
Some Non-standard Issues on Lisp
Standardization

Takayasu IT0 * Taiichi YUASA

Introduction

Lisp was born about 25 years ago as an A1 language with a precise operational
semantics. Since then many Lisp dialects have been proposed, implemented
and used. In 1960's Lisp 1.5 was a kind of Lisp standard, although there were
many Lisp 1.5 dialects which depend on 1/0 and computer systems. In 1970's
various Lisp dialects were spawned to respond to the need of more powerful
Lisp systems for A1 research and symbolic computation. Among them we know
that Lisp 1.6, Interlisp and Maclisp had big influences in the development of
Lisp; especially, Maclisp brought us various interesting successors, including
Franzlisp, Scheme, Zet alisp and Common Lisp. Common Lisp [STEELE] may
be taken as a result of standardization activities of Maclisp and its successors,
and Scheme is one of the first steps to try to settle and resolve some syntactic
and semantic incompatibilities in Maclisp families. Eulisp [PADGET] may be
taken to be another attempt along with this line with greater ambition for Lisp
standardization, employing the design philosophy of extensible languages based
on "leveling of languages". Various design and standardization issues have been
considered and examined in the course of designing Common Lisp and Eulisp.
The current standardization activities in US and Europe are mainly placed on
"clean-upn of Common Lisp and "refinement and development" of Eulisp, in
addition to efforts of designing object-oriented features in Lisp systems. In a
sense major (standard) issues in Lisp standardization have been considered in
these efforts of clean-up of Common Lisp and design of Eulisp. However, we
think that there are some other important issues which may be called "non-
standard issues" according to the current state of arts of Lisp systems.

Taking into account of Japanese activities on Lisp systems and their appli-
cations, we made the following comments on Lisp standardization at the ballot
of NWI on ISO-Lisp.

Common Lisp is a good starting point to design ISO-Lisp, but Com-
mon Lisp contains various technical deficiencies, as is pointed out

'Dept of Information Engineering, Tohoku University, Sendai, Japan
t ~ e ~ t of Information and Computer Sciences, Toyohashi University of Technology, Toy-

ohashi, Japan

(at least) in Japanese Lisp community. ISO-Lisp should be designed
so as to resolve and remedy these technical problems. Moreover,
in the course of designing ISO-Lisp, the following points should be
examined

1) multi-process concepts in Lisp and its systems

2) interfaces to logic programming, object-oriented programming,
UNIX, etc.

3) clear and simple formal syntax and semantics of the language

4) compactness and portability issues of systems

5) efficiency and implement at ion issues of -t he language

Some of these considerations (especially, I), 2) and 3)) should be
reflected in ISO-Lisp.

Our original comments contained the following item 6):

6) Japanese character set (including Kanji, Katakana and Hirakana)
should be available in JIS-Lisp based on ISO-Lisp (JIS: Japan
Industrial Standards)

which was not contained in our final comments, since the problem of Japanese
character set in programming languages has been handled at the Japanese SC22
working group in more general settings.

Among the above items from 1) to 6) the items I), 2) and 6) may belong
to a class of non-standard issues in Lisp standardization. We discuss some of
these non-standard issues in Lisp standardization on the basis of some Japanese
experiences of Lisp systems and their applications.

2 Multi-process Concepts

Multi-programming and multi-processing have been popular in computer sci-
ence, and Lisp systems are about to reside at the age of multi-process envi-
ronments in hardware and software. Also, the next generation of computers
will be the world of highly parallel machines based on VLSI, so that any lan-
guage standardization activities should take into account of concurrency and
parallelism.

TAO (developed at NTT) supports a small scale concurrent programming
on NTT's Lisp machine ELIS [OKUNO]. There are several proposals of Parallel
Lisp such as Multilisp [HALSTEAD], Q-Lisp [GABRIEL], PaiLisp [ITO], and
*Lisp on Connection Machine [T.M.].

The concurrency and parallelism in Lisp systems should include the following
aspects.

a) control of processes The continuation like "catch/throw" or 'call/ccn will be
a basic and necessary construct.

b) parallel evaluation of functions and processes

par(el, ..., en), which means the parallel evaluation of el, ..., en.

future(e), which is the construct introduced by Halstead.

delay(e), which means the delayed evaluation of e.

c) synchronization and communication mechanisms

function-closure(e) , which returns the exclusive function closure of e.

signal(v) and wait(v), which are semaphore primitives assuming that
v is a variable within a closure.

d) representation of "infinitaryn

loop(e), which means an infinitary evaluation of e.

