ) )
i (== 1 (length succ-bblocks) ) ) )
o
(rdc.stat:delete stat)
(:= deleted-cond-jump? t) ) )

deleted-cond-juap?) )

;##s (RDC.STAT:DELETE STAT)

;s Deletes STAT from the flow graph; 4if STAT's BBLOCK is now empty, the
;#++ BBLOCK is also deleted.
JREE

JEEE

(defun rdc.stat:delete ( stat )
(assert (stat:lis stat) )

(let ( (bblock (stat:bblock stat) ) )
(stat:delete stat)
(1f (bblock:empty? bblock) (then
)(?block:dulabe bblock) ) )

4

PS:<C.S.BULLDOG.FLOW-ANALYSIS>REMOVE-DEAD-CODE.LSP.6



C

STAT

Every NADDR operation in the flow-graph except GOTO and LABEL is
repregsented by a STAT record. All STATS are numbered and are stored
in an array that maps the numbers onto the STATs.

AR B M ma ma ma Wr e owa W

def-struct stat
source
nupber
(bblock () suppress)
(suce () suppress)

NADDR statement
Number of this statement.

; Successor STAT in the containing
; BBLOCK (NIL 1if this 1s the last
: 1in the BBLOCK).
(pred () suppress) ; Predeccessor STAT in the containing
; BBLOCK (NIL if this 1s the first
; in the BBLOCK).

(known-derivation () suppress) ; Disambiguator derviation of the
variable defined by this STAT,
if already known.

Association list of (VAR DERIVATION)
containing already-known derivations
of operands of STAT.

List of STATs that use the value
defined by this STAT.

(known-operand-derivations
() suppress)

;reaching-uses () suppress)

(STAT :CREATE SOURCE)
Creates a new STAT record for NADDR operation SOURCE. This 1is
the only way STATs should be created.

(STAT :SUBSTITUTE-OPERAND STAT NEW-OPERAND OLD~OPERAND PART)
Creates a new STAT from the source of STAT, substituting NEW-OPERAND
for OLD-OPERAND. See OPER:SUBSTITUTE-OPERAND for how the substitution
occurs.

(STAT :EXTRACT STAT)
Splices out STAT from the flow graph. STAT 1s eligible to be
placed somewhere else in the flow graph.

(STAT:DELETE STAT)
Extracts STAT from the flow graph and then forgets about 1t.

(STAT:INSERT-STAT STAT1 STAT2)
Ingerts STAT2 before STAT1 in the flow graph.

(STAT :APPEND-STAT STAT1 STAT2)
Appends STATZ after STAT1 in the flow graph.

(STAT :REPLACE-STAT STAT1 STAT2)
Replaces STAT1 by STAT2 in the flow graph.

(LOOP (FOR~EACH-STAT STAT) ...)
This is the only public way for enumerating through all the STATa
of the flow graph. The enumeration 18 in order of the original
NADDR source. Defined via LOOP's DEF-SIMPLE-LOOP-CLAUSE.

(LOOP (FOR-EACH-STAT-OPERAND-READ STAT NAME) ...)
Enumerates NAME through each scalar and vector name read by by STAT.

BT R M m WA RS NS R WS WA WS W W WA R WA B4 WA BA W WA R WA Wr W WE WE WA WS We e wo my mo wo

The basic block containing this statement.

(NUMBER :STAT NUMBER )
Returns the STAT with the given NUMBER. Try not to use this.

Deleted STATs return ().

#8S <number.
This 18 syntax for easy interactive access to particular STATs.

s#s 30 references STAT number 30.

(STAT:PREDS STAT)
(STAT:SUCCS STAT)
List of STATs that are flow predecessors/successors of STAT.

(STAT:0PERATOR STAT)

(STAT : GROUP STAT)

(STAT:PART STAT PART)

(STAT:PROPERTY? STAT PROPERTY)
Convenient functions that just invoke the equivalent functions
on the NADDR source of the STAT.

(STAT:DEFINITION? STAT)
Returns true if STAT is a definition of a variable (or vector element).

