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Preface
SECOND EDITION

Common Lisp has succeeded. Since publication of the first edition of this book
in 1984, many implementors have used it as a de facto standard for Lisp im-
plementation. As a result, it is now much easier to port large Lisp programs
from one implementation to another. Common Lisp has proved to be a use-
ful and stable platform for rapid prototyping and systems delivery in artificial
intelligence and other areas. With experience gained in using Common Lisp
for so many applications, implementors found no shortage of opportunities for
innovation. One of the important characteristics of Lisp is its good support for
experimental extension of the language; while Common Lisp has been stable, it
has not stagnated.

The 1984 definition of Common Lisp was imperfect and incomplete. In some
cases this was inadvertent: some odd boundary situation was overlooked and
its consequences not specified, or different passages were in conflict, or some
property of Lisp was so well-known and traditionally relied upon that I forgot
to write it down. In other cases the informal committee that was defining
Common Lisp could not settle on a solution, and therefore agreed to leave some
important aspect of the language unspecified rather than choose a less than
satisfactory definition. An example is error handling; 1984 Common Lisp had
plenty of ways to signal errors but no way for a program to trap or process
them.

Over the next year I collected reports of errors in the book and gaps in the
language. In December 1985, a group of implementors and users met in Boston
to discuss the state of Common Lisp. I prepared two lists for this meeting, one
of errata and clarifications that I thought would be relatively uncontroversial
(boy, was I wrong!) and one of more substantial changes I thought should be
considered and perhaps voted upon. Others also brought proposals to discuss.
It became clear to everyone that there was now enough interest in Common Lisp,
and dependence on its stability, that a more formal mechanism was needed for
managing changes to the language.

This realization led to the formation of X3J13, a subcommittee of ANSI
committee X3, to produce a formal American National Standard for Common
Lisp. That process is nearing completion. X3J13 has completed the bulk of its
technical work in rectifying the 1984 definition and codifying extensions to that
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definition that have received widespread use and approval. A draft standard
is now being prepared; it will probably be available in 1990. There will then
be a period (required by ANSI) for public review. X3J13 must then consider
the comments it receives and respond appropriately. If the comments result in
substantial changes to the draft standard, multiple public review periods may
be required before the draft can be approved as an American National Standard.

Fortunately, X3J13 has done an outstanding job of documenting its work.
For every change that came to a formal vote, a document was prepared that
described the problem to be solved and one or more solutions. For each solution
there is a detailed proposal for changing the language; a rationale; test cases
that distinguish the proposal from the status quo or from other proposals for
solving that problem; discussions of current practice, cost to implementors,
cost to users, cost of not adopting the proposal, benefits of adoption, aesthetic
criteria; and any relevant informal discussion that may have preceded creation
of the formal proposal. All of these proposal documents were made available
on-line as well as in paper form. By my count, by June 1989 some 186 such
proposals were approved as language changes. (This count does not include
many proposals that came before the committee but were rejected.)

The purpose of this second edition is to bridge the gap between the first
edition and the forthcoming ANSI standard for Common Lisp. Because of the
requirement for formal public review, it will be some time yet before the ANSI
standard is final. This book in no way resembles the forthcoming standard
(which is being written independently by Kathy Chapman of Digital Equipment
Corporation with assistance from the X3J13 Drafting Subcommittee).

I have incorporated into this second edition a great deal of material based on
the votes of X3J13, in order to give the reader a picture of where the language is
heading. My purpose here is not simply to quote the X3J13 documents verbatim
but to paraphrase them and relate them to the structure of the first edition. A
single vote by X3J13 may be discussed in many parts of this book, and a single
passage of this book may be affected by many of the votes.

I wish to be very clear: this book is not an official document of X3J13,
though it is based on publicly available material produced by X3J13. In no way
does this book constitute a definitive description of the forthcoming ANSI stan-
dard. The committee’s decisions have been remarkably stable (it has rescinded
earlier decisions only two or three times), and I do not expect radical changes
in direction. Nevertheless, it is quite probable that the draft standard will be
substantively revised in response to editorial review or public comment. I have
therefore reported here on the actions of X3J13 not to inscribe them in stone,
but to make clear how the language of the first edition is likely to change. I
have tried to be careful in my wording to avoid saying “the language has been
changed” and to state simply that “X3J13 voted at such-and-so time to make
the following change.”

Until the day when an official ANSI Common Lisp standard emerges, it is
likely that the 1984 definition of Common Lisp will continue to be used widely.
This book has been designed to be used as a reference both to the 1984 definition
and to the language as modified by the actions of X3J13.
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It contains the entire text of the first edition of Common Lisp: The Language,
with corrections and minor editorial changes; however, more than half of the
material in this edition is new. All new material is identified by solid lines in
the left margin. Dotted lines in the left margin indicate material from the first
edition that applies to the 1984 definition but that has been modified by a vote
of X3J13. Modifications to these outmoded passages are explained by preceding
or following text (which will have a solid line in the margin). In summary:

e To use the 1984 language definition, read all material that does not have
a solid line in the margin.

e To use the updated language definition, read everything, but be wary of
material with a dotted line in the margin.

At the end of the book is an index of the X3J13 votes, ordered by the
committee’s internal code names (included to ease cross-reference to the X3J13
documents, which may be useful during the public review periods). References
to this list of votes appear as numbers in angle brackets; thus “(14)” refers
to the vote on issue number 14, whereas “[14]” refers to reference 14 in the
bibliography.

I have kept changes to the wording of the first-edition material to a minimum.
Obvious spelling and typographical errors have been corrected, and the entire
text has been edited to a uniform style of spelling and punctuation. (Note in
particular that the first edition used the spelling “signalling” but this edition,
in deference to the style decision of the X3J13 Drafting Subcommittee, uses
“signaling.”) A few minor changes were made to accommodate typographical
or layout constraints. (For example, the word “also” has been deleted from
the first sentence of chapter 1, partly to make that paragraph look better and
partly to allow a better page break at the bottom of page 2.) In a very few
cases the first edition contained substantive errors that I could not in good
conscience correct silently; these have been flagged by paragraphs beginning
with the phrase Notice of correction.

The chapter and section numbering of this edition matches that of the first
edition, with the exception that a new section 7.9 has been interpolated. Four
new chapters (26-29) describe substantial changes approved by X3J13: an ex-
tended loop macro, a pretty printer interface, the Common Lisp Object System,
and the Common Lisp Condition System.

X3J13, in the course of its work, formed a subcommittee to study whether
additional means of iteration should be standardized for use in Common Lisp,
for a great deal of existing practice in this area was not included in the first
edition because of lack of agreement in 1984. The X3J13 Iteration Subcommittee
produced reports on three possible facilities. One (loop) was approved for
inclusion in the forthcoming draft standard and is described in chapter 26.

X3J13 expressed interest in the other two approaches (series and generators),
but the consensus as of January 1989 was that these other approaches were not
yet sufficiently mature or in sufficiently widespread use to warrant inclusion in
the draft Common Lisp standard at that time. However, the subcommittee
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was directed to continue work on these approaches and X3J13 is open to the
possibility of standardizing them at a later date. Please note that I do not wish
the prejudge the question of whether X3J13 will ever choose to make the other
two proposals the subject of standardization. Nevertheless, I have chosen to
include them in the second edition, in cooperation with Dr. Richard C. Waters,
as appendices A and B, in order to make these ideas available to the Lisp
community. In my judgement these proposals address an area of language design
not otherwise covered by Common Lisp and are likely to have practical value
even if they are never adopted as part of a formal standard.

Some new material in this book has nothing to do with the work of X3J13. In
many places I have added explanations, clarifications, new examples, warnings,
and tips on writing portable code. Appendix C contains a piece of code that
may help in understanding the backquote syntax.

This second edition, unlike the first edition, also includes a few diagrams
to pep up the text. However, there are absolutely no new jokes, and very few
outright lies.
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Chapter 1

Introduction

Common Lisp is a new dialect of Lisp, a successor to MacLisp [33, 37], influenced

strongly by Zetalisp [

]

[

, 34] and to some extent by Scheme [16] and Interlisp

1.1 Purpose

Common Lisp is intended to meet these goals:

Commonality

Common Lisp originated in an attempt to focus the work of several im-
plementation groups, each of which was constructing successor implemen-
tations of MacLisp for different computers. These implementations had
begun to diverge because of the differences in the implementation en-
vironments: microcoded personal computers (Zetalisp, Spice Lisp), com-
mercial timeshared computers (NIL—the “New Implementation of Lisp”),
and supercomputers (S-1 Lisp). While the differences among the several
implementation environments of necessity will continue to force certain
incompatibilities among the implementations, Common Lisp serves as a
common dialect to which each implementation makes any necessary ex-
tensions.

Portability

Common Lisp intentionally excludes features that cannot be implemented
easily on a broad class of machines. On the one hand, features that are
difficult or expensive to implement on hardware without special microcode
are avoided or provided in a more abstract and efficiently implementable
form. (Examples of this are the invisible forwarding pointers and loca-
tives of Zetalisp. Some of the problems that they solve are addressed in
different ways in Common Lisp.) On the other hand, features that are
useful only on certain “ordinary” or “commercial” processors are avoided
or made optional. (An example of this is the type declaration facility,
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which is useful in some implementations and completely ignored in oth-
ers. Type declarations are completely optional and for correct programs
affect only efficiency, not semantics.) Common Lisp is designed to make
it easy to write programs that depend as little as possible on machine-
specific characteristics, such as word length, while allowing some variety
of implementation techniques.

Consistency

Most Lisp implementations are internally inconsistent in that by default
the interpreter and compiler may assign different semantics to correct pro-
grams. This semantic difference stems primarily from the fact that the
interpreter assumes all variables to be dynamically scoped, whereas the
compiler assumes all variables to be local unless explicitly directed other-
wise. This difference has been the usual practice in Lisp for the sake of
convenience and efficiency but can lead to very subtle bugs. The definition
of Common Lisp avoids such anomalies by explicitly requiring the inter-
preter and compiler to impose identical semantics on correct programs so
far as possible.

FExpressiveness
Common Lisp culls what experience has shown to be the most useful and
understandable constructs from not only MacLisp but also Interlisp, other
Lisp dialects, and other programming languages. Constructs judged to be
awkward or less useful have been excluded. (An example is the store
construct of MacLisp.)

Compatibility
Unless there is a good reason to the contrary, Common Lisp strives to be
compatible with Lisp Machine Lisp, MacLisp, and Interlisp, roughly in
that order.

Efficiency
Common Lisp has a number of features designed to facilitate the produc-
tion of high-quality compiled code in those implementations whose devel-
opers care to invest effort in an optimizing compiler. One implementation
of Common Lisp, namely S-1 Lisp, already has a compiler that produces
code for numerical computations that is competitive in execution speed to
that produced by a Fortran compiler [11]. The S-1 Lisp compiler extends
the work done in MacLisp to produce extremely efficient numerical code

[19].

Power
Common Lisp is a descendant of MacLisp, which has traditionally placed
emphasis on providing system-building tools. Such tools may in turn
be used to build the user-level packages such as Interlisp provides; these
packages are not, however, part of the Common Lisp core specification. It
is expected such packages will be built on top of the Common Lisp core.
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Stability
It is intended that Common Lisp will change only slowly and with due
deliberation. The various dialects that are supersets of Common Lisp may
serve as laboratories within which to test language extensions, but such
extensions will be added to Common Lisp only after careful examination
and experimentation.

The goals of Common Lisp are thus very close to those of Standard Lisp [31]
and Portable Standard Lisp [51]. Common Lisp differs from Standard Lisp pri-
marily in incorporating more features, including a richer and more complicated
set of data types and more complex control structures.

This book is intended to be a language specification rather than an imple-
mentation specification (although implementation notes are scattered through-
out the text). It defines a set of standard language concepts and constructs
that may be used for communication of data structures and algorithms in the
Common Lisp dialect. This set of concepts and constructs is sometimes referred
to as the “core Common Lisp language” because it contains conceptually nec-
essary or important features. It is not necessarily implementationally minimal.
While many features could be defined in terms of others by writing Lisp code,
and indeed may be implemented that way, it was felt that these features should
be conceptually primitive so that there might be agreement among all users as
to their usage. (For example, bignums and rational numbers could be imple-
mented as Lisp code given operations on fixnums. However, it is important to
the conceptual integrity of the language that they be regarded by the user as
primitive, and they are useful enough to warrant a standard definition.)

For the most part, this book defines a programming language, not a pro-
gramming environment. A few interfaces are defined for invoking such standard
programming tools as a compiler, an editor, a program trace facility, and a de-
bugger, but very little is said about their nature or operation. It is expected that
one or more extensive programming environments will be built using Common
Lisp as a foundation, and will be documented separately.

There are now many implementations of Common Lisp, some programmed
by research groups in universities and some by companies that sell them com-
mercially, and a number of useful programming environments have indeed grown
up around these implementations. What is more, all the goals stated above have
been achieved, most notably that of portability. Moving large bodies of Lisp
code from one computer to another is now routine.

1.2 Notational Conventions

A number of special notational conventions are used throughout this book for
the sake of conciseness.
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1.2.1 Decimal Numbers

All numbers in this book are in decimal notation unless there is an explicit
indication to the contrary. (Decimal notation is normally taken for granted, of
course. Unfortunately, for certain other dialects of Lisp, MacLisp in particular,
the default notation for numbers is octal (base 8) rather than decimal, and so
the use of decimal notation for describing Common Lisp is, taken in its historical
context, a bit unusuall)

1.2.2 Nil, False, and the Empty List

In Common Lisp, as in most Lisp dialects, the symbol nil is used to represent
both the empty list and the “false” value for Boolean tests. An empty list may,
of course, also be written (); this normally denotes the same object as nil. (It
is possible, by extremely perverse manipulation of the package system, to cause
the sequence of letters nil to be recognized not as the symbol that represents the
empty list but as another symbol with the same name. This obscure possibility
will be ignored in this book.) These two notations may be used interchangeably
as far as the Lisp system is concerned. However, as a matter of style, this book
uses the notation () when it is desirable to emphasize the use of an empty
list, and uses the notation nil when it is desirable to emphasize the use of the
Boolean “false”. The notation ’nil (note the explicit quotation mark) is used
to emphasize the use of a symbol. For example:

(defun three () 3) ;Emphasize empty parameter list
(append () >()) = (O ;Emphasize use of empty lists
(not nil) = ¢t ;Emphasize use as Boolean “false”
(get ’nil ’color) ;Emphasize use as a symbol

Any data object other than nil is construed to be Boolean “not false”, that
is, “true”. The symbol t is conventionally used to mean “true” when no other
value is more appropriate. When a function is said to “return false” or to “be
false” in some circumstance, this means that it returns nil. However, when
a function is said to “return true” or to “be true’ in some circumstance, this
means that it returns some value other than nil, but not necessarily t.

1.2.3 Evaluation, Expansion, and Equivalence

Execution of code in Lisp is called evaluation because executing a piece of code
normally results in a data object called the wvalue produced by the code. The
symbol = is used in examples to indicate evaluation. For example,

(+45) =9
means “the result of evaluating the code (+ 4 5) is (or would be, or would have
been) 9.”

The symbol — is used in examples to indicate macro expansion. For exam-
ple,

(push x v) — (setf v (cons x v))
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means “the result of expanding the macro-call form (push x v) is (setf v
(cons x v)).” This implies that the two pieces of code do the same thing; the
second piece of code is the definition of what the first does.

The symbol = is used in examples to indicate code equivalence. For example,

(gcd x (ged y 2)) = (ged (ged x y) z)
means “the value and effects of evaluating the form (gcd x (ged y z)) are
always the same as the value and effects of (gcd (gecd x y) z) for any values
of the variables x, y, and z.” This implies that the two pieces of code do the same
thing; however, neither directly defines the other in the way macro expansion
does.

1.2.4 Errors

When this book specifies that it “is an error” for some situation to occur, this
means that:

e No valid Common Lisp program should cause this situation to occur.

e If this situation occurs, the effects and results are completely undefined
as far as adherence to the Common Lisp specification is concerned.

e No Common Lisp implementation is required to detect such an error. Of
course, implementors are encouraged to provide for detection of such errors
wherever reasonable.

This is not to say that some particular implementation might not define the
effects and results for such a situation; the point is that no program conform-
ing to the Common Lisp specification may correctly depend on such effects or
results.

On the other hand, if it is specified in this book that in some situation “an
error is signaled,” this means that:

o If this situation occurs, an error will be signaled (see error and cerror).

e Valid Common Lisp programs may rely on the fact that an error will be
signaled.

e Every Common Lisp implementation is required to detect such an error.

In places where it is stated that so-and-so “must” or “must not” or “may
not” be the case, then it “is an error” if the stated requirement is not met.
For example, if an argument “must be a symbol,” then it “is an error” if the
argument is not a symbol. In all cases where an error is to be signaled, the word
“signaled” is always used explicitly in this book.

X3J13 has adopted a more elaborate terminology for errors, and has made
some effort to specify the type of error to be signaled in situations where sig-
naling is appropriate. This effort was not complete as of September 1989, and
I have made little attempt to incorporate the new error terminology or error
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type specifications in this book. However, the new terminology is described
and used in the specification of the Common Lisp Object System appearing in
chapter 28; this gives the flavor of how erroneous situations will be described,
and appropriate actions prescribed, in the forthcoming ANSI Common Lisp
standard.

1.2.5 Descriptions of Functions and Other Entities

Functions, variables, named constants, special forms, and macros are described
using a distinctive typographical format. Table 1.1 illustrates the manner in
which Common Lisp functions are documented. The first line specifies the
name of the function, the manner in which it accepts arguments, and the fact
that it is a function. If the function takes many arguments, then the names
of the arguments may spill across two or three lines. The paragraphs following
this standard header explain the definition and uses of the function and often
present examples or related functions.

Sometimes two or more related functions are explained in a single combined
description. In this situation the headers for all the functions appear together,
followed by the combined description.

In general, actual code (including actual names of functions) appears in this
typeface: (cons a b). Names that stand for pieces of code (metavariables) are
written in italics. In a function description, the names of the parameters appear
in italics for expository purposes. The word &optional in the list of parameters
indicates that all arguments past that point are optional; the default values for
the parameters are described in the text. Parameter lists may also contain
&rest, indicating that an indefinite number of arguments may appear, or &key,
indicating that keyword arguments are accepted. (The &optional/&rest/&key
syntax is actually used in Common Lisp function definitions for these purposes.)

Table 1.2 illustrates the manner in which a global variable is documented.
The first line specifies the name of the variable and the fact that it is a variable.
Purely as a matter of convention, all global variables used by Common Lisp
have names beginning and ending with an asterisk.

Table 1.3 illustrates the manner in which a named constant is documented.
The first line specifies the name of the constant and the fact that it is a constant.
(A constant is just like a global variable, except that it is an error ever to alter
its value or to bind it to a new value.)
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Table 1.1: Sample Function Description
sample-function argl arg?2 &optional arg3 argd [Function]

The function sample-function adds together arg! and arg2, and then multiplies
the result by arg3. If arg3is not provided or is nil, the multiplication isn’t done.
sample-function then returns a list whose first element is this result and whose
second element is arg/ (which defaults to the symbol foo). For example:

(sample-function 3 4) = (7 foo)
(sample-function 1 2 2 ’bar) = (6 bar)

In general, (sample-function z y) = (list (+ z y) ’foo).

Table 1.2: Sample Variable Description
*sample-variablex [Variable]

The variable *sample-variable* specifies how many times the special form
sample-special-form should iterate. The value should always be a non-
negative integer or nil (which means iterate indefinitely many times). The
initial value is 0 (meaning no iterations).

Table 1.3: Sample Constant Description
sample-constant [Constant]

The named constant sample-constant has as its value the height of the terminal
screen in furlongs times the base-2 logarithm of the implementation’s total disk
capacity in bytes, as a floating-point number.

Tables 1.4 and 1.5 illustrate the documentation of special forms and macros,
which are closely related in purpose. These are very different from functions.
Functions are called according to a single, specific, consistent syntax; the
&optional/&rest/&key syntax specifies how the function uses its arguments
internally but does not affect the syntax of a call. In contrast, each special
form or macro can have its own idiosyncratic syntax. It is by special forms and
macros that the syntax of Common Lisp is defined and extended.

In the description of a special form or macro, an italicized word names a cor-
responding part of the form that invokes the special form or macro. Parentheses
stand for themselves and should be written as such when invoking the special
form or macro. Brackets, braces, stars, plus signs, and vertical bars are meta-
syntactic marks. Brackets, [ and ], indicate that what they enclose is optional
(may appear zero times or one time in that place); the square brackets should
not be written in code. Braces, { and }, simply parenthesize what they enclose
but may be followed by a star, *, or a plus sign, *; a star indicates that what
the braces enclose may appear any number of times (including zero, that is, not
at all), whereas a plus sign indicates that what the braces enclose may appear
any non-zero number of times (that is, must appear at least once). Within
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Table 1.4: Sample Special Form Description
sample-special-form [name] (var*) form+ [Special form)

This evaluates each form in sequence as an implicit progn, and does this as
many times as specified by the global variable *sample-variablex. Each
variable var is bound and initialized to 43 before the first iteration, and un-
bound after the last iteration. The name name, if supplied, may be used in a
return-from form to exit from the loop prematurely. If the loop ends normally,
sample-special-form returns nil. For example:

(setq *sample-variablex 3)
(sample-special-form () formlI form2)

This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1.5: Sample Macro Description

sample-macro var <declaration* | doc-string> tag | statements
[Macro]

This evaluates the statements as a prog body, with the variable var bound to
43.

(sample-macro x (return (+ x x))) = 86
(sample-macro var . body) — (prog ((wvar 43)) . body)

braces or brackets, a vertical bar, |, separates mutually exclusive choices. In
summary, the notation {z}* means zero or more occurrences of z, the notation
{z}T means one or more occurrences of z, and the notation [z] means zero or
one occurrence of z. These notations are also used for syntactic descriptions
expressed as BNF-like productions, as in table 22.2.

Double brackets, [ and ], indicate that any number of the alternatives en-
closed may be used, and those used may occur in any order, but each alternative
may be used at most once unless followed by a star. For example,

plzl{y} 2] 4

means that at most one z, any number of y’s, and at most one z may appear
between the mandatory occurrences of p and ¢, and those that appear may be
in any order.

A downward arrow, |, indicates a form of syntactic indirection that helps to
make [ ] notation more readable. If X is some non-terminal symbol occurring
on the left-hand side of some BNF production, then the right-hand side of that
production is to be textually substituted for any occurrence of | X. Thus the
two fragments

p [lzyz-mizture] ¢
zyz-mixture ==z | {y}* | 2
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are together equivalent to the previous example.

In the last example in table 1.5, notice the use of dot notation. The dot
appearing in the expression (sample-macro wvar . body) means that the name
body stands for a list of forms, not just a single form, at the end of a list. This
notation is often used in examples.

In the heading line in table 1.5, notice the use of | ] notation to indicate
that any number of declarations may appear but at most one documentation
string (which may appear before, after, or somewhere in the middle of any
declarations).

1.2.6 The Lisp Reader

The term “Lisp reader” refers not to you, the reader of this book, nor to some
person reading Lisp code, but specifically to a Lisp procedure, namely the func-
tion read, which reads characters from an input stream and interprets them by
parsing as representations of Lisp objects.

1.2.7 Overview of Syntax

Certain characters are used in special ways in the syntax of Common Lisp. The
complete syntax is explained in detail in chapter 22, but a quick summary here
may be useful:

( A left parenthesis begins a list of items. The list may contain any number
of items, including zero. Lists may be nested. For example, (cons (car
x) (cdr y)) is a list of three things, of which the last two are themselves
lists.

) A right parenthesis ends a list of items.

> An acute accent (also called single quote or apostrophe) followed by an expres-
sion form is an abbreviation for (quote form). Thus ’foo means (quote
foo) and ’ (cons ’a ’b) means (quote (cons (quote a) (quote b))).

; Semicolon is the comment character. It and all characters up to the end of
the line are discarded.

" Double quotes surround character strings:
"This is a thirty-nine-character string."

\ Backslash is an escape character. It causes the next character to be treated
as a letter rather than for its usual syntactic purpose. For example, A\ (B
denotes a symbol whose name consists of the three characters A, (, and
B. Similarly, "\"" denotes a character string containing one character, a
double quote, because the first and third double quotes serve to delimit
the string, and the second double quote serves as the contents of the
string. The backslash causes the second double quote to be taken literally
and prevents it from being interpreted as the terminating delimiter of the
string.
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| Vertical bars are used in pairs to surround the name (or part of the name) of
a symbol that has many special characters in it. It is roughly equivalent to
putting a backslash in front of every character so surrounded. For example,
[AB) |, Al CIBI) |, and A\(B\) all mean the symbol whose name consists
of the four characters A, (, B, and ).

# The number sign signals the beginning of a complicated syntactic structure.
The next character designates the precise syntax to follow. For example,
#0105 means 105g (105 in octal notation); #x105 means 10516 (105 in
hexadecimal notation); #b1011 means 10115 (1011 in binary notation);
#\L denotes a character object for the character L; and #(a b c) denotes
a vector of three elements a, b, and c. A particularly important case is
that #° fn means (function fn), in a manner analogous to ’ form meaning
(quote form).

¢ Grave accent (“backquote”) signals that the next expression is a template
that may contain commas. The backquote syntax represents a program
that will construct a data structure according to the template.

, Commas are used within the backquote syntax.

: Colon is used to indicate which package a symbol belongs to. For example,
network:reset denotes the symbol named reset in the package named
network. A leading colon indicates a keyword, a symbol that always eval-
uates to itself. The colon character is not actually part of the print name
of the symbol. This is all explained in chapter 11; until you read that,
just keep in mind that a symbol notated with a leading colon is in effect
a constant that evaluates to itself.

Notice of correction. In the first edition, the characters “,” and “:” at the
left margin above were inadvertently omitted.

Brackets, braces, question mark, and exclamation point (that is, [, 1, {,
}, 7, and !) are not used for any purpose in standard Common Lisp syntax.
These characters are explicitly reserved to the user, primarily for use as macro
characters for user-defined lexical syntax extensions (see section 22.1.3).

X3J13 voted in June 1989 (READ-CASE-SENSITIVITY) to introduce readtable-case|
Certain settings allow the names of symbols to be case-sensitive. The default
behavior, however, is as described in the previous paragraph. In any event,
only uppercase letters appear in the internal print names of symbols naming
the standard Common Lisp facilities described in this book.
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Data Types

Common Lisp provides a variety of types of data objects. It is important to
note that in Lisp it is data objects that are typed, not variables. Any variable
can have any Lisp object as its value. (It is possible to make an explicit dec-
laration that a variable will in fact take on one of only a limited set of values.
However, such a declaration may always be omitted, and the program will still
run correctly. Such a declaration merely constitutes advice from the user that
may be useful in gaining efficiency. See declare.)

In Common Lisp, a data type is a (possibly infinite) set of Lisp objects.
Many Lisp objects belong to more than one such set, and so it doesn’t always
make sense to ask what is the type of an object; instead, one usually asks only
whether an object belongs to a given type. The predicate typep may be used
to ask whether an object belongs to a given type, and the function type-of
returns a type to which a given object belongs.

The data types defined in Common Lisp are arranged into a hierarchy (actu-
ally a partial order) defined by the subset relationship. Certain sets of objects,
such as the set of numbers or the set of strings, are interesting enough to de-
serve labels. Symbols are used for most such labels (here, and throughout this
book, the word “symbol” refers to atomic symbols, one kind of Lisp object,
elsewhere known as literal atoms). See chapter 4 for a complete description of
type specifiers.

The set of all objects is specified by the symbol t. The empty data type,
which contains no objects, is denoted by nil.

X3J13 voted in March 1989 (COMMON-TYPE) to remove the type common (and
the predicate commonp) from the language, on the grounds that it has not proved
to be useful in practice and that it could be difficult to redefine in the face of
other changes to the Common Lisp type system (such as the introduction of
CLOS classes).

The following categories of Common Lisp objects are of particular interest:
numbers, characters, symbols, lists, arrays, structures, and functions. There
are others as well. Some of these categories have many subdivisions. There are
also standard types defined to be the union of two or more of these categories.

12
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The categories listed above, while they are data types, are neither more nor less
“real” than other data types; they simply constitute a particularly useful slice
across the type hierarchy for expository purposes.

Here are brief descriptions of various Common Lisp data types. The remain-
ing sections of this chapter go into more detail and also describe notations for
objects of each type. Descriptions of Lisp functions that operate on data objects
of each type appear in later chapters.

e Numbers are provided in various forms and representations. Common
Lisp provides a true integer data type: any integer, positive or negative,
has in principle a representation as a Common Lisp data object, subject
only to total memory limitations (rather than machine word width). A
true rational data type is provided: the quotient of two integers, if not an
integer, is a ratio. Floating-point numbers of various ranges and precisions
are also provided, as well as Cartesian complex numbers.

e Characters represent printed glyphs such as letters or text formatting op-
erations. Strings are one-dimensional arrays of characters. Common Lisp
provides for a rich character set, including ways to represent characters of
various type styles.

o Symbols (sometimes called atomic symbols for emphasis or clarity) are
named data objects. Lisp provides machinery for locating a symbol object,
given its name (in the form of a string). Symbols have property lists, which
in effect allow symbols to be treated as record structures with an extensible
set of named components, each of which may be any Lisp object. Symbols
also serve to name functions and variables within programs.

e Lists are sequences represented in the form of linked cells called conses.
There is a special object (the symbol nil) that is the empty list. All
other lists are built recursively by adding a new element to the front of an
existing list. This is done by creating a new cons, which is an object having
two components called the car and the cdr. The car may hold anything,
and the cdr is made to point to the previously existing list. (Conses may
actually be used completely generally as two-element record structures,
but their most important use is to represent lists.)

e Arrays are dimensioned collections of objects. An array can have any non-
negative number of dimensions and is indexed by a sequence of integers.
A general array can have any Lisp object as a component; other types of
arrays are specialized for efficiency and can hold only certain types of Lisp
objects. It is possible for two arrays, possibly with differing dimension
information, to share the same set of elements (such that modifying one
array modifies the other also) by causing one to be displaced to the other.
One-dimensional arrays of any kind are called vectors. One-dimensional
arrays of characters are called strings. One-dimensional arrays of bits
(that is, of integers whose values are 0 or 1) are called bit-vectors.
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e Hash tables provide an efficient way of mapping any Lisp object (a key)
to an associated object.

e Readtables are used to control the built-in expression parser read.

e Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current pack-
age.

e Pathnames represent names of files in a fairly implementation-independent
manner. They are used to interface to the external file system.

e Streams represent sources or sinks of data, typically characters or bytes.
They are used to perform I/0, as well as for internal purposes such as
parsing strings.

e Random-states are data structures used to encapsulate the state of the
built-in random-number generator.

e Structures are user-defined record structures, objects that have named
components. The defstruct facility is used to define new structure types.
Some Common Lisp implementations may choose to implement certain
system-supplied data types, such as bignums, readtables, streams, hash
tables, and pathnames, as structures, but this fact will be invisible to the
user.

X3J13 voted in June 1988 (FUNCTION-TYPE) to specify that symbols are
not of type function, but are automatically coerced to functions in certain
situations (see section 2.13).

X3J13 voted in June 1988 (CONDITION-SYSTEM) to adopt the Common Lisp
Condition System, thereby introducing a new category of data objects:

e Conditions are objects used to affect control flow in certain conventional
ways by means of signals and handlers that intercept those signals. In
particular, errors are signaled by raising particular conditions, and errors
may be trapped by establishing handlers for those conditions.

X3J13 voted in June 1988 (CLOS) to adopt the Common Lisp Object System,
thereby introducing additional categories of data objects:

e (lasses determine the structure and behavior of other objects, their in-
stances. Every Common Lisp data object belongs to some class. (In some
ways the CLOS class system is a generalization of the system of type spec-
ifiers of the first edition of this book, but the class system augments the
type system rather than supplanting it.)

e Methods are chunks of code that operate on arguments satisfying a partic-
ular pattern of classes. Methods are not functions; they are not invoked
directly on arguments but instead are bundled into generic functions.
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e (Generic functions are functions that contain, among other information, a
set of methods. When invoked, a generic function executes a subset of its
methods. The subset chosen for execution depends in a specific way on
the classes or identities of the arguments to which it is applied.

These categories are not always mutually exclusive. The required relation-
ships among the various data types are explained in more detail in section 2.15.

2.1 Numbers

Several kinds of numbers are defined in Common Lisp. They are divided into
integers; ratios; floating-point numbers, with names provided for up to four
different floating-point representations; and complexr numbers.

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to add the type real.

The number data type encompasses all kinds of numbers. For convenience,
there are names for some subclasses of numbers as well. Integers and ratios are
of type rational. Rational numbers and floating-point numbers are of type
real. Real numbers and complex numbers are of type number.

Although the names of these types were chosen with the terminology of
mathematics in mind, the correspondences are not always exact. Integers and
ratios model the corresponding mathematical concepts directly. Numbers of
type float may be used to approximate real numbers, both rational and ir-
rational. The real type includes all Common Lisp numbers that represent
mathematical real numbers, though there are mathematical real numbers (irra-
tional numbers) that do not have an exact Common Lisp representation. Only
real numbers may be ordered using the <, >, <=, and >= functions.

Compatibility note: The Fortran 77 standard defines the term real datum to mean
“a processor approximation to the value of a real number.” In practice the Fortran
basic real type is the floating-point data type that Common Lisp calls single-float.
The Fortran double precision type is Common Lisp’s double-float. The Pascal real
data type is an “implementation-defined subset of the real numbers.” In practice this
is usually a floating-point type, often what Common Lisp calls double-float.

A translation of an algorithm written in Fortran or Pascal that uses real data
usually will use some appropriate precision of Common Lisp’s float type. Some
algorithms may gain accuracy or flexibility by using Common Lisp’s rational or real
type instead.

2.1.1 Integers

The integer data type is intended to represent mathematical integers. Unlike
most programming languages, Common Lisp in principle imposes no limit on
the magnitude of an integer; storage is automatically allocated as necessary to
represent large integers.

In every Common Lisp implementation there is a range of integers that are
represented more efficiently than others; each such integer is called a fixnum,



CHAPTER 2. DATA TYPES 16

and an integer that is not a fixnum is called a bignum. Common Lisp is de-
signed to hide this distinction as much as possible; the distinction between
fixnums and bignums is visible to the user in only a few places where the ef-
ficiency of representation is important. Exactly which integers are fixnums is
implementation-dependent; typically they will be those integers in the range —2"
to 2™ — 1, inclusive, for some n not less than 15. See most-positive-fixnum
and most-negative-fixnum.

X3J13 voted in January 1989 (FIXNUM-NON-PORTABLE) to specify that £ ixnum
must be a supertype of the type (signed-byte 16), and additionally that the
value of array-dimension-1limit must be a fixnum (implying that the imple-
mentor should choose the range of fixnums to be large enough to accommodate
the largest size of array to be supported).

Rationale: This specification allows programmers to declare variables in portable
code to be of type fixnum for efficiency. Fixnums are guaranteed to encompass at
least the set of 16-bit signed integers (compare this to the data type short int in
the C programming language). In addition, any valid array index must be a fixnum,
and therefore variables used to hold array indices (such as a dotimes variable) may be
declared fixnum in portable code.

Integers are ordinarily written in decimal notation, as a sequence of decimal
digits, optionally preceded by a sign and optionally followed by a decimal point.
For example:

0 ;Zero
-0 ;This always means the same as 0
46 ;The first perfect number
28 ;The second perfect number
1024. ;Two to the tenth power
-1 .6771'

15511210043330985984000000. ;25 factorial (25!), probably a bignum

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that integers
are written in octal (radix-8) notation unless a decimal point is present. Interlisp
assumes integers are written in decimal notation and uses a trailing Q to indicate octal
radix; however, a decimal point, even in trailing position, always indicates a floating-
point number. This is of course consistent with Fortran. Ada does not permit trailing
decimal points but instead requires them to be embedded. In Common Lisp, integers
written as described above are always construed to be in decimal notation, whether
or not the decimal point is present; allowing the decimal point to be present permits
compatibility with MacLisp.

Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRddddd
means the integer in radix-nn notation denoted by the digits ddddd. More
precisely, one may write #, a non-empty sequence of decimal digits representing
an unsigned decimal integer n, r (or R), an optional sign, and a sequence of
radix-n digits, to indicate an integer written in radix n (which must be between
2 and 36, inclusive). Only legal digits for the specified radix may be used; for
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example, an octal number may contain only the digits 0 through 7. For digits
above 9, letters of the alphabet of either case may be used in order. Binary, octal,
and hexadecimal radices are useful enough to warrant the special abbreviations
#b for #2r, #o for #8r, and #x for #16r. For example:

#2r11010101 ;Another way of writing 213 decimal

#b11010101 ;Ditto

#b+11010101  ;Ditto

#0325 ;Ditto, in octal radix

#xD5 ;Ditto, in hexadecimal radix
#16r+D5 ;Ditto

#0-300 ;Decimal —192, written in base 8
#3r-21010 ;Same thing in base 3

#25R-TH ;Same thing in base 25

#xACCEDED 181202413, in hexadecimal radix

2.1.2 Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers
and ratios collectively constitute the type rational. The canonical representa-
tion of a rational number is as an integer if its value is integral, and otherwise as
the ratio of two integers, the numerator and denominator, whose greatest com-
mon divisor is 1, and of which the denominator is positive (and in fact greater
than 1, or else the value would be integral). A ratio is notated with / as a sep-
arator, thus: 3/5. It is possible to notate ratios in non-canonical (unreduced)
forms, such as 4/6, but the Lisp function prinl always prints the canonical
form for a ratio.

If any computation produces a result that is a ratio of two integers such
that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

Rational numbers may be written as the possibly signed quotient of deci-
mal numerals: an optional sign followed by two non-empty sequences of digits
separated by a /. This syntax may be described as follows:

ratio = [sign] {digit}* / {digit}*

The second sequence may not consist entirely of zeros. For example:

2/3 ;This is in canonical form

4/6 ;A non-canonical form for the same number
-17/23 ;A not very interesting ratio
-30517578125/32768  ;This is (—5/2)*°

10/5 ;The canonical form for this is 2

To notate rational numbers in radices other than ten, one uses the same
radix specifiers (one of #nnR, #0, #B, or #X) as for integers. For example:
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#0-101/75 ;Octal notation for -65/61
#3r120/21 ;Ternary notation for 15/7
#Xbc/ad ;Hexadecimal notation for 188/173

#xFADED/FACADE ;Hexadecimal notation for 1027565/16435934

2.1.3 Floating-Point Numbers

Common Lisp allows an implementation to provide one or more kinds of floating-
point number, which collectively make up the type float. Now a floating-point
number is a (mathematical) rational number of the form s - f - b P, where
sis +1 or —1, the sign; b is an integer greater than 1, the base or radiz of
the representation; p is a positive integer, the precision (in base-b digits) of
the floating-point number; f is a positive integer between b?~! and bP — 1
(inclusive), the significand; and e is an integer, the exponent. The value of p
and the range of e depends on the implementation and on the type of floating-
point number within that implementation. In addition, there is a floating-point
zero; depending on the implementation, there may also be a “minus zero.” If
there is no minus zero, then 0.0 and -0.0 are both interpreted as simply a
floating-point zero.

Implementation note: The form of the above description should not be construed to
require the internal representation to be in sign-magnitude form. Two’s-complement
and other representations are also acceptable. Note that the radix of the internal
representation may be other than 2, as on the IBM 360 and 370, which use radix 16;
see float-radix.

Floating-point numbers may be provided in a variety of precisions and sizes,
depending on the implementation. High-quality floating-point software tends
to depend critically on the precise nature of the floating-point arithmetic and
so may not always be completely portable. As an aid in writing programs that
are moderately portable, however, certain definitions are made here:

e A short floating-point number (type short-float) is of the representation
of smallest fixed precision provided by an implementation.

e A long floating-point number (type long-float) is of the representation
of the largest fixed precision provided by an implementation.

e Intermediate between short and long formats are two others, arbitrarily
called single and double (types single-float and double-float).

The precise definition of these categories is implementation-dependent. How-
ever, the rough intent is that short floating-point numbers be precise to at
least four decimal places (but also have a space-efficient representation); single
floating-point numbers, to at least seven decimal places; and double floating-
point numbers, to at least fourteen decimal places. It is suggested that the
precision (measured in bits, computed as plog, b) and the exponent size (also
measured in bits, computed as the base-2 logarithm of 1 plus the maximum
exponent value) be at least as great as the values in table 2.1.
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Table 2.1: Recommended Minimum Floating-Point Precision and Exponent Size

Format Minimum Precision Minimum Exponent Size
Short 13 bits 5 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

Floating-point numbers are written in either decimal fraction or computer-
ized scientific notation: an optional sign, then a non-empty sequence of digits
with an embedded decimal point, then an optional decimal exponent specifica-
tion. If there is no exponent specifier, then the decimal point is required, and
there must be digits after it. The exponent specifier consists of an exponent
marker, an optional sign, and a non-empty sequence of digits. For preciseness,
here is a modified-BNF description of floating-point notation.

floating-point-number ::= [sign] {digit}* decimal-point {digit}* [ezponent]
| [sign] {digit}™ [decimal-point {digit}*| exponent

sign ==+ | -

decimal-point ::= .

digit:=0|1|2]3]4|5|6[7|8]|9

exponent := exponent-marker [sign| {digit}™

exponent-marker :=e |s|f|d|1|E|S|F|D|L

If no exponent specifier is present, or if the exponent marker e (or E) is used,
then the precise format to be used is not specified. When such a representation is
read and converted to an internal floating-point data object, the format specified
by the variable *read-default-float-format* is used; the initial value of this
variable is single-float.

The letters s, £, d, and 1 (or their respective uppercase equivalents) explicitly
specify the use of short, single, double, and long format, respectively.

Examples of floating-point numbers:

0.0 ;Floating-point zero in default format
0EO ;Also floating-point zero in default format
-.0 ;This may be a zero or a minus zero,

; depending on the implementation
0. ;The integer zero, not a floating-point zero!
0.0s0 ;A floating-point zero in short format
0s0 ;Also a floating-point zero in short format
3.1415926535897932384d0 ;A double-format approximation to
6.02E+423 ;Avogadro’s number, in default format
602E4-21 ;Also Avogadro’s number, in default format
3.010299957f-1 ;logo 2, in single format

-0.000000001s9 ;€™ in short format, the hard way
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Notice of correction. The first edition unfortunately listed an incorrect value
(3.1010299957£-1) for the base-10 logarithm of 2.

The internal format used for an external representation depends only on
the exponent marker and not on the number of decimal digits in the external
representation.

While Common Lisp provides terminology and notation sufficient to accom-
modate four distinct floating-point formats, not all implementations will have
the means to support that many distinct formats. An implementation is there-
fore permitted to provide fewer than four distinct internal floating-point formats,
in which case at least one of them will be “shared” by more than one of the
external format names short, single, double, and long according to the following
rules:

e If one internal format is provided, then it is considered to be single, but
serves also as short, double, and long. The data types short-float,
single-float, double-float, and long-float are considered to be iden-
tical. An expression such as (eql 1.0s0 1.0d0) will be true in such
an implementation because the two numbers 1.0s0 and 1.0d0 will be
converted into the same internal format and therefore be considered to
have the same data type, despite the differing external syntax. Similarly,
(typep 1.0LO ’short-float) will be true in such an implementation.
For output purposes all floating-point numbers are assumed to be of sin-
gle format and thus will print using the exponent letter E or F.

e If two internal formats are provided, then either of two correspondences
may be used, depending on which is the more appropriate:

— One format is short; the other is single and serves also as dou-
ble and long. The data types single-float, double-float, and
long-float are considered to be identical, but short-float is dis-
tinct. An expression such as (eql 1.0s0 1.0d0) will be false, but
(eql 1.0£f0 1.0d0) will be true. Similarly, (typep 1.0LO ’short-float)
will be false, but (typep 1.0LO ’single-float) will be true. For
output purposes all floating-point numbers are assumed to be of short
or single format.

— One format is single and serves also as short; the other is double and
serves also as long. The data types short-float and single-float
are considered to be identical, and the data types double-float and
long-float are considered to be identical. An expression such as
(eql 1.0s0 1.0d0) will be false, as will (eql 1.0£0 1.0d0); but
(eql 1.0d0 1.0LO) will be true. Similarly, (typep 1.0LO ’short-float)
will be false, but (typep 1.0LO ’double-float) will be true. For
output purposes all floating-point numbers are assumed to be of sin-
gle or double format.

e If three internal formats are provided, then either of two correspondences
may be used, depending on which is the more appropriate:
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— One format is short; another format is single; and the third format
is double and serves also as long. Similar constraints apply.

— One format is single and serves also as short; another is double; and
the third format is long.

Implementation note: It is recommended that an implementation provide as many
distinct floating-point formats as feasible, using table 2.1 as a guideline. Ideally, short-
format floating-point numbers should have an “immediate” representation that does
not require heap allocation; single-format floating-point numbers should approximate
IEEE proposed standard single-format floating-point numbers; and double-format
floating-point numbers should approximate IEEE proposed standard double-format
floating-point numbers [23, 17, 16].

2.1.4 Complex Numbers

Complex numbers (type complex) are represented in Cartesian form, with a real
part and an imaginary part, each of which is a non-complex number (integer,
ratio, or floating-point number). It should be emphasized that the parts of a
complex number are not necessarily floating-point numbers; in this, Common
Lisp is like PL/I and differs from Fortran. However, both parts must be of
the same type: either both are rational, or both are of the same floating-point
format.

Complex numbers may be notated by writing the characters #C followed
by a list of the real and imaginary parts. If the two parts as notated are not
of the same type, then they are converted according to the rules of floating-
point contagion as described in chapter 12. (Indeed, #C(a b) is equivalent to
#, (complex a b); see the description of the function complex.) For example:

#C(3.0s1 2.0s-1) ;Real and imaginary parts are short format

#C(5 -3) ;A Gaussian integer
#C(5/3 7.0) ;Will be converted internally to #C(1.66666 7.0)
#C(0 1) ;The imaginary unit, that is, 4

The type of a specific complex number is indicated by a list of the word
complex and the type of the components; for example, a specialized represen-
tation for complex numbers with short floating-point parts would be of type
(complex short-float). The type complex encompasses all complex repre-
sentations.

A complex number of type (complex rational), that is, one whose com-
ponents are rational, can never have a zero imaginary part. If the result of a
computation would be a complex rational with a zero imaginary part, the result
is immediately converted to a non-complex rational number by taking the real
part. This is called the rule of complex canonicalization. This rule does not
apply to floating-point complex numbers; #C(5.0 0.0) and 5.0 are different.



CHAPTER 2. DATA TYPES 22

2.2 Characters

Characters are represented as data objects of type character.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to remove the type
string-char.

A character object can be notated by writing #\ followed by the character
itself. For example, #\g means the character object for a lowercase g. This
works well enough for printing characters. Non-printing characters have names,
and can be notated by writing #\ and then the name; for example, #\Space
(or #\SPACE or #\space or #\sPaCE) means the space character. The syntax
for character names after #\ is the same as that for symbols. However, only
character names that are known to the particular implementation may be used.

2.2.1 Standard Characters

Common Lisp defines a standard character set (subtype standard-char) for
two purposes. Common Lisp programs that are written in the standard char-
acter set can be read by any Common Lisp implementation; and Common Lisp
programs that use only standard characters as data objects are most likely to be
portable. The Common Lisp character set consists of a space character #\Space,
a newline character #\Newline, and the following ninety-four non-blank printing
characters or their equivalents:
v’ ()x+,-. /0123456789 : ;<=>7
@QABCDEFGHIJKLMNOPQRSTUVWXYZI [\N]"
‘abcdefghijklmnopgqrstuvwxyz{]|l}"~

The Common Lisp standard character set is apparently equivalent to the
ninety-five standard ASCII printing characters plus a newline character. Nev-
ertheless, Common Lisp is designed to be relatively independent of the ASCII
character encoding. For example, the collating sequence is not specified except
to say that digits must be properly ordered, the uppercase letters must be prop-
erly ordered, and the lowercase letters must be properly ordered (see char< for a
precise specification). Other character encodings, particularly EBCDIC, should
be easily accommodated (with a suitable mapping of printing characters).

Of the ninety-four non-blank printing characters, the following are used in
only limited ways in the syntax of Common Lisp programs:

t1 {3 7 ! A A
X3J13 voted in June 1989 (PRETTY-PRINT-INTERFACE) to add a format
directive ~_ (see chapter 27).

The following characters are called semi-standard:
#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of Common Lisp need to support them; but those
implementations that use the standard ASCII character set should support

them, treating them as corresponding respectively to the ASCII characters BS
(octal code 010), HT (011), LF (012), FF (014), CR (015), and DEL (177).
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These characters are not members of the subtype standard-char unless syn-
onymous with one of the standard characters specified above. For example,
in a given implementation it might be sensible for the implementor to define
#\Linefeed or #\Return to be synonymous with #\Newline, or #\Tab to be
synonymous with #\Space.

2.2.2 Line Divisions

The treatment of line divisions is one of the most difficult issues in designing
portable software, simply because there is so little agreement among operating
systems. Some use a single character to delimit lines; the recommended ASCII
character for this purpose is the line feed character LF (also called the new line
character, NL), but some systems use the carriage return character CR. Much
more common is the two-character sequence CR followed by LF. Frequently line
divisions have no representation as a character but are implicit in the structuring
of a file into records, each record containing a line of text. A deck of punched
cards has this structure, for example.

Common Lisp provides an abstract interface by requiring that there be a
single character, #\Newline, that within the language serves as a line delimiter.
(The language C has a similar requirement.) An implementation of Common
Lisp must translate between this internal single-character representation and
whatever external representation(s) may be used.

Implementation note: How the character called #\Newline is represented internally
is not specified here, but it is strongly suggested that the ASCII LF character be used
in Common Lisp implementations that use the ASCII character encoding. The ASCII
CR character is a workable, but in most cases inferior, alternative.

When the first edition was written it was not yet clear that UNIX would
become so widely accepted. The decision to represent the line delimiter as a
single character has proved to be a good one.

The requirement that a line division be represented as a single character has
certain consequences. A character string written in the middle of a program in
such a way as to span more than one line must contain exactly one character to
represent each line division. Consider this code fragment:

(setq a-string ” This string
contains
forty-two characters.”)

Between g and c there must be exactly one character, #\Newline; a two-
character sequence, such as #\Return and then #\Newline, is not acceptable,
nor is the absence of a character. The same is true between s and f.

When the character #\Newline is written to an output file, the Common
Lisp implementation must take the appropriate action to produce a line division.
This might involve writing out a record or translating #\Newline to a CR/LF
sequence.

Implementation note: If an implementation uses the ASCII character encoding,
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uses the CR/LF sequence externally to delimit lines, uses LF to represent #\Newline
internally, and supports #\Return as a data object corresponding to the ASCII char-
acter CR, the question arises as to what action to take when the program writes out
#\Return followed by #\Newline. It should first be noted that #\Return is not a stan-
dard Common Lisp character, and the action to be taken when #\Return is written
out is therefore not defined by the Common Lisp language. A plausible approach is
to buffer the #\Return character and suppress it if and only if the next character is
#\Newline (the net effect is to generate a CR/LF sequence). Another plausible ap-
proach is simply to ignore the difficulty and declare that writing #\Return and then
#\Newline results in the sequence CR/CR/LF in the output.

2.2.3 Non-standard Characters

Any implementation may provide additional characters, whether printing char-
acters or named characters. Some plausible examples:

#\m #\a #\Break #\Home-Up #\Escape

The use of such characters may render Common Lisp programs non-portable.
X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to replace the notion of
bits and font attributes with that of implementation-defined attributes.
X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type
string-char. Two new subtypes of character are base-character, defined
to be equivalent to the result of the function call

(upgraded-array-element-type ’standard-char)
and extended-character, defined to be equivalent to the type specifier
(and character (not base-character))

An implementation may support additional subtypes of character that may
or may not be supertypes of base-character. In addition, an implementation
may define base-character to be equivalent to character. The choice of
any base characters that are not standard characters is implementation-defined.
Only base characters can be elements of a base string. No upper bound is
specified for the number of distinct characters of type base-character—that is
implementation-dependent—but the lower bound is 96, the number of standard
Common Lisp characters.

2.3 Symbols

Symbols are Lisp data objects that serve several purposes and have several
interesting characteristics. Every object of type symbol has a name, called its
print name. Given a symbol, one can obtain its name in the form of a string.
Conversely, given the name of a symbol as a string, one can obtain the symbol
itself. (More precisely, symbols are organized into packages, and all the symbols
in a package are uniquely identified by name. See chapter 11.)

Symbols have a component called the property list, or plist. By conven-
tion this is always a list whose even-numbered components (calling the first
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component zero) are symbols, here functioning as property names, and whose
odd-numbered components are associated property values. Functions are pro-
vided for manipulating this property list; in effect, these allow a symbol to be
treated as an extensible record structure.

Symbols are also used to represent certain kinds of variables in Lisp pro-
grams, and there are functions for dealing with the values associated with sym-
bols in this role.

A symbol can be notated simply by writing its name. If its name is not
empty, and if the name consists only of uppercase alphabetic, numeric, or cer-
tain pseudo-alphabetic special characters (but not delimiter characters such as
parentheses or space), and if the name of the symbol cannot be mistaken for a
number, then the symbol can be notated by the sequence of characters in its
name. Any uppercase letters that appear in the (internal) name may be written
in either case in the external notation (more on this below). For example:

FROBBOZ ;The symbol whose name is FROBBOZ
frobboz ;Another way to notate the same symbol
fRObBoz ;Yet another way to notate it
unwind-protect ;A symbol with a - in its name
+$ ;The symbol named +$
1+ ;The symbol named 1+
+1 ;This is the integer 1, not a symbol
pascal_style ;This symbol has an underscore in its name
b~2-4*a*c ;This is a single symbol!

; It has several special characters in its name
file.rel.43 ;This symbol has periods in its name

Jusr/games/zork ;This symbol has slashes in its name

In addition to letters and numbers, the following characters are normally con-
sidered to be alphabetic for the purposes of notating symbols:

+ - x /e $ %K " & _ =< > 7

Some of these characters have conventional purposes for naming things; for
example, symbols that name special variables generally have names beginning
and ending with *. The last character listed above, the period, is considered
alphabetic provided that a token does not consist entirely of periods. A single
period standing by itself is used in the notation of conses and dotted lists; a
token consisting of two or more periods is syntactically illegal. (The period also
serves as the decimal point in the notation of numbers.)

The following characters are also alphabetic by default but are explicitly
reserved to the user for definition as reader macro characters (see section 22.1.3)
or any other desired purpose and therefore should not be used routinely in names
of symbols:

7 0 L1 { 3

A symbol may have uppercase letters, lowercase letters, or both in its print
name. However, the Lisp reader normally converts lowercase letters to the
corresponding uppercase letters when reading symbols. The net effect is that
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most of the time case makes no difference when notating symbols. Case does
make a difference internally and when printing a symbol. Internally the symbols
that name all standard Common Lisp functions, variables, and keywords have
uppercase names; their names appear in lowercase in this book for readability.
Typing such names with lowercase letters works because the function read will
convert lowercase letters to the equivalent uppercase letters.

X3J13 voted in June 1989 (READ-CASE-SENSITIVITY) to introduce readtable-case,
which controls whether read will alter the case of letters read as part of the name
of a symbol.

If a symbol cannot be simply notated by the characters of its name because
the (internal) name contains special characters or lowercase letters, then there
are two “escape” conventions for notating them. Writing a \ character before
any character causes the character to be treated itself as an ordinary character
for use in a symbol name; in particular, it suppresses internal conversion of
lowercase letters to their uppercase equivalents. If any character in a notation
is preceded by \, then that notation can never be interpreted as a number. For
example:

\( ;The symbol whose name is (

\+1 ;The symbol whose name is +1

+\1 ;Also the symbol whose name is +1

\frobboz ;The symbol whose name is fROBBOZ
3.14159265\s0 ;The symbol whose name is 3.14159265s0
3.14159265\S0 ;A different symbol, whose name is 3.1415926530
3.14159265s0 ;A short-format floating-point approximation to
APLA\360 ;The symbol whose name is APL\360

apI\\360 ;Also the symbol whose name is APL\360
\(b~2\)\ -\ 4*a*c ;The name is (B"2) - 4*Ax*C;

; it has parentheses and two spaces in it
N(\b~2\)\ -\ 4"\a*\¢ ;The name is (b~2) - 4*axc;
; the letters are explicitly lowercase

It may be tedious to insert a \ before every delimiter character in the name of
a symbol if there are many of them. An alternative convention is to surround
the name of a symbol with vertical bars; these cause every character between
them to be taken as part of the symbol’s name, as if \ had been written before
each one, excepting only | itself and \, which must nevertheless be preceded by
\. For example:
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" ;The same as writing \"
[(b~2) - 4*a*c]| ;The name is (b"2) - 4*a*c

|frobboz| ;The name is frobboz, not FROBBOZ

|APLA\360| ;The name is APL360, because the \ quotes the 3
|[APLA\360| ;The name is APL\360

|apI\\360| ;The name is ap1\360

N\ ;Same as \|\|: the name is ||

[(B~2) - 4*A*C| ;The name is (B~2) - 4*AxC;
; it has parentheses and two spaces in it
[(b~2) - 4*a*c| ;The name is (b~2) - 4*axc

2.4 Lists and Conses

A cons is a record structure containing two components called the car and the
cdr. Conses are used primarily to represent lists.

A list is recursively defined to be either the empty list or a cons whose cdr
component is a list. A list is therefore a chain of conses linked by their cdr
components and terminated by nil, the empty list. The car components of the
conses are called the elements of the list. For each element of the list there is a
cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by
blank space (space, tab, or return characters) and surrounded by parentheses.

(abc) ;A list of three symbols
(2.0s0 (a 1) #\*) ;A list of three things: a short floating-point
; number, another list, and a character object

The empty list nil therefore can be written as (), because it is a list with no
elements.

A dotted list is one whose last cons does not have nil for its cdr, rather
some other data object (which is also not a cons, or the first-mentioned cons
would not be the last cons of the list). Such a list is called “dotted” because
of the special notation used for it: the elements of the list are written between
parentheses as before, but after the last element and before the right parenthesis
are written a dot (surrounded by blank space) and then the cdr of the last cons.
As a special case, a single cons is notated by writing the car and the cdr between
parentheses and separated by a space-surrounded dot. For example:

(a.4) ;A cons whose car is a symbol
; and whose cdr is an integer
(abc.d) ;A dotted list with three elements whose last cons
; has the symbol d in its cdr
Compatibility note: In MacLisp, the dot in dotted-list notation need not be sur-
rounded by white space or other delimiters. The dot is required to be delimited in
Common Lisp, as in Lisp Machine Lisp.

It is legitimate to write something like (a b . (c d)); this means the

same as (a b ¢ d). The standard Lisp output routines will never print a list
in the first form, however; they will avoid dot notation wherever possible.
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Often the term list is used to refer either to true lists or to dotted lists.
When the distinction is important, the term “true list” will be used to refer to
a list terminated by nil. Most functions advertised to operate on lists expect
to be given true lists. Throughout this book, unless otherwise specified, it is an
error to pass a dotted list to a function that is specified to require a list as an
argument.

Implementation note: Implementors are encouraged to use the equivalent of the
predicate endp wherever it is necessary to test for the end of a list. Whenever feasible,
this test should explicitly signal an error if a list is found to be terminated by a
non-nil atom. However, such an explicit error signal is not required, because some
such tests occur in important loops where efficiency is important. In such cases, the
predicate atom may be used to test for the end of the list, quietly treating any non-nil
list-terminating atom as if it were nil.

Sometimes the term tree is used to refer to some cons and all the other
conses transitively accessible to it through car and cdr links until non-conses
are reached; these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are
simply useful points of view about structures of conses. There are yet other
terms, such as association list. None of these are true Lisp data types. Conses
are a data type, and nil is the sole object of type null. The Lisp data type
list is taken to mean the union of the cons and null data types, and therefore
encompasses both true lists and dotted lists.

2.5 Arrays

An array is an object with components arranged according to a Cartesian
coordinate system. In general, these components may be any Lisp data objects.

The number of dimensions of an array is called its rank (this terminology
is borrowed from APL); the rank is a non-negative integer. Likewise, each
dimension is itself a non-negative integer. The total number of elements in the
array is the product of all the dimensions.

An implementation of Common Lisp may impose a limit on the rank of
an array, but this limit may not be smaller than 7. Therefore, any Common
Lisp program may assume the use of arrays of rank 7 or less. (A program
may determine the actual limit on array ranks for a given implementation by
examining the constant array-rank-limit.)

It is permissible for a dimension to be zero. In this case, the array has no
elements, and any attempt to access an element is in error. However, other
properties of the array, such as the dimensions themselves, may be used. If the
rank is zero, then there are no dimensions, and the product of the dimensions
is then by definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the
sequence must equal the rank of the array. Each index must be a non-negative
integer strictly less than the corresponding array dimension. Array indexing is
therefore zero-origin, not one-origin as in (the default case of) Fortran.



CHAPTER 2. DATA TYPES 29

As an example, suppose that the variable foo names a 3-by-5 array. Then
the first index may be 0, 1, or 2, and the second index may be 0, 1, 2, 3,
or 4. One may refer to array elements using the function aref; for example,
(aref foo 2 1) refers to element (2, 1) of the array. Note that aref takes a
variable number of arguments: an array, and as many indices as the array has
dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

In general, arrays can be multidimensional, can share their contents with
other array objects, and can have their size altered dynamically (either enlarging
or shrinking) after creation. A one-dimensional array may also have a fill pointer.

Multidimensional arrays store their components in row-major order; that is,
internally a multidimensional array is stored as a one-dimensional array, with
the multidimensional index sets ordered lexicographically, last index varying
fastest. This is important in two situations: (1) when arrays with different
dimensions share their contents, and (2) when accessing very large arrays in a
virtual-memory implementation. (The first situation is a matter of semantics;
the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and is
not to have its size adjusted dynamically after creation is called a simple array.
The user may provide declarations that certain arrays will be simple. Some
implementations can handle simple arrays in an especially efficient manner; for
example, simple arrays may have a more compact representation than non-
simple arrays.

X3J13 voted in June 1989 <ADJUST—ARRAY—NOT—ADJUSTABLE> to clarify that
if one or more of the :adjustable, :fill-pointer, and :displaced-to ar-
guments is true when make-array is called, then whether the resulting array
is simple is unspecified; but if all three arguments are false, then the resulting
array is guaranteed to be simple.

2.5.1 Vectors

One-dimensional arrays are called vectors in Common Lisp and constitute the
type vector (which is therefore a subtype of array). Vectors and lists are
collectively considered to be sequences. They differ in that any component of
a one-dimensional array can be accessed in constant time, whereas the average
component access time for a list is linear in the length of the list; on the other
hand, adding a new element to the front of a list takes constant time, whereas
the same operation on an array takes time linear in the length of the array.

A general vector (a one-dimensional array that can have any data object as
an element but that has no additional paraphernalia) can be notated by notating
the components in order, separated by whitespace and surrounded by #( and ).
For example:

#(abc) ;A vector of length 3
#() ;An empty vector
#(2357 11131719 23 29 31 37 41 43 47)
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;A vector containing the primes below 50

Note that when the function read parses this syntax, it always constructs a
simple general vector.

Rationale: Many people have suggested that brackets be used to notate vectors, as
[a b c] instead of #(a b c). This notation would be shorter, perhaps more readable,
and certainly in accord with cultural conventions in other parts of computer science
and mathematics. However, to preserve the usefulness of the user-definable macro-
character feature of the function read, it is necessary to leave some characters to
the user for this purpose. Experience in MacLisp has shown that users, especially
implementors of languages for use in artificial intelligence research, often want to
define special kinds of brackets. Therefore Common Lisp avoids using brackets and
braces for any syntactic purpose.

Implementations may provide certain specialized representations of arrays
for efficiency in the case where all the components are of the same specialized
(typically numeric) type. All implementations provide specialized arrays for
the cases when the components are characters (or rather, a special subset of
the characters); the one-dimensional instances of this specialization are called
strings. All implementations are also required to provide specialized arrays of
bits, that is, arrays of type (array bit); the one-dimensional instances of this
specialization are called bit-vectors.

2.5.2 Strings

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type string-char
and to redefine the type string to be the union of one or more specialized vector
types, the types of whose elements are subtypes of the type character. Sub-

types of string include simple-string, base-string, and simple-base-string.

base-string = (vector base-character)
simple-base-string = (simple-array base-character (%))

An implementation may support other string subtypes as well. All Common
Lisp functions that operate on strings treat all strings uniformly; note, however,
that it is an error to attempt to insert an extended character into a base string.

The type string is therefore a subtype of the type vector.

A string can be written as the sequence of characters contained in the string,
preceded and followed by a " (double quote) character. Any " or \ character in
the sequence must additionally have a \ character before it.

For example:

”Foo” ;A string with three characters in it
77 ;An empty string

”\” APL\\3607\” he cried.” ;A string with twenty characters
Vx| = |-x]” ;A ten-character string

Notice that any vertical bar | in a string need not be preceded by a \. Similarly,
any double quote in the name of a symbol written using vertical-bar notation
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need not be preceded by a \. The double-quote and vertical-bar notations are
similar but distinct: double quotes indicate a character string containing the
sequence of characters, whereas vertical bars indicate a symbol whose name is
the contained sequence of characters.

The characters contained by the double quotes, taken from left to right, oc-
cupy locations within the string with increasing indices. The leftmost character
is string element number 0, the next one is element number 1, the next one is
element number 2, and so on.

Note that the function prinl will print any character vector (not just a
simple one) using this syntax, but the function read will always construct a
simple string when it reads this syntax.

2.5.3 Bit-Vectors

A bit-vector can be written as the sequence of bits contained in the string,
preceded by #x*; any delimiter character, such as whitespace, will terminate the
bit-vector syntax. For example:

#%10110 ;A five-bit bit-vector; bit 0 is a 1
#* :An empty bit-vector

The bits notated following the #*, taken from left to right, occupy locations
within the bit-vector with increasing indices. The leftmost notated bit is bit-
vector element number 0, the next one is element number 1, and so on.

The function prinl will print any bit-vector (not just a simple one) using
this syntax, but the function read will always construct a simple bit-vector
when it reads this syntax.

2.6 Hash Tables

Hash tables provide an efficient way of mapping any Lisp object (a key) to an
associated object. They are provided as primitives of Common Lisp because
some implementations may need to use internal storage management strategies
that would make it very difficult for the user to implement hash tables in a
portable fashion. Hash tables are described in chapter 16.

2.7 Readtables

A readtable is a data structure that maps characters into syntax types for the
Lisp expression parser. In particular, a readtable indicates for each character
with syntax macro character what its macro definition is. This is a mechanism
by which the user may reprogram the parser to a limited but useful extent. See
section 22.1.5.
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2.8 Packages

Packages are collections of symbols that serve as name spaces. The parser
recognizes symbols by looking up character sequences in the current package.
Packages can be used to hide names internal to a module from other code.
Mechanisms are provided for exporting symbols from a given package to the
primary “user” package. See chapter 11.

2.9 Pathnames

Pathnames are the means by which a Common Lisp program can interface to an
external file system in a reasonably implementation-independent manner. See
section 23.1.1.

2.10 Streams

A stream is a source or sink of data, typically characters or bytes. Nearly
all functions that perform I/O do so with respect to a specified stream. The
function open takes a pathname and returns a stream connected to the file
specified by the pathname. There are a number of standard streams that are
used by default for various purposes. See chapter 21.

X3J13 voted in January 1989 (STREAM-ACCESS) to introduce subtypes of type
stream: broadcast-stream, concatenated-stream, echo-stream, synonym-stream,
string-stream, file-stream, and two-way-stream are disjoint subtypes of
stream. Note particularly that a synonym stream is always and only of type
synonym-stream, regardless of the type of the stream for which it is a synonym.

2.11 Random-States

An object of type random-state is used to encapsulate state information used by
the pseudo-random number generator. For more information about random-state
objects, see section 12.9.

2.12 Structures

Structures are instances of user-defined data types that have a fixed number
of named components. They are analogous to records in Pascal. Structures
are declared using the defstruct construct; defstruct automatically defines
access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a struc-
ture type may specify a print procedure to use for objects of that type (see the
:print-function option to defstruct). The default notation for structures is
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#S(structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

)

where #S indicates structure syntax, structure-name is the name (a symbol) of
the structure type, each slot-name is the name (also a symbol) of a component,
and each corresponding slot-value is the representation of the Lisp object in that
slot.

2.13 Functions

X3J13 voted in June 1988 (FUNCTION-TYPE) to revise these specifications. The
type function is to be disjoint from cons and symbol, and so a list whose
car is lambda is not, properly speaking, of type function, nor is any symbol.
However, standard Common Lisp functions that accept functional arguments
will accept a symbol or a list whose car is lambda and automatically coerce it
to be a function; such standard functions include funcall, apply, and mapcar.
Such functions do not, however, accept a lambda-expression as a functional
argument; therefore one may not write

(mapcar ’(lambda (x y) (sqrt (* x y))) p q)
but instead one must write something like
(mapcar #’(lambda (x y) (sqrt (* x y))) p Q)
This change makes it impermissible to represent a lexical closure as a list

whose car is some special marker.
The value of a function special form will always be of type function.

2.14 Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects can-
not necessarily be reliably reconstructed from a printed representation, and so
they are usually printed in a format informative to the user but not acceptable
to the read function: #<useful information>. The Lisp reader will signal an
error on encountering #<.

As a hypothetical example, an implementation might print

#<stack-pointer si:rename-within-new-definition-maybe #0311037552>

for an implementation-specific “internal stack pointer” data type whose printed
representation includes the name of the type, some information about the stack
slot pointed to, and the machine address (in octal) of the stack slot.

See print-unreadable-object, a macro that prints an object using #< syn-
tax.
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2.15 Overlap, Inclusion, and Disjointness of Types

The Common Lisp data type hierarchy is tangled and purposely left somewhat
open-ended so that implementors may experiment with new data types as exten-
sions to the language. This section explicitly states all the defined relationships
between types, including subtype/supertype relationships, disjointness, and ex-
haustive partitioning. The user of Common Lisp should not depend on any
relationships not explicitly stated here. For example, it is not valid to assume
that because a number is not complex and not rational that it must be a float,
because implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If z is a supertype of y, then any object
of type y is also of type z, and y is said to be a subtype of z. If types = and
y are disjoint, then no object (in any implementation) may be both of type z
and of type y. Types a; through a, are an ezhaustive union of type xz if each a;
is a subtype of z, and any object of type z is necessarily of at least one of the
types a;; a; through a, are furthermore an exhaustive partition if they are also
pairwise disjoint.

e The type t is a supertype of every type whatsoever. Every object is of
type t.

e The type nil is a subtype of every type whatsoever. No object is of type
nil.

X3J13 voted in June 1988 <DATA—TYPES—HIERARCHY—UNDERSPECIFIED> to
extend the preceding paragraph as follows.

e The types cons, symbol, array, number, character, hash-table, readtable,
package, pathname, stream, random-state, and any single other type
created by defstruct or defclass are pairwise disjoint.

The wording of the first edition was intended to allow implementors to use
the defstruct facility to define the built-in types hash-table, readtable,
package, pathname, stream, random-state. The change still permits this im-
plementation strategy but forbids these built-in types from including, or being
included in, other types (in the sense of the defstruct :include option).

X3J13 voted in June 1988 (FUNCTION-TYPE) to specify that the type function
is disjoint from the types cons, symbol, array, number, and character. The
type compiled-function is a subtype of function; implementations are free
to define other subtypes of function.

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to rewrite the preceding
item as follows.

e The types real and complex are pairwise disjoint subtypes of number.

Rationale: It might be thought that real and complex should form an exhaustive
partition of the type number. This is purposely avoided here in order to permit com-
patible experimentation with extensions to the Common Lisp number system.
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e The types rational and float are pairwise disjoint subtypes of real.

Rationale: It might be thought that rational and float should form an exhaustive
partition of the type real. This is purposely avoided here in order to permit compatible
experimentation with extensions to the Common Lisp number system.

e The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive
partition of the type rational. This is purposely avoided here in order to permit
compatible experimentation with extensions to the Common Lisp rational number
system, such as the idea of adding explicit representations of infinity or of positive and
negative infinity.

X3J13 voted in January 1989 (FIXNUM-NON-PORTABLE) to specify that the
types fixnum and bignum do in fact form an exhaustive partition of the type
integer; more precisely, they voted to specify that the type bignum is by defi-
nition equivalent to (and integer (not fixnum)). This is consistent with the
first edition text in section 2.1.1.

I interpret this to mean that implementators could still experiment with
such extensions as adding explicit representations of infinity, but such infinities
would necessarily be of type bignum.

e The types short-float, single-float, double-float, and long-float
are subtypes of float. Any two of them must be either disjoint or iden-
tical; if identical, then any other types between them in the above or-
dering must also be identical to them (for example, if single-float and
long-float are identical types, then double-float must be identical to
them also).

e The type null is a subtype of symbol; the only object of type null isnil.

e The types cons and null form an exhaustive partition of the type list.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to remove the type
string-char. The preceding item is replaced by the following.

e The type standard-char is a subtype of base-character. The types
base-character and extended-character form an exhaustive partition
of character.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to remove the type
string-char. The preceding item is replaced by the following.

e The type string is a subtype of vector; it is the union of all types
(vector c¢) such that cis a subtype of character.
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e The type bit-vector is a subtype of vector, for bit-vector means
(vector bit).

e The types (vector t), string, and bit-vector are disjoint.

e The type vector is a subtype of array; for all types z, the type (vector
x) is the same as the type (array z (*)).

e The type simple-array is a subtype of array.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to remove the type
string-char. The preceding item is replaced by the following.

e The types simple-vector, simple-string, and simple-bit-vector are
disjoint subtypes of simple-array, for they mean (simple-array t (%)),
the union of all types (simple-array c¢ (*)) such that cis a subtype of
character, and (simple-array bit (%)), respectively.

e The type simple-vector is a subtype of vector and indeed is a subtype
of (vector t).

e The type simple-string is a subtype of string. (Note that although
stringis a subtype of vector, simple-stringis not a subtype of simple-vector.)

Rationale: The hypothetical name simple-general-vector would have been more
accurate than simple-vector, but in this instance euphony and user convenience were
deemed more important to the design of Common Lisp than a rigid symmetry.

e The type simple-bit-vector is a subtype of bit-vector. (Note that
although bit-vector is a subtype of vector, simple-bit-vector is not
a subtype of simple-vector.)

e The types vector and list are disjoint subtypes of sequence.

e The types random-state, readtable, package, pathname, stream, and
hash-table are pairwise disjoint.

X3J13 voted in June 1988 <DATA-TYPES-HIERARCHY-UNDERSPECIFIED> to
make random-state, readtable, package, pathname, stream, and hash-table
pairwise disjoint from a number of other types as well; see note above.

X3J13 voted in January 1989 (STREAM-ACCESS) to introduce subtypes of
type stream.

e The types two-way-stream, echo-stream, broadcast-stream,file-strean,
synonym-stream, string-stream, and concatenated-stream are dis-
joint subtypes of stream.

e Any two types created by defstruct are disjoint unless one is a supertype
of the other by virtue of the :include option.

X3J13 voted in March 1989 (COMMON-TYPE) to remove the type common from
the language.



Chapter 3

Scope and Extent

In describing various features of the Common Lisp language, the notions of
scope and extent are frequently useful. These notions arise when some object
or construct must be referred to from some distant part of a program. Scope
refers to the spatial or textual region of the program within which references
may occur. Ezxtent refers to the interval of time during which references may
occur.

As a simple example, consider this program:

(defun copy-cell (x) (comns (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is
no way to refer to this parameter from any other place but within the body of
the defun. Similarly, the extent of the parameter x (for any particular call to
copy-cell) is the interval from the time the function is invoked to the time it
is exited. (In the general case, the extent of a parameter may last beyond the
time of function exit, but that cannot occur in this simple case.)