We may have some other mechanisms like 'parallel COND", "parallel AND/ORw,
and parallel list manipulation like "parallel MAPCAR".

It is premature to introduce these constructs in Lisp standard at present.
But we feel that the use of parallel machines will become more popular in the
near future than we think. If we can recommend some basic and good multi-
process concepts in Lisp, such a recommendation will accelerate and direct the
research on Parallel Lisp. Also it may be helpful to avoid some confusions in
this area.

Logic Programming Interfaces
Prolog and Japanese FGCS project of ICOT have become a motive force for
current active researches of logic programming. Logic programming is expected
to possess nice and favorable properties in correct and specification-oriented
programming and also to fikin non-determinism and parallelism.

We think that Prolog is premature as a standard logic programming lan-
guage. Prolog is featured by unification and automatic backtracking. "Uni-
fication*, which is a powerful mechanism spawned in logic programming, is
worthwhile to be imported in Lisp standard, but "backtracking" is doubtful to
be included in Lisp standard. But if we see the situation of Prolog programs
and GHC/ESP programs in Japan, we may need more careful considerations,
since some interesting Prolog programs have been developed around ICOT and
many GHC/ESP programs are desirable to have some good interfaces between
Lisp and logic programming languages. In this respect, LOGLISP and TAO are
interesting attempts to amalgamate/fuse Lisp and logic programming. In order
to import "unificationn in Lisp, we must clear up the concept of unification in
terms of objects to be unified. We may think of the following unifiable objects:

variables

list structures

structured objects

linear strings (string unification may be a research topic but we do not
know any good application that requires string unification in nature.)

Boldly speaking, we may say that, if we can use "unification" in Lisp in a
comfortable manner, we will not need a poor logic programming language. (No-
tice that we believe that we need a powerful logic programming language with
favorable properties as mentioned above.)

Let us mention some technical aspects of Japanese logic programming sys-
tems which have close relationship with Lisp system.

Prolog/KR: Some of the Prolog systems were built on top of Lisp. Among
them, the most widely used system in Japan is perhaps PrologJKR, which was
originally written in Utilisp, a dialect of Maclisp, and then rewritten in Maclisp,
Zetalisp, and Common Lisp. In Prolog/KR, assertions are given in the form of
S-expressions

(assert head . body)

where head and body are also in the form of S-expressions. The use of Lisp
facilities such as Lisp reader greatly reduced the implementation costs. What
is more important is that Prolog/KR has gained relatively high portability.
We hope it will gain higher portability once an international Z i ~ p standard
is established. As Prolog/KR has proved, the vechanisms of Prolog, namely
the unification could be realized efficiently on top of Lisp. However, if the
Lisp system has its own unification mechanism built-in, applicatiqns of logic
programming would run much more efficiently, without to say.

TAO and its unification: TAO attempts to embed unification mechanism
to Lisp environment. TAO provides a special function == which unifies its two
arguments. The result of unification is obtained by giving the == farm as an
argument to another special function GOAL-ALL. For example, the form

(goal-all (== -answer ,form))

first evaluates form (the comma indicates form should be evaluated fhst), uni-
fies the logic variable ANSWER (logic variables are prefixed with underscore)
to the value of form, and then prints all logic variables that were instantiated
during the evaluation of the == form, together with their instantiation values.
The efficiency of TAO unification is based on the use of locative paihters, That
is, when a logic variable is instantiated, the variable is given a locative pointer to
the value. Thus, references to logic variables are nothing more than ~ f e r e n c e s
to ordinary variables. Unfortunately, This implementation technique is hardly
acceptable for Lisp systems on stock machines, because of the execution cost of
the check whet her a value cell has an .actual value of the variable or a, locative
pointer. It is still to be discussed whether the unification mechzlaism in TAO
could also be efficiently implemented in Lisp systems on stock machines,

4 OS Interfaces
Now a days, some Lisp machines me commercially available. For most of these
machines, it is very difficult t o diaeriminate the operating system from the Lisp
proper, since the Lisp language can caver the facilities of the operating system
for ordinary general-purpose machines. However, this fact does not mean we do
not need the operating system interfaces in the Lisp standard. However widely
Lisp machines become available and used, there are much more Lisp applications
running on stock machines, under some operating systems. Naturally, users of
such Lisp systems would like to have certain OS interfaces which guarantee the
portability of his/her applications that make use of the underlying operating
systems.