; (STAT:DOMINATES? STAT1 STAT2)
True if STAT1 dominates STAT2.

ma me mE mE wE s WEmE s me s Bs WA WA WS ML G s W WS WA W WL WD WA wa W

(include flow-analysis:flow-analysis-decls)

(declare (special

#fg.total-statss ;##+ Current nuaber of STATs
sfg.nupber:stat+ ;%% Array for mapping STAT nuambers onto

;%%% STATs.
sgtat.free-lists ;#% List of free slots in *FG.NUMBER:STATSs.
+stat.free-list-reversed?s ;«++ True i1f above 1ist has been reversed.
))

(defun fg.inivialize-stats ()
(vector-map:initialize ‘#fg.number:stat+ °‘+fg.total-statss 200 t)
(:= #stat.free-lists
E;=)tstat.rree—list—rewersed?t 0O)

(defun stat:create ( source )
(1f sstat.free-list* (then
(1f (! *stat.free-list-reversed?+) (then
(:= #+stat.free-list* (dreverse #stat.free-lists) )
(:= #stat.free-list-reversed?* t) ) )
(let ( (index (pop *stat.free-liats) ) )
(:= ([] sfg.number:stat* index)
(stat:new source source
number index) ) ) )
(else
(vector-pap:add-element ‘+fg.nunber:stats ‘+fg.total-statas
(stat:new source source
number *fg.total-statss)
200
v))))

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>STAT.LSP.12



c

(defun stat:substitute-operand ( stat new-operand old-operand part )
(asgert (stat:is stat) )

(stat:create (oper:substitute-operand (stat:source stat)
new-operand
old-operand
pars) ) )

(defun stat:extract ( stat )
(assert (stat:1s stat) )

(let ( (bblock (stat:bblock stat) )
(succ-stat (stat:succ stat) )
(pred-stat (stat:pred stat) ) )

;#*+ Remove STAT from the doubly linked 1ist of STATs in
;%#%#+ the BBLOCK.

(1f succ-stat

(:= (stat:pred succ-stat) pred-stat) )
(1f pred-stat
(:= (stat:succ pred-stat) succ-stat) )
(stat:succ stat) () )
(stat:pred stat) () )

~
nn

;#+x Update the first and last pointera of the basic
;#%¢ block.

(? ( (== (bblock:first-stat bblock)
(bblock:last-stat bblock) )
(bblock:first—stat bblock) () )
(bblock:lagt-stat bblock) () ) )

stat (bblock:first-stat bblock) )
(bblock:first-stat bblock) succ-stat) )
== gtat (bblock:last-stat bblock) )

:= (bblock:last-stat bblock) pred-stat) ) )

(defun stat:delete ( stat )
(assert (stat:is stat) )

(stat:extract stat)

;#¢+ Delete this STAT from the array of STATS.
(:= ([] #fg.nuaber:stat* (stat:number stat) ) () )
(1t *stat.free-list-reversed?+ (then
(:= sstat.free-lists (dreverse #stat.free-lists) )
(:= sgtat.free-1ist-reversed?* () ) ) )
(push #stat.free-list+ (etat:number stat) )

0)

(defun stat:insert-stat ( statl stat2 )
(assert (stat:is statl) )
(assert (stat:is stat2) )

(let ( (bblock (stat:bblock stati) )
(pred-stat (stat:pred statl) ) )
(:= (stat:succ gtat2) statl)

(:= (stat:pred statl) stat2)
(:= (stat:pred stat2) pred-stat)
(1f pred-stat (then
(:= (stat:succ pred-stat) stat2) )
(else
(:= (bblock:first-stat bblock) atat2) ) )
Ei=)(gtat:bbloct stat2) bdlock)

(defun stat:append-stat ( statl stat2 )
(assert (stat:is statl) )
(assert (stat:is stat2) )

(let ( (bblock (stat:bblock statl) )
(succ-stat (stat:succ statl) ) )
(:= (stat:succ stati) stat2)
(:= (stat:pred stat2) statl)
(:= (stat:succ stat2) succ-stat)
(1f succ-stat (then
(:= (stat:pred succ-stat) stat2) )
(else
(:= (bblock:last-stat bblock) stat2) ) )
E;=)(§tnt:bhlock stat2) bblock)

(defun stat:replace-stat ( statl stat2 )
(assert (stat:is statl) )
(asgert (stat:is stat2) )

(stat:insert—-stat statl stat2)
(stat:delete statl)
O)

(def-simple-loop-clause for-each-stat ( clause )
(let ( ( (for-each-stat var) clause)
(index (intern (gemsym) ) ) )

(1f (! (22 (= 2 (length clause) )
(1itatom var)
(error (l1ist clause "Invalid FOR-EACH-STAT syntax.®) ) )

‘( (initial ,var () )
(incr ,index from O to (+ -1 sfg.total-statsgs) )
(next ,var ([] sfg.number:stats ,index) )
(when ,var) ) ) )

