
r , . ,

r

MACLISP

REFERENCE MANUAL

by

David A. Moon

Proiect MAC - M.I.T.

Cambridge, Massachusetts

REVISION 0
April 1974

..

•

•

'.'

MACLISP REFEqENCE MANUAL

by David A. Moon

Revision 0
04/08/74

c Copyright 1973, 1974, Ma.sachusetts Inltitute of Technology
All righ t.a reserved

Acknowledgements

Ira Goldstein, David P. Reed. Guy L. Steele, Alex SunluroU, and Jon L
Whit~ contributed advice and wrote sections or this docuhlent. The runorr
t~n't preparation, s,ltem on Multica helped with the clerital work. The
dOcument was ptinted on the MIT A.I. Lah's Xerox Craphic Printer.

lrror. in this Manual

This is an initial version of th~ LISP Manual and aU readers' comments
are solicited. Please point out any errors, inaccuracies, inconsistencies,
oMcure points, etc. that you may find.

The following communication paths may be used to communicate with the
authors:

Multics mail to Moon.AutoProlf

ITS mail to MOON on the Math Lab machine

ARPA Net.ork mail to MOON a NIT -ML
(host 198. decimal, 306 octal)

U.S. M .. il to D. A. Moon, Rm. 505
545 Technology Square
Cambridge, Ma.s. 02139

,.

•

•

Table of Cont.ents

1. General Information 1
1.1 rhe MACLISP Language 1
1.2 Structure of the Manual 1
1.3 Not.at.ional Conventions 2

2- Data 5
2.1 Data Types 5
2.2 Predicates for Checking Types 9

3. The Basic Actions of LISP 11
3.1 Binding 11
3.2 Evaluation 12
3.3 Application 13
3.4 A-list Pointers 16
3.5 Functions to Perform These Actions 1'7

4. Functions for Manipulating List St.ructure 23

" 4.1 Examining Existing List Structure 23
4.2 Creating New List Structure 29
4.3 Modifying Existing List Structure 32

5. Flow of Control 35
5.1 Condi tionals 36
5.2 Iteration 38

. 5.3 Nonlocal Exits 43
5.4 Causing and Controlling Errors 44

6. Manipulating the Constituents of Atomic Symbols 47
6.1 The Value Cell 4'7
6.2 The Property List 49
6.3 The Print-Name 52
6.4 Miscellaneous Functions 53
6.5 Defining Atomic Symbols as Functions 54

7. Functions on Numbers 5'7
7.1 Number Predicates 5'7
7.1 Comparison 59
7.3 Conversion 61

• '7.4 Arithmetic 63
7.5 Exponentiation and Log Functions 69
7.6 Trigonometric Functions 70

• 7.7 Random Functions '71
'7.8 Logical Operations on Numbers 72

8. Character Manipulation 73
8.1 Character Objects '73
8.2 Functions on Strings 76

9. Functions Concerning Arrays 79

10. "Mapping" Functions 83/

04/0PII'74 contents Page

MACtISP Reference Manual

; + ~::::";. ~~:.~ :, ,'\:
-j\, ow, ;

11, Sorting Functions
, <:\~';.

12-
12.1
12.2
12.3 . :, ~

12.3.1 '
12.3.~,~: .
12.4~,,'· .'

l~4.t .
12.4:2'
12;,4 .. 3,
12.4:.4 ...
1~5 '.,'.
12.5.1
1~S.2
12.5~·3 .
12.6
12-6.1 ..
12.6.2
12.6.3
12.6.4,
12.6.5
I%.7
12.8
12.8.1.
1%..8.2 .
12.8.3
12.8.4

13.
13.1
13.2
13.2.1
13 .. 2.2
13.2..3 '.
13.2.4
113
13.4-
13.4.1
13.4.2
13.;4.3
13.5
13.6
13.6.1
13.6.2
13.7
13.8
13.9

14.
14.1
14.1.1

Functi()ns for Controlling the Interpreter
The Top Level Function
Break Points
Control Characters

List of' Control Characters
Control'·Character Functions

Errors and User Interrupts
The LISP Error System
User Interrupts
User Interrupt Functions and Variables
Autoload

Debugging
Binding, Pdt POinters, and the Evaluator
Functions r or Debugging
An Example of Debug.ging in MacHsp'

Storage M·anagement
Garbage Collection
Spaces
Stora,e Control Functions
DynamiC Space and Pdl Expansi()n
Initial Allocation

The Functions· status and ,status·
Miscellaneous· Functions

Time
Getting in1;o LISP
Cetting Out of LISP
Sehding Commands to the Opera tin, Sy.tem

In'put and Output
Basic I/O

'He.' Naming Files
Opehing and Closing
Specifying the Source ot Destination lor I/O
Handlin, End of File

Applying Defaults to File Names
Requests to the Operating System

Manipulating. the Terminal
File System Operations
Randohl Access to Files

The Old "Uread" I/O System
Advanced Use of the Reader

The Obarray
The Readtable

<Antrol or Printer Formatting
Input Format Expected by (read)
"Moby I/O"

Compilation
Peculiarities 01 the. Compiler

Variables

contents

87

89
89
91
92
9S
97
98
98

100
104
107
108
108
109
112
113
113
114
116
117
118
120
127
128
129
131
134

135
135
13"1
139
142
143
148
150
152
152
153
154
155
158
158
159
164
168
170

177
178
1'18

04/08/74

•

'- ••• ~~~" ••• ~~_. __ ••• ___ ~ii4_":_::"i1i_kiiii_j:::_iiiii_U::_ii::'_I_I~1 ~::,:_ih_iili_iii_"::_"'_:n:::_i1"_::Ii""_iiA::_""_;a_ii •• :u.:"".iii __ .. __ m •• ".'''.:::i1ii_iAW_:::,=.AU"atiS:;;.:::.;';_I:;II.:;;.,;;;_=:.,"'.::4i_:,,_::a" ______ ;;;~iil_ia_;;~----~ '11111."."" .. ",,, "" " .. , "" .. "' .. "" "

•

14.1.2
14.1.3
14.1.4
14.1.5
14.2
14.3
14.4
14.5
14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.6

15.

16.
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.4
16.4.1
16.4.2
16.4.3
16.5
16.5.1
16.5.2
16.5.3
16.5.4

17.

18.

Appendix A.
Appendix B.
Appendix C.
Appendix D.

04/08/74

Table of Contents

In-line Coding
Function Calling
Inpu t to the Compiler
Functions Connected with the Compiler

Declarations
Running Compiled Functions
Running the Compiler
LAP on the pdp-tO

The LAP Function
Valid LAP Code Forms
LAP Syllables
Functions and Variables Used by lap and faslap
Differences Between lap and faslap
Conventions for Functions in Lisp
Internal Routines for use by LAP Code
Routines For Use by Hand-Coded LAP

Internal Details of the Multics Implementation

The Trace Facility

Formatted Printing of LISP Data
Introduction
Top Level Functions

grind and grindO - fexprs
grindef - fexpr
Formatting
remgrind - fexpr
Functions, Atoms, and Properties Used by Grind

Predefined Formats
Standard Formats
Special Grindfns
Inverting Read Macros
System Packages

Comments
Single Semicolons
Double Semicolons
Triple Semicolons

Grind Control
Defining New Formats
Vocabulary
Examples
Grindmacros

The LISP "Indexer"

The LISP Editor

Glossary
Index of Functions
Index of Atomic Symbols
Concept Index

contents

179
180
181
182
184
188
190
194
194
196
198
201
206
207
211
217
221

223

227
227
228
228
228
229
230
230
231
231
232
234
234
235
235
235
236
237
238
238
239
241

243

245

249
268
274
275

Page iii

\ ~jj;;;i~~ ___ --'----
" : ;;;::: i;: iii: Ii;;:; Ii, it': iii i i a ,;'::1$, j, ad::"""'""",,,,; iii $lUi: "*"un,,.; 7: iiii-

)

General Information

1 General Information

1.1 - The MACLISP Lanlua,e

MACLISP ia a dialect of LISP developed at M.I.T.'s Project MAC for ule
in artificial intelligence research and related fields. MACLISP il
descended from the commonly-known LISP 1.5 dialect, however many features
of the language have been changed or added.

This document is intended both as a reference source for the language
and as a user'l guide to three implementations. These are, in
chronological order, the M.I.T. Artificial Intelligence Lab's
implementation on the DEC pdp-lO computer under their operating system ITS,
hereafter referred to as "'he ITS implementation," Project MAC's
implementation on Honeywell's version or the Multica system, hereafter
referred to as "the Multica implementation: and the version ihat. runs on
the DEC pdp-tO under DEC's TOPS-tO operating system, hereafter called "the
DEC-tO implementation." The DEC-tO implementation also runs under TENEX by
means of a TOPS-tO emulator. Since the ITS and DEC-tO implement.ations are
closely related, they are sometimes referred to collectively as the pdp-tO
implementation.

These implementations are mostly compatible; however, some
implementations have extra features designed to esploit peculiar features
of the system on which they run, and some implementations are 'temporarily
missing some features. Most programs will work on any implementation,
although it is possible to write machine-dependent code if you try hard
enough.

1.2 Structur. of the Manual

This manual is not specifically designed for LISP users of any
particular level of ability, though it does make assumptions as to what an
"average" user of LISP will require of a manual. Since it is int.ended for
a general class of users it must satisfy some constraints of design in
order to be of benefit to a user of some particular ability. The manual
must provide as much information as a user might need, yet provide it in a
manner such that a less experienced user might still have access to some of
that information.

The ,eneral structuring of the manual is by meaning; things of similar
meaning will be found grouped together. Esplanatory text and function
definitions are interspersed. Usually text will be round at the beginnings
of chapters, sections, or subsections with definitions following.

04/08/74 1.2 Page 1

d

MACLISP Reference' Maltu-al

Complexity tends to increase across each subdivision of the manual while
usefulness to a new user tends to decrease. The chapters in the.' beginning
of the manual are or more use to a new user, the later ones contain either
more complex or less useful i·nformation. If a chapter is undivided then it
will becom~ more complex toward the end. If a chapter is subdivided, then
each section or s.ubseetion a,ain follows the lame criteria.

Accessing information in the manual is dependant on both the user's
level of ahility and the purpose Cor which she or he is using the manual.
Though c:o.ver to cov4tr reading is not recommended (tho",,'" not excluded), it
is suggested tha,t someene who has never previou.sJy seen this manu a) browse
through it, touching the beginning of each subdivision that is listed in
the Table 01 Contents, in order to lamiliarize hillIS_II or herself with the
material that it contains. To find an answer to some particular question,
one must use one of the provided access methods. Since the manual is
structured by meaning one can use the Table of Contents that is found at
the beginning 01 the manual, to find ,where in,forma,tion of a general class
will be found. Entry into the manual by meaning is also facilitated by the
Clossary and the Concept Index which are found at the end. Also at the end
of the 'manual is a Function Index which is probably most useful to a
regular and repeated user- 'of the dialect, or to an experienced user of
another dialect, ' who wishes to find out the answer to a question about a
specific function. However since the manual is structured by meaning, it
is useful to examine other functions in the vicinity of the first, lor
usef ulness.

It ia again sugg:ested that a Rew reader .1 this manual should
(amiliarize, him •• U or hersell with, its content ..

1 .3 Not.tion.1 Conventions

There are some conventions of notation that mus,t be mentioned at this
time. d·ue to t,heir bein, used in examples.

A combination 01 the characters, equal si,n and ,reater then symbol,
-'.)" , will be used in examples of LISP code to mean evaluation (that is
the ap'plica'tion of the function, eva 1.).

All uses of the phrase, "LISP reader," unless lurther qualified, refer
to that part of the LISP system which does input, and not to some person.

The two characters, accent acute, "'", and semi-colon, It ; It, are
examples or what are called macro cha,.acte,.,. Though the macro character
facility, which is defined in .the chapter on Input/Output, is no't of
immediate interest to a new user of the dialect, these two come preset by
the LISP system and are useful. When the LISP reader encounters an accent
accute, it reads in the next S-expression and encloses it in a call to the
lunction, . quote. That is:

1.3 04/08/74

\~.w~~~'~P("~;~"~I;;.<M."*.:."::.\ii.U".ii.;;;_ .. _tiUe_iUSB".: ."'i.i4hl.::'.:a::." .. ih"'." ________ .. __ ~.~;------.¥~1 ~~~~;;~l __ ~~~:~:~~~ .. ~.w::~-iPi~~------

..

General Information

'some-atom
turns into:

(quote some-atom)
and

'(cons "a' "b)
turns into

(quote (cons (quote a) (quote b»)

The semi-colon is used as a commenting feature. When the LISP reader
encounters it, it discards the rest of that line of input.

All LISP 8Kamples in this manual are written according to the
conventions of the Multica implementation, which uses both upper and lower
case letters and spells the names of mOlt system functions in lower case.
Some implementations of MACLISP only use upper case letters because they
run on systems which are not equipped with terminals capable of generating
and displaying the full ascii character set. However, these systems will
accept input in lower case and translate it to upper case .

04/08/74 1.3 Page 3

MACLISP Reference Maul-

,

This page intentionally lef" Itlaak.

t3

l; lUll tii::" " "" Uh::::: " C:1i,w::a,,::, tit"'at. lAiil:;"; "" '"'''' [it

•

Data

2.1 Dat. Typ ••

LISP works with pieces of data called "objects" or "S-expressions."
These can be simple "atomic" objects or complex objects compounded ou t of
other objects. Functions, the basic units of a LISP program, are also
objects and may be manipulated as data.

Objects come in several types. All types are self-evident, that is it
is possible for the system to tell what type an object is just I by looking
at it, so it il not necessary to declare the types of variables as in some
other languages. It should be noted that LISP represents objects as
pointers, so that any object will fit in the same cell, and the same object
may have several different usages -- for example the same identical object
may be a component of two different compound objects.

The data-typel are divided into three broad classes: the atomic types,
the n~n-atomic types, and the composite types. Objects are divided into
the same three classes according to their type. Atomic objects are basic
units which cannot be broken down by ordinary chemical means, while
non-atomic objects are structures constructed out of other objects, and
composite objects are indivisible entities which have subcomponents which
may be eJttracted and modified but not removed.

The atomic data types are numbers, atomic symbols, strings, and
su br-objects.

In LISP numbers can be represented by three types of atomic objects:
fixnuml, Clonums, and bignums. A fixnum is a fixed-point binary integer
whose range of values is limited by the size of a machine word. A flonum
is a floating-point number whose preCISIon and range of values are
machine-dependent. A bignum is an arbitrary-precision integer. It is
impossible to get "overflow" in bignum arithmetic, as any finite integer
can be represented as a bignum. However, fixnum and flonum arithmetic is
(aster than bignum arithmetic and bignums require more memory. Sometimes
the word "fixnum" is used to include both fixnums and bignums; in this
manual, however, the word "fixnum" will never include bignums unless that
is explicitly stated.

The external representations (or numbers are as follows: a filtnum is
represented as a sequence of digits in a specified base, usually octal. A
trailing decimal point indicates a decimal base. A flonum is represented
as a set of digits containing an embedded or leading decimal point. and/or a
trailing exponent. The exponent is introduced by an upper or lower case
"e". A bignum looks like a fixnum except that. it has enough digits that it
will not fit within the range available to fixnums. Any number may be
preceded by a + or - sign. Some examples of fixnums are 4, -1232, -191 .,
+46. An example of a bignum is 1565656565656565656565656565656565. Some

04/08/74 2.1 Page 5

MACLISP ~ Ref.,rence Ma .. ual

ea,amplel '<Jf ,flonu ... a 'are: 4.0,.01, .. 685, 4 ~ 28-1.

'Another LISP' d'a"a '. type ·il the It.ring. This· il .'. :'s •. q.uenco ,of 0 or more
characterl. St.rings .. are used to hold mellalcs <'to ··be typed out and to
mani'pulate . text 'W.hen the structure "of the . text is ·.'not 'appropriate for the
use 'i·of nlist ',rocftsing." The externalrepreserttation ·of ·a string is a
lequence 'of characters enclosed in double...q,uotes, e.g. ·~foo". If a II is to
be included in -,the .. 8t~ing, ,it is ·written twice, e.g. .."oo .. ··bar.. is foo"bar.

,One ,·of ;,tl'le :most .important ·LISP . data types is ·~the . atomic symbol. In
·faet, ,the ·word ~41tom" 'is 'often used to mean ;?just ·,atomic :symbols, and not
the other '.Lamic :types.·An atomic symbol 'h:as·;aname, ··a value, and possibly
a list ·of ~properties". ·'Fhe name is used to refer ;to :the symbol in input
and output. 'The' external representation of ··an .. atomic symbol is just its
name. This name is 'often called the ",name," ·or ~print ... name," as it is a
sequence . (If characters "that 'afe 'printed out. 'For :'etample, ·,an atomic symbol
with >. ,;:pname 'of ·roo '·'Would iN represented ;:e.~ternally ,·as faa; ~internally as a
,structure ;'containing ·.he . value, the'pname "foo", "artd . the properties.

There -.are :two '.peeial atomic symbols,' t and nil. 'These always have
themselves as valut!S ~a"d ;'their .values may Tnot ,·be ',oh'aR,ed. ni 1 is used as a
"marker" ,is many contexts; ·it is essential to the. ,maintenance of data
structures such ,as ··lists. t is usually used I·when an 'iantithesis to nil is
required ·(or some ,ituJpose.

The 'value of an .;atomic symbol is· any object of 'any type. There are
func~ions ,to set <and vget ,the v,alue of a symbol. Because atomic symbols
ha,ve -vlalues ,-alsociated '.ith ,them, they can be ',used;as .,ariables in programs
and ·as ",dummy ,"Qgu,ments" ·in ,functions. It· is ·also '~pos5ible ·for . an atomic
symbol ',to 'have no 'value, in which case it is ,caid to be '·undefined" or
~unbound."

The 'prQperty ·list 'of ' an . atomic symbol will be explained in section 6.2-
It is used for' such :t.h ings as recording the ract th'ata particular atomic
5y·mbol ,is ,,·the ,name of ,a ,function.

An 'atomic ,-symbol wi·c.h less than two characters in its 'pname is often
called a "character object"' and used to represent an·ascii character. The
atom·ic : symbol with ·:a ,zero-length pname represents, the ascii null character,
and .. the symbols !with l-character pnames represent the . character which is
their ·:pname. Functions ·which take character iobjects,as input usually also
accept 'a string ,one character 10bg or a fixnumequal to the ascii-code
value for the ,character. Character objects are 'always interned on the
obarray (see ',section '6~3).

A ~5ubr-object." 'is a speci·al atomic data-type whose use is normally
hidden in ·'the implementation. A lubr-object represents executable machine
code. The functions ,b'dlt into the LISP system are subr-objects, as are
userfunet.ions ,th·at. ',have been compiled. A Bubr-object. cannot be named
directly, 50 each system function has an atomic symbol 'which serves as its
name. The symbol -has the subr-object a$ a "property."

One composite data type is the a .. ray. An array 'consists of a number of

iPqe.6 2.1 04/08/'14

- . i .1 I .] 11 jill Ii

•

Data

cells, each 01 which may contain any LISP object. The cells of an array
are accessed by subscripting. An array may have one or more dimensions;
the upper limit on the number of dimensions is implementation-defined. An
array is always associated with an atomic symbol which is its name. This
atomic symbol has on its property list a property with the indicator array
and a value, called an array-object or sometimes a "special array cell,"
which permits the implementation to access the array. See ch~pter 9 for an
explanation 01 how to create, use, and delete arrays.

Another composite data type is the file-object, which
chapter 13.

is described in

The non-atomic data type is the "cons." A cons is a structure
containing two components, called the "car" and the "cdr" for historical
reasons. These two components may be any LISP object, even another cons
(in fact, they could even be the same cons). In this way complex
structures can be built up out of simple conses. Internally a cons is
represented in a form similar to:

car cdr

where the boxes represent cells of memory large enough to hold a
and "car" and "cdr" are two pointers to object.s. The
representation of a eons is the "dotted-pair" notation
(A . 6) where A is the car and 6 is the cdr.

pointer,
external

Another way to write the internal representation of a cons, which is
more convenient (or large structures, is:

--~ 0 -----) cdr
I
I
V

car

There are three LISP functions associated with conses. The function
cons combines its two arguments into a eons; (1. 2) can be generated by
(cons 1 2). The function car returns the car of its argument, and the
function cdr returns the cdr of its argument.

One type of structure, built out of conses, that is used quite often, is
the "list." A list is a row or objects of arbitrary length. A list of 3
th ings 1, 2, and 3 is constructed as (cons 1 (cons 2 (cons 3 n 11) »; n 11 is
a special atom that is used to mark the end of a list. The structure of a
list can be diagrammed as:

04/08/74 2.1 Page 7

MACLISP Reference Manual

--~ 0 ._--) 0 ----) 0 ____) nil

I I I
I, , I I
V V V
1 2 3

From this it. can be seen that. the car of a list. is its first element, that
the cdr of a list is the list of ita elements other than the first, and
that the list of no elemen,t,s, is the same as nil.

This list of 1, 2, and 3 could be represented in the dot-notation used
for conses as (1. (2 . (3 . nil»), however a more convenient notation
for the external repre.entation or lists has been defined: the
"list-notation" (1 2 3). It is also possible to have a hybrid of the two
notations which il tiled for structures wh,ich are almost a lilt except that
they end in an a,tom o.ther than n11. For example, (A • (6 . (3 • D») can
be represen ted as (A 8 C • 0).

A list not containin, any elements is perfectly le,al and frequently
used. This zero-Ien,th list i. the atom nil. It may be tyPeel in as either
nil or ().

Pa"e 8 1.1 04/08/74

, i i j

l

Data

2.2 Predicate. for Checkinl Typ ••

it. predicate is a function which tests for some condition involving its
argument. and returns t if that condition is true and nil if it is not true.
These predicates return t if t.heir argument is of the type specified by the
name of the function, nil if it is of some other type. Note that the name
of most predicates ends in the letter p, by convention.

atom

f1xp

SU8R 1 arg

The atom predicate is nil if its argument il a' dotted-pair or a list,
and t if it is any kind of atomic object such al a number, a character
string, or an atomic symbol.

SU8R 1 arg

The f 1xp predicate returns t if its argument is a lixnum or a bignum,
otherwise nil.

floatp SU8R 1 arg

The floatp predicate return. t if its argument is a (lonum, h11 if it.
is noL

numberp SU8R 1 arg

The numberp predicate returns t if its argument ia a number, nil if it.
is not..

typep SU8R 1 arg

typep is a general type-predicate. It returns an atomic symbol
describing the typ~ of its argument, chosen from the list

(f1xnum flonum b1gnum list symbol string random)

symbol means atomic symbol. random is for all types that don't fit in
any ot.her category. Thul numberp could have been defined by:

'04/08/'14 2.2 Page 9

MACLISP RereFe .. ~e Man .. al

(6,'un numberp (x)
(and (m,,,,q (t~pep x) '(fixnum flonum b1gnum»)

t»

--- Th_ &,"0 (u~c"io.. only exis.. in the l\IultJOI i...,leJIl'Dtation. ---

str1ngp SUBR 1 arg

The s,tr1ng,p predicate returns t i(its ar,ument i. a string, othe~wise
nil.

subrp sueR 1 arg

The subrp "edicale returns t it its ar,ument i, a -'.Qbr- object, i.e.
a pointer to the machine code (ora compiled Qr ',Item (unction.
Example: .

(subrp (get 'car 'subr» ~) t

04/08/74

The Basic Actions of LISP

3 The a.sic Actions of LISP

NOTE: This chapter is obsolete, inaccurate, and misleading. It will
be re-written in the next revision of this document.

3.1 Bindin,

In LISP "binding" occurs when a variable is needed which is temporary
and local to a particular form, lor example a temporary variable in a prog
or a do, or a 1 ambda variable (what some other languages call a "parameter"
or a "dummy variable. ") All variables in (interpreted) LISP are implemented
as the value cells or atomic symbols; binding an atomic symbol to a local
value consists of saving the old value, which is a global or at least less
local variable, and then giving the variable its new, local value. The
saving or the old value is done in such a way that it will automatically be
restored when control leaves the form in question, whether normally or
through an error or a throw.

An unusual feature of the binding or LISP variables is that while the
form in which the variable is bound is being evaluated, even ir . it has
called upon some function and control is nested deep within it, that
variable maintains its local value, rather than its global value. This can
be both usef ul and a source of problem

04/08/74 3.1 Page 11

) iii: I '!4#;;:e¥. I,; I

MACLlSP Rffer.,,,c., Ma.ual

3.2 - ,,,.au.tion

i:valuati'on il a trandormation which takes Ont; ."ject, caU~d a (orm,
and produces in6ther, oaU.,d the value of that form. Ev,aluation is uled
intern.ny by LISP in processing typed i.-put· and in (recursively)
evaluatin, portions of a form in fhe' pr6C8fs of evaluating that form.
Evaluation il available for explicit use as the function eval.

E"al'uation il performed by the LISP interpreter, following the r.,lel let
forth be16.J

Numbers and strings alway. evaluate to themlel·vea.

Atomic symbols' evaluate to the 'value' associated with them. It is
possible for an atomic symbol to have no value. in .hich case the process
of evaluation entoun·te1"S an error, which is handled .. deacrib" in section
12.4. The special atomic symbols t and nil alw8,1 have themselves as
values, conllequeatly tlrey evaluate like numbe ... rather than like atomic
symbols.

Random objects, su~h as subr-objects, files, and array-objects evaluate
to som~thing randord; often themselves. Note that an arra,-object is
different from an atomic symbol which is the name of an array; such an
atomic .,mbol is e •• luated the same al any other atomic symbol.

The evaluation of non-atomic forms is mote complex. The evaluator
regards a n·on t~rnic form as a list, whose first element (car) is a
funetion and whose tentaining elements (cd'r) are arguments. The value of
the f 6r", is the ,ecult of the fUnction "h~n applied to those arguments,
accordin, to the "appUcation" procedure described below.

3.2 04/08/74

; .. &; ",,:: iii iii. 'A4ii

i

ill [

The Basic Actions o(LISP

3.3 - Application

"Application" is the procedure by which a function is invoked with
specified arguments to produce a value (and possibly side effects.)

The first step in application is an examination of the function. If it
is atomic:, then it is required to be an atomic symbol. The atomic symbol's
property Hst is searched (or one of the following properties, called
"functional properties":

expr, fexpr, macro, subr, fsubr, Isubr, array, autoload

If nOne of these is found, then the atomic symbol is evaluated and its
value is taken to be the function being called and application is restarted
at the beginning.

If an array property is found, there is a subscript.ed reference to the
array. The arguments are evaluated from left to right, and used as
subscripts to the array. Consequently they must be fixnums and there must
be the same number of them as there are dimensions in the array and they
must lie within the bounds of the array. The result is the contents of the
array cell specified by the subscripts.

If a subr, lsubr, or fsubr property is found, the value of the property
must be a subr-object. The subr-object represents a machine-code
subroutine, which may be a (unction built in to the interpreter, a compiled
LISP function, or a function written in some other language made known to
LISP by some facility such as defsubr or lap, depending on the
implementation. The evaluator calls this subroutine, giving it the
specified arguments, and the result is the LISP object returned by the
subroutine. If the subr-object was in an fsubr property, the subroutine is
called with one argument which is the cdr of the list being evaluated.
Thus the arguments are not evaluated. If it was a suhr or lsubr propert.y,
the arguments are evaluated from left to right before they are passed to
the subroutine. A .ubr requires a certain fixed number of arguments, but.
an Isubr can take a variable number o(arguments, between two bounds which
depend on the particular Isubr. (See the args (unction).

If a fexpr property is found, the value of the property must be a list
whose car is the atom lambda and whose cadr is a list of one or two atomic
symbols, referred to as lambda-variables. The cddr is a list of zero or
more objects, referred to as the body. The first lambda-variable is bound
to the cdr of the form being evaluated, i.e. to the list of unevaluated
arguments. Of course, the body of the fexpr may evaluate the arguments
itself by explicitly using the function eval. The second lambda-variable,
if present, is bound to' an "a-list pOinter" which represents the binding
state which existed just before the fexpr's lambda-variables were bound.
After the lambda-variables have been bound, the body of the fexpr is
evaluated from left to right. The result is the value of the last form
evaluated.

If an expr property is found, there are three cases:
of the property is an atomic symbol, that atomic symbol is

04/08/'14 3.3

1) If the value
taken as the

Page 13

I '

I

I;

l.

(,unction and applicati~n is restarted from the beginni~l. 2) II the value
of the .property is • list whose car is the atom lambd,a and whose cadr is a
list of :,zero or .,,~re ,at.omic ' symbols, called .. ",hd,a"variables, ,then the
evaiua,ti()n is 1the invocation of ,an inlerpt:eted "f.notion called an 'expr:
Ther:em,u.st be ,the ~ame ,number of ar.,uments ;as lambda-variables. The
arguments ,are evabulJ,ed fr~m le,ft ,to ,ri"ht .. nd then ,the la bda-variables
ar~ bouoclto t.taev41ue.. ,o,f ,the argume.nts. 'Nex,t",~ body of "the ,expr is
evaluat.ed in the "Iam,e \way "as fo,r a ,fexpr. 3) ',If ,the , .. alue of trhe property
is ,a Jist who~ car is the ,atom lambda and ,whose cadr is an atomic symbol
othe.r t~ • ., ,nil, theevahUltion is 4ft inv.ocation ·of an i .. ,te~pre,ted function
caUe.d ,a -lex.pr,' Wrhj~h :is the .int~rpreted ,version ,of kQ:br.· Tile arguments
are ,evaluated Irom :left to right and ,sa,ved ina place where ,the functions
arg and setar,g can lind them. Th~n the single lambda .. variable is bound to
the number 0.1 a,rgumen,ts, and ,t.he body i, ,evalu,ated .in the same way as for
an expr.

If .a macro proper:ty is found, its value must :look lik.e the value of a
fexpr proper-ty. Tthe ,difference between a macro ,and a fexpr is twofold.
One, ,the ',fi,r,st Jarnbd:a",v,ari,able is ,bo,und to the whole ,form, ,inst.ead of just
the ,cdr of ,th,e ,",or.m (the lilt of arguments). Twot :,he Qbjec~ returned by
the ,...cro i. ,~I'_te," ,a. " lorm and re-.e¥lhlat.ed land ;;iu,value becomes the
result of the ,'l9plieation.

If an a,utoload ,property is found, tlte d.efinition ·of the function is
loaded i,n from ,an extern.al CUe and then ,used. See section 12.4.4 for
delait ..

If the f"n,ction is .no,t an atorn, it l$,what ·is sometimes called a
"funct.io"al ~forrn~" Note ,th;at ae,tually a functional .form ,is anything that
can ,be ~pplied, ,including atoms. One kind ,of f.unctional form is a list.
whOle Qr is ,th~ atomic symbol lamhda. This is oCten called a "lambda"
expre,5$ion. It is ,applied exactly the same way .al if ta., function had been
an ,at~ic .ymbol which had an expr property whose yalue was the
lambda!"08x:pressio".

Anot.her kind of fJ,lnctional form is ,a list. of ,the .atom label, an atomic
symbol, and a functional form. The atomic symbol i. bound to the
functional fo,rm, ,and "then the functional form is .ap,plied ·to· t.he arguments.
Thi. il u.ed "f'Or ,strange thin,s like recursive lambda..expressions.
Cenerally a ,permanently-defined function il better than a' label.

The third ki,nd of functional form is a "funarg," ,which can be produced
by the *function J.l1,nct.i()n. The funarg contains an a-list pointer. The
binding context ,is t~mporarily set to the previous context indicated by
this a-list pointer, ·and then the functional form .contained in the funarg
i. applied .

.If ,the functional form does not faU into any of ,the above cases, it is
evaluat.ed and the value is then used as t.he function being applied and
application starts over again at the beginning.

In addition to .. he variety of application which has jUlt been described,

04/08/74

iii

l

The Basic Actions of LISP

which is used internally by the e.aluation procedure, there is a similar
but not identical application procedure available through the function
apply. The main difference is that the function and the arguments are
passed to apply leperately. They are not consed up int.o a form.
Consequently macros are not accepted by this version of application. In
addition, the arguments to exprs, lesprs, subrs, lsubrs, arrays, etc. are
not. evaluated, since the caller of apply is presumed to have prepared the
arguments.

04/08/74 3.3 Page 15

MACLlSP Referen_ ftboual

3.4 A-list Pointers

There is a special ty,pe of objnct called an "II-lb" pointer" which can
be used to r.efer t.o a bindin, contexL Due to t.he stack i ... plementation of
M'ACtISP, an a-list pointer is only valid wh·ile control is nest.ed within the
bind'ing context. ,it, ..-mes. 11. is not possihle t.o eait from within a. ~inding
cont~x,~ but. keep it. around by keeping an a-list pointer to iL

Ao a-ljs,~ pointer is either a negativ.e fixnllJJl or nit ni 1 means the
",lobal" or "top level" biDding context. The negali-va fi1num is a special
value or implementation dependent meaning which should be obtained only
(rom one of the three following sources: the function evalframe, the
function errframe, or the. second lambda-variable of a (e1pr.

The only use for a ... list pointers is to pass tlaem to the functions eva 1
and a'PI'l1' t.o' specify the binding context in which variables are to be
evaluated du'ring' that e.alualion or application. A-list poin·ters are also
used internally by lIt,funct 1 on. When it generatel a funarg, it PQtl in t.he
(unarg the functional form it was given and an a-list pointer designating
the bindiag en_ironmeal curren." at the time *f·unetion wal called .

•

3.4 04/08/74

,,1::lIiIIl.III "liIMi iiiliiiitiiliiil .Iiliii.iii 11

The Basic Actions of LISP

3.5 Functions to P.rform Th ••• Action.

eva·l LSU8R 1 or 2 Irgs

(eVI·l 'J#) evaluates s, jUlt al ir it had been typed in
and returns the result. Note that lince eVil
argument actually will be evaluated twice.

at top level,
il an Jlubr, its

(eva·l s y) evaluates s in the binding contellt speciried by the a-list
pointer y ..

apply LSU8R 2 or 3 args

(apply I y) applies the runction I to the list or arguments 'Y. Unless
I is an rsubr or fexpr luch .s cond or and which evaluates its
arguments in a funny way, the arguments in the list yare used without
being evaluated.
Examples:

(setq f ~+) (apply f '(1 2 3» -> 6
(setq f '-) (apply f '(1 2 3» -> -4
(apply 'cons '«+ 2 3) 4» =>

((+ 2 3) . 4) noe (5 . 4)

(app ly I 'Y p) works like
application is done in
-a-list- pointer p.

app 1y with. 2
the binding

arguments ellcept that the
environment specified by the

quote FSU8R

quote returns itl unevaluated argumenL quote is used to include
constants in a form. For convenience, the read function normally
converts any S-expression preceded by the apoltrophe (acute accent)
character into the form (quote <S-expression». For example, the
form:

(setq x '(some list»

is converted by the reader t.o:

(setq x (quote (some list»)

which causes the variable x to be set to the conltant list value shown
upon evaluation. For more information on input syntax, see the
detailed dilcullion in chapter 13.

. 04/08/74 3.5 Page 17

lisa

funct 1-on F'SuaR

f'unct ion ia like quote except tir.,t ita .r"ument i., • funet.ion. It ia
u'sed .-hen ' •• 'ift, a Cunctional arlume
Example:

(fO& x (rune't,1on (1 ambda' (p q)

y)

(c,and (.(numberp q) p} « numberp p) q)
.,or any other random funct ion in here'

(t (cons p q») »)

calls fOO with 3 arguments, the second of' which is the function
defined by the lambda-expression.

NOle: quote and': funct 1 on are completely tWluivalent. in the interpreter.
The conrpiler sometimes needs func't"ion· to tell it that a
larnWa-ex,preMiow is a function to be cOda'piled, rather than' a constant.

funct ion makes n~ attempt to solve the ·runar,- ,roblem.·
should be v-ed' (:or: this purpose.

Jltfunct10n

.funct1on

II I

The value· or (-function f) is a ·Eunarl'" of the funct,ion f. A (unarg
can, be uled' lUte' a (unction. It h'as th'e', add,itioftal pro~rty that it
contains an a list pointer so that the values of variables are bound
the same d;uri.ng the application of the funarg as at the' time it was
crea'ted, provid'ed that the binding environment in which the funarg was
created still' exists on the stack. Hence if fo'o' il a function that
accepts, a ftinctional argument, such a8

(de'fun' roo- (,,')
(,append: one-'vail , (.f the-other-va'lue)).)

wor'ks, but

(roo (prog·(x y z)
(eto something.)
(return' (.-runct ion bar» »

doel n()t if bat' intends to reference the prog variables x. y. and. z.
.funct ion is ,intended to help solve the "Iuna-rg problem," however it
only works in' some easy cases. In particular, two general cases of
the fu,narg problem are not solved. funar,'s generated by Jlltfunct 10n
are intended for use al functional Grgu.mfJnu, and cannot be returned

3.5 04/08/74

Ii Ii i

The Balic Actions or LISP

al values of functional applications. Allo, due to the
implementation, which essentially generatel a copy or the binding
context at the time Jllcfunct ion is applied, assignments to variables in
this copied binding context do not affect the values or thOle
variables in the binding context which exists at t.he time Jllcfunct ion i.
applied. Thus, the user should be careful in his use of Jllcfunct ion to
make sure that his ule does not ,exceed the limitations of the funar,
mechanism.

A funar, has the form

(funarg <function> • <pdl-ptr>)

comment FSU8R

comment ignores its arguments and returns the atomic symbol comment.
Example:

(defun foo (x)
(cond «null x) 0)

(t (comment x has something in it)
(1+ (foo (cdr x»»»

Usually it il preferable to comment code using the semicolon-macro
feature of the standard input syntax. This a110wl the user to add
comments to his code which are ignored by the input package ..
Example:

(defun foo (x)
(cond «null x) 0)

(t (1+ (foo (cdr x»» ;x has something 1n it
»

prog2 LSU8R 2 or more args

prog2 evaluates its arguments from left to right, like any Isubr, and
returns the value of its second argumenL
Examples:

(prog2 (do-th1s) (do-that» ;get Z things evaluated

(setq x (prog2 nil 1
(setq 1 x»)

04/08/74 3.5

;para'l1el aSSignment.
;exchanges x and ~.

Page 19

p

MACLISP Rer.rence Manual'

progn L.SU8R 1 or more args

arg

progn essentially evaluates all of its arguments and returns the value
of the last one. Although lambda-exprenions, prog-rorms, do-forms,
cond-forms, and 10g-forms all use progn implicitly, there are
occasions' upon wh.ich one needs to evaluate a number of forms for
side-effects when' not in these forms. progn serves this purpose.
Example:

(progn (setq a 1) (cons a '(stuff») => (1 stuff)

sueR 1 arg

(a.rg n 11), when evaluated inside a lex PI', gives the number of
arguments supplied to that lexpr.
e arg j.), when evaluated inside a lexpr, gives the value of I the i~th
argument to tlte' lex PI'. i must be a fixnum in this case. It is an
error if' j is less than 1 or greater than the number of arguments
su'pplied to the I •• ,t.
Exam'ple:

(defun foo nlrgs
(print (arg nil»
(print (&1'9 2»'
(... (a~g 1) (. a1"g 3':»)

define a lexp~ faa.
number of arg5 supplied.
print the second argument.
return the sum o'f the
1st and 3rd a1'"gs·.

setarg. SU8R 2 a1"gs

s-etar'g is used only inside a lexpr. (setarg, is) sets· the lexpr~s
i~th' argument to 2#. i must be greater than zero and not greater than
the number of arguments passed to the lexpr. After (setarg is) has
been done, (Irg i) will retur.n s.

11st1fy SUBR 1 arg

list 1fy is a function which efficiently manufactures a list of n of
the argu'men,ts of a lexpr. With a positive argument n, it returns a
list of the fi,rst n arguments of the lexpr. With a negative argment
It, it returns a list of the last (abs ,.) arguments of the lellpr.
BaSically, it works as if defined as lollows:

3.5 04/08/74

funcall

The Basic Actions of LISP

(defun 11st1fy (n)
(cond «m1nusp n)

(-11st1fy (arg n11) (+ (arg nl1) n ,I»)
(t
(-11st1fy n 1» »

(defun -11st1fy (n m) ; auxiliary function.
(do «1 n (1- 1»

(1 nil (cons (arg 1) 1»)
« < 1 m) 1) »

LSUBR 1 or more args

(funca'll I al a2 ... an) calls t.he function I with the arguments ai,
a2, ... , an. It is similar to app 1 y except that the separate
arguments are given to funea 11. rather than a list of arguments. If I
is an expr, a lexpr, a subr. or an Isubr. the arguments are not
re-evaluated. If I is a (expr or an (subr there must be exactly one
argument. I may not be a macro.