Within Common Lisp, a referenceable entity is established by the execution of
some language construct, and the scope and extent of the entity are described
relative to the construct and the time (during execution of the construct) at
which the entity is established. For the purposes of this discussion, the term
“entity” refers not only to Common Lisp data objects, such as symbols and
conses, but also to variable bindings (both ordinary and special), catchers, and
go targets. It is important to distinguish between an entity and a name for the
entity. In a function definition such as
(defun foo (x y) (x x (+ y 1)))
there is a single name, x, used to refer to the first parameter of the procedure
whenever it is invoked; however, a new binding is established on every invoca-
tion. A binding is a particular parameter instance. The value of a reference to
the name x depends not only on the scope within which it occurs (the one in
the body of foo in the example occurs in the scope of the function definition’s
parameters) but also on the particular binding or instance involved. (In this
case, it depends on the invocation during which the reference is made). More

37
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complicated examples appear at the end of this chapter.
There are a few kinds of scope and extent that are particularly useful in
describing Common Lisp:

e Lexical scope. Here references to the established entity can occur only
within certain program portions that are lexically (that is, textually) con-
tained within the establishing construct. Typically the construct will have
a part designated the body, and the scope of all entities established will be
(or include) the body.

Example: the names of parameters to a function normally are lexically
scoped.

o Indefinite scope. References may occur anywhere, in any program.

o Dynamic extent. References may occur at any time in the interval be-
tween establishment of the entity and the explicit disestablishment of the
entity. As a rule, the entity is disestablished when execution of the estab-
lishing construct completes or is otherwise terminated. Therefore entities
with dynamic extent obey a stack-like discipline, paralleling the nested
executions of their establishing constructs.

Example: the with-open-file construct opens a connection to a file and
creates a stream object to represent the connection. The stream object
has indefinite extent, but the connection to the open file has dynamic
extent: when control exits the with-open-file construct, either normally
or abnormally, the stream is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

e Indefinite extent. The entity continues to exist as long as the possibility
of reference remains. (An implementation is free to destroy the entity if
it can prove that reference to it is no longer possible. Garbage collection
strategies implicitly employ such proofs.)

Example: most Common Lisp data objects have indefinite extent.
Example: the bindings of lexically scoped parameters of a function have

indefinite extent. (By contrast, in Algol the bindings of lexically scoped
parameters of a procedure have dynamic extent.) The function definition

(defun compose (f g)
#’ (lambda (x)
(funcall £ (funcall g x))))

when given two arguments, immediately returns a function as its value.
The parameter bindings for £ and g do not disappear because the returned
function, when called, could still refer to those bindings. Therefore

(funcall (compose #’sqrt #’abs) -9.0)
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produces the value 3.0. (An analogous procedure would not necessarily
work correctly in typical Algol implementations or, for that matter, in
most Lisp dialects.)

In addition to the above terms, it is convenient to define dynamic scope to
mean indefinite scope and dynamic extent. Thus we speak of “special” variables
as having dynamic scope, or being dynamically scoped, because they have indef-
inite scope and dynamic extent: a special variable can be referred to anywhere
as long as its binding is currently in effect.

The term “dynamic scope” is a misnomer. Nevertheless it is both traditional
and useful.

The above definitions do not take into account the possibility of shadowing.
Remote reference of entities is accomplished by using names of one kind or
another. If two entities have the same name, then the second may shadow the
first, in which case an occurrence of the name will refer to the second and cannot
refer to the first.

In the case of lexical scope, if two constructs that establish entities with
the same name are textually nested, then references within the inner construct
refer to the entity established by the inner one; the inner one shadows the outer
one. Outside the inner construct but inside the outer one, references refer to
the entity established by the outer construct. For example:

(defun test (x z)
(let ((z (x x 2))) (print z))
z)

The binding of the variable z by the let construct shadows the parameter
binding for the function test. The reference to the variable z in the print
form refers to the let binding. The reference to z at the end of the function
refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap,
then one interval will necessarily be nested within the other one. This is a
property of the design of Common Lisp.

Implementation note: Behind the assertion that dynamic extents nest properly is
the assumption that there is only a single program or process. Common Lisp does not
address the problems of multiprogramming (timesharing) or multiprocessing (more
than one active processor) within a single Lisp environment. The documentation for
implementations that extend Common Lisp for multiprogramming or multiprocessing
should be very clear on what modifications are induced by such extensions to the rules
of extent and scope. Implementors should note that Common Lisp has been carefully
designed to allow special variables to be implemented using either the “deep binding”
technique or the “shallow binding” technique, but the two techniques have different
semantic and performance implications for multiprogramming and multiprocessing.
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A reference by name to an entity with dynamic extent will always refer to
the entity of that name that has been most recently established that has not
yet been disestablished. For example:

(defun funl (x)
(catch ’trap (+ 3 (fun2 x))))

(defun fun2 (y)
(catch ’trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw ’trap z))

Consider the call (funl 7). The result will be 10. At the time the throw is
executed, there are two outstanding catchers with the name trap: one estab-
lished within procedure funl, and the other within procedure fun2. The latter
is the more recent, and so the value 7 is returned from the catch form in fun2.
Viewed from within fun3, the catch in fun2 shadows the one in funl. Had
fun2 been defined as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in funi
would not be shadowed. The result would then have been 7.

As a rule, this book simply speaks of the scope or extent of an entity; the
possibility of shadowing is left implicit.

The important scope and extent rules in Common Lisp follow:

e Variable bindings normally have lexical scope and indefinite extent.

e Variable bindings for which there is a dynamic-extent declaration also
have lexical scope and indefinite extent, but objects that are the values of
such bindings may have dynamic extent. (The declaration is the program-
mer’s guarantee that the program will behave correctly even if certain of
the data objects have only dynamic extent rather than the usual indefinite
extent.)

e Bindings of variable names to symbol macros by symbol-macrolet have
lexical scope and indefinite extent.

e Variable bindings that are declared to be special have dynamic scope
(indefinite scope and dynamic extent).

e Bindings of function names established, for example, by flet and labels
have lexical scope and indefinite extent.
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e Bindings of function names for which there is a dynamic-extent decla-
ration also have lexical scope and indefinite extent, but function objects
that are the values of such bindings may have dynamic extent.

e Bindings of function names to macros as established by macrolet have
lexical scope and indefinite extent.

e Condition handlers and restarts have dynamic scope (see chapter 29).

e A catcher established by a catch or unwind-protect special form has
dynamic scope.

e An exit point established by a block construct has lexical scope and dy-
namic extent. (Such exit points are also established by do, prog, and
other iteration constructs.)

e The go targets established by a tagbody, named by the tags in the tagbody,
and referred to by go have lexical scope and dynamic extent. (Such go tar-
gets may also appear as tags in the bodies of do, prog, and other iteration
constructs.)

e Named constants such as nil and pi have indefinite scope and indefinite
extent.

The rules of lexical scoping imply that lambda-expressions appearing in the
function construct will, in general, result in “closures” over those non-special
variables visible to the lambda-expression. That is, the function represented
by a lambda-expression may refer to any lexically apparent non-special variable
and get the correct value, even if the construct that established the binding has
been exited in the course of execution. The compose example shown earlier in
this chapter provides one illustration of this. The rules also imply that special
variable bindings are not “closed over” as they may be in certain other dialects
of Lisp.

Constructs that use lexical scope effectively generate a new name for each
established entity on each execution. Therefore dynamic shadowing cannot
occur (though lexical shadowing may). This is of particular importance when
dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (=x 0)
(funcall f)
(block here
(+ 5 (contorted-example g
#’ (lambda ()
(return-from here 4))
x1NN
Consider the call (contorted-example nil nil 2). This produces the result

4. During the course of execution, there are three calls on contorted-example,
interleaved with two establishments of blocks:
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(contorted-example nil nil 2)
(block here; ...)
(contorted-example nil #’(lambda () (return-from here; 4)) 1)
(block heres ...)

(contorted-example #°’(lambda () (return-from here; 4))
#’ (lambda () (return-from heres, 4))
0)
(funcall f)
where f = #’(lambda () (return-from here; 4))

(return-from here; 4)

At the time the funcall is executed there are two block exit points outstand-
ing, each apparently named here. In the trace above, these exit points are
distinguished for expository purposes by subscripts. The return-from form
executed as a result of the funcall operation refers to the outer outstanding
exit point (here;), not the inner one (herey). This is a consequence of the rules
of lexical scoping: it refers to that exit point textually visible at the point of
execution of the function construct (here abbreviated by the #’ syntax) that
resulted in creation of the function object actually invoked by the funcall.

If, in this example, one were to change the form (funcall f) to (funcall
g), then the value of the call (contorted-example nil nil 2) would be 9.
The value would change because the funcall would cause the execution of
(return-from heres; 4), thereby causing a return from the inner exit point
(herey). When that occurs, the value 4 is returned from the middle invocation
of contorted-example, 5 is added to that to get 9, and that value is returned
from the outer block and the outermost call to contorted-example. The point
is that the choice of exit point returned from has nothing to do with its being
innermost or outermost; rather, it depends on the lexical scoping information
that is effectively packaged up with a lambda-expression when the function
construct is executed.

This function contorted-example works only because the function named
by f is invoked during the extent of the exit point. Block exit points are like
non-special variable bindings in having lexical scope, but they differ in having
dynamic extent rather than indefinite extent. Once the flow of execution has
left the block construct, the exit point is disestablished. For example:

(defun illegal-example ()
(let ((y (block here #’(lambda (z) (return-from here z)))))

(if (numberp y) y (funcall y 5))))

One might expect the call (illegal-example) to produce 5 by the following
incorrect reasoning: the let statement binds the variable y to the value of the
block construct; this value is a function resulting from the lambda-expression.
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Because y is not a number, it is invoked on the value 5. The return-from
should then return this value from the exit point named here, thereby exiting
from the block again and giving y the value 5 which, being a number, is then
returned as the value of the call to illegal-example.

The argument fails only because exit points are defined in Common Lisp
to have dynamic extent. The argument is correct up to the execution of the
return-from. The execution of the return-from is an error, however, not
because it cannot refer to the exit point, but because it does correctly refer to
an exit point and that exit point has been disestablished.



Chapter 4

Type Specifiers

In Common Lisp, types are named by Lisp objects, specifically symbols and
lists, called type specifiers. Symbols name predefined classes of objects, whereas
lists usually indicate combinations or specializations of simpler types. Symbols
or lists may also be abbreviations for types that could be specified in other ways.

4.1 Type Specifier Symbols

The type symbols defined by the system include those shown in table 4.1. In
addition, when a structure type is defined using defstruct, the name of the
structure type becomes a valid type symbol.

Notice of correction. In the first edition, the type specifiers signed-byte
and unsigned-byte were inadvertently omitted from table 4.1.

X3J13 voted in March 1989 (COMMON-TYPE) to eliminate the type common;
this fact is indicated by the brackets around the common type specifier in the
table.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type
string-char; this fact is indicated by the brackets around the string-char
type specifier in the table.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to add the type extended-character
and the type base-character.

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to add the type specifier
real.

X3J13 votes have also implicitly added many other type specifiers as names
of classes (see chapter 28) or of conditions (see chapter 29).

4.2 Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the
list is subsidiary type information. In many cases a subsidiary item may be
unspecified. The unspecified subsidiary item is indicated by writing *. For

44
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Table 4.1: Standard Type Specifier Symbols

array fixnum package simple-string
atom float pathname simple-vector
bignum function random-state single-float
bit hash-table ratio standard-char
bit-vector integer rational stream
character keyword readtable string
[common] list sequence [string-char]
compiled-function long-float short-float symbol
complex nil signed-byte t

cons null simple-array unsigned-byte
double-float number simple-bit-vector vector

X3J13 voted in March 1989 (COMMON-TYPE) to remove the type common.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to remove the type
string-char.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to add base-character
and extended-character.

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to add the type real.

example, to completely specify a vector type, one must mention the type of the
elements and the length of the vector, as for example

(vector double-float 100)

To leave the length unspecified, one would write

(vector double-float *)

To leave the element type unspecified, one would write
(vector * 100)

One may also leave both length and element type unspecified:
(vector * x)

Suppose that two type specifiers are the same except that the first has a *
where the second has a more explicit specification. Then the second denotes a
subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end,
such items may simply be dropped rather than writing an explicit * for each
one. If dropping all occurrences of * results in a singleton list, then the paren-
theses may be dropped as well (the list may be replaced by the symbol in its
car). For example, (vector double-float *) may be abbreviated to (vector

double-float), and (vector * *) may be abbreviated to (vector) and then
to simply vector.
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4.3 Predicating Type Specifiers

A type specifier list (satisfies predicate-name) denotes the set of all objects
that satisfy the predicate named by predicate-name, which must be a symbol
whose global function definition is a one-argument predicate. (A name is re-
quired; lambda-expressions are disallowed in order to avoid scoping problems.)
For example, the type (satisfies numberp) is the same as the type number.
The call (typep x ’(satisfies p)) results in applying p to x and returning
t if the result is true and nil if the result is false.

X3J13 voted in March 1989 (COMMON-TYPE) to remove the type string-char
and the function string-char-p from the language.

It is not a good idea for a predicate appearing in a satisfies type specifier
to cause any side effects when invoked.

4.4 Type Specifiers That Combine

The following type specifier lists define a type in terms of other types or objects.
(member objectl object2 ...)

This denotes the set containing precisely those objects named. An object is of
this type if and only if it is eql to one of the specified objects.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
memg.

(eql object)

X3J13 voted in June 1988 (CLOS) to add the eql type specifier. It may be
used as a parameter specializer for CLOS methods (see section 28.1.6 and
find-method). It denotes the set of the one object named; an object is of
this type if and only if it is eql to object. While (eql object) denotes the same
type as (member object), only (eql object) may be used as a CLOS parameter
specializer.

(not type)

This denotes the set of all those objects that are not of the specified type.
(and typel type2 ...)

This denotes the intersection of the specified types.

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
allof.

When typep processes an and type specifier, it always tests each of the
component types in order from left to right and stops processing as soon as one
component of the intersection has been found to which the object in question
does not belong. In this respect an and type specifier is similar to an executable
and form. The purpose of this similarity is to allow a satisfies type specifier to
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depend on filtering by previous type specifiers. For example, suppose there were
a function primep that takes an integer and says whether it is prime. Suppose
also that it is an error to give any object other than an integer to primep. Then
the type specifier

(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not
be invoked unless the object in question has already been determined to be an
integer.

(or typel type2 ...)

This denotes the union of the specified types. For example, the type 1list by
definition is the same as (or null cons). Also, the value returned by the
function position is always of type (or null (integer 0 *)) (either nil or
a non-negative integer).

Compatibility note: This is roughly equivalent to the Interlisp DECL package’s
oneof.

As for and, when typep processes an or type specifier, it always tests each
of the component types in order from left to right and stops processing as soon
as one component of the union has been found to which the object in question
belongs.

4.5 Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by sym-
bols. These specializations may be reflected by more efficient representations
in the underlying implementation. As an example, consider the type (array
short-float). Implementation A may choose to provide a specialized repre-
sentation for arrays of short floating-point numbers, and implementation B may
choose not to.

If you should want to create an array for the express purpose of holding
only short-float objects, you may optionally specify to make-array the element
type short-float. This does not require make-array to create an object of
type (array short-float); it merely permits it. The request is construed to
mean “Produce the most specialized array representation capable of holding
short-floats that the implementation can provide.” Implementation A will then
produce a specialized array of type (array short-float), and implementation
B will produce an ordinary array of type (array t).

If one were then to ask whether the array were actually of type (array
short-float),implementation A would say “yes,” but implementation B would
say “‘no.” This is a property of make-array and similar functions: what you
ask for is not necessarily what you get.

X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS) to
eliminate the differing treatment of types when used “for discrimination” rather
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than “for declaration” on the grounds that implementors have not treated the
distinction consistently and (which is more important) users have found the
distinction confusing.

As a consequence of this change, the behavior of typep and subtypep on
array and complex type specifiers must be modified. See the descriptions of
those functions. In particular, under their new behavior, implementation B
would say “yes,” agreeing with implementation A, in the discussion above.

Note that the distinction between declaration and discrimination remains
useful, if only so that we may remark that the specialized (list) form of the
function type specifier may still be used only for declaration and not for dis-
crimination.

X3J13 voted in June 1988 (FUNCTION-TYPE) to clarify that while the spe-
cialized form of the function type specifier (a list of the symbol function
possibly followed by argument and value type specifiers) may be used only for
declaration, the symbol form (simply the name function) may be used for
discrimination.

The valid list-format names for data types are as follows:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of
the type element-type and whose dimensions match dimensions. For declara-
tion purposes, this type encompasses those arrays that can result by specifying
element-type as the element type to the function make-array; this may be differ-
ent from what the type means for discrimination purposes. element-type must be
a valid type specifier or unspecified. dimensions may be a non-negative integer,
which is the number of dimensions, or it may be a list of non-negative integers
representing the length of each dimension (any dimension may be unspecified
instead), or it may be unspecified. For example:

(array integer 3) ; Three-dimensional arrays of integers

(array integer (* * x*)) ; Three-dimensional arrays of integers

(array * (4 5 6)) ; 4-by-5-by-6 arrays

(array character (3 *)) ; Two-dimensional arrays of characters
; that have exactly three rows

(array short-float ()) ; Zero-rank arrays of short-format

; floating-point numbers

Note that (array t) is a proper subset of (array *). The reason is that
(array t) is the set of arrays that can hold any Common Lisp object (the ele-
ments are of type t, which includes all objects). On the other hand, (array *)
is the set of all arrays whatsoever, including, for example, arrays that can hold
only characters. Now (array character) is not a subset of (array t); the
two sets are in fact disjoint because (array character) is not the set of all
arrays that can hold characters but rather the set of arrays that are specialized
to hold precisely characters and no other objects. To test whether an array foo
can hold a character, one should not use
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(typep foo ’(array character))
but rather
(subtypep ’character (array-element-type foo))

See array-element-type. X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS)
to change typep and subtypep so that the specialized array type specifier
means the same thing for discrimination as for declaration: it encompasses
those arrays that can result by specifying element-type as the element type to
the function make-array. Under this interpretation (array character) might
be the same type as (array t) (although it also might not be the same). See
upgraded-array-element-type. However,

(typep foo ’(array character))

is still not a legitimate test of whether the array foo can hold a character; one
must still say

(subtypep ’character (array-element-type foo))

to determine that question.

X3J13 also voted in January 1989 <DECLARE—ARRAY—TYPE—ELEMENT—REFERENCES>
to specify that within the lexical scope of an array type declaration, it is an error
for an array element, when referenced, not to be of the exact declared element
type. A compiler may, for example, treat every reference to an element of a
declared array as if the reference were surrounded by a the form mentioning
the declared array element type (not the upgraded array element type). Thus

(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))
(val 0 (logior (ash val 4)
(aref the-array j))))
((< j 0) val)))

may be treated as
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(defun snarf-hex-digits (the-array)
(declare (type (array (unsigned-byte 4) 1) the-array))
(do ((j (- (length array) 1) (- j 1))
(val 0 (logior (ash val 4)
(the (unsigned-byte 4)
(aref the-array j)))))
((< j 0) val)))

The declaration amounts to a promise by the user that the aref will never
produce a value outside the interval 0 to 15, even if in that particular im-
plementation the array element type (unsigned-byte 4) is upgraded to, say,
(unsigned-byte 8). If such upgrading does occur, then values outside that
range may in fact be stored in the-array, as long as the code in snarf-hex-digits
never sees them.

As a general rule, a compiler would be justified in transforming

(aref (the (array elt-type ...) a) ...)
into
(the elt-type (aref (the (array elt-type ...) a) ...)

It may also make inferences involving more complex functions, such as position
or find. For example, find applied to an array always returns either nil or an
object whose type is the element type of the array.

(simple-array element-type dimensions)

This is equivalent to (array element-type dimensions) except that it addition-
ally specifies that objects of the type are simple arrays (see section 2.5).

(vector element-type size)

This denotes the set of specialized one-dimensional arrays whose elements are all
of type element-type and whose lengths match size. This is entirely equivalent
to (array element-type (size)). For example:

(vector double-float) ; Vectors of double-format
; floating-point numbers
(vector * 5) ; Vectors of length 5
(vector t 5) ; General vectors of length 5
(vector (mod 32) *) ; Vectors of integers between 0 and 31

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type
string-char and to redefine the type string to be the union of one or more
specialized vector types, the types of whose elements are subtypes of the type
character.

(simple-vector size)

This is the same as (vector t size) except that it additionally specifies that
its elements are simple general vectors.

(complex type)
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Every element of this type is a complex number whose real part and imaginary
part are each of type type. For declaration purposes, this type encompasses
those complex numbers that can result by giving numbers of the specified type
to the function complex; this may be different from what the type means for
discrimination purposes. As an example, Gaussian integers might be described
as (complex integer), even in implementations where giving two integers to
the function complex results in an object of type (complex rational).

X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS) to
change typep and subtypep so that the specialized complex type specifier means
the same thing for discrimination purposes as for declaration purposes. See
upgraded-complex-part-type.

(function (Cargl-type arg2-type ...) walue-type)

This type may be used only for declaration and not for discrimination; typep
will signal an error if it encounters a specifier of this form. Every element of
this type is a function that accepts arguments at least of the types specified by
the argj-type forms and returns a value that is a member of the types specified
by the value-type form. The &optional, &rest, and &key markers may appear
in the list of argument types. The value-type may be a values type specifier in
order to indicate the types of multiple values.

X3J13 voted in January 1989 (FUNCTION-TYPE-REST-LIST-ELEMENT) to spec-
ify that the arg-type that follows a &rest marker indicates the type of each actual
argument that would be gathered into the list for a &rest parameter, and not
the type of the &rest parameter itself (which is always 1ist). Thus one might
declare the function gcd to be of type (function (&rest integer) integer),
or the function aref to be of type (function (array &rest fixnum) t).

X3J13 voted in March 1988 (FUNCTION-TYPE-KEY-NAME) to specify that, in
a function type specifier, an argument type specifier following &key must be
a list of two items, a keyword and a type specifier. The keyword must be a
valid keyword-name symbol that may be supplied in the actual arguments of
a call to the function, and the type specifier indicates the permitted type of
the corresponding argument value. (The keyword-name symbol is typically a
keyword, but another X3J13 vote (KEYWORD-ARGUMENT-NAME-PACKAGE) allows it
to be any symbol.) Furthermore, if &allow-other-keys is not present, the set
of keyword-names mentioned in the function type specifier may be assumed to
be exhaustive; for example, a compiler would be justified in issuing a warning
for a function call using a keyword argument name not mentioned in the type
declaration for the function being called. If &allow-other-keys is present in
the function type specifier, other keyword arguments may be supplied when
calling a function of the indicated type, and if supplied such arguments may
possibly be used.

X3J13 voted in January 1989 <FUNCTION—TYPE—ARGUMENT—TYPE—SEMANTICS>
to alter the meaning of the function type specifier when used in type and ftype
declarations. While the preceding formulation may be theoretically elegant,
they have found that it is not useful to compiler implementors and that it is
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not the interpretation that users expect. X3J13 prescribed instead the following
interpretation of declarations.
A declaration specifier of the form

(ftype (function (argl-type arg2-type ... argn-type) value-type) fname)

implies that any function call of the form
(fname argl arg2 ...)

within the scope of the declaration can be treated as if it were rewritten to use
the-forms in the following manner:

(the wvalue-type
(fname (the argl-type argl)
(the arg2-type arg2)

(the argn-type argn)))
That is, it is an error for any of the actual arguments not to be of its specified
type arg-type or for the result not to be of the specified type value-type. (In
particular, if any argument is not of its specified type, then the result is not
guaranteed to be of the specified type—if indeed a result is returned at all.)
Similarly, a declaration specifier of the form

(type (function (argl-type arg2-type ... argn-type) value-type) var)

is interpreted to mean that any reference to the variable var will find that its
value is a function, and that it is an error to call this function with any actual
argument not of its specified type arg-type. Also, it is an error for the result not
to be of the specified type value-type. For example, a function call of the form

(funcall war argl arg2 ...)

could be rewritten to use the-forms as well. If any argument is not of its specified
type, then the result is not guaranteed to be of the specified type—if indeed a
result is returned at all.

Thus, a type or ftype declaration specifier describes type requirements im-
posed on calls to a function as opposed to requirements imposed on the definition
of the function. This is analogous to the treatment of type declarations of vari-
ables as imposing type requirements on references to variables, rather than on
the contents of variables. See the vote of X3J13 on type declaration specifiers
in general, discussed in section 9.2.

In the same manner as for variable type declarations in general, if two or
more of these declarations apply to the same function call (which can occur if
declaration scopes are suitably nested), then they all apply; in effect, the types
for each argument or result are intersected. For example, the code fragment

(locally (declare (ftype (function (biped) digit)
butcher-fudge))
(locally (declare (ftype (function (featherless) opposable)
butcher-fudge))
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(butcher-fudge sam)))

may be regarded as equivalent to

(the opposable
(the digit (butcher-fudge (the featherless
(the biped sam)))))

or to

(the (and opposable digit)
(butcher-fudge (the (and featherless biped) sam)))

That is, sam had better be both featherless and a biped, and the result of
butcher-fudge had better be both opposable and a digit; otherwise the code
is in error. Therefore a compiler may generate code that relies on these type
assumptions, for example.

(values valuel-type value2-type . ..)

This type specifier is extremely restricted: it may be used only as the value-type
in a function type specifier or in a the special form. It is used to specify
individual types when multiple values are involved. The &optional, &rest,
and &key markers may appear in the value-type list; they thereby indicate the
parameter list of a function that, when given to multiple-value-call along
with the values, would be suitable for receiving those values.

4.6 Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other
type specifiers that would be far too verbose to write out explicitly (using, for
example, member).

(integer low high)

Denotes the integers between low and high. The limits low and high must each

be an integer, a list of an integer, or unspecified. An integer is an inclusive limit,

a list of an integer is an exclusive limit, and * means that a limit does not exist

and so effectively denotes minus or plus infinity, respectively. The type fixnum

is simply a name for (integer smallest largest) for implementation-dependent

values of smallest and largest (see most-negative-fixnumand most-positive-fixnum).
The type (integer 0 1) is so useful that it has the special name bit.

(mod n)

Denotes the set of non-negative integers less than n. This is equivalent to
(integer 0 n — 1) or to (integer 0 (n)).

(signed-byte s)

Denotes the set of integers that can be represented in two’s-complement form
in a byte of s bits. This is equivalent to (integer —2°~! 257! —1). Simply
signed-byte or (signed-byte *) is the same as integer.
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(unsigned-byte s)

Denotes the set of non-negative integers that can be represented in a byte of
s bits. This is equivalent to (mod 2°), that is, (integer 0 2° — 1). Simply
unsigned-byte or (unsigned-byte *) is the same as (integer 0 *), the set
of non-negative integers.

(rational low high)

Denotes the rationals between low and high. The limits low and high must each
be a rational, a list of a rational, or unspecified. A rational is an inclusive limit,
a list of a rational is an exclusive limit, and * means that a limit does not exist
and so effectively denotes minus or plus infinity, respectively.

(float low high)

Denotes the set of floating-point numbers between low and high. The limits
low and high must each be a floating-point number, a list of a floating-point
number, or unspecified; a floating-point number is an inclusive limit, a list of a
floating-point number is an exclusive limit, and * means that a limit does not
exist and so effectively denotes minus or plus infinity, respectively.

In a similar manner, one may use:

(short-float low high)
(single-float low high)
(double-float low high)
(long-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be
one of the appropriate format.

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to add a list form of the
real type specifier to denote an interval of real numbers.

(real low high)

Denotes the real numbers between low and high. The limits low and high must
each be a real, a list of a real, or unspecified. A real is an inclusive limit, a list
of a real is an exclusive limit, and * means that a limit does not exist and so
effectively denotes minus or plus infinity, respectively.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type
string-char and to redefine the type string to be the union of one or more
specialized vector types, the types of whose elements are subtypes of the type
character. Similarly, the type simple-string is redefined to be the union of
one or more specialized simple vector types, the types of whose elements are
subtypes of the type character.

(base-string size)

Means the same as (vector base-character size): the set of base strings of
the indicated size.

(simple-base-string size)
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Means the same as (simple-array base-character (size)): the set of simple
base strings of the indicated size.

(bit-vector size)

Means the same as (array bit (size)): the set of bit-vectors of the indicated
size.

(simple-bit-vector size)

This means the same as (simple-array bit (size)): the set of bit-vectors of
the indicated size.

4.7 Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new
structure type with defstruct automatically causes the name of the structure
to be a new type specifier symbol. Second, the deftype special form can be
used to define new type-specifier abbreviations.

deftype name lambda-list [{declaration}* | doc-string] form* [Macrol

This is very similar to a defmacro form: name is the symbol that identifies
the type specifier being defined, lambda-list is a lambda-list (and may contain
&optional and &rest markers), and the forms constitute the body of the ex-
pander function. If we view a type specifier list as a list containing the type
specifier name and some argument forms, the argument forms (unevaluated) are
bound to the corresponding parameters in lambda-list. Then the body forms are
evaluated as an implicit progn, and the value of the last form is interpreted as
a new type specifier for which the original specifier was an abbreviation. The
name is returned as the value of the deftype form.

deftype differs from defmacro in that if no initform is specified for an
&optional parameter, the default value is *, not nil.

If the optional documentation string doc-string is present, then it is attached
to the name as a documentation string of type type; see documentation.

Here are some examples of the use of deftype:

(deftype mod (n) ‘(integer 0 (,n)))

(deftype list () ’(or null cons))

(deftype square-matrix (&optional type size)

"SQUARE-MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))
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If the type name defined by deftype is used simply as a type specifier symbol,
it is interpreted as a type specifier list with no argument forms. Thus, in the
example above, square-matrix would mean (array * (* *)), the set of two-
dimensional arrays. This would unfortunately fail to convey the constraint that
the two dimensions be the same; (square-matrix bit) has the same problem.
A better definition is

(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #’= (array-dimensions a))))

(deftype square-matrix (&optional type size)

‘(and (array ,type (,size ,size))

(satisfies equidimensional)))

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of the expander function defined by deftype is implicitly enclosed in
a block construct whose name is the same as the name of the defined type.
Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 (DEFINING-MACROS-NON-TOP-LEVEL) to clarify
that, while defining forms normally appear at top level, it is meaningful to place
them in non-top-level contexts; deftype must define the expander function
within the enclosing lexical environment, not within the global environment.

4.8 Type Conversion Function

The following function may be used to convert an object to an equivalent object
of another type.

coerce object result-type [Function]

The result-type must be a type specifier; the object is converted to an “equiv-
alent” object of the specified type. If the coercion cannot be performed, then
an error is signaled. In particular, (coerce x ’nil) always signals an error. If
object is already of the specified type, as determined by typep, then it is simply
returned. It is not generally possible to convert any object to be of any type
whatsoever; only certain conversions are permitted:

e Any sequence type may be converted to any other sequence type, provided
the new sequence can contain all actual elements of the old sequence (it
is an error if it cannot). If the result-type is specified as simply array, for
example, then (array t) is assumed. A specialized type such as string
or (vector (complex short-float)) may be specified; of course, the
result may be of either that type or some more general type, as determined
by the implementation. Elements of the new sequence will be eql to
corresponding elements of the old sequence. If the sequence is already of
the specified type, it may be returned without copying it; in this, (coerce
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sequence type) differs from (concatenate type sequence), for the latter
is required to copy the argument sequence. In particular, if one specifies
sequence, then the argument may simply be returned if it already is a
sequence.

(coerce ’(a b c) ’vector) = #(a b c)

X3J13 voted in June 1989 (SEQUENCE-TYPE-LENGTH) to specify that coerce
should signal an error if the new sequence type specifies the number of elements
and the old sequence has a different length.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to specify that if the
result-type is string then it is understood to mean (vector character), and
simple-string is understood to mean (simple-array character (*)).

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate int-char
from Common Lisp. Presumably this eliminates the possibility of coercing an
integer to a character, although the vote did not address this question directly.

e Any non-complex number can be converted to a short-float, single-float,
double-float, or long-float. If simply float is specified, and object
is not already a float of some kind, then the object is converted to a
single-float.

(coerce 0 ’short-float) = 0.0S0
(coerce 3.5L0 ’float) = 3.5L0
(coerce 7/2 ’float) = 3.5

e Any number can be converted to a complex number. If the number is not
already complex, then a zero imaginary part is provided by coercing the
integer zero to the type of the given real part. (If the given real part is
rational, however, then the rule of canonical representation for complex
rationals will result in the immediate re-conversion of the result from type
complex back to type rational.)

(coerce 4.5s0 ’complex) = #C(4.550 0.0S0)

(coerce 7/2 ’complex) = 7/2

(coerce #C(7/2 0) ’(complex double-float))
= #C(3.5D0 0.0DO)

e Any object may be coerced to type t.

(coerce x ’t) = (identity x) = x

X3J13 voted in June 1988 (FUNCTION-TYPE) to allow coercion of certain
objects to the type function:

e A symbol or lambda-expression can be converted to a function. A symbol
is coerced to type function as if by applying symbol-function to the
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symbol; an error is signaled if the predicate fboundp is not true of the
symbol or if the symbol names a macro or special form. A list z whose car
is the symbol lambda is coerced to a function as if by execution of (eval
‘“#7,1), that is, of (eval (list ’function z)).

Coercions from floating-point numbers to rationals and from ratios to inte-
gers are purposely not provided because of rounding problems. The functions
rational, rationalize, floor, ceiling, truncate, and round may be used
for such purposes. Similarly, coercions from characters to integers are purposely
not provided; char-code or char-int may be used explicitly to perform such
conversions.

4.9 Determining the Type of an Object

The following function may be used to obtain a type specifier describing the
type of a given object.

type-of object [Function]

Compatibility note: In MacLisp the function type-of is called typep, and anoma-
lously so, for it is not a predicate.

Many have observed (and rightly so) that this specification is totally wimpy
and therefore nearly useless. X3J13 voted in June 1989 (TYPE-OF-UNDERCONSTRAINED)
to place the following constraints on type-of:

e Let z be an object such that (typep z type) is true and type is one of the

following:

array float package sequence
bit-vector function pathname short-float
character hash-table  random-state single-float
complex integer ratio stream
condition long-float rational string

cons null readtable symbol
double-float number restart vector

Then (subtypep (type-of z) type)) must return the values t and t;
that is, type-of applied to z must return either type itself or a subtype of
type that subtypep can recognize in that implementation.

e For any object z, (subtypep (type-of z) (class-of z)) must produce
the values t and t.

e For every object z, (typep = (type-of z)) must be true. (This implies
that type-of can never return nil, for no object is of type nil.)



CHAPTER 4. TYPE SPECIFIERS 99

e type-of never returns t and never uses a satisfies, and, or, not, or
values type specifier in its result.

e For objects of CLOS metaclass structure-class or of standard-class,
type-of returns the proper name of the class returned by class-of if it
has a proper name, and otherwise returns the class itself. In particular,
for any object created by a defstruct constructor function, where the
defstruct had the name name and no :type option, type-of will return
name.

As an example, (type-of "acetylcholinesterase") may return string
or simple-stringor (simple-string 20), but not array or simple-vector.
As another example, it is permitted for (type-of 1729) to return integer
or fixnum (if it is indeed a fixnum) or (signed-byte 16) or (integer 1729
1729) or (integer 1685 1750) or even (mod 1730), but not rational or
number, because

(typep (+ (expt 9 3) (expt 10 3)) ’integer)
is true, integer is in the list of types mentioned above, and
(subtypep (type-of (+ (expt 1 3) (expt 12 3))) ’integer)

would be false if type-of were to return rational or number.

4.10 Type Upgrading

X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS) to add
new functions by which a program can determine, in a given Common Lisp
implementation, how that implementation will upgrade a type when constructing
an array specialized to contain elements of that type, or a complex number
specialized to contain parts of that type.

upgraded-array-element-type type [Function]

A type specifier is returned, indicating the element type of the most specialized
array representation capable of holding items of the specified argument type.
The result is necessarily a supertype of the given type. Furthermore, if a type A
is a subtype of type B, then (upgraded-array-element-type A) is a subtype
of (upgraded-array-element-type B).

The manner in which an array element type is upgraded depends only on
the element type as such and not on any other property of the array such as
size, rank, adjustability, presence or absence of a fill pointer, or displacement.

Rationale: If upgrading were allowed to depend on any of these properties, all of
which can be referred to, directly or indirectly, in the language of type specifiers, then
it would not be possible to displace an array in a consistent and dependable manner
to another array created with the same :element-type argument but differing in one
of these properties.
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Note that upgraded-array-element-type could be defined as

(defun upgraded-array-element-type (type)
(array-element-type (make-array O :element-type type)))

but this definition has the disadvantage of allocating an array and then im-
mediately discarding it. The clever implementor surely can conjure up a more
practical approach.

upgraded-complex-part-type type [Function]

A type specifier is returned, indicating the element type of the most specialized
complex number representation capable of having parts of the specified argu-
ment type. The result is necessarily a supertype of the given type. Furthermore,
if a type A is a subtype of type B, then (upgraded-complex-part-type A) is
a subtype of (upgraded-complex-part-type B).



Chapter 5

Program Structure

In chapter 2 the syntax was sketched for notating data objects in Common
Lisp. The same syntax is used for notating programs because all Common Lisp
programs have a representation as Common Lisp data objects.

Lisp programs are organized as forms and functions. Forms are evaluated
(relative to some context) to produce values and side effects. Functions are
invoked by applying them to arguments. The most important kind of form per-
forms a function call; conversely, a function performs computation by evaluating
forms.

In this chapter, forms are discussed first and then functions. Finally, certain
“top level” special forms are discussed; the most important of these is defun,
whose purpose is to define a named function.

5.1 Forms

The standard unit of interaction with a Common Lisp implementation is the
form, which is simply a data object meant to be evaluated as a program to
produce one or more values (which are also data objects). One may request
evaluation of any data object, but only certain ones are meaningful. For in-
stance, symbols and lists are meaningful forms, while arrays normally are not.
Examples of meaningful forms are 3, whose value is 3, and (+ 3 4), whose
value is 7. We write 3 = 3 and (+ 3 4) = 7 to indicate these facts. (= means
“evaluates t0.”)

Meaningful forms may be divided into three categories: self-evaluating forms,
such as numbers; symbols, which stand for variables; and lists. The lists in turn
may be divided into three categories: special forms, macro calls, and function
calls.

X3J13 voted in October 1988 (EVAL-OTHER) to specify that all standard
Common Lisp data objects other than symbols and lists (including defstruct
structures defined without the :type option) are self-evaluating.

61
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5.1.1 Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are self-evaluating forms. When
such an object is evaluated, that object (or possibly a copy in the case of numbers
or characters) is returned as the value of the form. The empty list (), which is
also the false value nil, is also a self-evaluating form: the value of nil is nil.
Keywords (symbols written with a leading colon) also evaluate to themselves:
the value of :start is :start.

X3J13 voted in January 1989 (CONSTANT-MODIFICATION) to clarify that it
is an error to destructively modify any object that appears as a constant in
executable code, whether as a self-evaluating form or within a quote special
form.

5.1.2 Variables

Symbols are used as names of variables in Common Lisp programs. When a
symbol is evaluated as a form, the value of the variable it names is produced. For
example, after doing (setq items 3), which assigns the value 3 to the variable
named items, then items =- 3. Variables can be assigned to, as by setq, or
bound, as by let. Any program construct that binds a variable effectively saves
the old value of the variable and causes it to have a new value, and on exit from
the construct the old value is reinstated.

There are actually two kinds of variables in Common Lisp, called lezical (or
static) variables and special (or dynamic) variables. At any given time either or
both kinds of variable with the same name may have a current value. Which
of the two kinds of variable is referred to when a symbol is evaluated depends
on the context of the evaluation. The general rule is that if the symbol occurs
textually within a program construct that creates a binding for a variable of the
same name, then the reference is to the variable specified by the binding; if no
such program construct textually contains the reference, then it is taken to refer
to the special variable of that name.

The distinction between the two kinds of variable is one of scope and ex-
tent. A lexically bound variable can be referred to only by forms occurring
at any place textually within the program construct that binds the variable.
A dynamically bound (special) variable can be referred to at any time from
the time the binding is made until the time evaluation of the construct that
binds the variable terminates. Therefore lexical binding of variables imposes a
spatial limitation on occurrences of references (but no temporal limitation, for
the binding continues to exist as long as the possibility of reference remains).
Conversely, dynamic binding of variables imposes a temporal limitation on oc-
currences of references (but no spatial limitation). For more information on
scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that
variable is called the global value of the (special) variable. A global value can
be given to a variable only by assignment, because a value given by binding is
by definition not global.
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It is possible for a special variable to have no value at all, in which case it
is said to be unbound. By default, every global variable is unbound unless and
until explicitly assigned a value, except for those global variables defined in this
book or by the implementation already to have values when the Lisp system
is first started. It is also possible to establish a binding of a special variable
and then cause that binding to be valueless by using the function makunbound.
In this situation the variable is also said to be “unbound,” although this is a
misnomer; precisely speaking, it is bound but valueless. It is an error to refer
to a variable that is unbound.

X3J13 voted in June 1989 (UNDEFINED-VARIABLES-AND-FUNCTIONS) to spec-
ify more precisely the effects of referring to an unbound variable.

Reading an unbound variable or an undefined function must be detected in
the highest safety setting (see the safety quality of the optimize declaration
specifier) but the effect is undefined in any other safety setting. That is, reading
an unbound variable should signal an error and reading an undefined function
should signal an error. (“Reading a function” includes both references to the
function using the function special form, such as f in (function f), and
references to the function in a call, such as £ in (f x y).)

For the case of inline functions (in implementations where they are sup-
ported), a permitted point of view is that performing the inlining constitutes
the read of the function, so that an fboundp check need not be done at execu-
tion time. Put another way, the effect of the application of fmakunbound to a
function name on potentially inlined references to that function is undefined.

When an unbound variable is detected an error of type unbound-variable
is signaled, and the name slot of the unbound-variable condition is initialized
to the name of the offending variable.

When an undefined function is detected an error of type undefined-function
is signaled, and the name slot of the undefined-function condition is initialized
to the name of the offending function.

The condition type unbound-slot, which inherits from cell-error, has an
additional slot instance, which can be initialized using the :instance keyword
to make-condition. The function unbound-slot-instance accesses this slot.

The type of error signaled by the default primary method for the CLOS
slot-unbound generic function is unbound-slot. The instance slot of the
unbound-slot condition is initialized to the offending instance and the name
slot is initialized to the name of the offending variable.

Certain global variables are reserved as “‘named constants.” They have a
global value and may not be bound or assigned to. For example, the symbols t
and nil are reserved. One may not assign a value to t or nil, and one may not
bind t or nil. The global value of t is always t, and the global value of nil
is always nil. Constant symbols defined by defconstant also become reserved
and may not be further assigned to or bound (although they may be redefined, if
necessary, by using defconstant again). Keyword symbols, which are notated
with a leading colon, are reserved and may never be assigned to or bound; a
keyword always evaluates to itself.
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Table 5.1: Names of All Common Lisp Special Forms

block if progv

catch labels quote
[compiler-let] let return-from
declare letx* setq
eval-when macrolet tagbody

flet multiple-value-call the

function multiple-value-progil throw

go progn unwind-protect

X3J13 voted in June 1989 (COMPILER-LET-CONFUSION) to remove compiler-let
from the language.

X3J13 voted in June 1988 (CLOS) to add the special forms generic-flet,
generic-labels, symbol-macrolet, and with-added-methods.

X3J13 voted in March 1989 (LOCALLY-TOP-LEVEL) to make locally a special
form rather than a macro.

X3J13 voted in March 1989 (LOAD-TIME-EVAL) to add the special form
load-time-eval.

5.1.3 Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element
of the list. If the first element is one of the symbols appearing in table 5.1, then
the list is called a special form. (This use of the word “special” is unrelated to
its use in the phrase “special variable.”)

Special forms are generally environment and control constructs. Every spe-
cial form has its own idiosyncratic syntax. An example is the if special form:
(if p (+ x 4) 5) in Common Lisp means what “if p then z+4 else 5” means
in Algol.

The evaluation of a special form normally produces a value or values, but
the evaluation may instead call for a non-local exit; see return-from, go, and
throw.

The set of special forms is fixed in Common Lisp; no way is provided for the
user to define more. The user can create new syntactic constructs, however, by
defining macros.

The set of special forms in Common Lisp is purposely kept very small because
any program-analyzing program must have special knowledge about every type
of special form. Such a program needs no special knowledge about macros
because it is simple to expand the macro and operate on the resulting expansion.
(This is not to say that many such programs, particularly compilers, will not
have such special knowledge. A compiler may be able to produce much better
code if it recognizes such constructs as typecase and multiple-value-bind
and gives them customized treatment.)

An implementation is free to implement as a macro any construct described
herein as a special form. Conversely, an implementation is free to implement as
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a special form any construct described herein as a macro if an equivalent macro
definition is also provided. The practical consequence is that the predicates
macro-function and special-form-p may both be true of the same symbol.
It is recommended that a program-analyzing program process a form that is a
list whose car is a symbol as follows:

1. If the program has particular knowledge about the symbol, process the
form using special-purpose code. All of the symbols listed in table 5.1
should fall into this category.

2. Otherwise, if macro-functionis true of the symbol, apply either macroexpand
or macroexpand-1, as appropriate, to the entire form and then start over.

3. Otherwise, assume it is a function call.
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5.1.4 Macros

If a form is a list and the first element is not the name of a special form, it
may be the name of a macro; if so, the form is said to be a macro call. A
macro is essentially a function from forms to forms that will, given a call to that
macro, compute a new form to be evaluated in place of the macro call. (This
computation is sometimes referred to as macro expansion.) For example, the
macro named return will take a form such as (return x) and from that form
compute a new form (return-from nil x). We say that the old form expands
into the new form. The new form is then evaluated in place of the original form;
the value of the new form is returned as the value of the original form.

X3J13 voted in January 1989 (DOTTED-MACRO-FORMS) to clarify that macro
calls, and subforms of macro calls, need not be proper lists, but that use of dotted
forms requires the macro definition to use “. wvar” or “&rest wvar” in order to
match them properly. It is then the responsibility of the macro definition to
recognize and appropriately handle such dotted forms or subforms.

There are a number of standard macros in Common Lisp, and the user can
define more by using defmacro.

Macros provided by a Common Lisp implementation as described herein may
expand into code that is not portable among differing implementations. That is,
a macro call may be implementation-independent because the macro is defined
in this book, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros de-
fined in this book, as far as is possible, in such a way that the expansion will not contain
any implementation-dependent special forms, nor contain as forms data objects that
are not considered to be forms in Common Lisp. The purpose of this restriction is
to ensure that the expansion can be processed by a program-analyzing program in an
implementation-independent manner. There is no problem with a macro expansion
containing calls to implementation-dependent functions. This restriction is not a re-
quirement of Common Lisp; it is recognized that certain complex macros may be able
to expand into significantly more efficient code in certain implementations by using
implementation-dependent special forms in the macro expansion.

5.1.5 Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that
names a special form or macro, then the list is assumed to be a function call.
The first element of the list is taken to name a function. Any and all remaining
elements of the list are forms to be evaluated; one value is obtained from each
form, and these values become the arguments to the function. The function is
then applied to the arguments. The functional computation normally produces
a value, but it may instead call for a non-local exit; see throw. A function
that does return may produce no value or several values; see values. If and
when the function returns, whatever values it returns become the values of the
function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The sym-
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bol + names the addition function, not a special form or macro. Therefore the
two forms 3 and (¥ 4 5) are evaluated to produce arguments. The form 3
evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are evaluated, producing arguments 4
and 5 for the multiplication. The multiplication function calculates the number
20 and returns it. The values 3 and 20 are then given as arguments to the
addition function, which calculates and returns the number 23. Therefore we
say (+ 3 (* 4 5)) = 23.

X3J13 voted in October 1988 (FUNCTION-CALL-EVALUATION-ORDER) to clar-
ify that while the arguments in a function call are always evaluated in strict
left-to-right order, whether the function to be called is determined before or
after argument evaluation is unspecified. Programs are in error that rely on a
particular order of evaluation of the first element of a function call relative to
the argument forms.

5.2 Functions

There are two ways to indicate a function to be used in a function-call form.
One is to use a symbol that names the function. This use of symbols to name
functions is completely independent of their use in naming special and lexical
variables. The other way is to use a lambda-expression, which is a list whose
first element is the symbol lambda. A lambda-expression is not a form; it
cannot be meaningfully evaluated. Lambda-expressions and symbols, when used
in programs as names of functions, can appear only as the first element of a
function-call form, or as the second element of the function special form. Note
that symbols and lambda-expressions are treated as names of functions in these
two contexts. This should be distinguished from the treatment of symbols and
lambda-expressions as function objects, that is, objects that satisfy the predicate
functionp, as when giving such an object to apply or funcall to be invoked.

5.2.1 Named Functions

A name can be given to a function in one of two ways. A global name can be
given to a function by using the defun construct. A local name can be given
to a function by using the flet or labels special form. When a function is
named, a lambda-expression is effectively associated with that name along with
information about the entities that are lexically apparent at that point. If a
symbol appears as the first element of a function-call form, then it refers to the
definition established by the innermost flet or labels construct that textually
contains the reference, or to the global definition (if any) if there is no such
containing construct.

5.2.2 Lambda-Expressions

A lambda-expression is a list with the following syntax:
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(lambda lambda-list .  body)

The first element must be the symbol 1ambda. The second element must be a
list. It is called the lambda-list, and specifies names for the parameters of the
function. When the function denoted by the lambda-expression is applied to
arguments, the arguments are matched with the parameters specified by the
lambda-list. The body may then refer to the arguments by using the parameter
names. The body consists of any number of forms (possibly zero). These forms
are evaluated in sequence, and the results of the last form only are returned as
the results of the application (the value nil is returned if there are zero forms
in the body). The complete syntax of a lambda-expression is:

(lambda ({var}*
[&optional {war | (var [initform [svar]])}*]
[&rest var]
[&key {var | ({var | (keyword var)} [initform [svar]])}*
[£allow-other-keys]]
[&aux {var | (var [initform])}*])
[ {declaration}* | documentation-string |

{form})

Each element of a lambda-list is either a parameter specifier or a lambda-list
keyword; lambda-list keywords begin with & (Note that lambda-list keywords
are not keywords in the usual sense; they do not belong to the keyword package.
They are ordinary symbols each of whose names begins with an ampersand. This
terminology is unfortunately confusing but is retained for historical reasons.)

X3J13 voted in March 1988 (KEYWORD-ARGUMENT-NAME-PACKAGE) to allow a
keyword in the preceding specification of a lambda-list to be any symbol what-
soever, not just a keyword symbol in the keyword package. See below.

A lambda-list has five parts, any or all of which may be empty:

e Specifiers for the required parameters. These are all the parameter spec-
ifiers up to the first lambda-list keyword; if there is no such lambda-list
keyword, then all the specifiers are for required parameters.

e Specifiers for optional parameters. If the lambda-list keyword &optional
is present, the optional parameter specifiers are those following the lambda-
list keyword &optional up to the next lambda-list keyword or the end of
the list.

e A specifier for a rest parameter. The lambda-list keyword &rest, if
present, must be followed by a single rest parameter specifier, which in
turn must be followed by another lambda-list keyword or the end of the
lambda-list.

e Specifiers for keyword parameters. If the lambda-list keyword &key is
present, all specifiers up to the next lambda-list keyword or the end of the
list are keyword parameter specifiers. The keyword parameter specifiers
may optionally be followed by the lambda-list keyword &allow-other-keys.
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e Specifiers for aux variables. These are not really parameters. If the
lambda-list keyword &key is present, all specifiers after it are auziliary
variable specifiers.

When the function represented by the lambda-expression is applied to argu-
ments, the arguments and parameters are processed in order from left to right.
In the simplest case, only required parameters are present in the lambda-list;
each is specified simply by a name var for the parameter variable. When the
function is applied, there must be exactly as many arguments as there are pa-
rameters, and each parameter is bound to one argument. Here, and in general,
the parameter is bound as a lexical variable unless a declaration has been made
that it should be a special binding; see defvar, proclaim, and declare.

In the more general case, if there are n required parameters (n may be zero),
there must be at least n arguments, and the required parameters are bound
to the first n arguments. The other parameters are then processed using any
remaining arguments.

If optional parameters are specified, then each one is processed as follows. If
any unprocessed arguments remain, then the parameter variable var is bound to
the next remaining argument, just as for a required parameter. If no arguments
remain, however, then the initform part of the parameter specifier is evaluated,
and the parameter variable is bound to the resulting value (or to nil if no
initform appears in the parameter specifier). If another variable name svar
appears in the specifier, it is bound to true if an argument was available, and to
false if no argument remained (and therefore initform had to be evaluated). The
variable svar is called a supplied-p parameter; it is bound not to an argument
but to a value indicating whether or not an argument had been supplied for
another parameter.

After all optional parameter specifiers have been processed, then there may
or may not be a rest parameter. If there is a rest parameter, it is bound to a
list of all as-yet-unprocessed arguments. (If no unprocessed arguments remain,
the rest parameter is bound to the empty list.) If there is no rest parameter
and there are no keyword parameters, then there should be no unprocessed
arguments (it is an error if there are).

X3J13 voted in January 1989 (REST-LIST-ALLOCATION) to clarify that if a
function has a rest parameter and is called using apply, then the list to which
the rest parameter is bound is permitted, but not required, to share top-level
list structure with the list that was the last argument to apply. Programmers
should be careful about performing side effects on the top-level list structure of
a rest parameter.

This was the result of a rather long discussion within X3J13 and the wider
Lisp community. To set it in its historical context, I must remark that in Lisp
Machine Lisp the list to which a rest parameter was bound had only dynamic
extent; this in conjunction with the technique of “cdr-coding” permitted a clever
stack-allocation technique with very low overhead. However, the early designers
of Common Lisp, after a great deal of debate, concluded that it was dangerous
for cons cells to have dynamic extent; as an example, the “obvious” definition
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of the function list
(defun list (&rest x) x)

could fail catastrophically. Therefore the first edition simply implied that the
list for a rest parameter, like all other lists, would have indefinite extent. This
still left open the flip side of the question, namely, Is the list for a rest parameter
guaranteed fresh? This is the question addressed by the X3J13 vote. If it is
always freshly consed, then it is permissible to destroy it, for example by giving
it to nconc. However, the requirement always to cons fresh lists could impose
an unacceptable overhead in many implementations. The clarification approved
by X3J13 specifies that the programmer may not rely on the list being fresh;
if the function was called using apply, there is no way to know where the list
came from.

Next, any keyword parameters are processed. For this purpose the same
arguments are processed that would be made into a list for a rest parameter.
(Indeed, it is permitted to specify both &rest and &key. In this case the re-
maining arguments are used for both purposes; that is, all remaining arguments
are made into a list for the &rest parameter and are also processed for the
&key parameters. This is the only situation in which an argument is used in
the processing of more than one parameter specifier.) If &key is specified, there
must remain an even number of arguments; these are considered as pairs, the
first argument in each pair being interpreted as a keyword name and the second
as the corresponding value.

X3J13 voted in March 1988 (KEYWORD-ARGUMENT-NAME-PACKAGE) to allow
a keyword in a lambda-list to be any symbol whatsoever, not just a keyword
symbol in the keyword package. If, after &key, a variable appears alone or
within only one set of parentheses (possibly with an initform and a svar), then
the behavior is as before: a keyword symbol with the same name as the variable
is used as the keyword-name when matching arguments to parameter specifiers.
Only a parameter specifier of the form ((keyword war) ...) can cause the
keyword-name not to be a keyword symbol, by specifying a symbol not in the
keyword package as the keyword. For example:

(defun wager (&key ((secret password) nil) amount)
(format nil "You A $°D"
(if (eq password ’joe-sent-me) "win" "lose")
amount))

(wager :amount 100) = "You lose $100"
(wager :amount 100 ’secret ’joe-sent-me) = "You win $100"

The secret word could be made even more secret in this example by placing it
in some other obscure package, so that one would have to write

(wager :amount 100 ’obscure:secret ’joe-sent-me) = "You win $100"

to win anything.
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In each keyword parameter specifier must be a name var for the parameter
variable. If an explicit keyword is specified, then that is the keyword name for
the parameter. Otherwise the name var serves to indicate the keyword name,
in that a keyword with the same name (in the keyword package) is used as the
keyword. Thus

(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively
processed from left to right. For each keyword parameter specifier, if there is
an argument pair whose keyword name matches that specifier’s keyword name
(that is, the names are eq), then the parameter variable for that specifier is
bound to the second item (the value) of that argument pair. If more than one
such argument pair matches, it is not an error; the leftmost argument pair is
used. If no such argument pair exists, then the initform for that specifier is
evaluated and the parameter variable is bound to that value (or to nil if no
initform was specified). The variable svar is treated as for ordinary optional
parameters: it is bound to true if there was a matching argument pair, and to
false otherwise.

It is an error if an argument pair has a keyword name not matched by any
parameter specifier, unless at least one of the following two conditions is met:

e %allow-other-keys was specified in the lambda-list.

e Somewhere among the keyword argument pairs is a pair whose keyword
is :allow-other-keys and whose value is not nil.

If either condition obtains, then it is not an error for an argument pair to match
no parameter specified, and the argument pair is simply ignored (but such an
argument pair is accessible through the &rest parameter if one was specified).
The purpose of these mechanisms is to allow sharing of argument lists among
several functions and to allow either the caller or the called function to specify
that such sharing may be taking place.

After all parameter specifiers have been processed, the auxiliary variable
specifiers (those following the lambda-list keyword &aux) are processed from
left to right. For each one, the initform is evaluated and the variable var bound
to that value (or to nil if no initform was specified). Nothing can be done with
&aux variables that cannot be done with the special form letx*:

(lambda (x y &aux (a (car x)) (b 2) ¢c) ...)
= (lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.

Whenever any initform is evaluated for any parameter specifier, that form
may refer to any parameter variable to the left of the specifier in which the init-
form appears, including any supplied-p variables, and may rely on the fact that
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no other parameter variable has yet been bound (including its own parameter
variable).

Once the lambda-list has been processed, the forms in the body of the
lambda-expression are executed. These forms may refer to the arguments to
the function by using the names of the parameters. On exit from the function,
either by a normal return of the function’s value(s) or by a non-local exit, the
parameter bindings, whether lexical or special, are no longer in effect. (The
bindings are not necessarily permanently discarded, for a lexical binding can
later be reinstated if a “closure” over that binding was created, perhaps by
using function, and saved before the exit occurred.)

Examples of &optional and &rest parameters:

((lambda (a b) (+ a (* b 3))) 4 5) = 19
((lambda (a &optional (b 2)) (+ a (x b 3))) 4 5) = 19
((lambda (a &optional (b 2)) (+ a (* b 3))) 4) = 10
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)))
= (2 nil 3 nil nil)
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))
6)
= (6 t 3 nil nil)
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))
6 3)
= (6 t 3 t nil)
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))
6 3 8)
= (6t3t (8)
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))
6 389 10 11)
= (6t 3t (89 10 11))

Examples of &key parameters:

((lambda (a b &key c d) (list a b c d)) 1 2)
= (1 2 nil nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :c 6)
= (1 2 6 nil)

((lambda (a b &key c d) (list a b c d)) 1 2 :d 8)
= (1 2 nil 8)

((lambda (a b &key c d) (list abcd)) 12 :c 6 :d 8)
= (126 8)

((lambda (a b &key ¢ d) (list abcd)) 12 :d 8 :c 6)
= (126 38)

((lambda (a b &key c d) (list a b c d)) :a 1l :d 8 :c 6)
= (:a 16 8)

((lambda (a b &key c d) (list a b ¢ d)) :a :b :c :d)
= (:a :b :d nil)

Examples of mixtures:
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((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d x))
1) = (1 3 nil 1 )

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d x))
12) = (1 2nil 1 O)

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d %))
:c 7) = (:c 7 nil :c )

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d x))
16 :c7) = 1671 (:cT))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d x))
16 :d8) = (16 nil 8 (:d 8))

((lambda (a &optional (b 3) &rest x &key c (d a))
(list a b ¢ d x))
16 :d8 :c9 :d10) = (1698 (:d8 :c9 :d10))

All lambda-list keywords are permitted, but not terribly useful, in lambda-
expressions appearing explicitly as the first element of a function-call form.
They are extremely useful, however, in functions given global names by defun.

All symbols whose names begin with & are conventionally reserved for use
as lambda-list keywords and should not be used as variable names. Implemen-
tations of Common Lisp are free to provide additional lambda-list keywords.

lambda-list-keywords [Constant]

The value of lambda-list-keywords is a list of all the lambda-list keywords
used in the implementation, including the additional ones used only by defmacro.
This list must contain at least the symbols &optional, &rest, &key, &allow-other-keys,
&aux, &body, &whole, and &environment.

As an example of the use of &allow-other-keys and :allow-other-keys,
consider a function that takes two keyword arguments of its own and also accepts
additional keyword arguments to be passed to make-array:

(defun array-of-strings (str dims &rest keyword-pairs
&key (start 0) end &allow-other-keys)
(apply #’make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
keyword-pairs))
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This function takes a string and dimensioning information and returns an ar-
ray of the specified dimensions, each of whose elements is the specified string.
However, :start and :end keyword arguments may be used in the usual man-
ner (see chapter 14) to specify that a substring of the given string should be
used. In addition, the presence of &allow-other-keys in the lambda-list in-
dicates that the caller may specify additional keyword arguments; the &rest
argument provides access to them. These additional keyword arguments are
fed to make-array. Now, make-array normally does not allow the keywords
:start and :end to be used, and it would be an error to specify such keyword
arguments to make-array. However, the presence in the call to make-array
of the keyword argument :allow-other-keys with a non-nil value causes any
extraneous keyword arguments, including :start and :end, to be acceptable
and ignored.

lambda-parameters-limit [Constant]

The value of lambda-parameters-1limit is a positive integer that is the upper
exclusive bound on the number of distinct parameter names that may appear
in a single lambda-list. This bound depends on the implementation but will not
be smaller than 50. Implementors are encouraged to make this limit as large as
practicable without sacrificing performance. See call-arguments-limit.

5.3 Top-Level Forms

The standard way for the user to interact with a Common Lisp implementation
is via a read-eval-print loop: the system repeatedly reads a form from some
input source (such as a keyboard or a disk file), evaluates it, and then prints
the value(s) to some output sink (such as a display screen or another disk file).
Any form (evaluable data object) is acceptable; however, certain special forms
are specifically designed to be convenient for use as top-level forms, rather than
as forms embedded within other forms in the way that (+ 3 4) is embedded
within (if p (+ 3 4) 6). These top-level special forms may be used to define
globally named functions, to define macros, to make declarations, and to define
global values for special variables.

X3J13 voted in March 1989 <DEFINING—MACROS—NON—TOP—LEVEL> to clarify
that, while defining forms normally appear at top level, it is meaningful to place
them in non-top-level contexts. All defining forms that create functional objects
from code appearing as argument forms must ensure that such argument forms
refer to the enclosing lexical environment. Compilers must handle defining forms
properly in all situations, not just top-level contexts. However, certain compile-
time side effects of these defining forms are performed only when the defining
forms occur at top level (see section 25.1).

Compatibility note: In MacLisp, a top-level progn is considered to contain top-level
forms only if the first form is (quote compile). This odd marker is unnecessary in
Common Lisp.
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Macros are usually defined by using the special form defmacro. This facility
is fairly complicated; it is described in chapter 8.

5.3.1 Defining Named Functions

The defun special form is the usual means of defining named functions.

defun name lambda-list [{declaration}* | doc-string] {form}* [Macro]

Evaluating a defun form causes the symbol name to be a global name for the
function specified by the lambda-expression

(lambda lambda-list {declaration | doc-string}* {form}*)

defined in the lexical environment in which the defun form was executed. Be-
cause defun forms normally appear at top level, this is normally the null lexical
environment.

X3J13 voted in March 1989 (DEFINING-MACROS-NON-TOP-LEVEL) to clarify
that, while defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts; defun must define the function within the
enclosing lexical environment, not within the null lexical environment.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend defun to accept any
function-name (a symbol or a list whose car is setf—see section 7.1) as a name.
Thus one may write

(defun (setf cadr) ...)

to define a setf expansion function for cadr (although it may be much more
convenient to use defsetf or define-modify-macro).

If the optional documentation string doc-string is present, then it is attached
to the name as a documentation string of type function; see documentation.
If doc-string is not followed by a declaration, it may be present only if at least
one form is also specified, as it is otherwise taken to be a form. It is an error if
more than one doc-string is present.

The forms constitute the body of the defined function; they are executed as
an implicit progn.

The body of the defined function is implicitly enclosed in a block construct
whose name is the same as the name of the function. Therefore return-from
may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well
by defun. The name is returned as the value of the defun form. For example:

(defun discriminant (a b c)
(declare (number a b c¢))
"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b"2-4xa*xc is calculated.
The quadratic equation a*x”2+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
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value is positive, zero, or negative, respectively."
(- (xbb) (x4ac))

= discriminant

and now (discriminant 1 2/3 -2) = 76/9

The documentation string in this example neglects to mention that the co-
efficients a, b, and ¢ must be real for the discrimination criterion to hold. Here
is an improved version:

”Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b~2-4*a*c is calculated.

If the coefficients a, b, and ¢ are all real (that is,

not complex), then the quadratic equation a*x~2+b*x+c=0

has real, multiple, or complex roots depending on

whether this calculated value is positive, zero, or

negative, respectively.”

It is permissible to use defun to redefine a function, to install a corrected
version of an incorrect definition, for example. It is permissible to redefine a
macro as a function. It is an error to attempt to redefine the name of a special
form (see table 5.1) as a function.

5.3.2 Declaring Global Variables and Named Constants

The defvar and defparameter special forms are the usual means of specifying
globally defined variables. The defconstant special form is used for defining
named constants.

defvar name [initial-value [documentation]] [Macrol
defparameter name initial-value [documentation] [Macro]
defconstant name initial-value [documentation] [Macrol

defvar is the recommended way to declare the use of a special variable in a
program.

(defvar wvariable)

proclaims variable to be special (see proclaim), and may perform other system-
dependent bookkeeping actions. X3J13 voted in June 1987 (DEFVAR-INITIALIZATION)
to clarify that if no initial-value form is provided, defvar does not change the
value of the variable; if no initial-value form is provided and the variable has no
value, defvar does not give it a value. If a second argument form is supplied,

(defvar wvariable initial-value)

then variable is initialized to the result of evaluating the form initial-value un-
less it already has a value. The initial-value form is not evaluated unless it
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is used; this fact is useful if evaluation of the initial-value form does some-
thing expensive like creating a large data structure. X3J13 voted in June 1987
(DEFVAR-INIT-TIME) to clarify that evaluation of the initial-value and the ini-
tialization of the variable occur, if at all, at the time the defvar form is executed,
and that the initial-value form is evaluated if and only if the variable does not
already have a value. The initialization is performed by assignment and thus
assigns a global value to the variable unless there are currently special bindings
of that variable. Normally there should not be any such special bindings.

defvar also provides a good place to put a comment describing the meaning
of the variable, whereas an ordinary special proclamation offers the temptation
to declare several variables at once and not have room to describe them all.

(defvar *visible-windows* 0
Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but defparameter requires an initial-value
form, always evaluates the form, and assigns the result to the variable. The
semantic distinction is that defvar is intended to declare a variable changed
by the program, whereas defparameter is intended to declare a variable that
is normally constant but can be changed (possibly at run time), where such a
change is considered a change to the program. defparameter therefore does not
indicate that the quantity never changes; in particular, it does not license the
compiler to build assumptions about the value into programs being compiled.

defconstant is like defparameter but does assert that the value of the
variable name is fixed and does license the compiler to build assumptions about
the value into programs being compiled. (However, if the compiler chooses to
replace references to the name of the constant by the value of the constant in
code to be compiled, perhaps in order to allow further optimization, the compiler
must take care that such “copies” appear to be eql to the object that is the
actual value of the constant. For example, the compiler may freely make copies
of numbers but must exercise care when the value is a list.)

It is an error if there are any special bindings of the variable at the time the
defconstant form is executed (but implementations may or may not check for
this).

Once a name has been declared by defconstant to be constant, any further
assignment to or binding of that special variable is an error. This is the case for
such system-supplied constants as t and most-positive-fixnum. A compiler
may also choose to issue warnings about bindings of the lexical variable of the
same name.

X3J13 voted in January 1989 (DEFCONSTANT-SPECIAL) to clarify the preced-
ing paragraph by specifying that it is an error to rebind constant symbols as
either lexical or special variables. Consequently, a valid reference to a symbol
declared with defconstant always refers to its global value. (Unfortunately,
this violates the principle of referential transparency, for one cannot always
choose names for lexical variables without regard to surrounding context.)

For any of these constructs, the documentation should be a string. The
string is attached to the name of the variable, parameter, or constant under the
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variable documentation type; see the documentation function.

X3J13 voted in March 1988 (DEFVAR-DOCUMENTATION) to clarify that the
documentation-string is not evaluated but must appear as a literal string when
the defvar, defparameter, or defconstant form is evaluated.

For example, the form

(defvar *avoid-registers* nil "Compilation control switch #43")

is legitimate, but

(defvar *avoid-registers* nil
(format nil "Compilation control switch #°D"
(incf *compiler-switch-numberx)))

is erroneous because the call to format is not a literal string.
(On the other hand, the form

(defvar *avoid-registers* nil
#.(format nil "Compilation control switch #°D"
(incf *compiler-switch-numberx*)))

might be used to accomplish the same purpose, because the call to format is
evaluated at read time; when the defvar form is evaluated, only the result of
the call to format, a string, appears in the defvar form.)

These constructs are normally used only as top-level forms. The value re-
turned by each of these constructs is the name declared.

5.3.3 Control of Time of Evaluation

X3J13 voted in March 1989 (EVAL-WHEN-NON-TOP-LEVEL) to completely re-
design the eval-when construct to solve some problems concerning its treat-
ment in other than top-level contexts. The new definition is upward compatible
with the old definition, but the old keywords are deprecated.

eval-when ({situation}*) {form}* [Special form]

The body of an eval-when form is processed as an implicit progn, but only in
the situations listed. Each situation must be a symbol, either : compile-toplevel,
:load-toplevel, or :execute.

The use of :compile-toplevel and :load-toplevel controls whether and
when processing occurs for top-level forms. The use of :execute controls
whether processing occurs for non-top-level forms.

The eval-when construct may be more precisely understood in terms of a
model of how the file compiler, compile-file, processes forms in a file to be
compiled.

Successive forms are read from the file by the file compiler using read. These
top-level forms are normally processed in what we call “not-compile-time” mode.
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There is one other mode, called “compile-time-too” mode, which can come into
play for top-level forms. The eval-when special form is used to annotate a
program in a way that allows the program doing the processing to select the
appropriate mode.

Processing of top-level forms in the file compiler works as follows:

e If the form is a macro call, it is expanded and the result is processed as
a top-level form in the same processing mode (compile-time-too or not-
compile-time).

e If the form is a progn (or locally (LOCALLY-TOP-LEVEL)) form, each of
its body forms is sequentially processed as top-level forms in the same
processing mode.

e If the form is a compiler-let, macrolet, or symbol-macrolet, the file
compiler makes the appropriate bindings and recursively processes the
body forms as an implicit top-level progn with those bindings in effect, in
the same processing mode.

e If the form is an eval-when form, it is handled according to the following
table:

LT CT EX CTTM Action

yes yes - process body in compile-time-too mode
yes 1o yes yes process body in compile-time-too mode
yes 1o — no process body in not-compile-time mode
yes 1o no — process body in not-compile-time mode
no yes — — evaluate body

no no yes yes evaluate body

no no - no do nothing

no no no - do nothing

In the preceding table the column LT asks whether :load-toplevel is
one of the situations specified in the eval-when form; CT similarly refers
to :compile-toplevel and EX to :execute. The column CTTM asks
whether the eval-when form was encountered while in compile-time-too
mode. The phrase “process body” means to process the body as an im-
plicit top-level progn in the indicated mode, and “evaluate body” means
to evaluate the body forms sequentially as an implicit progn in the dy-
namic execution context of the compiler and in the lexical environment in
which the eval-when appears.

e Otherwise, the form is a top-level form that is not one of the special cases.
If in compile-time-too mode, the compiler first evaluates the form and
then performs normal compiler processing on it. If in not-compile-time
mode, only normal compiler processing is performed (see section 25.1).
Any subforms are treated as non-top-level forms.
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Note that top-level forms are guaranteed to be processed in the order in
which they textually appear in the file, and that each top-level form read by the
compiler is processed before the next is read. However, the order of processing
(including, in particular, macro expansion) of subforms that are not top-level
forms is unspecified.

For an eval-when form that is not a top-level form in the file compiler (that
is, either in the interpreter, in compile, or in the file compiler but not at top
level), if the :execute situation is specified, its body is treated as an implicit
progn. Otherwise, the body is ignored and the eval-when form has the value
nil.

For the sake of backward compatibility, a situation may also be compile,
load, or eval. Within a top-level eval-when form these have the same meaning
as :compile-toplevel, :load-toplevel, and :execute, respectively; but their
effect is undefined when used in an eval-when form that is not at top level.

The following effects are logical consequences of the preceding specification:

e It is never the case that the execution of a single eval-when expression
will execute the body code more than once.

e The old keyword eval was a misnomer because execution of the body need
not be done by eval. For example, when the function definition

(defun foo () (eval-when (:execute) (print ’foo)))

is compiled the call to print should be compiled, not evaluated at compile
time.

e Macros intended for use in top-level forms should arrange for all side-effects
to be done by the forms in the macro expansion. The macro-expander itself
should not perform the side-effects.

(defmacro foo ()
(really-foo) ; Wrong
‘(really-foo))

(defmacro foo ()
‘(eval-when (:compile-toplevel
:load-toplevel :execute) ; Right
(really-fo0)))

Adherence to this convention will mean that such macros will behave
intuitively when called in non-top-level positions.

e Placing a variable binding around an eval-when reliably captures the
binding because the “compile-time-too” mode cannot occur (because the
eval-when could not be a top-level form). For example,
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(let ((x 3))
(eval-when (:compile-toplevel :load-toplevel :execute)
(print x)))

will print 3 at execution (that is, load) time and will not print anything at
compile time. This is important so that expansions of defun and defmacro
can be done in terms of eval-when and can correctly capture the lexical
environment. For example, an implementation might expand a defun form
such as

(defun bar (x) (defun foo () (+ x 3)))
into

(progn (eval-when (:compile-toplevel)
(compiler::notice-function ’bar ’(x)))
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)
#’ (lambda (x)
(progn (eval-when (:compile-toplevel)
(compiler::notice-function ’foo
>0))
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’foo)
#’ (lambda OO (+ x 3)))))))))

which by the preceding rules would be treated the same as

(progn (eval-when (:compile-toplevel)
(compiler::notice-function ’bar ’(x)))
(eval-when (:load-toplevel :execute)
(setf (symbol-function ’bar)
#’ (lambda (x)
(progn (eval-when (:load-toplevel :execute)
(setf (symbol-function ’foo)
#’ (lambda () (+ x 3)))))))))

Here are some additional examples.

(Qet ((x 1))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’fool) #’(lambda () x))))

The eval-when in the preceding expression is not at top level, so only the
:execute keyword is considered. At compile time, this has no effect. At load
time (if the let is at top level), or at execution time (if the let is embedded in
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some other form which does not execute until later), this sets (symbol-function
’fool) to a function that returns 1.

(eval-when (:execute :load-toplevel :compile-toplevel)
(Qet ((x 2))
(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo2) #’(lambda () x)))))

If the preceding expression occurs at the top level of a file to be compiled, it has
both a compile time and a load-time effect of setting (symbol-function ’fo02)
to a function that returns 2.