(def-simple~loop-clause for-each-stat-operand-read ( clause )
(let ( ( (for-each-stat-operand-read stat var index) clause) )
*( (for-each-oper-operand-read (stat:source ,stat) ,var ,index) ) ) )

(defnacro number:stat ( number )
*([] *fg.number:stat* ,number) )

(def-sharp-sharp s
*([] *fg.nuaber:stats ,(read) ) )

(defun stat:preds ( stat )

3
PS:<C.S.BULLDOG.FLOW-ANALYSIS>STAT.LSP.12

4




é?“

(assert (stat:1s stat) )
(let ( (bblock (stat:bblock stat) ) )
(1 (== stat (bblock:first-stat bblock) ) (then
(loop (for pred-bblock in (bblock:preds bblock) ) (save
¢ (bblock:last-stat pred-bblock) ) ) )
else
(11st (stat:pred stat) ) ) ) ) )

(defun stat:succs ( stat )
(assert (stat:is stat) )
(let ( (bblock (stat:bblock stat) ) )
(1f (== stat (bblock:last-stat bblock) ) (then
(loop (for succ-bblock in (bblock:succs bblock) ) (save
(bblock:first-stat succ-bblock) ) ) )
(else
(118t (stat:succ stat) ) ) ) ) )

(defun stat:operator ( stat )
(assert (stat:is stat) )
(oper:operator (stat:source stat) ) )

(defun stat:group ( stat )
(assert (stat:is stat) )
(oper:group (stat:source stat) ) )

(defun stat:part ( stat part )
(asgert (stat:is stat) )
(oper:part (stat:source stat) part) )

(defun stat:property? ( stat property )
(apsert (stat:is stat) )
(oper:property? (stat:source stat) property) )

(defun stat:definition? ( stat )
(stat:part stat ‘written) )

(defun stat:dominates? ( statl stat2 )
(assert (stat:is statl) )
(assert (stat:is stat2) )
(bblock:dominates? (stat:bblock statl)
(stat:bblock stat2) ) )

5
PS:<C.S.BULLDOG.FLOW-ANALYSIS>STAT.LSP.12



; STAT-SETS

Sets of STATe are represented using STAT-SETg, currently implemented
; as BIT-SETs.

; *FG.EMPTY-STAT-SET#
; The empty STAT-SET.

; (STAT-SET:UNIVERSE)
The set of all STATs.

; (STAT-SET:SINGLETON STAT)
: Creates a new set containing STAT.

(STAT-SET:MEMBER? SET STAT)
Returns true i1f STAT 18 a penmber of SET.

(STAT-SET:INTERSECTION SET1 SET2 ...)
2 Returns a new set that 1s the intersection of all the given sets.

(STAT-SET:UNION SET1 SET2 ...)
Returns a new set that is the union of all the given sets.

(STAT-SET:UNION1 SET STAT)
Unions a single STAT into SET.

; (STAT-SET:DIFFERENCE SET1 SET2)
2 Returns a new set that contains all elements in SET1 not in SET2.

(STAT-SET:= SET1 SET2)
Returns true if the two sets are equal.

(STAT-SET:SIZE SET)
Returns the number of elements in the get.

: (STAT-SET:CHOOSE SET)
; Returna the first element of the set, NIL if the set is empty.

: (STAT-SET:CONTAINS? SET1 SET2)
True if SET1 contains SET2.

(LOOP (FOR-EACH-STAT-SET-ELEMENT SET STAT)
2 Enumerates STAT through each element in SET. Uses
DEF~-SIMPLE-LOOP-CLAUSE.

: (STAT-SET:PRINT SET)
Prints SET by printing out the statement numbers.

.
.
.
.
*
*
.
.
.
.
"
'
.
»
.
.
[
.
.
.
.
»
.
.
.
.
.
.
I
»
.
.
.
»
.
.
.
.
.
I
[
.
.
.
»
.
.
»
»
»
.

(include flow-analysis:flow-analysis-decls)
(declare (special #fg.total-statss) )
(defvar *fg.empty-stat-get* () ) i##% the empty STAT-SET.