Example:

(setq cons 'plus)
(cons 1 2) => (1 . 2)
(funea'll cons 1 2) =) 3

04/08/74 3.5 Page 21

MACLlSP Reference Man.,a.

This page intentionally l.h blank.

3.5 04/08/74

1111 i. 1 1 JI 1

l

Functions for Manipulating List Structure

4 Functions for Manipulatinl List Structur.

4.1 Ex.minin, Exiltin, Lilt structur.

car SU8R 1 arg

cdr

Takes the first part of a cons.
Examples:

(clr ' (I- b» .> a'
(car '(1 . 2» .> 1

SU8R 1 arg

Takes the second part of a cons.
Example: (cdr' (a' b c» => (b c)
Note: the cdr of an atomic symbol is its property list.

c ... r SU8R 1 arg

eq

All the compositions of up to four car's and cdr's are defined as
functions in their own right. The names begin with c and end with r,
and in between is a sequence of a's and d's corresponding to the
composition performed by the function.

For example,
(cddadr x) • (cdr (cdr (car (cdr x»»

Some of the most commonly used ones are: cadr, which gets the second
element of a list. caddr, which gets the third element of a list..
cadddr, which gets the fourth element. of a list.

SUBR 2 args

eq is a predicate. (eq s 'Y) is t if sand yare exactly the same
object, nil otherwise. (cr. equa 1). It should be noted that things
that print the same are not necessarily eq to each other. In
particular, numbers with the same value need not be eq, and two
similar lists are usually not eq. In general, two atomic symbols with
the same print-name are eq, but it is possible with maknam or variable
obarrays to generate symbols which have the same print-name but are
not eq.

04/08/74 4.1 Page 23

Examples:

MACLISP Reter8ftCe Manual

(eq 'a 'b) =) nil
(eq ',a ' a') =) t
('eq '(·1 b) '(a' .b» =) nil ,(usually)
(5'etq ,x '(a' b» -Ceq x x) => t Since it is

the same '(a' b) in 'both arguments.
(eq ,1 .}) => t or nil ,'depending on .. the 1mplen:tentat10n.

SU6R 2 args

The equa 1 ,predicate returns t if its arguments are similar objects.
(cf. eq) Two numbers are equa 1 if they have the same value (a flonum
is never equa 1 to a fixnum though). Two gtrings are ,equa" if they
have the same length, and the contents a,ethe same. All other atomic
objects areequa" if and only if ,the, are :eq. For dotted pairs and
lisls, equa'l is lI'efined recu,rsively a8 the two ,car's ,being equa'l and
the two cdr's 'being equal. Thus equal could have been defined by:

(defunequa.l {x 'y)
(-or (.eq x y)

(and (equal (car x) (car y»
(e'qua'l (cd r x) (cd r y»»

As a consequence of this definition, it may ,be seen that equal need
not \terminate when .applied 'to looped list ,structure. In addition, eq
,alw&)'s implies .qua-l. Aft intuitive definition '01 equa'l (which is not
'Iuite -correct) is that t'wo objects are ;equa:l il they look the same
when -print.ed ,ou-t.

.ssoc SUBR 2 args

Ii: In::s Ii Ii "'lUll II ". iliiCi iilii IIbJ

,(ISSOC so .1) looks up s in the as.ociation Ust (list 01 dotted pairs)
y. The value il 'the 'fint dotted pair whose car il equal to s, 'or n 11
il ,there is none luch.
Ex'amples:

(,assoc'r '«.a'. b) (c . d) (r . x) (s . y) (r . z»)
=>(r . x)

(assac '''000 '«faa. bar) (zoo. goo») => nil

,It i. <'okay to r'f)l,acd the result of ISSOC al long a. it. ia not. nil.
'Example:

(setq values '«x. 100) (y . 200) (z. 50»)
(as'Soc 'y values) => (y . 200)
{rplacd (assoc 'y va'lues) .201)
(assoc 'y values) => ()l . 201) now

(One should ,always be careful about using rplacd however)

4.1

* .

04/08/'14

t

Issq

Functions for Manipulating List. Structure

assoc could have been defined by:

(defun assoc (x y)
(cond «null y) nil)

«equal x (caar y» (car y»
«assoc x (cdr y») »

SU8R 2 args

assq is like assoc except that. the comparison uses eq instead of
equa 1. assq could have been defined by:

(defun assq (x y)
(cond «null y) nil)

«eq x (caar y» (car y»
«assq x (cdr y») »

sassoc SUBR 3 args

(sassoc s y .t:) is like (assoc s y) except that if s is not. found in y,
instead of returning n11 sassoc calls the lunction .t: with no
arguments. sassoc could have been defined by:

(defun sassoc (x y z)
(or (assoc x y)

(apply z nil»)

sassq SU8R 3 args

(sassq s y .t:) is like (assq s y) except t.hat if s is not found in y,
instead of returning nil sassq calls the function .I: with no arguments.
sassq could have been defined by:

(defun sassq (x y z)
(or (assq x y)

(app 1 y z nil»)

04/08/74 4.1

I
!

last

MACLISP Reference M.nual

suaR 1 arg

last returns the last, dotted pair of t.he Ust which ia ju argument.
Example:

(setq x '(a b cd»
(last x) -> (d)
(rplacd (last x) '(e r»
x -) (t' bed e f)

last could have been defined by:

(defun last (x)
(cond «null x) x)

«null (cdr x» x)
«last (cdr x») »

In some implementations, the null check above may be replaced by an
atom check, which will catch dotted lists. Code which depends on this
fact should not be written though, because all implementations are
subject to change on this point.

length SUBR 1 arg

1 ength returns the length of its argument, which must be a list. The
length of a list is the number 01 top-level COnies in it.
Examples:

(length nil) -> 0
(length '(a- b cd» .> 4
(length '(a (b c) d» -> 3

1 ength could have been defined by:

(defun length (-x)
(cond «null x) 0)

«1+ (length (cdr x»» »

The warnin, about dotted Ust. ,iven under last applies also to
le~gth.

member SUBR 2 args

(membe r s y) returns nil if s i. not a member of the list y.
Otherwise, it returns the portion of y be,innin, with the first
occurrence of s. The comparison i. made by equa'1. Y ia searched on
the top level only.

4.1 04/08/74

memq

not

null

Functions for Manipulating Lilt Structure

Example:

(member 'x '(1 2 3 4» => nil
(member 'x '(a (x y) c x d e x f» => (x d e x f)

Note that the value returned by member is eq to the portion of the
list beginning with s. Thus rp 1 aea' on the result of member may be
used, if you first check to make sure member did not return nil.
e.g. (rplaca (or (member x z)

(throw nil 'woops»
y)

member could have been defined by:

(defun member (x y)
. (cond «null y) nil)

«equal x (car y» y) «member x (cdr y») »

SU8R 2 args

memq il like member. except eq il uled for the comparison, inla.ead 01
equa 1. memq could have been defined by:

(defun memq (x y)
(cond «null y) nil)

«eq x (car y» y) «memq x (cdr y») »

SUBR 1 arg

not returns t if its argument is nil. otherwise it returns nil.
•

SUBR 1 arg

This is the lame al not.

sxhash SUBR 1 arg

sxhash computes a hash code of an S-expression, and returns it as a
fixnum which may be positive or negative. A property of sxhash il
that (equal x y) implies (= (sxhash x) (sxhash y». The number
returned by sxhash is some possibly large number in the range allowed
by fixnums. It is guaranteed that:
1) sxhash for an atomic symbol will always be positive.
2} sxhash of any particular expression will be constant in a
particular implementation for all time.

04/08/74 4.1 Page 27

MACLISP ReferoRce Manual

3) Two dirferent implementations may haah the .ame exprellion into
different values.
4) sxhash of any object of type· random win be uro.
S) sxhash of a fixnum will • that. fixnum.

40.1 04/08/74

Functions for Manipulating List Structure

4.2 Cre.tinl New Lilt Structure

cons SUBR 2 args

This is a primitive' f~nction to construct a new dotted pair whose
car is the first argument to cons, and whose cdr is the second
argument to cons. Thus the following identities hold:

Examples:

(eq (car (cons x y» x) => t
Ceq (cdr (cons x y» y) => t

(cons ' a· , b) -) (.. . b)
(cons 'a (eons"b (cons 'c nil») -) (a b c)
(cons '~ '(b e d e f» -) (a bed e f)

neons SUBR 1 arg

xeons

list

(neons s) • (cons s nil) • (list s)

SUBR 2 args

)(eons ("exchange cons") is like cons except that the order of
arguments is reversed.
Example:

(xeons 'a 'b) => (b . a)

xeons could have been defined by: (de fun xeons (x y) (cons y)(»

LSU8R 0 or more args

list constructs and returns a list of the values of its arguments.
Example:

(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4)

04/08/74 4.2 Page 29

append LSU6R 0 or more args

Th'e arguments to append are list&.
concatenatioh' GI the argument.&.
nconc). For example,

The result is a list which is the
The aJ!-,uments are not changed (cl.

(ap~end '(a b c) '(d e f) nil '(g» .> (a bed e f g)

A version or append which only accepts two arguments could have been
defined by:

(defun append (x y)
(cond «null x) y)

«cons (car x) (append (cdr x) y» »)
The generalization to any number 01 arguments could then be made using
a lexpr:

(d,fun full-append expr argcount
(do «1 (1- argcount) (1- 1»

(va 1 (-arg argcount) (append (arg i) va·l»)
«zerop 1) va·l) »

reverse SU6R 1 arg

Given a, list as argument, reverse creates a new list whose elements
are the elements o{ its argument taken in reverse order. reverse does
not modify its argument, unlike nreverse which is lastet but does
modify its argument. Example:

subst

(reverse '(a bed» => (d c b a)

reverse could have been delined by:

(~efun reverse (x)
(do «1 x (cdr 1»

(r nil
(cons (ca,r

((nu 11 1) r»)

.; scan down argument.

1) r») ;putt1ng each element into
;l1st until no more elements.

SUBR 3 args

(subst " y At) substit.utes " {or all occurrences of y in .,. and returns
the modilied At. The original. is unchan,ed, as subst recursively
copies all of II replacing elements eq t.o y as it goes. If so and yare
nil, II is completely copied, which is a convenient way to copy
arbitrary list structure.

Page 30 4.2 04/08/'14

ii11 II 111 I ,1 I Ii: Uiii iliii;

Functions lor Manipulating List Structure

Example:
(subst 'Tempest 'Hurricane

'(Shakespeare wrote (The Hurricane»)
=> (Shakespeare wrote (The Tempest»

subst could have been defined by:

sublis

(defun subst (x y z)
(cond «eq y z) x) :1f item eq to y, replace.

«atom z) z) :1f no substructure, return argo
«cons (subst x y (car z»

(subst x y (cdr z»»»

SUBR 2 args

sub11s makes substitutions for atomic symbols in an S-expression. The
firlt argument to sub lis is a list of dotted pairs. The second
argument il an S-elpression. The return value is the S-expression
with atoms that are the car of a dotted pair replaced by the cdr of
that dotted pair. The argument is not modified new conses are
created where necessary and only where necessary, so the newly created
structure shares as much of its substructure al possible with the old.
For example, if no successful substitutions are made, the result is eq
to the second argument.
Example:

04/08/74

(subl1s '«x. 100) (z . zprime»
'(plus x (minus 9 z x p) 4»

-) (plus 100 (minus g zprime 100 p) 4)

4.2 Page 31

1 I

MActISP Reference Manual

4.3 • Modifylnl Exlltlnl List Structur.

rplaca SUBR 2- args

(rpllca- s y) ch.an,es the ca~ Qr # to y and return. (the modified) ".
Example:

rplacd

($.e,tq, g. ' (.' b c})
(rpl.~& (cdr g); 'd) a.) (d e)

N.ow 9 II) (a' d e)

$U8R 2 args

(rp 1 led " y) changes the cdr or # to y and returAS (the modified) ".
Example:

nconc

($.etq x ' (I b c)l
(rpla,cd x'd). =) (a' . d)

, Now x • > (a . cl)

LSU6R 0 or more Irgs

neonc takes lists as argu-ment.. It re~Qrnl a list. which is the
arguments c~aAtena_ted tOfether. The ar,,,m.n'" are chan,ed, rather
than copied. (cr~ append)
Example:,

(nco.ne '(a' b c) '(d e f» => (a' bed e f)

Note that the constant (a b c) has now been changed to (a' bed e fl.
U "his f.orm. is evaiuated again, it will yield (a' bed e , d e fl.

ncone could h,ave b~en defined by:

(dafun Acone (x y)
(cond «null x) y)

(t

:for simplicity, this definition
;only works for 2 argument ..

(rplacd· (last x) y} ; hook y onto x
x) >.) ; and return the modified x.

nreverse SU.8R 1 arg

nreverse reverS,es its argument, which should be a HIL The ar,ument
is destroyed by rp 1 acd', all through the lilt (cf. reverse).
Example:

(nreverse '(a' b e» .> (e b a-}

4.3 04/08/14

J& :zls zts

Functions for Manipulating List Structure

nreverse could have been defined by:

(defun nreverse (x)
(cond «null x) nil)

«~nrev x nil»»

(defun ~nrev (x y) ; auxiliary function
(cond «null (cdr x» (rplacd x y»

«~nrev (cdr x) (rplacd x y»»)
•• this last call depends on order of argument evaluation.

delete LSU8R 2 or 3 args

delq

(de 1 ete s y) returns the list y with all top-level occurrences of s
removed. equa 1 is used for the comparison. The argument y is
actually modified (rp 1 acdged) when instances of s are spliced out.

(de 1 ete s y n) is like (delete s y) except only the first n instances
of s are deleted. n is allowed to be zero. If n is greater than the
number of occurences of s in the list, all occurrences of s in the
list will be 'deleted.

Example: (delete 'a '(b a' c (a- b) d a e» =) (b c (a b) d e)

de 1 ete could have been defined by:

(defun delete nargs
(-delete (arg 1)

(arg 2)

; lexpr definition lor 2 or 3 args
; pass along arguments ...

(cond «= nargs 3) (arg 3»
(123456789.»» ; infinity

(defun ~delete (x y n) ; auxiliary function
(cond «or (null y) (zerop n» y)

«equa'l x (car y» (~delete x
(cdr y)
(1- n»)

«rplacd y (~delete x (cdr y) n»»)

LSU8R 2 or 3 args

de 1 q is the same as de 1 ete except that eq is used for the comparison
instead of equa 1. See de 1 ete.

04/08/74 4.3 Page 33

MACLISP Reference Manual

Thil page intentionally left .blank.

4.3 04/08/74

- - i iii

Flow of Control

5 Flow of Control

MACLISP provides a variety of structures for flow of cont.rol.
Conditionals allow control to branch depending on the value of a predicate.
and and or are basically one-arm conditionals, while cond is a generalized
multi-armed conditional.

Recursion consists of dOing part of the work that is to be done oneseU,
and handing of(the rest to someone else to take care of, when that someone
else happens to be (another invocation of) oneself.

I

Iteration is a control structure present in most languages. It is
useful.
facility

similar to recursion but sometimes more useful and sometimes less
MACLISP contains a generalized iteration facility. The iteration
also permits those who like "gotos" to use them.

Nonlocal exits are similar to a return, except that the
several levels of function calling rat.her than just one,
at run time. These are mostly used for applications like
middle of a function when it is discovered that the
applicable.

return is from
and is determined
escaping from the
algorithm is not

Errors are a type of non-local exit used by the lisp interpreter when it
discovers a condition that it does not like. Errors have the additional
feature of correctahility, which allows a user-specified function (most
often a break loop), to get a chance to come in and correct the error or at
least inspect what was happening and determine what caused it, before the
nonlocal exit occurs. This is explained in detail in section 12.4.

04/08/"14 5. Page 35

MACLISP Reference Manual

5.1 Conditionals

and ~FSU8R

or

'cond

and evaluates its ;arguments one at - a 'time, from Ie'tt to 'right. If any
arguthent C!valu'l:t~s -'to n11, 'e.nd immediate),y ritll¥I\S nil without
'ev1lluaUng 'ih'e "remaining arguments.]f ,'IU the .rlument. evaluate
non-ni 1, and returns the value of its last argumen't. and can be used
'bot.h for 'logical operations, where nil stands for False and t stands'
for True, and al 'a 'conditional espressi'on.
Examples:

(and x 'y)

(and (setq t.mp tassq x y»
(rp 1 atd temp z»

(and (null (:err'Set (something»)
(pr1h'c '''The'r'e 'was an error. "»

Note: (and) =} to, , ... hich is th-e identity for 'this dperat.ion.

'"fSU:&R

or 'evaluates it.s 'al'gument.s one by 'one fr6m left. to right.. If an
'argutnerit ';evaluate's to nil, or proc~eds to 'evaluate the next argument.
If 'there ,ate 'R'O more arguments, or returns n11. But if an argument
evaluat.es non-nil, or immediat.ely returns that value without
evaluating a"yremaining arguments. or can be used both for logical
operations, ".here nil stands for 'False and t '.for True, and as a
conditioh'al 'e • .,re~sion.
Note: (or) => ,nil, the identity for this operatidn.

FSU8R

cond processes its arguments, called "clauses," from left to right.
The car' of each clause, called the "antecedent," is evaluated. If it
is nil, cO'ndadvances to the next clause. Otherwise, the cdr of the
'clause is treated as a list of forms, called "consequent.s," which are
evaluated 'from left to right. After evaluating the consequent.s, cond
returns without inspecting any remaining clauses. The value is the
value of the last consequent evaluated, or the .alue of the antecedent
if there were no consequents in the clause. If cond runs out of
cl-auses (i.e. if every antecedent is n11), the value of the cond is
nil.

Pare 36 5.1 04/08/74

' L ;, iH. I.iilill liil:: I '."iIiiiS:::iiIlZiliiil $I

Flow of Control

Example:
(cond «zerop x) (+ y 3» :f1rst clause.

«null y)
(setq x 4)
(cons x z»

(z)

)

:(zerop x) is antecedent.
;(+ y 3) is consequent.

;a" clause with 2 consequents
:a clause with no consequents.
;the antecedent is just z.
:this is the end of the condo

This is like the traditional LISP 1.5 cond except that it is not
necessary to have exactly one consequent in each clause," and it is
permissible to run out of clauses. '

04/08/74 5.1 Page 37

M ACLISP Reference Manu __ l

5.2 • It.ration

prog FSlJ6R

prog i. the "program"
sequential evaluation

function. It provides temporary variables,
of Itatements, and the ability to do "gotol."

The form of a p,rog is:

J- <tag) 1
(prog «var) ...) <) ...)

1_ <statement) _I

The firlt thing in a prog is
Each variable has its value
rest.ored when t.he prog is left.
when the p,rog is entered, thus
t.he prog.

a list of temporary variables <var>.
saved when the prog is entered and
The variabl~. are initialized to nil

the)' are said 1.0 be "bound to nil" by

The rest of a prog is the body. An item in the body may be an
atomic symbol which is a <tag> or a non-atomic (statement>.

prog. after bin,d,ing the, temporary' variables, evaluates its body
se.quentially. <tag>8 are skipped over; (statement)s are evaluated
)".ut. the values. are ignored. If the end of the body is reached, prog
returns n t 1. If (return ~) is evaluated, prog st.ops evaluating it.s
body and returns the value of~. If (go 'Og) is seen, prog jumps to
t.he part of the body labelled with the 'ag. The argument. to go is not
evaluat.ed unless it. is non-atomic.

It should be noted that the prog funct.ion is an extension of the
LISP 1.5 prog function, in t.hat go's and return's may occur in more
places than LISP 1.5 allowed. However, t.he LISP compilers implemented
on ITS, Multics, and the DECsystem 10 for MACLISP require that go's
and return's be lexically within the scope of t.he prog. This makes a
funct.ion which does not. contain a 'prog, but which does contain a go or
return uncompilable.

See also the do function, which uses a body similar to prog. The
d'o fu,nction and the catch and throw functions are included in MACLISP
as an a ttemp,t t.o encourage got.o-Iess programming st.yle, which leads to
more readahle, more easily maintained code. The programmer is
recommended to use these funct.ions instead of prog wherever possible.

Pap 38 5.2 04/08/74

'II

do

Flow of Control

Example:

(prog (x '1 z) ; x. y. Z are prog variables - temporaries.
(setq 't (car w) z (cdr w» ;w is a free variable.

loop
(cond «null '1) (return x»

«null z) (go err»)
rejoin

err

(setq x (cons (cons (cary) (car z»
x»

(setq '1 (cdr '1)
z (cdr z»

(go loop)

(break are-you-sure? t)
(setq z '1)
(go rejoin»

FSU8R

do provides a generalized "do loop" facility, with an arbitrary number
of "control variables" whose values are saved when the do is entered
and restored when it is left, i.e. they are bound by the do. The
control variables are used in the iteration performed by do. At the
beginning they are initialized to specified values, and then at the
end of each trip around the loop the values of the control variables
are changed according to specified rules and iteration continues unt.il
a specified end condition is satisfied. do comes in two (orms.

The newer form of do is:

(do «<var) <init) <repeat» .•.)
«end-test) <exit-form) •.•)
<body) ...)

The first argument o(do i. a list of zero or more control variable
specifiers. Each control variable specifier has as its car the name
of a variable, as its cadr an initial value <init), which defaults to
n i1 if it is omitted, and as its caddr a repeat value <repeat). If
<repeat) is omitted, the <var> is not changed between loops.

All assignment to the control variables is done in parallel. At
the beginning of t.he first iteration,. all the <init>s are evaluated,
then the <var>s are saved, then the <var>s are setq'ed to the <init)s.
Note that the <init>s are evaluated before the <var>s are bound. At
the beginning of each succeeding iteration those <var>s that have
<repeat>s get setq'ed to their respective <repeat)s. Note that all
the (repeat)s are evaluated before any of the <var)s are changed.

The second argument of do is a list of an end testing predicate

04/08/74 5.2 Page 39

<end-test> and zero or more forms, t.he <exit.-form>s. At. the beginning
of each iteration, after processing or the <repeat>s, the <end-test>
is evaluat.ed. II the relu,lt is nil, execution proceeds with the body
of the do. If, the result is not nl1, the (eait-forms> are evaluated
from left to righ,t and then do returns. The v,alue of, the d~ is the
v.alue of the last <exit-form), or nil if there were no <exit-form>s.
Note that the, second argument to do is simil.. to, a cond clause.

If the second, argument to do is nil, there is no <end-test> or
<e.it-lorm>s, and the the body of the do' is. es.ndetl only once. In
this type 01 do it ilt an error to have <repeat>.. This type of do is
a "prog with, initial values."

The remaining argument.s to do constitute a prog body. When the end
of the body is reached, the next iteration of the do begins. If
return is uled, do returnl the indicated .. alue and no more iterations
occur.

The older form is:

(do (var) <1n1t) (r'epeat) <end-test) <body> ...)

The first, time through the 10ctp <var> gets, the value of <init>;
the remaanlng' times through the loop it ,ets the value of <repeat>,
which is re-evaluat.ed, each time. Note that (init> il evaluated before
the, value of <var> is say,ed. After <var> ii, set, <end-test> is
evaluated. If it is non .. n 11, the do finishes and returns nit If the
<end;..test> is, n U, the <body> of the loop is executed. The <body> is
like, a prog body. go may be used. If return" is uled, itl argument is
the value of the d.o. If the end of the prot· body is reached, another
loop begins.

Examples of the old form of do:

(do 1 0 (1+ 1) () 1 (cadr (arrayd1ms x»)
(s to.re (x 1) 0» : zeroes out the array x

(do zz x (cdr zz) (or (null zz) (zerop (f (car zz»»)
this appf1es f to each element of x

: cont 1nuous ly unt 11 f returns z,ero.

Examples, of the new form or do:

(do (x) (y) (z» (nil) <body»
is like

(prog (x y z) <body»

except that when it runs oU the end or th.e <body>, do loops but prog
returns n 11.

5.2 04/08/74

go

Flow of Control

{do «x y (f x») «p x» (body»
is like
(do x y (r' x) (p x) (body»

(do «x x (cdr x»
(y y (cdr y»
(z nil (cons (f x y) z»)

«or (null x) (null y»
(nreverse z»)

is like (map 11 s t ~ f x y).

exploits parallel a$s1gnment
i

typical use of nreverse
body has been omitted

(do «x e (cdr x» (oldx x x» «null x» (body»

This exploits the parallel assignment to cont.rol variables. On the
first iteration, the value of oldx is whatever .alue x had before t.he
do was entered. On succeeding iterations, oldx contains the value
that x had on the previous iteration.

In either form of do, the <body> may contain no forms at all.

FSU8R

The go function is used to do a "go-to" within the body of a do or a
prog. If the argument is an atom, it. is not. e.aluated. Otherwise it
is repeatedly evaluated until it is an atom. Then go transfers
control to the point in the body labelled by a tag eq or = to, the
argument. (Tags may be either atomic symbols or numbers). U there
is no such tag in the body, it is an unseen-go-tag error.
Example:

(prog (x y z)
(setq x something)

loop
(do something>
(and (some predicate> (go loop»
<do something more>
{go (cond «minusp x) ~loop)

(t 'endtag»)
endtag

(return z»

;regular go

;"computed go"

04/08/74 5.2 Page 41

return SU8R 1 arg

return ia used to return f.rom a prog or a d'O. The , •• lue or return's
argument is returned by ,prog or do 81 its .alu~ In addition, break
recognizes the top level 'Corm (return tH.d".) specially. If this rorm
is t"ped at • brei"" ,tHJlae will he ~valuated and returned as the •• lue
or breat. If not 'at the top level 01 a form typed at a bre'att, and not
inside a prog or 'do. return will cause • "'il-act 'error ..

Example:
(,'p'rog '(X)

(s'etq x (rev'erse y»
(or (cddr x) (ret'urn (cadr x»)
(retur'n «(add r x»)

II '1 is .,'(z 'I x " y u t s). this returns u. -tf ., is ' (a' b), t.his
retum. 'L

5.2 04/08/74

5.3

catch

Flow of Control

Noniocil Exit.

FSUBR

catch is the LISP function for dOing structured non-local esit.s.
C catch ~) evaluates ~ and ret.urns its value, except that' if during the
evaluat.ion of ~ (throw y) should be evaluat.ed, catch immediately
ret.urns y wit.hout. furt.her evaluat.ing ~.

catch may also be used with a second argument, not evaluat.ed, which is
used as a tag to distinguish between nested catches. (ca tch % b) will
catch a (throw y b) but. not a (throw y %). throw with only one
argument always throws to the innermost catch. catch with only one
argument catches any throw. It is an error if throw is done when
there is no suitable catch.
Example:

(catch
(mapcar (funct ion (lambda' (x)

y)
negative)

(cond «minusp x)
(throw x negative»

(t (f x» »)

which returns a list of f or each element of y ir y is all positive,
otherwise the first negative member of y.

The user or catch and throw is recommended to st.ick t.o the 2 argument
versions, which are no less efficient, and tend to reduce the
likelihood of bugs. The one argument versions exist primarily as an
easy way to fix old LISP programs which use errset and err lor
non-local exits. This latter practice is rather confusing, because
err and errset are supposed to be used lor error handling, not general
program control.

throw FSUBR

throw is used with catch as a s"ructured non local exit mech,nism.

(throw %) evaluates ~ and throws the value back to the most recent
catch.

(throw % <tag» throws t.he value of ~ back to the most recent catch
labelled with <tag> or unlabelled. catch'es with tags not eq to <tag>
are skipped over.' % is evaluat.ed but <tag> is not.
See the description of catch lor rurther details.

04/08/74 5.3 Page 43

MACLISP Referenee Manual

5.4 - C.ulin..nd Controtlinl Errors

error LSUBR 0 to 3 args

This il a function which allows user functions to lignal their own
errors using the LISP error system.

(error) is the same as (err).

(error lIleJlG .. e) signals
user interrupt is signalled.

a simple error - no datum is printed and no
The error message typed out is me"G .. e.

(error m."og. tlatu.m) lignal. an error with ". ... G ... al the message to
be typed out, tI.,.1n al the LISP object to be printed in the error
meaaage. No user interrupt il Signalled.

(error me"tl,.e tla,.m .ill,.-chn) signals an error but first signals a
user int.errupt On channel • .tin'-chn, ptovided' that there is such a
channel and it has a non-nil service function. "in,-chn may be the
channel number or the atomic symbol whOie value is the interrupt
service function fOr the channel see Melion 12.4.2. If the
service function returns ah atom, error goeS ahead and signals a
re,ular e .. tot. II the service function returns a lilt, error returns
a. ita value the car of that lilt. In thi. cale it was a
"correct_ble" ertor. This il the only ca.. in which error will
retum.

errset FSU6R

errset evaluates its lirst argument. If no errors occur,' the result
il co·ns'ed wit'h nH and returned. II an err~r occurs during the
evaluat.ion or the first argument, the error il ptevented from elcaping
from inside t.he errset and errset returns nil. errset may also be
made to return any arbitrary value by use of the err funcLion.

If a second argument is given to errset, it il not evaluated. II it
is nil, no ~ .. ro... message will be printed if an error occurs during the
evaluation of errset's first argumenL If the second argument is not
nil, Clr if errset is used with only one argumel'lt, any error messages
generated will be printed.
Examples:

If you are not sure x is a number:
(errset (setq x (addl x»)

This last example may not wbrk in compiled code if the compiler
chooses to open-code the addl rather than calling the addl subroutine.
The user of such code must be extremely careful if he wishes to use it

5.4 0,*/08/74

iii

err

Flow or Control

compiled.

To suppress message ir the value or a is not an atomic symbol:

(errset (set a b) nil)

To do the same but generate one's own message:

(or (errset (set a b) nil)
(print (list a 'is 'not 'a 'variable»)

FSU6R

(err) causes an error which is handled the same as a LISP error except.
that there is no preliminary user interrupt, and no message is typed
out..

(err s) is like (err) except that if control returns to an errset, the
value of the errset will be the result or evaluating s, instead of
nil.

(err ~ nil) is the same as (err s). (err s t) is like (err s) except
that so is not evaluated until just before the errset returns it. That
is, s is evaluated a/'6r unwinding the pdl and restoring the bindings.

Note: some people use err and errset where catch and throw are
indicated. This is a very poor programming practice. See writeups of
catch and throw for details.

04/08/74 5.4 Page 45

--

MACLISP Reference Manual

This, page ifttefttioftaUy lelt bleak.

5.4 04/08/74

,Wi1iiS Ii Iii I ii,i1I1.II;""111£1 "n"li

Manipulating the Constituents of Atomic Symbols

6 Mlnipulltinl the Constituents oj Atomic Symbols

6.1 The Value cen

Each atomic symbol hal associated with it a "value cell," which is a
piece of storage that can hold a LISP object. Initially this value cell il
"unbound" or "undefined," i.e. empty. An object .can be placed int.o an
atomic symbol's value cell by setq'ing or binding. Once this has been
done, this object will be returned when the atomic symbol il evaluated.
The atomic symbol is said to have this object al its value.

setq

set

FSU8R

setq is used to assign values to variables (atomic symbols.) setq
takes its arguments in pairs, and processes them sequentially, left to
right. The first member of each pair is the variable, the second il
the value. The value is evaluated but the variable is not. The value
of the variable is set to the value specified. You must not setq the
special atomic-symbol constants t and nil. The value returned by setq
is the last value assigned, i.e. the value of its last argument.

Example: (setq x (+ 1 2 3) Y (cons x nil»
returns (6) and gives x a value of 6 and y a value of (6).

Note that the lirst assignment is processed before the second
assignment is done, resulting in the second use of x getting the value
assigned in the first pair of the setq.

SU8R 2 args

set is like setq except that the firs~ argument is evaluated; also set
only takes one pair of arguments. The first argument must evaluate to
an atomic symbol, whose value is changed to the value of the second
argument. set returns the value of its second argument. Example:

(set (cond «predicate) 'atoml) (t 'atom2» 'stba)
.

evaluates to stba and gives either atoml or atom2 a value of stbL

set could have been defined by:

(defun set (x y)
(apply 'setq (list x (list 'quote y» »

04/08/74 6.1 Page 47

MACLISP Reference Manaal

boundp sueR 1 arg

The ar,ument to boundp must be an atomic .,mbol. II it has a valuo.
cons of nil with that value is returned. Otherwise nil is returned.
Example:

(boundp 't) -> (nil . t) ;since the value of t is t

def1nedp SUBR 1 arg

This
nil

predicate
otherwise.

returns t if its ar,ument (a symbol) has a value, and

makunbound SU8R 1 arg

The argument to makunbound must be an atomic
removed and it hecomes undefined, which
atomic symbols.
Example:

(s'etq a 1)
a' => 1
'(.ukunbound ~a)
a' =) unbnd-vrbl error.

makunbound returns its argument.

6.1

Iymbol. Its value is
il the initial state for

04/08/'14

"iii

!

Manipulating the Constituents of Atomic Symbols

6.2 The Property Lilt

A property-list is a list with an even number of elements. Each pair of
elements constitutes a property: the first element is called the
"indicator" and the second is called the "value." The indicator is
generally an atomic symbol which serves as the name of the property. For
exam.,le, one type of functional property uses the atom expr as its
indicator. The value is a LISP object. In the case of an expr-property,
the value is a list beginning with 1 ambda. An example of a property list
with two properties on it is:

(expr (lambda (x) (plus 14 x» foobar t)

The first property has indicator expr and value (1 ambda (x) (p 1 us 14 x)),
the second property has indicafor foobar and value t.

Each atomic symbol has associated with it a property-list, which is kept
on its cdr. It is also possible to have "disembodied" property lists which
are not associated with any atom. These also keep the property list on
their cdr, as the form of a disembodied property list is «anything) .
plist). The way to create a disembodied property list is (ncons nil).

It is all right to ask for a property or a number, using the get and
get 1 functions described below. nil will always be returned since numbers
have no properties.

The user familiar with LISP I.S will want to note that the property list
"flags" which are allowed on LISP 1.5 property lists do not exist in
MACLISP.

Some implementations have special args. pname. and va 1 ue properties
which are used to store internal information. Consequently user programs
should never use properties with these names.

get SUBR 2 args

(get x y) gets ~'s y-property. ~
disembodied property list. The value of

04/08/74 6.2

can be an atomic symbol or a
~'s y-property is returned,

Page 49

getl

MACLISP Reference MannI

unless so has no y-property in which case nil is returned. Example:

(get 'foo 'bar)
=> nil ;foo has no bar property

(putprop 'foo 'zoo 'bar) ;g1ve foo a- bar property
=) zoo

(get 'foo 'bar)
=> zoo

(cdr 'foo) ;look at foo's property list.
=) ,(bar zoo .•. ,other ,p,ropert ies ...)

SU8R 2 -args

(get 1 :.r; 'Y) is like get except that 'Y is a list. of p,roperties rather
than just a single property. get 1 searches ~·s propert.y list until a
property in t.he list 'Y is Cound. The portion of s·s property list
beginning with this property is returned. The car 01 this is the
property name and the cadr is what get would have returned. get 1
returns nil if none of the properties in y appea'r on the property list
of s. get 1 could have been defined by:

(defun getl (x pl)
(do « q (cdr x) (cdd.r q») : scan down cdr of)(

« or (null q) (memq (car q) pl» q»)

putprop suaR 3 args

(putprop " y %) gives " a %-property of 'Y and returns y. ~ may be an
atomic symbol or a disembodied property Jist. After lomebody does
(,putprop so 'Y %), (get s %) will return 'Y.

Example:

defprop

(defprop
evaluated.

(putpr~p 'foo 'bar 'often-with)

-FSlJ8R

" 'Y %) gives
Eltample:

" a %-p~operty 01 y. The arguments are not

(defprop foo bar often-With)

Page SO 6.2 04/08/74

I

I

I

I

I

Manipulating the Constituents of Atomic Symbols

remprop SU8R 2 args

(remprop " y) removes s's ,,-propert.y,
propert.y list.. The value is t if
didn't. s may be an at.omic symbol or
Example:

by splicing it. out. of ,,'I
s had a ,.-property, nil if it

a disembodied property list.

(remprop 'foo 'expr)

undefines the function foo if it was defined, by

(defun foo (x) ...)

04/08/74 6.2 Page 51

:~ \

MACLISp: Reference, M·anual

6.3 • The Print-Nlme?

Each· .,tomic symbGI has an assGciated character' string called its
"print ... name," Gr "pname"" for short. This' character' string' is used, as the
external representa.tiGn~ Gf. the symbol. 1£ the string is typeel in, it is
read as a· reference" to' the symbGI. If the symbGI is- .ked to' be pr1nt'ed,
the string is typed GuL Cenerally pnames are- unique' - there is Gnly Gne
atGmic .. ,mbol wk'Ose' pna'me l is a:, particular str"ing' Gf chareters. HGwever,
by, u·sin.' multiple' O'b ys (iee' section' 12.40), GJ!' "uninterned~ atGmic
symbGls (Gnes whGse pnames are nGt "interned'" GJ!' registered' in an Gbarray),
it is possible to get two atGms with the same pname.

See alsO' Chapter 8, Gn strings, fGr SGme Gther functiGns which have to' dO'
with pnames~

SU8R: 2 args

The arguments·,
character strings.
Gtherwise. The'

tG" samepnamep must ev·aluate to' atGmic .ymbGls Gr to
The result is t if they have the same pname, nil
pname Gf a character- ttl'in. i. considered to be the

s'tring itself.
Examples:

('samepname, 'xy,z' (maknam '(.x y zH) =) t

(samepna.ep 'xy.z (maknam '(w x ~») =) nil

a 1 ph" 1 e·s'.sp. SU6R 2 args

(a·1 pha 1 essp :r y), where sand 'Y evaluate to' atomic symbols or
character st·ring., returns t if the pname of s occurs earlier in
alphabetical. order th'ara the pname Gf 'Y. The pname Gf a character
string· is cGnsidered to' be the string itself. Examples:

(a lph'a'1 .ssp "x 'xl) .> t
(a'lpha'lessp 'z'q) -) nil
('I'lphl'lessp "x" 'y) -> t

Note that the "al phabetical Grder" used by a 1 pha 1 e ssp is actually the
ASCII cGllating sequence. Consequently all upper case letters SGrt
ber ore' all IGwer case letters.

6.3 04/08/74

if I I

Manipulating the Constituents of Atomic Symbols

6.4 Milcenaneoul Functions

getchar SUBR 2 args

(getchar so n), where so is an atomic symbol and n is a Cixnum, returns
the n'th character or so's pname, where n • 1 selects the leftmost
character. The character is returned as a character object. nil il
returned if n is out of bounds.

intern SUBR 1 Irg

(intern so), where so is an atomic symbol, returns an atomic symbol
which il "interned. on the obarray" and has the same pname as so. If:¥'
is not already interned on the current obarray, this will be a copy of
it. It il al if so was printed out and read back in.

remob SUBR 1 Irg

The argument to remob must be an atomic symbol. It is removed from
the current obarray if it i. interned on that obarray. This makes the
atomic symbol inaccessible to any S-expressions that may be read in or
loaded in the future. remob returns nit

gensym LSUBR 0 or 1 args

gensym creates and returns a new atomic symbol, which is not interned
on the obarray (is not recognized by read.) The atomic symbol's pname
is of the form <prefix><number>, e.g. gOOO 1. The <number> is
incremented each time.

If gensym is given an argument, a numeric argument is used to set the
<number>. The pname of an atomic-symbol argument is uled to let the
<prefix>. For example:

if (gensym) => g0007
then (gensym 'foo) => f0008

(gensym 40) => (0032
and (gensym) =) f0033

Note that
<prefix> is

the <number> is in decimal and always four digits, and the
always one character.

04/08/74 6.4 rage 53

MACLISP Reference Manual

6.5 De'inin, Atomic Symbols I. Function.

At.omie symbols may be used a5 names for functions. This is done by
pu t.ting the act'ual function (a, subr-object or a lambda-expression) on the
property' nst of' the atomic symbol a8 a "functional' property," i.e. under
one of the indicators expr, 'expr, macro, subr, 1 subr. or fsubr.

Array properties (see chapter 9) are also consid'ered t01 be E unctional
properties, so- an atomi~ .ymhol which is the name 0' an array is also the
name of a function, t.he accessing function of that array.

When an atomic symbol which is the name of a function appea~s in
function position ift a form being evaluated, or is "applied," the function
which it names is used.

ergs LSU8R 1 or 2 args

(args I) determines the number of arguments expected b)' the function
I. II J wants n arguments, args returns (nil . n). If I can take
from m to n arguments, arg,s returns (rn • n).If I is an fsubr or a
lexpr, expr, or fexpr, the resu~ts are meaningless.

(args I ~), where s is (nil. n) or (m . n), sets the number of
arguments d'esired by the function I. This only works for compiled,
non-system functions.

defun FSUBR

defun is us-cd for defining functions. The ,eneral form is:

(defun <name) <type)
(. <lambda'-var1able) .. <)
<body) ...)

however, <name> and <type) may be interchanged. <t),pe>, which is
optional, may be expr, fexpr, or macro. II it is omiued, expr is
assumed., Examples:

(defun addone (x) (1+ x»

(defun quot fexpr (x) (car x»

(defun 'expr quot (x) (car x»

(defun zzz expr x
(foo (arg l)(arg 2»)

Page 54

;defines an expr

;defines a fex;r

;is the same

; this is how you define a lexpr.