One solution to this problem is to add many Lisp functions each imple-
menting a facility commonly found in most operating systems. It seems that
Common Lisp aimed a t this direction. This solution, however, is suffered from
the fact that it is very difficult to determine a satisfactory set of OS facilities
to be implemented by Lisp functions. Another solution is to define some very
simple but highly useful interface functions. Unix has a powerful mechanism for
interfacing an application program with another application and with facilities
supplied by the 0 s . All programs, including applications and OS-supplied, can
be connected with each other via the standard input and output. If we regard
a Lisp system as a single application program, it is straightforward to connect
the Lisp system with other applications by means of this mechanism. However,
what most Lisp users expect is to invoke other facilities from within the Lisp
system. To this end, a very simple-minded way would be to define a function
that invokes applications by specifying the input/output stream to/from the
applications, as well as arguments to the applications.

Since many Lisp users are also Unix users (at least in Japan), it seems worth
considering how to interface Unix with the Lisp standard. Such an interface
specific t o a certain operating system may be very difficult to implement in
those Lisp systems that run under other operating systems or that run on Lisp
machines. If ever defined, such a standard interface should be an extension to
the Lisp standard for those Lisp systems running under the particular operating
system. A similar activity has already started for X-window interface from
Common Lisp.

International Character Set Handling

5.1 What Should We Support?

In Japan, many Lisp applications need to handle Japanese text. For instance,
expert systems for Japanese users are expected to communicate with the user in
the Japanese language. Natural language recognition and translation systems
are required to handle input and output in the Japanese language. Recently,
some text formatters are written in Lisp and it is necessary for the underlying
Lisp system to be capable of handling Japanese text in order to format Japanese

text. In addition to these needs from the Lisp applications, many Japanese Lisp
programmers want t o interact with Lisp systems in more natural way, i.e. in
Japanese. For iqtance, they would like to give Japanese names to their variables
and functions, and they would be more comfortable if tlie Lisp system speaks
Japanese.

Among the features commonly found in many Lisp systems, the followings
are expected to cope with programming in Japanese.

1. character objects

2. character strings, including format strings

3. symbol names

5. on-line documents

6. messages from the system

7. readtables and read macros

5.2 How Has It Been Handled?

Unlike the English language and its families, the Japanese language uses a large
set of characters. It is said that more than 5000 characters are used in ordinary
Japanese text. Therefore, it is very difficult to input Japanese characters directly
using ordinary keyboard which has only 60 or so keys. The most popular way
among computer programmers to input Japanese text is to use a front-end
processor which receives the pronunciation of the text as its input, translates it
into the corresponding complete written Japanese text, and sends the result to
the application.

Several coding systems have been used to represent Japanese characters.
These coding systems essentially use two bytes to represent each character, and
the conversion from one coding system to another is very simple. Although most
modern computer systems in Japan are capable of handling Japanese charac-
ters, they can also handle western character sets such as ASCII and EBCDIC.
Japanese character coding systems allow both western characters and Japanese
characters to appear in a single text. There are two methods to distinguish
Japanese characters from westerns. One is to represent Japanese characters
with those bytes that are not used for western characters. For example, since
the ASCII encoding uses seven bits and the most significant bit is always 0,
some Japanese coding systems use only those bytes whose most significant bits
are 1 t o represent Japanese characters. The other method is to surround a se-
quence of Japanese characters with a certain "escapingn code. The JIS coding
system, which is the JIS extension to the IS0 coding system, uses this method.
With this method, a text can be represented with only those bytes whose most
significant bits are 0. Therefore, such a text can be handled by non-Japanese
computer systems as well. With this method, however, language processors

which are originally developed for western coding systems must be drastically
modified, in order to handle Japanese input, because the character code for a
special character such as parenthesis may be a part of the representation of
a Japanese character. Thus, the tendency is that modern Japanese computer
systems employ those coding systems with the former method. An example of
such coding systems is UJIS, which is the de facto standard coding system for
Unix machines.