(defun stat-set:universe ()
(bit-set:universe *fg.total-statas) )

(defun stat-set:singleton ( stat )
(bit-set:singleton (stat:number stat) ) )

(defun stat-set:member? ( set stat )
(bit-set:member? set (stat:number stat) ) )

(defun stat-set:intersection args
(apply 'bit-set:intersection (listify-lexpr-args args) ) )

(defun stat-set:union args
(apply 'bit-set:union (listify-lexpr-args args) ) )

(defun stat-set:unioni ( set stat )
(bit-set:unioni set (stat:number stat) ) )

(defun stat-set:difference ( setl set2 )
(bit-get:difference seti set2) )

(defun stat-gset:= ( setl set2 )
(bit-set:= setl set2) )

(defun stat-set:size ( set )
(bit-set:slze set) )

(defun stat-set:choose ( set )
(1f-let ( (index (bit-set:choose set) ) )
Egugb;r:stat index)

(defun stat-set:contains? ( setl set2 )
(bit-set:contains? setl set2) )

(def-simple-loop-clause for-each-stat-get-element ( clause )
(1et ( ( (for-each-stat-set-element set stat) clause)
(index (intern (gensym) ) ) )
(1f (! (2% (= 8 (length clause) )
(1itatom stat) ) )
(error (11st clause *Invalid FOR-EACH-STAT-SET-ELEMENT syntax.")))

*( (1nitial ,stat () )
(for-each-bit-set-element ,set ,index)
(next ,stat (number:stat ,index) )
(when ,stat) ) ) )

(defun stat-set:print ( get )
(bit-get:print set) )

1
PS:<C.S.BULLDOG.FLOW-ANALYSTS>STAT-SET.LSP.9



C ¢

This module prints miscellaneous statistics about the flow graph.

(FG.PRINT-STATISTICS)
Prints out whatever statistics we want today.

(include flow-analysis:flow-analysis-decls)

(defun fg.grint—stablssica (§]
(msg ©

(msg "# of iterations in REACHING-DEFS: *
trgjnunber-ot—renchlng-iteraﬁions*
e

(msg "# of BBLOCKs: ® sfg.total-bblockss t)
(zmsg “# of STATs: * *fg.total-stats* t)
(msg "STATs//BBLOCK: L
(// (tlonum #fg.total-stats+) (flonum ¢fg.total-bblockss) )

t
(loop (for-each-stat stat)
8 (initial ud-length 0)
L+ ]

(loop (initial used-defs *fg.empty-stat-sets)
(for-each-stat-operand-read stat naze)
(next used-defs (stat-set:union used-defs

(name:defining-stats name) ) )

(result
(:= ud-length
(+ ud-length
(bit-set:size (bit-set:intersection
used-defs
(stat:reaching-defs stat) ) ) ) ) ) ) )
(result

(zsg "Average length of ud-chain//STAT: *
(//)(ilgnnn ud-length) (flonum #fg.total-ptatss) )
tt

0)

1
PS:<C.S.BULLDOG.FLOW-ANALYSIS>STATISTICS.LSP.8



¢ ¢

(FG.TEMPORARY-NAME ROOT)
Returns a new, uninterned unique temporary name of the form:

$ ROOT - n

where n is a unique number. E.g. if ROOT = 'FOO then the result
might be $FO0-2. ROOT may be (), which is the same as the empty
string. If ROOT is of the form $NAME-n, then NAME is used as the
the root. Thus if ROOT = '$F00-49, the result might be $F00-100.

(FG.INITIALIZE-TEMPORARY-NAME)
Initializes the creation of teaporary names by resetting the unique
number counter to 1.

e ma ms s ws wE e Er Er owE EE oW e W

(defvar *fg.tenporary-name-counters 0)

(defun fg.initialize-temporary-naae ()
(:= *fg.tenporary-nane-counters 0) )

(defun fg.temporary-name ( root )
(e ?! root)
(atonconcat "$" (++ +fg.temporary-name-counters) ) )

( (!== #/¢ (anthchar root 1) )
(atomconcat "$" root - (++ #fg.temporary-name-counters) ) )

(%
(loop (incr 1 from i to (stlength root) )
(antil (== #/- (anthchar root 1) ) )
(result (atomconcat "$*
(substring root 2 (- 1 1) )

(++ #fg.tenporary-nane-counters) ) ) ) ) ) )

1

PS:<C.S.BULLDOG.FLOW-ANALYSIS>TEMPORARY-NAME.LSP.1



C ¢ ¢

(pusﬁ trace-stack °(,def-stat written) )