(eval-when (:execute :load-toplevel :compile-toplevel)
(setf (symbol-function ’foo3) #’(lambda () 3)))

If the preceding expression occurs at the top level of a file to be compiled, it has
both a compile time and a load-time effect of setting the function cell of 003 to
a function that returns 3.

(eval-when (:compile-toplevel)
(eval-when (:compile-toplevel)
(print ’foo4)))

The preceding expression always does nothing; it simply returns nil.

(eval-when (:compile-toplevel)
(eval-when (:execute)
(print ’fo05)))

If the preceding form occurs at the top level of a file to be compiled, foo5 is
printed at compile time. If this form occurs in a non-top-level position, nothing
is printed at compile time. Regardless of context, nothing is ever printed at
load time or execution time.

(eval-when (:execute :load-toplevel)
(eval-when (:compile-toplevel)
(print ’fo06)))

If the preceding form occurs at the top level of a file to be compiled, foo6 is
printed at compile time. If this form occurs in a non-top-level position, nothing
is printed at compile time. Regardless of context, nothing is ever printed at
load time or execution time.



Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments
and returns nil if the condition is false, or some non-nil value if the condition
is true. One may think of a predicate as producing a Boolean value, where nil
stands for false and anything else stands for true. Conditional control structures
such as cond, if, when, and unless test such Boolean values. We say that a
predicate is true when it returns a non-nil value, and s false when it returns
nil; that is, it is true or false according to whether the condition being tested
is true or false.

By convention, the names of predicates usually end in the letter p (which
stands for “predicate”). Common Lisp uses a uniform convention in hyphenating
names of predicates. If the name of the predicate is formed by adding a p to
an existing name, such as the name of a data type, a hyphen is placed before
the final p if and only if there is a hyphen in the existing name. For example,
number begets numberp but standard-char begets standard-char-p. On the
other hand, if the name of a predicate is formed by adding a prefixing qualifier to
the front of an existing predicate name, the two names are joined with a hyphen
and the presence or absence of a hyphen before the final p is not changed. For
example, the predicate string-lessp has no hyphen before the p because it
is the string version of lessp (a MacLisp function that has been renamed < in
Common Lisp). The name string-less-p would incorrectly imply that it is a
predicate that tests for a kind of object called a string-less, and the name
stringlessp would connote a predicate that tests whether something has no
strings (is “stringless”)!

The control structures that test Boolean values only test for whether or not
the value is nil, which is considered to be false. Any other value is considered
to be true. Often a predicate will return nil if it “fails” and some useful value
if it “succeeds”; such a function can be used not only as a test but also for the
useful value provided in case of success. An example is member.

If no better non-nil value is available for the purpose of indicating success,
by convention the symbol t is used as the “standard” true value.

83



CHAPTER 6. PREDICATES 84

6.1 Logical Values

The names nil and t are constants in Common Lisp. Although they are symbols
like any other symbols, and appear to be treated as variables when evaluated,
it is not permitted to modify their values. See defconstant.

nil [Constant]

The value of nil is always nil. This object represents the logical false value
and also the empty list. It can also be written ().

t [Constant]

The value of t is always t.

6.2 Data Type Predicates

Perhaps the most important predicates in Lisp are those that deal with data
types; that is, given a data object one can determine whether or not it belongs
to a given type, or one can compare two type specifiers.

6.2.1 General Type Predicates

If a data type is viewed as the set of all objects belonging to the type, then the
typep function is a set membership test, while subtypep is a subset test.

typep object type [Function]

typep is a predicate that is true if object is of type type, and is false otherwise.
Note that an object can be “of” more than one type, since one type can include
another. The type may be any of the type specifiers mentioned in chapter 4
except that it may not be or contain a type specifier list whose first element is
function or values. A specifier of the form (satisfies fn) is handled simply
by applying the function fn to object (see funcall); the object is considered to
be of the specified type if the result is not nil.

X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS) to
change typep to give specialized array and complex type specifiers the same
meaning for purposes of type discrimination as they have for declaration pur-
poses. Of course, this also applies to such type specifiers as vector and simple-array
(see section 4.5). Thus

(typep foo ’(array bignum))

in the first edition asked the question, Is foo an array specialized to hold
bignums? but under the new interpretation asks the question, Could the ar-
ray foo have resulted from giving bignum as the :element-type argument to
make-array?
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subtypep typel type2 [Function]

The arguments must be type specifiers that are acceptable to typep. The two
type specifiers are compared; this predicate is true if typel is definitely a (not
necessarily proper) subtype of type2. If the result is nil, however, then typel
may or may not be a subtype of type2 (sometimes it is impossible to tell, espe-
cially when satisfies type specifiers are involved). A second returned value
indicates the certainty of the result; if it is true, then the first value is an accu-
rate indication of the subtype relationship. Thus there are three possible result
combinations:

t t typel is definitely a subtype of type2
nil t typel is definitely not a subtype of type2
nil nil subtypep could not determine the relationship

X3J13 voted in January 1989 (SUBTYPEP-TO0-VAGUE) to place certain re-
quirements upon the implementation of subtypep, for it noted that implemen-
tations in many cases simply “give up” and return the two values nil and nil
when in fact it would have been possible to determine the relationship between
the given types. The requirements are as follows, where it is understood that a
type specifier s involves a type specifier u if either s contains an occurrence of
u directly or s contains a type specifier w defined by deftype whose expansion
involves u.

e subtypep is not permitted to return a second value of nil unless one or
both of its arguments involves satisfies, and, or, not, or member.

e subtypep should signal an error when one or both of its arguments involves
values or the list form of the function type specifier.

e subtypep must always return the two values t and t in the case where its
arguments, after expansion of specifiers defined by deftype, are equal.

In addition, X3J13 voted to clarify that in some cases the relationships between
types as reflected by subtypep may be implementation-specific. For exam-
ple, in an implementation supporting only one type of floating-point number,
(subtypep ’float ’long-float) would return t and t, since the two types
would be identical.

Note that satisfies is an exception because relationships between types
involving satisfies are undecidable in general, but (as X3J13 noted) and, or,
not, and member are merely very messy to deal with. In all likelihood these
will not be addressed unless and until someone is willing to write a careful
specification that covers all the cases for the processing of these type specifiers
by subtypep. The requirements stated above were easy to state and probably
suffice for most cases of interest.

X3J13 voted in January 1989 (ARRAY-TYPE-ELEMENT-TYPE-SEMANTICS) to
change subtypep to give specialized array and complex type specifiers the
same meaning for purposes of type discrimination as they have for declaration
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purposes. Of course, this also applies to such type specifiers as vector and
simple-array (see section 4.5).

If A and B are type specifiers (other than *, which technically is not a type
specifier anyway), then (array A) and (array B) represent the same type in
a given implementation if and only if they denote arrays of the same specialized
representation in that implementation; otherwise they are disjoint. To put it
another way, they represent the same type if and only if
(upgraded-array-element-type ’A) and
(upgraded-array-element-type ’B) are the same type. Therefore

(subtypep ’(array A) ’(array B))

is true if and only if (upgraded-array-element-type ’A) is the same type as
(upgraded-array-element-type ’B).

The complex type specifier is treated in a similar but subtly different manner.
If A and B are two type specifiers (but not *, which technically is not a type
specifier anyway), then (complex A) and (complex B) represent the same
type in a given implementation if and only if they refer to complex numbers
of the same specialized representation in that implementation; otherwise they
are disjoint. Note, however, that there is no function called make-complex
that allows one to specify a particular element type (then to be upgraded);
instead, one must describe specialized complex numbers in terms of the actual
types of the parts from which they were constructed. There is no number of
type (or rather, representation) £loat as such; there are only numbers of type
single-float, numbers of type double-float, and so on. Therefore we want
(complex single-float) to be a subtype of (complex float).

The rule, then, is that (complex A) and (complex B) represent the same
type (and otherwise are disjoint) in a given implementation if and only if ei-
ther the type A is a subtype of B, or (upgraded-complex-part-type ’A)
and (upgraded-complex-part-type ’B) are the same type. In the latter case
(complex A) and (complex B) in fact refer to the same specialized represen-
tation. Therefore

(subtypep ’(complex A) ’(complex B))

is true if and only if the results of (upgraded-complex-part-type ’A) and
(upgraded-complex-part-type ’B) are the same type.
Under this interpretation

(subtypep ’(complex single-float) ’(complex float))
must be true in all implementations; but
(subtypep ’(array single-float) ’(array float))

is true only in implementations that do not have a specialized array representa-
tion for single-float elements distinct from that for float elements in general.
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6.2.2 Specific Data Type Predicates
The following predicates test for individual data types.

null object [Function]

null is true if its argument is (), and otherwise is false. This is the same
operation performed by the function not; however, not is normally used to
invert a Boolean value, whereas null is normally used to test for an empty list.
The programmer can therefore express intent by the choice of function name.

(null x) = (typep x ’null) = (eq x *())

symbolp object [Function]
symbolp is true if its argument is a symbol, and otherwise is false.

(symbolp x) = (typep x ’symbol)

Compatibility note: The Interlisp equivalent of symbolp is called litatom.

atom object [Function]

The predicate atom is true if its argument is not a cons, and otherwise is false.
Note that (atom ’()) is true, because () =nil.

(atom x) = (typep x ’atom) = (not (typep x ’cons))

Compatibility note: In some Lisp dialects, notably Interlisp, only symbols and
numbers are considered to be atoms; arrays and strings are considered to be neither
atoms nor lists (conses).

consp object [Function]

The predicate consp is true if its argument is a cons, and otherwise is false.
Note that the empty list is not a cons, so (consp >()) = (consp ’nil) =
nil.

(consp x) = (typep x ’cons) = (not (typep x ’atom))

Compatibility note: Some Lisp implementations call this function pairp or listp.
The name pairp was rejected for Common Lisp because it emphasizes too strongly
the dotted-pair notion rather than the usual usage of conses in lists. On the other
hand, listp too strongly implies that the cons is in fact part of a list, which after all
it might not be; moreover, () is a list, though not a cons. The name consp seems to
be the appropriate compromise.

listp object [Function]
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listp is true if its argument is a cons or the empty list (), and otherwise is
false. It does not check for whether the list is a “true list” (one terminated by
nil) or a “dotted list” (one terminated by a non-null atom).

(listp x) = (typep x ’list) = (typep x ’(or cons null))

numberp object [Function]
numberp is true if its argument is any kind of number, and otherwise is false.

(numberp x) = (typep x ’number)

integerp object [Function]
integerp is true if its argument is an integer, and otherwise is false.

(integerp x) = (typep x ’integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as to
whether this meant integerp or fixnump, and so the name integerp has been adopted
here.

rationalp object [Function]

rationalp is true if its argument is a rational number (a ratio or an integer),
and otherwise is false.

(rationalp x) = (typep x ’rational)

floatp object [Function]
floatp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) = (typep x ’float)

realp object [Function]

X3J13 voted in March 1989 (REAL-NUMBER-TYPE) to add the function realp.
realp is true if its argument is a real number, and otherwise is false.

(realp x) = (typep x ’real)

complexp object [Function]
complexp is true if its argument is a complex number, and otherwise is false.

(complexp x) = (typep x ’complex)
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characterp object [Function]
characterp is true if its argument is a character, and otherwise is false.

(characterp x) = (typep x ’character)

stringp object [Function]
stringp is true if its argument is a string, and otherwise is false.

(stringp x) = (typep x ’string)

bit-vector-p object [Function]
bit-vector-p is true if its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) = (typep x ’bit-vector)

vectorp object [Function]
vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) = (typep x ’vector)

simple-vector-p object [Function]
vectorp is true if its argument is a simple general vector, and otherwise is false.

(simple-vector-p x) = (typep x ’simple-vector)

simple-string-p object [Function]

simple-string-p is true if its argument is a simple string, and otherwise is
false.

(simple-string-p x) = (typep x ’simple-string)

simple-bit-vector-p object [Function]

simple-bit-vector-p is true if its argument is a simple bit-vector, and other-
wise is false.

(simple-bit-vector-p x) = (typep x ’simple-bit-vector)

arrayp object [Function]
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arrayp is true if its argument is an array, and otherwise is false.

(arrayp x) = (typep x ’array)

packagep object [Function]
packagep is true if its argument is a package, and otherwise is false.

(packagep x) = (typep x ’package)

functionp object [Function]
X3J13 voted in June 1988 (FUNCTION-TYPE) to define
(functionp x) = (typep x ’function)

Because the vote also specifies that types cons and symbol are disjoint from
the type function, this is an incompatible change; now functionp is in fact
always false of symbols and lists.

compiled-function-p object [Function]

compiled-function-p is true if its argument is any compiled code object, and
otherwise is false.

(compiled-function-p x) = (typep x ’compiled-function)

X3J13 voted in March 1989 (COMMON-TYPE) to remove the predicate commonp
(and the type common) from the language.

See also standard-char-p, string-char-p, streamp, random-state-p, readtablep,
hash-table-p, and pathnamep.

6.3 Equality Predicates

Common Lisp provides a spectrum of predicates for testing for equality of two
objects: eq (the most specific), eql, equal, and equalp (the most general). eq
and equal have the meanings traditional in Lisp. eql was added because it is
frequently needed, and equalp was added primarily in order to have a version
of equal that would ignore type differences when comparing numbers and case
differences when comparing characters. If two objects satisfy any one of these
equality predicates, then they also satisfy all those that are more general.

eqxy [Function]

(eq z ¥) is true if and only if z and y are the same identical object. (Implemen-
tationally,  and y are usually eq if and only if they address the same identical
memory location.)
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It should be noted that things that print the same are not necessarily eq
to each other. Symbols with the same print name usually are eq to each other
because of the use of the intern function. However, numbers with the same
value need not be eq, and two similar lists are usually not eq. For example:

(eq ’a ’b) is false.
(eq ’a ’a) is true.
(eq 3 3) might be true or false, depending on the implementation.
(eq 3 3.0) is false.
(eq 3.0 3.0) might be true or false, depending on the implementation.
(eq #c(3 -4) #c(3 -4))
might be true or false, depending on the implementation.
(eq #c(3 -4.0) #c(3 -4)) is false.
(eq (cons ’a ’b) (coms ’a ’c)) is false.
(eq (cons ’a ’b) (coms ’a ’b)) is false.
(eq ’(a . D) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’b)) (eq x x)) is true.
(progn (setq x ’(a . b)) (eq x x)) is true.
(eq #\A #\A) might be true or false, depending on the implementation.
(eq "Foo" "Foo") might be true or false.
(eq "Foo" (copy-seq "Foo")) is false.
(eq "FOO" "foo") is false.

In Common Lisp, unlike some other Lisp dialects, the implementation is permit-
ted to make “copies” of characters and numbers at any time. (This permission
is granted because it allows tremendous performance improvements in many
common situations.) The net effect is that Common Lisp makes no guarantee
that eq will be true even when both its arguments are “the same thing” if that
thing is a character or number. For example:

(let ((x 5)) (eq x x)) might be true or false.

The predicate eql is the same as eq, except that if the arguments are characters
or numbers of the same type then their values are compared. Thus eql tells
whether two objects are conceptually the same, whereas eq tells whether two
objects are implementationally identical. It is for this reason that eql, not
eq, is the default comparison predicate for the sequence functions defined in
chapter 14.

Implementation note: eq simply compares the two given pointers, so any kind
of object that is represented in an “immediate” fashion will indeed have like-valued
instances satisfy eq. In some implementations, for example, fixnums and characters
happen to “work.” However, no program should depend on this, as other implemen-
tations of Common Lisp might not use an immediate representation for these data

types.

X3J13 voted in March 1989 (QUOTE-SEMANTICS) to clarify that eval and
compile are not permitted either to copy or to coalesce (“collapse”) constants
(see eq) appearing in the code they process; the resulting program behavior
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must refer to objects that are eql to the corresponding objects in the source
code. Only the compile-file/load process is permitted to copy or coalesce
constants (see section 25.1).

eql xy [Function]

The eql predicate is true if its arguments are eq, or if they are numbers of the
same type with the same value, or if they are character objects that represent
the same character. For example:

(eql ’a ’b) is false.

(eql ’a ’a) is true.

(eql 3 3) is true.

(eql 3 3.0) is false.

(eql 3.0 3.0) is true.

(eql #c(3 -4) #c(3 -4)) is true.

(eql #c(3 -4.0) #c(3 -4)) is false.

(eql (cons ’a ’b) (coms ’a ’c)) is false.

(eql (cons ’a ’b) (cons ’a ’b)) is false.

(eql ’(a . b) ’(a . b)) might be true or false.
(progn (setq x (cons ’a ’b)) (eql x x)) is true.
(progn (setq x ’(a . b)) (eql x x)) is true.
(eql #\A #\A) is true.

(eql "Foo" "Foo") might be true or false.

(eql "Foo" (copy-seq "Foo")) is false.

(eql "FOO" "foo") is false.

Normally (eql 1.0s0 1.0d0) would be false, under the assumption that 1.0s0
and 1.0d0 are of distinct data types. However, implementations that do not
provide four distinct floating-point formats are permitted to “collapse” the four
formats into some smaller number of them; in such an implementation (eql
1.0s0 1.0d0) might be true. The predicate = will compare the values of two
numbers even if the numbers are of different types.

If an implementation supports positive and negative zeros as distinct values
(as in the IEEE proposed standard floating-point format), then (eql 0.0 -0.0)
will be false. Otherwise, when the syntax -0.0 is read it will be interpreted as
the value 0.0, and so (eql 0.0 -0.0) will be true. The predicate = differs
from eql in that (= 0.0 -0.0) will always be true, because = compares the
mathematical values of its operands, whereas eql compares the representational
values, so to speak.

Two complex numbers are considered to be eql if their real parts are eql
and their imaginary parts are eql. For example, (eql #C(4 5) #C(4 5)) is
true and (eql #C(4 5) #C(4.0 5.0)) is false. Note that while (eql #C(5.0
0.0) 5.0) is false, (eql #C(5 0) 5) is true. In the case of (eql #C(5.0 0.0)
5.0) the two arguments are of different types and so cannot satisfy eql; that’s
all there is to it. In the case of (eql #C(5 0) 5), however, #C(5 0) is not a
complex number but is always automatically reduced by the rule of complex
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canonicalization to the integer 5, just as the apparent ratio 20/4 is always
simplified to 5.

The case of (eql "Foo" "Foo") is discussed above in the description of eq.
While eql compares the values of numbers and characters, it does not compare
the contents of strings. To compare the characters of two strings, one should
use equal, equalp, string=, or string-equal.

Compatibility note: The Common Lisp function eql is similar to the Interlisp
function eqp. However, eql considers 3 and 3.0 to be different, whereas eqp considers
them to be the same; eqp behaves like the Common Lisp = function, not like eql,
when both arguments are numbers.

equal x Function
q y

The equal predicate is true if its arguments are structurally similar (isomorphic)
objects. A rough rule of thumb is that two objects are equal if and only if their
printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared
as for eq. This method of comparing symbols can violate the rule of thumb for
equal and printed representations, but only in the infrequently occurring case
of two distinct symbols with the same print name.

Certain objects that have components are equal if they are of the same
type and corresponding components are equal. This test is implemented in a
recursive manner and may fail to terminate for circular structures.

For conses, equal is defined recursively as the two car’s being equal and the
two cdr’s being equal.

Two arrays are equal only if they are eq, with one exception: strings and bit-
vectors are compared element-by-element. If either argument has a fill pointer,
the fill pointer limits the number of elements examined by equal. Uppercase
and lowercase letters in strings are considered by equal to be distinct. (In
contrast, equalp ignores case distinctions in strings.)

Compatibility note: In Lisp Machine Lisp, equal ignores the difference between
uppercase and lowercase letters in strings. This violates the rule of thumb about
printed representations, however, which is very useful, especially to novices. It is also
inconsistent with the treatment of single characters, which in Lisp Machine Lisp are
represented as fixnums.

Two pathname objects are equal if and only if all the corresponding compo-
nents (host, device, and so on) are equivalent. (Whether or not uppercase and
lowercase letters are considered equivalent in strings appearing in components
depends on the file name conventions of the file system.) Pathnames that are
equal should be functionally equivalent.

X3J13 voted in June 1989 (EQUAL-STRUCTURE) to clarify that equal never
recursively descends any structure or data type other than the ones explicitly
described above: conses, bit-vectors, strings, and pathnames. Numbers and
characters are compared as if by eql, and all other data objects are compared
as if by eq.
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(equal ’a ’b) is false.

(equal ’a ’a) is true.

(equal 3 3) is true.

(equal 3 3.0) is false.

(equal 3.0 3.0) is true.

(equal #c(3 -4) #c(3 -4)) is true.

(equal #c(3 -4.0) #c(3 -4)) is false.

(equal (comns ’a ’b) (coms ’a ’c)) is false.
(equal (cons ’a ’b) (cons ’a ’b)) is true.
(equal ’(a . b) ’(a . b)) is true.

(progn (setq x (comns ’a ’b)) (equal x x)) is true.
(progn (setq x ’(a . b)) (equal x x)) is true.
(equal #\A #\A) is true.

(equal "Foo" "Foo") is true.

(equal "Foo" (copy-seq "Foo")) is true.

(equal "FOO" "foo") is false.

To compare a tree of conses using eql (or any other desired predicate) on the
leaves, use tree-equal.

equalp x y [Function]

Two objects are equalp if they are equal; if they are characters and satisfy
char-equal, which ignores alphabetic case and certain other attributes of char-
acters; if they are numbers and have the same numerical value, even if they are
of different types; or if they have components that are all equalp.

Objects that have components are equalp if they are of the same type and
corresponding components are equalp. This test is implemented in a recursive
manner and may fail to terminate for circular structures. For conses, equalp
is defined recursively as the two car’s being equalp and the two cdr’s being
equalp.

Two arrays are equalp if and only if they have the same number of dimen-
sions, the dimensions match, and the corresponding components are equalp.
The specializations need not match; for example, a string and a general array
that happens to contain the same characters will be equalp (though definitely
not equal). If either argument has a fill pointer, the fill pointer limits the
number of elements examined by equalp. Because equalp performs element-
by-element comparisons of strings and ignores the alphabetic case of characters,
case distinctions are therefore also ignored when equalp compares strings.

Two symbols can be equalp only if they are eq, that is, the same identical
object.

X3J13 voted in June 1989 (EQUAL-STRUCTURE) to specify that equalp com-
pares components of hash tables (see below), and to clarify that otherwise
equalp never recursively descends any structure or data type other than the ones
explicitly described above: conses, arrays (including bit-vectors and strings),
and pathnames. Numbers are compared for numerical equality (see =), charac-
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ters are compared as if by char-equal, and all other data objects are compared
as if by eq.

Two hash tables are considered the same by equalp if and only if they satisfy
a four-part test:

e They must be of the same kind; that is, equivalent :test arguments were
given to make-hash-table when the two hash tables were created.

e They must have the same number of entries (see hash-table-count).

e For every entry (keyl, valuel) in one hash table there must be a corre-
sponding entry (key2, value2) in the other, such that key! and key2 are
considered to be the same by the :test function associated with the hash
tables.

e For every entry (keyl, valuel) in one hash table and its corresponding
entry (key2, value2) in the other, such that key! and key2 are the same,
equalp must be true of valuel and value2.

The four parts of this test are carried out in the order shown, and if some part
of the test fails, equalp returns nil and the other parts of the test are not
attempted.

If equalp must compare two structures and the defstruct definition for one
used the :type option and the other did not, then equalp returns nil.

If equalp must compare two structures and neither defstruct definition
used the :type option, then equalp returns t if and only if the structures
have the same type (that is, the same defstruct name) and the values of all
corresponding slots (slots having the same name) are equalp.

As part of the X3J13 discussion of this issue the following observations were
made. Object equality is not a concept for which there is a uniquely determined
correct algorithm. The appropriateness of an equality predicate can be judged
only in the context of the needs of some particular program. Although these
functions take any type of argument and their names sound very generic, equal
and equalp are not appropriate for every application. Any decision to use or
not use them should be determined by what they are documented to do rather
than by any abstract characterization of their function. If neither equal nor
equalp is found to be appropriate in a particular situation, programmers are
encouraged to create another operator that is appropriate rather than blame
equal or equalp for “doing the wrong thing.”

Note that one consequence of the vote to change the rules of floating-point
contagion (CONTAGION-ON-NUMERICAL-COMPARISONS) (described in section 12.1)
is to make equalp a true equivalence relation on numbers.

(equalp ’a ’b) is false.
(equalp ’a ’a) is true.
(equalp 3 3) is true.
(equalp 3 3.0) is true.
(equalp 3.0 3.0) is true.
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(equalp #c(3 -4) #c(3 -4)) is true.

(equalp #c(3 -4.0) #c(3 -4)) is true.

(equalp (cons ’a ’b) (comns ’a ’c)) is false.
(equalp (cons ’a ’b) (cons ’a ’b)) is true.
(equalp ’(a . Db) ’(a . b)) istrue.

(progn (setq x (cons ’a ’b)) (equalp x x)) is true.
(progn (setq x ’(a . b)) (equalp x x)) is true.
(equalp #\A #\A) is true.

(equalp "Foo" "Foo") is true.

(equalp "Foo" (copy-seq "Foo")) is true.

(equalp "FOO" "foo") is true.

6.4 Logical Operators

Common Lisp provides three operators on Boolean values: and, or, and not. Of
these, and and or are also control structures because their arguments are eval-
uated conditionally. The function not necessarily examines its single argument,
and so is a simple function.

not x [Function]

not returns t if z is nil, and otherwise returns nil. It therefore inverts its
argument considered as a Boolean value.

null is the same as not; both functions are included for the sake of clarity.
As a matter of style, it is customary to use null to check whether something is
the empty list and to use not to invert the sense of a logical value.

and {form}* [Macro]

(and forml1 form2 ... ) evaluates each form, one at a time, from left to
right. If any form evaluates to nil, the value nil is immediately returned
without evaluating the remaining forms. If every form but the last evaluates
to a non-nil value, and returns whatever the last form returns. Therefore in
general and can be used both for logical operations, where nil stands for false
and non-nil values stand for true, and as a conditional expression. An example
follows.

(if (and (>=n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo))
(princ "Foo!"))

The above expression prints Foo! if element n of a-simple-vector is the symbol
foo, provided also that n is indeed a valid index for a-simple-vector. Because
and guarantees left-to-right testing of its parts, elt is not called if n is out of
range.
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To put it another way, the and special form does short-circuit Boolean evalu-
ation, like the and then operator in Ada and what in some Pascal-like languages
is called cand (for “conditional and”); the Lisp and special form is unlike the
Pascal or Ada and operator, which always evaluates both arguments.

In the previous example writing

(and (>=n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) ’foo)
(princ "Foo!"))

would accomplish the same thing. The difference is purely stylistic. Some
programmers never use expressions containing side effects within and, preferring
to use if or when for that purpose.

From the general definition, one can deduce that (and z) = z. Also, (and)
evaluates to t, which is an identity for this operation.

One can define and in terms of cond in this way:

(and z y z ... w) = (cond ((not z) nil)
((not 3 nil)
((not 2) nil)

(t w))
See if and when, which are sometimes stylistically more appropriate than and
for conditional purposes. If it is necessary to test whether a predicate is true of

all elements of a list or vector (element 0 and element 1 and element 2 and .. .),
then the function every may be useful.

or {form}* [Macro]

(or forml form2 ... ) evaluates each form, one at a time, from left to
right. If any form other than the last evaluates to something other than nil, or
immediately returns that non-nil value without evaluating the remaining forms.
If every form but the last evaluates to nil, or returns whatever evaluation of
the last of the forms returns. Therefore in general or can be used both for
logical operations, where nil stands for false and non-nil values stand for true,
and as a conditional expression.

To put it another way, the or special form does short-circuit Boolean evalu-
ation, like the or else operator in Ada and what in some Pascal-like languages
is called cor (for “conditional or”); the Lisp or special form is unlike the Pascal
or Ada or operator, which always evaluates both arguments.

From the general definition, one can deduce that (or z) = z. Also, (or)
evaluates to nil, which is the identity for this operation.

One can define or in terms of cond in this way:

(or zy z ... w = (cond () () () ... (t w))

See if and unless, which are sometimes stylistically more appropriate than or
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for conditional purposes. If it is necessary to test whether a predicate is true of
one or more elements of a list or vector (element 0 or element 1 or element 2 or
...), then the function some may be useful.



Chapter 7

Control Structure

Common Lisp provides a variety of special structures for organizing programs.
Some have to do with flow of control (control structures), while others control
access to variables (environment structures). Some of these features are im-
plemented as special forms; others are implemented as macros, which typically
expand into complex program fragments expressed in terms of special forms or
other macros.

Function application is the primary method for construction of Lisp pro-
grams. Operations are written as the application of a function to its arguments.
Usually, Lisp programs are written as a large collection of small functions, each
of which implements a simple operation. These functions operate by calling one
another, and so larger operations are defined in terms of smaller ones. Lisp
functions may call upon themselves recursively, either directly or indirectly.

Locally defined functions (flet, labels) and macros (macrolet) are quite
versatile. The new symbol macro facility allows even more syntactic flexibility.

While the Lisp language is more applicative in style than statement-oriented,
it nevertheless provides many operations that produce side effects and conse-
quently requires constructs for controlling the sequencing of side effects. The
construct progn, which is roughly equivalent to an Algol begin-end block with
all its semicolons, executes a number of forms sequentially, discarding the values
of all but the last. Many Lisp control constructs include sequencing implicitly,
in which case they are said to provide an “implicit progn.” Other sequencing
constructs include progl and prog?2.

For looping, Common Lisp provides the general iteration facility do as well
as a variety of special-purpose iteration facilities for iterating or mapping over
various data structures.

Common Lisp provides the simple one-way conditionals when and unless,
the simple two-way conditional if, and the more general multi-way conditionals
such as cond and case. The choice of which form to use in any particular
situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines

99
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are provided: block, return, return-from, catch, and throw.
The multiple-value constructs provide an efficient way for a function to re-
turn more than one value; see values.

7.1 Constants and Variables

Because some Lisp data objects are used to represent programs, one cannot
always notate a constant data object in a program simply by writing the notation
for the object unadorned; it would be ambiguous whether a constant object or a
program fragment was intended. The quote special form resolves this ambiguity.

There are two kinds of variables in Common Lisp, in effect: ordinary vari-
ables and function names. There are some similarities between the two kinds,
and in a few cases there are similar functions for dealing with them, for example
boundp and fboundp. However, for the most part the two kinds of variables are
used for very different purposes: one to name defined functions, macros, and
special forms, and the other to name data objects.

X3J13 voted in March 1989 (FUNCTION-NAME) to introduce the concept of
a function-name, which may be either a symbol or a two-element list whose
first element is the symbol setf and whose second element is a symbol. The
primary purpose of this is to allow setf expander functions to be CLOS generic
functions with user-defined methods. Many places in Common Lisp that used
to require a symbol for a function name are changed to allow 2-lists as well; for
example, defun is changed so that one may write (defun (setf foo) ...),
and the function special form is changed to accept any function-name. See
also fdefinition.

By convention, any function named (setf f) should return its first argu-
ment as its only value, in order to preserve the specification that setf returns
its newvalue. See setf.

Implementations are free to extend the syntax of function-names to include
lists beginning with additional symbols other than setf or lambda.

7.1.1 Reference

The value of an ordinary variable may be obtained simply by writing the name
of the variable as a form to be executed. Whether this is treated as the name of
a special variable or a lexical variable is determined by the presence or absence
of an applicable special declaration; see chapter 9.

The following functions and special forms allow reference to the values of
constants and variables in other ways.

quote object [Special form)

(quote z) simply returns z. The object is not evaluated and may be any
Lisp object whatsoever. This construct allows any Lisp object to be written as
a constant value in a program. For example:
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(setq a 43)
(list a (cons a 3)) = (43 (43 . 3))
(1ist (quote a) (quote (cons a 3)) = (a (comns a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type,
a standard abbreviation is defined for them: any form f preceded by a single
quote ( ’ ) character is assumed to have (quote ) wrapped around it to make
(quote f). For example:

(setq x ’(the magic quote hack))
is normally interpreted by read to mean
(setq x (quote (the magic quote hack)))

See section 22.1.3.

X3J13 voted in January 1989 (CONSTANT-MODIFICATION) to clarify that it
is an error to destructively modify any object that appears as a constant in
executable code, whether within a quote special form or as a self-evaluating
form.

See section 25.1 for a discussion of how quoted constants are treated by the
compiler.

X3J13 voted in March 1989 (QUOTE-SEMANTICS) to clarify that eval and
compile are not permitted either to copy or to coalesce (“collapse”) constants
(see eq) appearing in the code they process; the resulting program behavior must
refer to objects that are eql to the corresponding objects in the source code.
Moreover, the constraints introduced by the votes on issues (CONSTANT-COMPILABLE-TYPES)
and (CONSTANT-CIRCULAR-COMPILATION) on what kinds of objects may appear
as constants apply only to compile-file (see section 25.1).

function fn [Special form)

The value of function is always the functional interpretation of fn; fn is
interpreted as if it had appeared in the functional position of a function invo-
cation. In particular, if fn is a symbol, the functional definition associated with
that symbol is returned; see symbol-function. If fn is a lambda-expression,
then a “lexical closure” is returned, that is, a function that when invoked will
execute the body of the lambda-expression in such a way as to observe the rules
of lexical scoping properly.

X3J13 voted in June 1988 (FUNCTION-TYPE) to specify that the result of a
function special form is always of type function. This implies that a form
(function fn) may be interpreted as (the (function fn)).

It is an error to use the function special form on a symbol that does not
denote a function in the lexical or global environment in which the special form
appears. Specifically, it is an error to use the function special form on a symbol
that denotes a macro or special form. Some implementations may choose not
to signal this error for performance reasons, but implementations are forbidden
to extend the semantics of function in this respect; that is, an implementation
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is not allowed to define the failure to signal an error to be a “useful” behavior.
X3J13 voted in March 1989 (FUNCTION-NAME) to extend function to accept
any function-name (a symbol or a list whose car is setf—see section 7.1) as
well as lambda-expressions. Thus one may write (function (setf cadr)) to
refer to the setf expansion function for cadr.
For example:

(defun adder (x) (function (lambda (y) (+ x y))))
The result of (adder 3) is a function that will add 3 to its argument:

(setq add3 (adder 3))
(funcall add3 5) = 8

This works because function creates a closure of the inner lambda-expression
that is able to refer to the value 3 of the variable x even after control has
returned from the function adder.

More generally, a lexical closure in effect retains the ability to refer to lexi-
cally visible bindings, not just values. Consider this code:

(defun two-funs (x)
(1ist (function (lambda () x))
(function (lambda (y) (setq x y)))))
(setq funs (two-funs 6))
(funcall (car funs)) = 6
(funcall (cadr funs) 43) = 43
(funcall (car funs)) = 43

The function two-funs returns a list of two functions, each of which refers to
the binding of the variable x created on entry to the function two-funs when
it was called with argument 6. This binding has the value 6 initially, but setq
can alter a binding. The lexical closure created for the first lambda-expression
does not “snapshot” the value 6 for x when the closure is created. The second
function can be used to alter the binding (to 43, in the example), and this
altered value then becomes accessible to the first function.

In situations where a closure of a lambda-expression over the same set of
bindings may be produced more than once, the various resulting closures may
or may not be eq, at the discretion of the implementation. For example:
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(let ((x 5) (funs > ()))
(dotimes (j 10)
(push #’(lambda (z)
(if (null z) (setq x 0) (+ x z)))
funs))
funs)

The result of the above expression is a list of ten closures. Each logically requires
only the binding of x. It is the same binding in each case, so the ten closures
may or may not be the same identical (eq) object. On the other hand, the result
of the expression

(let ((funs ’()))
(dotimes (j 10)
(let ((x 5))
(push (function (lambda (z)
(if (null z) (setq x 0) (+ x 2))))
funs)))
funs)

is also a list of ten closures. However, in this case no two of the closures may
be eq, because each closure is over a distinct binding of x, and these bindings
can be behaviorally distinguished because of the use of setq.

The question of distinguishable behavior is important; the result of the sim-
pler expression

(let ((funs ’()))
(dotimes (j 10)
(et ((x 5))
(push (function (lambda (z) (+ x z)))
funs)))
funs)

is a list of ten closures that may be pairwise eq. Although one might think
that a different binding of x is involved for each closure (which is indeed the
case), the bindings cannot be distinguished because their values are identical
and immutable, there being no occurrence of setq on x. A compiler would
therefore be justified in transforming the expression to

(let ((funs ’()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z)))
funs))
funs)

where clearly the closures may be the same after all. The general rule, then,
is that the implementation is free to have two distinct evaluations of the same
function form produce identical (eq) closures if it can prove that the two
conceptually distinct resulting closures must in fact be behaviorally identical
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with respect to invocation. This is merely a permitted optimization; a perfectly
valid implementation might simply cause every distinct evaluation of a function
form to produce a new closure object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to
close over any variable bindings. For example, in the code fragment

(mapcar (function (lambda (x) (+ x 2))) y)

the function (lambda (x) (+ x 2)) contains no references to any outside en-
tity. In this important special case, the same “closure” may be used as the
value for all evaluations of the function special form. Indeed, this value need
not be a closure object at all; it may be a simple compiled function contain-
ing no environment information. This example is simply a special case of the
foregoing discussion and is included as a hint to implementors familiar with
previous methods of implementing Lisp. The distinction between closures and
other kinds of functions is somewhat pointless, actually, as Common Lisp de-
fines no particular representation for closures and no way to distinguish between
closures and non-closure functions. All that matters is that the rules of lexical
scoping be obeyed.

Since function forms are so frequently useful but somewhat cumbersome to
type, a standard abbreviation is defined for them: any form fpreceded by #° (#
followed by an apostrophe) is assumed to have (function ) wrapped around
it to make (function f). For example,

(remove-if #’numberp ’(1 a b 3))
is normally interpreted by read to mean
(remove-if (function numberp) ’(1 a b 3))

See section 22.1.4.

symbol-value symbol [Function]

symbol-value returns the current value of the dynamic (special) variable
named by symbol. An error occurs if the symbol has no value; see boundp
and makunbound. Note that constant symbols are really variables that cannot
be changed, and so symbol-value may be used to get the value of a named
constant. In particular, symbol-value of a keyword will return that keyword.

symbol-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for lan-
guages embedded in Lisp. The corresponding assignment primitive is set; al-
ternatively, symbol-value may be used with setf.

symbol-function symbol [Function]

symbol-function returns the current global function definition named by
symbol. An error is signalled if the symbol has no function definition; see
fboundp. Note that the definition may be a function or may be an object
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representing a special form or macro. In the latter case, however, it is an error
to attempt to invoke the object as a function. If it is desired to process macros,
special forms, and functions equally well, as when writing an interpreter, it is
best first to test the symbol with macro-function and special-form-p and
then to invoke the functional value only if these two tests both yield false.

This function is particularly useful for implementing interpreters for lan-
guages embedded in Lisp.

symbol-function cannot access the value of a lexical function name pro-
duced by flet or labels; it can access only the global function value.

The global function definition of a symbol may be altered by using setf with
symbol-function. Performing this operation causes the symbol to have only
the specified definition as its global function definition; any previous definition,
whether as a macro or as a function, is lost. It is an error to attempt to
redefine the name of a special form (see table 5.1). X3J13 voted in June 1988
(FUNCTION-TYPE) to clarify the behavior of symbol-function in the light of the
redefinition of the type function.

e It is permissible to call symbol-functionon any symbol for which fboundp
returns true. Note that fboundp must return true for a symbol naming a
macro or a special form.

e If fboundp returns true for a symbol but the symbol denotes a macro or
special form, then the value returned by symbol-function is not well-
defined but symbol-function will not signal an error.

e When symbol-function is used with setf the new value must be of type
function. It is an error to set the symbol-function of a symbol to a
symbol, a list, or the value returned by symbol-function on the name of
a macro or a special form.

fdefinition function-name [Function]

X3J13 voted in March 1989 (FUNCTION-NAME) to add the function fdefinition
to the language. It is exactly like symbol-function except that its argument
may be any function-name (a symbol or a list whose car is setf—see sec-
tion 7.1); it returns the current global function definition named by the ar-
gument function-name. One may use fdefinition with setf to change the
current global function definition associated with a function-name.

boundp symbol [Function]

boundp is true if the dynamic (special) variable named by symbol has a value;
otherwise, it returns nil.
See also set and makunbound.

fboundp symbol [Function]
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fboundp is true if the symbol has a global function definition. Note that
fboundp is true when the symbol names a special form or macro. macro-function
and special-form-p may be used to test for these cases.

X3J13 voted in June 1988 (FUNCTION-TYPE) to emphasize that, despite the
tightening of the definition of the type function, fboundp must return true
when the argument names a special form or macro.

See also symbol-function and fmakunbound.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend fboundp to accept
any function-name (a symbol or a list whose car is setf—see section 7.1). Thus
one may write (fboundp ’(setf cadr)) to determine whether a setf expan-
sion function has been globally defined for cadr.

special-form-p symbol [Function]

The function special-form-p takes a symbol. If the symbol globally names
a special form, then a non-nil value is returned; otherwise nil is returned.
A returned non-nil value is typically a function of implementation-dependent
nature that can be used to interpret (evaluate) the special form.

It is possible for both special-form-p and macro-function to be true of a
symbol. This is possible because an implementation is permitted to implement
any macro also as a special form for speed. On the other hand, the macro defi-
nition must be available for use by programs that understand only the standard
special forms listed in table 5.1.

7.1.2 Assignment

The following facilities allow the value of a variable (more specifically, the value
associated with the current binding of the variable) to be altered. Such alter-
ation is different from establishing a new binding. Constructs for establishing
new bindings of variables are described in section 7.5.

setq {var form}* [Special form)

The special form (setq wvarl form1 var?2 form2 ...) is the “simple vari-
able assignment statement” of Lisp. First formI is evaluated and the result is
stored in the variable varl, then form?2 is evaluated and the result stored in
var2, and so forth. The variables are represented as symbols, of course, and are
interpreted as referring to static or dynamic instances according to the usual
rules. Therefore setq may be used for assignment of both lexical and special
variables.

setq returns the last value assigned, that is, the result of the evaluation of
its last argument. As a boundary case, the form (setq) is legal and returns
nil. There must be an even number of argument forms. For example, in

(setq x (+ 32 1) y (cons x nil))
x is set to 6, y is set to (6), and the setq returns (6). Note that the first
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assignment is performed before the second form is evaluated, allowing that form
to use the new value of x.

See also the description of setf, the Common Lisp “general assignment
statement” that is capable of assigning to variables, array elements, and other
locations.

Some programmers choose to avoid setq as a matter of style, always us-
ing setf for any kind of structure modification. Others use setq with simple
variable names and setf with all other generalized variables.

X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS) to specify that if
any var refers not to an ordinary variable but to a binding made by symbol-macrolet,
then that var is handled as if setf had been used instead of setq.

psetq {var form}* [Macro]

A psetq form is just like a setq form, except that the assignments happen
in parallel. First all of the forms are evaluated, and then the variables are set
to the resulting values. The value of the psetq form is nil. For example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a = 2

b=1

In this example, the values of a and b are exchanged by using parallel assign-
ment. (If several variables are to be assigned in parallel in the context of a loop,
the do construct may be appropriate.)

See also the description of psetf, the Common Lisp “general parallel assign-
ment statement” that is capable of assigning to variables, array elements, and
other locations.

X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS) to specify that if
any var refers not to an ordinary variable but to a binding made by symbol-macrolet,
then that var is handled as if psetf had been used instead of psetq.

set symbol value [Function]

set allows alteration of the value of a dynamic (special) variable. set causes
the dynamic variable named by symbol to take on wvalue as its value.

X3J13 voted in January 1989 (ARGUMENTS-UNDERSPECIFIED) to clarify that
the value may be any Lisp datum whatsoever.

Only the value of the current dynamic binding is altered; if there are no
bindings in effect, the most global value is altered. For example,

(set (if (eq a b) ’c ’d) ’foo)

will either set ¢ to foo or set d to foo, depending on the outcome of the test
(eq a b).
set returns value as its result.
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set cannot alter the value of a local (lexically bound) variable. The special
form setq is usually used for altering the values of variables (lexical or dynamic)
in programs. set is particularly useful for implementing interpreters for lan-
guages embedded in Lisp. See also progv, a construct that performs binding
rather than assignment of dynamic variables.

makunbound symbol [Function]

fmakunbound symbol [Function]

makunbound causes the dynamic (special) variable named by symbol to be-
come unbound (have no value). fmakunbound does the analogous thing for the
global function definition named by symbol. For example:

(setq a 1)

a =1
(makunbound ’a)

a = causes an error

(defun foo (x) (+ x 1))
(foo 4) = 5
(fmakunbound ’foo)

(foo 4) = causes an error

Both functions return symbol as the result value.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend fmakunbound to ac-
cept any function-name (a symbol or a list whose car is setf—see section 7.1).
Thus one may write (fmakunbound ’ (setf cadr)) to remove any global defi-
nition of a setf expansion function for cadr.

7.2 Generalized Variables

In Lisp, a variable can remember one piece of data, that is, one Lisp object. The
main operations on a variable are to recover that object and to alter the variable
to remember a new object; these operations are often called access and update
operations. The concept of variables named by symbols can be generalized to
any storage location that can remember one piece of data, no matter how that
location is named. Examples of such storage locations are the car and cdr of a
cons, elements of an array, and components of a structure.

For each kind of generalized variable, typically there are two functions that
implement the conceptual access and update operations. For a variable, merely
mentioning the name of the variable accesses it, while the setq special form
can be used to update it. The function car accesses the car of a cons, and the
function rplaca updates it. The function symbol-value accesses the dynamic
value of a variable named by a given symbol, and the function set updates it.

Rather than thinking about two distinct functions that respectively access



CHAPTER 7. CONTROL STRUCTURE 109

and update a storage location somehow deduced from their arguments, we can
instead simply think of a call to the access function with given arguments as
a name for the storage location. Thus, just as x may be considered a name
for a storage location (a variable), so (car x) is a name for the car of some
cons (which is in turn named by x). Now, rather than having to remember two
functions for each kind of generalized variable (having to remember, for exam-
ple, that rplaca corresponds to car), we adopt a uniform syntax for updating
storage locations named in this way, using the setf macro. This is analogous to
the way we use the setq special form to convert the name of a variable (which
is also a form that accesses it) into a form that updates it. The uniformity of
this approach is illustrated in the following table.

Access Function Update Function Update Using setf

X (setq x datum) (setf x datum)

(car x) (rplaca x datum) (setf (car x) datum)
(symbol-value x) (set x datum) (setf (symbol-value x) datum)

setf is actually a macro that examines an access form and produces a call to
the corresponding update function.

Given the existence of setf in Common Lisp, it is not necessary to have
setq, rplaca, and set; they are redundant. They are retained in Common
Lisp because of their historical importance in Lisp. However, most other update
functions (such as putprop, the update function for get) have been eliminated
from Common Lisp in the expectation that setf will be uniformly used in their
place.

setf {place newvalue}* [Macrol

(setf place newvalue) takes a form place that when evaluated accesses a
data object in some location and “inverts” it to produce a corresponding form
to update the location. A call to the setf macro therefore expands into an
update form that stores the result of evaluating the form newwalue into the
place referred to by the access form.

If more than one place-newvalue pair is specified, the pairs are processed
sequentially; that is,

(setf placel newvaluel
place2 newvalue2)
placen newvaluen)
is precisely equivalent to
(progn (setf placel newvaluel)
(setf place2 newvalue?)
(setf placen newvaluen))

For consistency, it is legal to write (setf), which simply returns nil.
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The form place may be any one of the following:
e The name of a variable (either lexical or dynamic).

e A function call form whose first element is the name of any one of the
following functions:

aref car svref

nth cdr get

elt caar getf symbol-value
rest cadr gethash symbol-function
first cdar documentation symbol-plist
second cddr fill-pointer macro-function
third caaar caaaar cdaaar

fourth caadr caaadr cdaadr

fifth cadar caadar cdadar

sixth caddr caaddr cdaddr

seventh cdaar cadaar cddaar

eighth cdadr cadadr cddadr

ninth cddar caddar cdddar

tenth cdddr cadddr cddddr

X3J13 voted in March 1988 (AREF-1D) to add row-major-aref to this
list.

X3J13 voted in June 1989 (DEFINE-COMPILER-MACRO) to add compiler-macro-function
to this list.

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name refers to a global function definition
and not to a locally defined function or macro.

e A function call form whose first element is the name of a selector function
constructed by defstruct.

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name refers to a global function definition
and not to a locally defined function or macro.

e A function call form whose first element is the name of any one of the
following functions, provided that the new value is of the specified type so
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that it can be used to replace the specified “location” (which is in each of
these cases not truly a generalized variable):

Function Name Required Type

char string-char
schar string-char
bit bit

sbit bit

subseq sequence

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the type
string-char and to redefine string to be the union of one or more spe-
cialized vector types, the types of whose elements are subtypes of the type
character. In the preceding table, the type string-char should be re-
placed by some such phrase as “the element-type of the argument vector.”

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name refers to a global function definition
and not to a locally defined function or macro.

In the case of subseq, the replacement value must be a sequence whose
elements may be contained by the sequence argument to subseq. (Note
that this is not so stringent as to require that the replacement value be
a sequence of the same type as the sequence of which the subsequence is
specified.) If the length of the replacement value does not equal the length
of the subsequence to be replaced, then the shorter length determines the
number of elements to be stored, as for the function replace.

e A function call form whose first element is the name of any one of the
following functions, provided that the specified argument to that function
is in turn a place form; in this case the new place has stored back into it
the result of applying the specified “update” function (which is in each of
these cases not a true update function):

Function Name Argument That Is a place Update Function Used

char-bit first set-char-bit
1db second dpb
mask-field second deposit-field

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate char-bit
and set-char-bit.

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name refers to a global function definition
and not to a locally defined function or macro.
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e A the type declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))
is processed as if it were

(setf (cadr x) (the integer (+ y 3)))

e A call to apply where the first argument form is of the form #’name,
that is, (function name), where name is the name of a function, calls
to which are recognized as places by setf. Suppose that the use of setf
with apply looks like this:

(setf (apply #’name zl z2 ... 2zn rest) z0)

The setf method for the function name must be such that
(setf (name z1 22 ... zm) z0)

expands into a store form

(storefn ziy zip ... zix 2zm)

That is, it must expand into a function call such that all arguments but the
last may be any permutation or subset of the new value z0 and the argu-
ments of the access form, but the last argument of the storing call must be
the same as the last argument of the access call. See define-setf-method
for more details on accessing and storing forms.

Given this, the setf-of-apply form shown above expands into
(apply #’storefn xiy xip ... i Test)

As an example, suppose that the variable indexes contains a list of sub-
scripts for a multidimensional array foo whose rank is not known until run
time. One may access the indicated element of the array by writing

(apply #’aref foo indexes)

and one may alter the value of the indicated element to that of newvalue
by writing

(setf (apply #’aref foo indexes) newvalue)

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name apply refers to the global function
definition and not to a locally defined function or macro named apply.
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e A macro call, in which case setf expands the macro call and then analyzes
the resulting form.

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this step uses
macroexpand-1, not macroexpand. This allows the chance to apply any
of the rules preceding this one to any of the intermediate expansions.

e Any form for which a defsetf or define-setf-method declaration has
been made.

X3J13 voted in March 1989 (FUNCTION-NAME) to clarify that this rule
applies only when the function name in the form refers to a global function
definition and not to a locally defined function or macro.

X3J13 voted in March 1989 (FUNCTION-NAME) to add one more rule to the
preceding list, coming after all those listed above:

e Any other list whose first element is a symbol (call it f). In this case,
the call to setf expands into a call to the function named by the list
(setf f) (see section 7.1). The first argument is the new value and the
remaining arguments are the values of the remaining elements of place.
This expansion occurs regardless of whether either f or (setf f) is defined
as a function locally, globally, or not at all. For example,

(setf (f argl arg2 ...) mnewvalue)
expands into a form with the same effect and value as

(let ((#:templ argl) ; Force correct order of evaluation
(#:temp2 arg2)

(#:temp0 newvalue))
(funcall (function (setf f))
#:tempO
#:templ

#:temp2 ...))

By convention, any function named (setf f) should return its first ar-
gument as its only value, in order to preserve the specification that setf
returns its newvalue.

X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS) to add this case
as well:

e A wvariable reference that refers to a symbol macro definition made by
symbol-macrolet, in which case setf expands the reference and then
analyzes the resulting form.

setf carefully arranges to preserve the usual left-to-right order in which the
various subforms are evaluated. On the other hand, the exact expansion for any
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particular form is not guaranteed and may even be implementation-dependent;
all that is guaranteed is that the expansion of a setf form will be an update
form that works for that particular implementation, and that the left-to-right
evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue.
Therefore (setf (car x) y) does not expand into precisely (rplaca x y),
but into something more like

(let ((G1 x) (G2 y)) (rplaca G1 G2) G2)

the precise expansion being implementation-dependent.

The user can define new setf expansions by using defsetf.

X3J13 voted in June 1989 (SETF-MULTIPLE-STORE-VARIABLES) to extend
the specification of setf to allow a place whose setf method has more than
one store variable (see define-setf-method). In such a case as many values
are accepted from the newwvalue form as there are store variables; extra values
are ignored and missing values default to nil, as is usual in situations involving
multiple values.

A proposal was submitted to X3J13 in September 1989 to add a setf method
for values so that one could in fact write, for example,

(setf (values quotient remainder)
(truncate linewidth tabstop))

but unless this proposal is accepted users will have to define a setf method for
values themselves (not a difficult task).

psetf {place newvalue}* [Macrol

psetf is like setf except that if more than one place-newvalue pair is spec-
ified, then the assignments of new values to places are done in parallel. More
precisely, all subforms that are to be evaluated are evaluated from left to right;
after all evaluations have been performed, all of the assignments are performed
in an unpredictable order. (The unpredictability matters only if more than one
place form refers to the same place.) psetf always returns nil.

X3J13 voted in June 1989 (SETF-MULTIPLE-STORE-VARIABLES) to extend
the specification of psetf to allow a place whose setf method has more than
one store variable (see define-setf-method). In such a case as many values
are accepted from the newwvalue form as there are store variables; extra values
are ignored and missing values default to nil, as is usual in situations involving
multiple values.

shiftf {place} " newvalue [Macro]

Each place form may be any form acceptable as a generalized variable to
setf. In the form (shiftf placel place2 ... placen newvalue), the values
in placel through placen are accessed and saved, and newvalue is evaluated, for
a total of n 41 values in all. Values 2 through n + 1 are then stored into place!
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through placen, and value 1 (the original value of placel) is returned. It is as
if all the places form a shift register; the newvalue is shifted in from the right,
all values shift over to the left one place, and the value shifted out of placel is
returned. For example:

(setq x (list ’a ’b ’c)) = (a b ¢)

(shiftf (cadr x) ’z) = b
and now x = (a z c)

(shiftf (cadr x) (cddr x) ’q) = z
and now x = (a (¢) . q)

The effect of (shiftf placel place2 ... placen newvalue) is equivalent to

(let ((warl placel)
(var2 place2)

(varn placen))
(setf placel wvar2)
(setf place2 var3d)

(setf placen newvalue)
varl)

except that the latter would evaluate any subforms of each place twice, whereas
shiftf takes care to evaluate them only once. For example:

(setq n 0)

(setqg x "(a b c d))

(shiftf (nth (setqn (+n 1)) x) ’z) = b
and now x = (a z ¢ d)

but

(setq n 0)
(setqg x "(a b c d))
(progl (nth (setq n (+ n 1)) x)
(setf (nth (setqmn (+n 1)) x) ’z)) = b
and now x = (a b z d)

Moreover, for certain place forms shiftf may be significantly more efficient
than the progl version.

X3J13 voted in June 1989 (SETF-MULTIPLE-STORE-VARIABLES) to extend
the specification of shiftf to allow a place whose setf method has more than
one store variable (see define-setf-method). In such a case as many values
are accepted from the newwvalue form as there are store variables; extra values
are ignored and missing values default to nil, as is usual in situations involving
multiple values.

Rationale: shiftf and rotatef have been included in Common Lisp as generaliza-
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tions of two-argument versions formerly called swapf and exchf. The two-argument
versions have been found to be very useful, but the names were easily confused. The
generalization to many argument forms and the change of names were both inspired by
the work of Suzuki [17], which indicates that use of these primitives can make certain
complex pointer-manipulation programs clearer and easier to prove correct.

rotatef {place}* [Macro]

Each place form may be any form acceptable as a generalized variable to
setf. In the form (rotatef placel place2 ... placen), the values in placel
through placen are accessed and saved. Values 2 through n and value 1 are then
stored into placel through placen. It is as if all the places form an end-around
shift register that is rotated one place to the left, with the value of place! being
shifted around the end to placen. Note that (rotatef placel place2) exchanges
the contents of placel and place2.

The effect of (rotatef placel place2 ... placen) is roughly equivalent to

(psetf placel place2
place2 places

placen placel)

except that the latter would evaluate any subforms of each place twice, whereas
rotatef takes care to evaluate them only once. Moreover, for certain place
forms rotatef may be significantly more efficient.

rotatef always returns nil.

X3J13 voted in June 1989 (SETF-MULTIPLE-STORE-VARIABLES) to extend
the specification of rotatef to allow a place whose setf method has more than
one store variable (see define-setf-method). In such a case as many values
are accepted from the newvalue form as there are store variables; extra values
are ignored and missing values default to nil, as is usual in situations involving
multiple values.

Other macros that manipulate generalized variables include getf, remf,
incf, decf, push, pop, assert, ctypecase, and ccase.

Macros that manipulate generalized variables must guarantee the “obvious”
semantics: subforms of generalized-variable references are evaluated exactly as
many times as they appear in the source program, and they are evaluated in
exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of
1db, the generalized variables are both read and written in the same reference.
Preserving the source program order of evaluation and the number of evaluations
is particularly important.

As an example of these semantic rules, in the generalized-variable reference
(setf reference wvalue) the value form must be evaluated after all the subforms
of the reference because the value form appears to the right of them.

The expansion of these macros must consist of code that follows these rules or
has the same effect as such code. This is accomplished by introducing temporary
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variables bound to the subforms of the reference. As an optimization in the
implementation, temporary variables may be eliminated whenever it can be
proved that removing them has no effect on the semantics of the program. For
example, a constant need never be saved in a temporary variable. A variable,
or for that matter any form that does not have side effects, need not be saved
in a temporary variable if it can be proved that its value will not change within
the scope of the generalized-variable reference.

Common Lisp provides built-in facilities to take care of these semantic com-
plications and optimizations. Since the required semantics can be guaranteed
by these facilities, the user does not have to worry about writing correct code
for them, especially in complex cases. Even experts can become confused and
make mistakes while writing this sort of code.

X3J13 voted in March 1988 (PUSH-EVALUATION-ORDER) to clarify the pre-
ceding discussion about the order of evaluation of subforms in calls to setf and
related macros. The general intent is clear: evaluation proceeds from left to
right whenever possible. However, the left-to-right rule does not remove the
obligation on writers of macros and define-setf-method to work to ensure
left-to-right order of evaluation.

Let it be emphasized that, in the following discussion, a form is something
whose syntactic use is such that it will be evaluated. A subform means a form
that is nested inside another form, not merely any Lisp object nested inside a
form regardless of syntactic context.

The evaluation ordering of subforms within a generalized variable refer-
ence is determined by the order specified by the second value returned by
get-setf-method. For all predefined generalized variable references (getf,
1db), this order of evaluation is exactly left-to-right. When a generalized vari-
able reference is derived from a macro expansion, this rule is applied after the
macro is expanded to find the appropriate generalized variable reference.

This is intended to make it clear that if the user writes a defmacro or
define-setf-method macro that doesn’t preserve left-to-right evaluation order,
the order specified in the user’s code holds. For example, given

(defmacro wrong-order (x y) ‘(getf ,y ,x))
then
(push walue (wrong-order placel place2))

will evaluate place2 first and then placel because that is the order they are
evaluated in the macro expansion.

For the macros that manipulate generalized variables ( push, pushnew, getf,
remf, incf, decf, shiftf, rotatef, psetf, setf, pop, and those defined with
define-modify-macro the subforms of the macro call are evaluated exactly once
in left-to-right order, with the subforms of the generalized variable references
evaluated in the order specified above.

Each of push, pushnew, getf, remf, incf, decf, shiftf, rotatef, psetf,
and pop evaluates all subforms before modifying any of the generalized variable
locations. Moreover, setf itself, in the case when a call on it has more than
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two arguments, performs its operation on each pair in sequence. That is, in
(setf placel wvaluel place2 value2 ...)

the subforms of place! and valuel are evaluated, the location specified by placel
is modified to contain the value returned by wvaluel, and then the rest of the
setf form is processed in a like manner.

For the macros check-type, ctypecase, and ccase, subforms of the gener-
alized variable reference are evaluated once per test of a generalized variable, but
they may be evaluated again if the type check fails (in the case of check-type)
or if none of the cases holds (in ctypecase or ccase).

For the macro assert, the order of evaluation of the generalized variable
references is not specified.

Another reason for building in these functions is that the appropriate op-
timizations will differ from implementation to implementation. In some im-
plementations most of the optimization is performed by the compiler, while in
others a simpler compiler is used and most of the optimization is performed in
the macros. The cost of binding a temporary variable relative to the cost of
other Lisp operations may differ greatly between one implementation and an-
other, and some implementations may find it best never to remove temporary
variables except in the simplest cases.

A good example of the issues involved can be seen in the following generalized-
variable reference:

(incf (1db byte-field variable))
This ought to expand into something like

(setq variable
(dpb (1+ (1db byte-field variable))
byte-field
variable))

In this expansion example we have ignored the further complexity of returning
the correct value, which is the incremented byte, not the new value of variable.
Note that the variable byte-field is evaluated twice, and the variable variable
is referred to three times: once as the location in which to store a value, and
twice during the computation of that value.

Now consider this expression:
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(incf (1db (aref byte-fields (incf i))
(aref (determine-words-array) i)))

It ought to expand into something like this:

(let ((templ (aref byte-fields (incf i)))
(temp2 (determine-words-array)))
(setf (aref temp2 i)
(dpb (1+ (1db templ (aref temp2 i)))
templ
(aref temp2 i))))

Again we have ignored the complexity of returning the correct value. What is
important here is that the expressions (incf i) and (determine-words-array)
must not be duplicated because each may have a side effect or be affected by
side effects.

X3J13 voted in January 1989 (SETF-SUB-METHODS) to specify more precisely
the order of evaluation of subforms when setf is used with an access func-
tion that itself takes a place as an argument, for example, 1db, mask-field,
and getf. (The vote also discussed the function char-bit, but another vote
(CHARACTER-PROPOSAL) removed that function from the language.) The setf
methods for such accessors produce expansions that effectively require explicit
calls to get-setf-method.

The code produced as the macro expansion of a setf form that itself admits
a generalized variable as an argument must essentially do the following major
steps:

e It evaluates the value-producing subforms, in left-to-right order, and binds
the temporary variables to them; this is called binding the temporaries.

e It reads the value from the generalized variable, using the supplied access-
ing form, to get the old value; this is called doing the access. Note that
this is done after all the evaluations of the preceding step, including any
side effects they may have.

e It binds the store variable to a new value, and then installs this new value
into the generalized variable using the supplied storing form; this is called
doing the store.

Doing the access for a generalized variable reference is not part of the series of
evaluations that must be done in left-to-right order.

The place-specifier forms 1db, mask-field, and getf admit (other) place
specifiers as arguments. During the setf expansion of these forms, it is neces-
sary to call get-setf-method to determine how the inner, nested generalized
variable must be treated.

In a form such as

(setf (1db byte-spec place-form) mnewvalue-form)
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the place referred to by the place-form must always be both accessed and up-
dated; note that the update is to the generalized variable specified by place-form,
not to any object of type integer.

Thus this call to setf should generate code to do the following:

e Evaluate byte-spec and bind into a temporary

e Bind the temporaries for place-form

e Evaluate newvalue-form and bind into the store variable
e Do the access to place-form

e Do the store into place-form with the given bit-field of the accessed integer
replaced with the value in the store variable

If the evaluation of newvalue-form alters what is found in the given place—such
as setting a different bit-field of the integer—then the change of the bit-field
denoted by byte-spec will be to that altered integer, because the access step
must be done after the newvalue-form evaluation. Nevertheless, the evalua-
tions required for binding the temporaries are done before the evaluation of the
newvalue-form, thereby preserving the required left-to-right evaluation order.

The treatment of mask-field is similar to that of 1db.

In a form such as:

(setf (getf place-form ind-form) newvalue-form)

the place referred to by the place-form must always be both accessed and up-

dated; note that the update is to the generalized variable specified by place-form,

not necessarily to the particular list which is the property list in question.
Thus this call to setf should generate code to do the following:

e Bind the temporaries for place-form

e Evaluate ind-form and bind into a temporary

Evaluate the newvalue-form and bind into the store variable

Do the access to place-form

e Do the store into place-form with a possibly new property list obtained
by combining the results of the evaluations and the access

If the evaluation of newvalue-form alters what is found in the given place—
such as setting a different named property in the list—then the change of the
property denoted by ind-form will be to that altered list, because the access
step is done after the newwvalue-form evaluation. Nevertheless, the evalua-
tions required for binding the temporaries are done before the evaluation of the
newvalue-form, thereby preserving the required left-to-right evaluation order.

Note that the phrase “possibly new property list” treats the implementation
of property lists as a “black box”; it can mean that the former property list is
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somehow destructively re-used, or it can mean partial or full copying of it. A
side effect may or may not occur; therefore setf must proceed as if the resultant
property list were a different copy needing to be stored back into the generalized
variable.

The Common Lisp facilities provided to deal with these semantic issues
include:

e Built-in macros such as setf and push that follow the semantic rules.

e The define-modify-macro macro, which allows new generalized-variable
manipulating macros (of a certain restricted kind) to be defined easily. It
takes care of the semantic rules automatically.

e The defsetf macro, which allows new types of generalized-variable refer-
ences to be defined easily. It takes care of the semantic rules automatically.

e The define-setf-method macro and the get-setf-method function, which
provide access to the internal mechanisms when it is necessary to define
a complicated new type of generalized-variable reference or generalized-
variable-manipulating macro.

Also important are the changes that allow lexical environments to be used
in appropriate ways in setf methods.

define-modify-macro name lambda-list function [doc-string] [Macro]

This macro defines a read-modify-write macro named name. An example of such
a macro is incf. The first subform of the macro will be a generalized-variable
reference. The function is literally the function to apply to the old contents of
the generalized-variable to get the new contents; it is not evaluated. lambda-list
describes the remaining arguments for the function; these arguments come from
the remaining subforms of the macro after the generalized-variable reference.
lambda-list may contain &optional and &rest markers. (The &key marker is
not permitted here; &rest suffices for the purposes of define-modify-macro.)
doc-string is documentation for the macro name being defined.

The expansion of a define-modify-macro is equivalent to the following,
except that it generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
doc-string
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))
where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate

provision is made for a &rest parameter.
As an example, incf could have been defined by:

(define-modify-macro incf (&optional (delta 1)) +)

An example of a possibly useful macro not predefined in Common Lisp is
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(define-modify-macro unionf (other-set &rest keywords) union)

X3J13 voted in March 1988 (GET-SETF-METHOD-ENVIRONMENT) to specify
that define-modify-macro creates macros that take &environment arguments
and perform the equivalent of correctly passing such lexical environments to
get-setf-method in order to correctly maintain lexical references.

defsetf access-fn {update-fn [doc-string] | [Macro]
lambda-list (store-variable)
[{declaration}* | doc-string] {form}*}

This defines how to setf a generalized-variable reference of the form (access-
fn ...). The value of a generalized-variable reference can always be obtained
simply by evaluating it, so access-fn should be the name of a function or a
macro.

The user of defsetf provides a description of how to store into the generalized-
variable reference and return the value that was stored (because setf is defined
to return this value). The implementation of defsetf takes care of ensuring
that subforms of the reference are evaluated exactly once and in the proper left-
to-right order. In order to do this, defsetf requires that access-fn be a function
or a macro that evaluates its arguments, behaving like a function. Furthermore,
a setf of a call on access-fn will also evaluate all of access-fn’s arguments; it
cannot treat any of them specially. This means that defsetf cannot be used
to describe how to store into a generalized variable that is a byte, such as (1db
field reference). To handle situations that do not fit the restrictions im-
posed by defsetf, use define-setf-method, which gives the user additional
control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form is

(defsetf access-fn update-fn [doc-string])

The update-fn must name a function (or macro) that takes one more argument
than access-fn takes. When setf is given a place that is a call on access-fn, it
expands into a call on update-fn that is given all the arguments to access-fn and
also, as its last argument, the new value (which must be returned by update-fn
as its value). For example, the effect of

(defsetf symbol-value set)

is built into the Common Lisp system. This causes the expansion
(setf (symbol-value foo) fu) — (set foo fu)

for example. Note that

(defsetf car rplaca)

would be incorrect because rplaca does not return its last argument.
The complex form of defsetf looks like

(defsetf access-fn lambda-list (store-variable) . body)
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and resembles defmacro. The body must compute the expansion of a setf of a
call on access-fn.

The lambda-list describes the arguments of access-fn. &optional, &rest,
and &key markers are permitted in lambda-list. Optional arguments may have
defaults and “supplied-p” flags. The store-variable describes the value to be
stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for an extension
to multiple store variables that would receive multiple values from the second subform
of setf. The rules given below for coding setf methods discuss the proper handling
of multiple store variables to allow for the possibility that this extension may be
incorporated into Common Lisp in the future.

The body forms can be written as if the variables in the lambda-list were
bound to subforms of the call on access-fn and the store-variable were bound to
the second subform of setf. However, this is not actually the case. During the
evaluation of the body forms, these variables are bound to names of temporary
variables, generated as if by gensym or gentemp, that will be bound by the
expansion of setf to the values of those subforms. This binding permits the
body forms to be written without regard for order-of-evaluation issues. defsetf
arranges for the temporary variables to be optimized out of the final result in
cases where that is possible. In other words, an attempt is made by defsetf to
generate the best code possible in a particular implementation.

Note that the code generated by the body forms must include provision for
returning the correct value (the value of store-variable). This is handled by the
body forms rather than by defsetf because in many cases this value can be
returned at no extra cost, by calling a function that simultaneously stores into
the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)
‘(progn (replace ,sequence ,new-sequence
:startl ,start :endl ,end)
,hew-sequence))

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of the expander function defined by the complex form of defsetf is im-
plicitly enclosed in a block construct whose name is the same as the name of
the access-fn. Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 <DEFINING—MACROS—NON—TOP—LEVEL> to clarify
that, while defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts; the complex form of defsetf must define
the expander function within the enclosing lexical environment, not within the
global environment.

The underlying theory by which setf and related macros arrange to con-
form to the semantic rules given above is that from any generalized-variable
reference one may derive its “setf method,” which describes how to store into
that reference and which subforms of it are evaluated.
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Compatibility note: To avoid confusion, it should be noted that the use of the word
“method” here in connection with setf has nothing to do with its use in Lisp Machine
Lisp in connection with message-passing and the Lisp Machine Lisp “flavor system.”
And of course it also has nothing to do with the methods in the Common Lisp Object
System (CLOS).

Given knowledge of the subforms of the reference, it is possible to avoid
evaluating them multiple times or in the wrong order. A setf method for a
given access form can be expressed as five values:

e A list of temporary variables

o A list of walue forms (subforms of the given form) to whose values the
temporary variables are to be bound

A second list of temporary variables, called store variables

A storing form
e An accessing form

The temporary variables will be bound to the values of the value forms as if
by letx*; that is, the value forms will be evaluated in the order given and may
refer to the values of earlier value forms by using the corresponding variables.

The store variables are to be bound to the values of the newvalue form, that
is, the values to be stored into the generalized variable. In almost all cases only
a single value is to be stored, and there is only one store variable.

The storing form and the accessing form may contain references to the tem-
porary variables (and also, in the case of the storing form, to the store variables).
The accessing form returns the value of the generalized variable. The storing
form modifies the value of the generalized variable and guarantees to return
the values of the store variables as its values; these are the correct values for
setf to return. (Again, in most cases there is a single store variable and thus
a single value to be returned.) The value returned by the accessing form is, of
course, affected by execution of the storing form, but either of these forms may
be evaluated any number of times and therefore should be free of side effects
(other than the storing action of the storing form).

The temporary variables and the store variables are generated names, as if by
gensym or gentemp, so that there is never any problem of name clashes among
them, or between them and other variables in the program. This is necessary to
make the special forms that do more than one setf in parallel work properly;
these are psetf, shiftf, and rotatef. Computation of the setf method must
always create new variable names; it may not return the same ones every time.

Some examples of setf methods for particular forms:

e For a variable x:

O
O
(g0001)
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(setq x g0001)
X

e For (car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)
(car g0002)

e For (subseq seq s e):

(g0004 g0005 g0006)

(seq s €)

(g0007)

(progn (replace g0004 g0007 :startl g0005 :endl gO006)
g0007)

(subseq g0004 g0005 g0006)

define-setf-method access-fn lambda-list [Macro]
[{declaration}* | doc-string ] {form}*

This defines how to setf a generalized-variable reference that is of the form
(access-fn...). The value of a generalized-variable reference can always be
obtained simply by evaluating it, so access-fn should be the name of a function
or a macro.

The lambda-list describes the subforms of the generalized-variable refer-
ence, as with defmacro. The result of evaluating the forms in the body must
be five values representing the setf method, as described above. Note that
define-setf-method differs from the complex form of defsetf in that while
the body is being executed the variables in lambda-list are bound to parts of the
generalized-variable reference, not to temporary variables that will be bound
to the values of such parts. In addition, define-setf-method does not have
defsetf’s restriction that access-fn must be a function or a function-like macro;
an arbitrary defmacro destructuring pattern is permitted in lambda-list.

By definition there are no good small examples of define-setf-method
because the easy cases can all be handled by defsetf. A typical use is to define
the setf method for 1db:

X3J13 voted in March 1988 (GET-SETF-METHOD-ENVIRONMENT) to specify
that the &environment lambda-list keyword may appear in the lambda-list in
the same manner as for defmacro in order to obtain the lexical environment of
the call to the setf macro. The preceding example should be modified to take
advantage of this new feature. The setf method must accept an &environment
parameter, which will receive the lexical environment of the call to setf; this
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environment must then be given to get-setf-method in order that it may
correctly use any locally bound setf method that might be applicable to the
place form that appears as the second argument to 1db in the call to setf.

;33 SETF method for the form (LDB bytespec int).
;33 Recall that the int form must itself be suitable for SETF.
;55 Note the use of an &environment parameter to receive the
;3 lexical environment of the call for use with GET-SETF-METHOD.
(define-setf-method 1db (bytespec int &environment env)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int env) ; Get SETF method for int
(let ((btemp (gensym)) ; Temp var for byte specifier
(store (gensym)) ; Temp var for byte to store

(stemp (first stores))) ;Temp var for int to store
;3 Return the SETF method for LDB as five values.
(values (cons btemp temps) ; Temporary variables
(cons bytespec vals) ;Value forms
(list store) ;Store variables

‘(let ((,stemp (dpb ,store ,btemp ,access-form)))
,store-form
,store) ;Storing form
‘(ldb ,btemp ,access-form) ;Accessing form

2D

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of the expander function defined by define-setf-method is implicitly
enclosed in a block construct whose name is the same as the name of the
access-fn. Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 (DEFINING-MACROS-NON-TOP-LEVEL) to clarify
that, while defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts; define-setf-method must define the ex-
pander function within the enclosing lexical environment, not within the global
environment,.

X3J13 voted in March 1988 (GET-SETF-METHOD-ENVIRONMENT) to add an
optional environment argument to get-setf-method. The revised definition
and example are as follows.

get-setf-method form &optional env [Function]

get-setf-method returns five values constituting the setf method for form.
The form must be a generalized-variable reference. The env must be an environ-
ment of the sort obtained through the &environment lambda-list keyword; if env
is nil or omitted, the null lexical environment is assumed. get-setf-method
takes care of error checking and macro expansion and guarantees to return ex-
actly one store variable.