6.S 04/08/74

.111 ,"

l

Manipulating the Constituents of Atomic Symbols

Note: the functions defprop and putprop may also be used for defining
runctions~

04/08/74 6.S Page 55

This p.,e intentionally left blank.

6.$ 04/08/'74

lUI!!. .. J: .11 1 .. .11 IlIIi!:: iUiliiii::ZiI •

Functions on Numbers

7 Functions on Numbers

For a description of the various types of numbers used in MACLISP, see
chapter 2.

7.1 Number Predicate.

b1gp SUBR 1 arg

The predicate b1gp ret.urns t if its argument is a bignum, and nil
otherwise.

zerop SUBR 1 arg

The zerop predicate returns t if its argument is fixnum zero or flonum
zero. (There is no bignum zero.) Otherwise it returns nil.

plusp SUBR 1 a1"g

The p 1 usp predicate returns t if its argument is strictly greater than
zero, nil if it is zero or negative. h is an error if the argument
is not a number.

m1nusp SU8R 1 a1"g

oddp

The minusp predicate returns t if its argument is a negative number,
nil if it is a non-negative number. It is an error if the argument
is not a number.

SU8R 1 arg

The oddp predicate returns t if its argument is an odd number,
otherwise nil. The argument must be a fixnum or a bignum.

04/08/74 7.1 Page 57

MACLISP Reference Manual

s1gnp FsuaR
The s 19np predicate ia uled to teat the si,n 01 • number. (51gnp c s)
return. t if s's si,n aatidies the teat 0, nil il it does not. s ia
evaluated but 0 il not. It il an error il s ia not a number. 0 can
be one 01 the lollowing:

1
le
e
n .
ge
9

means
...
... ,.
"
"

Examples:
(s1gnp le -1) => t
(S1gnp n 0) -> nil

haulong SU8R 1 arg

x<o
x~O
x=o
x~O
x~O
x>O

(hau long s) returns the number 01 .significant bill in s. s can be a
fixnum or a bignum. T~e result ia the leut ' .. te,er not less than the
base-2 logarithm of Isl+l. Examples:

(haulong 0,) =) 0
(haulong 3) =) 2
(haulong -7) => 3
(haulong 1234'5671234567) -> 40.

Pag~ 511 '1.1 04/08/74

iii

Functions on Numbers

7.2 Comparison

• SUBR 2 args

(:= S' y) is t if S' and 'Yare numerically equal. S' and y must be both
fixnums or both flonums.

greaterp LSUBR 2 or more args

>

greaterp compares its arguments, which must be numbers, from left to
right. II any argument is not greater than the next, greaterp returns
nil. But if the arguments to greaterp are Itrictly decrealing, the
result is t. Examples:

(greaterp 4 3) -> t
(greaterp 1 1) =) nil
(greaterp 4.0 3.6 -2) a) t
(greaterp 4 3 1 2 0) =) nil

SUBR 2 args

() so y) is t if S' is strictly greater than y, and nil otherwise.
and y must be both fbnums or both flonums.

lessp LSUBR 2 or more args

<

compares its arguments, which must be numbers, from left to
II any argument is not less than the next, lessp returns nil.

if the arguments to lessp are strictly increasing, the result is

lessp
right.
But
t. Examples:

(lessp 3 4) => t
(lessp 1 1) => nil
(lessp -2 3.6 4) =) t
(lessp 0 2 1 3 4) =) nil

SUBR 2 args

« S' y) is t if s is strictly less than y, and nil otherwise. sand y
must be both fixnums or both flonums.

04/08/74 '1.2 Page S9

MACLISI' RefeNnCe" Malfa81

max LSU8R 1 or more args

max returns the larr.t of its' argument" which mUlt be' numbe

min LSUSR 1 or more args

.1n returns the smallest of ita arguments, which must he numbers.

04/08/74

; i i Ii i i In:11 I

Functions on Numbers

7.3 Conversion

fix SU8R 1 arg

float

abs

(fix ~) convert.s ~ t.o a filtnum or a bignum depending on it.s magnit.ude.
Examples:

(fix 7.3) =) 7
(fix -1.2) =) -2

SUBR 1 a1'g

(f 1 oa t ~) converts ,; to a flonum. Example:

(float 4) =) 4.0

SUBR 1 a1'g

(abs ,;) -) IS'I, the absolute value of t.he number S'.
been defined by:

(defun abs (x) (cond «m1nusp x) (minus x»
(x) »

abs could have

minus SUBR 1 a1'g

minus returns the negative of its argument, which can be any kind of
number. Examples:

ha1part

(minus 1) =) -1
(minus -3.6) =) 3.6

SUBR 2 args

(haipart ,; n) ext.racts n leading or trailing bits from the internal
representation of ,;. ,; may be a fixnum or a bignum. n must be a
fixnum. The value is returned as a fixnum or a bignum. If n is
positive, the result contains the n high-order significant bits of
abs(~). If n is negative, the result contains the abs(n) low-order
bits of abs(%). If abs{n) is higger than the numher of significant
bits in %, abs(%) is returned.

04/08/74 'l.3 Page 61

MACLISP Reference MaRual

E:lamples:
(ha1part 34567 7) .> 162

(ha1part 34567 -5) .> 27

(ha-1plrt -34567 -5) II> 27

7.3 04/08/'14

Functions on Numbers

7.4 • Arithmetic

plus

General Arithmetic

LSUBR 0 or more args

plus returns the sum of its arguments, which may be any kind of
numbers. Conversions to flonum or bignum representation are done as
needed. Flonum representation will be used if any of the arguments
are flonums; otherwise fixnum representation will be used if the
result can Cit in fixnum form. If it cannot, bignum representation
will be used.

difference LSU8R 1 or more args

times

difference returns its first argument minus the rest of itl argumen .. s.
It works for any kind of numbers.

LSU8R 0 or more args

times returns the product of its arguments. It works Cor any kind of
numbers.

quotient LSU8R 1 or more args

quot ient returns its first argument divided by the
arguments. The arguments may any kind of number.
Examples:

(quotient 3 2) =) 1 ;fixnum division truncates

rest of itl
(cf. I and 18)

(quotient 3 2.0) =) 1.5 ;but flonum division does not.

(quotient 6.0 1.5 2.0) a) 2.0

addl SU8R 1 arg

(addl s) =) s+l. s may be any kind of number.

04/08/74 7.4 Page 63

MACLISP Reference Man,ual

subl SUIR 1 arg

(sub.! .) -), *"..,1.. ., may be any kind 01 number.

rema'1nd'er SlIaR 2 args

ged

expt

(rema··1nder • y) -) the remainder 01 the division· 01 *" by y. The sign
of the remainder is the same ai' th81 li,A 01, the dividend. The
."C1Hllenta· must .. lixnums or hi,ham ...

SUIR 2' args

(ged % y) .) the greatest common divisor 01 "and. y. The ar,uments
must be lixnums or bignums.

SU&R 2 args

'Y
(e)(pt so y) = so

The exponent 'Y may be a bignum if the base " il 0, 1, or -1; otherwise
'Y must be a Cis .. um. "may be any kind or number.

7.4 04/08/74

I

/

+

/

Functions on Numbers

Fbcnum Arithmetic

LSU8R 0 or more args

+ returns the sum of its arguments. The argum~nts must be fixnums,
and the result is always a fixnum. Overflow is ignored. Examples:

(+ 2 6 -1) => 7
(+ 3) => 3
(+) => 0

;trivial
;identity

LSU8R 0 or more args

case
element

This is the fil.num-only subtraction function. It does not detect
overflows.

etc.

(-) => O. the identity element
(- x) => the negative of x.
(- x y) => x - y.
(- x y z) =) x - y - z

LSUBR 0 or more args

• returns the product of its arguments. The
fixnums. The result is always a fil.num. Overflow
Examples:

(. 4 5 -6) =) -120.
(. 3) =) 3
(1IIl) => 1

;tr1v1al case
;1dent1tyelement

LSU8R 0 or more args

arguments must be
is not detected.

This is the fixnum-only division function. The arguments must be
fixnums and the result of the division is truncated to an integer and
returned as a fil.num. Note that the name or this function must be
typed in as II, since LISP uses I as an escape character.

etc.

(f I> a) 1, the identity element.
(I I ~) a) the fix.num reciprocal of ~, which

is 0 if I~I) 1.
(I I ~ y) =) ~/y.

(I I ~ y .) => (~/Y)/%.

04/08/74 7.4 Page 65

1+

1-

\

MACLISP Reference Manual

sUaR 1 arg

(1+ so) -> s+l. s mUlt be a filtRum. The result. i. alway. a filtRum.
Overflow i. i,norN.

SU6R 1 arg

(1- so) -> s-1. s must be a filtnum. The resu'lt is alway. a filtnum and
overflow is Rot detected.

SU8R 2 args

(\ " y) returns the remainder or s divided by y. with the sign of s.
sand y must be fixnums. Examples:

(\ 5 2') =) 1
(\ 65. -9.) =) 2
(\ ~6S. 9.) =) -2

Page 66 04/08/74

Functions on Numbers

Flonum Arithmetic

+$ LSU6R 0 or more args

+$ returns the sum of its arguments. The arguments must be flonums
and the result is always a nonum. Examples:

(+$ 4.1 3.14) => 7.24
(+$ 2.0 1.5 -3.6) => -0.1
(+$ 2.6) => 2.6 ; trivial case
(+$) => 0.0 ; identity element

-$ LSU6R 0 or more args

/$

Thi. is the flonum-only subtraction function.

(-$) -> 0.0, the identity element
(-$ s) -> the negation of s.
(-$ s y) -> s - ~
(-$ s y %) -> s - y - ~

etc.

LSU6R 0 or more args

illS returns the product of its arguments. The arguments must be
lIonums and the result is always a nonum. Examples:

(illS 3.0 2.0 4.0) => 24.0
(111$ 6.1) => 6.1 ; trivial case
(111$) => 1.0 ;identity element

LSU6R 0 or more args

This is the nonum-only division function. Note that the name of
this function must be typed in as lIS, since LISP uses / as an escape
character.

(//$) => 1.0, the identity element
(/1$ s) -> the reciprocal of s.
(11$ s y) -> sly
(//$ s y.) -> (sly)! ••

etc.

04/08/74 7.4 Page 6'7

MActISP Reference Manual

1+$ SU6R 1 a1"g

\ (1+$ s) .) .+1.0. s -must be • flonum. The reault is alw.ys a Ilonu ..

1-$ SU6R 1 11"9

(1-$ s) .) .-1.0. • must he a flonurn. The Il i. alwa,. • liOn

'a,. 68 1.4 04/08/'14

hi

Functions on Numbers

7.5 Exponentiation and LOI Functions

sqrt SUBR 1 arg

(sqrt s) -> a flonum which is the square root or the number s.

1sqrt SUBR 1 arg

(1 sqrt s) -> a lixnum which is the square root or s, truncated to an
integer.

exp SUBR 1 arg

(exp s) - fJ

log SUBR 1 arg

(109 s) • the natural log or s.

04/08/74 7.5 Page 69

4

MACLISP Reierence Manual

7.S Trilonometric Functions

51n SUBR 1 arg

cos

atan

(5 1 n t;) gives the tr.igonometric sine or:l'. • is in radians. • ...ay be
a lixnum or a flonum.

SUBR 1 arg

(cos so) returns the cOline 01 S'. • i. in radians. so , be a IIx
or a 1I0num.

LSU8R 1 or 2 Irgs

(a tan so) returns the arctangent or :1', in radian.. :I' and y IU, ..
lixnums or lIonums. (atan so y) retur. the arctan,ent 01 ./7, i.
radiana. y may he 0 as lon, .. :I' i. not allO O.

Pal'. '10 ''1.6

iliia Ii; i i -'

Functions on Numbers

7.7 Random Functions

random LSU8R 0 or 1 arg

(random) returns a random fixnum.

(random nil) restarts the random sequence at itl beginning.

(random ~). where ~ is a fixnum, returns a random fixnum between 0 and
%-1 inclusive.

zunderflow SWITCH

If the value of zunderflow is non-nil, floating point arithmetic
underflow will produce a result of 0.0. If t.he value of zunderr 1 ow is
nil, any underflows that occur will cause fail-acts.

04/08/74 7.7 Page 71

MACLISP Reference M'an"'}

7.8 - LOlicl' Operations on Numbers

boola lSU8·R 3· or more &rgs

lsh

rot

(bool. "s y) computes a bit by bit Boolean function of the fixnums "
and y under the co.trol of Ie. Ie must be a fixnum between 0 and 11
(oct.l)~ If the' binary represen'tation. of Ie is- .beri, then the truth
table" fot' the IdOlean· operation is:

y
101

01 a c
x I

11 b d

If boola hal more'· th'an t.hree arguments, it ,Gel frOM left to rich"
thus

(boo'le' k x y z) • (boole k (bool. k x 1) Z)

The most common values for Ie are 1 (and), 'I (or), 6 (xor). You can
,.et the complement, or logical negation, or s by (boo 1 e 6 " -1).

SUBR' 2 args

(1 sh s y), where sand yare fixnums, returns • shi'hed left y bits if
y is positive, or' s shifted right Iyl bits if " is negative. 0 bits
aJ"1 shifted in to rill unused positions. The result il undefined if
Iyl > 36~ Itxamples:

(lS'h 4 1) => 10 (octa-1)
(15Ft 14' -2) => 3
(l$h -1 1) => -2

SU8R 2 a1"gs

(rot' s y) returns as a fixnum the 36-bit representation or s, rotated
left y bits if y is positive, or rotated right Iyl bit.1 if y i.
negative. sand y must be fixnums. The resulta are undefined if 171
> 36. E~amp}es:

(rot 1 2) => 4
(rot -1 7) -> -1
(rot 601234 36.) => 601234
(rot 1 -2) =) 200000000000 (octa1)

1.8 04/081'1'

Character Manipulation

8 Character Manipulltion

8.1 Chlrlcter Objects

An atomic symbol wit.h less than two characters in its pname is often
called a "character object." and used to represent an ascii character. The
atomic symbol with a zero-length pname represents t.he ascii null character,
and the symbols with I-charact.er pnames represent the character which is
their pname. Functions which take a character object as an argument.
usually also accept a string one character long or a fixnum equal to the
ascii-code value for the character. Character objects are always interned
on the obarray (see section 6.3), so they may be compared with the function
eq.

asci; SU6R 1 arg

(asci i x), where s is a number, returns the character object for the
ascii code s.
Examples:

(asci; 101) =) A
(ascii 56) =) I.

maknam SU6R 1 arg

maknam takes as its argument a list of characters and returns an
unint.erned at.om whose pname is determined by the list of characters.
The charact.ers may be represented either as fixnums (ascii codes) or
as character objects. Example:

(maknam '(a' b 60 d) =) abOd

implode SU6R 1 arg

imp lode is the same as maknam except that the result.ing atom is
int.erned.

04/08/74 8.1 Page 73

MACLISP Reference Manual

e)(plode SU6R 1 arg

(exp lode s l returns a, list of characters, which are the characterl
t,hat wau-ld have' been typed out if (prin1 S') wal done, including
slashes for special characters but not including extra newlines
inserted to prevent characters, from running of(the right margin.
Each character. il represented by a character object.
Exa ... ,le:

e)(plodee

(e>cpl'od,e·: '(+.1/2 3» => (Ie. + I II 11 12 I 13 I))
;;N,te the presence of ,laslliCied spaces in this list.

SU6R 1 arg

(exp 1 odec s) returns a list of characters which are the characters
tlt.at would, haY,e been typed out if (prine *') was done, not including
e.tra newlines inserted to prevent characters from running off the
right marg.in. Special characters are no,t tdalhilied. Each character
is represented by a character object.
Example:

(explodec '(+ Ix 3» => (I(+ / /1 x I 13 I))

exploden SUBR 1 arg

(exp, 1 o,den ~) returns, a list of characters which a,re the characten
th,_, would.. h.av:8' been, typed out if, (prine .) was done, not' includin,
extr.a newline.s. inser,ted to prevent lines characters from running off
the dgnt mar;gin. Special characters are not Ilashified. Each
character il represented, by a number which is the ascii code for that
ch.aracter. cr. exp 1 odec. Example:

(exploden '(+ Ix 3» => (50 53· 40 61 170 40 63 51)

flate SUBR 1 arg

flate returns the length 01 its argument in characters, if it was
printed out without slashifYing special characters. (r 1 ate s) is the
same as (1 eng,th (exp 1 odee S'».

flatsize SU6R 1 arg

f 1 a ts ; ze returns the length of its argument in characters, if, it was
print.ed out with special characttrs slashified. (flats ize s) is the
same as (1 ength (explode S'».

Page 74 al 04/08/'14

fi' d i"

Charac,er Manipulation '

readlist SU8R 1 arg

The argument to readl1st is a list of characters. The characters may
be represented either as fixnums (ascii codes) or as character
ohjects. The characters in the list are a5lembled into an
S-expression as if they had been typed into read (See chapter 13 (or a
description of read.) If macro characters are used, any calls to
read. readch. tyi. or ty1peek in the macro character functions take
their input from read 1 ists's argument rather than (rom an 1/0 device
or a lile.
Examples:

(readl1st '(a' b c» =) abc
(readl1st '(I(p r 151 n t / I' f 0 0 I) »

=) (print (quote foo»

Note the use of the slashified special characters lelt parenthesis,
space, quote, ri,ht parenthesis in the argument to read list.

04/08/74 8.1 Page '75

'MACLISP Reference Manu.l

8.2 Functions on Strinll

These character string ~unctions only exist at ,present in the Multics
implementation 01 MACLISP. A predicate to test ir your implementation has
these 1 unction.s is

(status reature strings)

These functions all 'aceqt atomic symbols in place of :Strings as arguments;
in ihis case ,th~ pname 'Of ,the atomic symbol is uled a. the strin,. When
the value of one of these functions is described as a strin,. it is always
a string and never anatomic symbol.

catenate LSU&R 0 or more a..-gs

The arguments are character strings. The relult is 'a strin, which is

index

all the arguments concatenat.ed together. Example:

(catenate "abc" "." "bar") a) "abc-bar"

SU8R 2 args

index is like the PL/I builtin (unction 'index. The arguments are
eha'racter .,trings. The pOSition of the ,first otcurrence of the second
argument in ,the first is returned, or 0 if there ia none. Examples:

(index "roobar" "ba-") =) 4
. (1nd'8x "fooba1''' "baz") => 0
(1ndex"goobababa" "bib") =) 4

str1nglength sUaR 1 a1'g

T'he ·argument ,tostr1nglength must be a character strin,. The numher
of characters in it is ret.urned. Examples:

(str1nglength "foo") =) 3
(str1nglength) => 0

substr LSUBR 2 or 3 arg$

This is like the PL/I substr builtin. (substr s 1ft n) returns a string
n characters long, which is a portion of the string ,; beginning with
its m'th character and proceeding for n characters. m 'an'd n mUlt be
fillnums, s must be a string.

(substr :¥ m) ret.urns the ptJrtion of the string ,; beginning with its

8.2 04/08/14

it

/

Character Manipulation

m'th charact.er and cont.inuing until the end of the strin,.
Examples:

(substr "foobar" 3 2) .> nob"
(substr "resultmunger" 6) -> "tmunger"

get"pname SUBR 1 arg

eta I

ItaC

(get"pname ~) returns the pname of ~ as a character string. ~ mus.. be
an atomic symbol.

SUBR 1 arg

make_atom returns an atomic symbol, uninterned, whose pname is given
al a character string argument. Example:

(make_atom "foo") => foo ;wh1ch is not eq to a'
;foo that is read in.

SUBR 1 arg

Cta I returns as a fbnum the ascii code for t.he first charact.er of its
argument, which must be a string.
Example: (Ctol "z") => 172

SU8R 1 Irg

I toC returns a string one character long, consisting of the character
whose ascii code is t.he argument..
Example: (ItoC 101) => "A"

04/08/74 8.2 Page '1'1

MACLISP R.,ference Manu ••

Th.ia page intentionally left blank.

8.2 04/08/14

-'

I

Functions Concerning Arrays

9 Functions Concerning Arrays

MACLISP provides arrays of any number of dimensions. The contents of
the arrays can be any LISP objects. The different elements of an array
need not be of the same type.

An array is implemented al a space in which to keep, the cont.ent.s of the
array and a function to access it. The name of the function is the name of
the array. The arguments to the function are the subscripts. LISP arrays
are always O-origin indexed, that is, the subscript values start at O. The
subscripts must be filtnums. The array-accessing function returns as its
value the content.s of the selected array cell and al a side-effect laves a
pointer to this cell for the use of the store function (see below). The
functional property of an array-accessing function il kept under the
indicator array.

There is a special type of array called an "un garbage collect.ed" array.
If an object other than an atomic symbol is only referenced from an element
of a normal array, that object will stay around, but if an object is only
referenced by an element of an un garbage collected array then the object
will be taken away by the garbage collector and the element of the un
garbage collected array will be changed to something random. In other
words, un garbage collected arrays do not protect the objects they contain.

Some implementations of MACLISP also have "number arrays," which can
only hold either fixnums or lIonums (but not both). They are more
efficient for this purpose than regular arrays. The construction and use
of number arrays is the same as described below, except that a special nag
is specified when a number array is initially constructed. See the ~array
function described below.

Here is an example of a use of arrays:

(array x t SOO.)
(array y t 500.) ;define 2 arrays
(do i 0 (1+ i) (= 1 (cadr (arraydims 'x»)

(store (x 1) (//$ (float 1) 100.0»
(store (y i) (s1n (x i»)

) :end loop
(plot 'x 'y) ;ca1l a plotting routine

;for example, the following:

(defun plot (xarr yarr)

04/08/'14

(cursorpos 'C) :erase the display
(do i 0 (1+ 1) (= i (cadr (arraydims xarr»)

(cursorpos
(yarr i)
(xarr 1»

(pr1nc'I.»)
;move plotting device to
;pos1t1on and put a dot there.

9. Page '19

r

--
MACLISP Reference Man .. al

*array LSUBR 3 or more args

(*array ~ y 61 62 .•• 6n) defines ~ t.o be an n-dimensional array. The
first subscript may range from 0 to 61-1, t.he second from 0 to 62-1,
etc. If y is t a normal array is created, ir y ia nil an ·un garbage
collected· array is created. Ir 'Y is the atom f 1xnum or the atom
f 1 anum, then a number array would be created.

array FSU8R

(array ~ y 61 62 ..• 6n) is likf' (*array ~ y 61 62 ._ 6ft) except that
so, t.he name or the array, and y, t.he type of array, are not e.aluat.ed.
The ot.her arguments are evaluated.

*rearray LSUBR 1 or more args

*rearray is used to redefine t.he dimensions or an array.

(* rea r ray ~) gets rid or
evaluate to an atomic symbol.
if it was not.

the array s. • is evaluated - it must
The value is t if it was an array, nil

(* rear ray x type d iml d 1m2 ... d 1mn) is like (* array x type d 1ml d 1m2
. .. d1mn) except that the contents of the previously existing array
named x are copied into the new array named x.

store FSUBR

The first argument to store must be a subscripted reference to an
array. The second argument is evaluated and stored int.o t.he
referenced cell of the array. store evaluate. its second argument
before its first argument.
Examples:

(store (data 1 j) (plus 1 j»

(store (sine-va-lues (f1x (*$ x 100.0»)
(s1n x»

arrayd1ms SU6R 1 arg

(arrayd 1ms s), where ~ evaluates to an atomic symbol which is an array
name, returns a list of the type and bounds of t.he array. Thus ir A
was defined by (array A t 10 20),

Page 80 9. 04/08/74

1 1

Functions Concerning Arrays

(arrayd1ms 'A) =) (t 10 20)

bltarray SUBR 2 args

b 1 tar ray is used to copy one array into another.

(b 1 tarray :II: y) moves the contents of the array :II: into the contents of
the array y. If:ll: is bigger than y, the extra elements are ignored.
If " is smaller than y, the rest of y is unchanged. :II: and y must
evaluate to atomic symbols which have array properties.

f111array SUBR 2 args

(f111array IJ L) fills the array IJ with consecutive items from the list
L. If the array is too short to contain all the items in the list,
the extra items are ignored. If the list is too short to fill up the
array, the last element of the list is used to fill each of the
remaining slots in the array. fill array could have been defined by:

(defun f111array (a' x)
(do «x x (cond «cdr x»

(x»)
(n 0 (1+ n»
(hbound (cadr (arrayd1ms a»»

« = n hbound»
(store (a n) x)

))
An extension to the LISP definition is that fillarray will work with

arrays of more than one dimension, filling the array in row-major
order. fill array returns its first argument.

11starray SUBR 1 arg

(1 istarray a"tty-name) takes the elements of the array specified by
array-name and returns them as the elements of a list. The length of
the list is the size of the array and the elements are present in the
list in the same order as they are stored in the array, starting wi th
the zeroth element. If the array has more than one dimension
row-major order is used.

04/08/74 9. Page 81

MACLISP Reference Manual

This page intentionally le't blank.

Page 82' 9. 04/08/74

L

"Mapping" Functions

10 "Mlpping" Functions

M'apping is a type of iteration in which a function is successively
applied to pieces of a list. There are several options for the way in
which the pieces of the list are chosen and for what is done with the
results returned by the applications of the function.

For example, mapcar operates on successive elements of the list. As it
goes down the list, it calls the function giving it an element of the list
as its one argument: first the car, then the cadr, then the caddr, etc.
continuing until the end of the list is reached. The value ret.urned by
mapcar is a list of the results of the successive calls to the function.

An example of the use of mapcar would be mapcar'ing the function abs
over the list (1 -2 -4.5 6.0e15 -4.2). The result is (1 2 4.5 6.0e15 4.2).

The form of a call to mapcar is
(mapcar I so)

where I is the function to be mapped and % is the list over which it is to
be mapped. Thus the example given above would be written as

(mapcar 'abs
'(1 -2 -4.5 6.0e15 -4.2»

This has been generalized to allow a form such as

(mapcar I sol so2 .•• son)

In this case I must be a function of n arguments. mapcar will proceed down
the lists sol, so2, ••• , son in parallel. The first argument to I will come
from xl, the second from x2, etc. The iteration stops as soon as any of
the lists becomes exhausted.

There are five other mapping functions besides mapcar. mapl ist is like
mapcar except that the function is applied to the list and successive cdr's
of that list rather than to successive elements of the list. map and mapc
are like map list and mapcar respectively except that the return value is
the first of the lists being mapped over and the results of the function
are ignored. mapcan and mapcon are like mapcar and map11st respectively
except that they combine the results of the function using nconc instead of
list.

Sometimes a do or a straight recursion is preferable to a map;
the mapping functions sh'ould be used wherever they naturally apply
this increases the clarity of the code.

however,
because

Often I will
name of a function.

be a lambda-type function rather than the atomic-symbol
For example,

04/08/74 10. Page 83

MACLISP Reference Manual

(mapcar '(lambda' (x) (cons x something» some-list)

The functional argument to a mapping function must he acceptable to
apply: it cannot be a macro. A lexpr or an fs-ubr _ ma, be acceptable however
the resultl will be bizarre. For inltance, mapping Sit works better than
mapping setq, and mapping. cGnd is unlikely to be uiefui.

It is permissible (and often useful) to break out of a map by use of a
go, return, or throw in a lambda-type lunction bein, mapped. This is a
relaxation of the ulual prohibition alainst "non-local" go's and return'&.
Consider th-is fu"'ion which is similar to and, except that it works on a
list.

Cdefun andl (x)
(catch

(progn
(mapc (function (lambda (y)

x)
t)

the-answer»

(or y (throw nil the-answer» »

Here il a table .howing the relations between the lix map functions.

returns

Page 84

applies function to

successive
subl1sts

successive
elements

~~-~-------~---+--~-----------+---------------+
its own
s-econd

atgument
map mapc

---------------+--------------+---------------+
list of the
function
results

mapl1st mapcar

---------------+--------------+----------~----+ ntone of the
function
results

mapcon mapcan

~------------~-+----------~---+---------------+

10. 04/08/74

'''''A

map

mapc

"Mapping" Functions

LSU8R 2 or more args

The first argument to map is a function, and the remamlng arguments
are lists. map "goes down" the lilts, applying the (unction to the
lists each time. The value returned by map is its second argument.
map stops as soon as one o(the lists is exhausted. Example:
(map '(lambda (x y z) (print (list x y z»)

'(1 2 3 4) '(a bed e) '(+ - !lie I»
prints
«1 2 3 4) (a bed e) (+ - !lie I»
«2 3 4) (b c d e) (- !lie I»
«3 4) (c d e) (!lie I»
«4) (d e) (I»
and returns (1 2 3 4).

LSU8R 2 or more irgs

mapc is just like map except that the function i.
successive elements of the lists rather than to the lilts
Thus the example given under map would print
(1 a +)
(2 b -)
(3 c !lie)

(4 d I)
and return (1 2 3 4)

applied to
-themselves.

mapcar LSU8R 2 or more args

mapcar is like mapc except that the return value is a list of the
results of each application of the (unction. Thus the example given
with mapc would return, not (1 2 3 4), but
«1 a .) (2 b -) (3 c !lie) (4 d I»

maplist LSU8R 2 or more args

map list is like map except that the return value is a list of the
results of each application of the function. Thus the example given
with map would return, not (1 2 3 4), but
(((1 2 3 4) (a· bed e) (+ - !lie I» « 2 3 4) (b c de) (- !lie I» « 3 4)
(c d e) (!lie I» «4) (d e) (I»)

04/08/74 10. Page 85

r

MACLISP Reference Manual

mapcan LSU8R 2 or more arg:s

mapcan is, like mapcar except that .. he •• Iu. reiurned by the
are ncone'eel together in.tead 01 hein, list·" tOlether.
example would ret.urn
(1 a + 2 b - 3 c * 4 d I)

na.pcon LSUBR 2 or more args

function
Thul the

mapcon is like mapl1st except that the values returned .y t.he funct.ion
are nconc"ed together instead of bein, l1st'eel to,ether. This can
have disastrous enacts on the ar,uments to Iftapcon if one is not.
careful. The example would return
((1 2 3 4) (,. bed e) (+ - * I) (2 3 4) (b cd .. e) (- * I)
(3 4) (c d e) (* I) (4) (d e) (I»

Page 86, ,10.

Sorting Functions

11 Sortinl Functions

Several functions are provided for sorting arrays and lists. These
functions use algorithms which always terminate no matter what sorting
predicate is used, provided only that the predicate always terminates.
Thf'sC sorts are not necessarily stable, that is equal. items may not stay in
their original order.

After sorting, the argument (be it list or array) is rearranged
the case of an . array
the elements of the array,

internally so as to be completely ordered. In
argument, this is accomplished by permuting
while in the list, ease, t.he list is reordered by
manner as nreverse. Thus if the argument. should
must sort a copy of the argument, obt.ainable
appropriate.

rp 1 lcd's in the ,same
not be clobbered, the user
by bltarray or append, as

Should the comparison predicate cause an error, such as a wrong type
argument error, the state of the list. or array being sorted is undefined.
However, if the error is corrected the sort will, of course, proceed
correctly.

Both sort and sortcar handle the case in which their second argument is
the function alphalessp in a more efficient manner than uS1;lai. This
efficiency is primarily due to elimination of argument. checks at comparison
time.

sort SUBR 2 args

The first argument to sort is an array (or list), the second a
predicate of two arguments. Note that a "number array" cannot be
sorted. The predicate must be applicable to all the objects in the
array or list. The predicate should take two arguments, and return
non-nil if and only if the first argument is strictly less than the
second (in some appropriate sense).

The sort function proceeds to sort the contents of the array or
list under the ordering imposed by the predicate, and returns the
array or list modified into sorted order, i.e. its modified first
argument. Note that since sorting requires many comparisons, and thus
many calls to the predicate, sorting will be much faster if the
predicate is a compiled function rather than interpreted.

Example:

04/08/'14 11. Page 8'1

MACLISP Reierence Ma .. ual

(defun mostcar (x)
(cond «atom x) x)

«mostcar '(car x»»)

(sort 'fooarray
(,funct10n (lambda' (x y)

(alpha'lessp (moste,r x) (fIIC)stcar y»»)

If fooarray con·tained t.hese items before the lort:

(totens (the lion '$ 1 eeps ton 1 ght))
(carpenters (close to you»
«rolling stones) ,(brown sugar»
«beach boys) (1 get around»
(beatles (1 want to hold your hand»

then after the sOrt fO'oarray would contain:

«beach boys) (1 get around»
(beatles (1 want to hold your hand»
(carpenters (close to you»
«rolling stones) (brown sugar»
(tokens (the lion sleeps tonight»

sortear SU8R 2 args

sortcar is exactly like sort, but the items in the array 01' list
being sorted should all be non-atomic. sortc6r takes the car of each
item belore handin, two items to the predicate. Thus sortear is to
sort .smapcar is t.o map11st.

Page 88 11. 04/08/14

Functionl for Controlling the Interpreter

12 Functions for Controllin, the Int.rpr.t.r

12.1 The Top Level Function

When
form.

LISP i. at ita -top level: it continually evaluates the lollowin.

(errset (setq Ar nil Aq nil ...) ;reset 1nterna'l variables
(mapc 'eval errl1st) ;(come in here on error)
(setq lit 'lit)
(do nil (nil) ;then do the following forever

(setq lit (cond «status toplevel)
(eva'l (status top 1 eve 1))) ; user's

(t (print lit) ; system' s,
(terpr1) ;print prevo result
(eva'l (read») : read and eva 1 next.

»»

which caUles a -read-eval-print loop: i.e. each S-expression' that il typed
in gell evaluated and the value is printed, then the next S-expreuion i.
read. Notice that there il a place in the middle where the user can inlert
his own lpecial form to be evaluated, using (status top 1 eve 1). See the
sstatus function (section 12.7).

When the LISP subsystem is entered, it is at top level. At thil time, a
* il typed out and LISP beginl continually evaluating the top level form.
LISP can return to top level from the middle of one of these evaluationl
when an error occurs. Generally errors do not immediately return to top
level; rather they ,ive the programmer a chance to lind the cause of the
error. However, if an error il not corrected it will eventually ,et to top
level unless there il an errset in the way. When LISP returnl to ill' top
level, it a,ain types a * and begins continuoully evaluating the top level
form.

errlist VARIABLE

The value of errlist il a list of forms which are evaluated when
control returns to top level either because of an error or when an
environment is initially started. This feature is used to provide
sell-startin, LISP environments and to provide special error handlinB
for subsystems written in LISP.

04/08/74 12.1 Pa,e 89

MACLISP Belerenee Man_l-

VARIABLE

The 9alue or * il the result- 01 the lat· •• a1uation- perlonneci a' to,
le.el or in a break loop. Wh. the Ii.p •• iron ' ia lint
and .hen- control ii' returned to to,- l8gel Irom' an, error, the .al.. 01
• ie the-atomic .)'Iftbol .. i&lel'.

Page 90" 12.1 04/01/1.

/

12.2

break

Functions for Controlling the Interpreter

FSUBR

(break ,og prei) evaluates prell, but not ,og. II the value of pred.
is not nil, the state of the 1/0 system is saved, -: bkpt 'og- is typed
out, and control returns to the terminal. We say that a -break loop·
haa been entered. 'Gg may be any object. It is used only .. •
message typed out to identify the break. It is not evaluated.

Forms may be typed in and evaluated as at top level. break does an
errset so that errors cannot cause an abnormal return from the break.

If Sp is typed in, break returns n 11. This -Sp- is <dollar> p
<newline> 'in the Multics implementation, but <altmode> P <space> . in
the pdp-tO implementations.

If (return s) is typed in, break evaluates s and returns that
value. When break returns, the state or the 1/0 system is restored.

break can be used to allow user intervention in a program when
something unexpected happens. It is used in this way by the LISP
error system.

(break ,og pretl lorm) i. the same • (break ,og prei) except that
if Sp i. typed, the lorm is evaluated and used as the value of the
break instead 01 nil.

04/08/14 12.2 Page 91

MACtlSP B,fereMe Mamae'-

12.3 • Control Chlr.t.,.

LISP can he directed to take certain actionl b, ent,rin, -COlI'")
characters- from the terminal. The difference between control eharacten
and' normal input il that control characters take' elleet .. soon as the,
entered while normal input only takes effeet when LISP askl lor it, by use
of functionl luch as read. or b, being in the top le.el read,-e.al-print
loop or in a blUk loop.

Control characte ... can be typed in from the termin.1 accordin, to tOme
,rocedun that depends on the implementation. A pro,ram can mimic the
effects of the .al'ioul control characters usbt, the funetion 10c.

Althou,h control characten .re uluaU, processed .. soon as the, are
typed, they will be delayed if there is a ,arb.,. collection. in pro
LISP ia in (no1nterrupt t) mode - see the no1nterrupt lunetion.

Ent.,lnl Control Charlet.,. in ITS USP

In the ITS implementation 01 MACLISP, control char.cter. are entered t.y
means 01 the -CTRL - key on the terminal. For, example, CTRL/G il enteretl It,
holding down -CTRL - .nd striking the -C- ke,. Control characten eeho ..
an uparrow or circumflex followed b, the character. N may net ..
used .. ~trol ch,.r.cte

Ent.rinl Control Char.t.r. in. DEC-! 0 LISP

Control characters may be entered in the same way as in ITS LISP if LISP ia
currently (read)-ing from the terminal. If a LISP progr.m i. .cti •• ly
rannin" it ia necessary to fint ,ain ill attention by Itrillin, coatrol-c'
LISP rin,. the bell and types a ? aftd aa up-arrow, promptin, lor the eMa7
01 • character to be treated .. a control character. II 108 type a
control-C control will return t.o the monitor.

Enterinl Control Charlet.,. in Multics LISP

Pa,e 92 l2.3 04/OIft4

Functions for 'Controlling the Interpreter

In the Multics implementation of MACLISP, one signals one's desire to
enter a "control" character by hitting the "attention" key on the terminal.
This is called "break," "interrupt: "attn", "quit," etc. on different
terminals. If Multics is heing accessed through the ARPA network, an
"interrupt process" signal should be transmitted. This causes lisp to type
out "CTRL/" After this has been typed, you may type one control character,
which i. a letter from the list in section 12.3.3 which will be interpreted
to have its "control" meaning. The control character must be followed by •
newline.

Y 00 may also enter a number, which will be interpreted in decimal. A
user interrupt will be issued on the user interrupt channel indicated by
the number you typed in. If there is no such interrupt, or the interrupt
service function for that channel is nil, no warning will be issued. The
argument passed to the interrupt service function is the atom 10c. The
most useful interrupt channel numbers are 0, which i. the same as CTRL/G;
1, which is the same as CTRL/h, and 2 which is the same as CTRL/a (exactly,
including the changing of the value of the atom "a). Note that certain
characters, notably a, may have special meaning to the Mullica typewriter
DIM and may have to preceded by a backsla.h.

Note: any input that has been typed in but has not yet been read by lisp
when the attention key is pushed will be lost. Usually this il the current
line of inpu L

It is also possible to enter "control" characters from an input
character stream, which may have its source at the terminal or in an
exec_com, without the use of the "attention" key. The' desired control
character is prefixed by a \036 character. If two of these prefix
characters occur together, one \036 character is read and no "control"
action is performed. Otherwise, the character following the \036 is
processed 81 a control character, then reading continues. This method only
works with the letter and special-symbol control characters, not with the
number control characters.

NB: Control characters will be accepted in upper or lower case. All
characters other than those with defined meanings are rejected with an
error message. Only one control character may be entered at a time. When
a "user interrupt" is caused, if the interrupt is not enabled nothing
happens. II the interrupt is enabled, then a user-specilied function is
called. The interrupt may be enabled by using the function sstatus. E.g.:
(sstatus interrupt 2 'fOO) causes fOO to be called with one argument when
interrupt 2 occurs.

04/08/74 12.3 Page 93

I

MAeLISP R.I.re.ce Ma ••• 1

Example: (linea cofttainin, uter input are preceded ., »»

») (de.'un loop (x) (loop (add! x»)
loop

») (loop t)
'unction runs 'or a· long time,

») <ATTN) then user hits attention button.
») CTRL/B LISP types "CTAl/" , user types "8"
»> ;bkpt Ab system enters break loop
»> x user looks at va'lue of x

4067
») <ATTN> user hi'ts attention button aga-1n
»> (TRL/G and returns to top level

Quit

--

P ... 94 12.3 04/08/'1'

Functionl for Controlling the Interpreter

12.3.1 - L1.t of Control Char.te,.

These are the control characters that have defined meanings

A makes the value of the atom Aa" non-nil and caUles user interrupt
2.