5.3 The Current Situation

On those computer systems that use such coding systems like UJIS, it is possible
for a Lisp system to cope with Japanese programming to some extent, without
any modification of the system. The system can handle Japanese strings and
symbols with Japanese names. Ordinary readtables can be used for Japanese
programming if all Japanese characters are supposed to be constituent (in terms
of Common Lisp). Of course, on-line documents and system messages must be
translated into Japanese, but this is a simple work. However, there still remain
two major problems in order for the system to cope with Japanese programming.
One is that the number of characters in a string is not always the same as the
number of bytes in the string, and the n-th byte in the string does not always
correspond to the n-th character. This means that string-handling functians
such as LENGTH and ELT in Common Lisp need to be modified if they are to
handle Japanese strings "correctlyn. The other problem is that ordinary readta-
bles only for (western characters are not always sufficient. Japanese character
coding systems include those characters that correspond to western characters.
As a result, it is usually the case that a single western character has both the
single-byte representation and the two-byte representation. It is quite natural
that the programmer expects the Lisp system to treat, say, the opening paren-
thesis represented with two bytes in the same way as the opening parenthesis
represented with a single byte. Fortunately, when printed, a single-byte west-
ern character can be easily discriminated from the corresponding double-byte
character, since a double-byte character occupies twice as large space as a single
western character. The only exception is the space character, which, without to
say, plays a very important role in Lisp programs. A double-byte space looks
exactly the same as two consecutive single-byte spaces.

5.4 On International Standard

The above problems in Programming in Japanese are not only for the Japanese
language but also for those languages which use large character sets. Providing a
common basis for treating these languages is highly expected in the international
Lisp standard. The expected proposal should contain some mechanism that
allows a single Lisp system to cope with multiple languages without major (or
hopefully no) modification to the system.

The IBM proposal [Linden] for international character set handling is a good
candidate for this purpose. One of the key features of the proposal is the notion

of eqyivalence classes among the character objects, Tft ~e.3:w.aly solves one of the
above problems, by allowing the user to borrow the ,sgni;actic attribute of a
standard character for non-standard characters specific to hjs/her language.

6 Some General Remarks

6.1 On Kernel of Common Lisp

There are some controversies between Common Lisp standfirdigation and Eulisp
activity. The leveling approach taken by Eulisp is nicer than a simple-minded

' Common Lisp standardization. However, Eulisp lacks in piaefiical experiences.
One possible solution is to extract a kernel of Common Lisp and to give a formal
operational semantics for such a Lisp kernel in the spirit of scheme and Eulisp.
Such a kernel should contain some constructs which support. L'muIti-processn,
"unification", and some other basic features of Lisp standard.

6.2 On Formal Semantics of Lisp

According to our underst anding, most people in Lisp standalrdiaati~n are inter-
ested in having a formal and clear semantics of Lisp. We thittk that denota-
tional semantics of Lisp will be no good when we think about siemantics of Lisp
with advanced features such as object-oriented programming, infinite streams,
and concurrency. ~ h ' best way will be to have a formal operatianal semantics
for Lisp. The mixture of operational semantics [PLOTKIN], natut~a1 semantics
[KAHN], and action semantics [MOSES] may give us a natural way of defining
operational semantics of Lisp.

6.3 On Object-oriented mechanism in Lisp

CLOS [BOBROW] is proposed as a standard object-oriented system for Com-
mon Lisp. Most of object-oriented programming languages are featwed by

message passing and method with interface

a class and inheritance

According to our understanding, CLOS is unusual in its message passing, or
CLOS lacks in message passing at all. Any object-oriented language is a kind of
language for modeling and simulation. Most computer systems will be concur-
rent systems in nature, so that partial ordering structures among class objects
are very natural in modeling. The inheritance mechanism in CLOS is quite
elegant on a sequential machine but may not be so on a parallel machines.

6.4 On Performance Issues

Japanese Lisp activities have been activated and accelerated bjr the lst, 2nd,
and 3rd Lisp contests of Information Processing Society of Japan by the sets of

Lisp benchmark programs. In the course of standardization activities we should
think about

Lisp benchmark programs for performance evaluation

Lisp test sets for validation of Lisp systems.