As an example, an extremely simplified version of setf, allowing no more and
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no fewer than two subforms, containing no optimization to remove unnecessary
variables, and not allowing storing of multiple values, could be defined by:

(defmacro setf (reference value &environment env)
(multiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference env) ; Note use of environment

(declare (ignore access-form))

‘(let* , (mapcar #’list
(append vars stores)
(append vals (list value)))

,store-form)))

X3J13 voted in March 1988 (GET-SETF-METHOD-ENVIRONMENT) to add an
optional environment argument to get-setf-method. The revised definition is
as follows.

get-setf-method-multiple-value form &optional env [Function]

get-setf-method-multiple-value returns five values constituting the setf
method for form. The form must be a generalized-variable reference. The
env must be an environment of the sort obtained through the &environment
lambda-list keyword; if env is nil or omitted, the null lexical environment is
assumed.

This is the same as get-setf-method except that it does not check the
number of store variables; use this in cases that allow storing multiple values
into a generalized variable. There are no such cases in standard Common Lisp,
but this function is provided to allow for possible extensions.

X3J13 voted in March 1988 <GET—SETF—METHOD—ENVIRONMENT> to clarify that
a setf method for a functional name is applicable only when the global binding
of that name is lexically visible. If such a name has a local binding introduced
by flet, labels, or macrolet, then global definitions of setf methods for that
name do not apply and are not visible. All of the standard Common Lisp macros
that modify a setf place (for example, incf, decf, pop, and rotatef) obey this
convention.

7.3 Function Invocation

The most primitive form for function invocation in Lisp of course has no name;
any list that has no other interpretation as a macro call or special form is
taken to be a function call. Other constructs are provided for less common but
nevertheless frequently useful situations.

apply function arg &rest more-args [Function]

This applies function to a list of arguments.
X3J13 voted in June 1988 (FUNCTION-TYPE) to allow the function to be
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only of type symbol or function; a lambda-expression is no longer acceptable
as a functional argument. One must use the function special form or the
abbreviation #’ before a lambda-expression that appears as an explicit argument
form. The arguments for the function consist of the last argument to apply
appended to the end of a list of all the other arguments to apply but the
function itself; it is as if all the arguments to apply except the function were
given to 1list* to create the argument list. For example:

(setq £ ’+) (apply £ °(1 2)) = 3
(setq £ #°-) (apply £ (1 2)) = -1
(apply #’max 3 5 °(27 3)) = 7
(apply ’cons ’((+ 2 3) 4)) =

(+23) . 4) not (5. 4)
(apply #°+ °()) = O

Note that if the function takes keyword arguments, the keywords as well as the
corresponding values must appear in the argument list:

(apply #’(lambda (&key a b) (list a b)) ’(:b 3)) = (nil 3)
This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #’make-array size :allow-other-keys t keys)))
(if double (concatenate (type-of v) v v) v)))

(foo 4 :initial-contents ’(a b c d) :double t)
= #(abcdabcd)

funcall fn &rest arguments [Function]

(funcall fn al a2 ... an) applies the function fn to the arguments al, a2,
..., an. The fn may not be a special form or a macro; this would not be mean-
ingful.

X3J13 voted in June 1988 (FUNCTION-TYPE) to allow the fn to be only of type
symbol or function; a lambda-expression is no longer acceptable as a functional
argument. One must use the function special form or the abbreviation #’
before a lambda-expression that appears as an explicit argument form.

For example:

(cons 1 2) = (1 . 2)
(setq cons (symbol-function ’+))
(funcall cons 1 2) = 3

The difference between funcall and an ordinary function call is that the func-
tion is obtained by ordinary Lisp evaluation rather than by the special interpre-
tation of the function position that normally occurs.

Compatibility note: The Common Lisp function funcall corresponds roughly to
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the Interlisp primitive apply*.

call-arguments-limit [Constant]

The value of call-arguments-1limit is a positive integer that is the upper
exclusive bound on the number of arguments that may be passed to a function.
This bound depends on the implementation but will not be smaller than 50. (Im-
plementors are encouraged to make this limit as large as practicable without sac-
rificing performance.) The value of call-arguments-1limit must be at least as
great as that of lambda-parameters-1limit. See also multiple-values-1limit.

7.4 Simple Sequencing

Each of the constructs in this section simply evaluates all the argument forms
in order. They differ only in what results are returned.

progn {form}* [Special form]

The progn construct takes a number of forms and evaluates them sequentially,
in order, from left to right. The values of all the forms but the last are discarded;
whatever the last form returns is returned by the progn form. One says that all
the forms but the last are evaluated for effect, because their execution is useful
only for the side effects caused, but the last form is executed for value.

progn is the primitive control structure construct for “compound state-
ments,” such as begin-end blocks in Algol-like languages. Many Lisp con-
structs are “implicit progn” forms: as part of their syntax each allows many
forms to be written that are to be evaluated sequentially, discarding the results
of all forms but the last and returning the results of the last form.

If the last form of the progn returns multiple values, then those multiple
values are returned by the progn form. If there are no forms for the progn,
then the result is nil. These rules generally hold for implicit progn forms as
well.

progl first {form}* [Macrol

progl is similar to progn, but it returns the value of its first form. All the
argument forms are executed sequentially; the value of the first form is saved
while all the others are executed and is then returned.

progl is most commonly used to evaluate an expression with side effects and
to return a value that must be computed before the side effects happen. For
example:

(progl (car x) (rplaca x ’foo))

alters the car of x to be foo and returns the old car of x.
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progl always returns a single value, even if the first form tries to return
multiple values. As a consequence, (progl z) and (progn z) may behave
differently if z can produce multiple values. See multiple-value-progl. A
point of style: although progl can be used to force exactly a single value to be
returned, it is conventional to use the function values for this purpose.

prog?2 first second {form}* [Macro]

prog2 is similar to progil, but it returns the value of its second form. All the
argument forms are executed sequentially; the value of the second form is saved
while all the other forms are executed and is then returned. prog2 is provided
mostly for historical compatibility.

(prog2 a b c ... 2 = (progn a (progl bc ... 2))

Occasionally it is desirable to perform one side effect, then a value-producing
operation, then another side effect. In such a peculiar case, prog2 is fairly
perspicuous. For example:

(prog2 (open-a-file) (process-the-file) (close-the-file))
;value is that of process-the-file

prog2, like progl, always returns a single value, even if the second form tries
to return multiple values. As a consequence of this, (prog2 z y) and (progn
x y) may behave differently if y can produce multiple values.

7.5 Establishing New Variable Bindings

During the invocation of a function represented by a lambda-expression (or a
closure of a lambda-expression, as produced by function), new bindings are
established for the variables that are the parameters of the lambda-expression.
These bindings initially have values determined by the parameter-binding pro-
tocol discussed in section 5.2.2.

The following constructs may also be used to establish bindings of variables,
both ordinary and functional.

let ({var | (var value)}* ) {declaration}* {form}* [Special form)

A let form can be used to execute a series of forms with specified variables
bound to specified values.
More precisely, the form

(Let ((varl valuel)
(var2 value2)

(varm valuem))
declarationl
declaration?
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declarationp

body1

body2

bodyn)
first evaluates the expressions valuel, value2, and so on, in that order, saving the
resulting values. Then all of the variables varj are bound to the corresponding
values in parallel; each binding will be a lexical binding unless there is a special
declaration to the contrary. The expressions bodyk are then evaluated in order;
the values of all but the last are discarded (that is, the body of a let form is
an implicit progn). The let form returns what evaluating bodyn produces (if
the body is empty, which is fairly useless, let returns nil as its value). The
bindings of the variables have lexical scope and indefinite extent.

Instead of a list (varj wvaluej), one may write simply varj. In this case varjis
initialized to nil. As a matter of style, it is recommended that varj be written
only when that variable will be stored into (such as by setq) before its first
use. If it is important that the initial value be nil rather than some undefined
value, then it is clearer to write out (varj nil) if the initial value is intended

to mean “false,” or (warj ’>()) if the initial value is intended to be an empty
list. Note that the code

(let (%)
(declare (integer x))
(setq x (gcd y z))
.

is incorrect; although x is indeed set before it is used, and is set to a value of
the declared type integer, nevertheless x momentarily takes on the value nil
in violation of the type declaration.

Declarations may appear at the beginning of the body of a 1et. See declare.

See also destructuring-bind.

X3J13 voted in January 1989 (VARIABLE-LIST-ASYMMETRY) to regularize the
binding formats for do, do*, let, let*, prog, prog*, and compiler-let. The
new syntactic definition for let makes the value optional:

let ({var | (var [value])}* ) {declaration}* {form}* [Special form]

This changes let to allow a list (var) to appear, meaning the same as simply
Var.

let* ({var | (var value)}*) {declaration}* {form}* [Special form)

let* is similar to let, but the bindings of variables are performed sequentially
rather than in parallel. This allows the expression for the value of a variable to
refer to variables previously bound in the let* form.

More precisely, the form
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(let* ((varl valuel)
(var2 value2)

(varm valuem))
declarationl
declaration2

declarationp

body1

body2

bodyn)
first evaluates the expression valuel, then binds the variable vari to that value;
then it evaluates value2 and binds var2; and so on. The expressions bodyj are
then evaluated in order; the values of all but the last are discarded (that is, the
body of a let* form is an implicit progn). The let* form returns the results
of evaluating bodyn (if the body is empty, which is fairly useless, let* returns
nil as its value). The bindings of the variables have lexical scope and indefinite
extent.

Instead of a list (varj wvaluej), one may write simply varj. In this case varjis
initialized to nil. As a matter of style, it is recommended that varj be written
only when that variable will be stored into (such as by setq) before its first use.
If it is important that the initial value be nil rather than some undefined value,
then it is clearer to write out (varj nil) if the initial value is intended to mean
“false,” or (warj ’()) if the initial value is intended to be an empty list.

Declarations may appear at the beginning of the body of a let*. See
declare.

X3J13 voted in January 1989 (VARIABLE-LIST-ASYMMETRY) to regularize the
binding formats for do, do*, let, let*, prog, prog*, and compiler-let. The
new syntactic definition for let* makes the value optional:

let* ({var | (var [value])}*) {declaration}* {form}* [Special form)

This changes let* to allow a list (var) to appear, meaning the same as simply
var.

X3J13 voted in June 1989 (COMPILER-LET-CONFUSION) to remove compiler-let
from the language. Many uses of compiler-let can be replaced with more
portable code that uses macrolet or symbol-macrolet.

progv symbols values {form}* [Special form]

progv is a special form that allows binding one or more dynamic variables whose
names may be determined at run time. The sequence of forms (an implicit
progn) is evaluated with the dynamic variables whose names are in the list
symbols bound to corresponding values from the list values. (If too few values
are supplied, the remaining symbols are bound and then made to have no value;
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see makunbound. If too many values are supplied, the excess values are ignored.)
The results of the progv form are those of the last form. The bindings of the
dynamic variables are undone on exit from the progv form. The lists of symbols
and values are computed quantities; this is what makes progv different from,
for example, let, where the variable names are stated explicitly in the program
text.

progv is particularly useful for writing interpreters for languages embedded
in Lisp; it provides a handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list [Special form)
[{declaration}* | doc-string ] {form}*)}*)
{form}*

labels ({(name lambda-list [Special form)
[{declaration}* | doc-string ] {form}*)}*)
{form}*

macrolet ({(name varlist [Special form]
[{declaration}* | doc-string ] {form}*)}*)
{form}*

flet may be used to define locally named functions. Within the body of the
flet form, function names matching those defined by the flet refer to the
locally defined functions rather than to the global function definitions of the
same name.

Any number of functions may be simultaneously defined. Each definition is
similar in format to a defun form: first a name, then a parameter list (which
may contain &optional, &rest, or &key parameters), then optional declarations
and documentation string, and finally a body.

(flet ((safesqrt (x) (sqrt (abs x))))
;3 The safesqrt function is used in two places.
(safesqrt (apply #’+ (map ’list #’safesqrt longlist))))

The labels construct is identical in form to the flet construct. These con-
structs differ in that the scope of the defined function names for flet encom-
passes only the body, whereas for labels it encompasses the function definitions
themselves. That is, 1labels can be used to define mutually recursive functions,
but flet cannot. This distinction is useful. Using flet one can locally redefine
a global function name, and the new definition can refer to the global definition;
the same construction using labels would not have that effect.

(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine
(declare (type (integer 0 *) k))
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(labels ((expt0 (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (exptO (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 1 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))
(exptO n k 1)))

macrolet is similar in form to flet but defines local macros, using the same
format used by defmacro. The names established by macrolet as names for
macros are lexically scoped.

I have observed that, while most Common Lisp users pronounce macrolet
to rhyme with “silhouette,” a small but vocal minority pronounce it to rhyme
with “Chevrolet.” A very few extremists furthermore adjust their pronunciation
of flet similarly: they say “flay.” Hey, hey! Tres outré.

Macros often must be expanded at “compile time” (more generally, at a time
before the program itself is executed), and so the run-time values of variables
are not available to macros defined by macrolet.

X3J13 voted in March 1989 (DEFINING-MACROS-NON-TOP-LEVEL) to retract
the previous sentence and specify that the macro-expansion functions created
by macrolet are defined in the lexical environment in which the macrolet form
appears, not in the null lexical environment. Declarations, macrolet definitions,
and symbol-macrolet definitions affect code within the expansion functions
in a macrolet, but the consequences are undefined if such code attempts to
refer to any local variable or function bindings that are visible in that lexical
environment.

However, lexically scoped entities are visible within the body of the macrolet
form and are visible to the code that is the expansion of a macro call. The
following example should make this clear:

;;; Example of scoping in macrolet.

(defun foo (x flag)
(macrolet ((fudge (z)
;35 The parameters x and flag are not accessible
;5 at this point; a reference to flag would be to
;3 the global variable of that name.

‘(if flag
(* ,z ,2)
,2)))
;5 The parameters x and flag are accessible here.
+ x
(fudge x)

(fudge (+ x 1)))))
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The body of the macrolet becomes

+ x
(if flag
(* x x)
x))
(if flag
(x (+ x 1) (+ x 1))
+x 1))

after macro expansion. The occurrences of x and flag legitimately refer to the
parameters of the function foo because those parameters are visible at the site
of the macro call which produced the expansion.

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of each function or expander function defined by flet, labels, or macrolet
is implicitly enclosed in a block construct whose name is the same as the name
of the function. Therefore return-from may be used to exit from the function.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend flet and labels to
accept any function-name (a symbol or a list whose caris setf— see section 7.1)
as a name for a function to be locally defined. In this way one can create local
definitions for setf expansion functions. (X3J13 explicitly declined to extend
macrolet in the same manner.)

X3J13 voted in March 1988 (FLET-DECLARATIONS) to change flet, labels,
and macrolet to allow declarations to appear before the body. The new de-
scriptions are therefore as follows:

flet ({(name lambda-list [Special form)
[{declaration}* | doc-string] {form}*)}*)
{declaration}* {form}*
labels ({(name lambda-list [Special form)
[{declaration}* | doc-string] {form}*)}*)
{declaration}* {form}*
macrolet ({(name varlist [Special form]
[{declaration}* | doc-string] {form}*)}*)
{declaration}* {form}*

These are now syntactically more similar to such other binding forms as let.

For flet and labels, the bodies of the locally defined functions are part
of the scope of pervasive declarations appearing before the main body. (This
is consistent with the treatment of initialization forms in let.) For macrolet,
however, the bodies of the locally defined macro expander functions are not
included in the scope of pervasive declarations appearing before the main body.
(This is consistent with the rule, stated below, that the bodies of macro expander
functions are in the global environment, not the local lexical environment.) Here
is an example:

(flet ((stretch (x) (* x *stretch-factorx))
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(chop (x) (- x *chop-marginx)))
(declare (inline stretch chop)) ; Illegal in original Common Lisp
(if (> x *chop-margin*) (stretch (chop x)) (chop (stretch x))))

X3J13 voted to permit declarations of the sort noted above.

symbol-macrolet ({(var expansion)}*) [Special form]
{declaration}* {form}*

X3J13 voted in June 1988 (CLOS) to adopt the Common Lisp Object System.
Part of this proposal is a general mechanism, symbol-macrolet, for treating cer-
tain variable names as if they were parameterless macro calls. This facility may
be useful independent of CLOS. X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS)
to modify the definition of symbol-macrolet substantially and also voted (SYMBOL-MACEOLET-DECLARE)
to allow declarations before the body of symbol-macrolet but with peculiar
treatment of special and type declarations.

The forms are executed as an implicit progn in a lexical environment that
causes every reference to any defined var to be replaced by the corresponding
expansion. It is as if the reference to the var were a parameterless macro call;
the expansion is evaluated or otherwise processed in place of the reference (in
particular, the expansion form is itself subject to further expansion—this is one
of the changes (SYMBOL-MACROLET-SEMANTICS) from the original definition in
the CLOS proposal). Note, however, that the names of such symbol macros
occupy the name space of variables, not the name space of functions; just as
one may have a function (or macro, or special form) and a variable with the
same name without interference, so one may have an ordinary macro (or func-
tion, or special form) and a symbol macro with the same name. The use of
symbol-macrolet can therefore be shadowed by let or other constructs that
bind variables; symbol-macrolet does not substitute for all occurrences of a
var as a variable but only for those occurrences that would be construed as
references in the scope of a lexical binding of var as a variable. For example:

(symbol-macrolet ((pollyanna ’goody))
(1ist pollyanna (let ((pollyanna ’two-shoes)) pollyanna)))
= (goody two-shoes), not (goody goody)

One might think that ’goody simply replaces all occurrences of pollyanna, and
so the value of the let would be goody; but this is not so. A little reflection
shows that under this incorrect interpretation the body in expanded form would
be

(1ist ’goody (let ((’goody ’two-shoes)) ’goody))
which is syntactically malformed. The correct expanded form is
(1ist ’goody (let ((pollyanna ’two-shoes)) pollyanna))

because the rebinding of pollyanna by the let form shadows the symbol macro
definition.
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The expansion for each var is not evaluated at binding time but only after
it has replaced a reference to the var. The setf macro allows a symbol macro
to be used as a place, in which case its expansion is used; moreover, setq of a
variable that is really a symbol macro will be treated as if setf had been used.
The values of the last form are returned, or nil if there is no value.

See macroexpand and macroexpand-1; they will expand symbol macros as
well as ordinary macros.

Certain declarations before the body are handled in a peculiar manner; see
section 9.1.

7.6 Conditionals

The traditional conditional construct in Lisp is cond. However, if is much
simpler and is directly comparable to conditional constructs in other program-
ming languages, so it is considered to be primitive in Common Lisp and is
described first. Common Lisp also provides the dispatching constructs case
and typecase, which are often more convenient than cond.

if test then [else] [Special form]

The if special form corresponds to the if-then-else construct found in most
algebraic programming languages. First the form test is evaluated. If the result
is not nil, then the form then is selected; otherwise the form else is selected.
Whichever form is selected is then evaluated, and if returns whatever is re-
turned by evaluation of the selected form.

(if test then else) = (cond (test then) (t else))

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of test is nil then
nothing is done and the value of the if form is nil. If the value of the if
form is important in this situation, then the and construct may be stylistically
preferable, depending on the context. If the value is not important, but only
the effect, then the when construct may be stylistically preferable.

when test {form}* [Macro

(when test form1 form2 ... ) first evaluates test. If the result is nil, then
no form is evaluated, and nil is returned. Otherwise the forms constitute an
implicit progn and are evaluated sequentially from left to right, and the value
of the last one is returned.

(when p a b ¢)
(when p a b ¢)
(when p a b ¢)
(when p a b ¢)

(and p (progn a b ¢))
(cond (p a b ©))

(if p (progn a b ¢) nil)
(unless (not p) a b ¢
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As a matter of style, when is normally used to conditionally produce some side
effects, and the value of the when form is normally not used. If the value is
relevant, then it may be stylistically more appropriate to use and or if.

unless test {form}* [Macrol

(unless test forml1 form2 ... ) first evaluates test. If the result is not nil,
then the forms are not evaluated, and nil is returned. Otherwise the forms
constitute an implicit progn and are evaluated sequentially from left to right,
and the value of the last one is returned.

(cond ((not p) a b )

(if p nil (progn a b ¢))
(when (not p) a b ©

(unless p a b ©
(unless p a b ©
(unless p a b ©

As a matter of style, unless is normally used to conditionally produce some
side effects, and the value of the unless form is normally not used. If the value
is relevant, then it may be stylistically more appropriate to use if.

cond {(test {form}*)}* [Macro]

A cond form has a number (possibly zero) of clauses, which are lists of forms.
Each clause consists of a test followed by zero or more consequents. For example:

(cond (test-1 consequent-1-1 consequent-1-2 ...)
(test-2)
(test-8 consequent-3-1 ...)
)

The first clause whose test evaluates to non-nil is selected; all other clauses are
ignored, and the consequents of the selected clause are evaluated in order (as
an implicit progn).

More specifically, cond processes its clauses in order from left to right. For
each clause, the test is evaluated. If the result is nil, cond advances to the
next clause. Otherwise, the cdr of the clause is treated as a list of forms, or
consequents; these forms are evaluated in order from left to right, as an implicit
progn. After evaluating the consequents, cond returns without inspecting any
remaining clauses. The cond special form returns the results of evaluating the
last of the selected consequents; if there were no consequents in the selected
clause, then the single (and necessarily non-null) value of the test is returned. If
cond runs out of clauses (every test produced nil, and therefore no clause was
selected), the value of the cond form is nil.

If it is desired to select the last clause unconditionally if all others fail, the
standard convention is to use t for the test. As a matter of style, it is desirable
to write a last clause (t nil) if the value of the cond form is to be used for
something. Similarly, it is in questionable taste to let the last clause of a cond
be a “singleton clause”; an explicit t should be provided. (Note moreover that
(cond ... (2)) may behave differently from (cond ... (t 2)) if z might
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produce multiple values; the former always returns a single value, whereas the
latter returns whatever values z returns. However, as a matter of style it is
preferable to obtain this behavior by writing (cond ... (t (values z))),
using the values function explicitly to indicate the discarding of any excess
values.) For example:

(setq z (cond (a ’foo) (b ’bar))) ;Possibly confusing
(setq z (cond (a ’foo) (b ’bar) (t nil))) ;Better

(cond (a b) (c d) (e)) ;Possibly confusing
(cond (a b) (c d) (t e)) ;Better

(cond (a b) (c d) (t (values e))) ;Better (if one value

; needed)

(cond (a b) (c)) ;Possibly confusing
(cond (a b) (t c)) ;Better

(if a b c) ;:Also better

A Lisp cond form may be compared to a continued if-then-else as found in
many algebraic programming languages:

(cond (p ...) if p then ...
(g ...) roughly else if ¢ then ...
(r ... corresponds else if r then ...
ce to
(t ...)) else ...
case keyform {({({key}*) | key} {form}*)}* [Macro]

case is a conditional that chooses one of its clauses to execute by comparing
a value to various constants, which are typically keyword symbols, integers, or
characters (but may be any objects). Its form is as follows:

(case keyform
(keylist-1 consequent-1-1 consequent-1-2 ...)
(keylist-2 consequent-2-1 ...)
(keylist-3 consequent-3-1 ...)
L)

Structurally case is much like cond, and it behaves like cond in selecting one
clause and then executing all consequents of that clause. However, case differs
in the mechanism of clause selection.

The first thing case does is to evaluate the form keyform to produce an
object called the key object. Then case considers each of the clauses in turn.
If key is in the keylist (that is, is eql to any item in the keylist) of a clause,
the consequents of that clause are evaluated as an implicit progn; case returns
what was returned by the last consequent (or nil if there are no consequents in
that clause). If no clause is satisfied, case returns nil.

The keys in the keylists are not evaluated; literal key values must appear in
the keylists. It is an error for the same key to appear in more than one clause; a
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consequence is that the order of the clauses does not affect the behavior of the
case construct.

Instead of a keylist, one may write one of the symbols t and otherwise. A
clause with such a symbol always succeeds and must be the last clause (this is
an exception to the order-independence of clauses). See also ecase and ccase,
each of which provides an implicit otherwise clause to signal an error if no
clause is satisfied.

If there is only one key for a clause, then that key may be written in place
of a list of that key, provided that no ambiguity results. Such a “singleton key”
may not be nil (which is confusable with (), a list of no keys), t, otherwise,
or a cons.

Compatibility note: The Lisp Machine Lisp caseq construct uses eq for the com-

parison. In Lisp Machine Lisp caseq therefore works for fixnums but not bignums.

The MacLisp caseq construct simply prohibits the use of bignums; indeed, it permits

only fixnums and symbols as clause keys. In the interest of hiding the fixnum-bignum

distinction, and for general language consistency, case uses eql in Common Lisp.
The Interlisp selectq construct is similar to case.

typecase keyform {(type {form}*)}* [Macro]

typecase is a conditional that chooses one of its clauses by examining the
type of an object. Its form is as follows:

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 ...)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)
)

Structurally typecase is much like cond or case, and it behaves like them in
selecting one clause and then executing all consequents of that clause. It differs
in the mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce
an object called the key object. Then typecase considers each of the clauses in
turn. The type that appears in each clause is a type specifier; it is not evaluated
but is a literal type specifier. The first clause for which the key is of that
clause’s specified type is selected, the consequents of this clause are evaluated
as an implicit progn, and typecase returns what was returned by the last
consequent (or nil if there are no consequents in that clause). If no clause is
satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for type to indicate
that the clause should always be selected. See also etypecase and ctypecase,
each of which provides an implicit otherwise clause to signal an error if no
clause is satisfied.

It is permissible for more than one clause to specify a given type, particularly
if one is a subtype of another; the earliest applicable clause is chosen. Thus for
typecase, unlike case, the order of the clauses may affect the behavior of the
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construct. For example:

(typecase an-object

(string ...) ;This clause handles strings
((array t) ...) ;This clause handles general arrays
((array bit) ...) ;This clause handles bit arrays
(array ...) ;This handles all other arrays

((or list number) ...) ; This handles lists and numbers
(t ...)) ;This handles all other objects

A Common Lisp compiler may choose to issue a warning if a clause cannot be
selected because it is completely shadowed by earlier clauses.

7.7 Blocks and Exits

The block and return-from constructs provide a structured lexical non-local
exit facility. At any point lexically within a block construct, a return-from
with the same name may be used to perform an immediate transfer of control
that exits from the block. In the most common cases this mechanism is more
efficient than the dynamic non-local exit facility provided by catch and throw,
described in section 7.11.

block name {form}* [Special form]

The block construct executes each form from left to right, returning what-
ever is returned by the last form. If, however, a return or return-from form
that specifies the same name is executed during the execution of some form,
then the results specified by the return or return-from are immediately re-
turned as the value of the block construct, and execution proceeds as if the
block had terminated normally. In this, block differs from progn; the progn
construct has nothing to do with return.

The name is not evaluated; it must be a symbol. The scope of the name is
lexical; only a return or return-from textually contained in some form can exit
from the block. The extent of the name is dynamic. Therefore it is only possible
to exit from a given run-time incarnation of a block once, either normally or by
explicit return.

The defun form implicitly puts a block around the body of the function
defined; the block has the same name as the function. Therefore one may use
return-from to return prematurely from a function defined by defun.

The lexical scoping of the block name is fully general and has consequences
that may be surprising to users and implementors of other Lisp systems. For
example, the return-from in the following example actually does work in Com-
mon Lisp as one might expect:

(block loser
(catch ’stuff
(mapcar #’(lambda (x) (if (numberp x)
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(hairyfun x)
(return-from loser nil)))
items)))

Depending on the situation, a return in Common Lisp may not be simple. A
return can break up catchers if necessary to get to the block in question. It is
possible for a “closure” created by function for a lambda-expression to refer
to a block name as long as the name is lexically apparent.

return-from name [result] [Special form)

return-from is used to return from a block or from such constructs as
do and prog that implicitly establish a block. The name is not evaluated and
must be a symbol. A block construct with the same name must lexically enclose
the occurrence of return-from; whatever the evaluation of result produces is
immediately returned from the block. (If the result form is omitted, it defaults
to nil. As a matter of style, this form ought to be used to indicate that the
particular value returned doesn’t matter.)

The return-from form itself never returns and cannot have a value; it causes
results to be returned from a block construct. If the evaluation of result pro-
duces multiple values, those multiple values are returned by the construct exited.

return [result] [Macrol

(return form) is identical in meaning to (return-from nil form); it re-
turns from a block named nil. Blocks established implicitly by iteration con-
structs such as do are named nil, so that return will exit properly from such
a construct.

7.8 Iteration

Common Lisp provides a number of iteration constructs. The loop construct
provides a trivial iteration facility; it is little more than a progn with a branch
from the bottom back to the top. The do and do* constructs provide a general
iteration facility for controlling the variation of several variables on each cycle.
For specialized iterations over the elements of a list or n consecutive integers,
dolist and dotimes are provided. The tagbody construct is the most general,
permitting arbitrary go statements within it. (The traditional prog construct
is a synthesis of tagbody, block, and let.) Most of the iteration constructs
permit statically defined non-local exits (see return-from and return).

7.8.1 Indefinite Iteration

The loop construct is the simplest iteration facility. It controls no variables,
and simply executes its body repeatedly.
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loop {form}* [Macrol

Each form is evaluated in turn from left to right. When the last form has
been evaluated, then the first form is evaluated again, and so on, in a never-
ending cycle. The loop construct never returns a value. Its execution must be
terminated explicitly, using return or throw, for example.

loop, like most iteration constructs, establishes an implicit block named nil.
Thus return may be used to exit from a loop with specified results.

X3J13 voted in January 1989 (LOOP-FACILITY) to include just such an ex-
tension of loop. See chapter 26.

7.8.2 (General Iteration

In contrast to loop, do and do* provide a powerful and general mechanism for
repetitively recalculating many variables.

do ({(var [init [step]])}*) [Macrol
(end-test {result}*)
{declaration}* {tag | statement}*

do* ({(var [init [step]])}*) [Macrol
(end-test {result}*)
{declaration}* {tag | statement}*

The do special form provides a generalized iteration facility, with an arbitrary
number of “index variables.” These variables are bound within the iteration
and stepped in parallel in specified ways. They may be used both to generate
successive values of interest (such as successive integers) or to accumulate re-
sults. When an end condition is met, the iteration terminates with a specified
value.

In general, a do loop looks like this:

(do ((warl initl stepl)
(var2 init2 step2)

(varn initn stepn))
(end-test . result)
{declaration}*
tagbody)

A do* loop looks exactly the same except that the name do is replaced by do*.

The first item in the form is a list of zero or more index-variable specifiers.
Each index-variable specifier is a list of the name of a variable var, an initial
value init, and a stepping form step. If init is omitted, it defaults to nil. If
step is omitted, the war is not changed by the do construct between repetitions
(though code within the do is free to alter the value of the variable by using
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setq).

An index-variable specifier can also be just the name of a variable. In this
case, the variable has an initial value of nil and is not changed between repeti-
tions. As a matter of style, it is recommended that an unadorned variable name
be written only when that variable will be stored into (such as by setq) before
its first use. If it is important that the initial value be nil rather than some
undefined value, then it is clearer to write out (varj nil) if the initial value is
intended to mean “false,” or (warj > ()) if the initial value is intended to be an
empty list.

X3J13 voted in January 1989 (VARIABLE-LIST-ASYMMETRY) to regularize the
binding formats for do, do*, let, let*, prog, prog*, and compiler-let. In
the case of do and do* the first edition was inconsistent; the formal syntax fails
to reflect the fact that a simple variable name may appear, as described in the
preceding paragraph. The definitions should read

do ({var | (var [init [step]])}*) [Macrol
(end-test {result}*)
{declaration}* {tag | statement}*

do* ({var | (var [init [step]])}*) [Macro]
(end-test {result}*)
{declaration}* {tag | statement}*

for consistency with the reading of the first edition and the X3J13 vote.

Before the first iteration, all the init forms are evaluated, and each wvar is
bound to the value of its respective init. This is a binding, not an assignment;
when the loop terminates, the old values of those variables will be restored. For
do, all of the init forms are evaluated before any var is bound; hence all the init
forms may refer to the old bindings of all the variables (that is, to the values
visible before beginning execution of the do construct). For do*, the first init
form is evaluated, then the first var is bound to that value, then the second init
form is evaluated, then the second var is bound, and so on; in general, the initj
form can refer to the new binding vark if k& < j, and otherwise to the old binding
of vark.

The second element of the loop is a list of an end-testing predicate form
end-test and zero or more result forms. This resembles a cond clause. At
the beginning of each iteration, after processing the variables, the end-test is
evaluated. If the result is nil, execution proceeds with the body of the do (or
do*) form. If the result is not nil, the result forms are evaluated in order as
an implicit progn, and then do returns. do returns the results of evaluating the
last result form. If there are no result forms, the value of do is nil. Note that
this is not quite analogous to the treatment of clauses in a cond form, because
a cond clause with no result forms returns the (non-nil) result of the test.

At the beginning of each iteration other than the first, the index variables
are updated as follows. All the step forms are evaluated, from left to right,
and the resulting values are assigned to the respective index variables. Any
variable that has no associated step form is not assigned to. For do, all the step
forms are evaluated before any variable is updated; the assignment of values to
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variables is done in parallel, as if by psetq. Because all of the step forms are
evaluated before any of the variables are altered, a step form when evaluated
always has access to the old values of all the index variables, even if other step
forms precede it. For dox*, the first step form is evaluated, then the value is
assigned to the first var, then the second step form is evaluated, then the value
is assigned to the second wvar, and so on; the assignment of values to variables is
done sequentially, as if by setq. For either do or do*, after the variables have
been updated, the end-test is evaluated as described above, and the iteration
continues.

If the end-test of a do form is nil, the test will never succeed. Therefore this
provides an idiom for “do forever”: the body of the do is executed repeatedly,
stepping variables as usual. (The loop construct performs a “do forever” that
steps no variables.) The infinite loop can be terminated by the use of return,
return-from, go to an outer level, or throw. For example:

(do ((j O (+ 3 1IN
(nil) ;Do forever
(format t "“%Input “D:" j)
(let ((item (read)))
(if (null item) (return) ; Process items until nil seen
(format t "“&Output “D: ~S" j (process item)))))

The remainder of the do form constitutes an implicit tagbody. Tags may appear
within the body of a do loop for use by go statements appearing in the body
(but such go statements may not appear in the variable specifiers, the end-test,
or the result forms). When the end of a do body is reached, the next iteration
cycle (beginning with the evaluation of step forms) occurs.

An implicit block named nil surrounds the entire do form. A return
statement may be used at any point to exit the loop immediately.

declare forms may appear at the beginning of a do body. They apply to
code in the do body, to the bindings of the do variables, to the init forms, to
the step forms, to the end-test, and to the result forms.

Compatibility note: “Old-style” MacLisp do loops, that is, those of the form (do
var init step end-test . body), are not supported in Common Lisp. Such old-style
loops are considered obsolete and in any case are easily converted to a new-style do
with the insertion of three pairs of parentheses. In practice the compiler can catch
nearly all instances of old-style do loops because they will not have a legal format
anyway.

Here are some examples of the use of do:

(do (i 0 (+ i 1)) ; Sets every null element of a-vector to zero
(n (length a-vector)))
((=1in))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0)))
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The construction

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

exploits parallel assignment to index variables. On the first iteration, the value
of oldx is whatever value x had before the do was entered. On succeeding
iterations, oldx contains the value that x had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in
the step forms of a do, and the body is empty. For example,

(do ((x foo (cdr x))
(y bar (cdr y))
(z O (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #’f foo bar). Note that the step computation
for z exploits the fact that variables are stepped in parallel. Also, the body of
the loop is empty. Finally, the use of nreverse to put an accumulated do loop
result into the correct order is a standard idiom. Another example:

(defun list-reverse (list)
(do ((x list (cdr x))
(y 7O (cons (car x) y)))
((endp x) y)))

Note the use of endp rather than null or atom to test for the end of a list; this
may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The
car of each cons is a list of symbols, and the cdr of each cons is a list of equal
length containing corresponding values. Such a data structure is similar to an
association list but is divided into “frames”; the overall structure resembles a
rib cage. A lookup function on such a data structure might be

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((aull r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the
do loops.)

A do loop may be explained in terms of the more primitive constructs block,
return, let, loop, tagbody, and psetq as follows:
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(block nil
(let ((warl initl)
(var2 init2)

(varn nitn))
{declaration}*
(loop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq warl stepl
var2 step2

vam stepn))))

dox* is exactly like do except that the bindings and steppings of the variables
are performed sequentially rather than in parallel. It is as if, in the above
explanation, let were replaced by let* and psetq were replaced by setq.

7.8.3 Simple Iteration Constructs

The constructs dolist and dotimes execute a body of code once for each value
taken by a single variable. They are expressible in terms of do, but capture very
common patterns of use.

Both dolist and dotimes perform a body of statements repeatedly. On
each iteration a specified variable is bound to an element of interest that the
body may examine. dolist examines successive elements of a list, and dotimes
examines integers from 0 to n — 1 for some specified positive integer n.

The value of any of these constructs may be specified by an optional result
form, which if omitted defaults to the value nil.

The return statement may be used to return immediately from a dolist
or dotimes form, discarding any following iterations that might have been per-
formed; in effect, a block named nil surrounds the construct. The body of
the loop is implicitly a tagbody construct; it may contain tags to serve as the
targets of go statements. Declarations may appear before the body of the loop.

dolist (var listform [resultform]) [Macrol
{declaration}* {tag | statement}*

dolist provides straightforward iteration over the elements of a list. First
dolist evaluates the form listform, which should produce a list. It then exe-
cutes the body once for each element in the list, in order, with the variable var
bound to the element. Then resultform (a single form, not an implicit progn) is
evaluated, and the result is the value of the dolist form. (When the resultform
is evaluated, the control variable var is still bound and has the value nil.) If
resultform is omitted, the result is nil.

(dolist (x ’(a b ¢ d)) (prinl x) (princ " ")) = nil
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after printing “a b ¢ d ” (note the trailing space)
An explicit return statement may be used to terminate the loop and return a
specified value.

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to re-
strict user side effects; see section 7.9.

dotimes (var countform [resultform]) [Macro]
{declaration}* {tag | statement}*

dotimes provides straightforward iteration over a sequence of integers. The
expression (dotimes (war countform resultform) . progbody) evaluates the
form countform, which should produce an integer. It then performs progbody
once for each integer from zero (inclusive) to count (exclusive), in order, with the
variable var bound to the integer; if the value of countform is zero or negative,
then the progbody is performed zero times. Finally, resultform (a single form,
not an implicit progn) is evaluated, and the result is the value of the dotimes
form. (When the resultform is evaluated, the control variable var is still bound
and has as its value the number of times the body was executed.) If resultform
is omitted, the result is nil.

An explicit return statement may be used to terminate the loop and return
a specified value.

Here is an example of the use of dotimes in processing strings:

;55 True if the specified subsequence of the string is a
;35 palindrome (reads the same forwards and backwards).

(defun palindromep (string &optional
(start 0)
(end (length string)))
(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))
(char string (- end k 1)))
(return nil))))

(palindromep "Able was I ere I saw Elba") = t
(palindromep "A man, a plan, a canal--Panama!") = nil
(remove-if-not #’alpha-char-p ; Remove punctuation
"A man, a plan, a canal--Panamal!")
= "AmanaplanacanalPanama"
(palindromep

(remove-if-not #’alpha-char-p
A man, a plan, a canal--Panama!")) = t
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(palindromep
(remove-if-not
#’alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) = t

(palindromep
(remove-if-not
#’alpha-char-p
"A man, a plan, a cat, a ham, a yak,
a yam, a hat, a canal--Panama!")) = t
(palindromep
(remove-if-not
#’alpha-char-p
"Ja-da, ja-da, ja-da ja-da jing jing jing")) = nil
Altering the value of var in the body of the loop (by using setq, for example)

will have unpredictable, possibly implementation-dependent results. A Common
Lisp compiler may choose to issue a warning if such a variable appears in a setq.

Compatibility note: The dotimes construct is the closest thing in Common Lisp to
the Interlisp rptq construct.

See also do-symbols, do-external-symbols, and do-all-symbols.

7.8.4 Mapping

Mapping is a type of iteration in which a function is successively applied to pieces
of one or more sequences. The result of the iteration is a sequence containing
the respective results of the function applications. There are several options for
the way in which the pieces of the list are chosen and for what is done with the
results returned by the applications of the function.

The function map may be used to map over any kind of sequence. The
following functions operate only on lists.

mapcar function list &rest more-lists [Function]
maplist function list &rest more-lists [Function]
mapc function list &rest more-lists [Function]
mapl function list &rest more-lists [Function]
mapcan function list &rest more-lists [Function]
mapcon function list &rest more-lists [Function]

For each of these mapping functions, the first argument is a function and
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the rest must be lists. The function must take as many arguments as there are
lists.

mapcar operates on successive elements of the lists. First the function is
applied to the car of each list, then to the cadr of each list, and so on. (Ideally
all the lists are the same length; if not, the iteration terminates when the shortest
list runs out, and excess elements in other lists are ignored.) The value returned
by mapcar is a list of the results of the successive calls to the function. For
example:

(mapcar #’abs (3 -4 2 -5 -6)) = (34 25 6)
(mapcar #’cons ’(abc) ’(123)) = ((a. 1) (b. 2) (c. 3))

maplist is like mapcar except that the function is applied to the lists and
successive cdr’s of those lists rather than to successive elements of the lists. For
example:

(maplist #’(lambda (x) (cons ’foo x))
’(a b c d)
= ((foo a b c d) (foo b c d) (foo c d) (foo 4))

(maplist #’(lambda (x) (if (member (car x) (cdr x)) 0 1)))
’(abacdbc))
= (0010111
; An entry is 1 if the corresponding element of the input
; list was the last instance of that element in the input list.

mapl and mapc are like maplist and mapcar, respectively, except that they do
not accumulate the results of calling the function.

Compatibility note: In all Lisp systems since Lisp 1.5, mapl has been called map.
In the chapter on sequences it is explained why this was a bad choice. Here the name
map is used for the far more useful generic sequence mapper, in closer accordance with
the computer science literature, especially the growing body of papers on functional
programming. Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the technical
sense used by CLOS (see chapter 2).

These functions are used when the function is being called merely for its side
effects rather than for its returned values. The value returned by mapl or mapc
is the second argument, that is, the first sequence argument.

mapcan and mapcon are like mapcar and maplist, respectively, except that
they combine the results of the function using nconc instead of 1ist. That is,

(mapcon f z! ... zn)
= (apply #’nconc (maplist fzIl ... zn))

and similarly for the relationship between mapcan and mapcar. Conceptually,
these functions allow the mapped function to return a variable number of items
to be put into the output list. This is particularly useful for effectively returning
Zero or one item:
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(mapcan #’ (lambda (x) (and (numberp x) (list x)))
’(@l1bc344d5))
= (1 345)

In this case the function serves as a filter; this is a standard Lisp idiom using
mapcan. (The function remove-if-not might have been useful in this particular
context, however.) Remember that nconc is a destructive operation, and there-
fore so are mapcan and mapcon; the lists returned by the function are altered in
order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping op-
eration; however, the mapping functions should be used wherever they naturally
apply because this increases the clarity of the code.

The functional argument to a mapping function must be acceptable to apply;
it cannot be a macro or the name of a special form. Of course, there is nothing
wrong with using a function that has &optional and &rest parameters as the
functional argument.

X3J13 voted in June 1988 (FUNCTION-TYPE) to allow the function to be
only of type symbol or function; a lambda-expression is no longer acceptable
as a functional argument. One must use the function special form or the
abbreviation #’ before a lambda-expression that appears as an explicit argument
form.

X3J13 voted in January 1989 <MAPPING—DESTRUCTIVE—INTERACTION> to re-
strict user side effects; see section 7.9.

7.8.5 The “Program Feature”

Lisp implementations since Lisp 1.5 have had what was originally called “the
program feature,” as if it were impossible to write programs without it! The
prog construct allows one to write in an Algol-like or Fortran-like statement-
oriented style, using go statements that can refer to tags in the body of the
prog. Modern Lisp programming style tends to use prog rather infrequently.
The various iteration constructs, such as do, have bodies with the characteristics
of a prog. (However, the ability to use go statements within iteration constructs
is very seldom called upon in practice.)

Three distinct operations are performed by prog: it binds local variables, it
permits use of the return statement, and it permits use of the go statement.
In Common Lisp, these three operations have been separated into three distinct
constructs: let, block, and tagbody. These three constructs may be used
independently as building blocks for other types of constructs.

tagbody {tag | statement}* [Special form)

The part of a tagbody after the variable list is called the body. An item in the
body may be a symbol or an integer, in which case it is called a tag, or an item
in the body may be a list, in which case it is called a statement.

Each element of the body is processed from left to right. A tag is ignored; a
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statement is evaluated, and its results are discarded. If the end of the body is

reached, the tagbody returns nil.
If (go tag) is evaluated, control jumps to the part of the body labelled with

the tag.
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Compatibility note: The “computed go” feature of MacLisp is not supported. The
syntax of a computed go is idiosyncratic, and the feature is not supported by Lisp
Machine Lisp, NIL (New Implementation of Lisp), or Interlisp. The computed go
has been infrequently used in MacLisp anyway and is easily simulated with no loss of
efficiency by using a case statement each of whose clauses performs a (non-computed)

go.

The scope of the tags established by a tagbody is lexical, and the extent is
dynamic. Once a tagbody construct has been exited, it is no longer legal to go
to a tag in its body. It is permissible for a go to jump to a tagbody that is not
the innermost tagbody construct containing that go; the tags established by a
tagbody will only shadow other tags of like name.

The lexical scoping of the go targets named by tags is fully general and has
consequences that may be surprising to users and implementors of other Lisp
systems. For example, the go in the following example actually does work in
Common Lisp as one might expect:

(tagbody
(catch ’stuff
(mapcar #’(lambda (x) (if (numberp x)
(hairyfun x)
(go lose)))
items))
(return)
lose
(error "I lost big!"))

Depending on the situation, a go in Common Lisp does not necessarily corre-
spond to a simple machine “jump” instruction. A go can break up catchers if
necessary to get to the target. It is possible for a “closure” created by function
for a lambda-expression to refer to a go target as long as the tag is lexically
apparent. See chapter 3 for an elaborate example of this.

There are some holes in this specification (and that of go) that leave some
room for interpretation. For example, there is no explicit prohibition against
the same tag appearing more than once in the same tagbody body. Every
implementation I know of will complain in the compiler, if not in the interpreter,
if there is a go to such a duplicated tag; but some implementors take the position
that duplicate tags are permitted provided there is no go to such a tag. (“If
a tree falls in the forest, and there is no one there to hear it, then no one
needs to yell ‘Timber!’”) Also, some implementations allow objects other than
symbols, integers, and lists in the body and typically ignore them. Consequently,
some programmers use redundant tags such as —--- for formatting purposes, and
strings as comments:
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(defun dining-philosopher (j)
(tagbody ---
think (unless (hungry) (go think))
"Can’t eat without chopsticks."
(snatch (chopstick j))
(snatch (chopstick (mod (+ j 1) 5)))
eat (when (hungry)
(mapc #’gobble-down
> (twice-cooked-pork kung-pao-chi-ding
wu-dip-har orange-flavor-beef
two-side-yellow-noodles twinkies))
(go eat))
"Can’t think with my neighbors’ stomachs rumbling."
(relinquish (chopstick j))
(relinquish (chopstick (mod (+ j 1) 5)))
(if (happy) (go think)
(become insurance-salesman))))

In certain implementations of Common Lisp they get away with it. Others
abhor what they view as an abuse of unintended ambiguity in the language
specification. For maximum portability, I advise users to steer clear of these
issues. Similarly, it is best to avoid using nil as a tag, even though it is a
symbol, because a few implementations treat nil as a list to be executed. To
be extra careful, avoid calling from within a tagbody a macro whose expansion

might not be a non-nil list; wrap such a call in (progn ...), or rewrite the
macro to return (progn ...) if possible.

prog ({var | (var [init])}*) {declaration}* {tag | statement}* [Macrol
prog* ({var | (var [init])}*) {declaration}* {tag | statement}* [Macro]

The prog construct is a synthesis of let, block, and tagbody, allowing
bound variables and the use of return and go within a single construct. A
typical prog construct looks like this:

(prog (wvarl wvar2 (var8 init3) var4 (vard nith))
{declaration}*
statementl
tagl
statement?2
statement3
statement/
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tag2
statementd

)

The list after the keyword prog is a set of specifications for binding varl, var2,
etc., which are temporary variables bound locally to the prog. This list is
processed exactly as the list in a let statement: first all the init forms are
evaluated from left to right (where nil is used for any omitted init form),
and then the variables are all bound in parallel to the respective results. Any
declaration appearing in the prog is used as if appearing at the top of the let
body.

The body of the prog is executed as if it were a tagbody construct; the go
statement may be used to transfer control to a tag.

A prog implicitly establishes a block named nil around the entire prog
construct, so that return may be used at any time to exit from the prog
construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(prog (x y z) ; Initialize x, y, z to nil
(setq y (car w) z (cdr w))

loop
(cond ((null y) (return x))
((null z) (go err)))
rejoin
(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))
(go loop)
err

(cerror "Will self-pair extraneous items"
"Mismatch - gleep! S" y)

(setq z y)

(go rejoin)))

which is accomplished somewhat more perspicuously by

(defun prince-of-clarity (w)
"Take a cons of two lists and make a list of conses.
Think of this function as being like a zipper."
(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))
(x () (cons (cons (car y) (car z)) x)))
((qull y) x)
(when (null z)
(cerror "Will self-pair extraneous items"
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"Mismatch - gleep! S" y)
(setq z y))))

The prog construct may be explained in terms of the simpler constructs block,
let, and tagbody as follows:

(prog wariable-list {declaration}* . body)
= (block nil (let wariable-list {declaration}* (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is that
the binding and initialization of the temporary variables is done sequentially, so
that the init form for each one can use the values of previous ones. Therefore
prog* is to prog as letx* is to let. For example,

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

I haven’t seen prog used very much in the last several years. Apparently
splitting it into functional constituents (let, block, tagbody) has been a suc-
cess. Common Lisp programmers now tend to use whichever specific construct
is appropriate.

go tag [Special form]

The (go tag) special form is used to do a “go to” within a tagbody construct.
The tag must be a symbol or an integer; the tag is not evaluated. go transfers
control to the point in the body labelled by a tag eql to the one given. If there
is no such tag in the body, the bodies of lexically containing tagbody constructs
(if any) are examined as well. It is an error if there is no matching tag lexically
visible to the point of the go.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before
using a go. Most purposes of go can be accomplished with one of the iteration
primitives, nested conditional forms, or return-from. If the use of go seems
to be unavoidable, perhaps the control structure implemented by go should be
packaged as a macro definition.

7.9 Structure Traversal and Side Effects

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to restrict
side effects during the course of a built-in operation that can execute user-
supplied code while traversing a data structure.

Consider the following example:

(let ((x ’(apples peaches pumpkin pie)))
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(dolist (z x)
(when (eq z ’peaches)
(setf (cddr x) ’(mango kumquat)))
(format t " S " (car z))))

Depending on the details of the implementation of dolist, this bit of code could
easily print

apples peaches mango kumquat

(which is perhaps what was intended), but it might as easily print

apples peaches pumpkin pie

Here is a plausible implementation of dolist that produces the first result:

(defmacro dolist ((var listform &optional (resultform ’’nil))
&body body)
(let ((tailvar (gensym "DOLIST")))
‘(do ((,tailvar ,listform (cdr ,tailvar)))
((null ,tailvar) ,resultform)
(let ((,var (car ,tailvar))) ,@body))

But here is a plausible implementation of dolist that produces the second
result:

(defmacro dolist ((var listform &optional (resultform ’’nil))
&body body)
(let ((tailvar (gensym "DOLIST")))
‘(do ((,tailvar ,listform))
((null ,tailvar) ,resultform)
(let ((,var (pop ,tailvar))) ,@body))

The X3J13 recognizes and legitimizes varying implementation practices: in gen-
eral it is an error for code executed during a “structure-traversing” operation
to destructively modify the structure in a way that might affect the ongoing
traversal operation. The committee identified in particular the following special
cases.

For list traversal operations, the cdr chain may not be destructively modified.

For array traversal operations, the array may not be adjusted (see adjust-array)
and its fill pointer, if any, may not be modified.

For hash table operations (such as with-hash-table-iterator and maphash),
new entries may not be added or deleted, ezcept that the very entry being pro-
cessed by user code may be changed or deleted.

For package symbol operations (for example, with-package-iterator and
do-symbols), new symbols may not be interned in, nor symbols uninterned
from, the packages being traversed or any packages they use, except that the
very symbol being processed by user code may be uninterned.

X3J13 noted that this vote is intended to clarify restrictions on the use of
structure traversal operations that are not themselves inherently destructive; for
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example, it applies to map and dolist. Destructive operators such as delete
require even more complicated restrictions and are addressed by a separate
proposal.

The X3J13 vote did not specify a complete list of the operations to which
these restrictions apply. Table 7.1 shows what I believe to be a complete list of
operations that traverse structures and take user code as a body (in the case of
macros) or as a functional argument (in the case of functions).

In addition, note that user code should not modify list structure that might
be undergoing interpretation by the evaluator, whether explicitly invoked via
eval or implicitly invoked, for example as in the case of a hook function (a
defstruct print function, the value of *evalhook* or *applyhookx, etc.) that
happens to be a closure of interpreted code. Similarly, defstruct print functions
and other hooks should not perform side effects on data structures being printed
or being processed by format, or on a string given to make-string-input-stream.
You get the idea; be sensible.

Note that an operation such as mapcar or dolist traverses not only cdr
pointers (in order to chase down the list) but also car pointers (in order to
obtain the elements themselves). The restriction against modification appears
to apply to all these pointers.

7.10 Multiple Values

Ordinarily the result of calling a Lisp function is a single Lisp object. Sometimes,
however, it is convenient for a function to compute several objects and return
them. Common Lisp provides a mechanism for handling multiple values directly.
This mechanism is cleaner and more efficient than the usual tricks involving
returning a list of results or stashing results in global variables.

7.10.1 Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to
produce multiple values and to receive them. If the caller of a function does not
request multiple values, but the called function produces multiple values, then
the first value is given to the caller and all others are discarded; if the called
function produces zero values, then the caller gets nil as a value.

The primary primitive for producing multiple values is values, which takes
any number of arguments and returns that many values. If the last form in
the body of a function is a values with three arguments, then a call to that
function will return three values. Other special forms also produce multiple
values, but they can be described in terms of values. Some built-in Common
Lisp functions, such as floor, return multiple values; those that do are so
documented.

The special forms and macros for receiving multiple values are as follows:

multiple-value-list
multiple-value-call
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Table 7.1: Structure Traversal Operations Subject to Side Effect Restrictions

adjoin

assoc

assoc-if
assoc-if-not
count

count-if
count-if-not
delete
delete-duplicates
delete-if
delete-if-not
do-all-symbols
do-external-symbols
do-symbols
dolist

eval

every

find

find-if

find-if-not
intersection
certain loop clauses
map

mapc

mapcan

mapcar

mapcon

maphash
mapl

maplist
member
member-if
member-if-not
merge
mismatch
nintersection
notany
notevery
nset-difference
nset-exclusive-or
nsublis

nsubst
nsubst-if
nsubst-if-not
nsubstitute
nsubstitute-if
nsubstitute-if-not
nunion
position
position-if
position-if-not
rassoc
rassoc-if
rassoc-if-not

reduce

remove
remove-duplicates
remove-if
remove-if-not

search

set-difference
set-exclusive-or

some

sort

stable-sort

sublis

subsetp

subst

subst-if

subst-if-not
substitute
substitute-if
substitute-if-not
tree-equal

union
with-hash-table-iterator
with-input-from-string
with-output-to-string
with-package-iterator

multiple-value-progil
multiple-value-bind
multiple-value-setq

These specify a form to evaluate and an indication of where to put the values

returned by that form.

values &rest args

[Function]

All of the arguments are returned, in order, as values. For example:

(defun polar (x y)

(values (sqrt (+ (* x x) (x y y))) (atan y x)))

(multiple-value-bind (r theta) (polar 3.0 4.0)
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(vector r theta))
= #(5.0 0.9272952)

The expression (values) returns zero values. This is the standard idiom for
returning no values from a function.

Sometimes it is desirable to indicate explicitly that a function will return
exactly one value. For example, the function

(defun foo (x y)
(floor (+ x y) y))

will return two values because floor returns two values. It may be that the
second value makes no sense, or that for efficiency reasons it is desired not
to compute the second value. The values function is the standard idiom for
indicating that only one value is to be returned, as shown in the following
example.

(defun foo (x y)
(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argument
forms; as for any function call, if any argument form to values produces more
than one value, all but the first are discarded.

There is absolutely no way in Common Lisp for a caller to distinguish be-
tween returning a single value in the ordinary manner and returning exactly one
“multiple value.” For example, the values returned by the expressions (+ 1 2)
and (values (+ 1 2)) are identical in every respect: the single value 3.

multiple-values-limit [Constant]

The value of multiple-values-limit is a positive integer that is the up-
per exclusive bound on the number of values that may be returned from a
function. This bound depends on the implementation but will not be smaller
than 20. (Implementors are encouraged to make this limit as large as prac-
ticable without sacrificing performance.) See lambda-parameters-limit and
call-arguments-limit.

values-list Iist [Function]
All of the elements of list are returned as multiple values. For example:

(values-1list (list a b ¢)) = (values a b ¢)

In general,

(values-1list list) = (apply #’values list)

but values-1list may be clearer or more efficient.

multiple-value-list form [Macrol
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multiple-value-list evaluates form and returns a list of the multiple val-
ues it returned. For example:

(multiple-value-list (floor -3 4)) = (-1 1)

multiple-value-list and values-1list are therefore inverses of each other.

multiple-value-call function {form}* [Special form)

multiple-value-call first evaluates function to obtain a function and then
evaluates all of the forms. All the values of the forms are gathered together
(not just one value from each) and are all given as arguments to the function.
The result of multiple-value-call is whatever is returned by the function.
For example:

(+ (floor 5 3) (floor 19 4))
=(+14) =5

(multiple-value-call #’+ (floor 5 3) (floor 19 4))
=(+1243) = 10

(multiple-value-list form) = (multiple-value-call #’list form)

multiple-value-progl form {form}* [Special form]

multiple-value-progl evaluates the first form and saves all the values
produced by that form. It then evaluates the other forms from left to right,
discarding their values. The values produced by the first form are returned by
multiple-value-progl. See progl, which always returns a single value.

multiple-value-bind ({var}*) values-form [Macro]
{declaration}* {form}*

The values-form is evaluated, and each of the variables var is bound to the
respective value returned by that form. If there are more variables than values
returned, extra values of nil are given to the remaining variables. If there
are more values than variables, the excess values are simply discarded. The
variables are bound to the values over the execution of the forms, which make
up an implicit progn. For example:

(multiple-value-bind (x) (floor 5 3) (list x)) = (1)
(multiple-value-bind (x y) (floor 5 3) (list x y)) = (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y 2))

= (1 2 nil)

multiple-value-setq variables form [Macro]

The variables must be a list of variables. The form is evaluated, and the variables
are set (not bound) to the values returned by that form. If there are more
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variables than values returned, extra values of nil are assigned to the remaining
variables. If there are more values than variables, the excess values are simply
discarded.

Compatibility note: In Lisp Machine Lisp this is called multiple-value. The
added clarity of the name multiple-value-setq in Common Lisp was deemed worth
the incompatibility with Lisp Machine Lisp.

multiple-value-setq always returns a single value, which is the first value
returned by form, or nil if form produces zero values.

X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS) to specify that if
any var refers not to an ordinary variable but to a binding made by symbol-macrolet,
then that var is handled as if setq were used to assign the appropriate value to
it.

nth-value n form [Macro]

X3J13 voted in January 1989 (NTH-VALUE) to add a new macro named nth-value.
The argument forms n and form are both evaluated. The value of n must be
a non-negative integer, and the form may produce any number of values. The
integer n is used as a zero-based index into the list of values. Value n of the
form is returned as the single value of the nth-value form; nil is returned if
the form produces no more than n values.

As an example, mod could be defined as

(defun mod (number divisor)
(nth-value 1 (floor number divisor)))n

Value number 1 is the second value returned by floor, the first value being
value number 0.
One could define nth-value simply as

(defmacro nth-value (n form)
‘(nth ,n (multiple-value-list ,form)))

but the clever implementor will doubtless find an implementation technique for
nth-value that avoids constructing an intermediate list of all the values of the
form.

7.10.2 Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to be
the value of one of its subforms. For example, the value of a cond is the value
of the last form in the selected clause.

In most such cases, if the subform produces multiple values, then the original
form will also produce all of those values. This passing back of multiple values
of course has no effect unless eventually one of the special forms for receiving
multiple values is reached.
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To be explicit, multiple values can result from a special form under precisely
these circumstances:

FEvaluation and application

e eval returns multiple values if the form given it to evaluate produces
multiple values.

e apply, funcall, and multiple-value-call pass back multiple values
from the function applied or called.

Implicit progn contexts

e The special form progn passes back multiple values resulting from evalua-
tion of the last subform. Other situations referred to as “implicit progn,”
where several forms are evaluated and the results of all but the last form
are discarded, also pass back multiple values from the last form. These
situations include the body of a lambda-expression, in particular those
constructed by defun, defmacro, and deftype. Also included are bod-
ies of the constructs eval-when, progv, let, let*, when, unless, block,
multiple-value-bind, and catch, as well as clauses in such conditional
constructs as case, typecase, ecase, etypecase, ccase, and ctypecase.

X3J13 has voted to add many new constructs to the language that contain
implicit progn contexts. I won’t attempt to list them all here. Of particular
interest, however, is locally, which may be regarded as simply a version of
progn that permits declarations before its body. This provides a useful building
block for constructing macros that permit declarations (but not documentation
strings) before their bodies and pass back any multiple values produced by the
last sub-form of a body. (If a body can contain a documentation string, most
likely lambda is the correct building block to use.)

Conditional constructs

e if passes back multiple values from whichever subform is selected (the
then form or the else form).

e and and or pass back multiple values from the last subform but not from
subforms other than the last.

e cond passes back multiple values from the last subform of the implicit
progn of the selected clause. If, however, the clause selected is a singleton
clause, then only a single value (the non-nil predicate value) is returned.
This is true even if the singleton clause is the last clause of the cond. It is
not permitted to treat a final clause (x) as being the same as (t x) for
this reason; the latter passes back multiple values from the form x.

Returning from a block
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e The block construct passes back multiple values from its last subform
when it exits normally. If return-from (or return) is used to terminate
the block prematurely, then return-from passes back multiple values
from its subform as the values of the terminated block. Other constructs
that create implicit blocks, such as do, dolist, dotimes, prog, and prog*,
also pass back multiple values specified by return-from (or return).

e do passes back multiple values from the last form of the exit clause, exactly
as if the exit clause were a cond clause. Similarly, dolist and dotimes
pass back multiple values from the resultform if that is executed. These
situations are all examples of implicit uses of return-from.

Throwing out of a catch

e The catch construct returns multiple values if the result form in a throw
exiting from such a catch produces multiple values.

Miscellaneous situations

e multiple-value-progl passes back multiple values from its first subform.
However, progl always returns a single value.

e unwind-protect returns multiple values if the form it protects returns
multiple values.

e the returns multiple values if the form it contains returns multiple values.

Among special forms that never pass back multiple values are progl, prog2,
setq, and multiple-value-setq. The conventional way to force only one value
to be returned from a form x is to write (values x).

The most important rule about multiple values is: No matter how many
values a form produces, if the form is an argument form in a function
call, then exactly one value (the first one) is used.

For example, if you write (cons (floor x)), then cons will always receive
ezactly one argument (which is of course an error), even though floor returns
two values. To pass both values from floor to cons, one must write something
like (multiple-value-call #’cons (floor x)). In an ordinary function call,
each argument form produces exactly one argument; if such a form returns zero
values, nil is used for the argument, and if more than one value, all but the first
are discarded. Similarly, conditional constructs such as if that test the value of
a form will use exactly one value, the first one, from that form and discard the
rest; such constructs will use nil as the test value if zero values are returned.

7.11 Dynamic Non-Local Exits

Common Lisp provides a facility for exiting from a complex process in a non-
local, dynamically scoped manner. There are two classes of special forms for
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this purpose, called catch forms and throw forms, or simply catches and throws.
A catch form evaluates some subforms in such a way that, if a throw form is
executed during such evaluation, the evaluation is aborted at that point and the
catch form immediately returns a value specified by the throw. Unlike block
and return (section 7.7), which allow for exiting a block form from any point
lexically within the body of the block, the catch/throw mechanism works even
if the throw form is not textually within the body of the catch form. The throw
need only occur within the extent (time span) of the evaluation of the body
of the catch. This is analogous to the distinction between dynamically bound
(special) variables and lexically bound (local) variables.

catch tag {form}* [Special form]

The catch special form serves as a target for transfer of control by throw. The
form tag is evaluated first to produce an object that names the catch; it may be
any Lisp object. A catcher is then established with the object as the tag. The
forms are evaluated as an implicit progn, and the results of the last form are
returned, except that if during the evaluation of the forms a throw should be
executed such that the tag of the throw matches (is eq to) the tag of the catch
and the catcher is the most recent outstanding catcher with that tag, then the
evaluation of the forms is aborted and the results specified by the throw are
immediately returned from the catch expression. The catcher established by
the catch expression is disestablished just before the results are returned.

The tag is used to match throws with catches. (catch ’foo form) will
catch a (throw ’foo form) but not a (throw ’bar form). It is an error if
throw is done when there is no suitable catch ready to catch it.

Catch tags are compared using eq, not eql; therefore numbers and characters
should not be used as catch tags.

Compatibility note: The name catch comes from MacLisp, but the syntax of catch
in Common Lisp is different. The MacLisp syntax was (catch form tag), where the
tag was not evaluated.

unwind-protect protected-form {cleanup-form}* [Special form)

Sometimes it is necessary to evaluate a form and make sure that certain side
effects take place after the form is evaluated; a typical example is

(progn (start-motor)
(drill-hole)
(stop-motor))

The non-local exit facility of Common Lisp creates a situation in which the
above code won’t work, however: if drill-hole should do a throw to a catch
that is outside of the progn form (perhaps because the drill bit broke), then
(stop-motor) will never be evaluated (and the motor will presumably be left
running). This is particularly likely if drill-hole causes a Lisp error and the
user tells the error-handler to give up and abort the computation. (A possibly
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more practical example might be

(prog2 (open-a-file)
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is terminated
for whatever reason. This case is so important that Common Lisp provides the
special form with-open-file for this purpose.)

In order to allow the example hole-drilling program to work, it can be rewrit-
ten using unwind-protect as follows:

;3 Stop the motor no matter what (even if it failed to start).

(unwind-protect
(progn (start-motor)
(drill-hole))

(stop-motor))

If drill-hole does a throw that attempts to quit out of the unwind-protect,
then (stop-motor) will be executed.

This example assumes that it is correct to call stop-motor even if the motor
has not yet been started. Remember that an error or interrupt may cause an exit
even before any initialization forms have been executed. Any state restoration
code should operate correctly no matter where in the protected code an exit
occurred. For example, the following code is not correct:

(unwind-protect
(progn (incf *access-count*)
(perform-access))
(decf *access-countx*))

If an exit occurs before completion of the incf operation the decf operation
will be executed anyway, resulting in an incorrect value for *access-countx*.
The correct way to code this is as follows:

(let ((old-count *access-countx))
(unwind-protect
(progn (incf *access-count*)
(perform-access))
(setq *access-count* old-count)))

As a general rule, unwind-protect guarantees to execute the cleanup-forms
before exiting, whether it terminates normally or is aborted by a throw of some
kind. (If, however, an exit occurs during execution of the cleanup-forms, no spe-
cial action is taken. The cleanup-forms of an unwind-protect are not protected
by that unwind-protect, though they may be protected if that unwind-protect
occurs within the protected form of another unwind-protect.) unwind-protect
returns whatever results from evaluation of the protected-form and discards all
the results from the cleanup-forms.
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It should be emphasized that unwind-protect protects against all attempts
to exit from the protected form, including not only “dynamic exit” facilities
such as throw but also “lexical exit” facilities such as go and return-from.
Consider this situation:

(tagbody
(Qet ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))
out

)

When the go is executed, the call to print is executed first, and then the transfer
of control to the tag out is completed.

X3J13 voted in March 1989 (EXIT-EXTENT) to clarify the interaction of
unwind-protect with constructs that perform exits.

Let an exit be a point out of which control can be transferred. For a throw
the exit is the matching catch; for a return-from the exit is the corresponding
block. For a go the exit is the statement within the tagbody (the one to which
the target tag belongs) which is being executed at the time the go is performed.

The extent of an exit is dynamic; it is not indefinite. The extent of an exit
begins when the corresponding form (catch, block, or tagbody statement) is
entered. When the extent of an exit has ended, it is no longer legal to return
from it.

Note that the extent of an exit is not the same thing as the scope or extent
of the designator by which the exit is identified. For example, a block name
has lexical scope but the extent of its exit is dynamic. The extent of a catch
tag could differ from the extent of the exit associated with the catch (which is
exactly what is at issue here). The difference matters when there are transfers
of control from the cleanup clauses of an unwind-protect.

When a transfer of control out of an exit is initiated by throw, return-from,
or go, a variety of events occur before the transfer of control is complete:

e The cleanup clauses of any intervening unwind-protect clauses are eval-
uated.

e Intervening dynamic bindings of special variables and catch tags are un-
done.

e Intervening exits are abandoned, that is, their extent ends and it is no
longer legal to attempt to transfer control from them.

e The extent of the exit being invoked ends.
e Control is finally passed to the target.

The first edition left the order of these events in some doubt. The implemen-
tation note for throw hinted that the first two processes are interwoven, but
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it was unclear whether it is permissible for an implementation to abandon all
intervening exits before processing any intervening unwind-protect cleanup
clauses.

The clarification adopted by X3J13 is as follows. Intervening exits are aban-
doned as soon as the transfer of control is initiated; in the case of a throw, this
occurs at the beginning of the “second pass” mentioned in the implementation
note. It is an error to attempt a transfer of control to an exit whose dynamic
extent has ended.

Next the evaluation of unwind-protect cleanup clauses and the undoing of
dynamic bindings and catch tags are performed together, in the order corre-
sponding to the reverse of the order in which they were established. The effect of
this is that the cleanup clauses of an unwind-protect will see the same dynamic
bindings of variables and catch tags as were visible when the unwind-protect
was entered. (However, some of those catch tags may not be useable because
they correspond to abandoned exit points.)

Finally control is transferred to the originally invoked exit and simultane-
ously that exit is abandoned.

The effect of this specification is that once a program has attempted to
transfer control to a particular exit, an unwind-protect cleanup form cannot
step in and decide to transfer control to a more recent (nested) exit, blithely
forgetting the original exit request. However, a cleanup form may restate the
request to transfer to the same exit that started the cleanup process.

Here is an example based on a nautical metaphor. The function gently
moves an oar in the water with low force, but if an oar gets stuck, the caller
will catch a crab. The function row takes a boat, an oar-stroking function, a
stream, and a count; an oar is constructed for the boat and stream and the oar-
stroking function is called :count times. The function life rows a particular
boat. Merriment follows, except that if the oarsman is winded he must stop to
catch his breath.

(defun gently (oar)
(stroke oar :force 0.5)
(when (stuck oar)

(throw ’crab nil)))

(defun row (boat stroke-fn stream &key count)
(let ((oar (make-oar boat stream)))
(loop repeat count do (funcall stroke-fn oar))))

(defun life O
(catch ’crab
(catch ’breath
(unwind-protect
(row *your-boat* #’gently *query-io* :count 3))
(when (winded) (throw ’breath nil)))
(loop repeat 4 (set-mode :merry))
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(dream))))

Suppose that the oar gets stuck, causing gently to call throw with the tag
crab. The program is then committed to exiting from the outer catch (the
one with the tag crab). As control breaks out of the unwind-protect form,
the winded test is executed. Suppose it is true; then another call to throw
occurs, this time with the tag breath. The inner catch (the one with the tag
breath) has been abandoned as a result of the first throw operation (still in
progress). The clarification voted by X3J13 specifies that the program is in
error for attempting to transfer control to an abandoned exit point. To put it
in terms of the example: once you have begun to catch a crab, you cannot rely
on being able to catch your breath.

Implementations may support longer extents for exits than is required by this
specification, but portable programs may not rely on such extended extents.

(This specification is somewhat controversial. An alternative proposal was
that the abandoning of exits should be lumped in with the evaluation of
unwind-protect cleanup clauses and the undoing of dynamic bindings and
catch tags, performing all in reverse order of establishment. X3J13 agreed
that this approach is theoretically cleaner and more elegant but also more strin-
gent and of little additional practical use. There was some concern that a more
stringent specification might be a great added burden to some implementors
and would achieve only a small gain for users.)

throw tag result [Special form]

The throw special form transfers control to a matching catch construct.
The tag is evaluated first to produce an object called the throw tag; then the
result form is evaluated, and its results are saved (if the result form produces
multiple values, then all the values are saved). The most recent outstanding
catch whose tag matches the throw tag is exited; the saved results are returned
as the value(s) of the catch. A catch matches only if the catch tag is eq to the
throw tag.

In the process, dynamic variable bindings are undone back to the point of
the catch, and any intervening unwind-protect cleanup code is executed. The
result form is evaluated before the unwinding process commences, and whatever
results it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no
unwinding of the stack is performed, and an error is signalled. When the error
is signalled, the outstanding catchers and the dynamic variable bindings are
those in force at the point of the throw.

Implementation note: These requirements imply that throwing should typically
make two passes over the control stack. In the first pass it simply searches for a match-
ing catch. In this search every catch must be considered, but every unwind-protect
should be ignored. On the second pass the stack is actually unwound, one frame
at a time, undoing dynamic bindings and outstanding unwind-protect constructs in
reverse order of creation until the matching catch is reached.
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Compatibility note: The name throw comes from MacLisp, but the syntax of throw
in Common Lisp is different. The MacLisp syntax was (throw form tag), where the

tag was not evaluated.




Chapter 8

Macros

The Common Lisp macro facility allows the user to define arbitrary functions
that convert certain Lisp forms into different forms before evaluating or com-
piling them. This is done at the expression level, not at the character-string
level as in most other languages. Macros are important in the writing of good
code: they make it possible to write code that is clear and elegant at the user
level but that is converted to a more complex or more efficient internal form for
execution.

When eval is given a list whose car is a symbol, it looks for local definitions
of that symbol (by flet, labels, and macrolet); if that fails, it looks for a
global definition. If the definition is a macro definition, then the original list
is said to be a macro call. Associated with the definition will be a function
of two arguments, called the expansion function. This function is called with
the entire macro call as its first argument (the second argument is a lexical
environment); it must return some new Lisp form, called the ezpansion of the
macro call. (Actually, a more general mechanism is involved; see macroexpand.)
This expansion is then evaluated in place of the original form.

When a function is being compiled, any macros it contains are expanded
at compilation time. This means that a macro definition must be seen by the
compiler before the first use of the macro.

More generally, an implementation of Common Lisp has great latitude in
deciding exactly when to expand macro calls within a program. For example,
it is acceptable for the defun special form to expand all macro calls within its
body at the time the defun form is executed and record the fully expanded
body as the body of the function being defined. (An implementation might
even choose always to compile functions defined by defun, even when operating
in an “interpretive” mode.)

Macros should be written so as to depend as little as possible on the execution
environment to produce a correct expansion. To ensure consistent behavior, it is
best to ensure that all macro definitions are available, whether to the interpreter
or compiler, before any code containing calls to those macros is introduced.

In Common Lisp, macros are not functions. In particular, macros cannot be
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used as functional arguments to such functions as apply, funcall, or map; in
such situations, the list representing the “original macro call” does not exist, and
cannot exist, because in some sense the arguments have already been evaluated.