B cauleS user interrupt nunaber 1, which (usually) enters the -bkpt
I\b - break point.

C seta the value of the atom Ad to nil, turnin, off ,arbale
collector messa,es

D sets the value of the atom Ad to t, turnin, on ,arba,e collector
messages

G quitl back to top level of lilP, undoing all bindings

Q lets the value or the atom Aq to t, enablin, input from the
source selected by the value of 1nfl1e, or by use of the function
uread.

R sets the value of the atom Ar to t, enablin, output to the
destinationl lelected by the value of outf11es, or by use 01 the
uv rite function.

S setl the value of the atom Aq to nil, enabling input from the
terminal

T sets the value of the atom Ar to nil, disabling output to the
destinations that CTRL/r enables.

U causes the current call to (read) to be restarted from the
beginnin,.

v sets the value 01 the atom A" to nil, enabling output to the
terminal

sets the value of the atom AV to t, disablin, output to the
terminal

x causes an error which can be caught by errset

Z On the pdp ... l0 returns to DDT. On Mullica returns to Multia
command level. (Itart re-enters lilp.) Thil control character i.
handled immediately even when LISP il garbage collecting or
running in (no1nterrupt t) mode, unlike most 01 the others.

a causes user interrupt O. Note that on Multica an escape must be
used to type the a sign.

04/08/'14 12.3.1 Pa,e 95

•
MACLISP Relerence Manual

\ causet uler interrupt 14. Note that on Maltica an elC8pe mut he
ased to type thil hackll.h character.

] causes Uler interrupt 15.

1\ causes aser interrupt 16.

The lollowinc control characters only exiat in the Multica
implementation.

does nothing, used to speed up a slow process h, causing an
interaction. This control character is handled immediately "en
wilen LISP is ,arbage collecting or running in (no1nterrupt t)
mode, unlike most 01 the others.

, asks the LISP subsystem what it i, doing: running, .aiting lor
input, collectin, ,arba,e, or runnin, with user-interrupta m.,ked
011.. This control character is handled' immecl'iately even .hen
LISP il garhage collecting or runnin, in (no1nterrupt t) mode,
unlike most 01 the others.

The lollowing control characters only exilt in pelp-l0 implementations
with the -moby I/O- capahility.

F cause display Ilave to seize a dilplay.

N turn on display.

o tum 011 display.

Y interro,ate display Ilave.

The lollowin, control characterl only work in the pdp-l0 implementation.

K redisplay the current input. Thil allows you to ,et a cl_ cop,
01 ,our inpu,t arter rubouu have been uled.

L erases the screen il the terminal is a display, then does •
control I..

U il the terminal is a dilplay, and in (sstatul pagepause t) mode,
and the end 01 the lereen ha. heen ,reached, typin, control a will
tell Ii.p to continue t,pin, out.

P.,8 " 12.3.1 04/08/14

i i

Functions lor Controlling the Interpreter

12.3.2 • Control-Ch.ract.r Functions

iDe

10g

FSUBR

The argument to 10e is processed a8 if it were a ·control character·
that had been typed in. Numben are taken as a whole, pname atom.
(atomic .ymbols) are processed character by character, except that n 11
C8Q" an immediate return. Examples:

(1 oe 1) causes user interrupt 1.
(ioe vt) switches output to the terminal.
(ioe q) switches input to a file.
(1oe g) quill hack to the top le.el of lisp.

If 10e returns, its .alue i. t.

FSUBR

10g lint .. ves the .alues of the I/O switches Aq, Ar. and AW. Then
it processes its lirst argument the same .. 1oe. Next the remainin,
arguments to 10g are e.aluated, from left to righL The .alues 01 the
variables Aq, Ar. and Aware restored, and the value 01 the last
argument i. returned. Example:

(1og vt (prine "A Message."»

,ets a messa,e to the console no matter what the I/O .,stem i. .oln ••
It e.aluates to "A Hessage." -

VARIABLE

When a CTRL/a i. done, the .a1ue 01 the atom Aa- i. made. non-nil (.18r
interrupt 2 is also signalled.)

04/08/74 12.3.2 P.ge 9'1

MACLISP Relerenee Manual

12.4 • Errors Ind u.., Int.rrupts

12.4.1 • The LISP Error System

The eno..- detected by the LISP ,ubsystem an divided iato two I.,,..:
correctable and unconectable. The uncorrecuble elTOn wiD be .. pl
fint sinee they are simpler.

An uncorreetable error is an error that causes the destruction 01 t.h..
evaluation in which it occurs. An example 01 an u~rreet"le error is
illegal lormat in a 'do'. When an uncorrectable error oceun, the fint
thing that happens is the printin, 01 an err~r messa,e. The error ... e
goes to the "ermina) and nowhere else, no matter how the 1/0 .witches
v.riables are set. The error meaa,e consists 01 some explanatory text
(sometimes) the object or lorm that caused the error.

Alter the error message hal been prin,ted, control i. ret........ &0 the
most recent error-c;atcher. There is an error-catcher It top le.el,
error-e,atchers are set up by the lunctions errset and breaL AU variule
bi_in.s between "he error-catcher and the point wheN the error OCCQ

are restored. Thu. aU variabl. are restored to the •• Iu. the, at
top level or at the time the errset wat clone, un leu the, setc .. '"
without being"" bound.

What happens next depends on how the error-catcher was set up. At top
level t (mapc ' eva 1 errl1st) is donGt a • is typed, and the react I-print
loop (or a user speciried top level form) is re-enl.ered.. U an erro ..
returns to" break, it .impl, re-enters its read-eval-print loop. I. the
Multics implementation t.he lact that break has caught an error i. li, l.
by dOin, .omet,-,in, to the .. rminal such a. blink in, a Ii,h&, riaci." •
bell, or t.widdlin, the, typeban, depending on the type 01 terminal. II _
error returns to errset, trrset ret.urns nl1 and .v.luation proceed ..

The above description i. sli,htly simplified. It i. possi.1e lor • ...,.
interrupt to occur between the ",pin, 01 the messa,_ and t.he unwi"'i,.. 01
bindings and return 01 control to aq error-catcher. This uer iahrrap' '­
normally a break loop which allows the user to examine the .alu.. of
variabJes belore the hindings are restored t in hope 01 finding the cause of
the error. II the error is gOing to return to top level. the arsel-trap
uler interrupt (number 19.) is Signalled. In (*rset t) mode. break 100'
is entered, but in (*rset nl1) mode the user interrapt i. ipo , &h.
system supplied handler. If the error is ,oing to retum to a br.at or an
errset, the errset user interrupt (number 4) il .i lled. The i.&ial
environment conuins a null handler lor this interrupt, .111. the ..., 1M,
8upply a break loop or other handler.

Correctable erron are erron which' ma, .. correc&e.l ., ~

12.4.1 04/08".

-

Functions f.,r Controlling the Interpreter

intervention. If such an error is
proceed .. if no error had occurred.
not exercised, this type of error
uncorrectable error.

properly corrected, evaluation will
Ir the option to correct the error is
will be handled the same .. an

When a correctable error occurs, a user interrupt is signalled.· See
section 12.4.2 for user interrupt channel assignments for these errors.
The initial environment contains handlers for these errors which print an
error messa,e similar to the message printed for an uncorrectable error and
then enter a break loop.

The argument passed to the user interrupt handler ia uaually a list
describing the error. See section 12.4.2 for details. II the user
interrupt handler is n11, or if it returns a non-list, the error 'is treated
like an aftcorrectable error. But if the handler returns a list, the car or
that liat ia used to correct the error in a way which depends on the
particular error which occurred.

If the most reCent error-catcher is an errset (or a break), correctable
errors will be treated as uncorrectable errors unless there is a non-null
handler lor user interrupt 4, the errset interrupt. This ia to prevent
multiple confusing "nested" error breaks unless the user indicates that he
is sophisticated by setting up a handler for the errset interrupt.

04/08/74 12.4.1 Page 99'

MACLISP Reference Manual

12.4.2 • 'Us., Int.rrupt,

LISP provides a number of "user interrupts," which are a mechanism I.,
wh ich • user -proced ure may temporarily ,ain control when an eaceptiofta)
condition happens. The exceptional conditions ,that UI8 the user i.ten",t
system include 'certain control characters, the alarmclock time.... the
garbage collector, and many of the errors that are ,detected .y ,h.
interpreter ,or 'by -the s,stem functions.

The user interrupts are divided up into several channel.. Each eh.nnel
is designated by a number. Each channel haa auociated with it, a·
function." II the ,service function is nil. interrupti Oft that channel will
be ignored. If the ,service function is not nil, it is a function .hich ~
called with one argument when the user-interrupt occun. The .. atare of ...
argument depends on which channel the interrupt is 0 .. ; u.ually it i& ...
S-espres&ion which 'can be used to localize die cau" of the in lerna,..
Some user in,terru'pta use the value returned by ,the .nice function to
decide what to do about the cause of the interrupL

The service function lor user interrupt ehanne) n can be ohtai by
(status interrupt n). It can be set by (sstatus interrupt It' I). The
initial ,values '£or the service 'unctions of the various interrupt. an
provided hy the system as break I,oops for some interrupt channel. and nil
lor others.

Some user interrupt channels keep '''eir :se"ice ,-funct.ions •• the valaes
of variables accessible to the user; this allows them to 1M lamWa-hoand.
See section '1'2.4.3.

The interrupt channels with entries in the return value column of the
la_ble of user interrup,ts included in this section 'are user iate
signalled hy correctable error conditions. The .rgument t.o the _nice
function is a ,description of the, error in the- lorm Ishown. II the "nice
function retums nil (or any atom), the normal error procedure ocean -
control returns ,to the most 'recent errset or to top ,level if there ... no
errset. If ,the service function 'returns a list, it is interpretetl as the
form shown ,in the return value column. The car of the list ia _eel to
attempt recovery from the error. Note that interrupts , and 9. evaluate
this hefore they use it. In the table, an apostrophe is used to indicate
that the new value for user interrupt 6 will be evaluated unless)'OU , •• le
it. Often you would eive a substitute atomic symbol which woald tJae. ..
evaluated to get the new value. II recovery i. aucc:eufal esecwtiee
proceeds I rom the point where the errOr occurred. If recovery ia
unsuccessful another error is 'ilnalled.

P.ge 100 12.4.2 04/08/'14

iiiii;P -

Functions lor Controlling the Interpreter

Table of User Interrupt Channels

ehn Symbol Whose
Num Value is Fen.

Reason for
Interrupt

Argument passed
to runetion

o

1

2

3

4

5

6

'I

8.

-none- etrl CD nil

I\b etrl b nil

-none- etrl a nil

alarmelock a timer went of(time or runtime

ernet error caught by errset nil

undl-Inetn undelined function (fen)

(Iymb)

(arg)

(bad-tag)

unbnd-vrbl undelined symbol

wrn,-type-ar, bad arg to a ren.

uneeen-go-tag ,0 or throw error

Return
Value

(new-len)

(new-ar,)

(new-tag)

9. wrng-no-ar,s wron, namber 01 args (form argl-prop) (new-form)
or (form lambda-list)

10. ge-loua,e out of memory space-name

11. lail-aet miscellaneous error see below see helow

I!. pdl-overflow inlinite recursion pdl-name (t)

13. re-overllow a space i. liUed .paee-name (t)

14- -none- etrl \ nil

15. -none- etrl] nil

16- -none- etrl 1\ nil

18. -none- autoload (ren . property)

19. *net-trap error return to top level nil

20. re-daemon ,arba,e collection lee below

The fa·il-act interrupt, number 11., is used lor a .ariet)'
miscellaneous error conditions. Here is a table giving the types

04/08/'14 12.4.2 Pare

01
of

101

MACLISP Reference Manu.l-

arguments that may. be passed to the fa'l1-act service function. For each
type the cause of the interrupt and the return value to correct the errol'
are given.

(array 1 ndex (name i""ie6 » An out-of-bounds array acceu occurred OD
the arr.y name. Sometimes it is not possible to determine the name 01
the array, in which case name will he, 1. For esample, this can h.,pen
if. the array has been remob'ed. The return form is «....... -, »
which will retry tlte accell with the new subJCri,ta _.... i.
i.no"'.

(go return-) go or relurn was used outside of a prog. The return .alue doe.
not matter; this, error is not actually corr.ectahle.

(erg (n» The 11'9 function was called with ar,ument... but this ... DOt
done inside a lespr.

(setlrg (n tHaI_e» The function setarg was called with ar,uments n ...
lHIlue and an error- similar to the preceding, occurred.

(iblse) The reader' variahle ibase had a bad value: not a fisnum or not
between 2 and 36~ It is reset to 8. before the user iRtel'l'U,t 0CC1II'L

Retarnin, (t) will cause the reader to contmue readi",.

(base) The prinMI' variable bas,e had a bad value: not a fi&nam or not
be,tw.een 2 and' 36. It is reset to 8. before the UI8.I' interra,t occ.
Retumin. (t) will cause the printer to continue.

(inf 11e ,,) The- input. file s is invalid lor olle reason or anotker. Aq has
been reset to nil. If (l) is returned .y the _"ice function, Aq
will be set back to· t and the function tha,t. lost tryin, to input lrom
s will proceed) taking input from 1nf11e.

(setq (nil» You aren~t allowed to change the value. 01 "11.
(setq: (l» You aren-t allowed to chan,e the value of 1.

(read-eof) The reader found an end of file in the middle of an object.
UsuaUy th,is indicates mismatched parentheses. If (t) is returned, it
will go on reading the broken object from whate.er input source •• w
selected.

(outf11e s) The output file S is invalid for one reason or another. Ar is
reset to nil berore the user interrupt occurs. If (t) is retuned, Ar
will be set back to t and the r unction that l"t trying to output to •
will go on ita way.

(f11epos s) The f11epos runction was used on the fUe s, but this lile i. I
. not -equipped for random access. If ('ne ... -tHJl) i, returned, 'il.po,
returns n8fl1-wl to its caller without further ado.

(f11epos s n) The f11epos function was used in the fonn (filepos • It), but
n is not a position inside the file s. If (') it retu,

Pare 102 12.4.2 0./08/7.

d at ; .'

Functions lor Controlling the Interpreter

f 11 epos returns ne",-veal to itl caller without lurther ado.'

(open1 so), (openo s), (opena' s), (rename s y), (deletef s) The lile system
complained in some way: e.g. file not found, incorrect access. The
argument passed to the service function represents the lorm which was
evaluated to cause the error, except that the values 01 the arguments
are the values they have alter being mergefged over the delaults, i.e.
they are precise namelistl. If (, new-val) is returned, the I unction
that IMt returns nefIJ-tHJl al ita value without lurther ado.

(zunderflov) A floating-point arithmetic underflow has occurred, i.e. a
result was developed whose magnitude was too small to be represented
by the machine. Setting the variable zunderf 1 ow to t would have
prevented the lail-act Irom happening; instead the result would have
been taken as 0.0. Returning a non-atomic value from the rail-act
will cause this to happen.

(quot 1 ent 0) An attempt was made to divide a number by zero. II (s s ta tu s
d 1vov t) has been evaluated, the fail-act would not have occurred.
Instead the result 01 the division would have been taken as the
numerator + 1. Returning a non-atomic value Irom the lail-act causes
this to occur.

Here is an example 01 a user interrupt service function. This is the one
supplied by the system for unbound variable errors when the user does not
specify one.

(setq unbnd-vrb1
, (1 ambda' (args)

(1og vt (errpr1nt nil»
((1 ambda- (read tab 1 e obarray)

(break unbnd-vrbl t»
(get 'readtable 'array)
(get 'obarray 'array) »)

04/08/14 12..4.2 Pa,8 103

MACLISP Reference Ma~ual

12.4.3 u..r Interrupt Functions end Veriebl ..

a-l anne lock SU8R 2 args

,a 1 arme 1 oct is a function for controllin, timers.. It can atart and
atop two .eperate timers; one i. a real-time ti,mer (which count •
• econds of elapsed time) and the other il a epu-time timer (which
counu ·microsecontk of machine ,"un *,ime). The fint arpm .. ' to
a 1 arme lock indicates which timer is hein, ref..... to: it may be th.
atom time to indicate the real time timer or the atom run, f_ to
indicate the cpu-time timer.

The second ar,ument to a-1 anne lock controls .hat is done to the
aelected timer. If it is a positiy. (Ron-bi,) number the timer ia
atarted. Thus if n il a positiye lixnam or nona.... .y.luatin.
(alame lock .' t 1ml n) sets the real-time tUner to ,0 ofl in n MCO
and fa 1 anne 1 ock 'runtime n) seta the cpu.'ime timer to 10 off in n
microsecond.. II 'he timer wal alread, rannin, the old Mttin, it
10It. Thul at any ,iYen time each timer can onl, be nanin, for one
alarm, but the two timers can run liRlultaneoUIl,.

If the second ar,.ment to a-larmclock il not' a positiYe n ... ber, the
timer ia shut off, so (a'larmcloek s n11) or Ca-latmclock s -1) ahuta
off the s timer.

,al.rlnClock r.et~r:ns t if it ltarts a ·timer, nl1 if it shUll it off.

When a timer 'Ioes off, user interrupt 3 oceUN. The aeryice runction
i. run .in (no1nterrupt t) mode 10 that it can not be ,interruptetl .. ntil
it has done its ,thing. If it wantl to aUow 'interrupts, other timen,
,etc. it can evaluate (no1nterrupt nil). .In any ,caae the atata •• f the
noin~rrupt'f1ag will be restored when the service function. ret~1I1'"
The arg-ument passed to the user inter·rupt ..,ryice functioD i. a list
of one element, the atom time or the atom runt 1-. "e,,"illl on 'he
first !lr:,ument in the call to a-larmclock that let .p the ' r. See
alao the f,uRction no1nterrupt.

a-1 anne lock VARIABLE

The value .of a-larmcloek is the service function ror r iDlern"
number 3. which il the user interrupt li,nalled ,when a timer let ., .,
t.he .'larllcloek function ,Gel orf.

04/08/14

-

/
/

Functionl lor Controllin, the Interpreter

no1nterrupt SU8R 1 arg

(nointerrupt t) mutl off LISP interrupti. Thil preventl alarmclock
timen lrom ,oin, 011 and preventl the Ule of control characten luch
al CTRL/, and CTRL/b. Any of these interrupts that occur are aimpl,
.. veL (no 1 nterrupt t) mode il uad to protect critical code in lar,e
lubsystems written in LISP. It is also aaed by the tlSP aab.ystem
itself to protect a,ainst interrupts in the ,arba,e collector.

(no1nterrupt n11) turnl interrupti back on. Any interrupti which were
... ed will now ,et processed.

nointerrupt retuml the preYioal ltate 01 the interrupt disable
Iwitch, t or nil. The normal, initial ltate il nil.

.rrs.t VARIABLE

The .alue 01 the
intelT1lpt nanther
errs.t.

atom .rrset is the Hryice lunction lor 1IMr

4, which il li,nalled when an error il caa,ht by -

faoil-act VARIABLE

The yalue 01 faol1-act il the service
number 11., which il li,nalled when
miacenaneoal error conditionl ocean.

gc-dlelftOn VARIABLE

lunction
any of

lor
a

aler interrupt
lar,e .ariety 01

The .alue 01 gc-daemon il the aervice fanction lor UHr interrupt 20.,
which is li,nalled alter each ,arba,e collection.

gc-lo55lge VARIABLE

The value 01 gc-1055age il the ae"ice lunction lor user interrupt
number 10., which il 'i,nalled when there il no more memory. In the
Multies implementation, there i. alway. enou,h memory, 10 thil .ser
interrupt never ocean.

04/08/'14 12.4.3 Pa,e 105

!
I

unbnd-vrbl 'VARIABLE

The .alue 01 unbnd-yrb 1 i. the .r.ice lanction lor aler interrupt
ftumIMr 6, which ia 'i,nalled when .. attempt i. made to .. al.ate, ,.
atomic .,...HI which d.. not ha.. a .al.e (an an...... .arial ..)

undf-fnctn VARIABLE

-The .-alae 01 ,undf-fnctn i8 the lerYiee l .. netion'lor Her interrupt
ftumlter S, which il .i n.. when an attetnpt it mMe to call _
.. ndeli.... lunction.

uns.en-go-tlg VARIABLE

ne •• lae of unseen-go-tlg i. the _"ice fuaction lor lIMr interra,t
8., which ia .ipaUed when go or throw is with a ta, w1doh .081
not eai.t in the cu nt prog W, or in., catch, .. pecti~.l,.

wrng-no-Irgs VARIABLE

The •• lue ,01 "rng-no-Irgs i. the llnice lueti .. lor interrupt
channel 9., "hieh 'il lignalled when a latlCtion it called with the
wron, .. mher 01 a,gumenta.

wrng-type-arg VARIABLE

The .a1ae 01 vrng-type-arg is the .. "ice 'I.nction lor Uler iaternpt
ftumber 'I. ,which ia li,nalled when an arlUlllent it...... to a .,....
lanction which ia not acceptable to that I.neti ...

-rset-trlp VARIABLE

The .alue 01 -rset-trap ia the _"ice lunction lor user interrapt
19., which il lil'nalled when .. error returna control to top 1...,
jUlt .. rore the hindin.1 are reatored. By con •• ti the h l ... lor
thil interrupt Ihoald not do .. ,thin, ani .. the .ari.ble -r.et il
non-nil.

11.4.3 04/08/'14

, .

{
I

I

'/

Functions for Controlling the Interpreter

12.4.4 Autolold

The "autoload" feature provides the ability for a function not present
in the environment to be automatically loaded in from a file the first time
it is called. When eva 1. app 1 Y. funca 11. or the version of app 1 y used by
compiled LISP searches the property list of an atom looking for a
lunctional property, if the first functional property found is under the
indicator auto load, automatic loading will occur.

Automatic loading is performed by means of user-interrupt 18.; thus the
user may assert any desired degree of control over it. When the auto load
property i. encountered, the user-interrupt 18. handler il called with one
argument, which il a dotted pair whose car is the atomic symbol which i.
the I unction being auto 1 oad'ed, and whose cdr il the value of the auto load
property. The system-supplied handler for user interrupt 18. could have
been defined by:

(sstatus interrupt 18.
, (lambda- (x)

(load (cdr x» »
Note: in the pdp-l0 implementations the system autoload handler presently
uses f,sload rather than load because the load function requires the newio
feature. This affects the form of an autoload property al described below.

When the interrupt handler returnl, it had better have pat a
property on the property list of the function being aatoloaded.
undf-fnctn error will occur with a message such as

"function undefined after autoload"

functional
If not., an

Note that the functional
before the autoload property.

property must be placed on the property li.t
This is normally the case.

Examples of setting up functions to be autoloaded:

In the Multica implementation:

(putprop 'foo ")udd)AutoProg)Library)foo-funct10n" 'autoload)

In the ITS implementation:

(putprop 'foo '(foo fasl dsk me) 'autoload)

04/08/14 12.4.4 Page 101

•

12.5 - Debullinl

12.5.1 Bindinl, P41 Point..... Ind t.. ,Ey~lu~t~r

The MACLISP e.'alu8tor il conceptually based em • p~~~ down list (pdl),
or 'Itack, which holds binding., ev.lua~i~n fr ~ and lun~ry inte al
data. Bindings ,are v:alue& of atomic Iymbols "~,i,~,~ ~rt' ~ve:d w~en the
symbOls :«r-e "u" :. J hda ,v~ri .. ~l., pre. ,~,;,t~}(~ ," ,; 40 .~.blea.
Evaluation frames are constr.ucted ,when .• no.n-"QJriic tD_r.m is evaluated or
when apply is used. They correspond ' to lu .. ~ti~~ ~ll~ - :"

As the ev:alu8tor recursively evalua~ a form, information il pUlhed
onto the pdl and later popped 011. When t~e)1t'7set a~ nouuo fla,1 are t
this .information is "sufficiently detailed "t,o Jte ,~I UH i~ debu,gin,. . (See
the variables * rset ,an~ nouuo.) A position within the pdl may be named by
means 'of a ~pdl poi .. ter" which is ,a n~gat~.,.e fi,a,num ,whose •• Iue has
meanin, to the , •• a1uator. nil il al80 ac~~pted , .. ",a pel I poi~ter. It rae.ns
the top of ,the ; &"ck, ' i.,e. the most recent ,_:~v.aluat,ign~ Note that this ia
dirferent from "nil ",as an a-list pointer~ ,,,hi~" "~'~'I the bottom of the
stack or the outermost evaluation. 0 il also. a~ep~ "M a pdl pointer;
it ,designates "th,e ,,.f,ame, at the bottom ,qf ,th,e ,,:~~C?,k. '"ldl ,poi,,,tenma, he
, used ' as ".r,umenu'to "Hveral ' 4ebuggin, ' fu, .. cti~ftl '·i4.,ri'" i,n the next
" section.

Se.e1'81 ,~of '. the tl,bugging functions ,:,d~cri~ ",!n T,~lte ,.,e,t sect.on can he
',uled ,~to ·',enera,te \,;pcll 'f.,pointers. ,Sift~e thef,ia."m ,"~~,p.' ~"f I,a <"I pointer ha.
only , internal, -meanir." :, ,en~rally ,,' ,pdl pointer., c;a ot :,.. 9btafned from uI.r
input. " . ,

An important th·h.. "to note about pdl poi~:ters ,ia., .~eir limited scope 01
validity. ' 'II " ;the ·,,,inlo ation on the pelJ, which. ,il "':i'~~ by a pdl pointer

, has' "been,;, popped, ,off L aince ·the· ,pdl pointer was crea~" ,the pdl pointer no
longer ,', ha. ,iyalid ' meanin,. . , " , "

12.5.1 04/08/14

f

f

Functions lor Controlling the Interpreter

12.5.2 - Functionl for Debullina

See also Chapter 15, on the trace package.

Note: the functions' below which return "frames" are subject to change.
The exact format of the list returned may vary from time to time and
implementation to implementation, so try it on your implementation and see
what it does. At some time in the luture this will probably be stabilized.

*rset SUBR 1 arg

(*rset .) seta the *net lIag to nil if • is nil, to t if s ia
non-nl1, and returnl the value it let it to. If the *net flag ia t,
ettra information is kept by the interpreter to allow the debuggin.
functions, auch 88 baktrace and eva-lframe, to work.

batc.trace lSUBR 0 to 2 args

batc.trace displays the stack of pending function calls. It only works
in (*rset t) mode. The first argument is a pdl pointer, .. with
eva-l frame. If it is omitted, nil is al8umed, which means start from
the top of the pdl. The second argument is the maximum number of
lin. to he typed,' if it il omitted the entire ltack il displayed.

errframe SUBR 1 arg

errframe returns a list describing an error which has been stacked up
because of a user interrupL The list has the form (pdlptr message
ali s t), where pd 1 ptr is a number which describes the location in the
pdl of the error, message is a character string which can be printed
out al a description of the error, and a-list is a number which can be
used as a lecond argument to eva·l or a third argument to app 1 y to
cause evaluation using the bindings in effect just before the error
occurred.

The argument to errframe can be nil, which means to find the error at
the top of the stack; i.e. the most recent error. It can also be •
pell ptr, in which case the stack is searched downward from the
indicated. position. Thul the second most recent error may he found
by:

(errfra~e (car (errframe nil»)

04/08/74 12.5.2 Page 109

MACLISP Reference Manual

The ar,ument to err,frame may al80 he a positive number. which il the
ne,.tive of a pdl ptr. Thil meanl ltart from the poIition in the
la.ack marked b, the pdl ptr and _reh up

If no error il found, errfra .. 1 returna nil.

errpr1nt SUBR 1 arg

err.pr1nt trea .. iU arlUment the same • .rrfrUte. The m_a ••
portion of the error frame ia pr1nc'ed. errprint retu t if •
....... e w. typed out and nil if no error fr..... ,... loa ·

eva-l'rame SU8R 1 arg

The .rgument to eva-l frame is a pdl ptr, .. with errframe. The pdl is
aearched for .ft ev.luation of • function call, usin, the same nal.
about ltartin, point and direction .. errfra.e .1eI. . eva·l',._ al •• ,.
ski,. over 8fty caUa to itself th.t it finds in the pdL

't1te value ia a list (pdlptr form a-list). where pdlptr is ~ pdl pointer
to the evahlation in the stack, suitable for 1118 • an argument to
eva·l'rame or errframe or baktrace, form is the form bein, evalaated or
the name 0' the function bein, .pplied. and a-list ia aa a-liat pointer
whi~h can be used with eva-l to evaluate lOnlethin, ia the .i"'in,
contelt jll •. t before the evaluation found b, .vl·"r

eV"l'rame returns nil if no evala.tion can .. fo.nd.

eva-l'ra_ onl, works in (*r5.et t) mod ..

'return SUB~ 2 args

('return p s:) returns control to the evaluation desi,nated b, the pell
poi"l.er p, and forces it to return *. Thil wnon_locaI_.otoW '.nc&M.
can be used to do fanc, recovery from erron.

The lollowin, lunctions only exist in the Multica implementation.

baktracel lSU8R 0 to 2 args

bafc.tracel i. the same .. baktrace except that a-list ptn
suitable lor use with eva·l and app11 are displa,ed alon, with the
I unction names.

12.5.2 01,,08/'11,

(
'.

Functions for Controlling the Interpreter

baktrace2 LSUBR 0 to 2 args

baktrace2 il the lame 81 batttracel except that pdl pointer.,
suitable for Ule with baktrace and eva-lframe, are displayed alon, /
with the function namel and a-list pointers.

04/08/14 11.5.2 Pale III

MACLISP Relerence Manual
'1 'I,' ,

1 a.5.3 - An ,~.mpl. of DOUlli"l 1ft Macll.p

TO BE SUPPLIED

, , .. ,,112 12.5.3 04/08/'1.

I iii !iliii: iii ; I

Functions for Controlling the Interpreter

In MACLISP storage for programs and data is automatically managed by the
system. The casual user need not concern himself with storage management
and need not read this section. However, the user who is curious about the
implementation or who has to construct a subsystem on top of MACLISP may
need to be concerned with how the internal storage management routines work
and how to control their general functioning. In no case i. it necessary
to control the exact Itep by step operations of Itorage management, but a
variety of functions are provided to set the general policy followed by the
lisp storage management procedures.

12.6.1 alrbl,_ Collection

Garbage collection is the mechanism which LISP uses to cont.rol storage
allocation. Whenever LISP feels that too much storage is being used, a
garbage collection is initiated. The garbage collector traces through all
the S-expressions which can be reached by car'ing and cdr'ing from atomic
symbols' values and property lists, from forms and temporary results
currently being used by the evaluator, from data used by compiled code, and
from the saved values of bound variables. All the data which it finds in
this way is "good" data, in that it is possible lor it to be used again.
Everything else is garbage, which can never again be used (or anything
because it cannot be accelSed, so the storage used by it is reclaimed and
reused.

gc FSUBR

(gc) causes a garbage collection and returns nit

gctwa· FSU8R

gctwa· is used to control the garbage collection of "truly worthless
atoms," which are atomic symbols which have no value and no
properties, and which are not referenced by any list structure, other
than the obarray (the current obarray if there is more than one).

(gctwa·) causes truly worthless atoms to be removed on the next garbage
collection.

(gctwa· t) causes truly worthless atoms to be removed on each garbage
collection from now on. Note: getwa· does not evaluate its argument.

(gctwa·
be shut

04/08/'14

n 11) causes this continual removal of truly worthlesll atoms to
off, but it does not affect whether the next garbage

12.6.1 Page 113

I

MACLISP Rererence Manual

collection removes twa's.

The value returned by gctwa' is a fixnum which is 0 if no ,arba,e
collection 01 truly worthless atoms will be done, 1 if twa's are &0 be
,c'ed on the next ,arba,e collection. 10 if twa's are to he ,c'ed on
aU ,arb.,e coll.tions, or 11 if both. (These nambers are octaL)

SWITCH

If the value of Ad is non-n 11, the ,arba,e collector prints an
informative messa,e after each ,arba,e collection.

See also the variables gc-daemon and gc-1ossage.

12.6.2 Spac ..

In MACLISP the stora,e used for LISP objects is di'Yided into several
conceptual subdivisions, called .pace.. Each .pace contains a different
type of object. Allocation proceeds separately in the different spaces,
but ,arbage collection of all spacat occun together since an o~ject in one
space could contain a poin'ter to an object in an), other .pace. .

For example, in the "Bibop" version of the pdp-IO implementation. the
.paces are as follows:

LIST conses (dotted pairs) and lists.
F I XNUM fixnums.
F LONUM 1I0num .. ,
B IGNUM bignum headers. bignums also occupy filtnum and lilt space.
SYMBOL atomic symbols.
ARRAY "special array cells. ..
REGPDL the -regular" pushdown lilt.
SPECPDL the "special" pushdown lilt, used in binding.
FXPDL the fi:lonum pushdown list, used for temporary numeric v.lues.
FLPDL the flonum pushdown list, used for temporary numeric values.
Binary Program Space used to hold arrays and compiled code.
pure LIST, pure FIXNUH, pure FLONUH, pure BIGNUM

See the Bibop manual; these spaces are not of ,eneral interest.

In the Multics implementation, the spaces are:

11 s t conses (dotted pairs), lislat atomic .ymbol., bi,nam., and
strings.

Static Storage arrays, liles, and linkage to compiled code.
markedpdl a pushdown list of lisp objects.

Pa,e 114 12.6.2 04/08/'14

Iii II

¥

Functions for Controlling the Interpreter

unmarkedpdl a pushdown Ust of machine data, not lisp objects.

Note: in the Multics implementation there is no space for numbers because
numbers are stored in such a way that they do not take up any extra room.

Associated with each space is information determining when an attempt to
allocate in that space should cause a garbage collection. The idea is that
one should allocate lor quite a while in a space, and then decide that it.
is worth the trouble of dOing an expensive garbage collection in order to
prevent the space from using too many bits of actual storage.

The exact nature of this information varies with the space. In a
pushdown list (pdl) space, all information must he stored contiguously ao
the only parameter of interest is how big the pdl iL Th is can be measured
in three ways, so there are three parameters associated with a pdt:

pdlsize the number of words of valid data in the pdl at the moment.

pdlmax the size to which the pdl may
required. Th is is used to detect

grow before intervention
infinite recusion.

pdlroom the size beyond which the pdl may not grow no matter whaL

is

A space such II a list space has three parameters, called the ,esize,
gem ax, and gcmin. These are are in machine-dependent units or "words."
The gcsize is the expected' size of the space; as objects are allocated in
the space it will grow without garbage collection until it reaches this
sise. When it gets above this size garbage colletion will oc.casion_lIy be
required, under control of the other two parameters.

The ,cmax is the maximum size to which the space should grow; if it ,eta
this big garbage collections will occur quite frequently in an attempt to
prevent it from growing bigger.

The ,cmin specifies the minimum amount o((ree space after a garbage
collection. It may be either a fixnum, which specifies the number of words
to be free, or a flonum which specifies the (raction of the space to be
rree. The exact interpretation of' this depends on the implementation. In
the pdp-lO implementation, which uses free storage lists, the gcmin is the
number or words which must be on the free storage list after a garbage
collction. If there are not this many, the space is grown, except if ita
size approaches gcmax it may not be grown by the full amount. In the
Multics implementation, which uses a compacting garbage collector, the
criterion for garbage collection is not when a free list is exhausted but
when the space reaches a certain size. This size is the maximum of gcsize
and the sum of the size after compactification plus gcmin (if it is a
fixnum) or the size after compactification times l/O-gcmin) (if gcmin is a
(lonum.) The e(fect or this is to allow the same amount of allocation
between garbage collections as there would be in the pdp-tO implementation
with the samo gcmin.

Note that these controls oyor the sizes of spacol are somewh,at inexact.,

04/08/74 1~6.2 Page 115

- -

MACLISP Relerence MaQual

since there is rounding. For i ... tance, the Bibop venion of the pdp-l0
impementation all~tel memory to spaces in units of 256. or 512. word ..
The Multics implementation allocates at leas .. 16,384 words hetween ,ar.a,e
collections and ,retently controls the lise of pUlhdown liats in u.its 01
1024. words.

Some apac.., Iqeh 81 Binary Program Spa,ce in the' pdp-tO implementation
or Static space in the Multics implementation are not subject to detailed
control by the user. The management of these spaces is entirely automatic.
Cener,ally these ~re spaces where the rate of allocatio,n i, rairl, placi.
and most. o"~ts, once .1l~ted, are used rO,rever and never freed. Bence
the exact policy used for storage management in these spaces i. not too
importanL

12.6.3 Store._ Control Functions

8110c SU8R 1 arg

The a'110, function ia used to examine and set parameters of v.rioas
space5 havi,ng to do with storage management. To set parameters, the
argument to .-lloc should be a list cOntaining an even number 01
elements. The first element of a pair is the name of a space; and the
second is either a lixnum or a 3-list. A fixbam speeilies the pdlsise
(fOF a pel] spacel or the resize (for other sp~ces.) A 3-list eannot
be useeJ "ith, a pdl space. It specifies, f'rom left to rilh&, the
gcsiz,e, gem ax, and g~min. nil means ·d~~·t chalJ,e this parameter.­
Otherwise .. fisnu." must be supplied, except in the third element (the
,~ in), who,. a (lon,um, is acceptable.

An esample of ttais use of a-lloc, in the pdp-IO libop implementation:

(tl1oc '(list (30000. 5000. 0.25)
fixnum (4000. 1000. nil)
regpdl 2000.»

or, in the Multica implementation:

(~lloc '(list (30000. nil 0.3)
markedpdl 5000.
unmarkedpdl 5000.»

a-l10c may also be called with an argument of t, which caUles it to
ret,urn a· list of all the spaces and their parameters. This list is in
a fol'lll such that it coald be given back to a-l1oe at some later time to
set the parameten back to what they are now.

' • .1'8,116 12.6.3 04/08/14

r Ii;

Functions lor Controlling the Interpreter

The followin, functions are certain cases 01 the status and sstatus
functions which are described in section 12.'1.

(status spcnames)

Returns a Ii.t 01 the names 01 all the spaces available in the LISP
bein, used. These are the spaces acceptable to the a·lloc lunction.

(status spcs1ze ,pace)

Returns the actual,' current size 01 'pGce, in wordL .peee il
evaluated.

(status pdls1ze .pece)

Returns the current number 01 words on a pdl.

(status pdlroom 'peee)

Returns the "pdlroom" of a pdl, i.e. the maximum .ize to which it may
ever grow.

(status pdlmax .peee)

Return. the current value of the "pdlmax" parameter of a pdl.

(s status pd 1 max .pace ,i.e)

Sets the pdlmax parameter for the pdl .pece to a%e. Both areumenta
are evaluated.

12.6.4 - Dynlmic Space Ind Pdl Explnsion

There are several user interrupts generated by the storage management.
See section 12.4 for a description 01 user interrupts. The gc-daemon
interrupt (number 20.) occurs after each garbage collection. The argument
passed to the ,c-daemon interrupt handler is a list of items; each item hal
the form (space before . after), where space is the name of a space, before
indicates the number of cells free before the garbage collection, and after

04/08/74 12.6.4 P.,e 117

MACLISP Reference Manual

indicates the number of cells free alterward~_ an the Multica
implementation, where ·free cells· i. a meanin,less concept, only the
difference of these two numbers il si,nificanL .It repr.entl the amount
01 compaction achieved.)

The gc-105sagl interrupt (number 10.) occun if the ,arba,e collector
tries to e.pand a space but faila because, for example, the operati ...
system will not ~ve it any more atorag~ The ar,ument puled to the
interrupt service lunction ia the name of the apace that lost.

The pd l-overf 1 Otll interrupt (number- 12.) is: signaUed .h~n some pushdown
list exceeds its pdlmax. The pdlmall is i,,'creased slightly so that the
interrupt handler will have room to run. The ar,ument passed to the
interrupt function is the name of the pdl that overllowed. If the
interrupt function uses too much pdl, this interrupt will occur again. If
this happens enough times, the pdlmall will reach the pdlroom, t.here will be
no room in the pdl to take a user interrupt, and an uncorr~ctable error
will occur.

The interrupt lu·netion can decide to terminate the computat.ion t.hat
overflowed the pdl, by dOing an (10C g). or a (throw), or it can increase
the pdlmall by usin, a-lloc or (sstatus pdlmax) and then continue the
computation by returning. Note that unlike most other user interrupts, il
t.he pd1-overflow interrupt function returns nl1 (or the -;bkpt
pd 1-overf 1 ov· ia $p'ed), the computation is continued .. if the pel I
overflow had not occurred.

The gc-overf1ow interrupt (number 13.) occurs when some space (other
than a pdl) &Iceeds it.s gcmax. This lives t.he user a chance to decide
whether the size of the space should be increased and the' computation
continued, or that something is wrong and the computation should be
terminated. The a·r,ument passed to the interrupt handler is the name of
the space that overflowed. The interrupt handlin, function will he able to
run because t.he garbage collector makes sure tha, the apace is sufficientl,
lar,e before signallinl the interrupt, ev_ if ,hi. makes it become
somewhat larger than ita- gemall. < This interrupt il limil.r to pdl-overrlov;
if the interrupt handler 'unction returns at all, even if it retums nil,
the interrupted com'putation proceeds. To terldiftate the computation 8ft

explicit (10C g). (throw), or (error) must he done.