(FG.RENAME-VARIABLES) (loop (while trace-stack)
(bind (stat read-or-written) (pop trace-stack) )
Renames variables as much as possible to avold false data dependencies. (when (! (stat-set:member? (1f (== 'w:i:t:n read-or-written)
visited-defs
The uses and defs of a variable can be velwed as bipartite graph. Every visited-uses)
use and def 13 separate node. There 1s an edge between a def and a use stat) ) )
if the def reaches the use. Within each connected component of this graph, (do
the variable can be given a new unique name. More precisely, the reads ;#s+ If this STAT is a special pseudo-op, remember
of the variable in uses and the writes of the variables within defs may ;#%% 1t 80 a3 to disable renaming of this chain.

be changed to use a new variable. -
(1f (pemq (stat:operator stat) '(def-block 1ive param) ) (then

We don't actually construct the graph, but instead pick a def of a variable (:= contains-pseudo-op? &) ) )

and then trace out the connected component use-def chaln.
;#%+ Mark the use or def as visited, and trace out

e ma B e Wa W WA W W WE Me ks e omE WE W W

==z== ;#ss reaching uses (defs) of this def (use).
(eval-when (compile load) (1t (== °written read-or-written) (then
(include flow-analysis:flow-analysis-decls) ) (:= visited-defs (stat-set:unioni &&& etat) )
(loop (for use-stat in (stat:reaching-uses stat) ) (do
(defun fg.rename-variables () (push trace-stack *‘(,use-stat read) ) ) ) )
(let ( (renamings () ) ) (else
H (:= visited-uses (stat-set:unionl Rkk stat) )
;#** A 118t of triples of the form: (loop (for-each-stat-set-element
Hi (stat:operand-reaching-defs stat nanme)
e (STAT-SET NEW-NAME OLD-NAME READ-OR-WRITTEN) ( reaching-def-stat)
Rl do
;#++ that specifies that NEW-NAME should be substituted for (push trace-stack *‘(,reaching-def-stat written))))))))
;##* OLD-NAME in the READ or WRITTEN part of every STAT in
;###+ STAT-SET. We congstruct the whole set of renamings for ;##s The tracing is finished. Remember all the visited
;#¢% the program before doing any renaning: otherwise ;¢¢s defa of NAME.
;#**% STAT:REACHING-DEFS will get horribly confused by a H
;*##% partially renamed program. (:= all-visited-defs (stat-set:union k&t visited-defs) )
;#+% For each NAME do: ;#¢+ Make an entry on the RENAMINGS list if this 1s not the
; ;##% first chain of NAME and the chain contains no pseudo-op.
(loop (for-each-name name) H
(when (== ’scalar (name:type naze) ) ) (1¢ (a2 (> (++ name-counter) 1)
" (bind all-visited-defs ¢fg.empty-stat-sets) - (! contains-pseudo-op?) )
o then
(let ( (new-name (fg.temporary-name name) ) )
;#+¢ Pick an unvisited defining DEF-STAT of NAME. (push renamings °‘(,visited-uses ,new-name ,name read) )
i (push renaamings ‘(,visited-defs ,new-name ,name written)))))
(loop (for-each-stat-gset-olement (name:defining-stats name) def-stat) ))))
(when (! (stat-set:pember? visited-defs def-stat) ) )
(initi1al name-counter 0)
(bind trace-stack 0 ;##s All the partitions (chains) of every NAME have been found.
visited-uses *{g.enpty-stat-sets ;#*¢ Now do the actual renaning as specified by the RENAMINGS list.
visited-defs +fg.enpty-stat-sets 2
contains-pseundo-op? () ) (loop (for (stat-set new-name old-name read-or-written) in renasings) (do
(do (loop (for-each-stat-set-element stat-set stat) (do
;#*+ Trace out the connected chain of uses and defs of (:= (stat:source stat)
;##+ NAME containing DEF-STAT. To do the tracing, we (oper:substitute—operand (stat:source gtat)
;#++ feep a stack TRACE-STACK of paira of the form (STAT nev-nane
;¢¢s READ-OR-WRITTEN), where STAT is a possibly unvisited old-naame
;##+ use or def of NAME, and READ-OR-WRITTEN indicates read-or-written) ) ) ) ) )
;%%% vhether STAT 1s being considered as a use or def
;##% of NAME. At the end of this tracing, VISITED-USES 03

;#%% and VISITED-DEFS will contain STAT-SETs of all the
;#+% uges and defs that are part of the connected traln
;#*¢ that was traced out.

1 2

PQeer/\™ Q© DIITTNHNAN CTAW_ ANMNMAT VOTONITADTADT FP_-RPENAMTNG TOP 1



	2019_12_06_12_50_28
	2019_12_06_12_51_21