8.1 Macro Definition

The function macro-function determines whether a given symbol is the name
of a macro. The defmacro construct provides a convenient way to define new
macros.

X3J13 voted in March 1988 (MACRO-FUNCTION-ENVIRONMENT) to add an op-
tional environment argument to macro-function.

macro-function symbol &optional env [Function]

The first argument must be a symbol. If the symbol has a function definition
that is a macro definition, whether a local one established in the environment env
by macrolet or a global one established as if by defmacro, then the expansion
function (a function of two arguments, the macro-call form and an environment)
is returned. If the symbol has no function definition, or has a definition as an
ordinary function or as a special form but not as a macro, then nil is returned.
The function macroexpand or macroexpand-1 is the best way to invoke the
expansion function.

It is possible for both macro-function and special-form-p to be true of a
symbol. This is possible because an implementation is permitted to implement
any macro also as a special form for speed. On the other hand, the macro defi-
nition must be available for use by programs that understand only the standard
special forms listed in table 5.1.

setf may be used with macro-function to install a macro as a symbol’s
global function definition:

(setf (macro-function symbol) fn)

The value installed must be a function that accepts two arguments, an entire
macro call and an environment, and computes the expansion for that call. Per-
forming this operation causes the symbol to have only that macro definition as
its global function definition; any previous definition, whether as a macro or as
a function, is lost. One cannot use setf to establish a local macro definition; it
is an error to supply a second argument to macro-function when using it with
setf. It is an error to attempt to redefine the name of a special form.
See also compiler-macro-function.

defmacro name lambda-list [{declaration}* | doc-string] {form}*  [Macro]

defmacro is a macro-defining macro that arranges to decompose the macro-call
form in an elegant and useful way. defmacro has essentially the same syntax as
defun: name is the symbol whose macro definition we are creating, lambda-list
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is similar in form to a lambda-list, and the forms constitute the body of the
expander function. The defmacro construct arranges to install this expander
function, as the global macro definition of name.

X3J13 voted in March 1989 (DEFINING-MACROS-NON-TOP-LEVEL) to clarify
that, while defining forms normally appear at top level, it is meaningful to
place them in non-top-level contexts. Furthermore, defmacro should define
the expander function within the enclosing lexical environment, not within the
global environment.

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of the expander function defined by defmacro is implicitly enclosed in a
block construct whose name is the same as the name of the defined macro.
Therefore return-from may be used to exit from the function.

The name is returned as the value of the defmacro form.

If we view the macro call as a list containing a function name and some
argument forms, in effect the expander function and the list of (unevaluated)
argument forms is given to apply. The parameter specifiers are processed as for
any lambda-expression, using the macro-call argument forms as the arguments.
Then the body forms are evaluated as an implicit progn, and the value of the
last form is returned as the expansion of the macro call.

If the optional documentation string doc-string is present (if not followed
by a declaration, it may be present only if at least one form is also specified,
as it is otherwise taken to be a form), then it is attached to the name as a
documentation string of type function; see documentation.

These three markers are now allowed in other constructs as well.

&body This is identical in function to &rest, but it informs certain
output-formatting and editing functions that the remainder of
the form is treated as a body and should be indented accord-
ingly. (Only one of &body or &rest may be used.)

&whole This is followed by a single variable that is bound to the en-
tire macro-call form; this is the value that the macro definition
function receives as its single argument. &whole and the fol-
lowing variable should appear first in the lambda-list, before
any other parameter or lambda-list keyword.

&environment This is followed by a single variable that is bound to an en-
vironment representing the lexical environment in which the
macro call is to be interpreted. This environment may not
be the complete lexical environment; it should be used only
with the function macroexpand for the sake of any local macro
definitions that the macrolet construct may have established
within that lexical environment. This is useful primarily in the
rare cases where a macro definition must explicitly expand any
macros in a subform of the macro call before computing its own
expansion.

See lambda-list-keywords.
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Notice of correction. In the first edition, the symbol &environment at the
left margin above was inadvertently omitted.

X3J13 voted in March 1989 (MACRO-ENVIRONMENT-EXTENT) to specify that
macro environment objects received with the &environment argument of a
macro function have only dynamic extent. The consequences are undefined
if such objects are referred to outside the dynamic extent of that particular in-
vocation of the macro function. This allows implementations to use somewhat
more efficient techniques for representing environment objects.

X3J13 voted in March 1989 (DEFMACRO-LAMBDA-LIST) to clarify the permit-
ted uses of &body, &whole, and &environment:

e &body may appear at any level of a defmacro lambda-list.

e &whole may appear at any level of a defmacro lambda-list. At inner levels
a &whole variable is bound to that part of the argument that matches the
sub-lambda-list in which &whole appears. No matter where &whole is
used, other parameters or lambda-list keywords may follow it.

e Yenvironment may occur only at the outermost level of a defmacro lambda-
list, and it may occur at most once, but it may occur anywhere within
that lambda-list, even before an occurrence of &whole.

defmacro, unlike any other Common Lisp construct that has a lambda-list
as part of its syntax, provides an additional facility known as destructuring.
See destructuring-bind, which provides the destructuring facility separately.
Anywhere in the lambda-list where a parameter name may appear, and where
ordinary lambda-list syntax (as described in section 5.2.2) does not otherwise
allow a list, a lambda-list may appear in place of the parameter name. When
this is done, then the argument form that would match the parameter is treated
as a (possibly dotted) list, to be used as an argument forms list for satisfying
the parameters in the embedded lambda-list. As an example, one could write
the macro definition for dolist in this manner:

(defmacro dolist ((var listform &optional resultform)
&rest body)

More examples of embedded lambda-lists in defmacro are shown below.

Another destructuring rule is that defmacro allows any lambda-list (whether
top-level or embedded) to be dotted, ending in a parameter name. This situation
is treated exactly as if the parameter name that ends the list had appeared
preceded by &rest. For example, the definition skeleton for dolist shown
above could instead have been written

(defmacro dolist ((var listform &optional resultform)
. body)

If the compiler encounters a defmacro, the new macro is added to the compila-
tion environment, and a compiled form of the expansion function is also added
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to the output file so that the new macro will be operative at run time. If this
is not the desired effect, the defmacro form can be wrapped in an eval-when
construct.

It is permissible to use defmacro to redefine a macro (for example, to install
a corrected version of an incorrect definition), or to redefine a function as a
macro. It is an error to attempt to redefine the name of a special form (see
table 5.1) as a macro. See macrolet, which establishes macro definitions over
a restricted lexical scope.

See also define-compiler-macro.

Suppose, for the sake of example, that it were desirable to implement a
conditional construct analogous to the Fortran arithmetic IF statement. (This
of course requires a certain stretching of the imagination and suspension of
disbelief.) The construct should accept four forms: a test-value, a neg-form, a
zero-form, and a pos-form. One of the last three forms is chosen to be executed
according to whether the value of the test-form is positive, negative, or zero.
Using defmacro, a definition for such a construct might look like this:

(defmacro arithmetic-if (test neg-form zero-form pos-form)
(let ((var (gensym)))
“(let ((,var ,test))
(cond ((j ,var 0) ,neg-form)
((= ,var 0) ,zero-form)
(t pos-form)))))

Note the use of the backquote facility in this definition (see section 22.1.3). Also
note the use of gensym to generate a new variable name. This is necessary to
avoid conflict with any variables that might be referred to in meg-form, zero-
form, or pos-form.

If the form is executed by the interpreter, it will cause the function definition
of the symbol arithmetic-if to be a macro associated with which is a two-
argument expansion function roughly equivalent to

(lambda (calling-form environment)
(declare (ignore environment))
(let ((var (gensym)))
(list "let
(list (list 'var (cadr calling-form)))
(list ’cond
(list (list ’j var ’0) (caddr calling-form))
(list (list '= var ’0) (cadddr calling-form))
(list 't (fifth calling-form))))))

The lambda-expression is produced by the defmacro declaration. The calls to
list are the (hypothetical) result of the backquote (¢) macro character and its
associated commas. The precise macro expansion function may depend on the
implementation, for example providing some degree of explicit error checking
on the number of argument forms in the macro call.

Now, if eval encounters
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(- x 4.0)

(- x)

(error ”Strange zero”)
x)

this will be expanded into something like

(let ((g407 (- x 4.0)))
(cond ((j 2407 0) (- x))
((= g407 0) (error ”Strange zero”))

(t x)))

and eval tries again on this new form. (It should be clear now that the back-
quote facility is very useful in writing macros, since the form to be returned
is normally a complex list structure, typically consisting of a mostly constant
template with a few evaluated forms here and there. The backquote template
provides a “picture” of the resulting code, with places to be filled in indicated
by preceding commas.)

To expand on this example, stretching credibility to its limit, we might allow
the pos-form and zero-form to be omitted, allowing their values to default to
nil, in much the same way that the else form of a Common Lisp if construct
may be omitted:

(arithmetic-if

(defmacro arithmetic-if (test neg-form
&optional zero-form pos-form)
(let ((var (gensym)))
“(let ((,var ,test))
(cond ((j ,var 0) ,neg-form)
((= ,var 0) ,zero-form)

(t ,pos-form)))))

Then one could write
(arithmetic-if (- x 4.0) (print x))
which would be expanded into something like

(let ((g408 (- x 4.0)))
(cond ((j g408 0) (print x))
((= g408 0) nil)
(t nil)))

The resulting code is correct but rather silly-looking. One might rewrite the
macro definition to produce better code when pos-form and possibly zero-form
are omitted, or one might simply rely on the Common Lisp implementation to
provide a compiler smart enough to improve the code itself.

Destructuring is a very powerful facility that allows the defmacro lambda-
list to express the structure of a complicated macro-call syntax. If no lambda-list
keywords appear, then the defmacro lambda-list is simply a list, nested to some
extent, containing parameter names at the leaves. The macro-call form must
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have the same list structure. For example, consider this macro definition:

(defmacro halibut ((mouth eyel eye2)
((finl lengthl) (fin2 length2))
tail)

)

Now consider this macro call:

(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales 1)) (f2 (count-scales {2)))
my-favorite-tail)

This would cause the expansion function to receive the following values for its
parameters:

Parameter Value

mouth m

eyel (car eyes)

eye2 (cdr eyes)

finl f1

lengthl (count-scales f1)
fin2 2

length2 (count-scales {2)
tail my-favorite-tail

The following macro call would be in error because there would be no argument
form to match the parameter lengthl:

(halibut (m (car eyes) (cdr eyes))
((f1) (f2 (count-scales 2)))
my-favorite-tail)

The following macro call would be in error because a symbol appears in the call
where the structure of the lambda-list requires a list.

(halibut my-favorite-head
((f1 (count-scales 1)) (f2 (count-scales {2)))
my-favorite-tail)

The fact that the value of the variable my-favorite-head might happen to be
a list is irrelevant here. It is the macro call itself whose structure must match
that of the defmacro lambda-list.

The use of lambda-list keywords adds even greater flexibility. For example,
suppose it is convenient within the expansion function for halibut to be able
to refer to the list whose components are called mouth, eyel, and eye2 as head.
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One may write this:

(defmacro halibut ((&whole head mouth eyel eye2)
((finl lengthl) (fin2 length2))
tail)

Now consider the same valid macro call as before:

(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales 1)) (f2 (count-scales £2)))
my-favorite-tail)

This would cause the expansion function to receive the same values for its pa-
rameters and also a value for the parameter head:

Parameter Value
head (m (car eyes) (cdr eyes))

The stipulation that an embedded lambda-list is permitted only where ordi-
nary lambda-list syntax would permit a parameter name but not a list is made
to prevent ambiguity. For example, one may not write

(defmacro loser (x &optional (a b &rest c) &rest z)

)

because ordinary lambda-list syntax does permit a list following &optional; the
list (a b &rest c) would be interpreted as describing an optional parameter
named a whose default value is that of the form b, with a supplied-p parameter
named &rest (not legal), and an extraneous symbol c in the list (also not legal).
An almost correct way to express this is

(defmacro loser (x &optional ((a b &rest c)) &rest z)

)

The extra set of parentheses removes the ambiguity. However, the definition
is now incorrect because a macro call such as (loser (car pool)) would not
provide any argument form for the lambda-list (a b &rest c), and so the de-
fault value against which to match the lambda-list would be nil because no
explicit default value was specified. This is in error because nil is an empty
list; it does not have forms to satisfy the parameters a and b. The fully correct
definition would be either

(defmacro loser (x &optional ((a b &rest c¢) ’(nil nil)) &rest z)

)

or

(defmacro loser (x &optional ((&optional a b &rest c)) &rest z)

)

These differ slightly: the first requires that if the macro call specifies a explicitly
then it must also specify b explicitly, whereas the second does not have this
requirement. For example,



CHAPTER 8. MACROS 179

(loser (car pool) ((+ x 1)))

would be a valid call for the second definition but not for the first.

8.2 Macro Expansion

The macroexpand function is the conventional means for expanding a macro
call. A hook is provided for a user function to gain control during the expansion
process.

macroexpand form &optional env [Function]

macroexpand-1 form &optional env [Function]

If form is a macro call, then macroexpand-1 will expand the macro call once
and return two values: the expansion and t. If form is not a macro call, then
the two values form and nil are returned.

A form is considered to be a macro call only if it is a cons whose car is a
symbol that names a macro. The environment env is similar to that used within
the evaluator (see evalhook); it defaults to a null environment. Any local macro
definitions established within env by macrolet will be considered. If only form
is given as an argument, then the environment is effectively null, and only global
macro definitions (as established by defmacro) will be considered.

Macro expansion is carried out as follows. Once macroexpand-1 has deter-
mined that a symbol names a macro, it obtains the expansion function for that
macro. The value of the variable *macroexpand-hook* is then called as a func-
tion of three arguments: the expansion function, the form, and the environment
env. The value returned from this call is taken to be the expansion of the macro
call. The initial value of *macroexpand-hook* is funcall, and the net effect is
to invoke the expansion function, giving it form and env as its two arguments.

X3J13 voted in June 1988 (FUNCTION-TYPE) to specify that the value of
*macroexpand-hook* is first coerced to a function before being called as the
expansion interface hook. Therefore its value may be a symbol, a lambda-
expression, or any object of type function.

X3J13 voted in March 1989 (MACRO-ENVIRONMENT-EXTENT) to specify that
macro environment objects received by a *macroexpand-hook* function have
only dynamic extent. The consequences are undefined if such objects are referred
to outside the dynamic extent of that particular invocation of the hook func-
tion. This allows implementations to use somewhat more efficient techniques
for representing environment objects.

X3J13 voted in June 1989 (MACRO-CACHING) to clarify that, while *macroexpand-hook*
may be useful for debugging purposes, despite the original design intent there
is currently no correct portable way to use it for caching macro expansions.

e Caching by displacement (performing a side effect on the macro-call form)
won’t work because the same (eq) macro-call form may appear in distinct



CHAPTER 8. MACROS 180

lexical contexts. In addition, the macro-call form may be a read-only
constant (see quote and also section 25.1).

e Caching by table lookup won’t work because such a table would have to
be keyed by both the macro-call form and the environment, but X3J13
voted in March 1989 (MACRO-ENVIRONMENT-EXTENT) to permit macro en-
vironments to have only dynamic extent.

e Caching by storing macro-call forms and expansions within the environ-
ment object itself would work, but there are no portable primitives that
would allow users to do this.

X3J13 also noted that, although there seems to be no correct portable way to
use *macroexpand-hook* to cache macro expansions, there is no requirement
that an implementation call the macro expansion function more than once for
a given form and lexical environment.

X3J13 voted in March 1989 (SYMBOL-MACROLET-SEMANTICS) to specify that
macroexpand-1 will also expand symbol macros defined by symbol-macrolet;
therefore a form may also be a macro call if it is a symbol. The vote did not
address the interaction of this feature with the *macroexpand-hook* function.
An obvious implementation choice is that the hook function is indeed called and
given a special expansion function that, when applied to the form (a symbol)
and enw, will produce the expansion, just as for an ordinary macro; but this is
only my suggestion.

The evaluator expands macro calls as if through the use of macroexpand-1;
the point is that eval also uses *macroexpand-hooks*.

macroexpand is similar to macroexpand-1, but repeatedly expands form un-
til it is no longer a macro call. (In effect, macroexpand simply calls macroexpand-1
repeatedly until the second value returned is nil.) A second value of t or nil
is returned as for macroexpand-1, indicating whether the original form was a
macro call.

*macroexpand-hook* [Variable]

The value of *macroexpand-hook* is used as the expansion interface hook by
macroexpand-1.

8.3 Destructuring

X3J13 voted in March 1989 (DESTRUCTURING-BIND) to make the destructuring
feature of defmacro available as a separate facility.

destructuring-bind lambda-list expression {declaration}* {form}* [Macro]

This macro binds the variables specified in lambda-list to the correspond-
ing values in the tree structure resulting from evaluating the expression, then
executes the forms as an implicit progn.
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A destructuring-bind lambda-list may contain the lambda-list keywords
&optional, &rest, &key, &allow-other-keys, and &aux; &body and &whole
may also be used as they are in defmacro, but &environment may not be used.
Nested and dotted lambda-lists are also permitted as for defmacro. The idea
is that a destructuring-bind lambda-list has the same format as inner levels
of a defmacro lambda-list.

If the result of evaluating the expression does not match the destructuring
pattern, an error should be signaled.

8.4 Compiler Macros

X3J13 voted in June 1989 (DEFINE-COMPILER-MACRO) to add a facility for defin-
ing compiler macros that take effect only when compiling code, not when inter-
preting it.

The purpose of this facility is to permit selective source-code transformations
only when the compiler is processing the code. When the compiler is about to
compile a non-atomic form, it first calls compiler-macroexpand-1 repeatedly
until there is no more expansion (there might not be any to begin with). Then
it continues its remaining processing, which may include calling macroexpand-1
and so on.

The compiler is required to expand compiler macros. It is unspecified
whether the interpreter does so. The intention is that only the compiler will
do so, but the range of possible “compiled-only” implementation strategies pre-
cludes any firm specification.

define-compiler-macro name lambda-list [Macrol
{declaration | doc-string}* {form}*

This is just like defmacro except the definition is not stored in the symbol
function cell of name and is not seen by macroexpand-1. It is, however, seen by
compiler-macroexpand-1. As with defmacro, the lambda-1list may include
&environment and &whole and may include destructuring. The definition is
global. (There is no provision for defining local compiler macros in the way that
macrolet defines local macros.)

A top-level call to define-compiler-macro in a file being compiled by
compile-file has an effect on the compilation environment similar to that of
a call to defmacro, except it is noticed as a compiler macro (see section 25.1).

Note that compiler macro definitions do not appear in information returned
by function-information;they are global, and their interaction with other lex-
ical and global definitions can be reconstructed by compiler-macro-function.
It is up to code-walking programs to decide whether to invoke compiler macro
expansion.

X3J13 voted in March 1988 (FLET-IMPLICIT-BLOCK) to specify that the
body of the expander function defined by defmacro is implicitly enclosed in a
block construct whose name is the same as the name of the defined macro; pre-
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sumably this applies also to define-compiler-macro. Therefore return-from
may be used to exit from the function.

compiler-macro-function name &optional env [Function]

The name must be a symbol. If it has been defined as a compiler macro, then
compiler-macro-function returns the macro expansion function; otherwise it
returns nil. The lexical environment env may override any global definition for
name by defining a local function or local macro (such as by flet, labels, or
macrolet) in which case nil is returned.

setf may be used with compiler-macro-function to install a function
as the expansion function for the compiler macro name, in the same manner
as for macro-function. Storing the value nil removes any existing compiler
macro definition. As with macro-function, a non-nil stored value must be
a function of two arguments, the entire macro call and the environment. The
second argument to compiler-macro-function must be omitted when it is used
with setf.

compiler-macroexpand form &optional env [Function]

compiler-macroexpand-1 form &optional env [Function]

These are just like macroexpand and macroexpand-1 except that the expander
function is obtained as if by a call to compiler-macro-function on the car of
the form rather than by a call to macro-function. Note that compiler-macroexpand
performs repeated expansion but compiler-macroexpand-1 performs at most
one expansion. Two values are returned, the expansion (or the original form)
and a value that is true if any expansion occurred and nil otherwise.

There are three cases where no expansion happens:

e There is no compiler macro definition for the car of form.

e There is such a definition but there is also a notinline declaration, either
globally or in the lexical environment enw.

e A global compiler macro definition is shadowed by a local function or
macro definition (such as by flet, labels, or macrolet).

Note that if there is no expansion, the original form is returned as the first
value, and nil as the second value.

Any macro expansion performed by the function compiler-macroexpand or
by the function compiler-macroexpand-1 is carried out by calling the function
that is the value of *macroexpand-hook.

A compiler macro may decline to provide any expansion merely by return-
ing the original form. This is useful when using the facility to put “compiler
optimizers” on various function names. For example, here is a compiler macro
that “optimizes” (one would hope) the zero-argument and one-argument cases
of a function called plus:
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(define-compiler-macro plus (&whole form &rest args)
(case (length args)
(00)
(1 (car args))
(t form)))

8.5 Environments

X3J13 voted in June 1989 (SYNTACTIC-ENVIRONMENT-ACCESS) to add some facil-
ities for obtaining information from environment objects of the kind received as
arguments by macro expansion functions, *macroexpand-hook* functions, and
*xevalhook* functions. There is a minimal set of accessors (variable-information,
function-information, and declaration-information) and a constructor
(augment-environment) for environments.

All of the standard declaration specifiers, with the exception of special,
can be defined fairly easily using define-declaration. It also seems to be able
to handle most extended declarations.

The function parse-macro is provided so that users don’t have to write
their own code to destructure macro arguments. This function is not entirely
necessary since X3J13 voted in March 1989 (DESTRUCTURING-BIND) to add
destructuring-bind to the language. However, parse-macro is worth hav-
ing anyway, since any program-analyzing program is going to need to define it,
and the implementation isn’t completely trivial even with destructuring-bind
to build upon.

The function enclose allows expander functions to be defined in a non-
null lexical environment, as required by the vote of X3J13 in March 1989
(DEFINING-MACROS-NON-TOP-LEVEL). It also provides a mechanism by which
a program processing the body of an (eval-when (:compile-toplevel) ...)
form can execute it in the enclosing environment (see issue (EVAL-WHEN-NON-TOP-LEVEL)).

In all of these functions the argument named env is an environment object.
(It is not required that implementations provide a distinguished representation
for such objects.) Optional env arguments default to nil, which represents the
local null lexical environment (containing only global definitions and procla-
mations that are present in the run-time environment). All of these functions
should signal an error of type type-error if the value of an environment argu-
ment is not a syntactic environment object.

The accessor functions variable-information, function-information, and
declaration-information retrieve information about declarations that are in
effect in the environment. Since implementations are permitted to ignore decla-
rations (except for special declarations and optimize safety declarations if
they ever compile unsafe code), these accessors are required only to return infor-
mation about declarations that were explicitly added to the environment using
augment-environment. They might also return information about declarations
recognized and added to the environment by the interpreter or the compiler, but
that is at the discretion of the implementor. Implementations are also permitted
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to canonicalize declarations, so the information returned by the accessors might
not be identical to the information that was passed to augment-environment.

variable-information variable &optional env [Function]

This function returns information about the interpretation of the symbol vari-
able when it appears as a variable within the lexical environment env. Three
values are returned.

The first value indicates the type of definition or binding for variable in env:

nil There is no apparent definition or binding for variable.

:special The wariable refers to a special variable, either declared
or proclaimed.

:lexical The variable refers to a lexical variable.
:symbol-macro The wvariable refers to a symbol-macrolet binding.

:constant Either the variable refers to a named constant defined by
defconstant or the variable is a keyword symbol.

The second value indicates whether there is a local binding of the name. If
the name is locally bound, the second value is true; otherwise, the second value
isnil.

The third value is an a-list containing information about declarations that
apply to the apparent binding of the variable. The keys in the a-list are symbols
that name declaration specifiers, and the format of the corresponding value in
the cdr of each pair depends on the particular declaration name involved. The
standard declaration names that might appear as keys in this a-list are:

dynamic-extent A non-nil value indicates that the variable has been

declared dynamic-extent. If the value is nil, the
pair might be omitted.

ignore A non-nil value indicates that the variable has been
declared ignore. If the value is nil, the pair might
be omitted.

type The value is a type specifier associated with the vari-

able by a type declaration or an abbreviated declara-

tion such as (fixnum wariable). If no explicit asso-

ciation exists, either by proclaim or declare, then

the type specifier is t. It is permissible for imple-

mentations to use a type specifier that is equivalent

to or a supertype of the one appearing in the origi-

nal declaration. If the value is t, the pair might be

omitted.
If an implementation supports additional declaration specifiers that apply to
variable bindings, those declaration names might also appear in the a-list. How-
ever, the corresponding key must not be a symbol that is external in any package
defined in the standard or that is otherwise accessible in the common-1lisp-user
package.
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The a-list might contain multiple entries for a given key. The consequences
of destructively modifying the list structure of this a-list or its elements (except
for values that appear in the a-list as a result of define-declaration) are
undefined.

Note that the global binding might differ from the local one and can be
retrieved by calling variable-information with a null lexical environment.

function-information function &optional env [Function]

This function returns information about the interpretation of the function-name
function when it appears in a functional position within lexical environment env.
Three values are returned.
The first value indicates the type of definition or binding of the function-
name which is apparent in enw:
nil There is no apparent definition for function.

:function The function refers to a function.
:macro The function refers to a macro.

:special-form The function refers to a special form.

Some function-names can refer to both a global macro and a global special
form. In such a case the macro takes precedence and :macro is returned as the
first value.

The second value specifies whether the definition is local or global. If local,
the second value is true; it is nil when the definition is global.

The third value is an a-list containing information about declarations that
apply to the apparent binding of the function. The keys in the a-list are symbols
that name declaration specifiers, and the format of the corresponding values in
the cdr of each pair depends on the particular declaration name involved. The
standard declaration names that might appear as keys in this a-list are:

dynamic-extent A non-nil value indicates that the function has been

declared dynamic-extent. If the value is nil, the
pair might be omitted.

inline The value is one of the symbols inline, notinline,
or nil to indicate whether the function-name has
been declared inline, declared notinline, or nei-
ther, respectively. If the value is nil, the pair might
be omitted.

ftype The value is the type specifier associated with the
function-name in the environment, or the symbol
function if there is no functional type declaration
or proclamation associated with the function-name.
This value might not include all the apparent ftype
declarations for the function-name. It is permissible
for implementations to use a type specifier that is
equivalent to or a supertype of the one that appeared
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in the original declaration. If the value is function,

the pair might be omitted.
If an implementation supports additional declaration specifiers that apply to
function bindings, those declaration names might also appear in the a-list. How-
ever, the corresponding key must not be a symbol that is external in any package
defined in the standard or that is otherwise accessible in the common-1lisp-user
package.

The a-list might contain multiple entries for a given key. In this case the value
associated with the first entry has precedence. The consequences of destructively
modifying the list structure of this a-list or its elements (except for values that
appear in the a-list as a result of define-declaration) are undefined.

Note that the global binding might differ from the local one and can be
retrieved by calling function-information with a null lexical environment.

declaration-information decl-name &optional env [Function]

This function returns information about declarations named by the symbol decl-
name that are in force in the environment env. Only declarations that do not
apply to function or variable bindings can be accessed with this function. The
format of the information that is returned depends on the decl-name involved.
It is required that this function recognize optimize and declaration as
decl-names. The values returned for these two cases are as follows:
optimize A single value is returned, a list whose entries are of the
form (quality value), where quality is one of the stan-
dard optimization qualities (speed, safety, compilation-speed,
space, debug) or some implementation-specific opti-
mization quality, and wvalue is an integer in the range
0 to 3 (inclusive). The returned list always contains
an entry for each of the standard qualities and for
each of the implementation-specific qualities. In the
absence of any previous declarations, the associated
values are implementation-dependent. The list might
contain multiple entries for a quality, in which case the
first such entry specifies the current value. The conse-
quences of destructively modifying this list or its ele-
ments are undefined.

declaration A single value is returned, a list of the declaration
names that have been proclaimed as valid through the
use of the declaration proclamation. The consequences
of destructively modifying this list or its elements are
undefined.
If an implementation is extended to recognize additional declaration specifiers in
declare or proclaim, it is required that either the declaration-information
function should recognize those declarations also or the implementation should
provide a similar accessor that is specialized for that declaration specifier. If
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declaration-informationis used to return the information, the corresponding
decl-name must not be a symbol that is external in any package defined in the
standard or that is otherwise accessible in the common-1isp-user package.

augment-environment env &key :variable :symbol-macro :function :macro
:declare [Function]

This function returns a new environment containing the information present in
env augmented with the information provided by the keyword arguments. It is
intended to be used by program analyzers that perform a code walk.

The arguments are supplied as follows.

:variable

The argument is a list of symbols that will be visible as bound variables in the
new environment. Whether each binding is to be interpreted as special or lexical
depends on special declarations recorded in the environment or provided in
the :declare argument.

:symbol-macro

The argument is a list of symbol macro definitions, each of the form (name defi-
nition) ; that is, the argument is in the same format as the cadr of a symbol-macrolet
special form. The new environment will have local symbol-macro bindings of
each symbol to the corresponding expansion, so that macroexpand will be able
to expand them properly. A type declaration in the :declare argument that
refers to a name in this list implicitly modifies the definition associated with
the name. The effect is to wrap a the form mentioning the type around the
definition.

:function

The argument is a list of function-names that will be visible as local function
bindings in the new environment.

:macro

The argument is a list of local macro definitions, each of the form (name def-
inition). Note that the argument is not in the same format as the cadr of a
macrolet special form. Each definition must be a function of two arguments (a
form and an environment). The new environment will have local macro bindings
of each name to the corresponding expander function, which will be returned
by macro-function and used by macroexpand.

:declare

The argument is a list of declaration specifiers. Information about these declara-
tions can be retrieved from the resulting environment using variable-information,
function-information, and declaration-information.

The consequences of subsequently destructively modifying the list structure
of any of the arguments to this function are undefined.

An error is signaled if any of the symbols naming a symbol macro in the
:symbol-macro argument is also included in the :variable argument. An
error is signaled if any symbol naming a symbol macro in the :symbol-macro
argument is also included in a special declaration specifier in the :declare
argument. An error is signaled if any symbol naming a macro in the :macro
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argument is also included in the :function argument. The condition type of
each of these errors is program-error.

The extent of the returned environment is the same as the extent of the
argument environment env. The result might share structure with env but env
is not modified.

While an environment argument received by an *evalhook* function is per-
mitted to be used as the environment argument to augment-environment,
the consequences are undefined if an attempt is made to use the result of
augment-environment as the environment argument for evalhook. The en-
vironment returned by augment-environment can be used only for syntactic
analysis, that is, as an argument to the functions defined in this section and
functions such as macroexpand.

define-declaration decl-name lambda-list {form}* [Macro]

This macro defines a handler for the named declaration. It is the mechanism
by which augment-environment is extended to support additional declaration
specifiers. The function defined by this macro will be called with two argu-
ments, a declaration specifier whose car is decl-name and the env argument to
augment-environment. This function must return two values. The first value
must be one of the following keywords:

:variable The declaration applies to variable bindings.
:function The declaration applies to function bindings.

:declare The declaration does not apply to bindings.

If the first value is :variable or :function then the second value must be
a list, the elements of which are lists of the form (binding-name key value).
If the corresponding information function (either variable-information or
function-information) is applied to the binding-name and the augmented
environment, the a-list returned by the information function as its third value
will contain the value under the specified key.

If the first value is :declare, the second value must be a cons of the form
(key . walue). The function declaration-information will return value when
applied to the key and the augmented environment.

define-declaration causes decl-name to be proclaimed to be a declaration;
it is as if its expansion included a call (proclaim ’(declaration decl-name)).
As is the case with standard declaration specifiers, the evaluator and compiler
are permitted, but not required, to add information about declaration specifiers
defined with define-declaration to the macro expansion and *evalhookx*
environments.

The consequences are undefined if decl-name is a symbol that can appear as
the car of any standard declaration specifier.

The consequences are also undefined if the return value from a declaration
handler defined with define-declaration includes a key name that is used by
the corresponding accessor to return information about any standard declaration
specifier. (For example, if the first return value from the handler is :variable,
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the second return value may not use the symbols dynamic-extent, ignore, or
type as key names.)

The define-declaration macro does not have any special compile-time
side effects (see section 25.1).

parse-macro name lambda-list body &optional env [Function]

This function is used to process a macro definition in the same way as defmacro
and macrolet. It returns a lambda-expression that accepts two arguments, a
form and an environment. The name, lambda-list, and body arguments corre-
spond to the parts of a defmacro or macrolet definition.

The lambda-list argument may include &environment and &whole and may
include destructuring. The name argument is used to enclose the body in an
implicit block and might also be used for implementation-dependent purposes
(such as including the name of the macro in error messages if the form does not
match the lambda-list).

enclose lambda-expression &optional env [Function]

This function returns an object of type function that is equivalent to what
would be obtained by evaluating ‘ (function ,lambda-ezpression) in a syn-
tactic environment env. The lambda-expression is permitted to reference only
the parts of the environment argument env that are relevant only to syntactic
processing, specifically declarations and the definitions of macros and symbol
macros. The consequences are undefined if the lambda-expression contains any
references to variable or function bindings that are lexically visible in env, any
go to a tag that is lexically visible in enwv, or any return-from mentioning a
block name that is lexically visible in enw.



Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the
Lisp system. With one exception, declarations are completely optional and cor-
rect declarations do not affect the meaning of a correct program. The exception
is that special declarations do affect the interpretation of variable bindings
and references and so must be specified where appropriate. All other declara-
tions are of an advisory nature, and may be used by the Lisp system to aid
the programmer by performing extra error checking or producing more efficient
compiled code. Declarations are also a good way to add documentation to a
program.

Note that it is considered an error for a program to violate a declaration
(such as a type declaration), but an implementation is not required to detect
such errors (though such detection, where feasible, is to be encouraged).

9.1 Declaration Syntax

The declare construct is used for embedding declarations within executable
code. Global declarations and declarations that are computed by a program are
established by the proclaim construct.

X3J13 voted in June 1989 (PROCLAIM-ETC-IN-COMPILE-FILE) to introduce
the new macro declaim, which is guaranteed to be recognized appropriately by
the compiler and is often more convenient than proclaim for establishing global
declarations.

declare {decl-spec}* [Special form)

A declare form is known as a declaration. Declarations may occur only at the
beginning of the bodies of certain special forms; that is, a declaration may occur
only as a statement of such a special form, and all statements preceding it (if
any) must also be declare forms (or possibly documentation strings, in some
cases). Declarations may occur in lambda-expressions and in the forms listed

190



CHAPTER 9. DECLARATIONS 191

here.
define-setf-method labels
defmacro let
defsetf letx*
deftype locally
defun macrolet
do multiple-value-bind
dox* prog
do-all-symbols progx*
do-external-symbols with-input-from-string
do-symbols with-open-file
dolist with-open-stream
dotimes with-output-to-string
flet

Notice of correction. In the first edition, the above list failed to mention
the forms define-setf-method, with-input-from-string, with-open-file,
with-open-stream, and with-output-to-string, even though their individ-
ual descriptions in the first edition specified that declarations may appear in
those forms.

X3J13 voted in June 1989 (CONDITION-RESTARTS) to add with-condition-restarts
and also (DATA-I0) to add print-unreadable-object and with-standard-io-syntax.
The X3J13 vote left it unclear whether these macros permit declarations to ap-
pear at the heads of their bodies. I believe that was the intent, but this is only
my interpretation.

X3J13 voted in June 1988 (CLOS) to adopt the Common Lisp Object System,
which includes the following additional forms in which declarations may occur:

defgeneric generic—-function
define-method-combination generic-labels
defmethod with-added-methods

generic-flet

Furthermore X3J13 voted in January 1989 (SYMBOL-MACROLET-DECLARE) to al-
low declarations to occur before the bodies of these forms:

symbol-macrolet with-slots
with-accessors

There are certain aspects peculiar to symbol-macrolet (and therefore also to
with-accessorsand with-slots, which expand into uses of symbol-macrolet).
An error is signaled if a name defined by symbol-macrolet is declared special,
and a type declaration of a name defined by symbol-macrolet is equivalent in
effect to wrapping a the form mentioning that type around the expansion of
the defined symbol.

It is an error to attempt to evaluate a declaration. Those special forms that
permit declarations to appear perform explicit checks for their presence.

Compatibility note: In MacLisp, declare is a special form that does nothing but
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return the symbol declare as its result. The MacLisp interpreter knows nothing
about declarations but just blindly evaluates them, effectively ignoring them. The
MacLisp compiler recognizes declarations but processes them simply by evaluating
the subforms of the declaration in the compilation context. In Common Lisp it is
important that both the interpreter and compiler recognize declarations (especially
special declarations) and treat them consistently, and so the rules about the structure
and use of declarations have been made considerably more stringent. The odd tricks
played in MacLisp by writing arbitrary forms to be evaluated within a declare form
are better done in both MacLisp and Common Lisp by using eval-when.

It is permissible for a macro call to expand into a declaration and be rec-
ognized as such, provided that the macro call appears where a declaration may
legitimately appear. (However, a macro call may not appear in place of a decl-
spec.)

X3J13 voted in March 1988 (DECLARE-MACROS) to eliminate the recognition
of a declaration resulting from the expansion of a macro call. This feature
proved to be seldom used and awkward to implement in interpreters, compilers,
and other code-analyzing programs.

Under this change, a declaration is recognized only as such if it appears
explicitly, as a list whose car is the symbol declare, in the body of a relevant
special form. (Note, however, that it is still possible for a macro to expand into
a call to the proclaim function.)

Each decl-spec is a list whose caris a symbol specifying the kind of declaration
to be made. Declarations may be divided into two classes: those that concern
the bindings of variables, and those that do not. (The special declaration is
the sole exception: it effectively falls into both classes, as explained below.)
Those that concern variable bindings apply only to the bindings made by the
form at the head of whose body they appear. For example, in

(defun foo (x)
(declare (type float x)) ...

(let ((x "a)) ...)
)

the type declaration applies only to the outer binding of x, and not to the
binding made in the let.

Compatibility note: This represents a difference from MacLisp, in which type dec-
larations are pervasive.

Declarations that do not concern themselves with variable bindings are per-
vasive, affecting all code in the body of the special form. As an example of a
pervasive declaration,

(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function floor should not
be open-coded but called as an out-of-line subroutine.

Some special forms contain pieces of code that, properly speaking, are not
part of the body of the special form. Examples of this are initialization forms
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that provide values for bound variables, and the result forms of iteration con-
structs. In all cases such additional code is within the scope of any pervasive
declarations appearing before the body of the special form. Non-pervasive dec-
larations have no effect on such code, except (of course) in those situations
where the code is defined to be within the scope of the variables affected by
such non-pervasive declarations. For example:

(defun few (x &optional (y *print-circle*))
(declare (special *print-circle*))

)

The reference to *print-circle* in the first line of this example is special
because of the declaration in the second line.

(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ; Second call to foo
(x (* k k)
(declare (inline foo) (special x 7))
(foo x j z))) ;Third call to foo

In this rather nonsensical example, the inline declaration applies to the second
and third calls to foo, but not to the first one. The special declaration of x
causes the let form to make a special binding for x and causes the reference
to x in the body of the let to be a special reference. The reference to x in
the second call to foo is also a special reference. The reference to x in the first
call to foo is a local reference, not a special one. The special declaration of z
causes the reference to z in the call to foo to be a special reference; it will not
refer to the parameter to nonsense named z, because that parameter binding
has not been declared to be special. (The special declaration of z does not
appear in the body of the defun, but in an inner construct, and therefore does
not affect the binding of the parameter.)

X3J13 voted in January 1989 (DECLARATION-SCOPE) to replace the rules
concerning the scope of declarations occurring at the head of a special form or
lambda-expression:

e The scope of a declaration always includes the body forms, as well as any
“stepper” or “result” forms (which are logically part of the body), of the
special form or lambda-expression.

e If the declaration applies to a name binding, then the scope of the decla-
ration also includes the scope of the name binding.

Note that the distinction between pervasive and non-pervasive declarations is
eliminated. An important change from the first edition is that “initialization”
forms are specifically not included as part of the body under the first rule; on
the other hand, in many cases initialization forms may fall within the scope of
certain declarations under the second rule.
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X3J13 also voted in January 1989 (DECLARE-TYPE-FREE) to change the in-
terpretation of type declarations (see section 9.2).

These changes affect the interpretation of some of the examples from the
first edition.

(defun foo (x)
(declare (type float x)) ...

(let ((x "a)) ...)
)

Under the interpretation approved by X3J13, the type declaration applies to
both bindings of x. More accurately, the type declaration is considered to apply
to variable references rather than bindings, and the type declaration refers to
every reference in the body of foo to a variable named x, no matter to what
binding it may refer.

(defun foo (x y) (declare (notinline floor)) ...)

This example of the use of notinline stands unchanged, but the following slight
extension of it would change:

(defun foo (x &optional (y (floor x)))
(declare (notinline floor)) ...)

Under first edition rules, the notinline declaration would be considered to ap-
ply to the call to floor in the initialization form for y. Under the interpretation
approved by X3J13, the notinline would not apply to that particular call to
floor. Instead the user must write something like

(defun foo (x &optional (y (locally (declare (notinline floor))

(floor x))))

(declare (notinline floor)) ...)
or perhaps

ocally (declare (notinline floor
locally (decl line fl
(defun foo (x &optional (y (floor x))) ...))

Similarly, the special declaration in

(defun few (x &optional (y *print-circle*))
(declare (special *print-circle*))

)

is not considered to apply to the reference in the initialization form for y in few.
As for the nonsense example,

(defun nonsense (k x z)
(foo z x) ;First call to foo
(let ((j (foo k x)) ; Second call to foo
(x (" kk)))

(declare (inline foo) (special x 7))
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(foo x j z))) ;Third call to foo

under the interpretation approved by X3J13, the inline declaration is no longer
considered to apply to the second call to foo, because it is in an initialization
form, which is no longer considered in the scope of the declaration. Similarly,
the reference to x in that second call to foo is no longer taken to be a special
reference, but a local reference to the second parameter of nonsense.

X3J13 voted in January 1989 (RETURN-VALUES-UNSPECIFIED) to specify that
locally executes the forms as an implicit progn and returns the value(s) of the
last form.

X3J13 voted in March 1989 (LOCALLY-TOP-LEVEL) to make locally be a
special form rather than a macro. It still has the same syntax.

locally {declaration}* {form}* [Special form)

This change was made to accommodate the new compilation model for top-level
forms in a file (see section 25.1). When a locally form appears at top level, the
forms in its body are processed as top-level forms. This means that one may,
for example, meaningfully use locally to wrap declarations around a defun or
defmacro form:

(locally
(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))
(defun foo (x &optional (y (abs x)) (z (sqrt y)))
(bar x y z)))

Without assurance that this works one must write something cumbersome such
as

(defun foo (x &optional (y (locally
(declare (optimize (safety 3)
(space 3)
(debug 3)
(speed 1))
(abs )))

(z (locally
(declare (optimize (safety 3)
(space 3)
(debug 3)
(speed 1))
(sart y))))
(locally

(declare (optimize (safety 3) (space 3) (debug 3) (speed 1)))
(bar x y 2)))

proclaim decl-spec [Function]
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The function proclaim takes a decl-spec as its argument and puts it into effect
globally. (Such a global declaration is called a proclamation.) Because proclaim
is a function, its argument is always evaluated. This allows a program to com-
pute a declaration and then put it into effect by calling proclaim.

Any variable names mentioned are assumed to refer to the dynamic values
of the variable. For example, the proclamation

(proclaim ’(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always be
a floating-point number. Similarly, any function-names mentioned are assumed
to refer to the global function definition.

A proclamation constitutes a universal declaration, always in force unless
locally shadowed. For example,

(proclaim ’(inline floor))

advises that floor should normally be open-coded in-line by the compiler (but
in the situation

(defun foo (x y) (declare (notinline floor)) ...)

it will be compiled out-of-line anyway in the body of foo, because of the shad-
owing local declaration to that effect).

X3J13 voted in January 1989 (SPECIAL-TYPE-SHADOWING) to clarify that
such shadowing does not occur in the case of type declarations. If there is a local
type declaration for a special variable and there is also a global proclamation for
that same variable, then the value of the variable within the scope of the local
declaration must be a member of the intersection of the two declared types.
This is consistent with the treatment of nested local type declarations on which
X3J13 also voted in January 1989 (DECLARE-TYPE-FREE).

As a special case (so to speak), proclaim treats a special decl-spec as
applying to all bindings as well as to all references of the mentioned variables.
Notice of correction. In the first edition, this sentence referred to a “special
declaration-form.” That was incorrect; proclaim accepts only a decl-spec, not
a declaration-form.

For example, after

(proclaim ’(special x))
in a function definition such as
(defun example (x) ...)

the parameter x will be bound as a special (dynamic) variable rather than as a
lexical (static) variable. This facility should be used with caution. The usual
way to define a globally special variable is with defvar or defparameter.
X3J13 voted in June 1989 (PROCLAIM-ETC-IN-COMPILE-FILE) to clarify that
the compiler is not required to treat calls to proclaim any differently from the
way it treats any other function call. If a top-level call to proclaim is to take
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effect at compile time, it should be surrounded by an appropriate eval-when
form. Better yet, the new macro declaim may be used instead.

declaim decl-spec* [Macro

This macro is syntactically like declare and semantically like proclaim. It is an
executable form and may be used anywhere proclaim may be called. However,
each decl-spec is not evaluated.

If a call to this macro appears at top level in a file being processed by the
file compiler, the proclamations are also made at compile time. As with other
defining macros, it is unspecified whether or not the compile-time side effects of
a declaim persist after the file has been compiled (see section 25.1).

9.2 Declaration Specifiers

Here is a list of valid declaration specifiers for use in declare. A construct is said
to be “affected” by a declaration if it occurs within the scope of a declaration.

special

(special warl var?2 ...) specifies that all of the variables named are to be
considered special. This specifier affects variable bindings but also pervasively
affects references. All variable bindings affected are made to be dynamic bind-
ings, and affected variable references refer to the current dynamic binding rather
than to the current local binding. For example:

efun hack (thing *mo ;The binding of the parameter
defun hack (thing *mod* The bindi f th
(declare (special *mod*)) ; *modx is visible to hack1,
(hackl (car thing))) ; but not that of thing

(defun hackl (arg)
(declare (special *mod*)) ; Declare references to *mod*
; within hack1 to be special
(if (atom arg) *mod*
(cons (hackl (car arg)) (hackl (cdr arg)))))

Note that it is conventional, though not required, to give special variables names
that begin and end with an asterisk.

A special declaration does not affect bindings pervasively. Inner bindings
of a variable implicitly shadow a special declaration and must be explicitly re-
declared to be special. (However, a special proclamation does pervasively affect
bindings; this exception is made for reasons of convenience and compatibility
with MacLisp.) For example:

(proclaim ’(special x)) ;x is always special

(defun example (x y)
(declare (special y))
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(let ((y 3) (x (* x 2)))
(print (+ y (locally (declare (special y)) y)))
(let ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are
special and therefore dynamically scoped, but the middle binding is lexically
scoped. The two arguments to + are different, one being the value, which is 3,
of the lexically bound variable y, and the other being the value of the special
variable named y (a binding of which happens, coincidentally, to lexically sur-
round it at an outer level). All the bindings of x and references to x are special,
however, because of the proclamation that x is always special.

As a matter of style, use of special proclamations should be avoided. The
defvar and defparameter macros are the conventional means for proclaiming
special variables in a program.

type (type type wvarl war2 ...) affects only variable bindings and speci-

fies that the variables mentioned will take on values only of the specified type.
In particular, values assigned to the variables by setq, as well as the initial
values of the variables, must be of the specified type.

X3J13 voted in January 1989 (DECLARE-TYPE-FREE) to alter the interpreta-
tion of type declarations. They are not to be construed to affect “only variable
bindings.” The new rule for a declaration of a variable to have a specified type
is threefold:

e It is an error if, during the execution of any reference to that variable
within the scope of the declaration, the value of the variable is not of the
declared type.

e It is an error if, during the execution of a setq of that variable within
the scope of the declaration, the new value for the variable is not of the
declared type.

e It is an error if, at any moment that execution enters the scope of the
declaration, the value of the variable is not of the declared type.

One may think of a type declaration (declare (type face bodoni)) as im-
plicitly changing every reference to bodoni within the scope of the declara-
tion to (the face bodoni); changing every expression exp assigned to bodoni
within the scope of the declaration to (the face exp); and implicitly executing
(the face bodoni) every time execution enters the scope of the declaration.

These new rules make type declarations much more useful. Under first edi-
tion rules, a type declaration was useless if not associated with a variable bind-
ing; declarations such as in

(locally
(declare (type (byte 8) x y))
(+xv))
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at best had no effect and at worst were erroneous, depending on one’s interpre-
tation of the first edition. Under the interpretation approved by X3J13, such
declarations have “the obvious natural interpretation.”

X3J13 noted that if nested type declarations refer to the same variable, then
all of them have effect; the value of the variable must be a member of the
intersection of the declared types.

Nested type declarations could occur as a result of either macro expansion
or carefully crafted code. There are three cases. First, the inner type might be
a subtype of the outer one:

(defun compare (apples oranges)
(declare (type number apples oranges))
(cond ((typep apples "fixnum)
;; The programmer happens to know that, thanks to
;; constraints imposed by the caller, if APPLES
;; is a fixnum, then ORANGES will be also, and
;; therefore wishes to avoid the unnecessary cost
;; of checking ORANGES. Nevertheless the compiler
;; should be informed to allow it to optimize code.
(locally (declare (type fixnum apples oranges)))
;; Maybe the compiler could have figured
;; out by flow analysis that APPLES must
;; be a fixnum here, but it doesn’t hurt
;; to say it explicitly.
(< apples oranges)))
((or (complex apples)
(complex oranges))
(error ”Not yet implemented. Sorry.”))

)

This is the case most likely to arise in code written completely by hand.

Second, the outer type might be a subtype of the inner one. In this case the
inner declaration has no additional practical effect, but it is harmless. This is
likely to occur if code declares a variable to be of a very specific type and then
passes it to a macro that then declares it to be of a less specific type.

Third, the inner and outer declarations might be for types that overlap,
neither being a subtype of the other. This is likely to occur only as a result
of macro expansion. For example, user code might declare a variable to be of
type integer, and a macro might later declare it to be of type (or fixnum
package); in this case a compiler could intersect the two types to determine
that in this instance the variable may hold only fixnums.

The reader should note that the following code fragment is, perhaps aston-
ishingly, not in error under the interpretation approved by X3J13:

(let ((james .007)
(maxwell 86))
(flet ((spy-swap ()



CHAPTER 9. DECLARATIONS 200

(rotatef james maxwell)))
(locally (declare (integer maxwell))
(spy-swap)
(view-movie " The Sound of Music”)
(spy-swap)
maxwell)))
= 86 (after a couple of hours of Julie Andrews)

The variable maxwell is declared to be an integer over the scope of the type
declaration, not over its extent. Indeed maxwell takes on the non-integer value
.007 while the Trapp family make their escape, but because no reference to
maxwell within the scope of the declaration ever produces a non-integer value,
the code is correct.

Now the assignment to maxwell during the first call to spy-swap, and the
reference to maxwell during the second call, do involve non-integer values, but
they occur within the body of spy-swap, which is not in the scope of the type
declaration! One could put the declaration in a different place so as to include
spy-swap in the scope:

(let ((james .007)
(maxwell 86))
(locally (declare (integer maxwell))
(flet ((spy-swap ()
(rotatef james maxwell)))
(spy-swap) ;Bug!
(view-movie " The Sound of Music”)
(spy-swap)
maxwell)))

and then the code is indeed in error.

X3J132ﬂsov0tedinJHnuaIy1989<FUNCTION—TYPE—ARGUMENT—TYPE—SEMANTICS>
to alter the meaning of the function type specifier when used in type declara-
tions (see section 4.5).

type

(type varl wvar2 ...) is an abbreviation for (type type varl var2 ...), pro-
vided that type is one of the symbols appearing in table 4.1.

Observe that this covers the particularly common case of declaring numeric
variables:

(declare (single-float mass dx dy dz)
(double-float acceleration sum))

In many implementations there is also some advantage to declaring variables to
have certain specialized vector types such as base-string.

ftype

(ftype type function-name-1 function-name-2 ...) specifies that the named
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functions will be of the functional type type, an example of which follows. For
example:

(declare (ftype (function (integer list) t) nth)
(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions mentioned
has a lexically apparent local definition (as made by flet or labels), then
the declaration applies to that local definition and not to the global function
definition.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend ftype declaration
specifiers to accept any function-name (a symbol or a list whose car is setf—see
section 7.1). Thus one may write

(declaim (ftype (function (list) t) (setf cadr)))

to indicate the type of the setf expansion function for cadr.

X3J13 voted in January 1989 (FUNCTION-TYPE-ARGUMENT-TYPE-SEMANTICS)
to alter the meaning of the function type specifier when used in ftype decla-
rations (see section 4.5).

X3J13 voted in January 1989 (DECLARE-FUNCTION-AMBIGUITY) to remove
this interpretation of the function declaration specifier from the language. In-
stead, a declaration specifier

(function var! var2 ...)
is to be treated simply as an abbreviation for
(type function var! var2 ...)

just as for all other symbols appearing in table 4.1.

X3J13 noted that although function appears in table 4.1, the first edition
also discussed it explicitly, with a different meaning, without noting whether the
differing interpretation was to replace or augment the interpretation regarding
table 4.1. Unfortunately there is an ambiguous case: the declaration

(declare (function foo nil string))

can be construed to abbreviate either
(declare (ftype (function () string) foo))
or

(declare (type function foo nil string))

The latter could perhaps be rejected on semantic grounds: it would be an
error to declare nil, a constant, to be of type function. In any case, X3J13
determined that the ice was too thin here; the possibility of confusion is not
worth the convenience of an abbreviation for ftype declarations. The change
also makes the language more consistent.

inline
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(inline functionl function2 ...) specifies that it is desirable for the com-
piler to open-code calls to the specified functions; that is, the code for a speci-
fied function should be integrated into the calling routine, appearing in-line in
place of a procedure call. This may achieve extra speed at the expense of de-
buggability (calls to functions compiled in-line cannot be traced, for example).
This declaration is pervasive. Remember that a compiler is free to ignore this
declaration.

Note that rules of lexical scoping are observed; if one of the functions
mentioned has a lexically apparent local definition (as established by flet or
labels), then the declaration applies to that local definition and not to the
global function definition.

X3J13 voted in October 1988 (PROCLAIM-INLINE-WHERE) to clarify that dur-
ing compilation the inline declaration specifier serves two distinct purposes:
it indicates not only that affected calls to the specified functions should be ex-
panded in-line, but also that affected definitions of the specified functions must
be recorded for possible use in performing such expansions.

Looking at it the other way, the compiler is not required to save function
definitions against the possibility of future expansions unless the functions have
already been proclaimed to be inline. If a function is proclaimed (or de-
claimed) inline before some call to that function but the current definition
of that function was established before the proclamation was processed, it
is implementation-dependent whether that call will be expanded in-line. (Of
course, it is implementation-dependent anyway, because a compiler is always
free to ignore inline declaration specifiers. However, the intent of the commit-
tee is clear: for best results, the user is advised to put any inline proclamation
of a function before any definition of or call to that function.)

Consider these examples:

(defun huey (x) (+ x 100)) ; Compiler need not remember this
(declaim (inline huey dewey))

(defun dewey (y) (huey (sqrt y))) ; Call to huey unlikely to be expanded
(defun louie (z) (dewey (/ z))) ; Call to dewey likely to be expanded

X3J13 voted in March 1989 (FUNCTION-NAME) to extend inline declaration
specifiers to accept any function-name (a symbol or a list whose car is setf—
see section 7.1). Thus one may write (declare (inline (setf cadr))) to
indicate that the setf expansion function for cadr should be compiled in-line.

notinline

(notinline functionl function2 ...) specifies that it is undesirable to com-
pile the specified functions in-line. This declaration is pervasive. A compiler is
not free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions men-
tioned has a lexically apparent local definition (as made by flet or labels),
then the declaration applies to that local definition and not to the global func-
tion definition.

X3J13 voted in March 1989 (FUNCTION-NAME) to extend notinline dec-
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laration specifiers to accept any function-name (a symbol or a list whose car
is setf—see section 7.1). Thus one may write (declare (notinline (setf
cadr))) to indicate that the setf expansion function for cadr should not be
compiled in-line.

X3J13 voted in January 1989 (ALLOW-LOCAL-INLINE) to clarify that the
proper way to define a function gnards that is not inline by default, but for
which a local declaration (declare (inline gnards)) has half a chance of
actually compiling gnards in-line, is as follows:

(declaim (inline gnards))
(defun gnards ...)

(declaim (notinline gnards))

The point is that the first declamation informs the compiler that the definition
of gnards may be needed later for in-line expansion, and the second declamation
prevents any expansions unless and until it is overridden.

While an implementation is never required to perform in-line expansion,
many implementations that do support such expansion will not process inline
requests successfully unless definitions are written with these proclamations in
the manner shown above.

ignore

(ignore wvarl wvar2 ... warn) affects only variable bindings and specifies that
the bindings of the specified variables are never used. It is desirable for a
compiler to issue a warning if a variable so declared is ever referred to or is also
declared special, or if a variable is lexical, never referred to, and not declared
to be ignored.

optimize

(optimize (qualityl valuel) (quality2 value2) ...) advises the compiler that
each quality should be given attention according to the specified corresponding
value. A quality is a symbol; standard qualities include speed (of the object
code), space (both code size and run-time space), safety (run-time error check-
ing), and compilation-speed (speed of the compilation process). X3J13 voted
in October 1988 (OPTIMIZE-DEBUG-INFO) to add the standard quality debug
(ease of debugging). Other qualities may be recognized by particular imple-
mentations. A wvalue should be a non-negative integer, normally in the range
0 to 3. The value 0 means that the quality is totally unimportant, and 3 that
the quality is extremely important; 1 and 2 are intermediate values, with 1 the
“normal” or “usual” value. One may abbreviate (quality 3) to simply quality.
This declaration is pervasive. For example:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)
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(hairy-setup x)
(do (10 (+1i1))
(z x (cdr 2)))
((null 2) 1)
;; This inner loop really needs to burn.
(declare (optimize speed))
(declare (fixnum i))
)

)

declaration

(declaration namel name2 ...) advises the compiler that each namejis a
valid but non-standard declaration name. The purpose of this is to tell one
compiler not to issue warnings for declarations meant for another compiler or
other program processor.

X3J13 voted in June 1989 (PROCLAIM-ETC-IN-COMPILE-FILE) to introduce
the new macro declaim, which is guaranteed to be recognized appropriately by
the compiler and is often more convenient than proclaim for establishing global
declarations.

The declaration declaration specifier may be used with declaim as well as
proclaim. The preceding examples would be better written using declaim, to
ensure that the compiler will process them properly.

(declaim (declaration author
target-language
target-machine))

(declaim (target-language ada)
(target-machine IBM-650))

(defun strangep (x)
(declare (author "Harry Tweeker”))
(member x ’(strange weird odd peculiar)))

X3J13 voted in March 1989 (DYNAMIC-EXTENT) to introduce a new declara-
tion specifier dynamic-extent for variables, and voted in June 1989 (DYNAMIC-EXTENT-FUNCTION)
to extend it to handle function-names as well.

dynamic-extent

(dynamic-extent item! item2 ... itemn) declares that certain variables or
function-names refer to data objects whose extents may be regarded as dynamic;
that is, the declaration may be construed as a guarantee on the part of the
programmer that the program will behave correctly even if the data objects
have only dynamic extent rather than the usual indefinite extent.

Each item may be either a variable name or (function f) where fis a
function-name (see section 7.1). (Of course, (function f) may be abbreviated
in the usual way as #°f)
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It is permissible for an implementation simply to ignore this declaration. In
implementations that do not ignore it, the compiler (or interpreter) is free to
make whatever optimizations are appropriate given this information; the most
common optimization is to stack-allocate the initial value of the object. The
data types that can be optimized in this manner may vary from implementation
to implementation.

The meaning of this declaration can be stated more precisely. We say that
object z is an otherwise inaccessible part of y if and only if making y inaccessible
would make z inaccessible. (Note that every object is an otherwise inaccessible
part of itself.) Now suppose that construct ¢ contains a dynamic-extent dec-
laration for variable (or function) v (which need not be bound by ¢). Consider
the values wy, ..., w, taken on by v during the course of some execution of c.
The declaration asserts that if some object z is an otherwise inaccessible part of
w; whenever w; becomes the value of v, then just after execution of ¢ terminates
x will be either inaccessible or still an otherwise inaccessible part of the value
of v. If this assertion is ever violated, the consequences are undefined.

In some implementations, it is possible to allocate data structures in a way
that will make them easier to reclaim than by general-purpose garbage collection
(for example, on the stack or in some temporary area). The dynamic-extent
declaration is designed to give the implementation the information necessary to
exploit such techniques.

For example, in the code fragment

(let ((x (list 'al bl ’cl))
(y (cons ’a2 (cons b2 (cons 'c2 ’d2)))))
(declare (dynamic-extent x y))

)

it is not difficult to prove that the otherwise inaccessible parts of x include the
three conses constructed by list, and that the otherwise inaccessible parts of y
include three other conses manufactured by the three calls to cons. Given the
presence of the dynamic-extent declaration, a compiler would be justified in
stack-allocating these six conses and reclaiming their storage on exit from the
let form.

Since stack allocation of the initial value entails knowing at the object’s
creation time that the object can be stack-allocated, it is not generally useful
to declare dynamic-extent for variables that have no lexically apparent initial
value. For example,

(defun f ()
(let ((x (list 1 2 3)))
(declare (dynamic-extent x))

)

would permit a compiler to stack-allocate the list in x. However,

(defun g (x) (declare (dynamic-extent x)) ...)
(defun f () (g (list 1 2 3)))
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could not typically permit a similar optimization in £ because of the possibility
of later redefinition of g. Only an implementation careful enough to recompile
f if the definition of g were to change incompatibly could stack-allocate the list
argument to g in f.

Other interesting cases are

(declaim (inline g))
(defun g (x) (declare (dynamic-extent x)) ...)
(defun f () (g (list 1 2 3)))

and

(defun f ()
(flet ((g (x) (declare (dynamic-extent x)) ...))

(g (list 1 2 3))))

In each case some compilers might realize the optimization is possible and others
might not.

An interesting variant of this is the so-called stack-allocated rest list, which
can be achieved (in implementations supporting the optimization) by

(defun f (&rest x)
(declare (dynamic-extent x))

)

Note here that although the initial value of x is not explicitly present, never-
theless in the usual implementation strategy the function f is responsible for
assembling the list for x from the passed arguments, so the £ function can be
optimized by a compiler to construct a stack-allocated list instead of a heap-
allocated list.

Some Common Lisp functions take other functions as arguments; frequently
the argument function is a so-called downward funarg, that is, a functional
argument that is passed only downward and whose extent may therefore be
dynamic.

(flet ((gd (x) (atan (sinh x))))
(declare (dynamic-extent #’gd)) ; mapcar won’t hang on to gd
(mapcar #’gd my-list-of-numbers))
The following three examples are in error, since in each case the value of x is
used outside of its extent.

(length (let ((x (list 1 2 3)))
(declare (dynamic-extent x))
x)) ;Wrong
The preceding code is obviously incorrect, because the cons cells making up

the list in x might be deallocated (thanks to the declaration) before length is
called.

(length (list (let ((x (list 1 2 3)))
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(declare (dynamic-extent x))
x))) ;Wrong

In this second case it is less obvious that the code is incorrect, because one might
argue that the cons cells making up the list in x have no effect on the result
to be computed by length. Nevertheless the code briefly violates the assertion
implied by the declaration and is therefore incorrect. (It is not difficult to
imagine a perfectly sensible implementation of a garbage collector that might
become confused by a cons cell containing a dangling pointer to a list that was
once stack-allocated but then deallocated.)

(progn (let ((x (list 1 2 3)))
(declare (dynamic-extent x))
X) ;Wrong
(print ”Six dollars is your change have a nice day NEXT!”))

In this third case it is even less obvious that the code is incorrect, because the
value of x returned from the let construct is discarded right away by the progn.
Indeed it is, but “right away” isn’t fast enough. The code briefly violates the
assertion implied by the declaration and is therefore incorrect. (If the code is
being interpreted, the interpreter might hang on to the value returned by the
let for some time before it is eventually discarded.)

Here is one last example, one that has little practical import but is theoret-
ically quite instructive.

(dotimes (j 10)
(declare (dynamic-extent j))
(setq foo 3) ;Correct
(setq foo j)) ;Erroneous—but why? (see text)

Since j is an integer by the definition of dotimes, but eq and eql are not
necessarily equivalent for integers, what are the otherwise inaccessible parts of
j, which this declaration requires the body of the dotimes not to “save”? If
the value of j is 3, and the body does (setq foo 3), is that an error? The
answer is no, but the interesting thing is that it depends on the implementation-
dependent behavior of eq on numbers. In an implementation where eq and eql
are equivalent for 3, then 3 is not an otherwise inaccessible part because (eq j
(+ 2 1)) is true, and therefore there is another way to access the object besides
going through j. On the other hand, in an implementation where eq and eql are
not equivalent for 3, then the particular 3 that is the value of j is an otherwise
inaccessible part, but any other 3 is not. Thus (setq foo 3) is valid but (setq
foo j) iserroneous. Since (setq foo j) is erroneous in some implementations,
it is erroneous in all portable programs, but some other implementations may
not be able to detect the error. (If this conclusion seems strange, it may help to
replace 3 everywhere in the preceding argument with some obvious bignum such
as 375374638837424898243 and to replace 10 with some even larger bignum.)

The dynamic-extent declaration should be used with great care. It makes
possible great performance improvements in some situations, but if the user
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misdeclares something and consequently the implementation returns a pointer
into the stack (or stores it in the heap), an undefined situation may result and the
integrity of the Lisp storage mechanism may be compromised. Debugging these
situations may be tricky. Users who have asked for this feature have indicated a
willingness to deal with such problems; nevertheless, I do not encourage casual
users to use this declaration.

An implementation is free to support other (implementation-dependent) dec-
laration specifiers as well. On the other hand, a Common Lisp compiler is free
to ignore entire classes of declaration specifiers (for example, implementation-
dependent declaration specifiers not supported by that compiler’s implementa-
tion), except for the declaration declaration specifier. Compiler implementors
are encouraged, however, to program the compiler to issue by default a warning
if the compiler finds a declaration specifier of a kind it never uses. Such a warn-
ing is required in any case if a declaration specifier is not one of those defined
above and has not been declared in a declaration declaration.

9.3 Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of
some form will be of a particular type. Using declare one can declare the type
of the value held by a bound variable, but there is no easy way to declare the
type of the value of an unnamed form. For this purpose the the special form
is defined; (the type form) means that the value of form is declared to be of

type type.

the value-type form [Special form)

The form is evaluated; whatever it produces is returned by the the form. In
addition, it is an error if what is produced by the form does not conform to
the data type specified by value-type (which is not evaluated). (A given imple-
mentation may or may not actually check for this error. Implementations are
encouraged to make an explicit error check when running interpretively.) In
effect, this declares that the user undertakes to guarantee that the values of the
form will always be of the specified type. For example:

(the string (copy-seq x)) ;The result will be a string

(the integer (4 x 3)) ; The result of + will be an integer
(+ (the integer x) 3) ; The value of x will be an integer
(the (complex rational) (* z 3))

(the (unsigned-byte 8) (logand x mask))

The values type specifier may be used to indicate the types of multiple values:

(the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the-string-table))
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X3J13 voted in June 1989 (THE-AMBIGUITY) to clarify that value-type may
be any valid type specifier whatsoever. The point is that a type specifier need
not be one suitable for discrimination but only for declaration.

In the case that the form produces exactly one value and value-type is not a
values type specifier, one may describe a the form as being entirely equivalent
to

(let ((#1=#:temp form)) (declare (type value-type #1#)) #1#)

A more elaborate expression could be written to describe the case where value-
type is a values type specifier.

Compatibility note: This construct is borrowed from the Interlisp DECL package;
Interlisp, however, allows an implicit progn after the type specifier rather than just a
single form. The MacLisp fixnum-identity and flonum-identity constructs can be
expressed as (the fixnum z) and (the single-float z).




Chapter 10

Symbols

A Lisp symbol is a data object that has three user-visible components:

e The property list is a list that effectively provides each symbol with many
modifiable named components.

e The print name must be a string, which is the sequence of characters used
to identify the symbol. Symbols are of great use because a symbol can
be located once its name is given (typed, say, on a keyboard). One may
ordinarily not alter a symbol’s print name.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to specify it is an error
to alter a print name.

e The package cell must refer to a package object. A package is a data struc-
ture used to locate a symbol once given the symbol’s name. A symbol is
uniquely identified by its name only when considered relative to a package.
A symbol may appear in many packages, but it can be owned by at most
one package. The package cell points to the owner, if any. Package cells
are discussed along with packages in chapter 11.

A symbol may actually have other components for use by the implementa-
tion. One of the more important uses of symbols is as names for program vari-
ables; it is frequently desirable for the implementor to use certain components
of a symbol to implement the semantics of variables. See symbol-value and
symbol-function. However, there are several possible implementation strate-
gies, and so such possible components are not described here.

10.1 The Property List

Since its inception, Lisp has associated with each symbol a kind of tabular data
structure called a property list (plist for short). A property list contains zero
or more entries; each entry associates with a key (called the indicator), which
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is typically a symbol, an arbitrary Lisp object (called the walue or, sometimes,
the property). There are no duplications among the indicators; a property list
may only have one property at a time with a given name. In this way, given a
symbol and an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference
is that a property list is an object with a unique identity; the operations for
adding and removing property-list entries are destructive operations that alter
the property list rather than making a new one. Association lists, on the other
hand, are normally augmented non-destructively (without side effects) by adding
new entries to the front (see acons and pairlis).

A property list is implemented as a memory cell containing a list with an even
number (possibly zero) of elements. (Usually this memory cell is the property-
list cell of a symbol, but any memory cell acceptable to setf can be used if
getf and remf are used.) Each pair of elements in the list constitutes an entry;
the first item is the indicator, and the second is the value. Because property-
list functions are given the symbol and not the list itself, modifications to the
property list can be recorded by storing back into the property-list cell of the
symbol.

When a symbol is created, its property list is initially empty. Properties are
created by using get within a setf form.

Common Lisp does not use a symbol’s property list as extensively as earlier
Lisp implementations did. Less-used data, such as compiler, debugging, and
documentation information, is kept on property lists in Common Lisp.

Compatibility note: In older Lisp implementations, the print name, value, and
function definition of a symbol were kept on its property list. The value cell was
introduced into MacLisp and Interlisp to speed up access to variables; similarly for
the print-name cell and function cell (MacLisp does not use a function cell). Recent
Lisp implementations such as Spice Lisp, Lisp Machine Lisp, and NIL have introduced
all of these cells plus the package cell. None of the MacLisp system property names
(expr, fexpr, macro, array, subr, lsubr, fsubr, and in former times value and pname)
exist in Common Lisp.

In Common Lisp, the notion of “disembodied property list” introduced in MacLisp
is eliminated. It tended to be used for rather kludgy things, and in Lisp Machine Lisp
is often associated with the use of locatives (to make it “off by one” for searching
alternating keyword lists). In Common Lisp special setf-like property-list functions
are introduced: getf and remf.

get symbol indicator &optional default [Function]

get searches the property list of symbol for an indicator eq to indicator. The
first argument must be a symbol. If one is found, then the corresponding value
is returned; otherwise default is returned.

If default is not specified, then nil is used for default.

Note that there is no way to distinguish an absent property from one whose
value is default.

(get x y) = (getf (symbol-plist x) y)
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Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then,
for example:

(get ’foo baz) = 3
(get foo "hunoz) = ”Huh?”
(get ’foo ’zoo) = nil

Compatibility note: In MacLisp, the first argument to get could be a list, in which
case the cdr of the list was treated as a so-called “disembodied property list.” The
first argument to get could also be any other object, in which case get would always
return nil. In Common Lisp, it is an error to give anything but a symbol as the first
argument to get.

What Common Lisp calls get, Interlisp calls getprop.

What MacLisp and Interlisp call putprop is accomplished in Common Lisp by
using get with setf.

setf may be used with get to create a new property-value pair, possibly
replacing an old pair with the same property name. For example:
(get ’clyde ’species) = nil
(setf (get ’clyde ’species) ’elephant) = elephant
and now (get ’clyde ’species) = elephant
The default argument may be specified to get in this context; it is ignored by
setf but may be useful in such macros as push that are related to setf:
(push item (get sym ’token-stack ’(initial-item)))
means approximately the same as

(setf (get sym ’token-stack ’(initial-item))
(cons item (get sym ’token-stack ’(initial-item))))

which in turn would be treated as simply

(setf (get sym ’token-stack)
(cons item (get sym ’token-stack ’(initial-item))))

X3J13 voted in March 1989 (REMF-DESTRUCTION-UNSPECIFIED) to clarify
the permissible side effects of certain operations; (setf (get symbol indicator)
newvalue) is required to behave exactly the same as (setf (getf (symbol-plist
symbol) indicator) newvalue).

remprop symbol indicator [Function]

This removes from symbol the property with an indicator eq to indicator. The
property indicator and the corresponding value are removed by destructively
splicing the property list. It returns nil if no such property was found, or
non-nil if a property was found.

(remprop x y) = (remf (symbol-plist x) y)
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For example, if the property list of foo is initially

(color blue height 6.3 near-to bar)

then the call

(remprop ’foo ’height)

returns a non-nil value after altering foo’s property list to be
(color blue near-to bar)

X3J13 voted in March 1989 (REMF-DESTRUCTION-UNSPECIFIED) to clarify
the permissible side effects of certain operations; (remprop symbol indicator)
is required to behave exactly the same as (remf (symbol-plist symbol) in-
dicator) .

symbol-plist symbol [Function]

This returns the list that contains the property pairs of symbol; the contents of
the property-list cell are extracted and returned.

Note that using get on the result of symbol-plist does not work. One must
give the symbol itself to get or else use the function getf.

setf may be used with symbol-plist to destructively replace the entire
property list of a symbol. This is a relatively dangerous operation, as it may
destroy important information that the implementation may happen to store in
property lists. Also, care must be taken that the new property list is in fact a
list of even length.

Compatibility note: In MacLisp, this function is called plist; in Interlisp, it is
called getproplist.

getf place indicator &optional default [Function]

getf searches the property list stored in place for an indicator eq to indicator.
If one is found, then the corresponding value is returned; otherwise default is
returned. If default is not specified, then nil is used for default. Note that there
is no way to distinguish an absent property from one whose value is default.
Often place is computed from a generalized variable acceptable to setf.

setf may be used with getf, in which case the place must indeed be ac-
ceptable as a place to setf. The effect is to add a new property-value pair, or
update an existing pair, in the property list kept in the place. The default ar-
gument may be specified to getf in this context; it is ignored by setf but may
be useful in such macros as push that are related to setf. See the description
of get for an example of this.

X3J13 voted in March 1989 (REMF-DESTRUCTION-UNSPECIFIED) to clarify
the permissible side effects of certain operations; setf used with getf is per-
mitted to perform a setf on the place or on any part, car or cdr, of the top-level
list structure held by that place.
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X3J13 voted in March 1988 (PUSH-EVALUATION-ORDER) to clarify order of
evaluation (see section 7.2).

Compatibility note: The Interlisp function 1listget is similar to getf. The Interlisp
function listput is similar to using getf with setf.

remf place indicator [Macro

This removes from the property list stored in place the property with an indi-
cator eq to indicator. The property indicator and the corresponding value are
removed by destructively splicing the property list. remf returns nil if no such
property was found, or some non-nil value if a property was found. The form
place may be any generalized variable acceptable to setf. See remprop.