12.&.5 Initial Allocation

The pdp-l0 implementations of MACLISP run on a machine with a
limited-size address space. Consequently the allocation 01 portionl 01
t.his address space to different uses, such 81 LISP Itorage spaces, becomes
importanL Th'is is particularly true of implementations without the
"Bibop" feature, which do not take advanta,e of pa,in,.

When LISP is lirst entered, it goes throu,h a dialogue with the user
known as "allocation." Normally the dialogue Simply consists of the user

Page ll8 12.6.5 04/08/14

i ; i Or i ; 14;;

Functions lor Controlling the Interpreter

declining to specify anything, in which case LISP chooses suitable
defaults. Ir a large problem is to be worked on, the defaults may be
inappropriate and it may be necessary to explicitly allocate a larger
amount 01 storage. It is also possible for the user", replies to come from
• file.

II LISP i. called with a command line from DDT, for example

:LISP INDEX LOADER COM:

it read. the indicated file in the same way that it would read .LISP.
(I N IT). See below.

On the other hand,
identifies itself and

if LISP
asks

i. called

ALLOC?

without a comma~d line, it

Suitable responses are Y, N, and CTRL/Q. There are other obscure
characters which can be used as replies to this question, but these three
are sullicienL "N" means that you do not want to specify allocation. You
will get the delaulL "Y" means that you wish to go through the lollowin,
sequence of questions and answers.

LISP types out the names 01 various spaces and their sizes. The fint
one, "CORE", is special. It is not a space but the total amount 01 address
space desired, and the size is in pages rather than words. After each
question yo" may enter altmode, which terminates the dialogue and gives the
remaining parameters default values, or space which goes on to the next
question. Before your altmode or space you may put a number which is the
size you want that space to be, instead 01 the number that was print.ed.
Again, there are various other ma,ic characters besides space and altmode.

II you reply with a control-Q, it means to read your .LISP. (lNIT) file.
The first form in the Iile should be a comment which is used to answer the
questions. Note that supplying nonexistent space names in the comment
doesn't . hurt, so you can use the same comment for both Bibop and non-Bibop
LISP. An ell ample of the Corm of this comment is:

(comment fxs 4000 f1xnum 5000 fls 2000
symbol 4000 flonum 2000 b1gnum 1400)

04/08/74 12.6.5 Page 119

MACLISP Reference Manual

12.7 - The Functions ,tat.. .nd "t.t ..

st.atus FSU8R

The status function is used to ,et the value of v.riou. system
variables. Its first ar,ument, not evaluated, il an atomic symbol
indicatin, whioh of ,its many funotions status should perform. The U88
of additional ar,uments depends on what the fint argulnent is.
Omitted arguments are assumed to he n11. The follo.in, -stat ...
funotions- exist:

STATUS FUNCTIONS FOR THE I/O SYSTEM

Note: in the following, c represents aft ar,ument lpecifyin, a
character. If c is non-atomic it is evaluated, 'and the value must he
a filtnum which is the ascii code for a character. II c i. atomic it
is not evaluated, and it may be a lixnurn or a character objecL

(status 10c e) gives the state (t or nl1) 01 the control--c--switch.
For example, (status 10c q) il t if input is lrom • file, n11 if input
is from the terminal.

(status uread) retums a 4-list lor ~he current uread in,ut touroe, or
n 1,1 if uread i. not bein, done.

(status w,r1te) returnl the correspondi .. , li.t for the current uvr1t.e
output deltination.

(status crun1t) returns a I-list 01 the current anit; i.e. device and
di,rectory.

('s ta tu s c rf 11 e) returns a 2-list givin, the file names for the current
file in ,the -uread- I/O system.

(status tabs 1 ze) returns the number 01 ,ch.racter positions Ulumed
between tab stops.

(status newline) returns a fixnum which is the ascii
character which marks the end of • line of inpuL
(setq ch (ty1» (status newline»

code lor the
For esample, (.

(status charmode /) returns the value of the character-mode switch lor
the rile object /. If / is nil or omitted the terminal i. a'lumed.
If this switch is t (the normal case lor the terminal) output is sent
to the device al soon as it il- generated. . If the switch is nil (the
normal cace for liles other than the terminal) output is held until a
newline i. typed, an error occun, input is requested, or the bulfer
becomes full. This provides increased efficiency at the COlt of no&
immediately seeing all outpuL

P.,~ 1. 12.7 04/08,'1. /

4

Functions lor Controlling the Interpreter

STATUS FUNCTIONS FOR THE READER

See section 13.6.2 lor a description 01 how the data examined by these
lunctions is used.
(status ehtran c) gets the character translation table entry lor the
character c. This is the ascii code of a character substituted lor c
when it appears in a pname being read in.

(status syntax c) returns the 26 syntax bits for the character c, .. a
liltnum.

(status macro c) returns nil if c is not a macro character. II c is a
macro character it returns a list of the macro character function and
the type, which il nil for normal macros and s for spliCing macrOL

(status +) ,etl the value of the + switch (t or n11). This Iwitch i.
normally nil. II it is 1, atomic symbols more than one character lon,
be,inninl with a + or a - are interpreted al number. by the reader
even if they contain letters. This allows the ule of input baleS
greater than ten.

(status ttyread) returns the value of the uyread switch, which i.
kept in the read table. At present this is not used for anything in
the Multics implementation. In the pdp-lO implementation it controls
whether tty "force feed" characters are used.

STATUS FUNCTIONS FOR THE PRINTER

(status terpr1) returns the value (t or n11) of the terpri .witch,
which ia kept in the read table. This switch is normally nil. II it
ia t., the output functions such as print and tyo will not output any
extra new lines when lines longer than line 1 are typed out.

(status _) returns the value (t or n11) of the _ switch, which i. kept
in the readtable. If this switch is 1, the _ format for fixnums with
lots of trailing zeroes i. not used.

(status abbreviate) returns the value of the abbreviation control.
See section 13.7 for a description of the abbreviation control.

STATUS FUNCTION FOR THE GARBAGE COLLECTOR

(status get 1me) returns the number of
garbage-collecting.

microseconds lpent

ENVIRONMENT ENQUIRIES

(status date) returns a 3-list indicating the current date a.
(year-1900. month_number day)

(status dayt 1me) returns a 3-list of the 24-hour time of day aa (hour
minute second).

04/08/74 12.7 Pa,e 121

MACLISP Reference Manaal

(status time) il the lame al (time), 'the number of secondl the s,stem
hal been up.

(status runt 1me) is th-e same as (runt 1me). the. number of micrOleConds
of cpu time that ha. been used.

(status system so) returns a list of the 1,Item properties of the
atomic symbol s. which is evaluated. This list may contain subr.
fsubr. macro. or lsubr if • is a function, and va'lul if this atomic
.,mhol is a system variable.

(s ta tus uname) returns an atomic symbol whose ,name is the user's
login name. In the Multics implementation this is in the format
User.Project; the dot will be sl"shined if print i. used to displa,
this.

(status ud'1 r) returns the name of the uler's directory. In the ITS
implementati~n this is the same as the user's name .. retumed by
(status urialfte). In the Multics implementation this is the user',
default working direttory. In the DEC-IO implementation this is a
Ii.t ,(proj prog).

(status l1spvers ion) returns the version number of lisp.

(status jcl) teturns the "job command line" from DDT in the ITS
implementation. In the Multics implementation it retums the
explodee'd second argument of the lisp command, or else nil if the
lisp command did not have two arguments. If li.p ... invoked b,

then (status jcl) =) (f 0 0 I b ~ r)

The follo_ing sta,tul fUnctions only exist in the Mullica implementation.

(status pagtng) returns a list of the pagin,-device page faults and
total page laults that have been incurred.

(status arg n) returns the n+l'th argument of the lisp command. as an
interned atomic symbol. nil is returned if n il greater than the
number of arguments on the lisp command.

MISCELLANEOUS STATUS FUNCTIONS

(status top 1 eve 1) returns the top-level form, which il continuall,
evaluated when LISP is at its top leyel. If thil il nil, a normal
read-eval-print loop is used.

(status interrupt n) return. the aervice function for user interrupt
channel n. n il evaluated.

Page 122 12.7 04/08/14

Functions for Controlling the Interpreter

(status pagepause) returns the value of the pagepause flag. See
(sstatus pagepause) for a description of this flag.

(status uuol1nks) returns
available Ilots for linking

a number which represents the number of
between compiled functions.

(status d 1vov) returns the ltate of the "divide overflow" switch. If
this switch is nil an attempt to divide by zero causes an error. If
the switch is t the result of a division by zero is the numerator plul
I.

(status features) returns a list of symbols representin, the features
implemented in the LISP being uled. The following symbols may appear
in this list:

hibop

lap
lort

edit

fuload

1\£
bignum

strings

newio

ml

ai
H6180

its
Mullica
declO

pdp-tO big-bag-of-page& memory
m,anagement scheme
this LISP has a Lisp Assembly Program
the sorting functions described in
chapter 11 are present
the edit function described in chapter
18 is present
the lasload facility described in
chapter 14 is present
the "moby I/O" facility is present
the arbitrary-precision arithmetic
package is included in this LISP
character strings and the lunctions on
them described in chapter 8 are present
the I/O functions described in chapter
13 are included in this LISP; il this
feature is not present only lome of
those functions are available.
this LISP is on the MathLab machine at
MIT
this LISP is on the AI machine at MIT
this LISP is on the H6180 Multiea
machine at MIT
this LISP is on some ITS system
this LISP is on some Multics system
this LISP is on some DEC TOPS-I0 system;
or on some TENEX system since the TENEX
implementation runs under a TOPS-IO
emulator.

(car (1 a~t (status features) » is generally considered f,o be an
implementation name, such as its or declO or Multics. The main idea
behind this status call is that an application package can be loaded
into any MACLISP implementation and can decide what to do on the basil
of the features it linds available.

04/08/74 12.7 Page 123

MACLISP Reference Manual

(cond «memq 'b1gnum (status features»
(prog2 nil (eva-l (re'ad» (read») ;us. first

(t (read) (eval (read» » ;us. second

(defun factor1a-l (n) :b1gnum version
(eond «zer'op n) 1)

«times n (factoria'l (subl n»»
»

(d.fun factoria-l (n) :f1xnum-onl'y versio'n
(do () «not () n 13.») :do until n ~ 13.

(error' "argument too big - 'actoria'l"
n
'wrng·type·arg»

(cond «zerop n) 1)
«~ n (factorial (1· n»» »

(status feature 1(0) is roughly equivalent to (memq , /00 (status
features)), i.e. it determin4!a whether this LISP hu the /oo-Ieature.
Note that /00 il not evaluated.

(status status /00) returns t if /00 il a •• lid status lunction. U
it i. not, n 11 is returned.

(status status)' returns a lilt or valid s'tatus functions.
are truncated to lome implementation..lependent nantber or
lu'ch al 4 or S.

The namea
characters,

(status sstatus /(0) returns t ir /00 il a .alid sstatus lunction. II
it is not, nil is teturned.

(status sstatus) returns a lilt 01 valid sstatus lunctio.... A. with
(status status), the nam_ are truncated &0 some
implementation-dependent number 01 characteft, I.ch' _ 4 01' 5.

sstatus FSU8R

sstatus il like status. It hu a lirat ar,ument which tella it wha'
to do and how to interpret the rest 01 ita ar' ta. sstatus ii' uaecl
to set various sYltem variables. The lollowin, " .. tat.1 'unctions"
exist:

SSTATUS FUNCTIONS FOR THE I/O SYSTEM

(sstatus 10e ccc) is the same as (ioe cee)

(sstatus uread -·args--) i. the same _ (uread --args--)

12.1 04/08"4

Functions for Controlling the Interpreter

(sstatus uwr1te --args--) is the same as (uwr1te --args--)

(sstatus crun1t --args--) is the same as (crun1t --args--)

(sstatus charmode s I) sets the character-mode switch of the file I (f
may be nil to signify the terminal) to s, which may be t or nil. *'
and 1 are evaluated. 1 may be omitted, in which case the terminal is
assumed.

SSTATUS FUNCTIONS FOR THE READER

See section 13.6.2 for a description of how the Iwitches and tables
set by these f unctions are used.

(sstatus chtran c .) sets c's character translation to i. i rollo.s
the same rules as c, i.e. it may be a list which evaluates to a
filtnum, or an unevaluated atom such as a fixnum or a character objecL
The value returned is Ie as a fixnum ascii code.

(sstatus syntax em) sets c's syntax bits to m. m is evaluated and
returned.

Note that in· the above 2 calls, if c is a macro character it i •
. changed back to its standard syntax and chtran berore the requested
operation is perrormed. However, ir in the standard read table c i. •
macro (i.e.. • and i), instead or being changed to its standard syntax
and chtran its syntax is set to 502 (extended alphabetic) and ita
chtran is set to itself.

(sstatus macro c I) makes c a macro character which calls the function
I with no arguments. 1 is evaluated. A fourth argument to sstatus
may be supplied. It is not evaluated. If it is an atomic symbol
whose pname begins with s, c is made a splicing macro. I(1 is nil,
instead or c being made a macro-character, c's macro abilities are
taken away and c becomes an ordinary extended-alphabetic character.

(sstatus + s) sets the + switch to t or nil depending on s, which ia
evaluated.· The new value of the + switch is returned.

(sstatus ttyread s) sets the tty read switch to t or nil depending on
s, which is evaluated. The new value of the Iwitch is returned.

SSTATUS FUNCTIONS FOR THE PRINTER

(sstatus terpr1 s) sets the terpri switch.

(sstatus abbreviate n) sets the abbreviation control to n.
(sstatus abbreviate nil) turns off abbreviation.
(sstatus abbreviate t) turns on a maximal amount of abbreviation. See
section 13.7 for a description of the abbreviation control.

04/08/'14 12.1

5'

MACLISP Reference Manual

SSTATUS FUNCTION FOR THE GARBAGE COLLECTOR

(sstatus, get 1me n) r.eta the ,ctime counter to II and returnl the
previous v.lue 01 the ,ctime counwr.

MISCELLANEOUS SS1"ATUS FUNCTIONS

(s status top 1 eve 1 so) e.aluat. and returns so Ie" the top le.el
form to this value.

(sstatus uuol1nks) causes all links betWeft compiled lunctions to be
"unsnapped. • This should be done whenever ("Ouuo: t) il done to inlure
that the interpreter alwaYI ,ets a chance to ... e deha.,ing
information on, every function call.

(sstatus d1vov .) sets the ·divide overrlow· Iwitch to s. nil means'
division by zero should cause an error, while t mean. the relult 01
division by zero should be a quotient 01 the .. allie tor pi.. 1 and a
remainder 01 zero.

(sstatus interrupt n /) sets the service function lor user interrapt
channel n to /. The 'arguments are evaluated. / il returned.

(sstatus pagepause s) sets the pagepause switch to s, which may
evaluate to t or nil. II the pagepaull .witch i. t, and a dilplay
terminal il beinl' used, LISP will stop when it ,eta to the end 01 the
Icreen and wait for the user to hit control-U before it erues
anything. (This leature il not presently a •• il.ble in the Multi.
implementatioft.)

SWITCH

The value 01 *rset il the ·:tnet ria,· manipulated by the status and
sstatus lunctionL II *rset is t, the interpreter keepa elltra
information and makes extra checks to aid in debu"in,. *rset .hould
never be setq"ed - alway. use (sstatus *rstt t) ot (sst.t~s -rsel
nil).

"

12.'1 04/08/74

Functions for Controlling the Interpreter

12.8 Miscellaneous Functions

sysp suaR 1 arg

The sysp predicate takes an atomic s)'mbol 81 an argumenL II the
atomic s)'mbol is the name 01. s)'stem function (and has not been
redefined), sysp retuml tlie t)'pe of function (subr. lsubr. or fsubr).
Otherwise sysp retums nil.

El:amples:
(sysp 'fool =) nil (presumably)

(sysp 'car) -) subr

(sysp 'cond) -) fsubr

04/08/74 12.8 Page 121

MACLISP Reference Manaal

12.1.1 - TI ..

runtime SUBR no Irgs

tinte

sleep

(runt 1me) returns the number of micrOleCOndl of cpu time ased 10 far
by the procell in which LISP il raaaia,. The difference between two
yala. of (runt 1_) indicates the amount of COIIIpatation that w.. done
between the two calli to runt1a

SUBR no Irgs

(t 1me) retaml the time that the 1,Item h.. up. in (Aa •
Iionam.)

SU8R 1 arg

(sleep n) causes a real-time dela, 01 n MCOftd., th. retu....... II
ma, be a lix .. um or a 1I0num.

See also the a'lannclock lunction, section 12.4.3.

Page 128 12.8.1 04/08/'4

Functions for Controlling the Interpreter

12.1.2 - Gettlnl into LISP

in the Multics implementation

The LISP subsystem is entered by means of the lisp command. If lisp is
called with no arguments, a copy of the standard initial environment
containing all the system functions and variables is made the current
environment. If the lisp command is issued with an argument, the argument
concatenated with ".sv.lisp" is the path name of a saved environment (lee
the save function in section 12.8.3) which is copied into the current
environment. Additional arguments to the lisp command in this case are
actually arguments to the programs in the saved environment, which can
retrieve them by using the (status arg n) function.

The LISP subsystem may also be entered through the lisp_compiler
command, which is like calling lisp with an argument of the path name of the
saved environment containing the LISP compiler.

When the standard initial environment is entered, lisp checks for •
segment named Itart_up.lisp in the user's home directory. If such a
segment exists, it is read in, using the load function. This facility
allows users to "customize" LISP.

When a saved environment il entered, (mapc "eval err11st) is done. This
reature can be used to make the saved environment self-starting.

In the ITS Implementation

LISP may be entered by the ":LISP" or "LISP4K" command. The environment
set up by this command is the standard initial environment. Lisp checks
for a file named .LISP. (lNIT) in the user's directory, or a file named
UNAME .LISP. in the (IN IT) directory if the user does not have a directory.

If it is found, it is read in and each form is evaluated. This allows a
user to "customize" lisp. The .LISP. (lNIT) file may begin with a comment
in the form

(comment name number name number •••)

which is used to specify allocation. The names are the names of the
various spaces, and the numbers are the sizes to be allocated. If there is
no .LISP. (lNIT) file, lisp asks the question ALLOC? A reply of n causes
standard allocation, a reply of y allows allocation to be specified
conversationally.

LISP may be entered by the command :LISP namel name2 dev dir where dev
and dir default to DSK and the uler's directory. In this case the lile
dev:dir;namel name2 is read in the same way as a .LISP. (IN IT) file.

04/08/74 12.8.2 Page 129

I MiA ;UJiiiU:::: m::::: t:i:::::"::;:::"

MACLISP Reference Maaaal

II I lisp contl-inin, lome data other than the initial ... iron ' h ..
been ... ed (see section 12.8.3) as TS NAME, the :NAME command wiD retri •••
iL The lirst action performed .y iii' i. (•• pc 'tv .. 1 trrl1.t), whiela
allow. the aler pro,ram. to, .tart ape

in the DEC-! 0 implementation

Type the monitor command, R LISP. LISP will Ilk the question "ALLOC?".
and the possible anlwen are al described aho.e lor the ITS implemeatetiOft
or LISP. Similarly to the ITS implementation, il I Iilp has IMen
NAME..SAV, the RUN NAME command will retrie.e it the lint thill' it wiD
do when retrie.ed is (1Ilpe 'eva" errl1st).

12.8.2 04/08/'14

/

Functionl r or Controlling the Interpreter

12.8.3 GeUln, Out of LISP

Evaluating (ioc z) will cause LISP to temporarily release control.
Control can be returned to LISP by an implementation defined method. There
is also an implementation-defined way to leave LISP permanently, freeing
any storage used by the current LISP environment or else saving iL

in the Multics implementation

(10c z) will caule a QUIT. The start command may be used to re-enter
the lisp subsystem. release may also be used, in which case LISP will
clean itself up.

There are also the functions quit and save. quit causes the lisp
subsystem to exit, throwing away the current environmenL save causes the
lisp sUHyatem to exit, ... ing the carrent environment in a specified file,
whose name always ends in -.• v.lisp-.

quit

save

SU8R no Irgs

(qu 1 t) causes the lisp subsystem to remove itself and return to its
caller. The current environment is 10sL (cf. save).

FSU8R

(save fool saves the current
foo.sv.lisp in the working directory.
The command

LISP environment in a
The argument ia not

liSp foo

file named
evaluated.

can be used to retrieve this saved environmenL All variable values,
file objects, array contents, and function definitions (and other
properties) are saved, but the contents of the push down lists,
including previous values of bound variables, cannot be saved, so save
should only be used f rom top level.

See also the function cline (deseribed in section 12.8.4), which is used &0

get out of LISP, execute one Multica command line, and return into LISP.

04/08/74 12.8.3 Page 131

MACLISP Reference Manual

in tM ITS impl nt.tion

(joe.) will cause a ret.urn t.o DDT. IP -may he aNd to re-enter LISP.
(.alret ':ItILL) will ,caGle LISP t.o esit, throwin, 'away the current
environmenL The -macdmp function, explained below, Iftay 1M used to .. ye the
current enyironmenL

_cdmp LSUBR·Oor 1 args

If LISP is a top-level procedure (for inltance il it. is diso),
macdmp simp)y logs ouL Otherwise it prepares t.he LISP 101' dllmpin, as
foUows:
n) if the display slave is open, it i. closed.
(2) all bit tables, pel) areas, and Iree storl,e lists are .. roed OIlL

(Remember, dumping with IY USel a special contpreuion -technique on
blocks of seros.)

(3) il macd",p was ,given an argument, this is exp 1 odee'ed ancl vI,l ret'ed
al with the valret function. Otherwise, 'naacdlhp "tum. to DDT
with a .BREA'K 16,100000.

Commonly ,one 'will write a setup routine lor some LISP packa,e like
thi.:
,(progn

(terpr1)
(pr tnt ',opt 1'on5 :)
. .. ,,,ad tn ,opt'tons
(ter-pr-1,)
,(prine ' load-tng)
. .. lead 1n r1les or runet ions
(macdmp ':$ALL/ DONE/ -/ hooraylS/ »

The LISP (with some new functions .loaded) ia now ,ready lor dumpin,.
Alternativel" -one -might write

(macdmp 'SY/ USER/;FOO/ BARI :SALL/ 'DONES/)

'wlaieh will do the dump and then print a message when done.

When such ·a dumped LISP is loaded and restarted.. the effect is very
similar to a I\C quit: LISP's top level is entered after evaluatin« .11
items on ,the errl1st. Thus if before the macdmp is done the errl1st i&
setq'ed to some list of initialisation procedures, these proced
will 'be invoked when the dumped LISP is restarted.

P • ., 132 12.8.3 04/08/"4,

/
/

I

Functionl for Controlling the Interpreter

In the DEC-! 0 implementation

Typing two control-C's causes control to be returned to the monitor.
The CONTINUE command will return control to LISP. Running another program
causes LISP to be thrown away.

The LISP may be saved for later use by evaluatin, (macdmp), which
prepares for laving and then returns control to the monitor. The SAVE
command may now be used. When the saved LISP il run at lome later time,
(mape 'eva'l errl1st) will be automatically performed. This allows the
sayed program to be self -startin,.

04/08/74 12.8.3 Page 133

MACLISP Reference Manual

12.8.4 • Sendlnl Commands to the Operltinl Syttem

In the Multies implementation

cline SU8R 1 arg

(eli ne .), where s i, a character .trin" esecutel the Maltica com
• ahd retame n11.
Example:

(cline "who -long")

in the ITS implementation

valret LSUBR 0 or 1 args

(va 1 ret) i, like (1oc z); that ii, it does a .LOGOUT if LISP is a top
level procedure, and otherwise valrets ":VI. " to DDT.

(va 1 ret .) effectively perform. an esplodec on • (in practice • i,
some strange atomic symbol like :PROCEDI :DISOWNI ,bat it may be any
S-expression). II the string of characten is Oft. of "lAX. ", ":KILL ",
or ":KILIJ\M" then val ret performs a "silent Idll" by executin. a
.BREAK 16,20000; otherwise val ret performs a .VALUE, ,i.ift, tlte
character strin, to DDT to evaluate .. command ..

Examples:

(valret ~:PROCEOI :OISOWNI)
procedes and dilowns the LISP.

(valret ~I :KILLI :TECO/AH)
kills the LISP and starts up a TECO.

(val ret 'OSH)
causes DDT to print out the contents of all non-zero locatione in
LISP.

in the DEC-lO implementation

There i, currently no way to do this in the DEC-IO implementation.
However, (va 1 ret) will return control to the monitor 80 that a command
may be manually typed. Then type CONTINUE to relume Ii,p.

Page 134 12.8.4 04/08/14

/

Input and Output

13 Input and Output
"

13.1 a •• ic I/O

Input and output can be done in LISP in terms of S-expressions or in
terms of characters. Operations may also be performed on certain devices,
such as displays, robot arms, etc., in terms which are peculiar to the
particular device, using the so-called "moby I/O" (acility.

Initially we will discuss just I/O on the user's terminal.

S-expressions can be input by using the function read. (read) reads one
S-expression, which is either a Jist enclosed in matching parentheses or an
atom delimited by a special character such as a space or a parenthesis,
which is saved and used to begin the next S-expression read. read returns
the S-expression which it read, converting it from the ex'ternal
representation as characters to LISP internal form. See Chapter 2 and
section 13.1.2.

(readeh) reads in one character and returns it as a character object.

(tyi) reads in one character and returns a number which is the ascii
code (or the character.

(p r 1 n t so) prints out the S-expression so in a r orm wh ich is readable by
humans but which could also be read back into LISP if it was printed to a
(ile rather than to the terminal. See section 13.2.3 (or an explanation of
how to do this.

The expression printed out is preceded by a newline and
space. I(special characters are used with other
meanings, for example if a parenthesis appears in the pname
they are preceded by slashes so that the output could
Strings are enclosed in double quotes for the same reason.

(ollowed by a
than their normal

of an atom,
be read back in.

(prinl so) il the same al (print s) except that the leading newline and
trailing space are omitted. prinl can be used to print multiple items on a
line, but spacing between the items must be provided (or explicitly, for
example by evaluating (tyo 40).

(prine so) is like (prinl so) except that special characters are not
slashified and strings are not quoted. This makes the output more pleasing
in certain situations, however it cannot be read back into LISP.

(terpr 1) types out a newline.

Output of characters can be accomplished using either tyo or prine.
(tyo n) outputs a character whose ascii code is given by the number n.
prine may be used to output character objects.

04/08/74 13.1 Page 135

liliii1iiiiiiii' •

MACLISP RelerenC4!! Manual

As implied aboYe, thea. function. can allo be used to do 1/0 on deyieel
other than the terminal. Th~ way. to do t.hi. will be eJlplained in Metion
13.2.3.

Note that what LISP does when it is at its -top leyel: that is when you
first start talking to it, il first to call read, the. to call eVI·l Oft what
was read, then to print the result and advaace the tenninal to a new line
on which the next piece of input may be typed. This may be es'..... ..
repeated· evaluation 01: ,.

(prog2 (terpri)
(print (eva'l (read»))

P •• e 136 13.1 04/08/'14

iii!

Input and Output

13.2 - FU ••

1/0 in LISP consists of communication between the LISP environment and
sequence. of characters called file8, located in the external world. LISP
refers to these files by using "file objects," which are special objects
within the LISP environment which serve as representatives of, or symbols
for, the files in the external world. Because, there is a one-to-one
correspondence between files and file objects, it is often convenient to
confuse the two and call them both "file."

The LISP system includes functions which can manipulate files in various
ways: A file may be "opened," that is a file object may be created and
associated with a named file in the external world.

A file may be "closed," that is the association between the file-object
and the external file may be broken and the lile-object deleted.

The file-accessing information contained in a file-object may be
examined or changed; for example, the line length or an output rile may be
adjusted.

The characters of information in the external file may be read or
written.

The attributes of the external file, such as its name, may be changed.

In order to "open" a file, the external rile and the rile object must be
named so that a connection may be established between them. The problem of
naming rile objects is solved trivially by making the rule that whenever a
rile object is created its name is decided by the system and returned as
the value or the function that created it. File objects are then referred
to in the same way as any S-expression. Note that the name of a file
object does not have a printable form, so that if you want to manipulate
the file object by typing from the terminal (rather than from a program),
you must keep the lile object as the value 01 an atomic symbol.

The naming of files in the outside world is more difficult because
MACLISP has to operate with several different outside worlds, that is,
under several different operating systems. It was thought undesirable to
build too many assumptions about the operating system into the Janguage,
because that would restrict the transporting 01 programs between MACLISP
implementations.

The assumptions that are built in are that the operating system provides
named files located in named directories or on named devices, wh ich may be
accessed sequentially as streams of characters. The function f11epos makes
the additional assumption that simple random-access facilities are
available. An interactive environment is also assumed. Some of the 1/0
functions assume that the names of files may be broken up into an arbitrary
number of components, so that names take on a form such as "roo.bar.lisp"
or "moby mess". However, it is possible for a MACLISP to operate with
somewhat. reduced effectiveness under an operating system which does not

04/08/74 13.2 Pace 137

MACLISP Reference Manual

latisfy all of these assumptions.

The user of a program or a subsystem written in LISP wants to be able to
type in file names in the form customary in the particular operating system
being used, and he wants to see them typed out in the sa ... e form. But if a
program wants to do more with the file name supplied by the user than
simply pass it on to the system 1/0 functions, it needs to have that name
translated to a uniform internal format, in which the interesting
components of the name are seperate atoms in a list, not buried inside a
character string whose format is not even known to the pl1olram. To resolve
this conflict, two forms for rile names have been defined, and functions
are provided to make the implementation-dependent translation from one form
to the other. The forms of a file name are called the name'i" and the
name"ring.

The namestrin, is r the implementation dependent form. Namestrings are
represented as LISP character strin,s, however atomic symbols may also be
used, in which case the pname of the atomic symbol il used al the character
string. The contents of a namestrin, il just a sequence 01 characters
which have meaning to the user and to the lunction namel1st, which converts
a namestrin, to a namelist. Namestrin,s should be read in uling the
readstr1ng function and printed out ulin, prine, so that no quotes will
appear around them.

A namelist is a list whose car somehow specifies the device and/or
directory which contains the file, and whose cdr specilies the name 01 the
file. The exact way in which the car specifies the device/directory is
implementation-dependent. It should not be of concern to programs. The
cdr of a namelist is a list of names which are the components 01 the rile
name il the operating system uses multi-component file names. Each name il
represented al an atomic symbol, which is ·interned· 10 that it may be
tested with the function eq.

An additional feature of namelists is the "star convention," by which a
name list may contain unspecified components, which are indicated by the
atom *. Certain other constructions, explained in section 13.3, may also
be used. The star convention allows a single namelist to specify a class
of files, and allows pro,rams to apply defaults to their Iile-name
arluments in a straightforward fashion.

Some additional information about file objects has been collected here.
It is in brief form and will be elaborated in later sections.

There is no way to input file objects to the reader, because they do not
have pnames or anything of that sort, but for convenience in error messages
and debugging the printer will print a file object as a sharp si,n Ce),
followed by the namestring of the external file to which the file object il
attached. e is the character which is used to indicate thai an object or
unknown type is being printed.

The information contained within a file object is here described
briefly.

Page 138 13.2 04/08/14

•

Nameliat

Eolrn

Endpagern

Linel

Charpos

Chrc:t

Pagel

Linenum

Pagenum

Filepos

Other

Input and Output

the namelilt for the external lile 01 which the file
object il a representative.

a function which is applied when the end of an input
file il reached.

a function which il applied when the end of a page i.
reached on an output lile.

the number of characters per line on an output file.

the horizontal position on the line, where 0 i. the
left margin.

the number of character positions remaining on the
current line 01 an output file,

the number of lines per page.

the number of the current line, with 0 being the top of
the page.

the number of the current page, with the first page
being O.

the position within the file of the character currently
being accessed. (Not necessarily meaningful lor all
kinds of liles.)

internal information used by the LISP I/O functions in
transactions with the operating system.

Note that aa a special case nil is considered to be a rile object which
represents the terminal. This il in addition to nil's other identities as
an atomic symbol and u a list.

13.2.1 Nlminl File.

Some examples may help clarify the connection between namelists and
namestrings.

In the Multics system, files are stored in a tree structure or
directories. A file's name consists of a sequence of names seperated by
the ">" character. The last name is the name of the file, and preceding
names are the names of directories in a path from the "root" directory down
through the tree to the rile in question. Each name may consist or seyeral
components seperated by periods. Thus a typical namestring in the Multics
implementation of MACLISP would be

04/08/74 13.2.1 Page 139

MACLISP Reference M.au.1

")udd)AutoProg)Hacker)hacks)my.n.v.hack"

The correapoadin, namelist is:

()udd>AutoProg)Hacker)hacks my nev h.ck)

In addition, the star convention for namelists may also be represented in
namestrin, lorm. Some examples of the correspondence are:

(* faa) == "foo" - omitted com~neRts are *
(* foo * bar) a= "foo.*.bar"
(frotz foo . bar) == "frotz>foo.**.bar"
(* faa. *) =='''foo.**''

Multies LISP can also use "streams" for files. Streams are a
sequential-I/O entity in Multica. For example, input from and output to
the terminal are perrormecJ by means 01 streams. In LISP the convention has
been defined that a "I" character at the beginnin, 01. namestrine
distinguishes the name of a stream from the name 01 a lile stored in the
direetory hierarchy. Thus the namestrin,

"Suser_1nput"

indicates the st.ream used lor input Irom the terminal. The cor poncIine
namelist is:

(stream user_input)

In the ITS (p4p-10) system, liles are stored in directories which are
kept on devices. Directories may not be kept within directories, so there
is no tree structure. Each file-name has exactly two components. ' Thus •
fae whose name has first component foo and se(;ond component b'~t located
in direetory comlap Oft device ml. would have the n.",.trine: '

ml:comlap;foo, bar

A. a namelist this would be represented:

«ml . comlap) foo bar)

If the device and directory were omitted, the namelist would be:

(* foo bar)

If only one component of the name were specilied, the seeond would be *-

In the DEC-l~ implementation, namestrin,s take the usual

dev:name.ext[proJ,prog]

Page 140 13.2.1 04/01/'14

i 1

Input and Out.put.

lorm, and the corresponding namelist is

«dev proj prog) name ext)

and *'. are substituted lor omitted components in the same way as lor the
ITS version described above.

n_el1st SUBR 1 arg

nlm.l1 s t converta ita argument to a namelist. Omitted or * components
in the argument produce *'s in the result.

The .rgument to namel1st can also be a file object. or nil. Giving
nlme11st a file object causes it to return the namelist 01 that file
object. Giving it nil causes it to return the default namelist.

namestr1ng SU6R 1 arg

namestr1ng converts its argument from a namelist to a namestring. It
is the opposite of namel1st.

The argument to namestr1ng can also be a file object or nil. Giving
namestr1ng a file object causes it to convert that file object's
namelist to a namestring and return it. Giving namestr1ng nil causes
it to convert the default namelist to a namestring and return it.

shortnamestr1ng SU8R 1 arg

shortnamestr1ng is just like namestr1ng except that there i. no
mention of directory or device in the resulting string. Example:

(shortnamestr1ng '(abc d e» =) "d.e"

defaultf SU8R 1 arg

(defaultf so), where so is a namelist or a namestring, sets the default
namelist to s. The default namelist is used to fill out any *'s in
the argument to open 1, openo, etc.

In Multics MACLISP, the default namelist is initially set to:

(working-directory . *)

when LISP il first entered.

04/08/74 13.2.1 Page 141

l\I-ACLISP Reference Manual

In ITS MACLISP, the delault nametist il initially set· to:

«dsk ud1r) • *)

when LISP il firat entered.
namely ,the uler9

1 directory.
is set to

ud1r il what (stltus ud1r) returns,
In DEC-l0 MACLISP ,the default namelilt

«dsk proj prog) . *)

when 'LISP il fir.st ,entered.

Note: to obtain the derault namelilt, use .(name list nil).

13.2.2 ()peninl and Closinl

openi SU8R 1 arg

This function is used to create a rile object and associate it with
.lile in the -external world. The argument il a namelilt or
namestring which specifies the file to he opened. The return value ia
the file object .hich was created.

open 1 .lirst -creates a rile object and initializes its endpa,ern
(lor an output file) or eor£n (Cor an input ~file) to the default. The
line) and ,pagel are set to appropriate values for the type of device
on -wh ich the f He resides. The charpos, linenu·m, .and ,agenum are aet
.to zero. The namelist is set by merging the argument to open 1 and the
default namelist. See the description of the merger function, in
section 13.3, ,for ·t.he full details. Basically what happens il that
components of the file name not specified by the ,arg-oment to open1 are
obtained from ,the default namelist. .open1 now Degoliates with the
operating system to obtain the rile. A 'f.-il-act correctable error
occurs if this does not succeed.

The file created by open1 can be Uled for input.

Example:

openo SUBR 1 arg

is like open 1 except that the file object created is used for
Any pre-existing rile of the same name i. over-written.

ope no
output.
Example:

(setq outriles (list (openo "output.data"»)

Page 142 13.2.2 04/08/'14

a 1111111 ; I:: : II:

Input and Output

The lollowing function only exists in the Multica implementation, at
present.

opena' SUBR 1 arg

opena' is just like openo except that if there is a pre-existing file
with the same name, the output is appended to the end or the lile,
where openo would erase the old contents of the rile and begin
outputting at the beginning 01 the lile. Note that the pagenum,
linenum, and charpos are set to zero, not the number of pages, lines,
etc. actually present in the file.

close SUBR 1 arg

(close s), where s is a file, closes s and returns t. Ir s is already
closed nothing happens, otherwise the lile system is directed to
return so to a quiescent state.

For a description of the way in which the argument to open 1, openo, or
opena' has the delaults applied to it, see section 13.3.

13.2.3 Specifyinl the Sourc. or D.stination for I/O

When an I/O function is called, the source (Iile) from which it is to
take its input or the destinations (files) on which it is to put its output
may be specified directly as an argument to the I unction, or they may be
specilied by default. The default input source and output destinations are
specified by several system variables, which may be setq'ed or lambda-bound
by the user. They are described below.

1nf11e is the default input source, il the switch Aq is t.
nil the terminal is used as the default input source.

If Aq is

outf11es is a list of default output destinations. Output is sent to
all of these files if the A r switch is t. Output also goes to the terminal
unless the AW switch is t.

Note that in the values of 1nf11e and outf11es nil means the terminal,
and anything other than nil must be a file object.

04/08/74 13.2.3 Page 143

/
I

-MACtISP Reference Manual

1nr11. VARIABLE

The value of 1nr11. is a file object which is the default input source
if Aq is non-nil. 1nr11e can also be nil which specifies that i-flit
will be from the terminal even if Aq is not nil. The initial .alue of
1nr11e il n11.

SWITCH

If ,the valu~ of Aq is non-nil, the delaelt input' source is the value
of the atom 1nr11.. If Aq is ntl, the default' input source is nil,
i.e. the terminal.

1nstack VARIABLE

The value of 1nstack is a list of pushed-down values of 1nr11e. It is
managed by the lunction 1npush. The initial value is nil.

outr11es VARIABLE

Ar

The value 01 outr11es is a list of fUe objects which are output
destinations if Ar is not nl1. Elements of the list outf11.s may be
either file objects created by openo or opene; or nil meanin, output
to the terminal. Note that output ,081 to the terminal anyway if AV

i. nil, 1.0 it is possible to get double characters this way.

S\UTCH

If the •• lue of Ar 'il non-n1,l, the dellult output destinationa includ.
th. 'fil.. in the Ii,t which i. the .alue of the atom out f 11 .s.

SWITCH,

If the value 01 AW il non-nil, the default output destinations do not
include the terminal. (Unless Ar is on and' nil il a member of the
outf 11 es IiIL)

Pa,e 144 13.2.3 04/08/'4

.1 1 iii 1

Input and Output

Now the balic I/O functionl can be explained in full detail:

read LSUBR 0 to 2 args

This il the S-expression input function.

(read) reads an S-expression from the default input s~urce.

(read I), where / il a file or nil meaning the terminal, reads an
S-expression from /. During the reading, 1n(11e and "q are bound so
that evaluation of (read) within a macro-character function will read
from the correct input source.

(read s), where s il not a file, not nil, and not t, passes s al an
argument to the end-or-fUe function of the input lource if the end or
the rile il reached. Uluall)' this means that read will ~eturn s ir
there . are no more S-expreuions in the file.