6.5 Remarks from Common Lisp experiences

Although Common Lisp is intended to be an international standard and the
language specification in [STEELE] is relatively rigorous compared with con-
ventional Lisp manuals, there still remains portability problem of Common Lisp
applications. The portability of applications, which should be one of the most
important issues in standardization activities for any programming language,
will be guaranteed once a formal specification of the Lisp standard is estab-
lished in the way described above. Until it is established, however, we have to
make use of currently available technologies. From our experiences on Common
Lisp, especially on implementation of Kyoto Common Lisp [YUASA] of which
one of the authors has designed and implemented, we expect the following issues
to be taken into standardization considerations.

1. The informal specification of the language should not assume "common
sensen. Sentences like "perform normal compiler processingn do not make
sense unless the specification explicitly mention what "normaln means.

2. Formal (or at least clear) syntax should be provided. BNF and its variants
are not always appropriate for describing Lisp syntax as will be clear if
we think, say, the syntax of Common Lisp DEFMACRO lambda lists.

3. The language standard should provide a means to distinguish implementation-
specific features from the standard. The notions of packages and keyword
parameters are great inventions of Common Lisp for this purpose. Yet
there still remain problems such as implementation-specific syntactic ex-
tensions for macros are not clear to the programmer.

4. It is highly expected that a highly portable implementation be supplied
as part of the standard. The easiest way for a Lisp system implementor
to check unclear language features is perhaps to see the behavior of other
reliable implementations. In order t o make the standard to be widely
available on different computer systems, we expect a "standard" imple-
mentation of the language, which may not be so efficient but has extremely
high portability and reliability hopefully with no its own extensions.

REFERENCES

[S T ~ E L E] Guy L. Steele Jr., Common Lisp the Language, Digital Press, 1984.

[PADGET] Julian Padget et al, Desiderata for the standardisation of LISP,
ACM Symposium on Lisp and Functional Programming, 1986.

[HALSTEAD] Robert H. Halstead Jr., Implementation of Multilisp: Lisp on
a Multiprocessor, ACM Symposium on Lisp and Functional Programming,
1984.

[GABRIEL] Richard P. Gabriel and John McCarthy, Queue-based Multi-
processing Lisp, ACM Symposium on Lisp and Functional programming,
1984.

[ITO] Takayasu Ito et al, An MC68000-based Multi-micro Processor System
with Shared Memory and Its Application to Parallel Lisp Interpreter, JIP
Computer System Symposium, 1987.

[T.M.] Thinking Machines Corporation, Introduction to Data Level Paral-
lelism, Technical Report 86.14, 1986.

[LINDEN] Thom Linden, Common LISP - Proposed Extensions for Interna-
tional Character Set Handling, Version 01.11.87, 1987.

[OKUNO] Hiroshi G. Okuno et al, TAO: A Fast Interpreter-Centered Lisp
System on Lisp Machine ELIS, ACM Symposium on Lisp and Functional
Programming, 1984.

[NAKASHIMA] Hideyuki Nakashima, Prolog/KR - Language Features, In-
ternational Logic Programming Conference, 1982.

[PLOTKIN] G. D. Plotkin, A Structural Approach to Operational Semantics,
DAIMI FN-19, Aarhus University, 1981.

[KAHN] Gilles Kahn, Natural Semantics, INRIA Rapports de Recherche No.
601, 1987.

[MOSES] Peter D. Moses, A Basic Abstract Semantic Algebra, International
Symposium on Semantics of Data Types, Springer LNCS 173, 1984.

[BOBROW] Daniel G. Bobrow et al., Common Lisp Object System Specifi-
cation, Draft X3 Document 87-002 and 003, 1987.

[YUASA] Taiichi Yuasa and Masami Hagiya, Kyoto Common Lisp Report,
Teikoku Insatsu Publishing, 1985.

	Ito-Yuasa-NonStandardIssues_Page_01_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_02_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_03_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_04_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_05_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_06_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_07_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_08_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_09_Image_0001.tif
	Ito-Yuasa-NonStandardIssues_Page_10_Image_0001.tif