X3J13 voted in March 1989 (REMF-DESTRUCTION-UNSPECIFIED) to clarify
the permissible side effects of certain operations; remf is permitted to perform
a setf on the place or on any part, car or cdr, of the top-level list structure held
by that place.

X3J13 voted in March 1988 (PUSH-EVALUATION-ORDER) to clarify order of
evaluation (see section 7.2).

get-properties place indicator-list [Function]

get-properties is like getf, except that the second argument is a list of in-
dicators. get-properties searches the property list stored in place for any of
the indicators in indicator-list until it finds the first property in the property
list whose indicator is one of the elements of indicator-list. Normally place is
computed from a generalized variable acceptable to setf.

get-properties returns three values. If any property was found, then the
first two values are the indicator and value for the first property whose indicator
was in indicator-list, and the third is that tail of the property list whose car was
the indicator (and whose cadr is therefore the value). If no property was found,
all three values are nil. Thus the third value serves as a flag indicating success
or failure and also allows the search to be restarted, if desired, after the property
was found.

10.2 The Print Name

Every symbol has an associated string called the print name. This string is used
as the external representation of the symbol: if the characters in the string are
typed in to read (with suitable escape conventions for certain characters), it is
interpreted as a reference to that symbol (if it is interned); and if the symbol is
printed, print types out the print name. For more information, see the sections
on the reader (section 22.1.1) and printer (section 22.1.6).

symbol-name sym [Function]
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This returns the print name of the symbol sym. For example:
(symbol-name 'xyz) = "XYZ"

It is an extremely bad idea to modify a string being used as the print name of a
symbol. Such a modification may tremendously confuse the function read and
the package system.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to specify that it is an
error to modify a string being used as the print name of a symbol.

10.3 Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one
that is indexed by its print name in a catalogue called a package. A request to
locate a symbol with that print name results in the same (eq) symbol. Every
time input is read with the function read, and that print name appears, it is
read as the same symbol. This property of symbols makes them appropriate to
use as names for things and as hooks on which to hang permanent data objects
(using the property list, for example).

Interned symbols are normally created automatically; the first time some-
thing (such as the function read) asks the package system for a symbol with a
given print name, that symbol is automatically created. The function used to
ask for an interned symbol is intern, or one of the functions related to intern.

Although interned symbols are the most commonly used, they will not be
discussed further here. For more information, see chapter 11.

An uninterned symbol is a symbol used simply as a data object, with no
special cataloguing (it belongs to no particular package). An uninterned symbol
is printed as #: followed by its print name. The following are some functions
for creating uninterned symbols.

make-symbol print-name [Function]

(make-symbol print-name) creates a new uninterned symbol, whose print name
is the string print-name. The value and function bindings will be unbound and
the property list will be empty.

The string actually installed in the symbol’s print-name component may
be the given string print-name or may be a copy of it, at the implementation’s
discretion. The user should not assume that (symbol-name (make-symbol x))
is eq to x, but also should not alter a string once it has been given as an argument
to make-symbol.

Implementation note: An implementation might choose, for example, to copy the
string to some read-only area, in the expectation that it will never be altered.

copy-symbol sym &optional copy-props [Function]

This returns a new uninterned symbol with the same print name as sym.
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X3J13 voted in March 1989 (COPY-SYMBOL-PRINT-NAME) that the print name
of the new symbol is required to be the same only in the sense of string=; in
other words, an implementation is permitted (but not required) to make a copy
of the print name. User programs should not assume that the print names of
the old and new symbols will be eq, although they may happen to be eq in
some implementations.

If copy-props is non-nil, then the initial value and function definition of the
new symbol will be the same as those of sym, and the property list of the new
symbol will be a copy of sym’s.

X3J13 voted in March 1989 (COPY-SYMBOL-COPY-PLIST) to clarify that only
the top-level conses of the property list are copied; it is as if (copy-list
(symbol-plist sym)) were used as the property list of the new symbol.

If copy-props is nil (the default), then the new symbol will be unbound and
undefined, and its property list will be empty.

gensym &optional x [Function]

gensym invents a print name and creates a new symbol with that print name.
It returns the new, uninterned symbol.

The invented print name consists of a prefix (which defaults to G), followed
by the decimal representation of a number. gensym is usually used to create a
symbol that should not normally be seen by the user and whose print name is
unimportant except to allow easy distinction by eye between two such symbols.
The optional argument is rarely supplied. The name comes from “generate
symbol,” and the symbols produced by it are often called “gensyms.”

Compatibility note: In earlier versions of Lisp, such as MacLisp and Interlisp,
the print name of a gensym was of fixed length, consisting of a single letter and
a fixed-length decimal representation with leading zeros if necessary, for example,
G0007. This convention was motivated by an implementation consideration, namely
that the name should fit into a single machine word, allowing a quick and clever
implementation. Such considerations are less relevant in Common Lisp. The consistent
use of mnemonic prefixes can make it easier for the programmer, when debugging, to
determine what code generated a particular symbol. The elimination of the fixed-
length decimal representation prevents the same name from being used twice unless
the counter is explicitly reset.

If it is desirable for the generated symbols to be interned, and yet guaranteed
to be symbols distinct from all others, then the function gentemp may be more
appropriate to use.

X3J13 voted in March 1989 (GENSYM-NAME-STICKINESS) to alter the speci-
fication of gensym so that supplying an optional argument (whether a string
or a number) does not alter the internal state maintained by gensym. In-
stead, the internal counter is made explicitly available as a variable named
*gensym-counterx.

If a string argument is given to gensym, that string is used as the prefix;
otherwise “G” is used. If a number is provided, its decimal representation is
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used, but the internal counter is unaffected. X3J13 deprecates the use of a
number as an argument.

*gensym-counter* [Variable]

X3J13 voted in March 1989 (GENSYM-NAME-STICKINESS) to add
*gensym-counter*, which holds the state of the gensym counter; that is, gensym
uses the decimal representation of its value as part of the generated name and
then increments its value.

The initial value of this variable is implementation-dependent but will be a
non-negative integer.

The user may assign to or bind this variable at any time, but its value must
always be a non-negative integer.

gentemp &optional prefix package [Function]

gentemp, like gensym, creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern) in the package (which defaults
to the current package; see *package*). gentemp guarantees the symbol will be
a new one not already existing in the package. It does this by using a counter
as gensym does, but if the generated symbol is not really new, then the process
is repeated until a new one is created. There is no provision for resetting the
gentemp counter. Also, the prefix for gentemp is not remembered from one call
to the next; if prefix is omitted, the default prefix T is used.

symbol-package sym [Function]

Given a symbol sym, symbol-package returns the contents of the package cell
of that symbol. This will be a package object or nil.

keywordp object [Function]

The argument may be any Lisp object. The predicate keywordp is true if the
argument is a symbol and that symbol is a keyword (that is, belongs to the
keyword package). Keywords are those symbols that are written with a leading
colon. Every keyword is a constant, in the sense that it always evaluates to
itself. See constantp.



Chapter 11

Packages

One problem with earlier Lisp systems is the use of a single name space for all
symbols. In large Lisp systems, with modules written by many different pro-
grammers, accidental name collisions become a serious problem. Common Lisp
addresses this problem through the package system, derived from an earlier
package system developed for Lisp Machine Lisp [55]. In addition to preventing
name-space conflicts, the package system makes the modular structure of large
Lisp systems more explicit.

A package is a data structure that establishes a mapping from print names
(strings) to symbols. The package thus replaces the “oblist” or “obarray” ma-
chinery of earlier Lisp systems. At any given time one package is current, and
this package is used by the Lisp reader in translating strings into symbols. The
current package is, by definition, the one that is the value of the global variable
xpackagex. It is possible to refer to symbols in packages other than the current
one through the use of package qualifiers in the printed representation of the
symbol. For example, foo:bar, when seen by the reader, refers to the symbol
whose name is bar in the package whose name is foo. (Actually, this is true
only if bar is an external symbol of foo, that is, a symbol that is supposed
to be visible outside of foo. A reference to an internal symbol requires the
intentionally clumsier syntax foo: :bar.)

The string-to-symbol mappings available in a given package are divided into
two classes, external and internal. We refer to the symbols accessible via these
mappings as being external and internal symbols of the package in question,
though really it is the mappings that are different and not the symbols them-
selves. Within a given package, a name refers to one symbol or to none; if it
does refer to a symbol, then it is either external or internal in that package, but
not both.

External symbols are part of the package’s public interface to other packages.
External symbols are supposed to be chosen with some care and are advertised
to users of the package. Internal symbols are for internal use only, and these
symbols are normally hidden from other packages. Most symbols are created
as internal symbols; they become external only if they appear explicitly in an
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export command for the package.

A symbol may appear in many packages. It will always have the same name
wherever it appears, but it may be external in some packages and internal
in others. On the other hand, the same name (string) may refer to different
symbols in different packages.

Normally, a symbol that appears in one or more packages will be owned by
one particular package, called the home package of the symbol; that package is
said to own the symbol. Every symbol has a component called the package cell
that contains a pointer to its home package. A symbol that is owned by some
package is said to be interned. Some symbols are not owned by any package;
such a symbol is said to be uninterned, and its package cell contains nil.

Packages may be built up in layers. From the point of view of a package’s
user, the package is a single collection of mappings from strings into internal and
external symbols. However, some of these mappings may be established within
the package itself, while other mappings are inherited from other packages via
the use-package construct. (The mechanisms responsible for this inheritance
are described below.) In what follows, we will refer to a symbol as being acces-
sible in a package if it can be referred to without a package qualifier when that
package is current, regardless of whether the mapping occurs within that pack-
age or via inheritance. We will refer to a symbol as being present in a package
if the mapping is in the package itself and is not inherited from somewhere else.
Thus a symbol present in a package is accessible, but an accessible symbol is
not necessarily present.

A symbol is said to be interned in a package if it is accessible in that package
and also is owned (by either that package or some other package). Normally all
the symbols accessible in a package will in fact be owned by some package, but
the terminology is useful when discussing the pathological case of an accessible
but unowned (uninterned) symbol.

As a verb, to intern a symbol in a package means to cause the symbol to be
interned in the package if it was not already; this process is performed by the
function intern. If the symbol was previously unowned, then the package it
is being interned in becomes its owner (home package); but if the symbol was
previously owned by another package, that other package continues to own the
symbol.

To unintern a symbol from the package means to cause it to be not present
in the package and, additionally, to cause the symbol to be uninterned if the
package was the home package (owner) of the symbol. This process is performed
by the function unintern.

11.1 Consistency Rules

Package-related bugs can be very subtle and confusing: things are not what they
appear to be. The Common Lisp package system is designed with a number
of safety features to prevent most of the common bugs that would otherwise
occur in normal use. This may seem over-protective, but experience with earlier
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package systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following
consistency rules, which remain in force as long as the value of *package* is
not changed by the user:

e Read-read consistency: Reading the same print name always results in the
same (eq) symbol.

e Print-read consistency: An interned symbol always prints as a sequence
of characters that, when read back in, yields the same (eq) symbol.

e Print-print consistency: If two interned symbols are not eq, then their
printed representations will be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit intern-
ing caused by typing in Lisp forms, loading files, etc. This has the important
implication that, as long as the current package is not changed, results are re-
producible regardless of the order of loading files or the exact history of what
symbols were typed in when. The rules can only be violated by explicit action:
changing the value of *package*, forcing some action by continuing from an
error, or calling one of the “dangerous” functions unintern, unexport, shadow,
shadowing-import, or unuse-package.

11.2 Package Names

Each package has a name (a string) and perhaps some nicknames. These are
assigned when the package is created, though they can be changed later. A
package’s name should be something long and self-explanatory, like editor;
there might be a nickname that is shorter and easier to type, such as ed.

There is a single name space for packages. The function find-package trans-
lates a package name or nickname into the associated package. The function
package-name returns the name of a package. The function package-nicknames
returns a list of all nicknames for a package. The function rename-package re-
moves a package’s current name and nicknames and replaces them with new
ones specified by the user. Package renaming is occasionally useful when, for
development purposes, it is desirable to load two versions of a package into the
same Lisp. One can load the first version, rename it, and then load the other
version, without getting a lot of name conflicts.

When the Lisp reader sees a qualified symbol, it handles the package-name
part in the same way as the symbol part with respect to capitalization. Lower-
case characters in the package name are converted to corresponding uppercase
characters unless preceded by the escape character \ or surrounded by | charac-
ters. The lookup done by the find-package function is case-sensitive, like that
done for symbols. Note that |Fool:|Bar| refers to a symbol whose name is
Bar in a package whose name is Foo. By contrast, |Foo:Bar| refers to a seven-
character symbol that has a colon in its name (as well as two uppercase letters
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and four lowercase letters) and is interned in the current package. Following
the convention used in this book for symbols, we show ordinary package names
using lowercase letters, even though the name string is internally represented
with uppercase letters.

Most of the functions that require a package-name argument from the user
accept either a symbol or a string. If a symbol is supplied, its print name will be
used; the print name will already have undergone case-conversion by the usual
rules. If a string is supplied, it must be so capitalized as to match exactly the
string that names the package.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that one may use either a package object or a package name (symbol or string)
in any of the following situations:

e the :use argument to make-package

e the first argument to package-use-list, package-used-by-list, package-
name, package-nicknames, in—-package, find-package, rename-package,
or delete-package,

e the second argument to intern, find-symbol, unintern, export, unexport,
import, shadowing-import, or shadow

e the first argument, or a member of the list that is the first argument, to
use-package or unuse-package

e the value of the package given to do-symbols, do-external-symbols, or
do-all-symbols

e a member of the package-list given to with-package-iterator

Note that the first argument to make-package must still be a package name and
not an actual package; it makes no sense to create an already existing package.
Similarly, package nicknames must always be expressed as package names and
not as package objects. If find-package is given a package object instead of a
name, it simply returns that package.

11.3 Translating Strings to Symbols

The value of the special variable *package* must always be a package object
(not a name). Whatever package object is currently the value of *packagex* is
referred to as the current package.

When the Lisp reader has, by parsing, obtained a string of characters thought
to name a symbol, that name is looked up in the current package. This lookup
may involve looking in other packages whose external symbols are inherited by
the current package. If the name is found, the corresponding symbol is returned.
If the name is not found (that is, there is no symbol of that name accessible
in the current package), a new symbol is created for it and is placed in the
current package as an internal symbol. Moreover, the current package becomes
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the owner (home package) of the symbol, and so the symbol becomes interned
in the current package. If the name is later read again while this same package
is current, the same symbol will then be found and returned.

Often it is desirable to refer to an external symbol in some package other than
the current one. This is done through the use of a qualified name, consisting
of a package name, then a colon, then the name of the symbol. This causes
the symbol’s name to be looked up in the specified package, rather than in the
current one. For example, editor:buffer refers to the external symbol named
buffer accessible in the package named editor, regardless of whether there is
a symbol named buffer in the current package. If there is no package named
editor, or if no symbol named buffer is accessible in editor, or if buffer is
an internal symbol in editor, the Lisp reader will signal a correctable error to
ask the user for instructions.

On rare occasions, a user may need to refer to an internal symbol of some
package other than the current one. It is illegal to do this with the colon
qualifier, since accessing an internal symbol of some other package is usually
a mistake. However, this operation is legal if a doubled colon :: is used as
the separator in place of the usual single colon. If editor::buffer is seen,
the effect is exactly the same as reading buffer with *package* temporarily
rebound to the package whose name is editor. This special-purpose qualifier
should be used with caution.

The package named keyword contains all keyword symbols used by the Lisp
system itself and by user-written code. Such symbols must be easily accessible
from any package, and name conflicts are not an issue because these symbols
are used only as labels and never to carry package-specific values or proper-
ties. Because keyword symbols are used so frequently, Common Lisp provides
a special reader syntax for them. Any symbol preceded by a colon but no
package name (for example :foo) is added to (or looked up in) the keyword
package as an external symbol. The keyword package is also treated specially in
that whenever a symbol is added to the keyword package the symbol is always
made external; the symbol is also automatically declared to be a constant (see
defconstant) and made to have itself as its value. This is why every keyword
evaluates to itself. As a matter of style, keywords should always be accessed
using the leading-colon convention; the user should never import or inherit key-
words into any other package. It is an error to try to apply use-package to the
keyword package.

Each symbol contains a package cell that is used to record the home package
of the symbol, or nil if the symbol is uninterned. This cell may be accessed by
using the function symbol-package. When an interned symbol is printed, if it
is a symbol in the keyword package, then it is printed with a preceding colon;
otherwise, if it is accessible (directly or by inheritance) in the current package,
it is printed without any qualification; otherwise, it is printed with the name
of the home package as the qualifier, using : as the separator if the symbol is
external and :: if not.

A symbol whose package slot contains nil (that is, has no home package) is
printed preceded by #:. It is possible, by the use of import and unintern, to
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create a symbol that has no recorded home package but that in fact is accessible
in some package. The system does not check for this pathological case, and such
symbols will always be printed preceded by #:.

In summary, the following four uses of symbol qualifier syntax are defined.

foo:bar

When read, looks up BAR among the external symbols of the package named
F0O. Printed when symbol bar is external in its home package foo and is not
accessible in the current package.

foo::bar

When read, interns BAR as if FOO were the current package. Printed when
symbol bar is internal in its home package foo and is not accessible in the
current package.

:bar

When read, interns BAR as an external symbol in the keyword package and
makes it evaluate to itself. Printed when the home package of symbol bar is
keyword.

#:bar

When read, creates a new uninterned symbol named BAR. Printed when the sym-

bol bar is uninterned (has no home package), even in the pathological case that

bar is uninterned but nevertheless somehow accessible in the current package.
All other uses of colons within names of symbols are not defined by Common

Lisp but are reserved for implementation-dependent use; this includes names

that end in a colon, contain two or more colons, or consist of just a colon.

11.4 Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two
ways.

First, any individual symbol may be added to a package by use of the func-
tion import. The form (import ’editor:buffer) takes the external symbol
named buffer in the editor package (this symbol was located when the form
was read by the Lisp reader) and adds it to the current package as an internal
symbol. The symbol is then present in the current package. The imported sym-
bol is not automatically exported from the current package, but if it is already
present and external, then the fact that it is external is not changed. After
the call to import it is possible to refer to buffer in the importing package
without any qualifier. The status of buffer in the package named editor is
unchanged, and editor remains the home package for this symbol. Once im-
ported, a symbol is present in the importing package and can be removed only
by calling unintern.

If the symbol is already present in the importing package, import has no
effect. If a distinct symbol with the name buffer is accessible in the importing
package (directly or by inheritance), then a correctable error is signaled, as
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described in section 11.5, because import avoids letting one symbol shadow
another.

A symbol is said to be shadowed by another symbol in some package if the
first symbol would be accessible by inheritance if not for the presence of the
second symbol. To import a symbol without the possibility of getting an error
because of shadowing, use the function shadowing-import. This inserts the
symbol into the specified package as an internal symbol, regardless of whether
another symbol of the same name will be shadowed by this action. If a different
symbol of the same name is already present in the package, that symbol will
first be uninterned from the package (see unintern). The new symbol is added
to the package’s shadowing-symbols list. shadowing-import should be used
with caution. It changes the state of the package system in such a way that the
consistency rules do not hold across the change.

The second mechanism is provided by the function use-package. This
causes a package to inherit all of the external symbols of some other pack-
age. These symbols become accessible as internal symbols of the using package.
That is, they can be referred to without a qualifier while this package is cur-
rent, but they are not passed along to any other package that uses this package.
Note that use-package, unlike import, does not cause any new symbols to be
present in the current package but only makes them accessible by inheritance.
use-package checks carefully for name conflicts between the newly imported
symbols and those already accessible in the importing package. This is described
in detail in section 11.5.

Typically a user, working by default in the user package, will load a number
of packages into Lisp to provide an augmented working environment, and then
call use-package on each of these packages to allow easy access to their external
symbols. unuse-package undoes the effects of a previous use-package. The
external symbols of the used package are no longer inherited. However, any
symbols that have been imported into the using package continue to be present
in that package.

There is no way to inherit the internal symbols of another package; to refer
to an internal symbol, the user must either make that symbol’s home package
current, use a qualifier, or import that symbol into the current package.

The distinction between external and internal symbols is a primary means of
hiding names so that one program does not tread on the namespace of another.

When intern or some other function wants to look up a symbol in a given
package, it first looks for the symbol among the external and internal symbols
of the package itself; then it looks through the external symbols of the used
packages in some unspecified order. The order does not matter; according to
the rules for handling name conflicts (see below), if conflicting symbols appear
in two or more packages inherited by package X, a symbol of this name must
also appear in X itself as a shadowing symbol. Of course, implementations are
free to choose other, more efficient ways of implementing this search, as long as
the user-visible behavior is equivalent to what is described here.

The function export takes a symbol that is accessible in some specified
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package (directly or by inheritance) and makes it an external symbol of that
package. If the symbol is already accessible as an external symbol in the package,
export has no effect. If the symbol is directly present in the package as an
internal symbol, it is simply changed to external status. If it is accessible as an
internal symbol via use-package, the symbol is first imported into the package,
then exported. (The symbol is then present in the specified package whether
or not the package continues to use the package through which the symbol
was originally inherited.) If the symbol is not accessible at all in the specified
package, a correctable error is signaled that, upon continuing, asks the user
whether the symbol should be imported.

The function unexport is provided mainly as a way to undo erroneous calls
to export. It works only on symbols directly present in the current package,
switching them back to internal status. If unexport is given a symbol already
accessible as an internal symbol in the current package, it does nothing; if it is
given a symbol not accessible in the package at all, it signals an error.

11.5 Name Conflicts

A fundamental invariant of the package system is that within one package any
particular name can refer to at most one symbol. A name conflict is said to
occur when there is more than one candidate symbol and it is not obvious which
one to choose. If the system does not always choose the same way, the read-read
consistency rule would be violated. For example, some programs or data might
have been read in under a certain mapping of the name to a symbol. If the
mapping changes to a different symbol, and subsequently additional programs
or data are read, then the two programs will not access the same symbol even
though they use the same name. Even if the system did always choose the same
way, a name conflict is likely to result in a mapping from names to symbols
different from what was expected by the user, causing programs to execute
incorrectly. Therefore, any time a name conflict is about to occur, an error is
signaled. The user may continue from the error and tell the package system
how to resolve the conflict.

It may be that the same symbol is accessible to a package through more than
one path. For example, the symbol might be an external symbol of more than
one used package, or the symbol might be directly present in a package and also
inherited from another package. In such cases there is no name conflict. The
same identical symbol cannot conflict with itself. Name conflicts occur only
between distinct symbols with the same name.

The creator of a package can tell the system in advance how to resolve a
name conflict through the use of shadowing. Every package has a list of shad-
owing symbols. A shadowing symbol takes precedence over any other symbol of
the same name that would otherwise be accessible to the package. A name con-
flict involving a shadowing symbol is always resolved in favor of the shadowing
symbol, without signaling an error (except for one instance involving import
described below). The functions shadow and shadowing-import may be used
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to declare shadowing symbols.

Name conflicts are detected when they become possible, that is, when the
package structure is altered. There is no need to check for name conflicts during
every name lookup.

The functions use-package, import, and export check for name conflicts.
use-package makes the external symbols of the package being used accessi-
ble to the using package; each of these symbols is checked for name conflicts
with the symbols already accessible. import adds a single symbol to the inter-
nals of a package, checking for a name conflict with an existing symbol either
present in the package or accessible to it. import signals a name conflict er-
ror even if the conflict is with a shadowing symbol, the rationale being that
the user has given two explicit and inconsistent directives. export makes a
single symbol accessible to all the packages that use the package from which
the symbol is exported. All of these packages are checked for name conflicts:
(export s p) does (find-symbol (symbol-name s) ¢) for each package ¢ in
(package-used-by-list p). Note that in the usual case of an export during
the initial definition of a package, the result of package-used-by-1list will be
nil and the name-conflict checking will take negligible time.

The function intern, which is the one used most frequently by the Lisp
reader for looking up names of symbols, does not need to do any name-conflict
checking, because it never creates a new symbol if there is already an accessible
symbol with the name given.

shadow and shadowing-import never signal a name-conflict error because
the user, by calling these functions, has specified how any possible conflict is
to be resolved. shadow does name-conflict checking to the extent that it checks
whether a distinct existing symbol with the specified name is accessible and, if
so, whether it is directly present in the package or inherited. In the latter case,
a new symbol is created to shadow it. shadowing-import does name-conflict
checking to the extent that it checks whether a distinct existing symbol with the
same name is accessible; if so, it is shadowed by the new symbol, which implies
that it must be uninterned if it was directly present in the package.

unuse-package, unexport, and unintern (when the symbol being unin-
terned is not a shadowing symbol) do not need to do any name-conflict checking
because they only remove symbols from a package; they do not make any new
symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that
had previously been resolved by the shadowing. If package A uses packages B
and C, A contains a shadowing symbol x, and B and C each contain external
symbols named x, then removing the shadowing symbol x from A will reveal a
name conflict between b:x and c:x if those two symbols are distinct. In this
case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible.
Package functions always signal name-conflict errors before making any change
to the package structure. When multiple changes are to be made, however,
for example when export is given a list of symbols, it is permissible for the
implementation to process each change separately, so that aborting from a name
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conflict caused by the second symbol in the list will not unexport the first symbol
in the list. However, aborting from a name-conflict error caused by export of
a single symbol will not leave that symbol accessible to some packages and
inaccessible to others; with respect to each symbol processed, export behaves
as if it were an atomic operation.

Continuing from a name-conflict error should offer the user a chance to
resolve the name conflict in favor of either of the candidates. The package
structure should be altered to reflect the resolution of the name conflict, via
shadowing-import, unintern, or unexport.

A name conflict in use-package between a symbol directly present in the
using package and an external symbol of the used package may be resolved in
favor of the first symbol by making it a shadowing symbol, or in favor of the
second symbol by uninterning the first symbol from the using package. The
latter resolution is dangerous if the symbol to be uninterned is an external
symbol of the using package, since it will cease to be an external symbol.

A name conflict in use-package between two external symbols inherited by
the using package from other packages may be resolved in favor of either symbol
by importing it into the using package and making it a shadowing symbol.

A name conflict in export between the symbol being exported and a symbol
already present in a package that would inherit the newly exported symbol may
be resolved in favor of the exported symbol by uninterning the other one, or in
favor of the already-present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two
distinct symbols with the same name from two other packages may be resolved
in favor of either symbol by importing it into the using package and making it
a shadowing symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol
inherited from some other package may be resolved in favor of the symbol being
imported by making it a shadowing symbol, or in favor of the symbol already
accessible by not doing the import. A name conflict in import with a symbol
already present in the package may be resolved by uninterning that symbol, or
by not doing the import.

Good user-interface style dictates that use-package and export, which can
cause many name conflicts simultaneously, first check for all of the name conflicts
before presenting any of them to the user. The user may then choose to resolve
all of them wholesale or to resolve each of them individually, the latter requiring
a lot of interaction but permitting different conflicts to be resolved different
ways.

Implementations may offer other ways of resolving name conflicts. For in-
stance, if the symbols that conflict are not being used as objects but only as
names for functions, it may be possible to “merge” the two symbols by putting
the function definition onto both symbols. References to either symbol for pur-
poses of calling a function would be equivalent. A similar merging operation
can be done for variable values and for things stored on the property list. In
Lisp Machine Lisp, for example, one can also forward the value, function, and
property cells so that future changes to either symbol will propagate to the
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other one. Some other implementations are able to do this with value cells but
not with property lists. Only the user can know whether this way of resolving
a name conflict is adequate, because it will work only if the use of two non-eq
symbols with the same name will not prevent the correct operation of the pro-
gram. The value of offering symbol merging as a way of resolving name conflicts
is that it can avoid the need to throw away the whole Lisp world, correct the
package-definition forms that caused the error, and start over from scratch.

11.6 Built-in Packages

X3J13 voted in March 1989 (LISP-PACKAGE-NAME) to specify that the forth-
coming ANSI Common Lisp will use the package name common-lisp instead
of lisp and the package name common-lisp-user instead of user. The pur-
pose is to allow a single Lisp system to support both “old” Common Lisp and
“new” ANSI Common Lisp simultaneously despite the fact that in some cases
the two languages use the same names for incompatible purposes. (That’s what
packages are for!)

common-lisp

The package named common-lisp contains the primitives of the ANSI Com-
mon Lisp system (as opposed to a Common Lisp system based on the 1984
specification). Its external symbols include all of the user-visible functions and
global variables that are present in the ANSI Common Lisp system, such as car,
cdr, and *package*. Note, however, that the home package of such symbols
is not necessarily the common-1lisp package (this makes it easier for symbols
such as t and lambda to be shared between the common-1lisp package and an-
other package, possibly one named 1lisp). Almost all other packages ought to
use common-1isp so that these symbols will be accessible without qualification.
This package has the nickname c1.

common-lisp-user

The common-1lisp-user package is, by default, the current package at the time
an ANSI Common Lisp system starts up. This package uses the common-1isp
package and has the nickname cl-user. It may contain other implementation-
dependent symbols and may use other implementation-specific packages.

keyword

This package contains all of the keywords used by built-in or user-defined Lisp
functions. Printed symbol representations that start with a colon are interpreted
as referring to symbols in this package, which are always external symbols. All
symbols in this package are treated as constants that evaluate to themselves, so
that the user can type :foo instead of ’:foo.

X3J13 voted in January 1989 (PACKAGE-CLUTTER) to modify the require-
ments on the built-in packages so as to limit what may appear in the common-1isp
package and to lift the requirement that every implementation have a package
named system. The details are as follows.
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Not only must the common-1isp package in any given implementation con-
tain all the external symbols prescribed by the standard; the common-1isp pack-
age moreover may not contain any external symbol that is not prescribed by the
standard. However, the common-1isp package may contain additional internal
symbols, depending on the implementation.

An external symbol of the common-1isp package may not have a function,
macro, or special form definition, or a top-level value, or a special proclama-
tion, or a type definition, unless specifically permitted by the standard. Pro-
grammers may validly rely on this fact; for example, fboundp is guaranteed to be
false for all external symbols of the common-1isp package except those explicitly
specified in the standard to name functions, macros, and special forms. Simi-
larly, boundp will be false of all such external symbols except those documented
to be variables or constants.

Portable programs may use external symbols in the common-1isp package
that are not documented to be constants or variables as names of local lexical
variables with the presumption that the implementation has not proclaimed
such variables to be special; this legitimizes the common practice of using such
names as 1list and string as names for local variables.

A valid implementation may initially have properties on any symbol, or
dynamically put new properties on symbols (even user-created symbols), as
long as no property indicator used for this purpose is an external symbol of
any package defined by the standard or a symbol that is accessible from the
common-lisp-user package or any package defined by the user.

This vote eliminates the requirement that every implementation have a pre-
defined package named system. An implementation may provide any number
of predefined packages; these should be described in the documentation for that
implementation.

The common-1lisp-user package may contain symbols not described by the
standard and may use other implementation-specific packages.

X3J13 voted in March 1989 (LISP-SYMBOL-REDEFINITION) to restrict user
programs from performing certain actions that might interfere with built-in
facilities or interact badly with them. Except where explicitly allowed, the
consequences are undefined if any of the following actions are performed on a
symbol in the common-1isp package.

e binding or altering its value (lexically or dynamically)

e defining or binding it as a function

defining or binding it as a macro

defining it as a type specifier (defstruct, defclass, deftype)

defining it as a structure (defstruct)

defining it as a declaration

dsing it as a symbol macro
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e altering its print name

e altering its package

e tracing it

e declaring or proclaiming it special or lexical
e declaring or proclaiming its type or ftype
e removing it from the package common-1lisp

X3J13 also voted in June 1989 (DEFINE-COMPILER-MACRO) to add to this list
the item

e defining it as a compiler macro

If such a symbol is not globally defined as a variable or a constant, a user
program is allowed to lexically bind it and declare the type of that binding.

If such a symbol is not defined as a function, macro, or special form, a user
program is allowed to (lexically) bind it as a function and to declare the ftype
of that binding and to trace that binding.

If such a symbol is not defined as a function, macro, or special form, a user
program is allowed to (lexically) bind it as a macro.

As an example, the behavior of the code fragment

(flet ((open (filename &key direction)
(format t "~ %OPEN was called.”)
(open filename :direction direction)))
(with-open-file (x ”frob” :direction :output)
(format t ”~%Was OPEN called?”)))

is undefined. Even in a “reasonable” implementation, for example, the macro
expansion of with-open-file might refer to the open function and might not.
However, the preceding rules eliminate the burden of deciding whether an im-
plementation is reasonable. The code fragment violates the rules; officially its
behavior is therefore completely undefined, and that’s that.

Note that “altering the property list” is not in the list of proscribed actions,
S0 a user program is permitted to add properties to or remove properties from
symbols in the common-1isp package.

11.7 Package System Functions and Variables

Some of the functions and variables in this section are described in previous
sections but are included here for completeness.

X3J13 voted in March 1989 (IN-PACKAGE-FUNCTIONALITY) to cancel the
specifications of the preceding paragraph in order to support a model of file
compilation in which the compiler need never take special note of ordinary
function calls; only special forms and macros are recognized as affecting the state
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of the compilation process. As part of this change in-package was changed to be
a macro rather than a function and its functionality was restricted. The actions
of shadow, shadowing-import, use-package, import, intern, and export for
compilation purposes may be accomplished with the new macro defpackage.

Implementation note: In the past, some Lisp compilers have read the entire file into
Lisp before processing any of the forms. Other compilers have arranged for the loader
to do all of its intern operations before evaluating any of the top-level forms. Neither
of these techniques will work in a straightforward way in Common Lisp because of the
presence of multiple packages.

For the functions described here, all optional arguments named package de-
fault to the current value of *package*. Where a function takes an argument
that is either a symbol or a list of symbols, an argument of nil is treated as
an empty list of symbols. Any argument described as a package name may be
either a string or a symbol. If a symbol is supplied, its print name will be used
as the package name; if a string is supplied, the user must take care to specify
the same capitalization used in the package name, normally all uppercase.

*package* [Variable]

The value of this variable must be a package; this package is said to be the
current package. The initial value of *package* is the user package.

X3J13 voted in March 1989 (LISP-PACKAGE-NAME) to specify that the forth-
coming ANSI Common Lisp will use the package name common-lisp-user in-
stead of user.

The function load rebinds *package* to its current value. If some form in
the file changes the value of *package* during loading, the old value will be
restored when the loading is completed.

X3J13 voted in October 1988 (COMPILE-FILE-PACKAGE) to require compile-file
to rebind *package* to its current value.

make-package package-name &key :nicknames :use [Function]

This creates and returns a new package with the specified package name. As
described above, this argument may be either a string or a symbol. The
:nicknames argument must be a list of strings to be used as alternative names
for the package. Once again, the user may supply symbols in place of the
strings, in which case the print names of the symbols are used. These names
and nicknames must not conflict with any existing package names; if they do, a
correctable error is signaled.

The :use argument is a list of packages or the names (strings or symbols)
of packages whose external symbols are to be inherited by the new package.
These packages must already exist. If not supplied, :use defaults to a list of
one package, the 1lisp package.

X3J13 voted in March 1989 (LISP-PACKAGE-NAME) to specify that the forth-
coming ANSI Common Lisp will use the package name common-1isp instead of
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lisp.

X3J13 voted in January 1989 (MAKE-PACKAGE-USE-DEFAULT) to change the
specification of make-package so that the default value for the :use argument
is unspecified. Portable code should specify :use ’ ("COMMON-LISP") explicitly.

Rationale: Many existing implementations of Common Lisp happen to have violated
the first edition specification, providing as the default not only the lisp package but
also (or instead) a package containing implementation-dependent language extensions.
This is for good reason: usually it is much more convenient to the user for the default
:use list to be the entire, implementation-dependent, extended language rather than
only the facilities specified in this book. The X3J13 vote simply legitimizes existing
practice.

X3J13 voted in January 1989 (RETURN-VALUES-UNSPECIFIED) to specify that
in-package returns the new package, that is, the value of *packagex after the
operation has been executed.

X3J13 voted in March 1989 (LISP-PACKAGE-NAME) to specify that the forth-
coming ANSI Common Lisp will use the package name common-lisp-user in-
stead of user.

X3J13 voted in March 1989 (IN-PACKAGE-FUNCTIONALITY) to restrict the
functionality of in-package and to make it a macro. This is an incompatible
change.

Making in-package a macro rather than a function means that there is no
need to require compile-file to handle it specially. Since defpackage is also
defined to have side effects on the compilation environment, there is no need to
require any of the package functions to be treated specially by the compiler.

in-package name [Macrol

This macro causes *package* to be set to the package named name, which must
be a symbol or string. The name is not evaluated. An error is signaled if the
package does not already exist. Everything this macro does is also performed
at compile time if the call appears at top level.

find-package name [Function]

The name must be a string that is the name or nickname for a package. This
argument may also be a symbol, in which case the symbol’s print name is
used. The package with that name or nickname is returned; if no such package
exists, find-package returns nil. The matching of names observes case (as in
string=).

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to allow
find-package to accept a package object, in which case the package is simply
returned (see section 11.2).

package-name package [Function]
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The argument must be a package. This function returns the string that names
that package.

X3J13 voted in January 1989 <PACKAGE—FUNCTION—CONSISTENCY) to allow
package-name to accept a package name or nickname, in which case the primary
name of the package so specified is returned (see section 11.2).

X3J13 voted in January 1989 (PACKAGE-DELETION) to add a function to
delete packages. One consequence of this vote is that package-name will return
nil instead of a package name if applied to a deleted package object. See
delete-package.

package-nicknames package [Function]

The argument must be a package. This function returns the list of nickname
strings for that package, not including the primary name.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to allow
package-nicknames to accept a package name or nickname, in which case the
nicknames of the package so specified are returned (see section 11.2).

rename-package package new-name &optional new-nicknames [Function]

The old name and all of the old nicknames of package are eliminated and are
replaced by new-name and new-nicknames. The new-name argument is a string
or symbol; the new-nicknames argument, which defaults to nil, is a list of
strings or symbols.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 (RETURN-VALUES-UNSPECIFIED) to specify that
rename-package returns package.

package-use-list package [Function]

A list of other packages used by the argument package is returned.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

package-used-by-list package [Function]

A list of other packages that use the argument package is returned.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

package-shadowing-symbols package [Function]
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A list is returned of symbols that have been declared as shadowing symbols
in this package by shadow or shadowing-import. All symbols on this list are
present in the specified package.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

list-all-packages [Function]

This function returns a list of all packages that currently exist in the Lisp system.

delete-package package [Function]

X3J13 voted in January 1989 (PACKAGE-DELETION) to add the delete-package
function, which deletes the specified package from all package system data struc-
tures. The package argument may be either a package or the name of a package.

If package is a name but there is currently no package of that name, a cor-
rectable error is signaled. Continuing from the error makes no deletion attempt
but merely returns nil from the call to delete-package.

If package is a package object that has already been deleted, no error is
signaled and no deletion is attempted; instead, delete-package immediately
returns nil.

If the package specified for deletion is currently used by other packages, a cor-
rectable error is signaled. Continuing from this error, the effect of the function
unuse-package is performed on all such other packages so as to remove their
dependency on the specified package, after which delete-package proceeds to
delete the specified package as if no other package had been using it.

If any symbol had the specified package as its home package before the call
to delete-package, then its home package is unspecified (that is, the contents
of its package cell are unspecified) after the delete-package operation has been
completed. Symbols in the deleted package are not modified in any other way.

The name and nicknames of the package cease to be recognized package
names. The package object is still a package, but anonymous; packagep will be
true of it, but package-name applied to it will return nil.

The effect of any other package operation on a deleted package object is
undefined. In particular, an attempt to locate a symbol within a deleted package
(using intern or find-symbol, for example) will have unspecified results.

delete-package returns t if the deletion succeeds, and nil otherwise.

intern string &optional package [Function]

The package, which defaults to the current package, is searched for a symbol with
the name specified by the string argument. This search will include inherited
symbols, as described in section 11.4. If a symbol with the specified name is
found, it is returned. If no such symbol is found, one is created and is installed in
the specified package as an internal symbol (as an external symbol if the package
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is the keyword package); the specified package becomes the home package of the
created symbol.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to specify that intern
may in effect perform the search using a copy of the argument string in which
some or all of the implementation-defined attributes have been removed from
the characters of the string. It is implementation-dependent which attributes
are removed.

Two values are returned. The first is the symbol that was found or created.
The second value is nil if no pre-existing symbol was found, and takes on one
of three values if a symbol was found:

:internal
The symbol was directly present in the package as an internal symbol.

:external
The symbol was directly present as an external symbol.

:inherited
The symbol was inherited via use-package (which implies that the symbol is
internal).

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

Compatibility note: Conceptually, intern translates a string to a symbol. In
MacLisp and several other dialects of Lisp, intern can take either a string or a symbol
as its argument; in the latter case, the symbol’s print name is extracted and used as the
string. However, this leads to some confusing issues about what to do if intern finds
a symbol that is not eq to the argument symbol. To avoid such confusion, Common
Lisp requires the argument to be a string.

find-symbol string &optional package [Function]

This is identical to intern, but it never creates a new symbol. If a symbol with
the specified name is found in the specified package, directly or by inheritance,
the symbol found is returned as the first value and the second value is as specified
for intern. If the symbol is not accessible in the specified package, both values
are nil.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

unintern symbol &optional package [Function]

If the specified symbol is present in the specified package, it is removed from
that package and also from the package’s shadowing-symbols list if it is present
there. Moreover, if the package is the home package for the symbol, the symbol
is made to have no home package. Note that in some circumstances the symbol
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may continue to be accessible in the specified package by inheritance. unintern
returns t if it actually removed a symbol, and nil otherwise.
unintern should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.
X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

Compatibility note: The equivalent of this in MacLisp is remob.

export symbols &optional package [Function]

The symbols argument should be a list of symbols, or possibly a single sym-
bol. These symbols become accessible as external symbols in package (see sec-
tion 11.4). export returns t.

By convention, a call to export listing all exported symbols is placed near
the start of a file to advertise which of the symbols mentioned in the file are
intended to be used by other programs.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

unexport symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. These
symbols become internal symbols in package. It is an error to unexport a symbol
from the keyword package (see section 11.4). unexport returns t.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

import symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. These
symbols become internal symbols in package and can therefore be referred to
without having to use qualified-name (colon) syntax. import signals a cor-
rectable error if any of the imported symbols has the same name as some distinct
symbol already accessible in the package (see section 11.4). import returns t.

X3J13 voted in June 1987 (IMPORT-SETF-SYMBOL-PACKAGE) to clarify that
if any symbol to be imported has no home package then import sets the home
package of the symbol to the package to which the symbol is being imported.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

shadowing-import symbols &optional package [Function]
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This is like import, but it does not signal an error even if the importation
of a symbol would shadow some symbol already accessible in the package. In
addition to being imported, the symbol is placed on the shadowing-symbols list
of package (see section 11.5). shadowing-import returns t.

shadowing-import should be used with caution. It changes the state of the
package system in such a way that the consistency rules do not hold across the
change.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

shadow symbols &optional package [Function]

The argument should be a list of symbols, or possibly a single symbol. The
print name of each symbol is extracted, and the specified package is searched
for a symbol of that name. If such a symbol is present in this package (directly,
not by inheritance), then nothing is done. Otherwise, a new symbol is created
with this print name, and it is inserted in the package as an internal symbol.
The symbol is also placed on the shadowing-symbols list of the package (see
section 11.5). shadow returns t.

X3J13 voted in March 1988 (SHADOW-ALREADY-PRESENT) to change shadow
to accept strings as well as well as symbols (a string in the symbols list being
treated as a print name), and to clarify that if a symbol of specified name is
already in the package but is not yet on the shadowing-symbols list for that
package, then shadow does add it to the shadowing-symbols list rather than
simply doing nothing.

shadow should be used with caution. It changes the state of the package
system in such a way that the consistency rules do not hold across the change.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

use-package packages-to-use &optional package [Function]

The packages-to-use argument should be a list of packages or package names, or
possibly a single package or package name. These packages are added to the use-
list of package if they are not there already. All external symbols in the packages
to use become accessible in package as internal symbols (see section 11.4). It is
an error to try to use the keyword package. use-package returns t.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

unuse-package packages-to-unuse &optional package [Function]

The packages-to-unuse argument should be a list of packages or package names,
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or possibly a single package or package name. These packages are removed from
the use-list of package. unuse-package returns t.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 (DEFPACKAGE) to add a macro defpackage to
the language to make it easier to create new packages, alleviating the burden on
the programmer to perform the various setup operations in exactly the correct
sequence.

defpackage defined-package-name {option}* [Macrol

This creates a new package, or modifies an existing one, whose name is defined-
package-name. The defined-package-name may be a string or a symbol; if it is a
symbol, only its print name matters, and not what package, if any, the symbol
happens to be in. The newly created or modified package is returned as the
value of the defpackage form.

Each standard option is a list of a keyword (the name of the option) and
associated arguments. No part of a defpackage form is evaluated. Except for
the :size option, more than one option of the same kind may occur within the
same defpackage form.

The standard options for defpackage are as follows. In every case, any
option argument called package-name or symbol-name may be a string or a
symbol; if it is a symbol, only its print name matters, and not what package, if
any, the symbol happens to be in.

(:size integer)

This specifies approximately the number of symbols expected to be in the pack-
age. This is purely an efficiency hint to the storage allocator, so that imple-
mentations using hash tables as part of the package data structure (the usual
technique) will not have to incrementally expand the package as new symbols
are added to it (for example, as a large file is read while “in” that package).

(:nicknames {package-name}*)

The specified names become nicknames of the package being defined. If any
of the specified nicknames already refers to an existing package, a continuable
error is signaled exactly as for the function make-package.

(:shadow {symbol-name}*)
Symbols with the specified names are created as shadows in the package being
defined, just as with the function shadow.

(:shadowing-import-from package-name {symbol-name}*)

Symbols with the specified names are located in the specified package. These
symbols are imported into the package being defined, shadowing other symbols if
necessary, just as with the function shadowing-import. In no case will symbols
be created in a package other than the one being defined; a continuable error is
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signaled if for any symbol-name there is no symbol of that name accessible in
the package named package-name.

(:use {package-name}*)

The package being defined is made to “use” (inherit from) the packages specified
by this option, just as with the function use-package. If no :use option is
supplied, then a default list is assumed as for make-package.

X3J13 voted in January 1989 (MAKE-PACKAGE-USE-DEFAULT) to change the
specification of make-package so that the default value for the :use argument
is unspecified. This change affects defpackage as well. Portable code should
specify (:use ’ ("COMMON-LISP")) explicitly.

(:import-from package-name {symbol-name}*)

Symbols with the specified names are located in the specified package. These
symbols are imported into the package being defined, just as with the function
import. In no case will symbols be created in a package other than the one
being defined; a continuable error is signaled if for any symbol-name there is no
symbol of that name accessible in the package named package-name.

(:intern {symbol-name}*)

Symbols with the specified names are located or created in the package being
defined, just as with the function intern. Note that the action of this option
may be affected by a :use option, because an inherited symbol will be used in
preference to creating a new one.

(:export {symbol-name}*)
Symbols with the specified names are located or created in the package being de-
fined and then exported, just as with the function export. Note that the action
of this option may be affected by a :use, : import-from, or : shadowing-import-from
option, because an inherited or imported symbol will be used in preference to
creating a new one.

The order in which options appear in a defpackage form does not matter;
part of the convenience of defpackage is that it sorts out the options into the
correct order for processing. Options are processed in the following order:

e :shadow and :shadowing-import-from
e :use

e :import-fromand :intern

® :export

Shadows are established first in order to avoid spurious name conflicts when
use links are established. Use links must occur before importing and interning
so that those operations may refer to normally inherited symbols rather than
creating new ones. Exports are performed last so that symbols created by any
of the other options, in particular, shadows and imported symbols, may be
exported. Note that exporting an inherited symbol implicitly imports it first
(see section 11.4).
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If no package named defined-package-name already exists, defpackage cre-
ates it. If such a package does already exist, then no new package is created.
The existing package is modified, if possible, to reflect the new definition. The
results are undefined if the new definition is not consistent with the current
state of the package.

An error is signaled if more than one :size option appears.

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the arguments
to all the :shadow, :shadowing-import-from, :import-from, and :intern
options.

An error is signaled if the same symbol-name argument (in the sense of
comparing names with string=) appears more than once among the arguments
to all the :intern and :export options.

Other kinds of name conflicts are handled in the same manner that the
underlying operations use-package, import, and export would handle them.

Implementations may support other defpackage options. Every implemen-
tation should signal an error on encountering a defpackage option it does not
support.

The function compile-file should treat top-level defpackage forms in the
same way it would treat top-level calls to package-affecting functions (as de-
scribed at the beginning of section 11.7).

Here is an example of a call to defpackage that “plays it safe” by using only
strings as names.

(cl:defpackage "MY-VERY-OWN-PACKAGE”

size 496)

nicknames "MY-PKG” "MYPKG” "MVOP”)

use "COMMON-LISP”)

shadow ”CAR” ”CDR”)

shadowing-import-from ”BRAND-X-LISP” ”CONS”)

import-from ”BRAND-X-LISP” ”GC” "BLINK-FRONT-PANEL-LIGHTS”)
(:export "EQ” "CONS” ?"MY-VERY-OWN-FUNCTION”))

(:
(:
(:
(:
(:
(:

The preceding defpackage example is designed to operate correctly even if the
package current when the form is read happens not to “use” the common-1isp
package. (Note the use in this example of the nickname c1 for the common-1isp
package.) Moreover, neither reading in nor evaluating this defpackage form will
ever create any symbols in the current package. Note too the use of uppercase
letters in the strings.

Here, for the sake of contrast, is a rather similar use of defpackage that
“plays the whale” by using all sorts of permissible syntax.

(defpackage my-very-own-package
(:export :EQ common-lisp:cons my-very-own-function)
(:nicknames "MY-PKG” #:MyPkg)
(:use ”COMMON-LISP”)
(:shadow ”"CAR”)
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size 496)
nicknames mvop)
import-from "BRAND-X-LISP” ”GC” Blink-Front-Panel-Lights)

shadow common-lisp::cdr)
(:shadowing-import-from "BRAND-X-LISP” CONS))

(:
(:
(:
(:

This example has exactly the same effect on the newly created package but may
create useless symbols in other packages. The use of explicit package tags is
particularly confusing; for example, this defpackage form will cause the symbol
cdr to be shadowed in the new package; it will not be shadowed in the package
common-1isp. The fact that the name “CDR” was specified by a package-qualified
reference to a symbol in the common-1isp package is a red herring. The moral is
that the syntactic flexibility of defpackage, as in other parts of Common Lisp,
yields considerable convenience when used with commonsense competence, but
unutterable confusion when used with Malthusian profusion.

Implementation note: Animplementation of defpackage might choose to transform
all the package-name and symbol-name arguments into strings at macro expansion
time, rather than at the time the resulting expansion is executed, so that even if
source code is expressed in terms of strange symbols in the defpackage form, the
binary file resulting from compiling the source code would contain only strings. The
purpose of this is simply to minimize the creation of useless symbols in production
code. This technique is permitted as an implementation strategy but is not a behavior
required by the specification of defpackage.

Note that defpackage is not capable by itself of defining mutually recursive
packages, for example two packages each of which uses the other. However,
nothing prevents one from using defpackage to perform much of the initial
setup and then using functions such as use-package, import, and export to
complete the links.

The purpose of defpackage is to encourage the user to put the entire defi-
nition of a package and its relationships to other packages in a single place. It
may also encourage the designer of a large system to place the definitions of
all relevant packages into a single file (say) that can be loaded before loading
or compiling any code that depends on those packages. Such a file, if carefully
constructed, can simply be loaded into the common-1isp-user package.

Implementations and programming environments may also be better able to
support the programming process (if only by providing better error checking)
through global knowledge of the intended package setup.

find-all-symbols string-or-symbol [Function]

find-all-symbols searches every package in the Lisp system to find every
symbol whose print name is the specified string. A list of all such symbols
found is returned. This search is case-sensitive. If the argument is a symbol, its
print name supplies the string to be searched for.
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do-symbols (var [package [result-form]]) [Macrol
{declaration}* {tag | statement}*

do-symbols provides straightforward iteration over the symbols of a package.
The body is performed once for each symbol accessible in the package, in no
particular order, with the variable var bound to the symbol. Then result-form (a
single form, not an implicit progn) is evaluated, and the result is the value of the
do-symbols form. (When the result-form is evaluated, the control variable var
is still bound and has the value nil.) If the result-form is omitted, the result is
nil. return may be used to terminate the iteration prematurely. If execution
of the body affects which symbols are contained in the package, other than
possibly to remove the symbol currently the value of var by using unintern,
the effects are unpredictable.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in March 1988 (DO-SYMBOLS-DUPLICATES) to specify that the
body of a do-symbols form may be executed more than once for the same
accessible symbol, and users should take care to allow for this possibility.

The point is that the same symbol might be accessible via more than one
chain of inheritance, and it is implementationally costly to eliminate such du-
plicates. Here is an example:

(setq *a* (make-package ’a)) ;Implicitly uses package common-1lisp
(setq *b* (make-package b)) ;Implicitly uses package common-1lisp
(setq *c* (make-package 'c :use '(a b)))

(do-symbols (x *c*) (print x)) ;Symbols in package common-1isp
; might be printed once or twice
here

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to restrict
user side effects; see section 7.9. Note that the loop construct provides a kind
of for clause that can iterate over the symbols of a package (see chapter 26).

do-external-symbols (var [package [result]]) [Macro]
{declaration}* {tag | statement}*

do-external-symbols is just like do-symbols, except that only the external
symbols of the specified package are scanned. The clarification voted by X3J13
in March 1988 for do-symbols (DO-SYMBOLS-DUPLICATES), regarding redundant
executions of the body for the same symbol, applies also to do-external-symbols.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to re-
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strict user side effects; see section 7.9.

do-all-symbols (var [result-form)) [Macro]
{declaration}* {tag | statement}*

This is similar to do-symbols but executes the body once for every symbol
contained in every package. (This will not process every symbol whatsoever,
because a symbol not accessible in any package will not be processed. Normally,
uninterned symbols are not accessible in any package.) It is not in general the
case that each symbol is processed only once, because a symbol may appear in
many packages.

The clarification voted by X3J13 in March 1988 for do-symbols (DO-SYMBOLS
regarding redundant executions of the body for the same symbol, applies also
to do-all-symbols.

X3J13 voted in January 1989 (PACKAGE-FUNCTION-CONSISTENCY) to clarify
that the package argument may be either a package object or a package name
(see section 11.2).

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to re-
strict user side effects; see section 7.9.

X3J13 voted in January 1989 (HASH-TABLE-PACKAGE-GENERATORS) to add a
new macro with-package-iterator to the language.

with-package-iterator (mname package-list {symbol-type}™) [Macrol
{form}*

The name mname is bound and defined as if by macrolet, with the body forms
as its lexical scope, to be a “generator macro” such that each invocation of
(mname) will return a symbol and that successive invocations will eventually
deliver, one by one, all the symbols from the packages that are elements of the
list that is the value of the expression package-list (which is evaluated exactly
once).

Each element of the package-list value may be either a package or the name
of a package. As a further convenience, if the package-list value is itself a package
or the name of a package, it is treated as if a singleton list containing that value
had been provided. If the package-list value is nil, it is considered to be an
empty list of packages.

At each invocation of the generator macro, there are two possibilities. If
there is yet another unprocessed symbol, then four values are returned: t, the
symbol, a keyword indicating the accessibility of the symbol within the package
(see below), and the package from which the symbol was accessed. If there are
no more unprocessed symbols in the list of packages, then one value is returned:
nil.

When the generator macro returns a symbol as its second value, the fourth
value is always one of the packages present or named in the package-list value,
and the third value is a keyword indicating accessibility: :internal means
present in the package and not exported; :external means present and ex-

-DUPLICATES),
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ported; and :inherited means not present (thus not shadowed) but inherited
from some package used by the package that is the fourth value.

Each symbol-type in an invocation of with-package-iterator is not eval-
uated. More than one may be present; their order does not matter. They
indicate the accessibility types of interest. A symbol is not returned by the
generator macro unless its actual accessibility matches one of the symbol-type
indicators. The standard symbol-type indicators are :internal, :external,
and :inherited, but implementations are permitted to extend the syntax of
with-package-iterator by recognizing additional symbol accessibility types.
An error is signaled if no symbol-type is supplied, or if any supplied symbol-type
is not recognized by the implementation.

The order in which symbols are produced by successive invocations of the
generator macro is not necessarily correlated in any way with the order of the
packages in the package-list. When more than one package is in the package-
list, symbols accessible from more than one package may be produced once or
more than once. Even when only one package is specified, symbols inherited in
multiple ways via used packages may be produced once or more than once.

The implicit interior state of the iteration over the list of packages and the
symbols within them has dynamic extent. It is an error to invoke the generator
macro once the with-package-iterator form has been exited.

Any number of invocations of with-package-iterator and related macros
may be nested, and the generator macro of an outer invocation may be called
from within an inner invocation (provided, of course, that its name is visible or
otherwise made available).

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to re-
strict user side effects; see section 7.9.

Rationale: This facility is a bit more flexible in some ways than do-symbols and
friends. In particular, it makes it possible to implement loop clauses for iterating over
packages in a way that is both portable and efficient (see chapter 26).

11.8 Modules

A module is a Common Lisp subsystem that is loaded from one or more files.
A module is normally loaded as a single unit, regardless of how many files
are involved. A module may consist of one package or several packages. The
file-loading process is necessarily implementation-dependent, but Common Lisp
provides some very simple portable machinery for naming modules, for keeping
track of which modules have been loaded, and for loading modules as a unit.
X3J13 voted in January 1989 (REQUIRE-PATHNAME-DEFAULTS) to eliminate
the entire module facility from the language; that is, the variable *modules* and
the functions provide and require are deleted. X3J13 commented that the file-
loading feature of require is not portable, and that the remaining functionality
is easily implemented by user code. (I will add that in any case the specification
of require is so vague that different implementations are likely to have differing



CHAPTER 11. PACKAGES 245

behavior.)

*modules* [Variable]

The variable *modules* is a list of names of the modules that have been loaded
into the Lisp system so far. This list is used by the functions provide and
require.

provide module-name [Function]

require module-name &optional pathname [Function]

Each module has a unique name (a string). The provide and require functions
accept either a string or a symbol as the module-name argument. If a symbol is
provided, its print name is used as the module name. If the module consists of
a single package, it is customary for the package and module names to be the
same.

The provide function adds a new module name to the list of modules main-
tained in the variable *modules*, thereby indicating that the module in question
has been loaded.

The require function tests whether a module is already present (using a
case-sensitive comparison); if the module is not present, require proceeds to
load the appropriate file or set of files. The pathname argument, if present, is
a single pathname or a list of pathnames whose files are to be loaded in order,
left to right. If the pathname argument is nil or is not provided, the system
will attempt to determine, in some system-dependent manner, which files to
load. This will typically involve some central registry of module names and the
associated file lists.

X3J13 voted in March 1988 not to permit symbols as pathnames (PATHNAME-SYMBOL|
and to specify exactly which streams may be used as pathnames (PATHNAME-STREAM)
(see section 23.1.6). Of course, this is moot if require is not in the language.

X3J13 voted in January 1989 (RETURN-VALUES-UNSPECIFIED) to specify that
the values returned by provide and require are implementation-dependent. Of
course, this is moot if provide and require are not in the language.

Implementation note: One way to implement such a registry on many operating
systems is simply to use a distinguished “library” directory within the file system,
where the name of each file is the same as the module it contains.

11.9 An Example

X3J13 voted in March 1989 (LISP-PACKAGE-NAME) to specify that the forthcom-
ing ANSI Common Lisp will use the package name common-lisp-user instead
of user.

When each of two files uses some symbols from the other, the author of
those files must be careful to arrange the contents of the file in the proper
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Table 11.1: An Initialization File

;33; Lisp init file for I. Newton.
;33 Set up the USER package the way I like it.

(require ’calculus) ;T use CALCULUS a lot; load it.
(use-package ’calculus) ;:Get easy access to its
; exported symbols.

(require 'newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS
(use-package 'newtonian-mechanics)

;33 I just want a few things from RELATIVITY,
;;; and other things conflict.
;;; Import only what I need into the USER package.

(require 'relativity)
(import ’(relativity:speed-of-light
relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,
;53 such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(require 'phlogiston)
(require ’alchemy)

;;; End of Lisp init file for I. Newton.

order. Typically each file contains a single package that is a complete module.
The contents of such a file should include the following items, in order:

1. A call to provide that announces the module name.
2. A call to in-package that establishes the package.

3. A call to shadow that establishes any local symbols that will shadow sym-
bols that would otherwise be inherited from packages that this package
will use.

4. A call to export that establishes all of this package’s external symbols.

5. Any number of calls to require to load other modules that the contents
of this file might want to use or refer to. (Because the calls to require
follow the calls to in-package, shadow, and export, it is possible for the
packages that may be loaded to refer to external symbols in this package.)



CHAPTER 11. PACKAGES 247
6. Any number of calls to use-package, to make external symbols from other
packages accessible in this package.

7. Any number of calls to import, to make symbols from other packages
present in this package.

8. Finally, the definitions making up the contents of this package/module.

The following mnemonic sentence may be helpful in remembering the proper
order of these calls:

Put in seven extremely random user interface commands.

Each word of the sentence corresponds to one item in the above ordering:

Put Provide

IN IN-package

Seven Shadow

EXtremely EXport

Random Require

USEr USE-package

Interface Import

COmmands COntents of package/module

The sentence says what it helps you to do.

The most distressing aspect of the X3J13 vote to eliminate provide and
require (REQUIRE-PATHNAME-DEFAULTS) is of course that it completely ruins
the mnemonic sentence.

Now, suppose for the sake of example that the phlogiston and alchemy
packages are single-file, single-package modules as described above. The phlogiston
package needs to use the alchemy package, and the alchemy package needs to
use several external symbols from the phlogiston package. The definitions in
the alchemy and phlogiston files (see tables 11.2 and 11.3) allow a user to
specify require statements for either of these modules, or for both of them in
either order, and all relevant information will be loaded automatically and in
the correct order.

Indeed, the defpackage macro approved by X3J13 in January 1989 (DEFPACKAGE)
encourages the use of such a separate file. (By the way, X3J13 voted in March
1989 (LISP-PACKAGE-NAME) to specify that the forthcoming ANST Common Lisp
will use the package name common-1lisp instead of 1isp.) Let’s take a look at
a revision of I. Newton’s files using defpackage.

The new version of the initialization file avoids using require; instead, we
assume that load will do the job (see table 11.4).

The other files have each been split into two parts, one that establishes
the package and one that defines the contents. This example uses a simple
convention that for any file named, say, “foo” the file named “foo-package”
contains the necessary defpackage and/or other package-establishing code. The
idiom



CHAPTER 11. PACKAGES 248

Table 11.2: File alchemy

;33; Alchemy functions, written and maintained by Merlin, Inc.

(provide ’alchemy) ;The module is named ALCHEMY.
(in-package ’alchemy) ;S0 is the package.

;3; There is nothing to shadow.
;;; Here is the external interface.

(export ’(lead-to-gold gold-to-lead
antimony-to-zinc elixir-of-life))

;;; This package/module needs a function from
;;; the PHLOGISTON package/module.

(require ’phlogiston)

;;; We don’t frequently need most of the external symbols from

;;; PHLOGISTON, so it’s not worth doing a USE-PACKAGE on it.
;33 We'll just use qualified names as needed. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;33 It’s external in PHLOGISTON and so can be referred to

9 .9

;;; here using ”:” qualified-name syntax.
(import ’(phlogiston:make-fire-bottle))
;;; Now for the real contents of this file.

(defun lead-to-gold (x)
”Takes a quantity of lead and returns gold.”
(when (> (phlogiston:heat-flow 5 x x)  ;Using a qualified symbol
3)
(make-fire-bottle x)) ;Using an imported symbol
(gild x))

;5 And so on ...
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Table 11.3: File phlogiston
;33; Phlogiston functions, by Thermofluidics, Ltd.

(provide 'phlogiston) ;The module is named PHLOGISTON.
(in-package 'phlogiston) ;So is the package.

;3; There is nothing to shadow.
;;; Here is the external interface.

(export ’(heat-flow cold-flow mix-fluids separate-fluids
burn make-fire-bottle))

;;; This file uses functions from the ALCHEMY package/module.
(require ’alchemy)

;;; We use alchemy functions a lot, so use the package.
;33 This will allow symbols exported from the ALCHEMY package
;33 to be referred to here without the need for qualified names.

(use-package ’alchemy)

;;; No calls to IMPORT are needed here.

;;; The real contents of this package/module.
(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)
”Make some amount of heat flow from x to y.”
(when *feeling-weak*
(quaff (elixir-of-life))) ;No qualifier is needed.
(push-heat amount x y))

;;; And so on ...
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Table 11.4: An Initialization File When defpackage Is Used
;33; Lisp init file for I. Newton.

;33 Set up the USER package the way I like it.

(load ”calculus”) ;I use CALCULUS a lot; load it.
(use-package ’calculus) ;Get easy access to its
; exported symbols.

(load ”newtonian-mechanics”) ;Ditto for NEWTONIAN-MECHANICS
(use-package 'newtonian-mechanics)

;3; I just want a few things from RELATIVITY,
;;; and other things conflict.
;;; Import only what I need into the USER package.

(load "relativity”)
(import ’(relativity:speed-of-light
relativity:ignore-small-errors))

;;; These are worth loading, but I will use qualified names,
;55 such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols

;;; I might need from these packages.

(load ”phlogiston”)
(load ”alchemy”)

;;; End of Lisp init file for I. Newton.

(unless (find-package ”FOO”)
(load ”foo-package”))

is conventionally used to load a package definition but only if the package has
not already been defined. (This is a bit clumsy, and there are other ways to
arrange things so that a package is defined no more than once.)

The file alchemy-package is shown in table 11.5. The tricky point here
is that the alchemy and phlogiston packages contain mutual references (each
imports from the other), and so defpackage alone cannot do the job. Therefore
the phlogiston package is not mentioned in a :use option in the defpackage
for the alchemy package. Instead, the function use-package is called explicitly,
after the package definition for phlogiston has been loaded. Note that this
file has been coded with excruciating care so as to operate correctly even if the
package current when the file is loaded does not inherit from the common-1lisp
package. In particular, the standard load-package-definition idiom has been
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peppered with package qualifiers:

(cl:unless (cl:find-package ”PHLOGISTON”)
(cl:load ”phlogiston-package”))

Note the use of the nickname c1 for the common-1isp package.

The alchemy file, shown in table 11.6, simply loads the alchemy package
definition, makes that package current, and then defines the “real contents” of
the package.

The file phlogiston-package is shown in table 11.7. This one is a little
more straightforward than the file alchemy-package, because the latter bears
the responsibility for breaking the circular package references. This file simply
makes sure that the alchemy package is defined and then performs a defpackage
for the phlogiston package.

The phlogiston file, shown in table 11.8, simply loads the phlogiston pack-
age definition, makes that package current, and then defines the “real contents”
of the package.

Let’s look at the question of package circularity in this example a little
more closely. Suppose that the file alchemy-package is loaded first. It de-
fines the alchemy package and then loads file phlogiston-package. That file
in turn finds that the package alchemy has already been defined and there-
fore does not attempt to load file alchemy-package again; it merely defines
package phlogiston. The file alchemy-package then has a chance to import
phlogiston:make-fire-bottle and everything is fine.

On the other hand, suppose that the file phlogiston-package is loaded
first. It finds that the package alchemy has not already been defined, and
therefore it immediately loads file alchemy-package. That file in turn defines
the alchemy package; then it finds that package phlogiston is not yet defined
and so loads file phlogiston-package again (indeed, in nested fashion). This
time file phlogiston-package does find that the package alchemy has already
been defined, so it simply defines package phlogiston and terminates. The
file alchemy-package then imports phlogiston:make-fire-bottle and termi-
nates. Finally, the outer loading of file phlogiston-package re-defines package
phlogiston. Oh, dear. Fortunately the two definitions of package phlogiston
agree in every detail, so everything ought to be all right. Still, it looks a bit
dicey; I certainly don’t have the same warm, fuzzy feeling that I would if no
package were defined more than once.
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Table 11.5: File alchemy-package Using defpackage
;555 Alchemy package, written and maintained by Merlin, Inc.
(cl:defpackage " ALCHEMY”

(:export "LEAD-TO-GOLD” ”GOLD-TO-LEAD”
? ANTIMONY-TO-ZINC” ”ELIXIR-OF-LIFE”)
)

;;; This package needs a function from the PHLOGISTON package.

;;; Load the definition of the PHLOGISTON package if necessary.

(cl:unless (cl:find-package ”PHLOGISTON”)
(cl:load ”phlogiston-package”))

;;; We don’t frequently need most of the external symbols from

;;; PHLOGISTON, so it’s not worth doing a USE-PACKAGE on it.

533 We'll just use qualified names as needed. But we use
;53 one function, MAKE-FIRE-BOTTLE, a lot, so import it.
;53 It’s external in PHLOGISTON and so can be referred to

9 .9

;;; here using ”:” qualified-name syntax.

(cl:import ’(phlogiston:make-fire-bottle))

Table 11.6: File alchemy Using defpackage

;53; Alchemy functions, written and maintained by Merlin, Inc.

(unless (find-package ”ALCHEMY”)
(load ”alchemy-package”))

(in-package ’alchemy)

(defun lead-to-gold (x)
"Takes a quantity of lead and returns gold.”

(when (> (phlogiston:heat-flow 5 x x)  ;Using a qualified symbol

3)

(make-fire-bottle x)) ;Using an imported symbol

(gild x))

;5 And so on ...
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Table 11.7: File phlogiston-package Using defpackage
;3;; Phlogiston package definition, by Thermofluidics, Ltd.

;53 This package uses functions from the ALCHEMY package.

(cl:unless (cl:find-package ” ALCHEMY”)
(cl:load ”alchemy-package”))

(cl:defpackage "PHLOGISTON”

(:use ”COMMON-LISP” " ALCHEMY”)

(:export "HEAT-FLOW”
”COLD-FLOW”
"MIX-FLUIDS”
"SEPARATE-FLUIDS”
"BURN”
"MAKE-FIRE-BOTTLE”)

Table 11.8: File phlogiston Using defpackage
;33; Phlogiston functions, by Thermofluidics, Ltd.

(unless (find-package ”PHLOGISTON”)
(load ”phlogiston-package”))

(in-package "phlogiston)
(defvar *feeling-weak* nil)

(defun heat-flow (amount x y)
”Make some amount of heat flow from x to y.”
(when *feeling-weak*
(quaft (elixir-of-life))) ;No qualifier is needed.
(push-heat amount x y))

And so on ...

77
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Conclusion: defpackage goes a long way, but it certainly doesn’t solve all
the possible problems of package and file management. Neither did require
and provide. Perhaps further experimentation will yield facilities appropriate
for future standardization.



Chapter 12

Numbers

Common Lisp provides several different representations for numbers. These
representations may be divided into four categories: integers, ratios, floating-
point numbers, and complex numbers. Many numeric functions will accept any
kind of number; they are generic. Other functions accept only certain kinds of
numbers.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense and not necessarily in the
technical sense used by CLOS (see chapter 2).

In general, numbers in Common Lisp are not true objects; eq cannot be
counted upon to operate on them reliably. In particular, it is possible that the
expression

(let ((xz) (v 2)) (eaxy))

may be false rather than true if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor
enough design freedom to produce exceptionally efficient numerical code on conven-
tional architectures. MacLisp requires this freedom, for example, in order to produce
compiled numerical code equal in speed to Fortran. Common Lisp makes this same
restriction, if not for this freedom, then at least for the sake of compatibility.

If two objects are to be compared for “identity,” but either might be a
number, then the predicate eql is probably appropriate; if both objects are
known to be numbers, then = may be preferable.

12.1 Precision, Contagion, and Coercion

In general, computations with floating-point numbers are only approximate.
The precision of a floating-point number is not necessarily correlated at all with
the accuracy of that number. For instance, 3.142857142857142857 is a more
precise approximation to 7 than 3.14159, but the latter is more accurate. The
precision refers to the number of bits retained in the representation. When an

255
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operation combines a short floating-point number with a long one, the result will
be a long floating-point number. This rule is made to ensure that as much accu-
racy as possible is preserved; however, it is by no means a guarantee. Common
Lisp numerical routines do assume, however, that the accuracy of an argument
does not exceed its precision. Therefore when two small floating-point numbers
are combined, the result will always be a small floating-point number. This as-
sumption can be overridden by first explicitly converting a small floating-point
number to a larger representation. (Common Lisp never converts automatically
from a larger size to a smaller one.)

Rational computations cannot overflow in the usual sense (though of course
there may not be enough storage to represent one), as integers and ratios may in
principle be of any magnitude. Floating-point computations may get exponent
overflow or underflow; this is an error.

X3J13 voted in June 1989 (FLOAT-UNDERFLOW) to address certain problems
relating to floating-point overflow and underflow, but certain parts of the pro-
posed solution were not adopted, namely to add the macro
without-floating-underflow-traps to the language and to require certain
behavior of floating-point overflow and underflow. The committee agreed that
this area of the language requires more discussion before a solution is standard-
ized.

For the record, the proposal that was considered and rejected (for the nonce)
introduced a macro without-floating-underflow-traps that would execute
its body in such a way that, within its dynamic extent, a floating-point underflow
must not signal an error but instead must produce either a denormalized number
or zero as the result. The rejected proposal also specified the following treatment
of overflow and underflow:

e A floating-point computation that overflows should signal an error of type
floating-point-overflow.

e Unless the dynamic extent of a use of without-floating-underflow-traps,
a floating-point computation that underflows should signal an error of type
floating-point-underflow. A result that can be represented only in de-
normalized form must be considered an underflow in implementations that
support denormalized floating-point numbers.

These points refer to conditions floating-point-overflow and floating-
point-underflowthat were approved by X3J13 and are described in section 29.5.

When rational and floating-point numbers are compared or combined by a
numerical function, the rule of floating-point contagion is followed: when a ra-
tional meets a floating-point number, the rational is first converted to a floating-
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point number of the same format. For functions such as + that take more than
two arguments, it may be that part of the operation is carried out exactly using
rationals and then the rest is done using floating-point arithmetic.

X3J13 voted in January 1989 (CONTAGION-ON-NUMERICAL-COMPARISONS) to
apply the rule of floating-point contagion stated above to the case of combining
rational and floating-point numbers. For comparing, the following rule is to be
used instead: When a rational number and a floating-point number are to be
compared by a numerical function, in effect the floating-point number is first
converted to a rational number as if by the function rational, and then an exact
comparison of two rational numbers is performed. It is of course valid to use
a more efficient implementation than actually calling the function rational,
as long as the result of the comparison is the same. In the case of complex
numbers, the real and imaginary parts are handled separately.

Rationale: In general, accuracy cannot be preserved in combining operations, but it
can be preserved in comparisons, and preserving it makes that part of Common Lisp
algebraically a bit more tractable. In particular, this change prevents the breakdown
of transitivity. Let a be the result of (/ 10.0 single-float-epsilon), and let j be
the result of (floor a). (Note that (= a (+ a 1.0)) is true, by the definition of
single-float-epsilon.) Under the old rules, all of (<= a j), (< j (+ j 1)), and
(<= (+ j 1) a) would be true; transitivity would then imply that (< a a) ought to
be true, but of course it is false, and therefore transitivity fails. Under the new rule,
however, (<= (+ j 1) a) is false.