(reid t) luppresses the calling of the end-of-file function if the end
of the rile il reached. Inltead, read just returnl t.

(read s /) or (read / s) specifies the end-or-file value • and selects
the input source /.

readch lSU6R 0 to 2 args

readch reads in one character and returns a character object. The
arguments are the same as for read.

readl1ne LSU6R 0 to 2 args

ty1

readl1ne reads in a line of text, strips off the newline character or
characters at the end, and returns it in the form or a character
Itring. The arguments are the same as for read. The main use for
read line il reading in file namel typed by the uler at his terminal in
response to a question.

LSUBR 0 to 2 args

ty1 inputs one character and returns a fbnum which is the ascii code
for that character. The arguments are the same as for read.

04/08/74 13.2.3 Page 145

MACtISP Reference M,nu·,1
(t1;pE-k <.5 b~f.w;> '<2 q,.,110 oil. fo.r rectcf »

t~1peek LSU8R 0 or 1 Irg

(ty 1 pee It) is like (ty 1) eIcept that the character is not eaten; it is
still in the i .. put stream where the neIt call to an input function
will find iL Thul (. (ty1peek) (ty1» is (almost) alwa,s t. If the
end of the fne is reached, ty1peek returna 3, the ascii code for -end
of teIL - The end 01 lile lunetioR is not called, and the lile il "ot
closed.

(ty1peelt II), where n ia a fixnum leas than 200 octal, ,Itips over
characters of inpu,t until one i. reached 'with an ascii code of n.
That character ia not eaten.

(ty1peek n), where n is a fixnum ~ 1000 octal, skips over characten
of input until one is reached whose syntaI biU from the readt.ahle,
logically anded with (1 sh n -9.), are nonzero.

(ty1peek t) skips ,over characters of input until the beginning of an
S-eIpression is reached. Splicin, ntacro characters, such as -,-
comments, are not considered to be,in an objecL If one ia
encountered, its associated function is called as usual (so that the

pl"1nl

teIt of the comment can be gobJtled up 01' whatever) and ty1peek
continues scannin, characters.

LSU8R 1 or 2 Irgs

(pr 1n1 ..) ou,tputs s to the current output destinltionCI>, in a fo
suitable for reading back in.

(pr'1n1 .. I) outputss On the lile /, or the terminal il 1 i. n11.

print LSU8R 1 or 2 Irgs

print is like prinl except, that the output ia preceded b, a newline
and followeel by a space. This is the output function IIIOst often used.

(print ..) ,rin'" s to the delault output destinationL

(PI" int .. /) prints :t: to the file /, or to the terminal if 1 i. nil.

Page 1'46 13.2.3 04/08/14

•

Input and Output

prine lSUBR 1 or 2 args

tyo

prine is like pr1nl except thaI. lpecial characterl are not slalhilied
and strin,s are not. quoted.

(prine s) outputs s to the current. output destination(s).

(prine s I) outputs s to the file I, or the terminal il 1 il nil.

LSU8R 1 or 2 args

(tyo n) types out the character whole ascii code il n on the current
output destination(s).

(tyo It I>. types out the character whOle ascii code il n on the rUe 1
or on the terminal il I is nil. tyo returns its lint ar,umenL

terpr1 LSU8R 0 or 1 11'"g

(terpr 1) sendl a newline to the current output desti~ation(s).

(terpr1 I) lends a newline to I, where I may be an output lile or nil
meanin, the terminal.

1npush SU8R 1 81'"g

(1npush I), where I is a file object open lor input or nil to specily
the terminal, pushes the current input lource onto the input stack and
aelectl 1 as the current input source. This is like

(setq 1nstack (cons 1nf11e 1nstack» (setq 1nf11e I)

1 is returned.

(1npush 0) just retums inlile.

(1npush -1) pops a new input source 011 of the input stack:

(setq 1nf11e (car 1nstack)
1nstack (cdr 1nstack»

except that in the case where 1nstack is nil, i.e. empt)', 1npush
leaves 1nstack n11 and makes 1nf11e nil, which means the terminal.

(inpush -n) does (inpush -1) n times.

(1npush 1) does (1npush (1npush 0», (1npush +n) does that n times.

04/08/74 13.2.3

MACLISP Reference Manual

The result of 1npush il the newly lelected input source. II 1npush
causes 1nfl1e to he set to nl1, Aq i, aet &0 nl1 linee the terminal
ha' become the input lource.

13.2.4 • HlndUnl End of Fil.

CaUs to the input functions read. readch. readl1ne. and, ty1 specify an
argument called the "eofval." If this argument is omitted nil il allumed.
If the end of the input file il reached durin, the execution 01 the
function, the eofval argument is used by the foUowin, procedure:

Each input file object has an end-of-file handler, its eonn. When an
end of rile occurs while input is being taken from this file, the eoffn is
examined. (Eof on the terminal cannot occur.) If the eonn is nil, then
the following default action is taken: If eofval on the call to read was
not supplied, then the input file is closed and read continues taking
characters Irom a new input file popped off the input stack. II the input
stack is empty, (setq Aq nil) is done and read continues rudin, from the
terminal. II an eolval was lupplied on the call to read, then read
immediately returns it. The input rile i, not closed.

This is not strictly true in the case where the input lunction is read
(or, readl1ne) and it is in the middle of an object (or a line). In this
case, rather than allowing the object to cross files, a fa'l1-act error
occurs. The argument passed to the uler interrupt _"ice lunction is the
list (read-eof). II the interrupt service lo'netion returns an atom (Iuch
as nil), read signals an error; but if it returns a list, read goes on
reading from the new input lource 81 if there had not been any end-ol-file.

If the eonn lor the input file is not nl1, then it il a function and it
il applied with two arguments. The first argument i, the file object that
eo red. The second argument ii, the eofval on the call to read, or, if an
eorval was not lupplied, nil. If the eoffn returnl nil, the file i, closed
and reading continues Irom the input source popped 011 the in,,,t Itack.
The above prohibition of objects crossing eofl applies. If the eoffn
returns t, readin, continues from whatever input source was made the
current default one by the eolfn. II the eolln returns somethin, other
than t or nil, then read immediately returnl "hate.er the eolln returned,
and the file i, not closed ,unless the eoffn closes it.

Page 148 13.2.4 04/08/'14

..

i II

Input and Output

eoffn . LSU8R 1 or 2 args

(eoffn ,,), where " is an input file, gets s'. end-of -file function.
The end-of-lile function is called if the end of the file i. reached
during input.

(eoffn nil) gets the default end-of-file function.

(eoffn " I) sets s'. end-of-file function to I.

(eoffn nl1 I) sets the delault end-of-file function to I.

I may be nl1, which means that no end-of-file function i. to be used.

04/08/74 13.2.4 Page 149

r I ;

MACLISP Relerence 'Manual

13.3 - Applyinl Default, to Fil. Nam.,

The 1/0 system provides a mechanism lor applyin« defaulta which pro.raml
can use and which is used when a lile object il created by the open
functions.

A delault namelist, eorrn, and endp.,efn are remembered for
initialization 01 rile objects when they are created by the open1. openo.
or opena' lunction. These defaults may be examined and modif·ied by use of
the eoffn. eAdpagef'n. name 1 1st, and defaultf functione. Passing nil
instead of a file object indicates that the defau.lU ·are Min, referred to.

There is also a system of delaults lor rile names (actually lor
namelis.ts), which is based on the use 01 namelilts conleinin, the lpecial
atom *.

II one 01 the elements in a namelist is the atom *' it indicates that
that component is no,t specified. Thus the namelist

(lit faa bar)

specifies a lile named foo.bar but it is not said in what directory or on
what device it exist&. Similarly a namelist ·like

(d1r foo lit)

indicates a file in directory dirt with a two component name or which the
first component is 100; but the second cemponent is not specilied.

A namelist may allo be dotted, that is, it may end with an atom rather
than with nil. It it ends with an atom other than :t:, i.e. il it looks
like

(devd1r namel name2 name3 . faa)

it s'pecilies a lile whose name begins with the components
namel.,name2.name3, ends with the component 100, and may also have any
number of components in between. For example, ignoring directories, in a
syatem such as Multicli "here the namestring consists or the file-name
componen... I,rom the namelist concatenated together with period., the
namelist

(-- moe larry . mung)

could specily all 01 the following lile names:

moe.larry.mung
moe. 1 a·rry . cur 1 y • mung
moe.larry.foo.bar.blech.mung

and 80 on. This lorm 01 namelist cali be used to apply what .il sometimes

Page 150 13.3 04/08/74

Input and Output

called a -default eKtension.-

A nameliat can also have a dotted star, that is it can be in the form

(devd1r -names- . .)

This specifies a file whose name begins with the components -names-, and
may have zero or more components following those. Thus

(-- mung bung . .)

means any of these file names:

mung.bung mung.bung.lung mung.bung.roo.goo.zoo

The process of applying defaults to file names consists of -merging- t.wo
(or more) namelists into a single namelist, where one of the namelists i. a
user-supplied file specifier and the other il a set of defaults. For this
purpose, the function merger il supplied. Merger i. allo uled by open1 and
openo when they combine their argument with the default namelist to get the
namelist of the rile being opened.

merger LSUBR 2 or more args

merger il used for applying defaulta to rile specifiers, which may be
namelists or namestrings.

(merger so y) returns a namelist obtained by selecting components from
sand y, which are conve .. ted to namelista. Where a component of s is
*, the corresponding component of y is selected. It is an error if y
is not that long. When a component of so is not :1:, it il selected and
the corresponding component of y is skipped. I£ y ends with a dotted
atom other than a :I: this atom is added to the end of the namelist if
it is not already there. The same applies if so ends with a dotted
atom. If s ends with a dotted :1:, the rest of y is copied over.

(merger s nil) strips off the last component of s.

(merger til 2: Y %) /
is equivalent to ,

(merger (merger (merger til s) y) .).

04/08/74 13.3 Page 151

d

MACLISP Reference Manual

13.4 • Requests to tM Oper.tin, System

13.4.1 M.nipul.ttnl the T .rmin ••

tt~ VARIABLE

The .alue of the atom tty il initially set to .' numher describin, the
type of terminal being used. The values presently defined are:
o normal terminal with no special capabilities
1,2 datapoint
3 Imlac
4 ARDS
5 pdp-II TV

Except in th,e ITS implementation, tty will generally alway. be O.

cursorpos LSUBR 0 to 2 args

The cursorpos function is used to manipulate the cursor on those
display terminals which are similar to the Datapoint in that they .how
exactly one character at each position on the screen 'and can change
each of these characters &eparately.

With no arguments it returns the dotted pair (11ne . column), where
line i. the line number, starting from 0 at the top of the screen, and
column il the column position, starting from 0 at the left edge of the
screen. If the terminal being used is not a display terminal with
this type 01, cursor, nl1 is returned instead.

With two arguments, (cursorpos line colamlt) mov. the diaplay cursor
to the indicated position and returna t if it WU Iuccessful, or nil
if the terminal was incapable of doing- this. Either of the two
arguments may be n 11, indicating that that coordinate should not be
altered.

With one argument, cursorpos executes a number of apecial control
operations. The argument must be a character object chosen from the
follOWing list:

F
B
D

. U
C
T
Z
E
]

P'a,e J:52

move one space to the right
move one space to the left
move down by one line
move up by one line
clear the screen
go to top left corner of acreen ,0 to bottom left corner of screen
era.. contents of screen' after current point
erase from current point to end of line

13.4.1 04/08/'"

I

iJf

l!i-

Input and Output

X delete character to left

11 s ten SUBR no args (I" s~e..,. <t.t.y» -.A..-~
~,~

(listen) returns a fixnum which is non-zero if there is any input that
has been typed in on the ter.minal but has not. yet been read. In the
ITS implementation it also waits for all terminal output and curNr
motion to be completed.

13.4.2 File System Operations

deletef SUBR 1 arg

(de 1 etef s), where s is a namelist, a namestring, or a file object,
deletes the file specified by s. The return value is the namelist of
the file actually deleted, i.e. s mergef'ed over the deC aulta.
Examples:

In the Multics implementation,
(deletef "foo.bar") .) ()udd)proJ)user)Junk faa bar)

In the ITS implementation,
(deletef "faa bar") .) «ml loser) faa bar)

rename SUBR 2 args

(rename s y), where sand yare namelists, namestrings, or file
objects, renames the file specified by (merger s (names nil)) to the
name specified by (me rgef y s (name s nil». The directory part of y
is ignored; a file may not be renamed onto a different device or
directory. The return value is the namelist of the new name of the
file..
Examples:

04/08/74

In the Multics implementation,
(rename "foo.baz" "*.bar") =) ()udd)Bar)Foo faa bar)

and renames >udd>Bar>Foo>roo.baz to foo.bar.

In the ITS implementation,
(rename "faa baz" "* bar") =) «ml loser) faa bar)

and renames ml:loser;foo baz to loo bar.

13.4.2 Page 153

MACLISPRelerence Manual

.·11'118S SU8R 1 l1"g

(1·11 f 11 es *), where :I' is a namelist, returns a lilt of namelia... which
are precise; i.e. they do not contain any ,stars or dotted parts..
These are the namelists lor all the files in. the rilesy.tem which
match the ·namelist:l'. Whatever search rules are cu.tomary in the
particular operating .ystem are used.

1·11 f 11 es with .a pReise namelist as an argument can be used as •
,predicate to determine whether or nota 'rile ,exists.

The argument to ,·11 f 11 es may also he a namestrin, or I file OhjecL

clear-input SUBR 1

(c'lear-1nput :1'), where :I' is a rUe or nl1 meani'n, the terminal, causes
any input that has been received from the device but has Itot yet been
read to be thrown away, if that makes sense for the particular device
in.olved.

force-output SUBR 1

(force-output :1'), where * is a file or nil meanin, the tenninal,
causes any 'burrered output to be immediately sent to the file, if tha'
maltes &ense for the particular device in.ol

13.4.3 - Rlndo", Acc... to FiI ••

f1lepos LSUBR 1 or 2 Irgs

(f 11 epos *), where :I' is a file object open for input, returns. the
c.urrent character position within the file as a lixnum~ The be,inning
or the file is O.

(f11epos II" n), where :I' is a rile object open for input and n i. a
non-negative .·fixnum, resets the character position of the file to
position specified by n. It is an error if this position does not lie
within the rile or if the lile is not randomly accessible. n is
returned.

Pa,e i54 13.4.3 04/08/"14

Input and Output

13.5 - The Old "Ureld" 1/0 System

The functions uread, uwrite, uri1e, uk111, and crunit are part
older LISP I/O system. They are retained for compatibility.
"status" functions are also part of this older 1/0 system. (See
12.7)

of an
Various
section

These five functions name files in a different way from the other I/O
(unctions. A file is named by a 4-list,

(namel name2 dey d1r)

Namel and name2 together make up the "filename," dev is the "device," and
dir is the "directory." In the ITS implementation of MACLISP, these go
together to make up the ITS rile name:

DEV: DIR: NAMEI NAME2

In the DEC-lO implementation, dev is the device name, namel is the rile
name, name2 il the extension, and dir is a list of two fixnums, the project
number and the programmer number. Thus the 4-list

(namel ext dey (proj prog»

represents the rile

dey:namel.ext[prOj,prog]

In the
path name.

Multics implementation, de. is ignored and dir is the director)'
The entry-name is namel.name2. Thul the Multics filename is:

d1r)namel.name2

These live runctions maintain their own set of defaults, which are
updated every time one of these runctions is called, so that the defaults
correspond to the lalt rile that was used. The defaults may be examined
with (status crfile), which returns the first two elements of the default
4-list, and (status crunit) which returns the last two.

It is not necessary to specify all four parts of the 4-list when one of
these five functions is used. It the list contains less than four
elements, the elements at the end which were dropped are lupplied from the
defaults.

These functions are fsubrs which do not evaluate their arguments. The),
may be applied to a 4-list, e.g.

(apply 'uread (cons filename '(stuff dsk macsym»)

or they may be called with the 4-list as four arguments, which is
convenient when calling them from top level. e.g.:

04/08/74 13.S Page 155

MACLISP Refere".l\l'anual

(uread 'foo bar dsk crock)

uread FSUBR

This function &elects an input lile. The arpment Ji.t i. • 4-liat ..
delCribed above. The .pecified file i. made the def •• lt . input. lour.
Note t.hat the Aq .witch mUit be tu...... on Mlo ... input. .ill be
automatically ,t.ak_ from thi. ril~

uwr1te FsuaR

uwr1te opens an <output file. When dOft' with thi. file, ufile must be
used to close it and gi.e it a name. The ,.r,umen ... are the last 'WO

elements of a 4-list, specifying the device and director, Oft which the
file ia to 'be written. The fint two parts (If the 4-lilt. are Hi
specified until the file il ufn.· ...

uf11e FSUBR

(uf11e n.mel ncame~) closes the uwrite output file and liv. it. the
name namel.Aca'",.2- The argumenu are not e.aluated. (uri1.) ...
nome'! and name2 from the ,defaulu..

crun1t FSU6R

uk111

(crun1t) returns :the current device and direct • ..,.

(crun1t fl.., fllr) seta t.he de.ice and diNCtory .nd retu it. "..
.r,uments are not. evaluated. Eaample:

(crun1t) -) (ds~)udd)8ar)'Foo)subtl'1rectorr) ,

FSUBR

(uk 111 -arga-). where -ar,s... are a. for uread, delelel the lpecifitll
file.

uread VARIABLE

The value of uread i. • file object Min, used ror in,ut init.iat._ .,
the uread function, or nl1 if no file is currently heila, uread.

13.5 04/08/'1.

• : II

Input and Output

uwr1te VARIABLE

The value of write is a file object bein, used for output initiated
by the uwr1te function, or nil if no rile is currently bein, uw .. itten.

There are also some statu./autus functions auociated with these. TheM
are (status crun1t). (status crf11e). (status uread). and (status uvr1te).

04/08/74 13.5 Pa,e 15'1

MACLISP Reference Manual

13.6 - Adv.nced Us. of the R.lde,

13.6.1 - The Ob.rray

obarray VARIABLE & ARRAY

The value of obarray is an array which is a table of known atomic
.ymbols when an atomic symbol i. read in it i. "interned" on this
obarray, that is made. eq to any atomic symbols with the same pname
that were previously read in. If an atomic .ymbol, such as one
created by (gensym), i. not in this table an atomic .ymbol read in
with the same pname will not be the same - there will be two separate
copies.

The obarray may be manipulated by the functions remob and intern.
A new obarray may be created by using the matobl1st function. The
atom obarray may be setq'ed or 1 ambda-bound to different obarray. at
different times, which allows multiple set« 01 atomic s.ymbols t.o be
kept seperate - you can have dirterent atomic symbols with the same
pname interned on different obarrays at the same time.

Note that the value of obarray ia not an atomic symbol which names
an array, but the array-object itself, u obtained by (get 'nllle
, array).

The array property of obarr~ i. the .. me arra, .. its initial
value.

Example of the use 01 multiple obarrays:

makob11st

(setq pr1vate-obarray
(get (makobl1st 'pr1vate-obarray) 'array»

:make another obarray.

((1 ambda' (obarray) (read» pr ivate-obar,ray)
;read using atoms on private obarray
;instead of regular one

SUBR 1 arg

(makob 11 s t nil) returns a list of lists of atomic .ymbol. which i. a
representation of the current obarray.

(makobl1st 0) gives the atom 0 an array property of a cop, of the
current obarray, i.e. it makes II an obarra, which is a cop, of the
current one. The value returned i. the argument; in this case,' 0.

Pa •• 158 13.6.1 04/08/'14

Input and Output

See also the functions remob and intern.

13.6.2 The Readtable

The readtable is a special table used to control the reader. It has an
entry for each character, containing 26. syntax bits and a "chtran"
character translation code. The "chtran" allows characters to be
translated when they are put into pnames that are being read in. The
syntax bits are used by the reader to determine the significance and
syntactic meaning of each character it encounters. A table of the meanings
of the bits follows. Initially the syntax bits are set to give the
standard LISP meanings for all the characters, but the user can change them
to make the read function usable al a lexical analyzer for a wide variety
of input formats or languages. It is also possible to have several
readtables containing different syntax and to switch from one to the other
by binding the atom read table.

Table of Syntax Bits

Octal Value Meaning

1 alphabetic: A-Z and a-z

2 "extended alphabetic" uled tor characters which are not
letters, but which are to be treated the same as letters. E.,.
":" in the standard syntax table.

4 digit: 0-9

40 This is the "alternate meaning" bit. When added in it alters the
meaning of other bits. For example, 10 is plul lign but 10+40 is
minus sign.

10 plus sign.

50 minus sign.

20 fixed-point-scaling number modifier character. In the standard
read table ",," has this syntax. An example of use is 13"2, which
is the same as 1300.

60 fixed point left-shift number modifier. In the ltandard
read table "" hal thil .yntax. An example or itl ute is '1.,.$,
which il '1 shifted left 5 bits, or 340 octal.

100 Indicates that the character should ~ "slash i fied" by print,

04/08/74 13.6.2 Page 159

MACLISP Reference· M·anual

prinl, and explode if it appear. in a pname but i. not the fin ..
character in that pname.

200 Decimal point. Embedded in a number it indicates floati'ng poinL
At the end of a number it indicates that the number is to be
interpreted in decimal regardless of the value or ibase. Note
that the decimal point need not be the same as the dotted-pair
dot.

400 The character will be "slashified" by prinlt print, and explode
if it i. the first character in a pname. Thus special characters

1000

2000

which need to be slashified usually have 500 • 100+400 in their
syntax bits.

Indicates that this character is the "rubout" characte~.
pdp-l0 implementations only.)

(in the

The slashifier character, which is used as an escape. It makes
special characters like space and parentheses look like letters.
Normally "/" has this syntaL If this character appears in input
to read or read lis t, the followin, character is taken to have a
syntax o,f 000000002 and its chtran is not u.ed. This allow. it
to be uled in a pname even if it is a special character.

4000 indicates a macro character. This bit should not be set
explicitly, only by using (setsyntax c tmacro f) or (setsynlax c
9splicing n. When this character i. seen in input to read or
readlist, an alsocia·ted function i. called and the value returned
by the function is assumed to have been read.

4040 same as 4000 except the macro is "splicia,." That is, the
associated function returns not an object to be inserted in the
list being read, but a list to be spliced (nconc·ed) into the
list being read. Splicing macros at top level (not inside a
list) have· their values ignored by the reader. The same applies
to splicing macros that return nil, as this is the empty HSL

10000

20000

40000

40040

100000

Page 160

Right parenthesis.

Right super-parenthesis. A super parenthesis cancels out all
left parentheses back to the beginning of the object or to a left
super-parenthesis. .

The dotted-pair dot.

Left parenthesis.

Left super-parenthesis. The chtran 01 a
must be set to the ascii code lor
super-parenthesis 10 that the reader
matching of super parentheses.

left &uper-parent.hesis
the corresponding righ t

can check for proper

A blank, i.e. a character which delimits an atom or a number but.

13.6.2 04/08/14

600000

Input and Output

is otherwise ignored. In the standard read table, space, tab,
comma, and newline have this syntax.

"Single-character object." This character begins, ends, and is
an atomic symbol. The difference between a single character
object and a letter is that a single character object need not be
delimited by spaces or any other special chcracters. II ":" had
this syntax then "(:::)" would read as a list of length three,
unlike "(aaa)" which reads as a list or length 1. In the
standard read table no characters have this syntax .

400000 . A character with this syntax bit turned on ends pnames and
numbers. In the standard read table all the special characters

1000000

1000040

2000000

400000O

s~ch as space, parentheses, and dot have this syntax.

This character is the exponent introducer (e) ror
numbers.

rIoating-point

This character is the string quote,
character strin,s (usually a " sign.)

which begins and

This character causes vertical motion (newline, newpage.)

ends

In the pdp-l0 implementation, this bit indicates a "(orce leed"
character. This is a character which causes LISP to "wake up"
and read typed input. Initially such characters as space and
right parenthesis have this syntax. In the Mullica
implementation newline is always a forcefeed character and no
other character can be a rorce reed.

The syntax lor most characten is a combination of several of these
bits. Here is a table of the syntax codes assigned to various characters
in the standard read table:

worth less control characters
000400500

backspace 000000002 (to allow underlining
space, tab, newline, newpage (the "white

000500500 (002500500 r or nl

"

(
)
+

/
0-9
;
A-Z
E

04/08/'14

001400540
000404500
000440500
000410500
000000410
000000450
000500500
000420700
000402500
000000404
000404540
000000001
001000001

13.6.2

in pnames)
space" characters)
and np)

Page 161

I

I

1\ 000000022
000000062

a-z 000000001
e 0010000Q1

The remaining special characters haye 000002 ',."tax.

SU~R 3 args

(setsyntl.x C • ".) adjustl the synt~J[of the c~aracter c in t.he
read table. C can be a Ibnu... which is the ",cii code lor a charac~er,
or it. can be a character object or a stri",. 0'14! c"aracter long. 'can
be nil, meaning don't change the Iyntax 01 ,C, or a Ibnum, meaning set
the syntax bits lor c to that fixnum, 0' ~h,., .~Qm sing 1 e. meaning set
the .yntax 01 c to the syntax lor single-eharacter objects, or the
atom macro, meaning set the syntax 01 c to be a macro character in
which case so is the function lor the macro, or the .-tom splicing which
is like macro except it makes a splicing macro, or a char~cter object.
or string in which case the standard initial syntax 10,r this character
is used. so ~n be a fixnum to which c's chtran should be set, or a
character object or one-character string to which c's c~tran should be
set, or nil meaning don't change c's clitran, or a lunction il the
second argument was spl1cing or macro.

II C il a macro character, it il changed back t.o its standard
synt.ax and ohtra .. before anything else is do,.." unl~ it is a macro
in the standard readtable, in which ~~ its ,.yntax is set. to SOZ
(extended alphabetic) and its chtran il set ,to i_II.

setsyntax always returns t.

readtable VARIABLE & ARRAY

The value of read tab 1 e is an array which contains ~bles used by t.he
reader to determ,ine the meaning of input c~ar:~cters. This array may
be manipulated using ,the functions setsyntax. status, ,and sstatus.
Multiple read tables may be constructed by asing the makreadtable
function, and the atom readtable may be lambda"'!bound or setq'ed t.o one
or another of ,these read tables.

Note that the value of readtable is not an atomic ,symbol which names
an array, but, the array-object itlelf, which is the resalt 01 (get ')(
, array) if x names an array.

The array property of readtable is the same as its initial .alae,
which is the read table with the standard meanings for all characters.

'Page'162 13.6.2 04/08/'14

Input and Output

maitreadtable SU8R 1 arg

(matc.readtable ca) gives the atom ca an arra, propert, which i. a copy 01
the current read table, a table which is uled by the reader to
determine the syntactic properties or characten.

(makreadtable n11) i. the same except that the array property is hung
on a (gensym)'ed atom.

(makreadtable t) is like (makreadtable n11) except that a copy of the
initial read table is used rather than a cop, or the current read table.
The initial read table has the standard meanings for all the
characters, e.g. (and) delimit lists, ' is used (or quoting. etc.

matc.readtable returns the atomic symbol on which it has hung the array
property. To 'switch to this read table, evaluate

(setq readtable (get (makreadtable whatever) 'array»

See also the functions status and sstatus.

04/08/74 13.6.2 Page 163

MACLISP Referem:e Mahua)

13.7 Control of Print.r Form.ttinl

This section describes how the functions print, pr,1nl, prine, explode,
exp 1 oden, and exp 1 odee convert LISP objects to Itrings of characters 10

that they can be printed out in readable form.

Atomic symbols are represented by their "pnames: which are the strings
of characters by which they were originally typed in. When special
characters appear in a pname, they -are sometimes "slash i lied," i.e.
p ecea~d by a "'" to remove their 'special meaning. 'SM the deJcriptions of
the individual function's to see which slashify and which don't.

Strings are printed out al the characters they contain. Those functions
which Ilashifyput quotes (") around strin,1 to di'tinguish them from
atomic symbols and to indicate that any special characten, euch as space
or period, they contain are not to be considered to have their special
meanings.

Flonums a're prih'ted out in decimal radix, with an embedded decimal
poinL If the magnitude of the number is outside of a certain range, a
trailing exponent delimited by an "e" is printed.

Fixn'ums are printed in the radix specified by the variable base.
Negative fixnuml h •• e a preceding "" sign. If base is ten and the
variable *nopo1nt is nil, which it is unless changed by the user, fixnums
will be printed with a trailing decimal poinL If the base is greater than
ten, letters will 'be used as digits.

Fixnutns with many trailing zeros are made more legible by use of the
• _", or left-shift, operator, unless (sstatus _ n11) is done. The .. "
character' is used because on certain formerly-used terminals it was printed
as a leftward arrow. The use or the "_" can be described by example: in
OCU') radix, -1231l000000'' would be printed instead as "l2345J8. ".

Bignums are printed in much the same format as fixnums.

.'nopo1nt SWITCH

, base

If the value of lIItnopo i nt is nil, trailing decimal points are printed
w'hen numbers are printed out in base ten. This allows these numbers
to be read back in correctly even if 1base is not ten. If ~nopo1nt is
nOn-n 11, the trailing decimal points are suppressed. The initial
value of *nopo1nt is nil.

VARIABLE

The value of base is a number which is the radix in which numbers are
to be printed. The initial val ue of bas e is 8.

Page 164 13.'7 04/08/14

/

liii liIIIll ":;iIiI lilO" Ii

Input and Output

Lists or "conses" are represented using the parentheses notation
has been used throughout this manual. A dotted pair whose cdr is
printed as a list but other dotted pairs are print.ed using the dot.
(cons ' a' nil) prints as (a), while (cons 'a' "b) prints as (a' . b).
'a' 'b 'c) prints as (a' b c) rather than (a . (b . (c . nil»).

that
nil is

Thus
(list

. Other types, such al arrays, subrs, and files, have no proper printed
representation. They are printed as a "." sign lollowed by some string
that has internal meaning, such as an octal number.

Most files have a limit on the number of characters that may be printed
on a single line when output is done to these files. For example, on the
user terminal the maximum number of characters per line is determined hy
the width 01 the platen or display screen. This limit is called the lile's
·line 1." When a Iile-object is created, its line 1 is set to a value
appropriate for the device on which the Cile resides.

Each lile also has another number associated with it, called it.&
"charpos." The charpos is the horizontal position, starting at 0 at the
left margin. If no backspaces or tabs are used it is the number of
characters that have been printed so lar on the current line. As
characters are sent to the file, charpos increases for printing characters
or is adjusted appropriately for format effectors such as carriage return
or backspace. When charpo$ exceeds line 1, an automatic newline is provided
by the output functions, such as print, to ensure that the line being sent
to the file is not longer than the fHe's line 1. This feature can be
turned off by use of the (sstatus terpr 1) function. Note that the line 1 is
not an absolute limit since some implementat.ions will not break atoms
across lines, so that a particularly long atom near the right margin could
result in a line longer than line 1.

Some other attributes of a Cile are its 11 nenum. page 1 • and pagenum.
The 11nenum is the line number, starting with 0 at the top of a page. The
page 1 is the number oC lines per page. The pagenum is the page number,
starting with zero at the beginning oC the Cile.

The following functions can be used to examine or modify the attributes
01 files:

11nel lSUBR 1 or 2 args

(1 i ne 1 I), where 1 is an output file, gets the number of characters
per line on /. Lines output to I that exceed this length get an extra
newline inserted at the next break between at.oms. If the linel • 0,
this feature is suppressed.

(11 ne 1 nil) gets the linel of the terminal.

(line 1 In) sets the rile rs linel to the fixnum n.

(11 ne 1 nil n) sets the terminal's Iinel to the fixnum n.

04/08/74 13.7 Page 165

MACLISP'Reference Manual

charpos LSU8R 1 or 2 args

(charpos I). where I is a file or nl1 meanin, the terminal, returns
the curren't character position or I, with 0 lei .. , the lelt margin.

(chlrpos I: II) sets the charpos or I to the li1lnum II. This does not
move a curaot or anything of that lorL

chrct tS08R 1 or 2 a~gs

pagel

This is an older, now obsolete, version 01 charpos.

(chrct s), where s is an outp"ut lile . or nil
returns the nu ber 01 character poSitions
output to :¥.

meaning the terminal,
leEt on the line being

I
(chrct s y), where s is a file and y ia a li1lnum, lets s'~ chrct to
and returna y.

LSU6R 1 or 2 args

(pagel I), where I is a lile or nl1 meanin,. the terminal, retaml the
number of lines per page 01 the lile I.

(page 1 I II) '.ell the number 01 lines per ,a,. of the' lile I to the
lixnurn ft.

,LSU&R lor' 2 args

(11nenum I), where I is a lile or nil meaning the terminal, returns
the current line number 01 I, with 0 bein, the top of the page.

(11 nenum I II) ieta the line number of I to the lixn·ulft II. Note that
this does not caus.. any physical motion, it aimply changes the
number.

pagenum LSU8R 1 or 2 args

(pagenum I), where 1 is a rile or nil meanin, the terminal, returns
the current page number of I, which is 0 when the Iile is first
opened.

(pagenum I II) sell the page number of t~e file I to the fixnum, II.

The printing of large li.lI can be limited by UI8 01 the variables

~age 166 13.'1 04/08/74

/

Iii I I • am."""""::::::; .; :l

'\

iii

Input and Output

pr1nlevel and pr1nlength. If these variables are nil, they have no ecreet,
but if they are set to fixnum values they take efCect al follows:
pr1nlevel specifies the maximum depth of nested parentheses that will be
printed. If this depth of nesting is exceeded, a sharp sign (.) will be
printed and the list structure below that depth will be omitted.
prinlength specifies the maximum number or list elements (atoms or
sub-lists) that will be printed in anyone list. If more than this number
need to be printed, the excess will be omitted and 3 dots (•••) will be
printed to indicate the omission. These features operate under the control
of some abbreviation control bits set by (sstatus abbreviate). (sstatus
abbreviate 1') enables it Cor print. pr1nl. etc. when they output to files.
(sstatus abbreviate 2) enables it for flats1ze, flatc, explode, etc.
(sstatus abbreviate 3) enables it for both. (sstatus abbreviate t) enables
it for everything (currently the same a8 3. (sstatus abbreviate nil) or
(sstatus abbrev 1ate 0) turns it oIl. Note that abbreviation i. alway. in
effect for the terminal. The only way to turn it ofC is to setq pr1nlevel
and prinlength to nil.

prinlevel VARIABLE

pr1nlevel can be set to the maximum number of nested lists that will
be printed before the printer will give up and just put a ".". If it
is nil, which it is initially, any number of nested lists can be
printed. Otherwise, the value of pr1nlevel must be a fixnum. The
effect of prinlevel is under the control of (sstatus abbreviate).

prinlength VARIABLE

pr 1 n 1 ength can be set to the maximum number of elements of a list t.hat
will be printed before the printer will give up and just put -_ -.
If it is nil, which it is initially, any length list can be printed.
Otherwise, the value of pr1nlength must be a fixnum. The errect or
pr1nlength is under the control of (sstatus abbreviate).

endpagefn LSUBR 1 or 2 args

(endpagefn I), where I is an output file, returns the end or page
(unction 01 I. This is a function which is invoked whenever the file
is advanced to a new page. nil is returned if I has no endpageln.

(endpagefn I 1:) sets the endpagefn of the rile I to the functional
form.c. If % is nil rs endpagefn is removed.

Note that if I il nil it means set the endpagefn of the terminal,
which mayor not be implemented depending on the implementation' and
the type of terminal.

04/08/74 13.'7 Page 167

MACLISP Reference Manual

13.8 • Input Format ExPKteci by (r •• d)

This section describes the forms of input which will he accepted by the
reid function and converted to LISP objects.

A string of digits, with an optional leading sign and trailing decimal
point, is read as a fixnum, unless it is too large to fit in a filtnum, in
which case it is read as a bignum. If a trailing decimal point is
included, the number is converted in decimal radix. Otherwise the variable
iba,. specifies the radix. Initially it is eight. If ibase is greater
than ten, and the number begins with a leading "+" or "-" sign, and (status
+) is not nil, upper- or lower-case letters may be used a8 digits, with "."
being 10., "b" 11., etc. If (status +) is ~i1, the standard initial
setting, this feature is turned off and what looked like a number with
letters as digits would be read as an atomic symbol.

ibas. VARIABLE

The value of iblse is a number which is the radix in which numbers
will be read. The initial value 01 ibas. is 8.

"Fixed point number modifier" characters may be used in lixnums or
bignums. In the standard read table these characters are "_"1

0
and ",,".

"mmmJln" causes the number mmm to be shifted left nn bits. Note that nn is
interpreted in the ibase radix unless a trailing decimal point is placed on
it. If mmm is to be read in decimal, a trailing decimal point may be
placed just before the "_". "mmml\nn" is read in u mmm followed by nn
zeros, i.e. as mmm multiplied by the nn'th power 01 the input radix. nn
must have a trailing decimal point il it is not to be interpreted in the
1 bas. radix.

A string of digits with a leading or embedded decimal point, and/or an
exponent introduced by "en or "E", is read as a nonum. The number and the
exponent may be optionally signed. The .number and the exponent are
interpreted in decimal radix regardless of 1 bas.. The number is generally
converted to binary and rounded to the equivalent 01 6 to 8 decimal digits
of precision, depending on the implementation.

A string of letters, numbers, and "extended alphabetic" characters
represents an atomic symbol whose pname is the string, provided that it
does not look like a number (e.g. all numeric characters.) A special
character, such as a parenthesis, a period, or a. space, may be included in
an atomic symbol by preceding it with a slash. A slash. itself is
represented by two slashes. A string of digits may be made to represent an
atomic symbol rather than a number by preceding one 01 the digits with a
slash, to make it into an alphabetic character.

A parenthesized sequence of items such as atoms or parenthesized lista

Page 168 13.8 04/08/14

1 i

Input and Output

is read in as a list. The items may be seperated by spaces or commas. ' If
a dot appears, it must be between the last two items, and a dotted pair or
a list ending in an atom other than nil is created. Where there would be
ambiguity between a dotted-pair or a decimal point, the decimal-point
interpretation will be chosen, 10 dotted-pair dots should be surrounded by
spaces. Thus (1.2) is difCerent from (l • 2).

A sequence of characters enclosed in quotes (such as "foo") is read as a
character string. If a quote is to be included in the string, two quotes
must be written.

The read table may be set up so that certain characters are "single
character objects." These characters read in as atomic symbols whose pname
is the Single character, without the benefit of delimiting spaces or
commas. In the standard read table there are no single character objects.

Characters may be deCined as macro characters. (See the setsyntax
function.) When these characters are encountered by the reader, a special
action deCined by a LISP function is perCormed, unless, of course, the
character is slashiCied. Two macro characters included in the standard
readtable are ' and;. 'x is equivalent to (quote x), similarly , (a b) is
equivalent to (quote (a' b». The; is used to introduce a comment: the
semicolon and the rest of the line to the righ t of the semicolon are
skipped over.

Note that the specific characters used in all the constructions defined
above are only the initial deCault characters for these constructions. Any
other characters may be substituted by changing the read table. See the
setsyntax function.

04/08/74 13.8 Page 169

MACLISP Reference Manual -

This section describes how to Ule lome of the peculiar I/O devices
prelent on the MI'I:' A.I. Lab pdp-lO.

The Display Slave

The Display Slave runs on the pdp-6, if it is avaUable, otherwise on
the pdp-IO. It displays pictures on the 340 display under control of
commands sent to it by certain LISP functions.

The following conventions are used in the descriptions of these
lunctions:

n

"em

M:.I.

are assumed to be lixnum arluments to line drawing, point
insertin" and other such functions., The, represent coordinates.

is a fixnum arlument whose meaninl il described under the
particular functions which use it.

is t.he numerical index or name of lOme display slave item,
returned by d1screate.

each item has a brilhtness level auociated with it, ran,ing
between 1 and 8. The default il 8.

each item has a scale, or magnification, factor associated with
it. The scale factor ranges between I and 4. The default il I.
2 doubles the length of drawn lines and the size of text; 3
quadruples; aftd 4 multiplies by 8. Text look. much nicer (on the
340) if drawn with a magnification of 2.

/1.. is an indicator, which if nil specifies that a given acUon is to
be undone, or if non-n 11' specifies that the ,iven action i. to be
done.

6.1 is eit.her n; 1 indicat.in, no chan,_. or is a list. (bright. scale)
specifying new values of these parameten for a 'liven action.

All numbers in this section are octal unless followed by a decimal point,
in which case they a're decimal.

The dis,play slave maintains a number of items, whose names are indicated
by 'item' above. Each item has associated with it y,ariables determining
the brightness, scale, and visibility 01 points and lines in the item.
Like the LOGO Turtle, we think of the item as havin, a "pen" which can be
"down" so that a line is visible when the turtle is requested to move from
one plac~ to another, or "up" so that. no vilible mark il made.

For the functions w,hich affect brightness, scale, or the penup status, 0
generally means no change. Functionl which take an optional 'bsl;
argument, namely disapoint., discuss, and disaline, will treat it _ a

Pa,e 11.0 13.9 04/08/14

Input and OutP~t

temporary setting for thele valuel, and upon exit will restore them to
their values prior to the call. The optional pen up argument to disaline is
similarly treated al temporary.

Arguments that are intended to lpecify coordinatel on the Icreen for the
functions disaline, disapoint, and dilcuss are interpreted in one of four
way. depending on the slave variable "as tate," which can be set by disini.
-.state" is no' a lisp variable.

o relative mode - the point specified is in relation to the "home" of
the item on which the function is acting.

1 absolute mode - x and y are interpreted as direct screen coordinates,
modulo 1024., with (0,0) at the lower left-hand corner.

2 incremental mode - the coordinates specified are relative to the
current position 01 the pen or the item which is being acted upon.

3 polar mode - like incremental, but the It and y arguments, which must
be flonums instead or filtnums, are considered al the radiul and angle
respectively in a polar coordinate Iystem centered on the current. pen
position, with zero degrees being horizontal and to the right..

NB: functions like discreate, dislocate, and dismotion, which specify 8n

item's home, always take the coordinates 01 the home in absolute mode.

To emphasize that the interpretation or • and y is controlled by .. tate, we
will write astate(.,y) to mean the point specified by • and y.

d1screate LSUBR 0 or 2 args

(d 1screate s y) creates a new display item with home at (s,y) on the
screen. (d1screate) creates one with home at (0,0). d1screate
returns the item number of the newly-created item, by which it may be
ref erred to in later calls.

d1s1n1 LSU8R 0 or 1 args

d 1 s 1 n 1 seizes and initializes the slave. II the user already has the
slave (this is not the first dis 1n1), it is re-initialized. utate is
set to the argument if there is one, provided it is 0, 1, 2, or 3.
Otherwise astate is not changed. Initially astate is 0. The previous
value 01 astate il returned.

04/08/74 13.9 Page 171

;

MACLISP ReterehC:e Manuel

d1spla1 suaR 2 args

(d 1 sp 181 ',.rn ,,-.) makes the 'tern yilibl. or hOt dependin, Oft whether ".6 i. t or nil.

d1sflulh LSU8R 0 or more args

(d1sflush) Clushes the sla.e. (d1sflush ite .. i,.". ... i •• m) flushes
the ind'icated items, i.e. deletes them from the '11 ••• 's .mory.

d1s10c8'te SUBR 3 args

(d 1 s locate ".m • ~) mo.es the ".".'. home to '(*'",.).

d1sbl1nk SOBR 2 atgs

(d 1 s b 11 nk i •• m II.,) hlakea i •• ", blink if ".6 i. non-n 11, .top /
hlinkin, if ,,.. 'is nit

discopy SU8R 1 arg

(d 1 I copy it.",) makes a copy of "."., and returna the new item, which
hal ita home at the same location.

d1slftark SU8R 2 args

(d 1 smark item II) if n • 0, remo.ea marker from it.m. If II < 0,
inSerts standard marker on 't.".. If II) 0, 'inserts display-item II as
marker on it.",.

d1scr1be SUBR 1 erg

(d1scr1be i •• m) returns a list of the parameten of i •• m:

(home-x, home-y, pen-poI-x. pen-pos-~. bright, sca-le, penup, marker)

Page 112 13.9 04,08/"4

II II : liitI; a::. ,;;:4##.; ,4i#! AI Ii hiiiii i d

Input and Output

dischange 'SUBR 3 a1"gs

(d1schlngt '.em 6rig'" teale) adda 6rigA' and teole to the
correapondin, variables or '.em.

dis1ink SUBR 3 a1"gs

(d1s11nk i.em-l item-! IIag) links or unlinks i.em-l to i.em-! (links
if Ilog non-nil, unlink a if Ilog nit) item-! i. the winleriorw 01
i'em-I, and will be dis loc:ated. d1schanged. displl)*ed. and d isb linked
whenever i'em-l is.

d1s11st LSUBR 0 or 1 l1"gs

(d 1 s 11 s t) returns a lilt 01 all items won display,. that ia made
viaible by (d 1 sp 11)* i.em t).

d1set

(d is list i.em) returns a lilt 01 all inferiors 01 i.em.

(d1set i.em
for the item.
is 0, leave
above.

SU8R 3 args

n lui) sets the values for penup, brightness, and ecale
If n is -1, put pen down. If n is +1, lift pen. U n

pen alone. Set bright and scale Irom 6,1, 81 described

d 1sa·l1ne LSU8R 3 to 5 args

(d 1 s a·l1 ne i.em S" y b,l n) sets penu" brigh t, and scale r rom 6,1 and n
as in d 1set, then moves pen position to astate(S",y), leaving a visible
line il the pen is down, and restore the item's penu" bright, and
scale.
The lorms (d1sa·l1ne i'em S" ,.), (d1sal1ne i'em S" ,. n), and (d1sa11ne
hem s ,. b,l) are also allowed. The unspecified parameten are lelt
unchanged.

d1sapo1nt LSU8R 2 or 3 args

(d 1 sapo 1 nt S" 'Y b,l) displaya a point at 8Itate(S",,.) a. part or i'em.
6,1 is interpreted .. by d1sa·l1ne, a. a temporary letting 01 bri,ht
and acale. It may be omitted.

04/08/74 13.9 Pa,e 173

MACLISP Reference Manual

discuss LSUBR 4 or 5 Irgs

(d i'sCUSS i.em " 'Y .es. ,.1) processes ,,, .. disipoint doe., then
inserts the characters 01 'e"t, as il pr1nc'ed. ibto the i'ttlll
beginning at the point astate(s,,.). ,,,. ma, be omitted.

SUBR 4 args

(dis.otion item S' ,. .peel) causes i.em to be slowl, dis10cate'ed 10

that its home eventually becomes (s,,.). II either S' or y is negative
the ilem is placed under control 01 spacewar console 1. The hutton
returns control to .the tty. [m] The ar,ument .peed is an invene
measure or the, .peed at which the i.em will move. 'pHd· 0 i. the
maximum.

disgorge SUB.R 1 arg

(d isgorge i.em) em,tes a (gensynt) atom, .. vea it an Irr~ propert',
and riUa the alTay with the intemal displa, code of it

d1sgobble SU8R 1 arg

(d 1sgobb 1 e arro,.-name) takes the arra, named array-name and ,eneratea
a display item from the internal displa, code in. the array_

Eaamples=

A subroutine to draw a Ii,ht box with a medium point in.id. it at the
center or the screen. A description or the. item is returned.

« lambda (oestate b)·
(d1sa'11ne b -100 -100 1) ;go to lower left corner of box
(diset b 0 (list 3 boxsca'le»;set sCI'le from glob .. , variable

(disaline b 0 200)
(disaline b 200 0)
(disal1ne b 0 -200)
(d1sal1ne b -200 0)
(d1s1n1 0)
(d1sap01nt bOO '(6 0»
(d1s1n1 oastate)
(d1scr1be b»

(d1s1n1 2)
(discreate 1000 1000»

Pa,.e 174

*

:set bright but don't change penup
: draw box in incrementa" ... ode

; go to re 1 I·t ive mode to
;draw the point
;restore a'Stlte
; return va'lue.
;enter with a'State 2
;Ind b set to this 1te

13.9 04/08/'14

Input and Output

To add some text on top or the box, assuming astate • 0 and that b i. the
item .1 above:

(discuss b -200 207 "here is the box - see the box" '(6 2»

To move the box bright. 100 units:

(setq foo (discribe b»
(setq foo (list (car fool (cadr foo»)
(dislocate b (+ 100 (car fool) (cadr foo»

To put. a cross where the pen il now, and lome text where it used to be
before it wal moved:

(dismark b -1)
(discuss b (caddr foo) (cadddr foo) "turtle slept here"»

To brighten t.he box and pOint (but text is already brightest, 10 it. does
not change):

(d1schange b 2 0)

To get rid of the box:

(d1sflush b)

To get rid or the slave:

(d1sflush)

The display slave is also available in
MACLISP, in a somewhat different form.
so the "display" can be any device.
can be directed elsewhere by attaching
using the display slave.

the Multics implementation of
The Multics Craphics System is used
Normally it is the terminal, but it

the stream "graphic_output," before

The Multics display slave i. not part or the initial LISP environmenL
It must be loaded in. (As of this writing, 21 January 1974, the Mullica
display slave is actually not yet available. However it is expected to be
finished soon.)

The Multics display slave does not implement brightness or scale.
Blinking is simulated by the use or dotted lines. d 1smot ion is not
implemented. The graphic dat~ does not actually appear until (d 1sgo) ia
evaluated. (d 1 serase) should be called if an item is changed or removed,
rather than simply added, so that the display will be redrawn from the
beginning the next time (disg0) is uled. The Multics display slave accepu
both lixnums and flonuml al coordinate ..

04/08/74 13.9 Page 115

/
!

iii! iii II

MACLISP Reference Manual

The dil,la, Ila.e conlish of a let of LISP functionl which are
autoloaded in when dts1n1 il fint called.

Arms. Bandl, and Eye.

TO BE SUPPLIED

Page 116 13.9 04/08,14

I

/

i Ie

Compilation

14 Compilation

LISP programs can be compiled into machine code. This representation or
a program is more compact than the interpreted list-structure
rat'resentation, and it can be executed much more quickly. However, a price
must be paid for these benefits. It is not as easy to intervene in the
execu tion of compiled programs al it is with interpreted programs. Th us
most LISP programs Ihould not be compiled until after they have been
debugged.

In addition, not all LISP programs can be compiled. There are certain
things which can be done with t.he interpreter that cannot be effectively
compiled. These include indiscriminate use o£ the functions eva 1 and
app 1 "1, especially with pdl-pointer arguments; "non local" use o£ the go and
return functions; functions which modify themselves. Also there are a
number or functions which detect illegal arguments when they are called
interpretively but not when a call to them is compiled therefore
erroneous compiled programs can damage the LISP environment and can cause
strange errors to occur - be forewarned. However, most "normal" programs
are compilable.

04/08/74 14. Page 177

At hliiiil II Iii"" "Hii" li"a:

MACLISP Reference Manual

14.1 • P.culiariti.. of the Compiler

Some oper'ations are compiled in such a way that they will behave
somewhat differently than they did when they were interpreted. It is
sometimes necessary to make a "declaratio,," in order to obtain the desired
behavior. This is explained in section 14.2.

14~l.1 - V.riabl ••

In the interpreter "variables" are implemented, as atomic symbols which
possess shallow-bound value ceUs. The continual manipulation of value
cells would decrease the efficiency of compiled code, so the compiler
defines two types of variables: "special variables" and "local variables. "
Special variables are identical to variables in. the interpreter.

Local variables are more like the variables in commonly-used algebraic
programming languages such as Algol or PL/I. A local variable has no
associated atomic symbol, thus it can only be refer-red to from the function
that possesses it. The compiler creates" local variables for
prog-variables, do .. variables, and lambda ... variabJes, unless directed
otherwise. The, compiled code stores local varia,bles in mach'ine registers
or in locations, within a stack.

The prinCipal differ.ence between local variables and special variables
is in the way a binding or a variable is compil.ed. (A binding has to be
compiled when a prog-, do-, or lambda-expression is compiled, and for the
entry to a function which has lambda-variables to be' bound to its
arguments.) If the variable to be bound has been declared to be special,
the binding is compiled as code to imitate the way, the interpreter binds
v,ariables: the value of the atomic symbol is saved and a, new value is
stored into its, value cell. It the variable to, be bound has not been
declared .pecial. the binding is compiled as the fleclor"tion of a new local
variable. Code i. generated to store the value to which the variable ia to
be bound into the register or s.tack -location •• signed to the new local
variable.

Although a special variable is associated with an atomic symbol which is
the name of the variable, the name of a local variable appears only in the
input file - in compiled code there is no connection between local
variahles and atomic symbols. Because this is so, a local variable in one
function may not be used as a "free variable" in another function since
there is no way for the location of the variable to be communicated between
the two {unctions.

When the usage of a variable in a program to be compiled does not
conform to these rules, i.e. it is somewhere used 81 a "free variable," the
variable must be declared special. There are two common cases in which
this occurs. One is where a "global" variable is being used, i.e. a
variable which is setq'ed by many functions but is never bound. The other

Page:. 178, 14.1.1 04/08/74

Compi1ati~n

i. where two functionl cooperate, one binding a variable and then callin,
the ot.her one which Ulel that variable al a free variable.

14.1.2 In-lin. Codin,

Another difference between the compiler and t.he interpreter is "in-line
coding," also called "open coding." When a form such as (and (foo x)
(bar» i. evaluated by the interpreter, the built-in function and i. called
and it performs the desired operation. But to compile this. form al a call
to the function and with lilt-structure arguments derived from (foo x) and
(bar) would negate much of the advantage of compiling. Instead the
compiler recognizes and as part of the LISP langua,e and. compiles machine
code to carry out the intent 01 {and (foo x) (bar» without actually
calling an a,.d function. This code mi,ht look like:

pick up value 01 variable lt
call function 100
is the result nil?
il yes, the value of the and il nil
if no, call the function bar
the result 01 the and is what bar returned.

Thil "in-line codin,· il done lor all ".pecial forms" (cond, prog, and,
errset, letq, etc.), thul compiled code will usually not call any 01 the
built in Isubrs.

Another diff ere nee between the compiler and the interpreter has to do
with arithmetic operations. Most computers on which MACLISP is implemented
have special instructions lor performing all the common arithmetic
operations. The MACLISP compiler contains a "number compiler" feature
which allows the LISP arithmetic functions to be "in-line coded" using
these instructions.

A problem arises here because of the generality of the MACLISP
arithmetic functions, such as plus, which are equally at home with filtnums,
flonums, and bi,nums. Most present-day computers are not this versatile in
their arithmetic instructions, which would preclude open-coding 01 plul.
There are two ways out of this problem: one is to use the special purpose
lunctions which only work with one kind of number. For example, il you are
using plus but actually you are only working with filtnums, use + instead.
The compiler can compile (+ a b c) to use the machine9s fixnum-addition
instruction. The second solution is to write (plus a b c) but tell the
compiler that the values of the variables a, b, and c can never be anything
but filtnums. This is done by means of the "number declarations" which are
described in section 14.2.

Another problem that can arise in in connection with the in-line coding
of arithmetic operations il that the LISP representation of numbers and the
machine representation of numbers may not be the same. or course, thil
depends on the particular implementation. If these two representations are

04/08/74 14.1.2 Page 119

MACLISP Reference Manual

different, the compiler would store variables which were local and declared
to be numeric-only in the machine form rather than t.he LISP form. This
could result. in compilation of poor code which -frequently converts number
represent.ations and in -various other problems. Compiler' which have this
problem provide a (closed t) declaration which inhibits open coding of
ari thmetic operations.

14.1.3 - Function Cillini

Another property of compiled code that should be understood is t.he way
functions are called. In the interpreter ,function calliRg consists of
searching the property list of the called function for a functional
property (if it is an atomic symbol) and then recursively evaluating the
body of the function if it is an expr, or transferring control to the
function if it is a subr. In compiled code function calling is designed
according to the belief that most of the functions called by compiled code
will be machine executable, i.e. "subrs:" other compiled functions, or
builtin functions, and only infrequently will compiled code call an
interpreted function. Therefore a calling mechanism is used which provides
for efficient transfer between machine-exeeutable functions without
constant searching of property lists. This mechanism is called the -QUO

link" mechanism for 'historical reasons.

When a compiled function is first loaded into the environment, it has a
uuo link for each function it will call. This uuo link contains
information proclaiming that it is "unsnapped" and giving the name of the
function to be called, which is an atomic symbol. The first time a call is
made through such a uuo link, the fact that it ·is "unsnapped" is recognized
and a special linking routine is entered. This routine searches the
property list of the function to be called, looking for a functional
property in just the same way as the interpreter would. If the function
turns out to be an expr, or is un~efined, the interpre,ter is used to apply
the function and the result is gi.en back to the compiled code. The link
is left "unsnapped" so that every time this function is called the
interpreter will be invoked to interpret its defini-lion.

If thelunction being called is machine executable (a 'Iubr), the link is
"snapped." Exactly what this means is implementation dependent but the
eflect is that from now on whenever a call is made through this uuo link
control will be transferred directly to the called function using the
lubroutine-calling instruction of the machine, and neither the link in,
routine nor the interpreter will be called.

There is a nag which can be set so that links will not be snapped even
if they go to a function which is machine executable. This nag is the
value of the atomic symbol nouuo. There is also a function, (sstatus
uuolinks), which unsnaps all th~ links in the environment. These
facilities are used in circumstances such as when a compiled function is
redefined.

Pag~ '180 14.1.3 04/08/14

/

i11.liltl

Compilation

In the pdp-l0 implementation a uuo link is impleme~ted as an instruction
which is eKecuted when a call is to be made through the link.. An
"unsnapped" link consists of a special instruction, "uuo", which causes the
LISP linking routine in the interpreter to be called. The address field of
the uuo points to the atomic symbol which names the function to be called.
The operation code and accumulator fields indicate the type of call and
number 01 arguments. When the link is snapped the uuo jnstruction is
replaced with a "pushj" instruction, which is the machine instruction lor
ulling subroutines.

In the MultiCA implementation, a uuo link is implemented as a pointer.
To call through this link a "tspbp" instruction indirect ihrough the
pointer i. used. An unsnapped link points at the linking subroutine and
various fields in the pointer, left unused by the machine, indicate the
type 01 call, number of arguments, and the atomic symbol which names the
function. When the link i. snapped the pointer is changed to point at the
first instruction of the called function.

Before a function can be uled it mUlt be made known in the LISP
environment. Interpreted functions are made known simply by putting a
functional property on the property lilt of the atomic symbol which names
the function. This i. ulually done uling the built in function defun.
Compiled functions must be made known by a more complex mechanism known as
"loading: because of the complexity of the support mechanisms needed to
make compiled functions execute efficiently. In some dialects of LISP the
compiler automatically makes the compiled functions known, but j1n MACLISP
the compiler creates a file in the file system 01 the host operating
system, and this file has to be loaded before the compiled function can be
called. In the pdp-lO implementation this file is called a "fasl file."
In the Multics implementation it is called an "object segment." Loading i.
described in detail in section 14.3.

14.1.4 Input to the Compiler

The input to the compiler consists of an ascii file containing a number
of S-expressions. The format of this file is such that it could be read
into a LISP environment using a function such as load or uread, and then
the functions defined in this file would be executed interpretively.

When a file is compiled, the compiler reads successive S-expressions
from the file and processes them. Each is classified as a function
definition, a declare, or a "random form" according to what type of object
it i. and according to its car if it is a list.

A function definition is a form whose car is one of the atoms defun,
defprop. When the compiler encounters a function definition if it defines
a macro the macro is defined for use at compile time. If it defines an
expr or a fexpr, the compiler translates the definition from LISP to
machine code and outputs it into the "fasl file" or "object segment" which
is the output from the compiler. If it defines some other property, it is

04/08/74 14.1.4 Page 181

MACLISP Reference Manual

treated al a random form.

A random form i. anyt.hing read, from the input. file that il not a
function definition or a declare. It it simply c~pied ,int.o the output, file
01 th'e compiler in luch ,a way t.hat when that fUe i. loaded it will he­
executed.

A declare il a lorm whose car il the atom dec 1 are. It il ignored hy the
interpreter becaule there il an Iluhr called declare in MACLISP ,which does
nothing.

Note that il a lorm is read from the input file and ita car has been
delined as a macro, the compiler will apply the macro and then process the
result as il it had been read from the input lile.

14.1.5 Functions Connected with the Compiler

declare FSU8R

In the interpreter, dec 1 are is like comme'nt. In the compiler, the
arguments ·are ,eyaluated at compile time. This ilused to make
declarations, to gohble up input needed only in the interpreter, or to
print messages at compile time. Examples:

(declare (s .. pecia·l x ~) (*fexpr fOO»

(dec 1 are (read» (need'ed-on 1~-1n-the-1nterpreter)

(declare (10g vt (prine "Now compl1ing fubar"»)

linclude FSU8R

(Iinclude name) i. uled to caule an -include file- to he included in
the file hein, rad. This works in I.oth th'e compiler and the
in,terpreter. name may be a string or an atomic .,mhol. The
include-file search rules are used.

Note: this function preaently exiltl only in the Mult.ica
implementation.

Page 182 14.1.5 04/08/14

II r i ,;;

nouuo

Compilation

SWITCH

If the nouuo switch is on, function calls made by compiled functions
to compiled functions or system functions are forced to go through the
interpreter each time. This aids in debugging. If the nouuo switch
is orr, the normal case, compiled calls can be made to go directly,

. which is much faster.

nouuo SUBR 1 arg

(nouuo t) sets the noouo Iwitch.

(nouuo nil) turnl orr the noouo Iwitch. (this is the initial state.)

nouuo returns t or nil according to whether it turned the nouuO switch
on or orr.

purcop~ SUBR 1 arg

This function is of use only in the "bibop" implementation or pdp-l0
lisp, which is presently under development on ITS. It has the effect
of making a copy or its argument in pure free storage, 10 that
constant list structure may be placed on sharable pages. This ia
primarily of use in the creation 01 large sharable systems like
macsyma. On other implementations purcopy simply returns ita
argument.

04/08/14 14.1.5 Page 183

- i

MACLlSP Reference M.nual

14.2 - Decl.r.tiona

It is olten necessary to supply information to the compiler in order to
compile a lunction beyond, the definition 01 the lu,notion with defun, which
is all that. the interpreter need. in order to interpret the function. This
information can be lupplied through declares.

A declare is a list whose lirst element is the atom dec lire and whose
remaining elements are lorms called .. declarations... The compiler processes
a declare by evaluating each of the declarations, at cOMpile time. Usually
the declarations caU on one of the declaration functions which the
compiler provides. These are described below. However it is permissible
ror a declaration to be any evaluable lorm, and it is permissible lor a
declaration to read Irom the input lile by using the read function. This
may be used to prevent the compiler from seeing certain portions 01 the
input which are only needed when a program is run interpretively.
Prefixing a form in the input lile with (declare (eva'l (read») would cause
it to be evalu'ated at compile time il the Iile was compiled or at read-in
time if the file was interpreted. Arbitrarily complex compile-time
processing may be achieved by the combination 01 declarations and macros..

The remainder of this section describes the declaration lunctions
provided by the compiler. Note that if a deelaration function described
below is of the form (foo t), its efleet can be reversed by using the form
(foo nil).

(spec 11'1 ... 1 Hr2 _)
Declares tHJrl, tHlr2, etc. to be lpecial .ariables.

(unspec 11-1 vorl tHlr2 ...)
Declares tHJrl, t1GI'2, etc. to be local variables.

(*expr Icnl len2 __)
Declares that lenl, len!, etc. are expr- or subr-type lunctions that
will be called. This declaration is generally supplied by default by
the compiler hut in some peculiar eire.Instances it is required to
avoid error messages.

(* 1 expr len I Icn2 ._)
Declares len I, len2, etc. to be 1 expr- or 1 subr-type functions that
will be called. Thil declaration is required for non-builtin
function' unless the functions are defined in the file being compiled
and are not relerenced by any functions that are deli ned belore they
are.

•

Page 184 14.2 04/08/'14

i

e

Compilation

(. fexpr lent len2 ...)
Declares lent, len!, etc. to be fexpr- or fsubr-type functions that
will be called. Thil declaration is required for non-builtin
functions unleu the functions are defined in the file being compiled
and are not referenced by any functions that are defined before they
are.

(--array orr 1 orr2 _)
Declares orrl, orr!, etc. to be arraYI that will be referred to.
the note under *expr.

(f 1 xnum tHlrl tHlr2 ._)
Declares t1Orl, t1fJr2, etc. to be variables whose values will alwaYI be
fixnums.

(f 1xnum (len 'ypel 'ype2 ...) ...)
Declares len to be a function which always returns a fixnum resulL
Also the types of the arguments may be declared al 'ypel, 'ype2, ete.
An argument type may be f 1xnum, meaning the argument mUlt be a fixnum.
f 1 onum, meaning the argument mUlt be a flonum, or notype, meaning the
argument may be of any type.

The two types of fixnum declarations may be intermixed, for example
(f1xnum x (fOO f1xnum) y).

(flonum t1Grl t1Or2 •.• (len 'ypel •••) •••)
II the lame .. the f1xnum declaration except the variables or
function-results are declared to always be rlonums.

(notype VfJrl VfJr2 ••• (/cn typel ...) ...)
Is the same al the f 1xnum declaration except the variables or
function-results are declared not to be or any Ipecific type.

(f1xsw t)
Causes the compiler to allume that all arithmetic is to be done with
filtnums exclusively, except that obviously functions such al +$ and
cos will Itill use flonuml.

(fixsw nil)
Turns off the above.

(flosw t)
Causes t.he compiler to aSlume that all arit.hmetic is to be done ,wit.h
flonums exclusively, except that obviously functions luch al + and tyo
will still ule fixnum ..

04/08/74 14.2 Page 185

t:

14 a

MACLISP Befererace Mamaal

(flosw nil)
Turns oIl the .bove.

f1x.'W .dd flosw are .a .. iablea M' (setq' '1x.v t) i. an 841uivalen,t
declaration to ('1)(5" t).

(setq spec1a1 t)
Causes .11 •• riahles to be lpeci.l.

(setq nfunvars t)
Caus. the compiler to dilallow lunctional •• riables.

(macros t)
Causes macros to be d~fined at run time al well u at compile time.

(macros nil)
Causes' mactos' to be defined only at compile tim.. This jj the delault
~

(genpref 1x 100)
Causes auxiliary lunctions generated by the compiler (for such things
as Jambda-expressibns passea al arguments} to be named foon, where n
is a number idcremerated by I each time such a lunction il ,enerated.
The genptelix declaration is used when several separately compiled
rilea are t'O' be loaded together, in order to •• oid na e cl.shes.

(array~ (type Cln"l nl arr2 ,.2 ...) •..)
Is used to declare array. errl, err2, etc. .tIM may be filtnum,
tlonu'm, or notype; it indicates what type of objetta will be contained
in the ai'r.ys. nl, n2, etc. are the numher 01 dimensions in orrl,
orr2, etc. respectively.

(ar1th (,ypel/ctll/cn2 .•.) (type2 fcn21/cn22 ...) ...)
Is used' to declare a general arithmetic lunetlon such al plus to be
replaced by a one-type arithmetic. lunction such as +. lenl, len2,
etc. are the functions to be replaced. tYPffl, etc. is the type of
function to replace them with: (1)(num means replace them with the
corresponding filtnum-only functions, e.g. replace plus by +. flonU1ft
means replace them with the corresponding floftum-only functions, e.g.
replace plus by +$. notype means tum orr • previous ar 1 th
declaration for these functions.

The following declarations are useCul only in the pdp-l0 implementation;
however, the Multica implementation will accept them ... d' ilnore those' which
are irre)evanL

Pa,e 186 14.2 04/08/1.

ii i; liii) Ii

Compilation

(mapex t)
In the pdp-IO implementation, causes all map-type functions
open-coded as do loops. (This is always done in the
implementation.) The resulting code is somewhat larger
otherwise, but also somewhat futer.

(noargs t)

to be
Multica

than

Causes the compiler not to output information as to the number of
arguments each function compiled takes; this provides some saving of
memory space in lome pdp-lO implementations.

(mess1oc char.)
Causes an (1oc char.) to be ,lone just before printing out each error
message. In this way one may direct error messages to the LAP file
instead of to the terminal on the pdp-IO.

(muzzled t)
Prevents the pdp-lO last-arithmetic compiler Irom printing out a
message every time closed compilation of arithmetic is foreed.

(symbols t)
Cau~es the pdp-lO lisp compiler to output LAP directives so
LAP .ssembler will attempt to pall assembly symbols
debugging purposes.

04/08/74 14.2

that the
to DDT for

Page 187

MACLlSP Reference Manual

14.3 Runninl Compiled Functions

Alter a Iile of functions has heen compiled, 'those function. can ..
loaded into an environment and then called. They can be loaded either by
.Iing the load or lasload lunctions described below, or by uline the
autoload ·feature described in section 12.4.4.

The lollowin, function ia at present ••• ilab. onl, ift the Multica
implementation.

load SU8R 1 arg

(load s), wh·ere s is a lile .pecilication acceptable by open 1, i.e. a
namestrin, or a namelist, causes the specified lile to be loaded into
the environmenL The lile may be either a source rile or a compiled
lile (called a "lasl" rUe in the ITS implementation and an object
segment in the Multics implementation.) load determines which type of
file it is and aetf; accordingly. A source file is loaded by open 1'in.
and 1npush'inl it. A read-eval loop is tho e.~uted antil the end of
the file i. reached. An object lile i. loaded .y reading it, delininc
lunctions .. directed hy specificationl i tted in tile file .y the
compiler.

fa, load fSUBR

f as load takes the same arguments as uread.
compiled functions, called a "Iasl" rile in
be loaded ib. Example:

It causes • lile of
some implementations, to

(fasload foo fasl dsk aacs1M)

The followinc function only esists ita the Multia implementation.

defsubr LSU8R 3 to 7 args

defsubr ia the function used to deline new machine code functions. It
defines .arious types of 'unctions, depending on its arguments. The
way. to define a subr written in PL/I is

(defsubr "segname" "entrynalDe" nergs)

which defines segname$entryname.1 a subr expecting nargs argumenta.
The •• Iue returned is a pointer which can be putprop·ed under the subr
property or the fsubr property. The way to define an lsubr written in

P •• e 188 1'.3 04/08/'14

,.:0;;;.\.41.: lii:1I iii :::. : liiiliil: :'::liliiiJiSI ;iil" Ii

Compilation

PL/I il

(defsubr "segname" ".ntryname" nargs2 l11r lOOO+nargsl -2)

which defines segname$entryname as. an 1 subr allowing from nargs 1 to
nargs2 argument... The 1000 is octal. The value ret.urned should be
putprop"ed under the 1 subr property.
Examples:

(putprop 'mysubr (defsubr "myfuns" "mysubr" 1) 'subr)
(putprop 'myfsubr (defsubr "myfuns" "myfsubr" 0) 'fsubr)
(putprop 'mylsubr

(defsubr "myfuns" "mylsubr" 2001 -2) 'lsubr)

A function defined in t.his way receives its argument.s and retums its
value on the marked pdl, which may be accessed through the external
static pointer

See sect.ion 14.6 for details on how t.o access the arguments, and on
the internal format of LISP data. lilp.Jtatic_vars_'nil and
lispJtatic_vars_It_atom are fixed bin(7l) external ltatic; the)'
contain nil and t.

04/08/74 14.3 Page 189

/

iii

MACLISP Reference Manual

14.4 - Runnln, the Compil.r

in the Multics implementation

The ,compiler is invoked by the lisp_compiler command to Multica. This
command can be abbreviated Icp. The ar,uments to the command are the
path name of the input file and options. The compiler append, -.lisp· to
the given path name unless it is preceded by the -pathname or -pn option.
The output object segment is created in the workin, directory with a name
which is the first component of the name of the input Iile. For eKample,
the command

reads ·'00·

Icp dir>loo.bar

the file "dir>loo.bar.lisp· and produce. an object Ie,ment named
in the work in, directory.

Usually no option. need be .applied, .inee there are defaulta. The
options available are:

-path name -pn -p

-eval

Causes the followin, argument to be taken a. the eKact path name 01 the
input file, even il it begins with a minas si,... -.Ii.p· will not be
appended.

Causes the following argument to be evaluated by LISP. For eKample,
lisp_compiler 100 -eval "(special)[y .).

-time -times -tm
As each lunction is compiled, its name and the time taken to compile
it will be typed out.

-total_time -total -tt

At the end 01 the compilation, print metering information.

-nowarn -nw
Suppresses the typing 01 warning messages. Error meua,es of •
severity greater- than "warning· will still be typed.

-macros -me
Equivalent to the (macros t) declaration: Causes macro definitions to
be retained at run time.

-all...-pecial
Causes all variables to be made .pecial.
spec1a-l t) declaration.

Page, 190 14.4

Equivalent to the (,etq

04/08/"4

!

"n;

Compilation

-,enprelix -,np -,p
Takes the followin, argument as the prelix lor names of auxiliary
functions automatically generated by the compiler. Equi~alent to the
genpref 1)('declaration.

-check -ck

-ioe

-list

Causes only the lirst pais of the compiler to be run. The input Iile
il checked lor erron but no code il generated and no
il produced.

object legment

II the followin, ar,ument il S, (1oc s) il evaluated.

-11
Causes a listing
containing copy of
with commentary,
named "name". the

lile to be created in the working directory,
the lource file and an assembly language listing,
of the generated code. If the object segment is
listing file will be named "name. list ".

-no_compile -ncp
Caules the compiler not to attempt to compile the file. Instead the
input lile is limply treated 81 being composed entirely of random
formL It il digested into a form which can be proceased quickly by
the load I unction.

in the ITS pdp-lO implementation

There are prelently two versionl or the LISP compiler on the ITS pdp-l0
systems. COMPLR is the atandard compiler, NCOMPLR the fast-arithmetic
compiler; one must ule the latter to produce open-compiled arithmetic code,
but when this is not required the standard compiler is faster. (Note that
it does not hurt to include rast-arithmetic declarations in files compiled
by COMPLR; any irrele~ant declarationl are simply i,noreci.) Except for
this one difference the use of the two compilen il identical, and the rest
or this lection applies to bot.h unl~1 otherwise specified. The word
COMPLR will limilarly mean "either COMPLR or NCOMPLR".

When you lay COMPLRI\K the compiler will announce itself, print an
underscore or back arrow, and accept a command line, which should be of the
standard form

<output lile> _ <input file> (switches)

The file specifications should be standard ITS rile names, e.,.
DEV:DIRNAM;FNAMEI FNAME2. U it il necessary to get a "Iunny" character
such al _ into the file name, it may be quoted with a slash.

The compiler normally processes a Iile of LISP functions and produces a
so-called "LAP lile", containing S~xpreslionl denotin, pdp-tO
machine-language instructions, luitable for ule with LAP (the Lilp Assembly
Pro,ram). However. one may direct the compiler in.tead to produce a binary

04/08/74 14.4 Page 191

MACLISP Reference Manual

object lile, called 'a "FASL FILE", suitable lor use with the fasload
lunction or the autoload feature. A third option is to process a
previously generated file of LAP code to produce a FASL file. This is
especially useful in the ease where special-purpose functions have been
hand -coded in LAP.

II Ohe specifies only an input file name, say FOO BAR, then by der aul t
the name of a generated LAP file will Iwt roo LAP, and or a FASL Iile, Foo
FASL

The various modes of operation of th'e ~ft1piler may be controlled by
specifying various switches, which are single letten, inside parentheses
at the end of the command line. A switch may be turned 011 by preceding
the switch letter with a minus sign. Estraneoul or invalid l1~itchea are
ignored. Initially all switches are off (the use of minus sign described
above is provided in case the compiler is ,used lor Ieveral liles in
aucceaion). Valid switches to the compiler are:

A Assemble only. The specified input file contains LAP code whic~ il
to be made into a binary F ASL fUe.

D Dilown. Caulel the compiler to disown itself alter .it has started
running. This is the safest way to disown a COMPLR, because the
compiler will know that it can't try to get any information Irom
DDT.

F Fasl. Accept ,a file of LISP lunctions, produce
then assemble the LAP Iile into a F ASL file.
most userul mode.

a LAP lile, and
This is probably the

Kill LAP file. Delete the LAP file after alsembly. Usually used
in conjunction with the F switch.

M Macros. Equivalent to {declare (macros t». Causes macro
definitions to he defined at run time as well" as at compile time.

N No args properties. Equivalent to {declare (noargs t». Normally
the compiler outputs information in the LAP code as to how many
arguments each fUnction requires, so that ar,1 propertiel may be
ereated on the appropriate atomic Iymboll at load time. In some
implementations these properties occupy a li,nilicant amount of
list space; thus it may be desirable to eliminate these properties.

s Special.
variables

EqUivalent to {declare (setq
to he considered special.

special t». Causes all

T Tty notes. Causes the compiler to print a note on the user·s
terminal as each function is compiled or assembled. This switch is
normally off so that a COMPLR may be proceeded and allowed to run
without the TTY. In any case error message will be printed out on
the ,terminal.

P-a.e 192 14.4 04/08/'14

Ii; 4 iii Ii iiit4U141¥1 I: $; ::aIUM •• ::;;;; :i1i!ii2ii s a Ii

Compilation

U Unfasl comments. Useful only in conjunction with the F or A
Iwitch. Causes the assembler to output comment messages into a
file whose second file name is UNFASL (Actually, this file is
alwaYI created, and error comments will be directed into this file
allo if messioc so specifies; but the file is immediately deleted
if it contains nothing significant.) These comment messages
describe the size of each function assembled, and give other random
information also.

v no functional Variables. Equivalent to (declare (nfunvars t».

W muzzled (i.e. Whisper). Equivalent to (declare (muzzled t».

x

Prevents the fast-arithmetic compiler from printing out a message
when closed compilation of arithmetic is forced.

map eXpand. Equivalent to (declare (mapeK t». Causes
map-type functions to be open-coded as if they were do loops.
resulting code is somewhat larger, but also somewhat faster.

all
The

Z Zymbols. Equivalent to (declare (symbols t». Causes the compiler
to output a special directive in the LAP code so that the LAP
assembler will attempt to pass assembly symbols to DDT lor
debugging purposes. Primarily of use to machine language hackers..

COMPLR will accept a "Job Command Line" if desired; simply type

:CaMPLR <command line><cr>

In this mode COMPLR will automatically proceed itself and run without the
TTY, and kill itself when done.

It may be desirable to eKecute some LISP functions in the compiler
before actually compiling a file. Typing ctrl/G will cause the compiler to
announce itself and then type an asterisk; you will then be at lisp's top
level. To make the compiler accept a command line, say (maklap). One
useful command for debugging and snooping around is cl; (cl fool will
compile the function foo, which should be defined in the compiler's lisp
environment, and print LAP code onto whatever device(s} are open for
output.

04/08/74 14.4

MACLISP Reference Manual

14.5 - LAP on the pdp-I 0

The lisp compiler for the pdp-lO implementation does not output binary
object files directly; rather, it outpu,tl a Ie riel of S-expressions
denoting the machine-language instructions of the compiled function. There
are two programl which accept luch S-expressions and convert them to binary
machine language, called 1 ap and fas 1 ape (Historical note: the word "lap"
dates back to 7090 LISP, and is derived from the phrase "Lisp Assembly
Program".) 1 ap is an in-core assembler; it reads in the S-expressions
(hereafter referred to as "lap code") and deposits the resulting binary
instructions in the binary program space of the curren't lisp environment.
f as 1 ap, on the other hand, takes a file of lap code and produces a binary
lile suitable for use with fas load. fas lap is normally part of the pdp-10
lisp compiler. Both assemblers will accept the same lap code, except for
certain peculiar conditions. This section will describe the lap function
and lap code; differences between lap and fa,'ap will be treated in a
special &ection.

14.5.1 The LAP Function

1 ap il an fsubr which is executed primarily for its side effect
loading in a binary program. It accepts a seriel of S-expressions similar
in form to a program written in MIDAS or MACRO-IO. It is not intended to
be a fancy assembler: it does not have conditional assembly, macros, or
complex literal generation features. It does, however, contain sufficient
power to load the output of the compiler, plus enough extra features that
simple machine-language functions may be hand-coded in it. (See the
section on conventions for writing lap code by hand later in this chapter.)
The major operational differences between 1 ap and MIDAS or MACRO-IO are
that (1) lap is one-pass, while the others take two, (2) lap uses the
function read to input lap code, while the others are more efficient, and
(3) 1 ap assembles directly into the lisp environment, while the others
produce a binary object file (note that faslap differs only in the first
two respects).

The lap function is an fsubr which expects to get two atomic symbols ..
arguments; the first is the name of the function to be assembled, and the
second is the type (i.e. the property ,under which it is to be stored on the
property list.) Thus

(lap quux subr)

would assemble a subr called quux. When invoked, 1 ap repeatedly calls ,the
read function, operating on the S-expressions thus obtained, until a nil il
encountered, at which time the assembly ends. Some messages may be printed
out as this happens. If the assembly completed successfully, the variable
bporg is updated to reflect the new size of binary program space, and the
appropriate property is placed on the property list of the specified atomic
symbol.

Page 194 14.5.1 04/08/'14

iii I 11 I; II I I 44. is

Compilation

Normally, 1 ap does not reside in the initial lisp system, though the
initial system does contain several specialized functions for use by 1 ap.
Instead, 1 ap has an auto load property of (1 ap f as 1 com) on ITS and (1 ap
fas 1 sys) on the 10/50 system. Thus, if one simply reads in a file of lap
code 1 ap will load automatically and assemble the functions.