For functions that are mathematically associative (and possibly commuta-
tive), a Common Lisp implementation may process the arguments in any man-
ner consistent with associative (and possibly commutative) rearrangement. This
does not affect the order in which the argument forms are evaluated, of course;
that order is always left to right, as in all Common Lisp function calls. What
is left loose is the order in which the argument values are processed. The point
of all this is that implementations may differ in which automatic coercions are
applied because of differing orders of argument processing. As an example,
consider this expression:

(+1/32/3 1.0D0 1.0 1.0E-15)

One implementation might process the arguments from left to right, first adding
1/3 and 2/3 to get 1, then converting that to a double-precision floating-point
number for combination with 1.0D0, then successively converting and adding
1.0 and 1.0E-15. Another implementation might process the arguments from
right to left, first performing a single-precision floating-point addition of 1.0
and 1.0E-15 (and probably losing some accuracy in the process!), then con-
verting the sum to double precision and adding 1.0DO, then converting 2/3
to double-precision floating-point and adding it, and then converting 1/3 and
adding that. A third implementation might first scan all the arguments, process
all the rationals first to keep that part of the computation exact, then find an
argument of the largest floating-point format among all the arguments and add
that, and then add in all other arguments, converting each in turn (all in a
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perhaps misguided attempt to make the computation as accurate as possible).
In any case, all three strategies are legitimate. The user can of course control
the order of processing explicitly by writing several calls; for example:

(+ (+ 1/32/3) (+ 1.0D0 1.0E-15) 1.0)

The user can also control all coercions simply by writing calls to coercion func-
tions explicitly.

In general, then, the type of the result of a numerical function is a floating-
point number of the largest format among all the floating-point arguments to the
function; but if the arguments are all rational, then the result is rational (except
for functions that can produce mathematically irrational results, in which case
a single-format floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers
never result from a numerical function unless one or more of the arguments is
complex. (Exceptions to this rule occur among the irrational and transcenden-
tal functions, specifically expt, log, sqrt, asin, acos, acosh, and atanh; see
section 12.5.) When a non-complex number meets a complex number, the non-
complex number is in effect first converted to a complex number by providing
an imaginary part of zero.

If any computation produces a result that is a ratio of two integers such
that the denominator evenly divides the numerator, then the result is imme-
diately converted to the equivalent integer. This is called the rule of rational
canonicalization.

If the result of any computation would be a complex rational with a zero
imaginary part, the result is immediately converted to a non-complex rational
number by taking the real part. This is called the rule of complex canonicaliza-
tion. Note that this rule does not apply to complex numbers whose components
are floating-point numbers. Whereas #C(5 0) and 5 are not distinct values in
Common Lisp (they are always eql), #C(5.0 0.0) and 5.0 are always distinct
values in Common Lisp (they are never eql, although they are equalp).

12.2 Predicates on Numbers

Each of the following functions tests a single number for a specific property.
Each function requires that its argument be a number; to call one with a non-
number is an error.

zerop number [Function]

This predicate is true if number is zero (the integer zero, a floating-point zero,
or a complex zero), and is false otherwise. Regardless of whether an implemen-
tation provides distinct representations for positive and negative floating-point
zeros, (zerop -0.0) is always true. It is an error if the argument number is
not a number.
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plusp number [Function]

This predicate is true if number is strictly greater than zero, and is false other-
wise. It is an error if the argument number is not a non-complex number.

minusp number [Function]

This predicate is true if number is strictly less than zero, and is false otherwise.
Regardless of whether an implementation provides distinct representations for
positive and negative floating-point zeros, (minusp -0.0) is always false. (The
function float-sign may be used to distinguish a negative zero.) It is an error
if the argument number is not a non-complex number.

oddp integer [Function]

This predicate is true if the argument integer is odd (not divisible by 2), and
otherwise is false. It is an error if the argument is not an integer.

evenp integer [Function]

This predicate is true if the argument integer is even (divisible by 2), and oth-
erwise is false. It is an error if the argument is not an integer.

See also the data-type predicates integerp, rationalp, floatp, complexp,
and numberp.

12.3 Comparisons on Numbers

Each of the functions in this section requires that its arguments all be numbers;
to call one with a non-number is an error. Unless otherwise specified, each works
on all types of numbers, automatically performing any required coercions when
arguments are of different types.

= number &rest more-numbers [Function]
/ = number &rest more-numbers [Function]
< number &rest more-numbers [Function]
> number &rest more-numbers [Function]
<= number &rest more-numbers [Function]

>= number &rest more-numbers [Function]
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These functions each take one or more arguments. If the sequence of arguments
satisfies a certain condition:

= all the same

/= all different

< monotonically increasing

> monotonically decreasing

<= monotonically nondecreasing
>=  monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may
be compared using = and /=, but the others require non-complex arguments.
Two complex numbers are considered equal by = if their real parts are equal
and their imaginary parts are equal according to =. A complex number may be
compared with a non-complex number with = or /=. For example:

(= 3 3) is true. (/ = 3 3) is false.

(= 35) is false. (/ =35)is true.
(=333 3) is true. (/ =333 3) is false.
(=335 3) is false. (/=335 3) is false.
(=365 2) is false. (/=365 2)is true.
(=32 3) is false. (/ =32 3) is false.

(< 3 5) is true. (<=3 5) is true.

(< 3-5) is false. (<= 3-5) is false.

(< 3 3) is false. (<=3 3) is true.
(<03467)is true. (<=03467)is true.
(< 03446) is false. (<=03446) is true.
(> 4 3) is true. (>= 4 3) is true.
(>43210)is true. (>=43210) is true.
(>43320) is false. (>=43320) is true.
(>43120) is false. (>=43120) is false.

(= 3) is true. (/ = 3) is true.

(< 3) is true. (<= 3) is true.

(= 3.0 #C(3.0 0.0)) is true. (/ = 3.0 #C(3.0 1.0)) is true.
(= 3 3.0) is true. (= 3.0s0 3.0d0) is true.

(= 0.0 -0.0) is true. (= 5/2 2.5) is true.

(> 0.0 -0.0) is false. (= 0-0.0) is true.

||/\H

With two arguments, these functions perform the usual arithmetic comparison
tests. With three or more arguments, they are useful for range checks, as shown
in the following example:

(«<=0x9) strue if x is between 0 and 9, inclusive

(< 0.0 x 1.0) strue if x is between 0.0 and 1.0, exclusive
(< -1j (length s)) strue if j is a valid index for s

(<=0jk (- (length s) 1)) ;trueif j and k are each valid

; indices for s and j <k
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Rationale: The “unequality” relation is called / = rather than <> (the name used in
Pascal) for two reasons. First, / = of more than two arguments is not the same as the
or of < and > of those same arguments. Second, unequality is meaningful for complex
numbers even though < and > are not. For both reasons it would be misleading to
associate unequality with the names of < and >.

Compatibility note: In Common Lisp, the comparison operations perform “mixed-
mode” comparisons: (= 3 3.0) is true. In MacLisp, there must be exactly two
arguments, and they must be either both fixnums or both floating-point numbers. To
compare two numbers for numerical equality and type equality, use eql.

max number &rest more-numbers [Function]

min number &rest more-numbers [Function]

The arguments may be any non-complex numbers. max returns the argument
that is greatest (closest to positive infinity). min returns the argument that is
least (closest to negative infinity).

For max, if the arguments are a mixture of rationals and floating-point num-
bers, and the largest argument is a rational, then the implementation is free to
produce either that rational or its floating-point approximation; if the largest
argument is a floating-point number of a smaller format than the largest format
of any floating-point argument, then the implementation is free to return the
argument in its given format or expanded to the larger format. More concisely,
the implementation has the choice of returning the largest argument as is or
applying the rules of floating-point contagion, taking all the arguments into
consideration for contagion purposes. Also, if two or more of the arguments
are equal, then any one of them may be chosen as the value to return. Similar
remarks apply to min (replacing “largest argument” by “smallest argument”).

max 1.0s0 7.0d0) = 7.0d0

min 1.0s0 7.0d0) = 1.0s0 or 1.0d0

max 3 1 1.0s0 1.0d0) = 3 or 3.0d0

min 3 1 1.0s0 1.0d0) = 1 or 1.0s0 or 1.0d0

(max 6 12) = 12 (min 6 12) = 6

(max -6 -12) = -6 (min -6 -12) = -12
(max132-7) =3 (min132-7) = -7
(max-2307) = 7 (min -2307):>-2
(max 3) = 3 (min 3) =

(max 5.0 2) = 5.0 (m1n502):>20r20
(max 3.071)=7o0r7.0 (min 3.071) =1 or 1.0
(

(

(

(

12.4 Arithmetic Operations

Each of the functions in this section requires that its arguments all be numbers;
to call one with a non-number is an error. Unless otherwise specified, each works
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on all types of numbers, automatically performing any required coercions when
arguments are of different types.

+ &rest numbers [Function]

This returns the sum of the arguments. If there are no arguments, the result is
0, which is an identity for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it is
incompatible with MacLisp, which uses + for fixnum-only addition.

- number &rest more-numbers [Function]

The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts
from the first argument all the others, and returns the result. For example, (-
345)=-6.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is
incompatible with MacLisp, which uses - for fixnum-only subtraction. Also, - differs
from difference as used in most Lisp systems in the case of one argument.

* &rest numbers [Function]

This returns the product of the arguments. If there are no arguments, the result
is 1, which is an identity for this operation.

Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it is
incompatible with MacLisp, which uses * for fixnum-only multiplication.

/ number &rest more-numbers [Function]

The function /, when given more than one argument, successively divides the
first argument by all the others and returns the result.

It is generally accepted that it is an error for any argument other than the
first to be zero.

With one argument, / reciprocates the argument.

It is generally accepted that it is an error in this case for the argument to
be zero.

/ will produce a ratio if the mathematical quotient of two integers is not an
exact integer. For example:

(/124) =3
(/ 13 4) = 13/4
(/-8) = -1/8
(/345)=3/20

To divide one integer by another producing an integer result, use one of the
functions floor, ceiling, truncate, or round.
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If any argument is a floating-point number, then the rules of floating-point
contagion apply.

Compatibility note: What / does is totally unlike what the usual // or quotient
operator does. In most Lisp systems, quotient behaves like / except when dividing
integers, in which case it behaves like truncate of two arguments; this behavior is
mathematically intractable, leading to such anomalies as

(quotient 1.0 2.0) = 0.5 but (quotient 1 2) = 0
In contrast, the Common Lisp function / produces these results:
(/102.0)=05and (/12)=1/2

In practice quotient is used only when one is sure that both arguments are integers, or
when one is sure that at least one argument is a floating-point number. / is tractable
for its purpose and works for any numbers.

1+ number [Function]

1- number [Function]

(1+ 1) is the same as (+ z 1).
(1- 1) is the same as (- z 1). Note that the short name may be confusing;:
(1- z) does not mean 1 — z; rather, it means x — 1.

Rationale: These are included primarily for compatibility with MacLisp and Lisp
Machine Lisp. Some programmers prefer always to write (+ x 1) and (- x 1) instead
of (1+ x) and (1- x).

Implementation note: Compiler writers are very strongly encouraged to ensure that
(1+ x) and (+ x 1) compile into identical code, and similarly for (1- x) and (- x
1), to avoid pressure on a Lisp programmer to write possibly less clear code for the
sake of efficiency. This can easily be done as a source-language transformation.

incf place [deltal [Macro]

decf place [delta) [Macrol

The number produced by the form delta is added to (incf) or subtracted from
(decf) the number in the generalized variable named by place, and the sum is
stored back into place and returned. The form place may be any form acceptable
as a generalized variable to setf. If delta is not supplied, then the number in
place is changed by 1. For example:

(setq n 0)

(incfn) = 1 and nown =1
(decfn 3) = -2 and now n = -2
(decfn-5) =3 and nown = 3
(decfn) = 2 and now n = 2

The effect of (incf place delta) is roughly equivalent to
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(setf place (4 place delta))

except that the latter would evaluate any subforms of place twice, whereas incf
takes care to evaluate them only once. Moreover, for certain place forms incf
may be significantly more efficient than the setf version. X3J13 voted in March
1988 (PUSH-EVALUATION-ORDER) to clarify order of evaluation (see section 7.2).

conjugate number [Function]

This returns the complex conjugate of number. The conjugate of a non-complex
number is itself. For a complex number z,

(conjugate z) = (complex (realpart z) (- (imagpart z)))

For example:

(conjugate #C(3/5 4/5)) = #C(3/5 -4/5)

(conjugate #C(0.0D0 -1.0D0)) = #C(0.0D0 1.0D0)
(conjugate 3.7) = 3.7

gcd &rest integers [Function]

This returns the greatest common divisor of all the arguments, which must be
integers. The result of gcd is always a non-negative integer. If one argument is
given, its absolute value is returned. If no arguments are given, gcd returns 0,
which is an identity for this operation. For three or more arguments,

(ged abec... 2) =(ged (ged a d) ¢ ... 2)
Here are some examples of the use of gcd:

(ged 91 -49) = 7
(ged 63 -42 35) =7
(ged 5) =

(ged -4) :> 4
(ged) =

lcm integer &rest more-integers [Function]

This returns the least common multiple of its arguments, which must be integers.
The result of 1cm is always a non-negative integer. For two arguments that are
not both zero,

(lem a b) = (/ (abs (* a b)) (ged a b))
If one or both arguments are zero,

(lem ¢ 0) = (Iem 0 @) =0
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For one argument, lcm returns the absolute value of that argument. For three
or more arguments,

(lemabc... z) = (lem (lem a b) ¢ ... 2)
Some examples:

(lem 14 35) = 70
(lem 0 5) = 0
(lem 12345 6) = 60

Mathematically, (1cm) should return infinity. Because Common Lisp does not
have a representation for infinity, 1cm, unlike gcd, always requires at least one
argument.

X3J13 voted in January 1989 (LCM-NO-ARGUMENTS) to specify that (1cm) = 1.

This is one of my biggest boners. The identity for 1cm is of course 1, not
infinity, and so (1cm) ought to have been defined to return 1. Sorry about that,
though in point of fact very few users have complained to me that this mistake
in the first edition has cramped their programming style.

12.5 Irrational and Transcendental Functions

Common Lisp provides no data type that can accurately represent irrational
numerical values. The functions in this section are described as if the results
were mathematically accurate, but actually they all produce floating-point ap-
proximations to the true mathematical result in the general case. In some places
mathematical identities are set forth that are intended to elucidate the mean-
ings of the functions; however, two mathematically identical expressions may
be computationally different because of errors inherent in the floating-point ap-
proximation process.

When the arguments to a function in this section are all rational and the
true mathematical result is also (mathematically) rational, then unless otherwise
noted an implementation is free to return either an accurate result of type
rational or a single-precision floating-point approximation. If the arguments
are all rational but the result cannot be expressed as a rational number, then a
single-precision floating-point approximation is always returned.

X3J13 voted in March 1989 (COMPLEX-RATIONAL-RESULT) to clarify that
the provisions of the previous paragraph apply to complex numbers. If the
arguments to a function are all of type (or rational (complex rational))
and the true mathematical result is (mathematically) a complex number with
rational real and imaginary parts, then unless otherwise noted an implementa-
tion is free to return either an accurate result of type (or rational (complex
rational)) or asingle-precision floating-point approximation of type single-float
(permissible only if the imaginary part of the true mathematical result is zero)
or (complex single-float). If the arguments are all of type (or rational
(complex rational)) but the result cannot be expressed as a rational or com-
plex rational number, then the returned value will be of type single-float
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(permissible only if the imaginary part of the true mathematical result is zero)
or (complex single-float).

The rules of floating-point contagion and complex contagion are effectively
obeyed by all the functions in this section except expt, which treats some cases
of rational exponents specially. When, possibly after contagious conversion, all
of the arguments are of the same floating-point or complex floating-point type,
then the result will be of that same type unless otherwise noted.

Implementation note: There is a “floating-point cookbook” by Cody and Waite
[14] that may be a useful aid in implementing the functions defined in this section.

12.5.1 Exponential and Logarithmic Functions

Along with the usual one-argument and two-argument exponential and loga-
rithm functions, sqrt is considered to be an exponential function, because it
raises a number to the power 1/2.

exp number [Function]

Returns e raised to the power number, where e is the base of the natural loga-
rithms.

expt base-number power-number [Function]

Returns base-number raised to the power power-number. If the base-number
is of type rational and the power-number is an integer, the calculation will
be exact and the result will be of type rational; otherwise a floating-point
approximation may result.

X3J13 voted in March 1989 (COMPLEX-RATIONAL-RESULT) to clarify that
provisions similar to those of the previous paragraph apply to complex numbers.
If the base-number is of type (complex rational) and the power-number is
an integer, the calculation will also be exact and the result will be of type
(or rational (complex rational)); otherwise a floating-point or complex
floating-point approximation may result.

When power-number is 0 (a zero of type integer), then the result is always
the value 1 in the type of base-number, even if the base-number is zero (of any
type). That is:

(expt z 0) = (coerce 1 (type-of z))

If the power-number is a zero of any other data type, then the result is also the
value 1, in the type of the arguments after the application of the contagion rules,
with one exception: it is an error if base-number is zero when the power-number
is a zero not of type integer.

Implementations of expt are permitted to use different algorithms for the
cases of a rational power-number and a floating-point power-number; the moti-
vation is that in many cases greater accuracy can be achieved for the case of a
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rational power-number. For example, (expt pi 16) and (expt pi 16.0) may
yield slightly different results if the first case is computed by repeated squaring
and the second by the use of logarithms. Similarly, an implementation might
choose to compute (expt x 3/2) asif it had been written (sqrt (expt x 3)),
perhaps producing a more accurate result than would (expt x 1.5). It is left
to the implementor to determine the best strategies.

X3J13 voted in January 1989 (EXPT-RATIO) to clarify that the preceding
remark is in error, because (sqrt (expt x 3)) does not produce the same
value as (expt x 3/2) in most cases, and to specify that the specification of
the principal value of expt as given in section 12.5.3 should be regarded as
definitive.

As an example of the difficulty, let z = cis %” = —% + ‘/ng Then Vz3 =
V1= 1, but 23/2 = (/2 logz — (3/2)2n/3)i — o™i — _1. Another example is
z = —1; then V3 = V=1 =i, but z3/2 = ¢B/2logz — (B/9mi — _;

The result of expt can be a complex number, even when neither argument
is complex, if base-number is negative and power-number is not an integer. The
result is always the principal complex value. Note that (expt -8 1/3) is not
permitted to return -2; while -2 is indeed one of the cube roots of -8, it is
not the principal cube root, which is a complex number approximately equal to
#C(1.0 1.73205).

Notice of correction. The first edition gave the incorrect value #C(0.5
1.73205) for the principal cube root of -8. The correct valueis #C(1.0 1.73205),
that is, 1 + /3. I simply don’t know what I was thinking of!

log number &optional base [Function]

Returns the logarithm of number in the base base, which defaults to e, the base
of the natural logarithms. For example:

(log 8.0 2) = 3.0
(log 100.0 10) = 2.0

The result of (log 8 2) may be either 3 or 3.0, depending on the implemen-
tation.

Note that log may return a complex result when given a non-complex ar-
gument if the argument is negative. For example:

(log -1.0) = (complex 0.0 (float pi 0.0))

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported. As a part of that vote
it approved a mathematical definition of complex logarithm in terms of real
logarithm, absolute value, arc tangent of two real arguments, and the phase
function as

Logarithm  log |z| 4 i phase z

This specifies the branch cuts precisely whether minus zero is supported or not;
see phase and atan.
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sqrt number [Function]

Returns the principal square root of number. If the number is not complex but
is negative, then the result will be a complex number. For example:

(sart 9.0) = 3.0
(sqrt -9.0) = #¢(0.0 3.0)

The result of (sqrt 9) may be either 3 or 3.0, depending on the implementa-
tion. The result of (sqrt -9) may be either #c(0 3) or #c(0.0 3.0).

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported. As a part of that vote it
approved a mathematical definition of complex square root in terms of complex
logarithm and exponential functions as

Square root  e(10g2)/2

This specifies the branch cuts precisely whether minus zero is supported or not;
see phase and atan.

isqrt integer [Function]

Integer square root: the argument must be a non-negative integer, and the result
is the greatest integer less than or equal to the exact positive square root of the
argument. For example:

(isqrt 9) = 3
(isqrt 12) = 3
(isqrt 300) = 17
(isqrt 325) = 18

12.5.2 Trigonometric and Related Functions

Some of the functions in this section, such as abs and signum, are apparently
unrelated to trigonometric functions when considered as functions of real num-
bers only. The way in which they are extended to operate on complex numbers
makes the trigonometric connection clear.

abs number [Function]
Returns the absolute value of the argument. For a non-complex number z,
(abs z) = (if (minusp z) (- z) z)

and the result is always of the same type as the argument.
For a complex number z, the absolute value may be computed as

(sart (4 (expt (realpart z) 2) (expt (imagpart z) 2)))
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Implementation note: The careful implementor will not use this formula directly
for all complex numbers but will instead handle very large or very small components
specially to avoid intermediate overflow or underflow.

For example:
(abs #¢(3.0 -4.0)) = 5.0

The result of (abs #c(3 4)) may be either 5 or 5.0, depending on the imple-
mentation.

phase number [Function]

The phase of a number is the angle part of its polar representation as a complex
number. That is,

(phase 2) = (atan (imagpart z) (realpart z))

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported; phase is still defined in
terms of atan as above, but thanks to a change in atan the range of phase
becomes —7 inclusive to 7 inclusive. The value —m results from an argument
whose real part is negative and whose imaginary part is minus zero. The phase
function therefore has a branch cut along the negative real axis. The phase of
40 + 07 is +0, of 40 — 07 is —0, of —0 + 04 is +m, and of —0 — 07 is —.

If the argument is a complex floating-point number, the result is a floating-
point number of the same type as the components of the argument. If the
argument is a floating-point number, the result is a floating-point number of the
same type. If the argument is a rational number or complex rational number,
the result is a single-format floating-point number.

signum number [Function]
By definition,
(signum z) = (if (zerop ) z (/ = (abs z)))

For a rational number, signum will return one of -1, 0, or 1 according to whether
the number is negative, zero, or positive. For a floating-point number, the result
will be a floating-point number of the same format whose value is —1, 0, or 1.
For a complex number z, (signum 2) is a complex number of the same phase
but with unit magnitude, unless z is a complex zero, in which case the result is
z. For example:

(signum 0) = 0

(signum -3.7L5) = -1.0L0

(signum 4/5) = 1

(signum #C(7.5 10.0)) = #C(0.6 0.8)
(signum #C(0.0 -14.7)) = #C(0.0 -1.0)
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For non-complex rational numbers, signum is a rational function, but it may be
irrational for complex arguments.

sin radians [Function]
cos radians [Function]
tan radians [Function]

sin returns the sine of the argument, cos the cosine, and tan the tangent. The
argument is in radians. The argument may be complex.

cis radians [Function]

i-radians 0

This computes e The name cis means “cos + i sin,” because e’
cosf@+isinf. The argument is in radians and may be any non-complex number.
The result is a complex number whose real part is the cosine of the argument
and whose imaginary part is the sine. Put another way, the result is a com-
plex number whose phase is the equal to the argument (mod 27) and whose
magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a single
angle together than to perform two disjoint calculations.

asin number [Function]

acos number [Function]

asin returns the arc sine of the argument, and acos the arc cosine. The result
is in radians. The argument may be complex.

The arc sine and arc cosine functions may be defined mathematically for an
argument z as follows:

Arcsine  —ilog (iz + V1 — 22)

Arc cosine  —ilog (z + iv1 — 22)

Note that the result of asin or acos may be complex even if the argument is
not complex; this occurs when the absolute value of the argument is greater

than 1.
Kahan [25] suggests for acos the defining formula

210g( %Z +1 17)

Arc cosine -
)

or even the much simpler (7/2) — arcsin z. Both equations are mathematically
equivalent to the formula shown above.
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Implementation note: These formulae are mathematically correct, assuming com-
pletely accurate computation. They may be terrible methods for floating-point compu-
tation. Implementors should consult a good text on numerical analysis. The formulae
given above are not necessarily the simplest ones for real-valued computations, either;
they are chosen to define the branch cuts in desirable ways for the complex case.

atan y &optional x [Function]

An arc tangent is calculated and the result is returned in radians.

With two arguments y and z, neither argument may be complex. The result
is the arc tangent of the quantity y/z. The signs of y and z are used to derive
quadrant information; moreover, z may be zero provided y is not zero. The
value of atan is always between — (exclusive) and 7 (inclusive). The following

table details various special cases.

Condition Cartesian Locus Range of Result
y=20 x>0 Positive a-axis 0
y>0 z>0 Quadrant I 0 < result < 7/2
y>0 z=0 Positive y-axis /2
y>0 z <0 Quadrant II m/2 < result < 7
y=20 <0 Negative z-axis T
y <0 z <0 Quadrant IIT —7 < result < —m/2
y<0 z=0 Negative y-axis —7/2
y<0 z>0 Quadrant IV —7/2 < result <0
y=20 x=0 Origin error

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported. When there is a minus

zero, the preceding table must be modified slightly:

Condition Cartesian Locus Range of Result
y =40 z >0 Just above positive z-axis +0
y>0 x>0 Quadrant I +0 < result < /2
y>0 x =20 Positive y-axis /2
y>0 z <0 Quadrant II m/2 < result < 7
y =40 z <0 Just below negative a-axis s
y=—0 z <0 Just above negative a-axis i
y<0 z <0 Quadrant IIT —m < result < —m/2
y<0 x =40 Negative y-axis —m/2
y <0 x>0 Quadrant IV —m/2 < result < —0
y=— z>0 Just below positive z-axis -0
y =40 z=+0 Near origin +0
y=— z =40 Near origin -0
y =40 xr=-0 Near origin T
y=—0 xr=-0 Near origin -7
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Note that the case y = 0,z = 0 is an error in the absence of minus zero, but
the four cases y = +0,z = 40 are defined in the presence of minus zero.

Implementation note: This formula is mathematically correct, assuming completely
accurate computation. It may be a terrible method for floating-point computation.
Implementors should consult a good text on numerical analysis. The formula given
above is not necessarily the simplest one for real-valued computations, either; it is
chosen to define the branch cuts in desirable ways for the complex case.

X3J13 voted in January 1989 (COMPLEX-ATAN-BRANCH-CUT) to replace the
preceding formula with the formula

log(1 + 4y) — log(1 — iy)

23
This change alters the direction of continuity for the branch cuts, which alters
the result returned by atan only for arguments on the imaginary axis that are
of magnitude greater than 1. See section 12.5.3 for further details.

For a non-complex argument y, the result is non-complex and lies between
—m/2 and 7/2 (both exclusive).

Arc tangent

Compatibility note: MacLisp has a function called atan whose range is from 0 to
2m. Almost every other programming language (ANSI Fortran, IBM PL/1, Interlisp)
has a two-argument arc tangent function with range —n to w. Lisp Machine Lisp
provides two two-argument arc tangent functions, atan (compatible with MacLisp)
and atan2 (compatible with all others).

Common Lisp makes two-argument atan the standard one with range —m to .
Observe that this makes the one-argument and two-argument versions of atan com-
patible in the sense that the branch cuts do not fall in different places. The Interlisp
one-argument function arctan has a range from 0 to 7, while nearly every other pro-
gramming language provides the range —m/2 to /2 for one-argument arc tangent!
Nevertheless, since Interlisp uses the standard two-argument version of arc tangent,
its branch cuts are inconsistent anyway.

pi [Constant]

This global variable has as its value the best possible approximation to 7 in long
floating-point format. For example:

(defun sind (x) ;The argument is in degrees
(sin (* x (/ (float pi x) 180))))

An approximation to 7w in some other precision can be obtained by writing
(float pi =), where z is a floating-point number of the desired precision, or
by writing (coerce pi type), where type is the name of the desired type, such
as short-float.

sinh number [Function]

cosh number [Function]
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tanh number [Function]
asinh number [Function]
acosh number [Function]
atanh number [Function]

WARNING! The formula shown above for hyperbolic arc tangent is incorrect.
It is not a matter of incorrect branch cuts; it simply does not compute anything
like a hyperbolic arc tangent. This unfortunate error in the first edition was the
result of mistranscribing a (correct) APL formula from Penfield’s paper [36].
The formula should have been transcribed as

Hyperbolic arc tangent log ((1 +2)/1/(1 - zz))

A proposal was submitted to X3J13 in September 1989 to replace the formulae
for acosh and atanh. See section 12.5.3 for further discussion.

Note that the result of acosh may be complex even if the argument is not
complex; this occurs when the argument is less than 1. Also, the result of
atanh may be complex even if the argument is not complex; this occurs when
the absolute value of the argument is greater than 1.

Implementation note: These formulae are mathematically correct, assuming com-
pletely accurate computation. They may be terrible methods for floating-point compu-
tation. Implementors should consult a good text on numerical analysis. The formulae
given above are not necessarily the simplest ones for real-valued computations, either;
they are chosen to define the branch cuts in desirable ways for the complex case.

12.5.3 Branch Cuts, Principal Values, and Boundary Con-
ditions in the Complex Plane

Many of the irrational and transcendental functions are multiply defined in the
complex domain; for example, there are in general an infinite number of complex
values for the logarithm function. In each such case, a principal value must be
chosen for the function to return. In general, such values cannot be chosen so
as to make the range continuous; lines in the domain called branch cuts must
be defined, which in turn define the discontinuities in the range.

Common Lisp defines the branch cuts, principal values, and boundary con-
ditions for the complex functions following a proposal for complex functions in
APL [36]. The contents of this section are borrowed largely from that proposal.

Compatibility note: The branch cuts defined here differ in a few very minor respects
from those advanced by W. Kahan, who considers not only the “usual” definitions but
also the special modifications necessary for IEEE proposed floating-point arithmetic,
which has infinities and minus zero as explicit computational objects. For example,

he proposes that v/—4 4+ 07 = 23, but v/—4 — 0i = —21.



CHAPTER 12. NUMBERS 274

It may be that the differences between the APL proposal and Kahan’s proposal
will be ironed out. If so, Common Lisp may be changed as necessary to be compatible
with these other groups. Any changes from the specification below are likely to be
quite minor, probably concerning primarily questions of which side of a branch cut is
continuous with the cut itself.

Indeed, X3J13 voted in January 1989 (COMPLEX-ATAN-BRANCH-CUT) to alter
the direction of continuity for the branch cuts of atan, and also
(IEEE-ATAN-BRANCH-CUT) to address the treatment of branch cuts in implemen-
tations that have a distinct floating-point minus zero.

The treatment of minus zero centers in two-argument atan. If there is no
minus zero, then the branch cut runs just below the negative real axis as before,
and the range of two-argument atan is (—m, 7]. If there is a minus zero, however,
then the branch cut runs precisely on the negative real axis, skittering between
pairs of numbers of the form —z £ 07, and the range of two-argument atan is
[—7, 7).

The treatment of minus zero by all other irrational and transcendental func-
tions is then specified by defining those functions in terms of two-argument
atan. First, phase is defined in terms of two-argument atan, and complex abs
in terms of real sqrt; then complex log is defined in terms of phase, abs, and
real log; then complex sqrt in terms of complex log; and finally all others are
defined in terms of these.

Kahan [25] treats these matters in some detail and also suggests specific
algorithms for implementing irrational and transcendental functions in IEEE
standard floating-point arithmetic [23].

Remarks in the first edition about the direction of the continuity of branch
cuts continue to hold in the absence of minus zero and may be ignored if minus
zero is supported; since all branch cuts happen to run along the principal axes,
they run between plus zero and minus zero, and so each sort of zero is associated
with the obvious quadrant.

sqrt
The branch cut for square root lies along the negative real axis, continuous
with quadrant II. The range consists of the right half-plane, including the non-
negative imaginary axis and excluding the negative imaginary axis.

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported. As a part of that vote it
approved a mathematical definition of complex square root:

Vz = ellog2)/2
This defines the branch cuts precisely, whether minus zero is supported or not.

phase
The branch cut for the phase function lies along the negative real axis, continu-
ous with quadrant II. The range consists of that portion of the real axis between
—m (exclusive) and 7 (inclusive).

X3J13 voted in January 1989 (IEEE-ATAN-BRANCH-CUT) to specify certain
floating-point behavior when minus zero is supported. As a part of that vote it
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approved a mathematical definition of phase:
phase z = arctan(Sz, Rz)

where 3z is the imaginary part of z and Rz the real part of z. This defines the
branch cuts precisely, whether minus zero is supported or not.

log

The branch cut for the logarithm function of one argument (natural logarithm)
lies along the negative real axis, continuous with quadrant II. The domain ex-
cludes the origin. For a complex number z, log z is defined to be

log z = (log |z]) + i(phase z)

Therefore the range of the one-argument logarithm function is that strip of the
complex plane containing numbers with imaginary parts between —7 (exclusive)
and 7 (inclusive).

The X3J13 vote on minus zero (IEEE-ATAN-BRANCH-CUT) would alter that
exclusive bound of —7 to be inclusive if minus zero is supported.

The two-argument logarithm function is defined as log, z = (log z)/(log b).
This defines the principal values precisely. The range of the two-argument
logarithm function is the entire complex plane. It is an error if z is zero. If z is
non-zero and b is zero, the logarithm is taken to be zero.

exp
The simple exponential function has no branch cut.

expt

The two-argument exponential function is defined as b* = ¢*!°8°. This defines
the principal values precisely. The range of the two-argument exponential func-
tion is the entire complex plane. Regarded as a function of z, with b fixed,
there is no branch cut. Regarded as a function of b, with z fixed, there is in
general a branch cut along the negative real axis, continuous with quadrant II.
The domain excludes the origin. By definition, 0° = 1. If b = 0 and the real
part of z is strictly positive, then b* = 0. For all other values of z, 07 is an
error.

asin
The following definition for arc sine determines the range and branch cuts:

arcsin z = —ilog (iz + V1 — 22)

This is equivalent to the formula

. arcsinh 7z
arcsing = ————
i
recommended by Kahan [25].
The branch cut for the arc sine function is in two pieces: one along the
negative real axis to the left of —1 (inclusive), continuous with quadrant II, and
one along the positive real axis to the right of 1 (inclusive), continuous with

quadrant IV. The range is that strip of the complex plane containing numbers
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whose real part is between —7/2 and 7/2. A number with real part equal to
—m/2 is in the range if and only if its imaginary part is non-negative; a number
with real part equal to 7/2 is in the range if and only if its imaginary part is
non-positive.

acos
The following definition for arc cosine determines the range and branch cuts:

arccos z = —ilog (2 + iv/1 — 22)

or, which is equivalent,

arccos z = % — arcsin z

The branch cut for the arc cosine function is in two pieces: one along the
negative real axis to the left of —1 (inclusive), continuous with quadrant II, and
one along the positive real axis to the right of 1 (inclusive), continuous with
quadrant IV. This is the same branch cut as for arc sine. The range is that
strip of the complex plane containing numbers whose real part is between zero
and 7. A number with real part equal to zero is in the range if and only if its
imaginary part is non-negative; a number with real part equal to m is in the
range if and only if its imaginary part is non-positive.

atan
The following definition for (one-argument) arc tangent determines the range
and branch cuts:

X3J13 voted in January 1989 (COMPLEX-ATAN-BRANCH-CUT) to replace the
formula shown above with the formula
log(1 + iz) — log(1 — iz)

24

This is equivalent to the formula

arctan z =

arctanh iz
arctanz = —
recommended by Kahan [25]. It causes the upper branch cut to be continuous
with quadrant I rather than quadrant II, and the lower branch cut to be con-
tinuous with quadrant III rather than quadrant IV; otherwise it agrees with the
formula of the first edition. Therefore this change alters the result returned by
atan only for arguments on the positive imaginary axis that are of magnitude
greater than 1. The full description for this new formula is as follows.

The branch cut for the arc tangent function is in two pieces: one along the
positive imaginary axis above i (exclusive), continuous with quadrant I, and
one along the negative imaginary axis below —i (exclusive), continuous with
quadrant ITI. The points ¢ and —i are excluded from the domain. The range is
that strip of the complex plane containing numbers whose real part is between
—m/2 and 7/2. A number with real part equal to —7/2 is in the range if and
only if its imaginary part is strictly negative; a number with real part equal to
7/2 is in the range if and only if its imaginary part is strictly positive. Thus the
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range of the arc tangent function is not identical to that of the arc sine function.

asinh
The following definition for the inverse hyperbolic sine determines the range and
branch cuts:

arcsinh z = log (z + V1 + 22)

The branch cut for the inverse hyperbolic sine function is in two pieces: one along
the positive imaginary axis above i (inclusive), continuous with quadrant I, and
one along the negative imaginary axis below —i (inclusive), continuous with
quadrant III. The range is that strip of the complex plane containing numbers
whose imaginary part is between —7/2 and 7/2. A number with imaginary
part equal to —m/2 is in the range if and only if its real part is non-positive; a
number with imaginary part equal to 7/2 is in the range if and only if its real
part is non-negative.

acosh
The following definition for the inverse hyperbolic cosine determines the range
and branch cuts:

arccosh z = log (z +(z+)/(z=-1)/(z+ 1))

Kahan [25] suggests the formula

arccosh z = 2log (\/(z—i— D/2++/(2 - 1)/2)

pointing out that it yields the same principal value but eliminates a gratu-
itous removable singularity at z = —1. A proposal was submitted to X3J13
in September 1989 to replace the formula acosh with that recommended by
Kahan. There is a good possibility that it will be adopted.

The branch cut for the inverse hyperbolic cosine function lies along the real
axis to the left of 1 (inclusive), extending indefinitely along the negative real
axis, continuous with quadrant IT and (between 0 and 1) with quadrant I. The
range is that half-strip of the complex plane containing numbers whose real
part is non-negative and whose imaginary part is between —m (exclusive) and
7 (inclusive). A number with real part zero is in the range if its imaginary part
is between zero (inclusive) and 7 (inclusive).

atanh
The following definition for the inverse hyperbolic tangent determines the range
and branch cuts:

WARNING! The formula shown above for hyperbolic arc tangent is incorrect.
It is not a matter of incorrect branch cuts; it simply does not compute anything
like a hyperbolic arc tangent. This unfortunate error in the first edition was the
result of mistranscribing a (correct) APL formula from Penfield’s paper [36].
The formula should have been transcribed as

arctanh z = log ((1 +2)y/1/(1 — 22))
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A proposal was submitted to X3J13 in September 1989 to replace the formula
atanh with that recommended by Kahan [25]:

(log(1+ z) — log(1 — 2))

2
There is a good possibility that it will be adopted. If it is, the complete descrip-
tion of the branch cuts of atanh will then be as follows.

The branch cut for the inverse hyperbolic tangent function is in two pieces:
one along the negative real axis to the left of —1 (inclusive), continuous with
quadrant I, and one along the positive real axis to the right of 1 (inclusive),
continuous with quadrant IV. The points —1 and 1 are excluded from the do-
main. The range is that strip of the complex plane containing numbers whose
imaginary part is between —m/2 and 7/2. A number with imaginary part equal
to —7/2 is in the range if and only if its real part is strictly positive; a number
with imaginary part equal to 7/2 is in the range if and only if its real part is
strictly negative. Thus the range of the inverse hyperbolic tangent function is
not the same as that of the inverse hyperbolic sine function.

With these definitions, the following useful identities are obeyed throughout
the applicable portion of the complex domain, even on the branch cuts:

arctanh z =

sin iz = 7 sinh z sinh iz = isin z arctan iz = 7 arctanh z
cos 1z = cosh z cosh iz = cos z arcsinh iz = 7 arcsin z
taniz = i tanh z arcsin iz = 4 arcsinh z arctanh iz = 7 arctan z

I thought it would be useful to provide some graphs illustrating the behavior
of the irrational and transcendental functions in the complex plane. It also
provides an opportunity to show off the Common Lisp code that was used to
generate them.

Imagine the complex plane to be decorated as follows. The real and imagi-
nary axes are painted with thick lines. Parallels from the axes on both sides at
distances of 1, 2, and 3 are painted with thin lines; these parallels are doubly
infinite lines, as are the axes. Four annuli (rings) are painted in gradated shades
of gray. Ring 1, the inner ring, consists of points whose radial distances from
the origin lie in the range [1/4,1/2]; ring 2 is in the radial range [3/4, 1]; ring 3,
in the range [r/2,2]; and ring 4, in the range [3,7]. Ring j is divided into 2/**
equal sectors, with each sector painted a different shade of gray, darkening as
one proceeds counterclockwise from the positive real axis.

We can illustrate the behavior of a numerical function f by considering how
it maps the complex plane to itself. More specifically, consider each point z of
the decorated plane. We decorate a new plane by coloring the point f(z) with
the same color that point z had in the original decorated plane. In other words,
the newly decorated plane illustrates how the f maps the axes, other horizontal
and vertical lines, and annuli.

In each figure we will show only a fragment of the complex plane, with the
real axis horizontal in the usual manner (—oo to the left, +00 to the right) and
the imaginary axis vertical (—ooi below, +00i above). Each fragment shows
a region containing points whose real and imaginary parts are in the range
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[—4.1,4.1]. The axes of the new plane are shown as very thin lines, with large
tick marks at integer coordinates and somewhat smaller tick marks at multiples
of /2.

Figure 12.1 shows the result of plotting the identity function (quite liter-
ally); the graph exhibits the decoration of the original plane.

Figures 12.2 through 12.20 show the graphs for the functions sqrt, exp, log,
sin, asin, cos, acos, tan, atan, sinh, asinh, cosh, acosh, tanh, and atanh,
and as a bonus, the graphs for the functions V1 — 22, V14 22, (z —1)/(2+ 1),
and (1 + z)/(1 — z). All of these are related to the trigonometric functions in
various ways. For example, if f(z) = (z —1)/(z + 1), then tanh z = f(e??), and
if g(z) = V1 — 22, then cosz = g(sin z). It is instructive to examine the graph
for v/1 — 22 and try to visualize how it transforms the graph for sin into the
graph for cos.

Each figure is accompanied by a commentary on what maps to what and
other interesting features. None of this material is terribly new; much of it
may be found in any good textbook on complex analysis. I believe that the
particular form in which the graphs are presented is novel, as well as the fact
that the graphs have been generated as PostScript [1] code by Common Lisp
code. This PostScript code was then fed directly to the typesetting equipment
that set the pages for this book. Samples of this PostScript code follow the
figures themselves, after which the code for the entire program is presented.

In the commentaries that accompany the figures I sometimes speak of map-
ping the points +o0o or +o0i. When I say that function f maps +oo to a certain
point z, I mean that

Similarly, when I say that f maps —ooi to z, I mean that
z= lim f(0+ yi)
Yy——00

In other words, I am considering a limit as one travels out along one of the main
axes. I also speak in a similar manner of mapping to one of these infinities.
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Figure 12.1: Initial Decoration of the Complex Plane (Identity Function)

O
This figure was produced in exactly the same manner as succeeding figures, simply by
plotting the function identity instead of a numerical function. Thus the first of these
figures was produced by the last function of the first edition. I knew it would come in

handy someday!
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Figure 12.2: Illustration of the Range of the Square Root Function

O &

The sqrt function maps the complex plane into the right half of the plane by slitting
it along the negative real axis and then sweeping it around as if half-closing a folding
fan. The fan also shrinks, as if it were made of cotton and had gotten wetter at
the periphery than at the center. The positive real axis is mapped onto itself. The
negative real axis is mapped onto the positive imaginary axis (but if minus zero is
supported, then —z + 07 is mapped onto the positive imaginary axis and —z — 0z
onto the negative imaginary axis, assuming z > 0). The positive imaginary axis
is mapped onto the northeast diagonal, and the negative imaginary axis onto the
southeast diagonal. More generally, lines are mapped to rectangular hyperbolas (or
fragments thereof ) centered on the origin; lines through the origin are mapped to
degenerate hyperbolas (perpendicular lines through the origin).
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Figure 12.3: Illustration of the Range of the Exponential Function

O

The exp function maps horizontal lines to radii and maps vertical lines to circles
centered at the origin. The origin is mapped to 1. (It is instructive to compare this
graph with those of other functions that map the origin to 1, for example (142)/(1—2),
cos z, and v/1 — 22.) The entire real axis is mapped to the positive real axis, with —oo
mapping to the origin and 400 to itself. The imaginary axis is mapped to the unit
circle with infinite multiplicity (period 2); therefore the mapping of the imaginary
infinities oo is indeterminate. It follows that the entire left half-plane is mapped
to the interior of the unit circle, and the right half-plane is mapped to the exterior of
the unit circle. A line at any angle other than horizontal or vertical is mapped to a
logarithmic spiral (but this is not illustrated here).
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Figure 12.4: Tllustration of the Range of the Natural Logarithm Function

O

The log function, which is the inverse of exp, naturally maps radial lines to horizontal
lines and circles centered at the origin to vertical lines. The interior of the unit circle is
thus mapped to the entire left half-plane, and the exterior of the unit circle is mapped
to the right half-plane. The positive real axis is mapped to the entire real axis, and the
negative real axis to a horizontal line of height . The positive and negative imaginary
axes are mapped to horizontal lines of height £7/2. The origin is mapped to —co.
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Figure 12.5: Illustration of the Range of the Function (z —1)/(z + 1)

O

A line is a degenerate circle with infinite radius; when I say “circles” here I also mean
lines. Then (z — 1)/(z + 1) maps circles into circles. All circles through —1 become
lines; all lines become circles through 1. The real axis is mapped onto itself: 1 to
the origin, the origin to —1, —1 to infinity, and infinity to 1. The imaginary axis
becomes the unit circle; i is mapped to itself, as is —i. Thus the entire right half-
plane is mapped to the interior of the unit circle, the unit circle interior to the left
half-plane, the left half-plane to the unit circle exterior, and the unit circle exterior
to the right half-plane. Imagine the complex plane to be a vast sea. The Colossus of
Rhodes straddles the origin, its left foot on ¢ and its right foot on —i. It bends down
and briefly paddles water between its legs so furiously that the water directly beneath
is pushed out into the entire area behind it; much that was behind swirls forward to
either side; and all that was before is sucked in to lie between its feet.
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Figure 12.6: Illustration of the Range of the Function (1 + 2)/(1 — 2)

O

The function h(z) = (1 + z)/(1 — 2) is the inverse of f(z) = (z — 1)/(z + 1); that
is, h(f(2)) = f(h(z)) = 2. At first glance, the graph of h appears to be that of f
flipped left-to-right, or perhaps reflected in the origin, but careful consideration of the
shaded annuli reveals that this is not so; something more subtle is going on. Note
that f(f(z)) = h(h(z)) = g(z) = —1/z. The functions f, g, h, and the identity
function thus form a group under composition, isomorphic to the group of the cyclic
permutations of the points —1, 0, 1, and oo, as indeed these functions accomplish the
four possible cyclic permutations on those points. This function group is a subset of
the group of bilinear transformations (az 4+ b)/(cz + d), all of which are conformal
(angle-preserving) and map circles onto circles. Now, doesn’t that tangle of circles
through —1 look like something the cat got into?
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Figure 12.7: Illustration of the Range of the Sine Function

O

We are used to seeing sin looking like a wiggly ocean wave, graphed vertically as
a function of the real axis only. Here is a different view. The entire real axis is
mapped to the segment [—1, 1] of the real axis with infinite multiplicity (period 27).
The imaginary axis is mapped to itself as if by sinh considered as a real function.
The origin is mapped to itself. Horizontal lines are mapped to ellipses with foci at
+1 (note that two horizontal lines equidistant from the real axis will map onto the
same ellipse). Vertical lines are mapped to hyperbolas with the same foci. There is
a curious accident: the ellipse for horizontal lines at distance 41 from the real axis
appears to intercept the real axis at £7/2 &~ £1.57 ... but this is not so; the intercepts
are actually at £(e+1/e)/2 ~ £1.54....
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Figure 12.8: Illustration of the Range of the Arc Sine Function

O

Just as sin grabs horizontal lines and bends them into elliptical loops around the ori-
gin, so its inverse asin takes annuli and yanks them more or less horizontally straight.
Because sine is not injective, its inverse as a function cannot be surjective. This is just
a highfalutin way of saying that the range of the asin function doesn’t cover the entire
plane but only a strip 7 wide; arc sine as a one-to-many relation would cover the plane
with an infinite number of copies of this strip side by side, looking for all the world
like the tail of a peacock with an infinite number of feathers. The imaginary axis is
mapped to itself as if by asinh considered as a real function. The real axis is mapped
to a bent path, turning corners at +m/2 (the points to which +1 are mapped); +oo is
mapped to /2 — oo, and —o0 to —7/2 + 004




CHAPTER 12. NUMBERS 288

Figure 12.9: Illustration of the Range of the Cosine Function

O

We are used to seeing cos looking exactly like sin, a wiggly ocean wave, only displaced.
Indeed the complex mapping of cos is also similar to that of sin, with horizontal and
vertical lines mapping to the same ellipses and hyperbolas with foci at £1, although
mapping to them in a different manner, to be sure. The entire real axis is again
mapped to the segment [—1,1] of the real axis, but each half of the imaginary axis is
mapped to the real axis to the right of 1 (as if by cosh considered as a real function).
Therefore +o0oi both map to +o0o. The origin is mapped to 1. Whereas sin is an
odd function, cos is an even function; as a result two points in each annulus, one the
negative of the other, are mapped to the same shaded point in this graph; the shading
shown here is taken from points in the original upper half-plane.
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Figure 12.10: Ilustration of the Range of the Arc Cosine Function

O

The graph of acos is very much like that of asin. One might think that our nervous
peacock has shuffled half a step to the right, but the shading on the annuli shows that
we have instead caught the bird exactly in mid-flight while doing a cartwheel. This
is easily understood if we recall that arccosz = (mw/2) — arcsin z; negating arcsin z
rotates it upside down, and adding the result to w/2 translates it 7/2 to the right.
The imaginary axis is mapped upside down to the vertical line at w/2. The point +1
is mapped to the origin, and —1 to m. The image of the real axis is again cranky; 400
is mapped to +00%, and —o0 to ™ — o01.
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Figure 12.11: Tllustration of the Range of the Tangent Function

O

The usual graph of tan as a real function looks like an infinite chorus line of disco
dancers, left hands pointed skyward and right hands to the floor. The tan function is
the quotient of sin and cos but it doesn’t much look like either except for having period
27. This goes for the complex plane as well, although the swoopy loops produced from
the annulus between 7/2 and 2 look vaguely like those from the graph of sin inside
out. The real axis is mapped onto itself with infinite multiplicity (period 2m). The
imaginary axis is mapped backwards onto [—%, i]: +o00i is mapped to —i and —ooi to
+i. Horizontal lines below or above the real axis become circles surrounding +:¢ or
—1, respectively. Vertical lines become circular arcs from +i to —i; two vertical lines
separated by (2k + 1)7 for integer k together become a complete circle. It seems that
two arcs shown hit the real axis at £7/2 = £1.57... but that is a coincidence; they
really hit the axis at tan1 =1.55... .
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Figure 12.12: Tllustration of the Range of the Arc Tangent Function
SE

O

All T can say is that this peacock is a horse of another color. At first glance, the
axes seem to map in the same way as for asin and acos, but look again: this time
it’s the imaginary axis doing weird things. All infinities map multiply to the points
(2k + 1)7/2; within the strip of principal values we may say that the real axis is
mapped to the interval [—7/2, 4+ /2] and therefore —oo is mapped to —7/2 and +oo
to +7/2. The point +i is mapped to +ooi, and —i to —oot, and so the imaginary
axis is mapped into three pieces: the segment [—ooi, —4] is mapped to [7/2, 7/2 — coi];
the segment [—i,4] is mapped to the imaginary axis [—ocoi,+00i]; and the segment
[+4, +001] is mapped to [—7/2 + ooi, —7/2].
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Figure 12.13: Illustration of the Range of the Hyperbolic Sine Function

— ah

O

It would seem that the graph of sinh is merely that of sin rotated 90 degrees. If
that were so, then we would have sinh z = isin z. Careful inspection of the shading,
however, reveals that this is not quite the case; in both graphs the lightest and darkest
shades, which initially are adjacent to the positive real axis, remain adjacent to the
positive real axis in both cases. To derive the graph of sinh from sin we must therefore
first rotate the complex plane by —90 degrees, then apply sin, then rotate the result
by 90 degrees. In other words, sinh z = isin(—1)z; consistently replacing z with iz in
this formula yields the familiar identity sinh 7z = i sin z.
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Figure 12.14: Illustration of the Range of the Hyperbolic Arc Sine Function

O 2z

The peacock sleeps. Because arcsinh iz = i arcsin z, the graph of asinh is related to
that of asin by pre- and post-rotations of the complex plane in the same way as for
sinh and sin
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Figure 12.15: Illustration of the Range of the Hyperbolic Cosine Function

O

The graph of cosh does not look like that of cos rotated 90 degrees; instead it looks
like that of cos unrotated. That is because cosh iz is not equal to icos z; rather,
cosh iz = cos z. Interpreted, that means that the shading is pre-rotated but there is
no post-rotation.
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Figure 12.16: Illustration of the Range of the Hyperbolic Arc Cosine Function

+ ity

O e
Hmm—TI’d rather not say what happened to this peacock. This feather looks a bit
mangled. Actually it is all right—the principal value for acosh is so chosen that its
graph does not look simply like a rotated version of the graph of acos, but if all values
were shown, the two graphs would fill the plane in repeating patterns related by a

rotation
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Figure 12.17: Tllustration of the Range of the Hyperbolic Tangent Function

O

The diagram for tanh is simply that of tan turned on its ear: itanz = tanhiz. The
imaginary axis is mapped onto itself with infinite multiplicity (period 27), and the
real axis is mapped onto the segment [—1, +1]: 400 is mapped to +1, and —oo to —1.
Vertical lines to the left or right of the real axis are mapped to circles surrounding —1
or 1, respectively. Horizontal lines are mapped to circular arcs anchored at —1 and
+1; two horizontal lines separated by a distance (2k + 1)7 for integer k are together
mapped into a complete circle. How do we know these really are circles? Well, tanh z =
((exp2z) — 1)/((exp2z) + 1), which is the composition of the bilinear transform (z —
1)/(z 4+ 1), the exponential exp z, and the magnification 2z. Magnification maps lines
to lines of the same slope; the exponential maps horizontal lines to circles and vertical
lines to radial lines; and a bilinear transform maps generalized circles (including lines)
to generalized circles. Q.E.D.
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Figure 12.18: Tlustration of the Range of the Hyperbolic Arc Tangent Function

O -+

A sleeping peacock of another color: arctanh iz = i arctan z.
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Here is a sample of the PostScript code that generated figure 12.1, showing
the initial scaling, translation, and clipping parameters; the code for one sector
of the innermost annulus; and the code for the negative imaginary axis. Com-
ment lines indicate how path or boundary segments were generated separately
and then spliced (in order to allow for the places that a singularity might lurk,
in which case the generating code can “inch up” to the problematical argument
value).

The size of the entire PostScript file for the identity function was about 68
kilobytes (2757 lines, including comments). The smallest files were the plots for
atan and atanh, about 65 kilobytes apiece; the largest were the plots for sin,
cos, sinh, and cosh, about 138 kilobytes apiece.

% PostScript file for plot of function IDENTITY
% Plot is to fit in a region 4.666666666666667 inches square
% “showing axes extending 4.1 units from the origin.

40.97560975609756 40.97560975609756 scale
4.1 4.1 translate
newpath

-4.1 -4.1 moveto

4.1 -4.1 lineto

4.1 4.1 lineto

-4.1 4.1 lineto

closepath
clip
% Moby grid for function IDENTITY
% Annulus 0.25 0.5 4 0.97 0.45
% Sector from 4.7124 to 6.2832 (quadrant 3)
newpath

0.0 -0.25 moveto

0.0 -0.375 lineto

Jmiddle radial

0.0 -0.375 lineto

0.0 -0.5 lineto

%end radial

0.0 -0.5 lineto

0.092 -0.4915 lineto

0.1843 -0.4648 lineto

0.273 -0.4189 lineto

0.3536 -0.3536 lineto

Ymiddle circumferential

0.3536 -0.3536 lineto

0.413 -0.2818 lineto

0.4594 -0.1974 lineto

0.4894 -0.1024 lineto

0.5 0.0 lineto
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Figure 12.19: Illustration of the Range of the Function /1 — 22

O -

Here is a curious graph indeed for so simple a function! The origin is mapped to 1.
The real axis segment [0, 1] is mapped backwards (and non-linearly) into itself; the
segment [1, +00] is mapped non-linearly onto the positive imaginary axis. The negative
real axis is mapped to the same points as the positive real axis. Both halves of the
imaginary axis are mapped into [1,4o00] on the real axis. Horizontal lines become

vaguely vertical, and vertical lines become vaguely horizontal.

Circles centered at

the origin are transformed into Cassinian (half-)ovals; the unit circle is mapped to a
(half-)lemniscate of Bernoulli. The outermost annulus appears to have its inner edge
at 7 on the real axis and its outer edge at 3 on the imaginary axis, but this is another
accident; the intercept on the real axis, for example, is not really at m ~ 3.14... but

at /1 —(3i)2 =10~ 3.16... .
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Figure 12.20: Tllustration of the Range of the Function v/1 4 22

O T

The graph of ¢(z) = v/1 + 22 looks like that of p(z) = v/1 — 22 except for the shading.
You might not expect p and g to be related in the same way that cos and cosh are,
but after a little reflection (or perhaps I should say, after turning it around in one’s
mind) one can see that ¢(iz) = p(z). This formula is indeed of exactly the same
form as cosh iz = cos z. The function v/1 + z2 maps both halves of the real axis into
[1, +00] on the real axis. The segments [0, ] and [0, —i] of the imaginary axis are each
mapped backwards onto segment [0,1] of the real axis; [i, +00i] and [—, — coi] are
each mapped onto the positive imaginary axis (but if minus zero is supported then
opposite sides of the imaginary axis map to opposite halves of the imaginary axis—for
example, ¢(4+0 4 24) = v/5i but ¢(—0 4 2i) = —+/54).
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%end circumferential
0.5 0.0 lineto
0.375 0.0 lineto
\%middle radial
0.375 0.0 lineto
0.25 0.0 lineto
%end radial
0.25 0.0 lineto
0.2297 -0.0987 lineto
0.1768 -0.1768 lineto
Ymiddle circumferential
0.1768 -0.1768 lineto
0.0922 -0.2324 lineto
0.0 -0.25 lineto
%end circumferential
closepath

currentgray 0.45 setgray fill setgray

[2598 lines omitted]

% Vertical line from (0.0, -0.5) to (0.0, 0.0)
newpath

0.0 -0.5 moveto

0.0 0.0 lineto

stroke
% Vertical line from (0.0, -0.5) to (0.0, -1.0)
newpath

0.0 -0.5 moveto

0.0 -1.0 lineto

stroke
% Vertical line from (0.0, -2.0) to (0.0, -1.0)
newpath

0.0 -2.0 moveto

0.0 -1.0 lineto

stroke
% Vertical line from (0.0, -2.0) to (0.0, -1.1579208923731617E77)
newpath

0.0 -2.0 moveto
-6.3553 lineto
-6.378103166302659 lineto
-6.378103166302659 lineto
-6.378103166302659 lineto
0.05 setlinewidth 1 setlinecap stroke

0.0
0.0
0.0
0.0

[84 lines omitted]
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% End of PostScript file for plot of function IDENTITY

Here is the program that generated the PostScript code for

the graphs shown in figures™\ref{IDENTITY-PLOT} through”\ref{LAST-PLOT}.

It contains a mixture of fairly general mechanisms and {\it ad hoc} kludges
for plotting functions of a single complex argument while gracefully handling
extremely large and small values,

branch cuts, singularities, and periodic behavior.

The aim was to provide a simple user interface that would not

require the caller to provide special advice for each function

to be plotted.

The file for figure™\ref{IDENTITY-PLOT}, for example, was generated

by the call {\tt (picture”’identity)}, which resulted in the writing of

a file named {\tt identity-plot.ps}.

The program assumes that any periodic behavior will have a period that
is a multiple of $2\pi$; that branch cuts will fall along the real or
imaginary axis; and that singularities or very large or small values
will occur only at the origin, at $\pm 1$ or $\pm {\it i}$, or on the
boundaries of the annuli (particularly those with radius $\pi/2$ or
$\pi$). The central function is {\tt parametric-path}, which accepts
four arguments: two real numbers that are the endpoints of an interval
of real numbers, a function that maps this interval into a path in the
complex plane, and the function to be plotted; the task of

{\tt parametric-path} is to generate PostScript code (a series of

{\tt lineto} operations) that will plot an approximation to the image of
the parametric path as transformed by the function to be plotted.

Each of the functions {\tt hline}, {\tt vline}, {\tt -hline},

{\tt -vline}, {\tt radiall}, and {\tt circumferentiall} takes appropriate
parameters and returns a function suitable for use as the third
argument to {\tt parametric-path}. There is some code that defends
against errors (by using {\tt ignore-errors}) and against certain
peculiarities of IEEE floating-point arithmetic (the code that checks
for not-a-number (NaN) results).

The program is offered here without further comment or apology.

\begin{verbatim}
(defparameter units-to-show 4.1)
(defparameter text-width-in-picas 28.0)
(defparameter device-pixels-per-inch 300)
(defparameter pixels-per-unit

(x (/ (/ text-width-in-picas 6)

(* units-to-show 2))
device-pixels-per-inch))
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(defparameter big (sqrt (sqrt most-positive-single-float)))
(defparameter tiny (sqrt (sqrt least-positive-single-float)))

(defparameter path-really-losing 1000.0)

(defparameter path-outer-limit (* units-to-show (sqrt 2) 1.1))
(defparameter path-minimal-delta (/ 10 pixels-per-unit))
(defparameter path-outer-delta (* path-outer-limit 0.3))
(defparameter path-relative-closeness 0.00001)

(defparameter back-off-delta 0.0005)

(defun comment-line (stream \&rest stuff)
(format stream "“%% ")
(apply \#’format stream stuff)
(format t "~%% ")
(apply \#’format t stuff))

(defun parametric-path (from to paramfn plotfn)
(assert (and (plusp from) (plusp to)))
(flet ((domainval (x) (funcall paramfn x))
(rangeval (x) (funcall plotfn (funcall paramfn x)))
(losing (x) (or (null x)
(/= (realpart x) (realpart x)) ;NaN?
(/= (imagpart x) (imagpart x)) ;NaN?
(> (abs (realpart x)) path-really-losing)
(> (abs (imagpart x)) path-really-losing))))
(when (> to 1000.0)
(let ((£f0 (rangeval from))
(f1 (rangeval (+ from 1)))
(f2 (rangeval (+ from (*x 2 pi))))
(£f3 (rangeval (+ from 1 (* 2 pi))))
(f4 (rangeval (+ from (* 4 pi)))))
(flet ((close (x y)
(or (< (careful-abs (- x y)) path-minimal-delta)
(< (careful-abs (- x y))
(* (+ (careful-abs x) (careful-abs y))
path-relative-closeness)))))
(when (and (close fO £2)
(close f2 £f4)
(close f1 £3)
(or (and (close fO f1)
(close f2 £3))
(and (not (close fO f1))
(not (close f2 £3)))))
(format t "“&Periodicity detected.")
(setq to (+ from (* (signum (- to from)) 2 pi)))))))
(let ((fromrange (ignore-errors (rangeval from)))
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(torange (ignore-errors (rangeval to))))
(if (losing fromrange)
(if (losing torange)
a0
(parametric-path (back-off from to) to paramfn plotfn))
(if (losing torange)
(parametric-path from (back-off to from) paramfn plotfn)
(expand-path (refine-path (list from to) \#’rangeval)
#’rangeval))))))

(defun back-off (point other)
(if (or (> point 10.0) (< point 0.1))
(let ((sp (sqrt point)))
(if (or (> point sp other) (< point sp other))
Sp
(* sp (sqrt other))))
(+ point (* (signum (- other point)) back-off-delta))))

(defun careful-abs (z)
(cond ((or (> (realpart z) big)

(< (realpart z) (- big))
(> (imagpart z) big)
(< (imagpart z) (- big)))

big)

((complexp z) (abs z))

((minusp z) (- z))

(t 2)))

(defparameter max-refinements 5000)

(defun refine-path (original-path rangevalfn)
(flet ((rangeval (x) (funcall rangevalfn x)))
(let ((path original-path))
(do ((j O (+ 3 1)))
((null (rest path)))
(when (zerop (mod (+ j 1) max-refinements))
(break "Runaway path"))
(let* ((from (first path))
(to (second path))
(fromrange (rangeval from))
(torange (rangeval to))
(dist (careful-abs (- torange fromrange)))
(mid (* (sqrt from) (sqrt to)))
(midrange (rangeval mid)))
(cond ((or (and (far-out fromrange) (far-out torange))
(and (< dist path-minimal-delta)
(< (abs (- midrange fromrange))
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path-minimal-delta)
;; Next test is intentionally asymmetric to
;; avoid problems with periodic functions.
(< (abs (- (rangeval (/ (+ to (* from 1.5))
2.5))
fromrange))
path-minimal-delta)))
(pop path))
((= mid from) (pop path))
((= mid to) (pop path))
(t (setf (rest path) (cons mid (rest path)))))))))
original-path)

(defun expand-path (path rangevalfn)
(flet ((rangeval (x) (funcall rangevalfn x)))
(let ((final-path (list (rangeval (first path)))))
(do ((p (rest path) (cdr p)))
((null p)
(unless (rest final-path)
(break "Singleton path"))
(reverse final-path))
(let ((v (rangeval (car p))))
(cond ((and (rest final-path)
(not (far-out v))
(not (far-out (first final-path)))
(between v (first final-path)
(second final-path)))
(setf (first final-path) v))
((null (rest p)) ;Mustn’t omit last point
(push v final-path))
((< (abs (- v (first final-path))) path-minimal-delta))
((far-out v)
(unless (and (far-out (first final-path))
(< (abs (- v (first final-path)))
path-outer-delta))
(push (* 1.01 path-outer-limit (signum v))
final-path)))
(t (push v final-path))))))))

(defun far-out (x)
(> (careful-abs x) path-outer-limit))

(defparameter between-tolerance 0.000001)

(defun between (p q 1)
(let ((px (realpart p)) (py (imagpart p))
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(gx (realpart q)) (qy (imagpart q))
(rx (realpart r)) (ry (imagpart r)))
(and (or ($<=$% px gx rx) (>= px gx rx))
(or ($<=$ py qy ry) (>= py qy ry))
(< (abs (- (* (- gx px) (- ry qy))
(*x (- rx gx) (- qy pY)))
between-tolerance))))

(defun circle (radius)
#’(lambda (angle) (* radius (cis angle))))

(defun hline (imag)
#’ (lambda (real) (complex real imag)))

(defun vline (real)
#’(lambda (imag) (complex real imag)))

(defun -hline (imag)
#’ (lambda (real) (complex (- real) imag)))

(defun -vline (real)
#’(lambda (imag) (complex real (- imag))))

(defun radial (phi quadrant)

306

#’ (lambda (rho) (repair-quadrant (* rho (cis phi)) quadrant)))

(defun circumferential (rho quadrant)

#’ (lambda (phi) (repair-quadrant (* rho (cis phi)) quadrant)))

;3; Quadrant is 0, 1, 2, or 3, meaning I, II, III, or IV.

(defun repair-quadrant (z quadrant)
(complex (* (+ (abs (realpart z)) tiny)

(case quadrant (0 1.0) (1 -1.0) (2 -1.0) (3 1.0)))

(* (+ (abs (imagpart z)) tiny)

(case quadrant (0 1.0) (1 1.0) (2 -1.0) (3 -1.0)))))

(defun clamp-real (x)
(if (far-out x)
(* (signum x) path-outer-limit)
(round-real x)))

(defun round-real (x)
(/ (round (* x 10000.0)) 10000.0))

(defun round-point (z)

(complex (round-real (realpart z)) (round-real (imagpart z))))
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(defparameter hiringshade 0.97)
(defparameter loringshade 0.45)

(defparameter ticklength 0.12)
(defparameter smallticklength 0.09)

;35 This determines the pattern of lines and annuli to be drawn.
(defun moby-grid (\&optional (fn ’sqrt) (stream t))
(comment-line stream "Moby grid for function ~S" fn)
(shaded-annulus 0.25 0.5 4 hiringshade loringshade fn stream)
(shaded-annulus 0.75 1.0 8 hiringshade loringshade fn stream)
(shaded-annulus (/ pi 2) 2.0 16 hiringshade loringshade fn stream)
(shaded-annulus 3 pi 32 hiringshade loringshade fn stream)
(moby-lines :horizontal 1.0 fn stream)
(moby-lines :horizontal -1.0 fn stream)
(moby-lines :vertical 1.0 fn stream)
(moby-lines :vertical -1.0 fn stream)
(let ((tickline 0.015)
(axisline 0.008))
(flet ((tick (n) (straight-line (complex n ticklength)
(complex n (- ticklength))
tickline
stream))
(smalltick (n) (straight-line (complex n smallticklength)
(complex n (- smallticklength))
tickline
stream)))
(comment-line stream "Real axis")
(straight-line #c(-5 0) #c(5 0) axisline stream)
(dotimes (j (floor units-to-show))
(let ((q (+ j 1))) (tick q) (tick (- @))))
(dotimes (j (floor units-to-show (/ pi 2)))
(let ((q (x (/ pi 2) (+ j 1))))
(smalltick q)
(smalltick (- g)))))
(flet ((tick (n) (straight-line (complex ticklength n)
(complex (- ticklength) n)
tickline
stream))
(smalltick (n) (straight-line (complex smallticklength n)
(complex (- smallticklength) n)
tickline
stream)))
(comment-line stream "Imaginary axis")
(straight-line #c(0 -5) #c(0 5) axisline stream)
(dotimes (j (floor units-to-show))
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(let ((q (+ j 1))) (tick q) (tick (- @))))
(dotimes (j (floor units-to-show (/ pi 2)))
(let ((q (x (/ pi 2) (+ j 1))))
(smalltick q)
(smalltick (- g)))))))

(defun straight-line (from to wid stream)
(format stream

"~Ynewpath “S “S moveto S S lineto ~S ~
setlinewidth 1 setlinecap stroke"
(realpart from)
(imagpart from)
(realpart to)
(imagpart to)
wid))

;35 This function draws the lines for the pattern.
(defun moby-lines (orientation signum plotfn stream)
(let ((paramfn (ecase orientation
(:horizontal (if (< signum 0) #’-hline #’hline))
(:vertical (if (< signum 0) #’-vline #’vline)))))
(flet ((foo (from to other wid)
(ecase orientation

(:horizontal

(comment-line stream
"Horizontal line from (S, ~S) to (7S, ~S)"
(round-real (* signum from))
(round-real other)
(round-real (* signum to))
(round-real other)))

(:vertical

(comment-line stream
"Vertical line from (°S, ~S) to (7S, ~S)"
(round-real other)
(round-real (* signum from))
(round-real other)
(round-real (* signum to0)))))

(postscript-path

stream

(parametric-path from
to
(funcall paramfn other)
plotfn))

(postscript-penstroke stream wid)))
(let* ((thick 0.05)
(thin 0.02))
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;3 Main axis

(foo 0.5 tiny 0.0 thick)
(foo 0.5 1.0 0.0 thick)

(foo 2.0 1.0 0.0 thick)

(foo 2.0 big 0.0 thick)

;; Parallels at 1 and -1
(foo 2.0 tiny 1.0 thin)

(foo 2.0 big 1.0 thin)

(foo 2.0 tiny -1.0 thin)
(foo 2.0 big -1.0 thin)

;; Parallels at 2, 3, -2, -3
(foo tiny big 2.0 thin)

(foo tiny big -2.0 thin)
(foo tiny big 3.0 thin)

(foo tiny big -3.0 thin)))))

(defun splice (p q)
(let ((v (car (last p)))
(w (first q)))
(and (far-out v)
(far-out w)
(>= (abs (- v w)) path-outer-delta)
;3 Two far-apart far-out points. Try to walk around
;3 outside the perimeter, in the shorter direction.
(let* ((pdiff (phase (/ v w)))
(npoints (floor (abs pdiff) (asin .2)))
(delta (/ pdiff (+ npoints 1)))
(incr (cis delta)))
(do ((j 0 (+ 3 1))
(p (list w "end splice") (cons (* (car p) incr) p)))
((= j npoints) (cons "start splice" p)))))))

;35 This function draws the annuli for the pattern.
(defun shaded-annulus (inner outer sectors firstshade lastshade fn stream)
(assert (zerop (mod sectors 4)))
(comment-line stream "Annulus “S “S “S S ~S"
(round-real inner) (round-real outer)
sectors firstshade lastshade)
(dotimes (jj sectors)
(let ((j (- sectors jj 1)))
(let* ((lophase (+ tiny (* 2 pi (/ j sectors))))
(hiphase (x 2 pi (/ (+ j 1) sectors)))
(midphase (/ (+ lophase hiphase) 2.0))
(midradius (/ (+ inner outer) 2.0))
(quadrant (floor (* j 4) sectors)))
(comment-line stream "Sector from ~S to ~S (quadrant ~S)"
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(round-real lophase)
(round-real hiphase)

quadrant)
(let ((p0 (reverse (parametric-path midradius
inner
(radial lophase quadrant)
fn)))
(p1 (parametric-path midradius
outer
(radial lophase quadrant)
fn))
(p2 (reverse (parametric-path midphase
lophase
(circumferential outer
quadrant)
fn)))
(p3 (parametric-path midphase
hiphase
(circumferential outer quadrant)
fn))
(p4 (reverse (parametric-path midradius
outer
(radial hiphase quadrant)
fn)))
(p5 (parametric-path midradius
inner
(radial hiphase quadrant)
fn))
(p6 (reverse (parametric-path midphase
hiphase
(circumferential inner
quadrant)
fn)))
(p7 (parametric-path midphase
lophase
(circumferential inner quadrant)
fn)))
(postscript-closed-path stream
(append
pO (splice pO pl) ’("middle radial")
pl (splice pl p2) ’("end radial")
p2 (splice p2 p3) ’("middle circumferential")
p3 (splice p3 p4) ’("end circumferential")
p4 (splice p4 p5) ’("middle radial")
p5 (splice p5 p6) ’("end radial")
p6 (splice p6 p7) ’("middle circumferential")
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p7 (splice p7 pO) ’("end circumferential")
)))
(postscript-shade stream
(/ (+ (x firstshade (- (- sectors 1) j))
(* lastshade j))
(- sectors 1)))))))

(defun postscript-penstroke (stream wid)
(format stream "~%~S stroke" wid))

(defun postscript-shade (stream shade)
(format stream "“$currentgray ~S setgray f£fill setgray"
shade))

(defun postscript-closed-path (stream path)
(unless (every #’far-out (remove-if-not #’numberp path))
(postscript-raw-path stream path)
(format stream "~J “closepath")))

(defun postscript-path (stream path)
(unless (every #’far-out (remove-if-not #’numberp path))
(postscript-raw-path stream path)))

;55 Print a path as a series of PostScript "lineto" commands.
(defun postscript-raw-path (stream path)
(format stream "“Ynewpath")
(let ((fmt "~% ~S ~S moveto"))
(dolist (pt path)
(cond ((stringp pt)
(format stream "~% “%TA" pt))
(t (format stream
fmt
(clamp-real (realpart pt))
(clamp-real (imagpart pt)))
(setq fmt "~% ~S ~S lineto"))))))

;55 Definitions of functions to be plotted that are not
;35 standard Common Lisp functionms.

(defun one-plus-over-one-minus (x) (/ (+ 1 x) (- 1 x)))
(defun one-minus-over-one-plus (x) (/ (- 1 x) (+ 1 x)))
(defun sqrt-square-minus-one (x) (sqrt (- 1 (* x x))))

(defun sqrt-one-plus-square (x) (sqrt (+ 1 (* x x))))
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;3 ; Because X3J13 voted for a new definition of the atan function,
;55 the following definition was used in place of the atan function
;55 provided by the Common Lisp implementation I was using.

(defun good-atan (x)
(/ (- (Qog (+ 1 (x x #c(0 1))))
(log (- 1 (x x #c(0 1)))))
#c(0 2)))

;3 ; Because the first edition had an erroneous definition of atanh,
;55 the following definition was used in place of the atanh function
;55 provided by the Common Lisp implementation I was using.

(defun really-good-atanh (x)
(/ (- (Log (+ 1 x))
(log (- 1 )
2))

;55 This is the main procedure that is intended to be called by a user.
(defun picture (\&optional (fn #’sqrt))
(with-open-file (stream (concatenate ’string
(string-downcase (string fn))
"-plot.ps")
:direction :output)
(format stream "J, PostScript file for plot of function ~“S7%" fn)
(format stream "J, Plot is to fit in a region S inches square~’%"
(/ text-width-in-picas 6.0))
(format stream
"% showing axes extending ~S units from the origin.~%"
units-to-show)
(let ((scaling (/ (x text-width-in-picas 12) (* units-to-show 2))))
(format stream ""Y~S ~:x”S scale" scaling))
(format stream ""%~S ":*”S translate" units-to-show)
(format stream "“Ynewpath")
(format stream ""% ~S ~S moveto" (- units-to-show) (- units-to-show))
(format stream ""% ~S ~S lineto" units-to-show (- units-to-show))
(format stream ""% ~S “S lineto" units-to-show units-to-show)
(format stream "“% ~S S lineto" (- units-to-show) units-to-show)
(format stream "% closepath")
(format stream "“%clip")
(moby-grid fn stream)
(format stream
"~%% End of PostScript file for plot of function ~S"
fn)
(terpri stream)))
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12.6 Type Conversions and Component Extrac-
tions on Numbers

While most arithmetic functions will operate on any kind of number, coercing
types if necessary, the following functions are provided to allow specific conver-
sions of data types to be forced when desired.

float number &optional other [Function]

This converts any non-complex number to a floating-point number. With no
second argument, if number is already a floating-point number, then number
is returned; otherwise a single-float is produced. If the argument other is
provided, then it must be a floating-point number, and number is converted to
the same format as other. See also coerce.

rational number [Function]

rationalize number [Function]

Each of these functions converts any non-complex number to a rational number.
If the argument is already rational, it is returned. The two functions differ in
their treatment of floating-point numbers.

rational assumes that the floating-point number is completely accurate
and returns a rational number mathematically equal to the precise value of the
floating-point number.

rationalize assumes that the floating-point number is accurate only to
the precision of the floating-point representation and may return any rational
number for which the floating-point number is the best available approximation
of its format; in doing this it attempts to keep both numerator and denominator
small.

It is always the case that

(float (rational z) z) = z
and
(float (rationalize z) z) = z

That is, rationalizing a floating-point number by either method and then con-
verting it back to a floating-point number of the same format produces the
original number. What distinguishes the two functions is that rational typi-
cally has a simple, inexpensive implementation, whereas rationalize goes to
more trouble to produce a result that is more pleasant to view and simpler to
compute with for some purposes.

numerator rational [Function]
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denominator rational [Function]

These functions take a rational number (an integer or ratio) and return as an
integer the numerator or denominator of the canonical reduced form of the
rational. The numerator of an integer is that integer; the denominator of an
integer is 1. Note that

(ged (numerator z) (denominator z)) = 1

The denominator will always be a strictly positive integer; the numerator may
be any integer. For example:

(numerator (/ 8 -6)) = -4
(denominator (/ 8 -6)) = 3

There is no fix function in Common Lisp because there are several interesting
ways to convert non-integral values to integers. These are provided by the
functions below, which perform not only type conversion but also some non-
trivial calculations as well.

floor number &optional divisor [Function]
ceiling number &optional divisor [Function]
truncate number &optional divisor [Function]
round number &optional divisor [Function]

In the simple one-argument case, each of these functions converts its argument
number (which must not be complex) to an integer. If the argument is already
an integer, it is returned directly. If the argument is a ratio or floating-point
number, the functions use different algorithms for the conversion.

floor converts its argument by truncating toward negative infinity; that is,
the result is the largest integer that is not larger than the argument.

ceiling converts its argument by truncating toward positive infinity; that
is, the result is the smallest integer that is not smaller than the argument.

truncate converts its argument by truncating toward zero; that is, the result
is the integer of the same sign as the argument and which has the greatest
integral magnitude not greater than that of the argument.

round converts its argument by rounding to the nearest integer; if number
is exactly halfway between two integers (that is, of the form integer+ 0.5), then
it is rounded to the one that is even (divisible by 2).

The following table shows what the four functions produce when given var-
ious arguments.
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Argument floor ceiling truncate round

2.6 2 3 2 3
2.5 2 3 2 2
24 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-24 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate
type of rounding or truncation applied to the result of dividing the number by
the divisor. For example, (floor 5 2) = (floor (/ 5 2)) but is potentially
more efficient. This statement is not entirely accurate; one should instead say
that (values (floor 5 2)) = (values (floor (/ 5 2))), because there is
a second value to consider, as discussed below. In other words, the first values
returned by the two forms will be the same, but in general the second values
will differ. Indeed, we have

(floor 5 2) = 2 and 1
(floor (/ 52)) = 2 and 1/2

for this example. The divisor may be any non-complex number. It is generally
accepted that it is an error for the divisor to be zero. The one-argument case is
exactly like the two-argument case where the second argument is 1.

In other words, the one-argument case returns an integer and fractional part
for the number: (truncate 5.3) = 5.0 and 0.3, for example. Each of the
functions actually returns two values, whether given one or two arguments. The
second result is the remainder and may be obtained using multiple-value-bind
and related constructs. If any of these functions is given two arguments z and
y and produces results ¢ and r, then ¢ -y + r = z. The first result ¢ is always
an integer. The remainder r is an integer if both arguments are integers, is ra-
tional if both arguments are rational, and is floating-point if either argument is
floating-point. One consequence is that in the one-argument case the remainder
is always a number of the same type as the argument.

When only one argument is given, the two results are exact; the mathemat-
ical sum of the two results is always equal to the mathematical value of the
argument.

Compatibility note: The names of the functions floor, ceiling, truncate, and
round are more accurate than names like fix that have heretofore been used in vari-
ous Lisp systems. The names used here are compatible with standard mathematical
terminology (and with PL/1, as it happens). In Fortran ifix means truncate. Algol
68 provides round and uses entier to mean floor. In MacLisp, fix and ifix both
mean floor (one is generic, the other flonum-in/fixnum-out). In Interlisp, £ix means
truncate. In Lisp Machine Lisp, fix means floor and fixr means round. Standard
Lisp provides a fix function but does not specify precisely what it does. The existing
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usage of the name fix is so confused that it seemed best to avoid it altogether.
The names and definitions given here have recently been adopted by Lisp Machine
Lisp, and MacLisp and NIL (New Implementation of Lisp) seem likely to follow suit.

mod number divisor [Function]

rem number divisor [Function]

mod performs the operation floor on its two arguments and returns the sec-
ond result of floor as its only result. Similarly, rem performs the operation
truncate on its arguments and returns the second result of truncate as its
only result.

mod and rem are therefore the usual modulus and remainder functions when
applied to two integer arguments. In general, however, the arguments may be
integers or floating-point numbers.

(mod 13 4) = 1 rem 13 4) =1
(mod -134) = 3 rem -13 4) = -1
(mod 13 -4) = -3 rem 13 -4) = 1
(mod -13 -4) = -1 rem -13 -4) = -1
(mod 13.41) = 0.4 (rem 13.41) = 04
(mod -13.41) = 0.6 (rem-13.41) = -04

NN N N N N

Compatibility note: The Interlisp function remainder is essentially equivalent to
the Common Lisp function rem. The MacLisp function remainder is like rem but
accepts only integer arguments.

ffloor number &optional divisor [Function]
fceiling number &optional divisor [Function]
ftruncate number &optional divisor [Function]
fround number &optional divisor [Function]

These functions are just like floor, ceiling, truncate, and round, except that
the result (the first result of two) is always a floating-point number rather than
an integer. It is roughly as if ffloor gave its arguments to floor, and then
applied float to the first result before passing them both back. In practice,
however, ffloor may be implemented much more efficiently. Similar remarks
apply to the other three functions. If the first argument is a floating-point num-
ber, and the second argument is not a floating-point number of longer format,
then the first result will be a floating-point number of the same type as the first
argument. For example:

(fHoor -4.7) = -5.0 and 0.3
(foor 3.5d0) = 3.0d0 and 0.5d0
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decode-float float [Function]
scale-float float integer [Function]
float-radix float [Function]
float-sign float] &optional float2 [Function]
float-digits float [Function]
float-precision float [Function]
integer-decode-float float [Function]

The function decode-float takes a floating-point number and returns three
values.

The first value is a new floating-point number of the same format represent-
ing the significand; the second value is an integer representing the exponent;
and the third value is a floating-point number of the same format indicating the
sign (—1.0 or 1.0). Let b be the radix for the floating-point representation; then
decode-float divides the argument by an integral power of b so as to bring its
value between 1/b (inclusive) and 1 (exclusive) and returns the quotient as the
first value. If the argument is zero, however, the result is equal to the abso-
lute value of the argument (that is, if there is a negative zero, its significand is
considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must
be raised to produce the appropriate power for the division. If the argument
is zero, any integer value may be returned, provided that the identity shown
below for scale-float holds.

The third value of decode-float is a floating-point number, of the same
format as the argument, whose absolute value is 1 and whose sign matches that
of the argument.

The function scale-float takes a floating-point number f (not necessarily
between 1/band 1) and an integer k, and returns (* f (expt (float b f) k)).
(The use of scale-float may be much more efficient than using exponentiation
and multiplication and avoids intermediate overflow and underflow if the final
result is representable.)

Note that

(multiple-value-bind (signif expon sign)
(decode-float j)
(scale-float signif expon))

= (abs f)
and

(multiple-value-bind (signif expon sign)
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(decode-float f)
(* (scale-float signif expon) sign))

=/

The function float-radix returns (as an integer) the radix b of the floating-
point argument.

The function float-sign returns a floating-point number z such that z and
floatl have the same sign and also such that z and float2 have the same ab-
solute value. The argument float2 defaults to the value of (float 1 floatl);
(float-sign x) therefore always produces a 1.0 or -1.0 of appropriate for-
mat according to the sign of x. (Note that if an implementation has distinct
representations for negative zero and positive zero, then (float-sign -0.0)
= -1.0.)

The function float-digits returns, as a non-negative integer, the number
of radix-b digits used in the representation of its argument (including any im-
plicit digits, such as a “hidden bit”). The function float-precision returns,
as a non-negative integer, the number of significant radix-b digits present in the
argument; if the argument is (a floating-point) zero, then the result is (an inte-
ger) zero. For normalized floating-point numbers, the results of float-digits
and float-precision will be the same, but the precision will be less than the
number of representation digits for a denormalized or zero number.

The function integer-decode-float is similar to decode-float but for its
first value returns, as an integer, the significand scaled so as to be an integer.
For an argument f, this integer will be strictly less than

(expt b (float-precision f))
but no less than
(expt b (- (float-precision f) 1))

except that if fis zero, then the integer value will be zero.
The second value bears the same relationship to the first value as for decode-float:

(multiple-value-bind (signif expon sign)
(integer-decode-float f)
(scale-float (float signif f) expon))

= (abs f)

The third value of integer-decode-float will be 1 or -1.

Rationale: These functions allow the writing of machine-independent, or at least
machine-parameterized, floating-point software of reasonable efficiency.

complex realpart &optional imagpart [Function]

The arguments must be non-complex numbers; a number is returned that has
realpart as its real part and imagpart as its imaginary part, possibly converted
according to the rule of floating-point contagion (thus both components will
be of the same type). If imagpart is not specified, then (coerce 0 (type-of
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realpart) ) is effectively used. Note that if both the realpart and imagpart are
rational and the imagpart is zero, then the result is just the realpart because of
the rule of canonical representation for complex rationals. It follows that the
result of complex is not always a complex number; it may be simply a rational.

realpart number [Function]

imagpart number [Function]

These return the real and imaginary parts of a complex number. If number
is a non-complex number, then realpart returns its argument number and
imagpart returns (* 0 number), which has the effect that the imaginary part
of a rational is 0 and that of a floating-point number is a floating-point zero of
the same format.

A clever way to multiply a complex number z by i is to write

(complex (- (imagpart z)) (realpart z))

instead of (* z #c(0 1)). This cleverness is not always gratuitous; it may be
of particular importance in the presence of minus zero. For example, if we are
using IEEE standard floating-point arithmetic and z = 4 4 01, the result of the
clever expression is —0 + 414, a true 90° rotation of z, whereas the result of

(x z #c(0 1)) is likely to be

(4+09) (+0+4) = ((4)(+0) - (+0)(1)) + ((4)(1) + (+0)(+0))i
= ((40)-(4+0))+((4)+(4+0))i = +0+4i

which could land on the wrong side of a branch cut, for example.

12.7 Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error
to supply a non-integer as an argument. The functions all treat integers as if
they were represented in two’s-complement notation.

Implementation note: Internally, of course, an implementation of Common Lisp
may or may not use a two’s-complement representation. All that is necessary is that
the logical operations perform calculations so as to give this appearance to the user.

The logical operations provide a convenient way to represent an infinite
vector of bits. Let such a conceptual vector be indexed by the non-negative
integers. Then bit 7 is assigned a “weight” 27. Assume that only a finite number
of bits are 1’s or only a finite number of bits are 0’s. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a
positive integer. A vector with only a finite number of zero-bits is represented
as -1 minus the sum of the weights of the zero-bits, a negative integer.

This method of using integers to represent bit-vectors can in turn be used
to represent sets. Suppose that some (possibly countably infinite) universe of
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discourse for sets is mapped into the non-negative integers. Then a set can
be represented as a bit vector; an element is in the set if the bit whose index
corresponds to that element is a one-bit. In this way all finite sets can be
represented (by positive integers), as well as all sets whose complements are
finite (by negative integers). The functions logior, logand, and logxor defined
below then compute the union, intersection, and symmetric difference operations
on sets represented in this way.

logior &rest integers [Function]

This returns the bit-wise logical inclusive or of its arguments. If no argument
is given, then the result is zero, which is an identity for this operation.

logxor &rest integers [Function]

This returns the bit-wise logical exclusive or of its arguments. If no argument
is given, then the result is zero, which is an identity for this operation.

logand &rest integers [Function]

This returns the bit-wise logical and of its arguments. If no argument is given,
then the result is -1, which is an identity for this operation.

logeqv &rest integers [Function]

This returns the bit-wise logical equivalence (also known as exclusive nor) of its
arguments. If no argument is given, then the result is -1, which is an identity
for this operation.

lognand integerl integer2 [Function]
lognor integerl integer2 [Function]
logandcl integerl integer2 [Function]
logandc? integerl integer2 [Function]
logorcl integerl integer2 [Function]
logorc?2 integerl integer2 [Function]

These are the other six non-trivial bit-wise logical operations on two arguments.
Because they are not associative, they take exactly two arguments rather than
any non-negative number of arguments.

(lognand n1 n2) = (lognot (logand n1 n2))
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(lognor n! n2) = (lognot (logior n1 n2))
(logandcl n1 n2) = (logand (lognot n1) n2)
(logandc2 ni n2) = (logand n! (lognot n2))
(logorcl n1 n2) = (logior (lognot n1) n2)
(logorc2 n1 n2) = (logior n1 (lognot n2))

The ten bit-wise logical operations on two integers are summarized in the fol-
lowing table:

integer] 0 0 1 1

integer2 0 1 0 1 Operation Name

logand 0 0 0 1 and

logior 0 1 1 1 inclusiveor

logxor 0 1 1 0 exclusive or

logeqv 1 0 0 1 equivalence (exclusive nor)

lognand 1 1 1 0 not-and

lognor 1 0 0 0 notor

logandcl 0 1 0 O and complement of integer! with integer2

logandc2 0 0 1 0 and integer! with complement of integer2

logorcl 1 1 0 1 orcomplement of integer! with integer2

logorc2 1 0 1 1 orinteger! with complement of integer2

boole op integerl integer2 [Function]
boole-clr [Constant]
boole-set [Constant]
boole-1 [Constant]
boole-2 [Constant]
boole-cl [Constant]
boole-c2 [Constant]
boole-and [Constant]
boole-ior [Constant]
boole-xor [Constant]
boole-eqv [Constant]

boole-nand [Constant]
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boole-nor [Constant]
boole-andcl [Constant]
boole-andc2 [Constant]
boole-orcl [Constant]
boole-orc2 [Constant]

The function boole takes an operation op and two integers, and returns an
integer produced by performing the logical operation specified by op on the
two integers. The precise values of the sixteen constants are implementation-
dependent, but they are suitable for use as the first argument to boole:

integerl 0 0 1 1

integer? 0 1 0 1 Operation Performed

boole-clr 0 0 0 0 alwaysO

boole-set 1 1 1 1 alwaysl

boole-1 0 0 1 1 @<integer!l

boole-2 0 1 0 1 onteger2

boole-cl 1 1 0 0 complement of integer!

boole-c2 1 0 1 0 complement of integer2

boole-and 0 0 0 1 and

boole-ior 0 1 1 1 inclusive or

boole-xor 0 1 1 0 exclusive or

boole-eqv 1 0 0 1 equivalence (exclusive nor)

boolenand 1 1 1 0 not-and

boole-nor 1 0 0 0 notor

boole-andecl 0 1 0 O and complement of integer! with integer2
boole-andc2 0 0 1 0 and integer! with complement of integer2
boole-orcl 1 1 0 1 orcomplement of integer! with integer2

boole-orc2 1 0 1 1 orinteger! with complement of integer2
boole can therefore compute all sixteen logical functions on two arguments.
In general,

(boole boole-and x y) = (logand x y)

and the latter is more perspicuous. However, boole is useful when it is necessary
to parameterize a procedure so that it can use one of several logical operations.

lognot integer [Function]

This returns the bit-wise logical not of its argument. Every bit of the result is
the complement of the corresponding bit in the argument.

(logbitp j (lognot z)) = (not (logbitp j x))
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logtest integerl integer2 [Function]

logtest is a predicate that is true if any of the bits designated by the 1’s in
integer! are 1’s in integer?2.

(logtest = y) = (not (zerop (logand z y)))

logbitp index integer [Function]

logbitp is true if the bit in integer whose index is index (that is, its weight is
2inder) ig a one-bit; otherwise it is false. For example:

(logbitp 2 6) is true
(logbitp 0 6) is false
(logbitp k n) = (ldb-test (byte 1 k) n)

X3J13 voted in January 1989 (ARGUMENTS-UNDERSPECIFIED) to clarify that
the index must be a non-negative integer.

ash integer count [Function]

This function shifts integer arithmetically left by count bit positions if count is
positive, or right by —count bit positions if count is negative. The sign of the
result is always the same as the sign of integer.

Mathematically speaking, this operation performs the computation
floor (integer - 2¢0unt),

Logically, this moves all of the bits in integer to the left, adding zero-bits
at the bottom, or moves them to the right, discarding bits. (In this context
the question of what gets shifted in on the left is irrelevant; integers, viewed as
strings of bits, are “half-infinite,” that is, conceptually extend infinitely far to
the left.) For example:

(logbitp j (ash n k)) = (and (= j k) (logbitp (- j k) n))

logcount integer [Function]

The number of bits in integer is determined and returned. If integer is positive,
the 1-bits in its binary representation are counted. If integer is negative, the
0-bits in its two’s-complement binary representation are counted. The result is
always a non-negative integer. For example:

(logcount 13) = 3 ;Binary representation is ...0001101
(logcount -13) = 2 ;Binary representation is ...1110011
(logcount 30) = 4 ;Binary representation is ...0011110
(logcount -30) = 4 ;Binary representation is ...1100010

The following identity always holds:
(logcount x) = (logcount (- (+ x 1)))
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= (logcount (lognot x))

integer-length integer [Function]
This function performs the computation

ceiling(log, (if integer < 0 then
— integer else integer + 1))

This is useful in two different ways. First, if integer is non-negative, then its
value can be represented in unsigned binary form in a field whose width in bits
is no smaller than (integer-length integer). Second, regardless of the sign
of integer, its value can be represented in signed binary two’s-complement form
in a field whose width in bits is no smaller than (+ (integer-length integer)
1). For example:

(integer-length 0) = 0
(integer-length 1) = 1
(integer-length 3) = 2
(integer-length 4) = 3
(integer-length 7) = 3
(integer-length -1) = 0
(integer-length -4)
(integer-length -7)
( )

= 2
=3
integer-length -8) = 3

Compatibility note: This function is similar to the MacLisp function haulong. One
may define haulong as

(haulong x) = (integer-length (abs x))

12.8 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of con-
tiguous bits appearing anywhere in an integer. Such a contiguous set of bits
is called a byte. Here the term byte does not imply some fixed number of bits
(such as eight), rather a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to desig-
nate a specific byte position within an integer. The representation of a byte
specifier is implementation-dependent; in particular, it may or may not be a
number. It is sufficient to know that the function byte will construct one, and
that the byte-manipulation functions will accept them. The function byte ac-
cepts two integers representing the position and size of the byte and returns a
byte specifier. Such a specifier designates a byte whose width is size and whose
bits have weights 2rositiontsize=1 thyough 2rosition,
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byte size position [Function]

byte takes two integers representing the size and position of a byte and returns
a byte specifier suitable for use as an argument to byte-manipulation functions.

byte-size bytespec [Function]

byte-position bytespec [Function]

Given a byte specifier, byte-size returns the size specified as an integer;
byte-position similarly returns the position. For example:

(byte-size (byte j k)) = j
(byte-position (byte j k)) = k

1db bytespec integer [Function]

bytespec specifies a byte of integer to be extracted. The result is returned as a
non-negative integer. For example:

(logbitp j (1db (byte s p) n)) = (and (j 7 s) (logbitp (+ j p) n))

The name of the function 1db means “load byte.”

Compatibility note: The MacLisp function haipart can be implemented in terms
of 1db as follows:

(defun haipart (integer count)
(let ((x (abs integer)))
(if (minusp count)
(1db (byte (- count) 0) x)
(1db (byte count (max O (- (integer-length x) count)))
x))))

If the argument integer is specified by a form that is a place form acceptable
to setf, then setf may be used with 1db to modify a byte within the integer
that is stored in that place. The effect is to perform a dpb operation and then
store the result back into the place.

ldb-test bytespec integer [Function]

ldb-test is a predicate that is true if any of the bits designated by the byte
specifier bytespec are 1’s in integer; that is, it is true if the designated field is
non-zero.

(Idb-test bytespec n) = (not (zerop (Idb bytespec n)))

mask-field bytespec integer [Function]
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This is similar to 1db; however, the result contains the specified byte of integer
in the position specified by bytespec, rather than in position 0 as with 1db.
The result therefore agrees with integer in the byte specified but has zero-bits
everywhere else. For example:

(1db bs (mask-field bs n)) = (1db bs n)

(logbitp j (mask-field (byte s p) n))
= (and (>= j p) (< j (+ p 5)) (logbitp j n)

(mask-field bs n) = (logand n (dpb -1 bs 0))

If the argument integer is specified by a form that is a place form acceptable
to setf, then setf may be used with mask-field to modify a byte within the
integer that is stored in that place. The effect is to perform a deposit-field
operation and then store the result back into the place.

dpb newbyte bytespec integer [Function]

This returns a number that is the same as integer except in the bits specified by
bytespec. Let s be the size specified by bytespec; then the low s bits of newbyte
appear in the result in the byte specified by bytespec. The integer newbyte is
therefore interpreted as being right-justified, as if it were the result of 1db. For
example:

(logbitp j (dpb m (byte s p) n))
= (if (and (>=jp) (< j(+ p9))
(logbitp (- j p) m)
(logbitp j n))

The name of the function dpb means “deposit byte.”

deposit-field newbyte bytespec integer [Function]

This function is to mask-field as dpb is to 1db. he result is an integer that
contains the bits of newbyte within the byte specified by bytespec, and elsewhere
contains the bits of integer. For example:

(logbitp j (deposit-field m (byte s p) n))
= (if (and (>=jp) (<j(+p9)))
(logbitp j m)
(logbitp )

Implementation note: If the bytespec is a constant, one may of course construct, at
compile time, an equivalent mask m, for example by computing (deposit-field -1
bytespec 0). Given this mask m, one may then compute

(deposit-field newbyte bytespec integer)

by computing
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(logior (logand newbyte m) (logand integer (lognot m)))

where the result of (lognot m) can of course also be computed at compile time.
However, the following expression may also be used and may require fewer temporary
registers in some situations:

(logxor integer (logand m (logxor integer newbyte)))
A related, though possibly less useful, trick is that
(let ((z (logand (logxor x y) m)))

(setq x (logxor z x))
(setq y (logxor z y)))

interchanges those bits of x and y for which the mask m is 1, and leaves alone those
bits of x and y for which m is 0.

12.9 Random Numbers

The Common Lisp facility for generating pseudo-random numbers has been
carefully defined to make its use reasonably portable. While two implementa-
tions may produce different series of pseudo-random numbers, the distribution
of values should be relatively independent of such machine-dependent aspects
as word size.

random number &optional state [Function]

(random n) accepts a positive number n and returns a number of the same kind
between zero (inclusive) and n (exclusive). The number n may be an integer
or a floating-point number. An approximately uniform choice distribution is
used. If n is an integer, each of the possible results occurs with (approximate)
probability 1/n. (The qualifier “approximate” is used because of implementation
considerations; in practice, the deviation from uniformity should be quite small.)

The argument state must be an object of type random-state; it defaults to
the value of the variable *random-state*. This object is used to maintain the
state of the pseudo-random-number generator and is altered as a side effect of
the random operation.

Compatibility note: random of zero arguments as defined in MacLisp has been
omitted because its value is too implementation-dependent (limited by fixnum range).

Implementation note: In general, even if random of zero arguments were defined
as in MacLisp, it is not adequate to define (random n) for integral n to be simply
(mod (random) n); this fails to be uniformly distributed if n is larger than the largest
number produced by random, or even if n merely approaches this number. This is
another reason for omitting random of zero arguments in Common Lisp. Assuming
that the underlying mechanism produces “random bits” (possibly in chunks such as
fixnums), the best approach is to produce enough random bits to construct an integer
k some number d of bits larger than (integer-length n) (see integer-length), and
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then compute (mod k mn). The quantity d should be at least 7, and preferably 10 or
more.

To produce random floating-point numbers in the half-open range [A, B), accepted
practice (as determined by a look through the Collected Algorithms from the ACM,
particularly algorithms 133, 266, 294, and 370) is to compute X - (B — A) + A, where
X is a floating-point number uniformly distributed over [0.0,1.0) and computed by
calculating a random integer N in the range [0, M) (typically by a multiplicative-
congruential or linear-congruential method mod M) and then setting X = N /M. See
also [27]. If one takes M = 2f7 where f is the length of the significand of a floating-
point number (and it is in fact common to choose M to be a power of 2), then this
method is equivalent to the following assembly-language-level procedure. Assume the
representation has no hidden bit. Take a floating-point 0.5, and clobber its entire
significand with random bits. Normalize the result if necessary.

For example, on the DEC PDP-10, assume that accumulator T is completely ran-
dom (all 36 bits are random). Then the code sequence

LSH T,-9 ;Clear high 9 bits; low 27 are random
FSC T,128. ;Install exponent and normalize

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0).
(Instead of the LSH instruction, one could do

TLZ T,777000 ;That’s 777000 octal

but if the 36 random bits came from a congruential random-number generator, the
high-order bits tend to be “more random” than the low-order ones, and so the LSH
would be better for uniform distribution. Ideally all the bits would be the result of
high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with
the hidden bit is. The method can be adapted as follows. Take a floating-point 1.0
and clobber the explicit significand bits with random bits; this produces a random
floating-point number in the range [1.0,2.0). Then simply subtract 1.0. In effect, we
let the hidden bit creep in and then subtract it away again.

For example, on the DEC VAX, assume that register T is completely random (but
a little less random than on the PDP-10, as it has only 32 random bits). Then the
code sequence

INSV #-~X81,#7,#9,T ;Install correct sign bit and exponent
SUBF #°F1.0,T ;Subtract 1.0

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0).
Again, if the low-order bits are not random enough, then the instruction

ROTL #7,T

should be performed first.
Implementors may wish to consult reference [11] for a discussion of some efficient
methods of generating pseudo-random numbers.

xrandom-statex [Variable]

This variable holds a data structure, an object of type random-state, that
encodes the internal state of the random-number generator that random uses
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by default. The nature of this data structure is implementation-dependent. It
may be printed out and successfully read back in, but may or may not function
correctly as a random-number state object in another implementation. A call
to random will perform a side effect on this data structure. Lambda-binding
this variable to a different random-number state object will correctly save and
restore the old state object.

make-random-state &optional state [Function]

This function returns a new object of type random-state, suitable for use as
the value of the variable *random-state*. If state is nil or omitted,
make-random-state returns a copy of the current random-number state object
(the value of the variable *random-statex). If state is a state object, a copy of
that state object is returned. If state is t, then a new state object is returned
that has been “randomly” initialized by some means (such as by a time-of-day
clock).

Rationale: Common Lisp purposely provides no way to initialize a random-state
object from a user-specified “seed.” The reason for this is that the number of bits of
state information in a random-state object may vary widely from one implementation
to another, and there is no simple way to guarantee that any user-specified seed value
will be “random enough.” Instead, the initialization of random-state objects is left
to the implementor in the case where the argument t is given to make-random-state.

To handle the common situation of executing the same program many times in a
reproducible manner, where that program uses random, the following procedure may
be used:

1. Evaluate (make-random-state t) to create a random-state object.
2. Write that object to a file, using print, for later use.

3. Whenever the program is to be run, first use read to create a copy of the
random-state object from the printed representation in the file. Then use
the random-state object newly created by the read operation to initialize the
random-number generator for the program.

It is for the sake of this procedure for reproducible execution that implementations
are required to provide a read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without going
through the print/read process, simply by using the make-random-state function to
copy the object; this allows the same sequence of random numbers to be generated
many times within a single program.

Implementation note: A recommended way to implement the type random-state
is effectively to use the machinery for defstruct. The usual structure syntax may
then be used for printing random-state objects; one might look something like

#S(RANDOM-STATE DATA # (14 49 98436589 786345 8734658324 ...))

where the components are of course completely implementation-dependent.

random-state-p object [Function]
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random-state-pis true if its argument is a random-state object, and otherwise
is false.

(random-state-p z) = (typep z 'random-state)

12.10 Implementation Parameters

The values of the named constants defined in this section are implementation-
dependent. They may be useful for parameterizing code in some situations.

most-positive-fixnum [Constant]

most-negative-fixnum [Constant]

The value of most-positive-fixnumis that fixnum closest in value to positive
infinity provided by the implementation.

The value of most-negative-fixnumis that fixnum closest in value to neg-
ative infinity provided by the implementation.

X3J13 voted in January 1989 (FIXNUM-NON-PORTABLE) to specify that fixnum
must be a supertype of the type (signed-byte 16), and additionally that the
value of array-dimension-1limit must be a fixnum. This implies that the value
of most-negative-fixnum must be less than or equal to —2'°, and the value of
most-positive—-fixnum must be greater than or equal to both 2!% — 1 and the
value of array-dimension-limit.

most-positive-short-float [Constant]
least-positive-short-float [Constant]
least-negative-short-float [Constant]
most-negative-short-float [Constant]

The value of most-positive-short-float is that short-format floating-point
number closest in value to (but not equal to) positive infinity provided by the
implementation.

The value of least-positive-short-float is that positive short-format
floating-point number closest in value to (but not equal to) zero provided by
the implementation.

The value of least-negative-short-float is that negative short-format
floating-point number closest in value to (but not equal to) zero provided by
the implementation. (Note that even if an implementation supports minus zero
as a distinct short floating-point value, least-negative-short-float must not
be minus zero.)
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X3J13 voted in June 1989 (FLOAT-UNDERFLOW) to clarify that these defini-
tions are to be taken quite literally. In implementations that support denormal-
ized numbers, the values of least-positive-short-float and
least-negative-short-float may be denormalized.

The value of most-negative-short-float is that short-format floating-
point number closest in value to (but not equal to) negative infinity provided
by the implementation.

most-positive-single-float [Constant]
least-positive-single-float [Constant]
least-negative-single-float [Constant]
most-negative-single-float [Constant]
most-positive-double-float [Constant]
least-positive-double-float [Constant]
least-negative-double-float [Constant]
most-negative-double-float [Constant]
most-positive-long-float [Constant]
least-positive-long-float [Constant]
least-negative-long-float [Constant]
most-negative-long-float [Constant]

These are analogous to the constants defined above for short-format floating-
point numbers.

least-positive-normalized-short-float [Constant]

least-negative-normalized-short-float [Constant]

X3J13 voted in June 1989 (FLOAT-UNDERFLOW) to add these constants to the
language.

The value of least-positive-normalized-short-float is that positive
normalized short-format floating-point number closest in value to (but not equal
to) zero provided by the implementation. In implementations that do not
support denormalized numbers this may be the same as the value of least-
positive-short-float.
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The value of least-negative-normalized-short-float is that negative
normalized short-format floating-point number closest in value to (but not equal
to) zero provided by the implementation. (Note that even if an implementation
supports minus zero as a distinct short floating-point value, least-negative-
normalized-short-float must not be minus zero.) In implementations that
do not support denormalized numbers this may be the same as the value of
least-positive-short-float.

least-positive-normalized-single-float [Constant]
least-negative-normalized-single-float [Constant]
least-positive-normalized-double-float [Constant]
least-negative-normalized-double-float [Constant]
least-positive-normalized-long-float [Constant]
least-negative-normalized-long-float [Constant]

These are analogous to the constants defined above for short-format floating-
point numbers.

short-float-epsilon [Constant]
single-float-epsilon [Constant]
double-float-epsilon [Constant]
long-float-epsilon [Constant]

These constants have as value, for each floating-point format, the smallest pos-
itive floating-point number e of that format such that the expression

(not (= (float 1 €) (4 (float 1 e) €)))

is true when actually evaluated.

short-float-negative-epsilon [Constant]
single-float-negative-epsilon [Constant]
double-float-negative-epsilon [Constant]
long-float-negative-epsilon [Constant]

These constants have as value, for each floating-point format, the smallest pos-
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itive floating-point number e of that format such that the expression
(not (= (float 1 e) (- (float 1 €) e€)))

is true when actually evaluated.



Chapter 13

Characters

Common Lisp provides a character data type; objects of this type represent
printed symbols such as letters.

In general, characters in Common Lisp are not true objects; eq cannot be
counted upon to operate on them reliably. In particular, it is possible that the
expression

(let ((xz) (v 2)) (eaxy))

may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eq in the case of characters allows the implementor
enough design freedom to produce exceptionally efficient code on conventional archi-
tectures. In this respect the treatment of characters exactly parallels that of numbers,
as described in chapter 12.

If two objects are to be compared for “identity,” but either might be a
character, then the predicate eql is probably appropriate.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to approve the following
definitions and terminology for use in discussing character facilities in Common
Lisp.

A character repertoire defines a collection of characters independent of their
specific rendered image or font. (This corresponds to the mathematical notion
of a set, but the term character set is avoided here because it has been used
in the past to mean both what is here called a repertoire and what is here
called a coded character set.) Character repertoires are specified independent
of coding and their characters are identified only with a unique character label,
a graphic symbol, and a character description. As an example, table 13.1 shows
the character labels, graphic symbols, and character descriptions for all of the
characters in the repertoire standard-char except for #\Space and #\Newline.

Every Common Lisp implementation must support the standard character
repertoire as well as repertoires named base-character, extended-character,
and character. Other repertoires may be supported as well. X3J13 voted in
June 1989 (MORE-CHARACTER-PROPOSAL) to specify that names of repertoires

334
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Table 13.1: Standard Character Labels, Glyphs, and Descriptions

SP02!exclamation mark
SP04"quotation mark
SMO1#number sign

SCO03$dollar sign

SM02%percent sign

SM0O3&ampersand
SP05’ apostrophe

SPO6 (left parenthesis
SPO7)right parenthesis

SMO4 *asterisk
SAO1+plus sign
SP08, comma

SMO5@commercial at SD13°¢grave accent

LAO2Acapital A
LB02Bcapital B
LCO2Ccapital C
LDO02Dcapital D
LEO2Ecapital E
LFO2Fcapital F
LGO2Gcapital G
LHO2Hcapital H
LIO2Icapital I

LJ02Jcapital J
LKO2Kcapital K
LLO2Lcapital L

SP10-hyphen or minus signLM02Mcapital M

SP11. period or full stop

SP12/solidus
ND100digit 0
NDO11digit 1
NDO22digit 2
ND033digit 3
NDO44digit 4
NDO55digit 5
NDO66digit 6
NDO77digit 7
NDO88digit 8
ND099digit 9
SP13:colon
SP14 ; semicolon

SA03<less-than sign

SAO4=equals sign

SA05>greater-than sign
SP157question mark

LNO2Ncapital N
L0020capital O
LPO2Pcapital P

LQO2Qcapital Q
LRO2Rcapital R
LS02Scapital S

LTO2Tcapital T
LUO2Ucapital U
LVO02Vcapital V
LW02Wcapital W
LX02Xcapital X
LYO2Ycapital Y
LZ02Zcapital Z

LAOlasmall a
LBO1bsmall b
LCO1csmall ¢
LDO1dsmall d
LEOlesmall e
LFO1fsmall f
LGOlgsmall g
LHO1hsmall h
LIO1lismall i
LJO1jsmall j
LKO1ksmall k
LLO11small 1
LMO1msmall m
LNO1nsmall n
LOO1osmall o
LPO1psmall p
LQO1gsmall q
LRO1rsmall r
LSO1ssmall s
LTO1tsmall t
LUO1usmall u
LVO1lvsmall v
LWOlwsmall w
LXO1xsmall x
LYOlysmall y
LZO1zsmall z

SMO6 [left square bracket SMi1{left curly bracket
SMO7\reverse solidus SM13| vertical bar

SM08] right square bracketSM14}right curly bracket
SD15"circumflex accent SD19~tilde

SP09_low line

The characters in this table plus the space and newline characters make up the stan-
dard Common Lisp character repertoire (type standard-char). The character labels

and character descriptions shown here are taken from ISO standard 6937/2 . The first

character of the label categorizes the character as Latin, Numeric, or Special.
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may be used as type specifiers. Such types must be subtypes of character; that
is, in a given implementation the repertoire named character must encompass
all the character objects supported by that implementation.

A coded character set is a character repertoire plus an encoding that provides
a bijective mapping between each character in the set and a number (typically
a non-negative integer) that serves as the character representation. There are
numerous internationally standardized coded character sets.

A character may be included in one or more character repertoires. Similarly,
a character may be included in one or more coded character sets.

To ensure that each character is uniquely defined, we may use a universal
registry of characters that incorporates a collection of distinguished repertoires
called character scripts that form an exhaustive partition of all characters. That
is, each character is included in exactly one character script. (Draft ISO 10646
Coded Character Set Standard, if eventually approved as a standard, may be-
come the practical realization of this universal registry.)

(X3J13 voted in June 1989 (MORE-CHARACTER-PROPOSAL) to specify that an
implementation must document the character scripts it supports. For each script
the documentation should discuss character labels, glyphs, and descriptions;
any canonicalization processes performed by the reader that result in treating
distinct characters as equivalent; any canonicalization performed by format in
processing directives; the behavior of char-upcase, char-downcase, and the
predicates alpha-char-p, upper-case-p, lower-case-p, both-case-p,
graphic-char-p, alphanumericp, char-equal, char-not-equal, char-lessp,
char-greaterp, char-not-greaterp, and char-not-lessp for characters in
the script; and behavior with respect to input and output, including coded
character sets and external coding schemes.)

In Common Lisp a character data object is identified by its character code, a
unique numerical code. Each character code is composed from a character script
and a character label. The convention by which a character script and character
label compose a character code is implementation dependent. [X3J13 did not
approve all parts of the proposal from its Subcommittee on Characters. As a
result, some features that were approved appear to have no purpose. X3J13
wished to support the standardization by ISO of character scripts and coded
character sets but declined to design facilities for use in Common Lisp until there
has been more progress by ISO in this area. The approval of the terminology for
scripts and labels gives a hint to implementors of likely directions for Common
Lisp in the future.]

A character object that is classified as graphic, or displayable, has an asso-
ciated glpyh. The glyph is the visual representation of the character. All other
character data objects are classified as non-graphic.

This terminology assigns names to Common Lisp concepts in a manner con-
sistent with related concepts discussed in various ISO standards for coded char-
acter sets and provides a demarcation between standardization activities. For
example, facilities for manipulating characters, character scripts, and coded
character sets are properly defined by a Common Lisp standard, but Common
Lisp should not define standard character sets or standard character scripts.
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13.1 Character Attributes

Every character has three attributes: code, bits, and font. The code attribute
is intended to distinguish among the printed glyphs and formatting functions
for characters. The bits attribute allows extra flags to be associated with a
character. The font attribute permits a specification of the style of the glyphs
(such as italics).

The treatment of character attributes in Common Lisp has not been en-
tirely successful. The font attribute has not been widely used, for two reasons.
First, a single integer, limited in most implementations to 255 at most, is not
an adequate, convenient, or portable representation for a font. Second, in many
applications where font information matters it is more convenient or more effi-
cient to represent font information as shift codes that apply to many characters,
rather than attaching font information separately to each character.

As for the bits attribute, it was intended to support character input from
extended keyboards having extra “shift” keys. This, in turn, was imagined to
support the programming of a portable EMACS-like editor in Common Lisp.
(The EMACS command set is most convenient when the keyboard has separate
“control” and “meta” keys.) The bits attribute has been used in the implemen-
tation of such editors and other interactive interfaces. However, software that
relies crucially on these extended characters will not be portable to Common
Lisp implementations that do not support them.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) and in June 1989
(MORE-CHARACTER-PROPOSAL) to revise considerably the treatment of characters
in the language. The bits and font attributes are eliminated; instead a character
may have implementation-defined attributes. The treatment of such attributes
by existing character-handling functions is carefully constrained by certain rules.

Implementations are free to continue to support bits and font attributes, but
they are formally regarded as implementation-defined attributes. The rules are
generally consistent with the previous treatment of the bits and font attributes.
My guess is that the font attribute as currently defined will wither away, but
the bits attribute as defined by the first edition will continue to be supported
as a de facto standard extension, because it fills a useful small purpose.

char-code-limit [Constant]

The value of char-code-limit is a non-negative integer that is the upper ex-
clusive bound on values produced by the function char-code, which returns the
code component of a given character; that is, the values returned by char-code
are non-negative and strictly less than the value of char-code-limit.

Common Lisp does not at present explicitly guarantee that all integers be-
tween zero and the value of char-code-1imit are valid character codes, and so
it is wise in any case for the programmer to assume that the space of assigned
character codes may be sparse.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate
char-font-limit.
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Experience has shown that numeric codes are not an especially convenient,
let alone portable, representation for font information. A system based on
typeface names, type styles, and point sizes would be much better. (Macintosh
software developers made the same discovery and have recently converted to a
new font identification scheme.)

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate
char-bits-limit.

13.2 Predicates on Characters

The predicate characterp may be used to determine whether any Lisp object
is a character object.

standard-char-p char [Function]

The argument char must be a character object. standard-char-p is true if the
argument is a “standard character,” that is, an object of type standard-char.
Note that any character with a non-zero bits or font attribute is non-standard.

graphic-char-p char [Function]

The argument char must be a character object. graphic-char-p is true if the
argument is a “graphic” (printing) character, and false if it is a “non-graphic”
(formatting or control) character. Graphic characters have a standard tex-
tual representation as a single glyph, such as A or * or =. By convention, the
space character is considered to be graphic. Of the standard characters all but
#\Newline are graphic. The semi-standard characters #\Backspace, #\Tab,
#\Rubout, #\Linefeed, #\Return, and #\Page are not graphic.

Programs may assume that graphic characters of font 0 are all of the same
width when printed, for example, for purposes of columnar formatting. (This
does not prohibit the use of a variable-pitch font as font 0, but merely implies
that every implementation of Common Lisp must provide some mode of oper-
ation in which font 0 is a fixed-pitch font.) Portable programs should assume
that, in general, non-graphic characters and characters of other fonts may be of
varying widths.

Any character with a non-zero bits attribute is non-graphic.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate
string-char-p.

alpha-char-p char [Function]

The argument char must be a character object. alpha-char-p is true if the
argument is an alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any char-
acter with a non-zero bits attribute cannot be alphabetic. Whether a character
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is alphabetic may depend on its font number.
Of the standard characters (as defined by standard-char-p), the letters A
through Z and a through z are alphabetic.

upper-case-p char [Function]
lower-case-p char [Function]
both-case-p char [Function]

The argument char must be a character object.

upper-case-p is true if the argument is an uppercase character, and other-
wise is false.

lower-case-p is true if the argument is a lowercase character, and otherwise
is false.

both-case-p is true if the argument is an uppercase character and there is a
corresponding lowercase character (which can be obtained using char-downcase),
or if the argument is a lowercase character and there is a corresponding upper-
case character (which can be obtained using char-upcase).

If a character is either uppercase or lowercase, it is necessarily alphabetic
(and therefore is graphic, and therefore has a zero bits attribute). However, it
is permissible in theory for an alphabetic character to be neither uppercase nor
lowercase (in a non-Roman font, for example).

Of the standard characters (as defined by standard-char-p), the letters A
through Z are uppercase and a through z are lowercase.

digit-char-p char &optional (radix 10) [Function]

The argument char must be a character object, and radiz must be a non-negative
integer. If char is not a digit of the radix specified by radiz, then digit-char-p
is false; otherwise it returns a non-negative integer that is the “weight” of char
in that radix.

Digits are necessarily graphic characters.

Of the standard characters (as defined by standard-char-p), the characters
0 through 9, A through Z, and a through z are digits. The weights of 0 through
9 are the integers 0 through 9, and of A through Z (and also a through z) are
10 through 35. digit-char-p returns the weight for one of these digits if and
only if its weight is strictly less than radiz. Thus, for example, the digits for
radix 16 are

0123456789 ABCDEF
Here is an example of the use of digit-char-p:
(defun convert-string-to-integer (str \&optional (radix 10))

"Given a digit string and optional radix, return an integer."
(do ((j O (+ j 1)
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(n 0 (+ (* n radix)
(or (digit-char-p (char str j) radix)
(error "Bad radix-{\Xtilde}D digit: {\Xtildel}C"
radix
(char str j))))))
((= j (length str)) n)))

alphanumericp char [Function]

The argument char must be a character object. alphanumericp is true if char
is either alphabetic or numeric. By definition,

(alphanumericp x)
= (or (alpha-char-p x) (not (null (digit-char-p x))))

Alphanumeric characters are therefore necessarily graphic (as defined by the
predicate graphic-char-p).

Of the standard characters (as defined by standard-char-p), the characters
0 through 9, A through Z, and a through z are alphanumeric.

char= character &rest more-characters [Function]
char/= character &rest more-characters [Function]
char< character &rest more-characters [Function]
char> character &rest more-characters [Function]
char<= character &rest more-characters [Function]
char>= character &rest more-characters [Function]

The arguments must all be character objects. These functions compare the
objects using the implementation-dependent total ordering on characters, in a
manner analogous to numeric comparisons by = and related functions.

The total ordering on characters is guaranteed to have the following prop-
erties:

e The standard alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<UKV<KW<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<1<m<n<o<p<g<r<s<t<ucv<w<x<y<z0<1<2<3<4<5<6<7<8<9
either 9<A or Z<0

either 9<a or z<0

This implies that alphabetic ordering holds within each case (upper and lower),
and that the digits as a group are not interleaved with letters. However, the
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ordering or possible interleaving of uppercase letters and lowercase letters is
unspecified. (Note that both the ASCII and the EBCDIC character sets conform
to this specification. As it happens, neither ordering interleaves uppercase and
lowercase letters: in the ASCII ordering, 9<A and Z<a, whereas in the EBCDIC
ordering z<A and Z<O0.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to replace the notion of
bits and font attributes with that of implementation-defined attributes.

e If two characters have identical implementation-defined attributes, then
their ordering by char< is consistent with the numerical ordering by the
predicate < on their codes, and similarly for char>, char<=, and char>=.

e If two characters differ in any implementation-defined attribute, then they
are not char=.

The total ordering is not necessarily the same as the total ordering on the
integers produced by applying char-int to the characters (although it is a
reasonable implementation technique to use that ordering).

While alphabetic characters of a given case must be properly ordered, they
need not be contiguous; thus (char<= #\a x #\z) is not a valid way of de-
termining whether or not x is a lowercase letter. That is why a separate
lower-case-p predicate is provided.

(char= #\d #\d) is true.

(char/ = #\d #\d) is false.

(char= #\d #\x) is false.

(char/ = #\d #\x) is true.

(char= #\d #\D) is false.

(char/ = #\d #\D) is true.

(char= #\d #\d #\d #\d) is true.
(char/ = #\d #\d #\d #\d) is false.
(char= #\d #\d #\x #\d) is false.
(char/ = #\d #\d #\x #\d) is false.
(char= #\d #\y #\x #\c) is false.
(char/ = #\d #\y #\x #\c) is true.
(char= #\d #\c #\d) is false.
(char/ = #\d #\c #\d) is false.
(char< #\d #\x) is true.

(char<= #\d #\x) is true.

(char< #\d #\d) is false.

(char<= #\d #\d) is true.

(char< #\a #\e #\y #\z) is true.
(char<= #\a #\e #\y #\z) is true.
(char< #\a #\e #\e #\y) is false.
(char<= #\a #\e #\e #\y) is true.
(char> #\e #\d) is true.

(char>= #\e #\d) is true.
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char> #\d #\c #\b #\a) is true.
char>= #\d #\c #\b #\a) is true.
char> #\d #\d #\c #\a) is false.
char>= #\d #\d #\c #\a) is true.
char> #\e #\d #\b #\c #\a) is false.
char>= #\e #\d #\b #\c #\a) is false.
char> #\z #\A) may be true or false.
char> #\Z #\a) may be true or false.

NN N N N N N N

There is no requirement that (eq c1 c2) be true merely because (char=
cl c2) is true. While eq may distinguish two character objects that char=
does not, it is distinguishing them not as characters, but in some sense on the
basis of a lower-level implementation characteristic. (Of course, if (eq c1 c2)
is true, then one may expect (char= cl c2) to be true.) However, eql and
equal compare character objects in the same way that char= does.

char-equal character &rest more-characters [Function]
char-not-equal character &rest more-characters [Function]
char-lessp character &rest more-characters [Function]
char-greaterp character &rest more-characters [Function]
char-not-greaterp character &rest more-characters [Function]
char-not-lessp character &rest more-characters [Function]

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to replace the notion of bits
and font attributes with that of implementation-defined attributes. The effect,
if any, of each such attribute on the behavior of char-equal, char-not-equal,
char-lessp, char-greaterp, char-not-greaterp, and char-not-lessp must
be specified as part of the definition of that attribute.

For the standard characters, the ordering is such that A=a, B=b, and so on,
up to Z=z, and furthermore either 9<A or Z<0. For example:

(char-equal #\A #\a) is true.
(char= #\A #\a) is false.
(char-equal #\A #\Control-A) is true.

13.3 Character Construction and Selection

These functions may be used to extract attributes of a character and to construct
new characters.
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char-code char [Function]

The argument char must be a character object. char-code returns the code
attribute of the character object; this will be a non-negative integer less than
the (normal) value of the variable char-code-limit.

This is usually what you need in order to treat a character as an index into
a vector. The length of the vector should then be equal to char-code-limit.
Be careful how you initialize this vector; remember that you cannot necessarily
expect all non-negative integers less than char-code-1imit to be valid character
codes.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate char-bits.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate char-font.
The references to the “normal” values of the “variables” char-code-limit,

char-bits-limit, and char-font-limit in the descriptions of char-code,
char-bits, and char-font were an oversight on my part. Early in the design
of Common Lisp they were indeed variables, but they are at present defined
to be constants, and their values therefore are always normal and should not
change. But this point is now moot.

code-char code &optional (bits 0) (font 0) [Function]

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the bits and
font arguments from the specification of code-char.
X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate make-char.

13.4 Character Conversions

These functions perform various transformations on characters, including case
conversions.

character object [Function]

The function character coerces its argument to be a character if possible; see
coerce.

(character x) = (coerce x ’character)

char-upcase char [Function]

char-downcase char [Function]

The argument char must be a character object. char-upcase attempts to con-
vert its argument to an uppercase equivalent; char-downcase attempts to con-
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vert its argument to a lowercase equivalent.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to replace the notion
of bits and font attributes with that of implementation-defined attributes. The
effect of char-upcase and char-downcase is to preserve implementation-defined
attributes.

digit-char weight &optional (radix 10) (font 0) [Function]

All arguments must be integers. digit-char determines whether or not it is
possible to construct a character object whose font attribute is font, and whose
code is such that the result character has the weight weight when considered as
a digit of the radix radiz (see the predicate digit-char-p). It returns such a
character if that is possible, and otherwise returns nil.

digit-char cannot return nil if font is zero, radiz is between 2 and 36
inclusive, and weight is non-negative and less than radiz.

If more than one character object can encode such a weight in the given
radix, one will be chosen consistently by any given implementation; moreover,
among the standard characters, uppercase letters are preferred to lowercase
letters. For example:

(digit-char 7) = #\7

(digit-char 12) = nil

(digit-char 12 16) = #\C  ;not #\c
(digit-char 6 2) = nil

(digit-char 1 2) = #\1

Note that no argument is provided for specifying the bits component of the
returned character, because a digit cannot have a non-zero bits component.
The reasoning is that every digit is graphic (see digit-char-p) and no graphic
character has a non-zero bits component (see graphic-char-p).

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate the font
argument from the specification of digit-char.

char-int char [Function]

The argument char must be a character object. char-int returns a non-negative
integer encoding the character object.

If the font and bits attributes of char are zero, then char-int returns the
same integer char-code would. Also,

(char= cl ¢2) = (= (char-int c1) (char-int ¢2))

for characters c1 and c2.
This function is provided primarily for the purpose of hashing characters.
X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate int-char.
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char-name char [Function]

The argument char must be a character object. If the character has a name,
then that name (a string) is returned; otherwise nil is returned. All characters
that have zero font and bits attributes and that are non-graphic (do not satisfy
the predicate graphic-char-p) have names. Graphic characters may or may
not have names.

The standard newline and space characters have the respective names Newline
and Space. The semi-standard characters have the names Tab, Page, Rubout,
Linefeed, Return, and Backspace.

Characters that have names can be notated as #\ followed by the name. (See
section 22.1.4.) Although the name may be written in any case, it is stylish to
capitalize it thus: #\Space.

char-name will only locate “simple” character names; it will not construct
names such as Control-Space on the basis of the character’s bits attribute.

The easiest way to get a name that includes the bits attribute of a character
cis (format nil "~:C" c).

name-char name [Function]

The argument name must be an object coerceable to a string as if by the function
string. If the name is the same as the name of a character object (as determined
by string-equal), that object is returned; otherwise nil is returned.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate all four
of the constants char-control-bit, char-meta-bit, char-super-bit, and
char-hyper-bit. When Common Lisp was first designed, keyboards with “ex-

tra bits” were relatively rare. The bits attribute was originally designed to
support input from keyboards in use at Stanford and M.I.T. circa 1981.

Since that time such extended keyboards have come into wider use. Notable
here are the keyboards associated with certain personal computers and work-
stations. For example, in some specific applications the command and option
keys of Apple Macintosh keyboards have had the connotations of control and
meta. Macintosh II extended keyboards also have keys marked control whose
use is analogous to that of hyper on the old M.I.T. keyboards. IBM PC personal
computer keyboards have alt keys that function much like meta keys; similarly,
keyboards on Sun workstations have keys very much like meta keys but labelled
left and right.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate char-bit.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to eliminate set-char-bit.
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Sequences

The type sequence encompasses both lists and vectors (one-dimensional arrays).
While these are different data structures with different structural properties
leading to different algorithmic uses, they do have a common property: each
contains an ordered set of elements. Note that nil is considered to be a sequence
of length zero.

Some operations are useful on both lists and arrays because they deal with
ordered sets of elements. One may ask the number of elements, reverse the
ordering, extract a subsequence, and so on. For such purposes Common Lisp
provides a set of generic functions on sequences.

Note that this remark, predating the design of the Common Lisp Object
System, uses the term “generic” in a generic sense, and not necessarily in the
technical sense used by CLOS (see chapter 2).

elt reverse map remove

length nreverse some remove-duplicates
subseq concatenate every delete

copy-seq position notany delete-duplicates
fill find notevery substitute

replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version. Such versions are
indicated by adding a suffix (or occasionally a prefix) to the basic name of the
operation. In addition, many operations accept one or more optional keyword
arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some crite-
rion, then the criterion may be specified in one of two ways. The basic operation
accepts an item, and elements are tested for being eql to that item. (A test
other than eql can be specified by the :test or :test-not keyword. It is an
error to use both of these keywords in the same call.) The variants formed by
adding -if and -if-not to the basic operation name do not take an item, but

346
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instead a one-argument predicate, and elements are tested for satisfying or not
satisfying the predicate. As an example,

(remove item sequence)

returns a copy of sequence from which all elements eql to item have been re-
moved;

(remove item sequence :test #’equal)

returns a copy of sequence from which all elements equal to item have been
removed;

(remove-if #’numberp sequence)

returns a copy of sequence from which all numbers have been removed.

If an operation tests elements of a sequence in any manner, the keyword
argument :key, if not nil, should be a function of one argument that will
extract from an element the part to be tested in place of the whole element.
For example, the effect of the MacLisp expression (assq item seq) could be
obtained by

(find item sequence :test #’eq :key #’car)

This searches for the first element of sequence whose car is eq to item. X3J13
voted in June 1988 (FUNCTION-TYPE) to allow the :key function to be only of
type symbol or function; a lambda-expression is no longer acceptable as a func-
tional argument. One must use the function special form or the abbreviation
#’ before a lambda-expression that appears as an explicit argument form.

For some operations it can be useful to specify the direction in which the
sequence is conceptually processed. In this case the basic operation normally
processes the sequence in the forward direction, and processing in the reverse
direction is indicated by a non-nil value for the keyword argument :from-end.
(The processing order specified by the :from-end is purely conceptual. De-
pending on the object to be processed and on the implementation, the actual
processing order may be different. For this reason a user-supplied test function
should be free of side effects.)

Many operations allow the specification of a subsequence to be operated
upon. Such operations have keyword arguments called :start and :end. These
arguments should be integer indices into the sequence, with start < end (it
is an error if start > end). They indicate the subsequence starting with and
including element start and up to but excluding element end. The length of the
subsequence is therefore end — start. If start is omitted, it defaults to zero; and
if end is omitted or nil, it defaults to the length of the sequence. Therefore
if both start and end are omitted, the entire sequence is processed by default.
For the most part, subsequence specification is permitted purely for the sake
of efficiency; one could simply call subseq instead to extract the subsequence
before operating on it. Note, however, that operations that calculate indices
return indices into the original sequence, not into the subsequence:
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(position #\b ”foobar” :start 2 :end 5) = 3
(position #\b (subseq ”foobar” 2 5)) = 1

If two sequences are involved, then the keyword arguments :startl, :endi,
:start2, and :end2 are used to specify separate subsequences for each sequence.

X3J13 voted in June 1988 (SUBSEQ-OUT-0F-BOUNDS) (and further clarifica-
tion was voted in January 1989 (RANGE-OF-START-AND-END-PARAMETERS)) to
specify that these rules apply not only to all built-in functions that have key-
word parameters named :start, :startl, :start2, :end, :endl, or :end2 but
also to functions such as subseq that take required or optional parameters that
are documented as being named start or end.

e A “start” argument must always be a non-negative integer and defaults to
zero if not supplied; it is not permissible to passnil as a “start” argument.

e An “end” argument must be either a non-negative integer or nil (which
indicates the end of the sequence) and defaults to nil if not supplied,;
therefore supplying nil is equivalent to not supplying such an argument.

o If the “end” argument is an integer, it must be no greater than the active
length of the corresponding sequence (as returned by the function length).

e The default value for the “end” argument is the active length of the cor-
responding sequence.

e The “start” value (after defaulting, if necessary) must not be greater than
the corresponding “end” value (after defaulting, if necessary).

This may be summarized as follows. Let z be the sequence within which indices
are to be considered. Let s be the “start” argument for that sequence of any
standard function, whether explicitly specified or defaulted, through omission,
to zero. Let e be the “end” argument for that sequence of any standard func-
tion, whether explicitly specified or defaulted, through omission or an explicitly
passed nil value, to the active length of z, as returned by length. Then it is
an error if the test (<= 0 s e (length z)) is not true.

For some functions, notably remove and delete, the keyword argument
:count is used to specify how many occurrences of the item should be affected.
If this is nil or is not supplied, all matching items are affected.

In the following function descriptions, an element z of a sequence “satisfies
the test” if any of the following holds:

e A basic function was called, testfn was specified by the keyword :test,
and (funcall testfn item (keyfn x)) is true.

e A basic function was called, testfn was specified by the keyword : test-not,
and (funcall testfn item (keyfn x)) is false.

e An -if function was called, and (funcall predicate (keyfn x)) is true.
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e An -if-not function was called, and (funcall predicate (keyfn x)) is
false.

In each case keyfn is the value of the :key keyword argument (the default being
the identity function). See, for example, remove.

In the following function descriptions, two elements z and y taken from
sequences “match” if either of the following holds:

e testfn was specified by the keyword :test, and
(funcall testfn (keyfn x) (keyfn 1)) is true.

e testfn was specified by the keyword :test-not, and
(funcall testfn (keyfn ) (keyfn y)) is false.

See, for example, search.

X3J13 voted in June 1988 (FUNCTION-TYPE) to allow the testfn or predicate
to be only of type symbol or function; a lambda-expression is no longer ac-
ceptable as a functional argument. One must use the function special form
or the abbreviation #’ before a lambda-expression that appears as an explicit
argument form.

You may depend on the order in which arguments are given to testfn; this
permits the use of non-commutative test functions in a predictable manner.
The order of the arguments to testfn corresponds to the order in which those
arguments (or the sequences containing those arguments) were given to the
sequence function in question. If a sequence function gives two elements from
the same sequence argument to testfn, they are given in the same order in which
they appear in the sequence.

Whenever a sequence function must construct and return a new vector, it al-
ways returns a simple vector (see section 2.5). Similarly, any strings constructed
will be simple strings.

X3J13 voted in January 1989 (TEST-NOT-IF-NOT) to deprecate the use of
:test-not keyword arguments and -if-not functions. This means that these
features are very likely to be retained in the forthcoming standard but are
regarded as candidates for removal in a future revision of the ANSI stan-
dard. X3J13 also voted in January 1989 (FUNCTION-COMPOSITION) to add the
complement function, intended to reduce or eliminate the need for these dep-
recated features. Time will tell. I note that many features in Fortran have
been deprecated but very few indeed have actually been removed or altered
incompatibly.

complement fn [Function]

Returns a function whose value is the same as that of not applied to the result of
applying the function fn to the same arguments. One could define complement
as follows:

(defun complement (fn)
#’ (lambda (&rest arguments)
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(not (apply fn arguments))))

One intended use of complement is to supplant the use of :test-not arguments
and -if-not functions.

(remove-if-not #’virtuous senators) =
(remove-if (complement #’virtuous) senators)

(remove-duplicates telephone-book
:test-not # mismatch) =
(remove-duplicates telephone-book
:test (complement #’mismatch))

14.1 Simple Sequence Functions

Most of the following functions perform simple operations on a single sequence;
make-sequence constructs a new sequence.

elt sequence index [Function]

This returns the element of sequence specified by index, which must be a non-
negative integer less than the length of the sequence as returned by length. The
first element of a sequence has index 0.

(Note that elt observes the fill pointer in those vectors that have fill pointers.
The array-specific function aref may be used to access vector elements that are
beyond the vector’s fill pointer.)

setf may be used with elt to destructively replace a sequence element with
a new value.

subseq sequence start &optional end [Function]

This returns the subsequence of sequence specified by start and end. subseq
always allocates a new sequence for a result; it never shares storage with an old
sequence. The result subsequence is always of the same type as the argument
sequence.

setf may be used with subseq to destructively replace a subsequence with
a sequence of new values; see also replace.

copy-seq sequence [Function]

A copy is made of the argument sequence; the result is equalp to the argument
but not eq to it.

(copy-seq z) = (subseq z 0)

but the name copy-seq is more perspicuous when applicable.



CHAPTER 14. SEQUENCES 351

length sequence [Function]

The number of elements in sequence is returned as a non-negative integer. If
the sequence is a vector with a fill pointer, the “active length” as specified by
the fill pointer is returned (see section 17.5).

reverse sequence [Function]

The result is a new sequence of the same kind as sequence, containing the same
elements but in reverse order. The argument is not modified.

nreverse sequence [Function]

The result is a sequence containing the same elements as sequence but in reverse
order. The argument may be destroyed and re-used to produce the result. The
result may or may not be eq to the argument, so it is usually wise to say
something like (setq x (nreverse x)), because simply (nreverse x) is not
guaranteed to leave a reversed value in x.

X3J13 voted in March 1989 (REMF-DESTRUCTION-UNSPECIFIED) to clarify
the permissible side effects of certain operations. When the sequence is a list,
nreverse is permitted to perform a setf on any part, car or cdr, of the top-level
list structure of that list. When the sequence is an array, nreverse is permitted
to re-order the elements of the given array in order to produce the resulting
array.

make-sequence type size &key :initial-element [Function]

This returns a sequence of type type and of length size, each of whose ele-
ments has been initialized to the :initial-element argument. If specified, the
:initial-element argument must be an object that can be an element of a
sequence of type type. For example:

(make-sequence ’(vector double-float)
100
:initial-element 1d0)

If an :initial-element argument is not specified, then the sequence will be
initialized in an implementation-dependent way.

X3J13 voted in January 1989 (ARGUMENTS-UNDERSPECIFIED) to clarify that
the type argument must be a type specifier, and the size argument must be a
non-negative integer less than the value of array-dimension-limit.

X3J13 voted in June 1989 (SEQUENCE-TYPE-LENGTH) to specify that
make-sequence should signal an error if the sequence type specifies the number
of elements and the size argument is different.

X3J13 voted in March 1989 (CHARACTER-PROPOSAL) to specify that if type is
string, the result is the same as if make-string had been called with the same
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size and :initial-element arguments.

14.2 Concatenating, Mapping, and Reducing Se-
quences

The functions in this section each operate on an arbitrary number of sequences
except for reduce, which is included here because of its conceptual relationship
to the mapping functions.

concatenate result-type &rest sequences [Function]

The result is a new sequence that contains all the elements of all the sequences
in order. All of the sequences are copied from; the result does not share any
structure with any of the argument sequences (in this concatenate differs from
append). The type of the result is specified by result-type, which must be a
subtype of sequence, as for the function coerce. It must be possible for every
element of the argument sequences to be an element of a sequence of type result-
type.

If only one sequence argument is provided and it has the type specified by
result-type, concatenate is required to copy the argument rather than simply
returning it. If a copy is not required, but only possibly type conversion, then
the coerce function may be appropriate.

X3J13 voted in June 1989 (SEQUENCE-TYPE-LENGTH) to specify that
concatenate should signal an error if the sequence type specifies the number
of elements and the sum of the argument lengths is different.

map result-type function sequence &rest sl more-sequences [Function]

The function must take as many arguments as there are sequences provided; at
least one sequence must be provided. The result of map is a sequence such that
element j is the result of applying function to element j of each of the argument
sequences. The result sequence is as long as the shortest of the input sequences.

If the function has side effects, it can count on being called first on all the
elements numbered O, then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type
(which must be a subtype of the type sequence), as for the function coerce.
In addition, one may specify nil for the result type, meaning that no result
sequence is to be produced; in this case the function is invoked only for effect,
and map returns nil. This gives an effect similar to that of mapc.

X3J13 voted in June 1989 (SEQUENCE-TYPE-LENGTH) to specify that map
should signal an error if the sequence type specifies the number of elements and
the minimum of the argument lengths is different.

X3J13 voted in January 1989 <MAPPING—DESTRUCTIVE—INTERACTION> to re-
strict user side effects; see section 7.9.
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Compatibility note: In MacLisp, Lisp Machine Lisp, Interlisp, and indeed even
Lisp 1.5, the function map has always meant a non-value-returning version. However,
standard computer science literature, including in particular the recent wave of papers
on “functional programming,” have come to use map to mean what in the past Lisp
implementations have called mapcar. To simplify things henceforth, Common Lisp
follows current usage, and what was formerly called map is named mapl in Common
Lisp.

For example:

(map “list #- (1 2 3 4)) = (-1 -2 -3 -4)
(map ’string
#’(lambda (x) (if (oddp x) #\1 #\0))
(1234))
= 71010"

map-into result-sequence function &rest sequences [Function]

X3J13 voted in June 1989 (MAP-INTO) to add the function map-into. It destruc-
tively modifies the result-sequence to contain the results of applying function to
corresponding elements of the argument sequences in turn; it then returns result-
sequence.

The arguments result-sequence and each element of sequences can each be
either a list or a vector (one-dimensional array). The function must accept
at least as many arguments as the number of argument sequences supplied to
map-into. If result-sequence and the other argument sequences are not all the
same length, the iteration terminates when the shortest sequence is exhausted.
If result-sequence is a vector with a fill pointer, the fill pointer is ignored when
deciding how many iterations to perform, and afterwards the fill pointer is set
to the number of times the function was applied.

If the function has side effects, it can count on being called first on all the
elements numbered 0, then on all those numbered 1, and so on.

If result-sequence is longer than the shortest element of sequences, extra
elements at the end of result-sequence are unchanged.

The function map-into differs from map in that it modifies an existing se-
quence rather than creating a new one. In addition, map-into can be called
with only two arguments (result-sequence and function), while map requires at
least three arguments.

If result-sequence is nil, map-into immediately returns nil, because nil is
a sequence of length zero.

some predicate sequence &rest more-sequences [Function]
every predicate sequence &rest more-sequences [Function]

notany predicate sequence &rest more-sequences [Function]
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notevery predicate sequence &rest more-sequences [Function]

These are all predicates. The predicate must take as many arguments as there
are sequences provided. The predicate is first applied to the elements with index
0 in each of the sequences, and possibly then to the elements with index 1, and
so on, until a termination criterion is met or the end of the shortest of the
sequences is reached.

If the predicate has side effects, it can count on being called first on all the
elements numbered O, then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-nil value;
some returns that value. If the end of a sequence is reached, some returns nil.
Thus, considered as a predicate, it is true if some invocation of predicate is true.

every returns nil as soon as any invocation of predicate returns nil. If the
end of a sequence is reached, every returns a non-nil value. Thus, considered
as a predicate, it is true if every invocation of predicate is true.

notany returns nil as soon as any invocation of predicate returns a non-nil
value. If the end of a sequence is reached, notany returns a non-nil value.
Thus, considered as a predicate, it is true if no invocation of predicate is true.

notevery returns a non-nil value as soon as any invocation of predicate
returns nil. If the end of a sequence is reached, notevery returns nil. Thus,
considered as a predicate, it is true if not every invocation of predicate is true.

X3J13 voted in January 1989 <MAPPING—DESTRUCTIVE—INTERACTION> to re-
strict user side effects; see section 7.9.

Compatibility note: The order of the arguments here is not compatible with In-
terlisp and Lisp Machine Lisp. This is to stress the similarity of these functions to map.
The functions are therefore extended here to functions of more than one argument,
and to multiple sequences.

reduce function sequence &key :from-end :start :end :initial-value [Function]

The reduce function combines all the elements of a sequence using a binary
operation; for example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” using the
function, which must accept two arguments. The reduction is left-associative,
unless the :from-end argument is true (it defaults to nil), in which case it
is right-associative. If an :initial-value argument is given, it is logically
placed before the subsequence (after it if : from-end is true) and included in the
reduction operation.

If the specified subsequence contains exactly one element and the keyword
argument :initial-value is not given, then that element is returned and the
functionis not called. If the specified subsequence is empty and an : initial-value
is given, then the :initial-value is returned and the function is not called.

If the specified subsequence is empty and no :initial-value is given, then
the function is called with zero arguments, and reduce returns whatever the
function does. (This is the only case where the function is called with other
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than two arguments.)

(reduce #’+ (123 4)) = 10

(reduce #-'(1234))=(-(-(-12)3)4) = -8

(reduce #- ’(1 2 3 4) :from-end t) ;Alternating sum
=(1(-2( 34)))$-2

(reduce #+ () =

(reduce #'+ ’(3)) =

(reduce #’+ ’(foo

(reduce #’list ’

(

(

) = foo

(1234) = ((12)3) 4)

(1234) :from-end t) = (1 (2 (3 4)))
reduce #’list (1 2 3 4) :initial-value ’foo)

= ((((foo 1) 2) 3) 4)

(reduce #'list (1 2 3 4)
:from-end t :initial-value ’foo)

= (1 (2 (3 (4 f00))))

If the function produces side effects, the order of the calls to the function can
be correctly predicted from the reduction ordering demonstrated above.

The name “reduce” for this function is borrowed from APL.

X3J13 voted in March 1988 <REDUCE—ARGUMENT—EXTRACTION) to extend the
reduce function to take an additional keyword argument named :key. As usual,
this argument defaults to the identity function. The value of this argument must
be a function that accepts at least one argument. This function is applied once
to each element of the sequence that is to participate in the reduction operation,
in the order implied by the :from-end argument; the values returned by this
function are combined by the reduction function. However, the :key function
is not applied to the :initial-value argument (if any).

X3J13 voted in January 1989 (MAPPING-DESTRUCTIVE-INTERACTION) to re-
strict user side effects; see section 7.9.

2
reduce #'list (1 2
2
2)

14.3 Modifying Sequences

Each of these functions alters the contents of a sequence or produces an altered
copy of a given sequence.

£i11 sequence item &key :start :end [Function]

The sequence is destructively modified by replacing each element of the subse-
quence specified by the :start and :end parameters with the item. The item
may be any Lisp object but must be a suitable element for the sequence. The
item is stored into all specified components of the sequence, beginning at the
one specified by the :start index (which defaults to zero), up to but not in-
cluding the one specified by the :end index (which defaults to the length of the
sequence). £ill returns the modified sequence. For example:

(setq x (vector 'a’b ’c’d ’e)) = #(a b c de)
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(fill x 'z :start 1 :end 3) = #(azzde)
and now x = #(azz de)

(fill x 'p) = #(p p P P P)
and now x = #(ppp p p)

replace sequencel sequence2 &key :startl :endl :start2 :end2 [Function]

The sequence sequencel is destructively modified by copying successive elements
into it from sequence2. The elements of sequence2 must be of a type that may
be stored into sequencel. The subsequence of sequence2 specified by :start2
and :end?2 is copied into the subsequence of sequencel specified by :startl and
:endl. (The arguments :startl and :start2 default to zero. The arguments
:endl and :end?2 default to nil, meaning the end of the appropriate sequence.)
If these subsequences are not of the same length, then the shorter length deter-
mines how many elements are copied; the extra elements near the end of the
longer subsequence are not involved in the operation. The number of elements
copied may be expressed as:

(min (- end! startl) (- end2 start2))

The value returned by replace is the modified sequencel.

If sequencel and sequence2 are the same (eq) object and the region being
modified overlaps the region being copied from, then it is as if the entire source
region were copied to another place and only then copied back into the tar-
get region. However, if sequencel and sequence2 are not the same, but the
region being modified overlaps the region being copied from (perhaps because
of shared list structure or displaced arrays), then after the replace operation
the subsequence of sequencel being modified will have unpredictable contents.

remove item sequence &key :from-end :test :test-not [Function]
:start :end :count :key

remove-if predicate sequence &key :from-end :start :end [Function]
:count :key
remove-if-not predicate sequence &key :from-end :start :end [Function]
:count :key

The result is a sequence of the same kind as the argument sequence that has
the same elements except that those in the subsequence delimited by :start
and :end and satisfying the test (see above) have been removed. This is a non-
destructive operation; the result is a copy of the input sequence, save that some
elements are not copied. Elements not removed occur in the same order in the
result as they did in the argument.

The :count argument, if supplied, limits the number of elements removed;
if more than :count elements satisfy the test, then of these elements only the
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leftmost are removed, as many as specified by :count.

X3J13 voted in January 1989 (RANGE-OF-COUNT-KEYWORD) to clarify that
the :count argument must be either nil or an integer, and that supplying a
negative integer produces the same behavior as supplying zero.

A non-nil :from-end specification matte