Here il an example of Some lap code which corresponds roughly to the
lilp function memq:

(LAP FUNNY-MEMQ SUBR)
(ARGS FUNNY-MEMQ (NIL

MEMBEG (JUMPE 8 MEMEND)
(HLRZ T 0 8)
(CAIN T 0 A)
(JRST 0 MEMEND)
(HRRZ 8 0 8)
(JRST 0 MEH8EG)

MEMEND (HOVEl A 0 8)
(POPJ P)

NIL

. 2»
;result nil if arg 2 nil
;else look at car of arg 2

twin if same as arg 1
;else take cdr of arg 2
; and try again
;return arg 2
;edt from function

Note that this is greatly different in style from 7090 lap, which took
the entire program as one argument, and a symbol table as the other. The
drawback with the 7090 method is that the entire program must be read in
before it is assembled; this can require prohibitively large amounts of
memory, especially for the lap output from compilation of a large lisp
function. The method used by pdp-lO lap is much more reasonable in
practical situations (e.g. reading in lap code from a file).

1 ap does not use an a-list for its symbol table, either. Rather, the
value of the symbol is stored on the property list under the sym property.
Thus (defprop ztesch 43 sym) would make the symbol ztesch known to lap,
with the value 43. lap has a number of symbols initially defined,
including the names of all the accumulators, and the addresses of some
useful routines internal to lisp. It also uses the function getm1dasop on
a symbol if the symbol is otherwise undefined to determine whether it is a
pdp-tO instruction (the getm1dasop function contains a concise table of all
pdp-lO instructions and most monitor calls, as well as names of UUO's used
internally by lisp). In this way 1 ap can recognize all standard
instruction mnemonics without defining 400 or more sym properties. If
lisp's symbol table has been loaded into DDT, then lap will ask DDT about
the values of symbols as a last resort. In this manner hand-coded lap code
may refer to any location internal to lisp (with an appropriate amount of
caution, of course).

When 1 ap terminates, it returns as its value a list of the new value of
bporg and the entry point.(s) of the function defined (hand-coded functions
may have more than one entry point). If any symbols were uodefined or
multiply defined, they will be printed out first. It is generally a good
idea to let 1 ap terminate naturally, rather than quitting out of it, since
it hacks the Ii.p environment in various peculiar ways.

04/08/74 14.5.1 Page 195

MACLISP Refel'ence Manual

14.5.2 - Valid LAP Cod. Forma

n11

lap acta on the S-expressions it reads as follow.:

Terminate assembly and return. Any literals generated are assembled
into memory at the end of the function, temporary symbol definitions
are 'flushed, and (gctwa' t) is evaluated. Th'e"l1 should be followed
'by • space, because carriage return is not always an atom aeparator.

<atomic symbol>
Assign to the atomic symbol (non-nil, of course) a temporary sym
property equal to the address of the next word to be assembled into.
If (symbols t) is in effect lap will pa.s the value of this symbol to
DDT if lisp's symbol table has been loaded. Thus one uses atomic
symbols as l~ation tags.

(de'fsym<atoml> '<valuel> ... <atomn> <valuen»
For each i ·define <atomi> with a S)'lft property of (eva'l <valuei>). No
'binary words are generated, and these symbol, are not passed to DDT.
Note t'hatthis performs a Ii,p evaluatio .. , nota ,lap evaluation!

(entry <name> ~tY'pe>') or (entry <name»
Defines 'the 'atomic gymbol <name> to be ,a function 01 type <type> with
entry point 'at the current location. If (type> i. not 'pecified, it
defaults ,to the second argument to lap. No binary words are
generated. This form is not used by the output of the lisp compiler,
and is provided only as an aid to writers of hand-coded lap code. It
allows severa'i 'f unctions to share symhols and .torage areas.

(args <atom> <args-prop>)
'If the assembly, terminates successfully, then (atom> gets <args-prop>
.. s its args property. <atom> must be an entry poin,t of the function
:being .ssembled. No binary words are generated. The pdp-lO lisp
compiler will output this declaration in each function compiled unless
(dec 1 are (noargs t» or the N switch is given. fa'S 1 ap requires that
each argsdeclaration follow the corresponding entry point.

(comment ...)
This form is totally ignored. Of course, since the lisp reader is
used to input lap code, semicolon comments maybe used 81 well.

Page 196 14.5.2 04/08/14

liililill iU:::: : I II :::i: Ii i;

Compilation

(eva" <form1> ... <rormn»
Applies the function eva" to each form in turn. No binary words are
generated. This is uleful for luch thingl al (eva 1 (setq ibas. 23.»
or whatever.

(symbo 1 s <t-or-nil>)
Controls the 1 ap feature which tries to pass symbolic location names
to DDT. Furthermore, if the symbo 15 pseudo-operation occurs anywhere
within a given lap function, the namel and locations of the entry
points of that function will also be passed' to DDT. No binary words
are generated. Note that there is possibility for confusion, here
because 1 ap will accept a5 tags atomic symbols with names or any
length, while MIDAS and DDT truncate tags to lix characters. Thul
quuxbar and quuxbaz are two different symbols to lap, but will
interfere with each other when passed to DDT. When symbols are passed
to DDT, the names are truncated to six charaeters, and any non-squoze
character (a character other than A-Z, 0-9, ., a, or '%) is assumed to
be a doL Since dots must be slashified to be read into lisp, the
standard convention is to use * (the lisp compiler Ules this
convention). Th us one would write (JSP 0 J1rLCAll) instead of (JSP) 0
/ • LCALL).

(b 1 oclt <fixnum»
Assembles a block <fixnum> words long, containing zero&.

(a$c11 <S-expression»
Explode's the <S-expression> and allembles the characters obtained
into luccessive words, five per word, in ASCII code.

(5 ixb 1 t <S-expression>)
Similar to asc 11, but characters are assembled six per word in six bit
code (ascii characters between 40 and 137 are represented al 0 to 11).

(squoze <atom» or (squoze <fixnum> <atom»
(ITS only) Produces a word of squoze code, which is a left-justified
radix-50 code, from the first six characters of the print name of
<atom>. Ir <lixnum> is present, then it is divided by 4 and the low
four bits or the quoutient are added into the high four bits of the
squoze value (the MIDAS convention).

<any other list>
Assembles a single word, which i. alsumed to be an instruction of some
kind. First, if the lilt contains the atomic symbol a, it il deleted
from the list and laved. Then the first four components of the list
are processed in order. These must all be 1 ap "syllables" (described
below). If the length of the lilt is less then four, missing elements
are assumed to be zero. The four elements of the list are assumed to

14.5.2 Page 19'1

4IAAUi4Idilililii::ltI::lliiii4iiJ! g

MACLISP Reference Manual

be, in order, the operation code, accumulator, address, and index
fields of a pdp-tO instruction. These are evalua~ed hy the lap
.yllahle evaluator to obtain four numbers, which are then added
to,ether after being modified as follows:

opcode
accumulator
address
index

no change
shift left 23. places
clear left half
swap halves

Finally, if the atom a had been present, the octal ndmber 20000000 is
logically or"ed into the result, thus turning on the indirection hit.
Note that neither the accumulator nor the index field il truncated to
four bitl. This ha. many useful applications; see, for example, the
description of the specbind routine below.

There is a fairly strong Similarity between code written in 1 ap and
equivalent code written in MIDAS or MACRO-lO. The essential difference is
that lap processes assembly fields in order from left to ri,ht in order to
determine w-hich field is which. One pitfall to avoid il writing such
instructions as (JRST FOO) or (SETZH FOO) when one intends rather (JRST 0
FOO) or ('SETlM o FOO). Another difference to remember is that lap uses the
lisp reader to input lap code; thus one must remember to put Ipaces around
an II, and that one cannot write (JRST 0 FOO(3) unless FOO+3 really is a
tag! (For arithmetic operations within assembly fields, see the
description of lap syllables below.) If it is desired to make lap code
look more like the standard assembly languages, one may use the fact that
comma is like a space to lisp, and that extra paTen theses don't hurt, and
write (MOVE A, TABLE(10» instead of (MOVE A TABLE 10).

14.5.3 LAP SyUlbl ••

Each of the four components of assembly words are evaluated by the lap
evaluator to produce numeric quantities; these are then combined to form
an assembly word. Note that G is treated specially and is not a component..
Forms to be evalu'ated by the lap_ evaluator are called lap syllables. Valid
forms for lap syllables are u follows:

<number>
Fixnums evaluate to themselves, and may be operated upon by lap
arithmetic operations. ,Flonums also evaluate to themselves, but
arithmetic operations on them will not work. Flonums should not he
used in the address field, because the left halves will be truncated
off; they should be used only in the opeode or index fields (the
latter is useful for writing (FADRI 7 0 3.0) or something like that).

Page 198 14.5.3 04/08/'14

;qi I I Ii III I 1111

/
/

nil

*

Compilation

lame al (quote nil).

Evaluates to the address or the word into which the current.
inltruction will be assembled. Equivalent to . in MIDAS and MACRO-tO
(however, lee the note below about literals).

<atomic symbol>
Any atomic symbol other than a, *, and nil evaluates to its assembly
symbol value. That is, ir the symbol has a sym property, then it il
the value of that property; otherwise, the value returned by the
getm1dasop function if non-nil; otherwise, the value which DDT assignl
to it. An error occurs if no value can be found for a symbol.

(quote <s-expression>)
Protects <S-expression> from garbage collection, and evaluates to the
address of the S-expression. Th us (MOVE I A ' (A 8» pu ts the add reu
of the S-expression (A 8) into accumulator a. Warning: (aslap permits
this Iyllable only in the address field.

(funct 1 on <I-expression>)
Same as (quote <s-expression>), but emphasizes that <S-expression> il
a function. Thus one might write (CALL 2 (FUNCTION CONS».

(spec1a 1 <atom»
Evaluates to the address of the value cell of the atomic symbol
<atom>. If <atom> does not have a value cell, one i. created for it
first. Thul, for example,

(MOVE A (SPECIAL QUUK»
(MOVEH 8 (SPECIAL ZTESCH»

Accomplishes the equivalent of (SETQ ZTESCH QUUX).
this syllable only in the address field.

(array <atom»

fas 1 ap permits

Evaluates to the address of the sarO of the array which ia on the
property list of <atom>. U <atom> is not yet an array, a dummy array
property il created. This is of use for open-coded array accessing.
(At present this feature is not yet implemented.)

04/08/74 14.5.3 Page 199

MACLISP Reference Manual

(asc 11 <s-expression>)
Evaluates to a 36-bit quantity consisting of the ascii representation
of the first five I exp 1 odec'd characters of <S-expression>. Note that
the ascii pseudo-op may generate several binary words as a lap form,
but only a single-word quantity as a syllable.

(s ixbit <S-expression»
Like asc 11, but uses the first six characters and produces a sixbit
representation quantity.

(squoze <atom» or (squoze <Iixnum> <atom»
(ITS only) Similar to the same form as a lap form: produces a word of
squoze code a. its value.

(+ <Iapsyl> <Iapsyl> <lap.yl>)
Adds together the values of the 1 ap syllables. (Thus note that 1 ap
syllables are defined recursively.) This allows one to write such
things as (JRST 0 (+ FOO 3».

(- <Iapsyl>)
Evaluates to the negative of the value of <l.,.yl>.

(- <Iapsyl> <Ia,psyl> <Iapsyl>)
Subtracts the values of all the lap syllahles after the first from the
value of the first.

«Iapsyl>
Same

«lap.yl»

<Iapsyl) <lapsyl»
as (+ <lapsyl> <lapsyl> _ <lap.y1».

Evaluates to the value of <Iapsyl>. It most definitely does not
evaluate to the swapped-halves value of <Iapsyl>, as some might think!
When one writes (MOVE A. FOO(B)}, the value of b gets swapped because
it i. in the index field, and not becau.e it is in parentheses.

(~ <lap assembly word»
Generates a litetal; i.e. the cdr of the list i. .aved and assembled
at the end of the function. The value of the syllable is the address
of this remotely generated word. <lap assembly word> must be an
instruction, or one of the aSCii, s1xb1t, or block pseudo-ops. (The
block pseudo-op is relatively useless here.) Thus, for example,
(MOVE I T (X SIXBIT LONG-HESSAGEI» is perfectly valid. There are some
restrictions on the use of literals: they cannot be nested, i.e. a
literal may not contain in its assembly word another literal. Also, *
in a literal refers to the loCation of the literal, not of the

14.5.3 04/08/'14

lililiJlII::"I::I:::: Iii 111\ Ii i1IB iiillill IB.ii!:: ; ; ! I : .. Ii

Compilation

referencing instruction. Thul (JUHPE A (% AOJA T (+ • 1) » will not
do what you might eKpect from using MIDAS. Finally, flslap permi ...
literall only in the address field.

14.5.4 Functions and Variabl •• Used by lip Ind flslap

The functions described in this section are available in the initial
pdp-lO lisp system primarily Cor the benefit of lap and (aslap. Some or
them may be 01 use to the user, however. Those which are probably not or
use to the user are flagged with a ***.

6b1tl

ascii

sqozl

*** SUBR 1 arl

The argument il exp 1 odec'ed, the first six characten assembled into
one word in sixbit code, and the result returned 81 a fixnum.

*** SUBR 1 arg

The argument is exp 1 odec'ed, the first five characten are assembled
into one word in ascii code, and the result returned as a filtnum.

*** SUBR 1 arg

The argument should be a list of one or two items. The last item
should be an atomic symbol, and the first, if present, should be a
lixnum. The first six characters of the atom's print name are
converted to ITS-style (left-justified) squoze code, with non-squoze
characters assumed to be dots. U the fixnum is present, then it is
divided by four, and the low four bits of the result become the high
four bits of the squoze code. The squoze code is then returned as a
fbnum.

pagebporg SUBR no args

Causes the variable bporg to be adjusted upwards so al to lie on a
page boundary. This il prinCipally useful on ITS in conjunction with
the function purify. pagebporg returns the new yalue of bporg.

purify SUBR 3 args

The first two arguments to purify should be fixnums, and delimit a
range 01 memory within the lisp system. The third argument is a lIag.
II it is nil, then the pages covered by the specified range or memory
are made impure, i.e. writable. If it is t, then the pages are made
pure, i.e. read-only and sharable. II it is bporg, then the pages are

04/08/74 14.5.4 Page 201

5

MACLISP Ref.erence Maflual

also made pure, but in addition some work is done to make sure that no
uuo On those pages may ever be "clobbered".' This option should always
be used if the p.ges involved contain binary code loaded by 1 ap or
'as load. Presently purify does nothing in the ,dec-l0 implementation;
it is intended primarily for producing systems built on lisp, luch ..
Macsyma, in such a w.y that pure pages 'can be shared betw.n usen.
Example: the following sequence 01 commands might be used &0 produce
a sh.rable system on ITS:

(SETO LOPAGE (PAGEBPORG»
(SETQ PURE T,)
(FASLOAD FUNNY FASL)
(FASLOAD WEIRD FASL)
(UREAD SOME LAP)

;save low page address
;specif,ies .pure code
~oad up system

(SETO ERRLIST ' «TERPRI) ;stutl ,lor system startup
(PRINC 'WELCOMEI TOI SUPERSfSTEMlI)
(TERPRI»)

(SSTATUS TOPLEVE'L ;set up top ,level 'lor '.ystem
(FUNCTION TOP-HANDLER»

(SETO HI PAGE (PAGf'BPORG» ;88ve high page 'add,reu
(PURIFY LOPAGE (1- HIPAGE) 'BPORG) ;purify pages
(HACDMP , :PDUHP/ SYS:TSI SUPER/"") ;tell DDTto dump

getddtsym SUBR 1 arg

The argument to getddtsym is explodec'ed and the rirst si& charae&en
converted to squoze code, as with the sqoz I function. This code, is
then' given to DDT to lletermine its value. This value is returned .s a
filtnum, if there is a value; if there is no value, or if there is but
th,e symbol table -has not been loaded into DDT, then nil is returned.
Presently this lunction alway. returns ,nil in the dec-I 0
iMplementation. Note that thil function WOrkl al well for system
,ymbols, which are of course k"own to DDT; thu. (GETDDTSYM '*RSNAM)
will return 16.

getlft1da"op SUBR 2 arg.

This function is similar to getddtsym, but works only for standard
pd,p-l0 operation codes such as HLRZ and' JFFO, lor names of UUO's used
by lisp, and on dec-lO for names of monitor calls such as LOOKUP. The
pdp-l0 lisp system contains its own symbol table in a compact lormat
lor these symbols; it permits their values to he determined without
having to consult DDT. This is of course of lJ'8at value to 1 ap aftd
f as 1 ape Example: (GETHI DASOP , JRST) would retum 254000000000.

Page 202 14.5.4 04/08/'14

iii

Compilation

putddtsym SUBR 2 args

This is the inverse of getddtsym. The first argument
obtain squoze code, and the second should be a filtnum.
attempts to tell DDT that the symbol has the specified
returns t if it succeeded, and otherwise nit In
implementation it alway. returns nil.

is used to
The function

value. It
the dec-tO

putddtsyml *** SUBR 2 args

Thil il a special entry to putddtsym for use by 1 ap only.

lapsetupl *** SUBR 2 args

Thil function il used for initialization of 1 ap, and Ihoald not be
used by the user.

gwdl *** SUBR 1 arg

This function assembles instructions for 1 api it resides in the
initial lisp system for efficiency. For use by 1 ap only.

rpatchl *** SUBR 3 args

This function primarily handles the problem of forward references
during the one-pass 1 ap assembly by modifying previously assembled
words when a symbol is eventually defined. For use only by 1 ap.

faslapsetupl *** LSUBR 0 or 1 args

Used for initializing f as 1 ap.

smal1nump SUBR 1 arg

This function determines whether a given fixnum lies in the range 01
filtnums which are ·uniquized" lor efficiency reasons by the pdp-lO
lisp system. This aids lap somewhat in determining whether a number
needs protection from the garbage collector.

gcprotect *** SUBR 1 arg

The argument to gcprotect is ·uniquized" (i.e. ·interned·) on a
special array internal to the pdp-lO lisp system, and the unique copy
returned. Thil array is the one whose size is controlled by (sstatus
losef <fixnum». This is of use to lap for protecting from ,arbage
collection S-expressions which are referred to by lap code, e.g. via

04/08/74 14.5.4 Page 203

MACLISP Reference Manual

the quote syllable.

gcre 1 ease *** SUBR 1 ar,

This is the inverse to gcprotect. II it is used, extreme caution must
be exercised!

Some system variables are allo required by 1 ap and f IS load; these are
described below.

bporg VARIABLE

bpend

pure

The value of bporg should always be a fixnum, whose value is the
address of the fint unused word of binary pro,ram space. This •• lue
generally should not be altered by the user, but only examined. bporg
is updated whenever binary code is loaded by lip or fasload.

*** VARIABLE

This variable should also always have a lixnum as its value; this
indicates the first address above' the lalt available word or hin • ..,
program space. This il updated by many intemal lisp routines, such
as the garbage collector, the array allocator. and lap and '.sload.

VARIABLE

This variable, initially nil, should be made non-nl1 by the user
before loadin, binary code which is to be made pure. It si,nals 1 ap
and fasload to be circumspect about any UUO's in the code, hauuse
pure UUO's cannot be clobbered to be PUSHJ's or JRSrs. lap solves
this problem by clobberin, the UUO immediately if the rerereneed
function is already defined and is itself a lubr rather than an espr;
otherwise the UUO is made permanently unclohberable (i.e. CALL ia
converted to , CALLF, etc.).

fasload is somewhat more clever: it too triel to clobber each UUO
immediately, but if it can't it puts the address of the UUO on a list
called purclobrl, which il checked at the end or each call to 'as 1 oad, .
and each UUO on the lilt is clobbered at that time, if the appropriate
function had been loaded by that call to fasload. II the function
never does get defined, then purify will also check purclobrl and
convert each UUO to its permanently .unclobberable form.

If pure ha. a fixnum as ita value, t.hen fasload (but. not lap) behaves
somewhat dirrerent.ly. If the value 01 pure (which must. be between 1
and 8 or so) is, aay. 3, then fasload calls. pagebporg, and then
reserves 6-2*3 pages 01 binary program space, unless a previous call

Page 204 14.5.4 0./08/14

ilk liiiil I Ii I"; I

/

."4\

~pure

Compilation

to f as load has already reserved them (i.e. they are reserved only
once). Thus fasload has two sets of 3 pages to work with; we shall
call the first set "area I" and the second set "area 2". Now whenever
fas load has to load a clobberable UUO, it does not place it in the
code being loaded, but rather hashes it and places it in area 1 if it
was not there already; a copy is placed in the same relative position
in area 2. Then an)(CT instruction pointing to the UUO in area 1 is
placed in the binary code. When all loading has been done, area 2 may
be purified, but area 1 may not.

Now when running the code, the UUO's pOinted to by the)(Crs may be
clobbered {the pdp-l0 lisp UUO handler is clever about)(eT), and the
code will run faster the second time around because the)(Crs will
point to PUSH~s. However. if (sstatus uuo links) is called. then area
2 il copied back into area 1, effectively unclobbering all the UUO·s.
Naturally, an area large enough to contain all the UUO's should be
reserved; (status uuol1nks) (q.v.) yields information relevant to
this.

Thus the example given under the purify runction above might be
modified as follows:

(SETQ LOPAGE (PAGEBPORG» ;save low page address
(SETQ PURE 3) ;specifies pure code
(SETQ LOPAGE (+ LOPAGE 6000» ;allow for area 1
(FASLOAD FUNNY FASL) ;load up system
(FASLOAD WEIRD FASL)
(UREAD SOME LAP)

(SETQ ERRLIST "CCTERPRI) ;stuff for system startup
(PRINC "WELCOME/ TO/ SUPERSYSTEM/I)
(TERPRI»)

(SSTATUS TOPLEVEL ;set up top level for system
(FUNCTION TOP-HANDLER»

(SETQ H I PAGE (PAGEBPORG» isave high page address
(PUR I FY LOPAGE (1- H I PAGE) "BPORG) ;purify pages
(HACDHP ": PDUMP / SYS: TS/ SUPER/"M) ;tell DDTto dump

*** VARIABLE

This variable is relevant only to the "bibop" implementation on ITS,
and controls certain kinds of automatic purification of S-expreslionl
and atomic symbols.

purclobrl

Used by
immediately

04/08/74

*** VARIABLE

fa, load to keep track of UUO's which are potentially hut not
clobberable.

14.5.4

i

MACLISP Rererence Manual

gwdl. lapsetupl. rpatchl *** VARIABLES

The values 01 these variables are used lorintemal communications
within lap and should not be disturbed by the UMr.

14.5.5 Diff.r.nce. a.twe.n I.p .nd flll.p

Much effort has been made to keep lap and (as lap compatible. There are
of necessity, however, some dirrerences. One is that lap reads in a
function only once, whereas faslap presently reads a fUe of functions
twice through; if funny things such as macro characters are happening
during reading this may cause problems. A related problem is that faslap
reads the 1 ap code at assembly time, and not at load time, which means I that
read macro characters and obarray hackery will not happen at fas 10all time.
f as 1 ap and f as load cooperate in a scheme to gain speed by calling the
function intern only once on each atomic symbol needed by a fUe of
functions; f as 1 ap creates a table of such symbols and passes them when
encountered into the binary file. This means that Iwitching obarrays in
the middle of a fas load file will probably lose.

There are also some internal differences due to the different modes of
operation. As an in-core assembler, lap does not need to worry about
questions relating to reloeatability. fas 1 ap, however, does not know where
in memory a binary file will be loaded, and thus mUlt produce relocatable
binary code. This implies that fas 1 ap must distinguish between, relocatable
and absolute symbols. This is done by using non-numeric sym properties for
relocatable symbols; the user who hand-codes lap code and expects to look
at sym properties at assembly time should be aware of this.

fas 1 ap furthermore does not know into what version of lisp the binary
file will be loaded. This poses a problem because compiled code needs to
refer to routines and locations internal to lisp, such al FLOATl and
ERSETUP. This il solved by the so-called globalsym convention; these
labels, which for lap have numeric sym properties, in faslap have
non-numeric sym properties,. and direct fas 1 ap to output directions to
f as load to find the correct value of a' symbol for the lisp being loaded
into. For most purposes such symbols should be, treated as a funny kind of
relocatable symbol.

fas 1 ap imposes some restrictions on the use of certain
Multiple and negative reloeatability is not permit.ted.
symbols, the quote, funct ion, specia-l, and sarO constructs,
are permitted only in the' addreu field 01 an instruction.

Page 206 14.5.5

-

constructs.
Relocatable

and literal.

04/08/14

iiiili"i ; willi i ;

Compilation

14.5.6 Conventionl for Function. in Lisp

This section briefly describes some of the internal conventions of
. pdp-lO lisp, and contains enough information for a person who knows pdp-to
machine language to understand the output of the compiler, and possibly to
write simple lap functions for use with lisp. However, the information
within this section is subject to change. Whenever any location within
lisp is referred to symbolically in this section, that symbol is predefined
to 1 ap and may be used by any 1 ap program even if DDT does not have lilp's
symbols loaded.

The names of the accumulators and 'their uses are, briefly:

o nil
1 A
2 B
3 C
4 ARI
5 AR2A
6 T
'1 n

10 0
11 R
12 F
13 FREEAC
14 P
15 FLP
16 FXP
17 SP

atom header of the atomic symbol nil
first argument to a function; value of function
second argument
third argument
fourth argument
fifth argument
negative of the number of args to an Ilubr; temp
super-temporary; value from numeric function
semi-temporary; arithmetic
semi-temporary; arithmetic
semi-temporary; arithmetic
unused, except saved/used/restored by gc
regular pushdown list (pdl) pointer
flonum pdl pointer
lixnum pdt pointer
special (variable bindings) pdl pointer

In general, S-expressions should be manipulated in the five areument
accumulators; the contents of these are protected by the garbage collector.
Random arithmetic should not be done in them; this might accidentally
generate the address or something the garbage collector should not protecL
Argument& to subrs are passed through these £ive accumulators, and the
value 01 a function is returned in accumulator A. The single argument to
an fsubr is likewise passed through accumulator A.

It is generally assumed that when an argument is passed or a value
returned through these five accumulators that that the left haIr will be
zero, while the right halC will contain a pointer to an S-expression. Much
code depends on the left half being zero; in particular, tests for nil
(which is the zero pointer) use JUMPE instructions, which require that the
left half be zero so that the test of the right half will be valid. In
general, then, instructions like HRRZ and HlRZ should be used to fetch
items into these accumulators.

S-expressions are represented in luch
dotted pair is in, say, accumulator A, then

(HLRZ BOA)

04/08/74 14.5.6

a way that if a pointer to •

Pa,e
l

201

MACLISP Reference Manual

will get, al a pointer, the car of the S-expression and put it in
accumulator B, and

(HRRZ BOA)

will get the cdr. If the S-expression whose address il in A is a c fixnum or
flonum, then

(HOVE TT 0 A)

will get the machine representation of the number and put it in accumulator
TT.

Accumulators T through F may be used as scratch registers, in general.
When an Isubr is called, however, the negative of the number of arguments
is passed through accumulator T. Many useful internal routines are called
by JSP T • FOO, and the argument or value is commonly passed through TT.
Functions compiled by the fast-arithmetic compiler return their values in
TT. TT is also used in connection with array accessing.

FREEAC is presently unused by the lisp system, except lor the garbage
collector, which, however, saves and restores it. This fact should not be
taken as permanent; it is mentioned primarily because it can be useful lor
debugging purposes.

The lisp system uses no fewer than four pushdown lists, or stacks. The
regular and special pelts, whose pointer. are in P and SP, are marked from
by the garbage collector; thus an S-expressioQ is "safe" from gc is pushed
on either of these' pdls. (Only the right half of each pelJ slot is marked
lrom; the laft hall may contain garbage.) The special pel I is used to hold
variable bindings, and its contents are highly structured. The uler should
not use SP except through the routines SPEC81NO and UN8IND, described
below. P may be used for any purpose, provided that totally random things
are not put into the right halves of pdl slots (the same restriction as for
argument accumulators). The fixnum and 1I0num pdls are used primarily by
compiled code produced by the last-arithmetic compiler, and their contents
are not affected by gc in any way. If it is desired to save random
quantities on a stack, the fixn.um pdl should be used if possible.

The standard function calling convention in pdp-tO lisp requires that
functions be effectively called via a (PUSHJ P <function» and exit via
(POPJ P). The arguments to subrs and fsubrs are as described above.
Lsubrs take their arguments on th~ regular pell (where they are safe from
gc), and T has minus the number of arguments. The return address is also
on the pel I, under the arguments. This usually requires code or this lort:

(PUSH P (x 0 0 G047S»
(PUSH P A)
(PUSH P '(funny l1st»
(MOVNI T 2)
(JRST 0 FOO-LSU8R)

G0475 --- lsubr returns to here

Page 208 14.5.6

Ii;; ;'Ii;; iI;;; ;. ;illn:::: JIi!

04/08/74

1& Ii

Compilation

That is, the return address must be pushed ahead of time. It is the
responsibility of the called Isubr to remove its arguments from the pdl and
return with a POPJ.

Interfacing between compiled code and the interpreter is accompHshed
via a large set of UUO instructions. All of them work in' the same fashion:
the effective address must be the address of an S-expression which is the
function to be invoked. The arguments to this function are passed in the
manner described above, and the accumulator field describes which argument
passing convention has been used (hopefully the same as that required by
the called {unction): 0-5 means a call to a subr with that many argumentA,
16 means a call to an Isubr, and 11 means a call to an lsubr. Thus the
function CONS might be called with the UUO (CALL 2 (FUNCTION CONS».

There are several variants on this basic UUO type. One variant is the
JRST VB. PUSHJ mode; sometimes instead of writing a PUSHJ to a function
one wants to write a JRST for efficiency. To see why, consider that

(PUSHJ P FOO)
(POPJ P)

is in effect equivalent to

(JRST 0 FOO).

This kind of UUO is also
above}.

useful
I

i
i

for calling Isubrs (see the example

A second variant is the "blobberable" vs. the "unclobberable" UUO. Ir
certain conditions are met, it is possible for the UUO handler to replace
the invoking UUO by the equivalent PUSHJ or JRST, so that next time the
same code is used it will call the desired function directly. In some
cases, however, it is not desirable for the UUO to be so clobbered, (or
example if the function to be invoked is an argument in an accumulator, and
is to be invoked via something like (CALL lOA). A UUO may therefore
specify that it may never be clobbered. A third option is used by code
compiled by the fast arithmetic compiler. It is undesirable for a runction
which returns a number to do a "number cons" in order io return the number
as an S-el.pression il the number will only be converted back to a machine
number and used in more open-coded arithmetic. (It is undesirable because
number consing, like ordinary consing, eventually causes garbage
collection, an expensive process.) Thus a UUO may specify that it wants
only a machine number as a result; this is to be returned in accumulator
TT, rather than a lisp number in A. The mnemonics for all these UUOs are
summarized here:

standard result
numeric result

04/08/74

clobberable
PUSHJ JRST
CALL JCAlL
NCAll NJCAll

14.5.6

unclobberable
PUSHJ JRST
CALLF JCALLF
NCALLF NJCAlF

Page 209

MACLISP Reference ,Manual

Thus the example of an lsubr call above would actually be written:

G0475

(PUSH P (X 0 0 G0475»
(PUSH P A)
(PUSH P '(FUNNY LIST»
(MOVNI T 2)
(JCALL 16 (FUNCTION FOO-LSU6R»

"Functions "produced 'by the fast .arithmetic compiler Jollow a convent.ion
so that NCALLs will work properly: IE a function ,is to be NCALL'ed, and
returns a lixnum, the first instruction of the function should be (PUSH P
(% 0 0 F IX1»; if it returns a flonum, the first instruction should be
(PUSH P (% 0 0 FLOATl». (For a description of the F IX1 and FLOAT1
routines, see below.) If the function is NCALL'ed, the function is entered
at the second hlstruction, i.e. after the PUSH. The appropriate mach ine
number is returned in accumulator TT, as expected by the caller. U, on
the other hand, the function is simply CALL'ed, then it is entered at the
normal entry point, and the address of F IX1 or FLOATl goes on the st.adt.
When the function exits, it will transfer to F IXI or 'FLOATl, which will
convert the machine number to a lisp number and then ,return to the original
caller.

Some other UUO's besides the CALL UUO's are useful to compiled code and
hand-coded lap. The STRT (STRing Typeout) UUO is quite useful for printing
out constant strings of characters. The ,effective address of the STRT UUO
must -be the first of several words of sixbit characters. Several
characters in the "string have special significance:

1\

•

Complement the 100 bit of the character ,before printing
occurs after 40 has been added to convert it to ascii.)
the sixbit string causes a carriage return to be printed.
1\4 is a lower case t.
Terminate typeout.
Quote the next character. This is used to .get., A, and
string.

it. <This
Thus I\M in

Similarly,

into a

Thus, for example; to print the message "YOU LOSE!" in lap code, preceded
and f 011 0 w.ed by a carriage return, .say

(STRT 0 (SIX6IT /~HYOU/ LOSE*I/~HI»

(The slashes are necessary because lap will read this using the lisp
reader!)

The lERR (Lisp ERRor) UUO takes a string like the ones STRT takes, and
signals an uncorrectable error, with the string as the error message.
Because the error is uncorrectable, control never returns to after the
lERR; it is like a JRST to the error handler.

The LER3 UUO is similar to LERR, but
should accumulator A; this expression

Page .. 210 14.5.6

I Ii" Mum I Iii II ""! Mil hiiU

also takes an S-expression in
be followed by the string which

04/08/74

• PIAU; i;;

Compilation

constitute the error message.

The ERINT UUO is used to Signal correctable
string argument and an S-expression in A.
ER I NT UUO indicates the type of error:

errors. It too takes a
The accumulator field or the

o undef-fnctn
1 unbnd-vrbl
2 wrng-type-arg
3 unseen-go-tag
4 wrng-no-args
5 gc-lossage (ordinarily used only by gc)
6 fail-act

The S-expression becomes the argument to the error interrupt ,handler for
the given type of error (in the case 01 types 0 to 3, the error handler
automatically applies the function ncons to this object before passing it
as the argument). II the handler returns a corrected value (e.g. the user
in a standard error break used the return function) then this new value is
passed back in A and control returns to the instruction after the ERINT.

A typical piece of lap code to 1Ise this might be:

(LAP FOO SUBR)
(PUSH P A)

TEST (JSP T FXNV2)
(TRNE 0 3)
(JRST 0 LOSE)

(POPJ P)

;get numeric value in d
;want a multiple 01 4

LOSE (EXCH A B) ;get bad arg in a
(ERINT 2 (X SIXBIT NOT A MULTIPLE OF 4»
(EXCH A B) ;switch back again

NIL
(JRST 0 TEST) igo try again

UUO's never change the values in any accumulators except ERINT, which
may return a new value in A, and the various CALL UUO's, which may clobber
everything if they have to invoke eva I to link to an interpreted function.
CALL UUO's save all accumulators when linking from one compiled or
handcoded function to another. This implies that the called function will
get whatever was placed in accumulators T through F as well as A through
AR2A. It does not imply, however, that any accumulators will have been
preserved by the time the called function has returned to the caller.

14.5.7 Internal Routines for use by LAP Code

Compiled code requires a certain set of support routines.
addresses of these routines are predefined to 1 ape
assumed that a given routine saves any accumulators

04/08/74 14.5.7

The names and
It should not be

unless it is

Page 211

MACLISP Reference Manual

specifically described al doing 10. They are briefly described here:

(JSP T SPECBIND)
This routine handles the binding or special .ariables. The call is
followed by one or more specifications of the form «type> <where>
(spec 1 a 1 <atom>)), where <type> is either '7_41 or O. The value of the
atomic symbol <atom>, which il in the word pointed to by the effective
address of the argument, is saved on the sJ'ecial pdl, and a new value
is placed in the value cell, al specified by <type> and <where>. If
both <type> and <where> are zero, the new value i8 nil. If <type> is
zero, then <where> is the number of ata accumulator containing the new
value. If <type> is '7_"U, then the new value is in the regular pdl
slot addressed by subtracting <where> from the current contents of
accumulator P; <where> may be any number less than 2000 octal. (This
is a case where not truncating the accumulator field of a 1 ap
instruction to four bits i. very useful.) Any number of
specifications may follow the call to SPEC8IND; the end of the call is
determined by the fact that a valid pdp-l0 instruction within lisp
cannot be ~ro in the first nine bits or ones in the first three. All
the .alu~ pushed in a single call form a sin,le bind block; this fact
is used by the UNBIND routine. SPECBIND destroys the contents of
accumulator R.

(JSP T (SPEC8IND -1»
This is an alternate entry to SPEC8IND, which has the additional
effect of passing all new values through th'e routine PDLNMK (see
below) before placing them in the value cells. It is used by code
compiled by the last-arithmetic compiler.

(PUSHJ P UNBIND)
Pops one bind block off the special pdl, thus restoring the old values
of the atorns whose values were formerly saved. Example: the following
lisp code and lap code are roughly equivalent:

«LAMBDA (SPECVAR) (ZORCH» 'BARF)

(HOVEl B (QUOTE BARF»
(JSP T SPECBIND)
(0 B (SPECIAL SPECVAR»
(CALL 0 (FUNCTION lORCH»
(PUSHJ P UNBIND)

UN8 I NO does not destroy any accumulators.

(JSP T PDLNMK)
"Pdl number make". This routine examines the S-expression in
accumulator At, and if it il a pdl number it replaces it with a frelhly
number-consed copy. Uled by code produced by the last-arithmetic
compiler. Does not destroy any other accumulators, even Tt. I

Page 212 14.5.'7 04/08/"14

I

/

(JRST 0 PDLNKJ)
Equivalent to

(JSP T F)(CONS)

(JSP T PDLNHK)
(POPJ P)

Compilation

Takes a machine fillnum in accumulator TT and returns an equivalent
S-expression number in accumulator A. The value in TT is not
preserved. No other accumulators are disturbed. Another name for
FXCONS is F IXIA; they are entirely equivalent. Note that lisp lillnums
are represented in such a way that the address in A will point to a
word containin, what was in TT.

(JSP T FLCONS)
Similar to FXCONS, but takes a floating-point machine number in TT,
and returns a lisp flonum in A.

(JSP T FXNVl)
Verifies that the S-expression in accumulator A is a fbnum; if it is
not, a correctable .wrng-type-arg error is Signaled. If it does
contain a fixnum, or if the error break eventually returns a fixnum,
then it returns with the equivalent machine fixnum in accumulator TT.
This routine is useful primarily for the error checking; if it i.
already known that A contains a lisp fixnum, the instruction (HOVE TT
o A) serves jUlt as well. Such knowledge, for example, can he derived
from declarations by the I •• t-arithmetic compiler.

(JSP T FXNV2)
(JSP T FXNV3)
(JSP T FXNV4)

Similar to F)(NVl, but take arguments and return machine fixnums in
different accumulators:

FXNV2 B -) 0
FXNV3 C -) R
FXNV4 ARI -) F

There is no F)(NV5 - you must move an argument in AR2A into some other
accumulator first.

(JSP T IFIX)
Takes a machine flonum in TT and converts it to a (truncated) machine
fixnum, returned in TT. Des'troys accumulator D.

14.5.1 Pa,e 213

MACLISP Reference Manual

(JSP T IFLOAT)
Takes a machine fisnum in TT and converts it &0 a machine flonum,
returned h. TT. Does not destroy any other aceumulatora.

(JRST 0 FIXl)
(JRST 0 FIX2)
(,JRST 0 F,LOATl)
(JRST 0 FLOAT2) I

These are convenient exits to the lollowin, ,code internal ,to the lilp
s)'stem:

FIX2
FIXl

FLOAT2
FLOATl

(JSP T FLTSKP)

(JSP T IFIX)
(JSP T FXCONS)
(POPJ P)
(JSP T IFLOAT)
(JSP T FLCONS)
(POPJ P)

Verifies that the S-exprellion in A is a fixnum or 1I0num;
not, a wrng-type-arg error is signaled. If it is, then
number is returned in accumulator TT; moreo:ver, the return
is a 1I0num. ,Example: here is a simplified version of
function which does not accept hignums:

(LAP SUBIN081G SU8R)
(ARGS S,UBINOBIG (NIL . 1»

(JSP T FLTSKP)
(SOJA TT FIX1)
(fS8RI TT 0 1.0)
(JRST 0 fLOATl)

NIL

if it is
the machine
skips if it
the subl

(JSP T (NPUSH -<n») This routine pushes <n> nils onto the regular pdl;
i.e. it is equivalent to writing (PUSH P (214 0 0 NIL» <n> times..
(n> must be between 1 and 20 octal. Note the minul lign in the above:
to ,push 4 nils one writes (JSP T (NPUSH -4». This routine il used
greatly by compiled code to create pdl slots for local variables.

(JSP T (OPUSH -<n»)
Similar to NPUSH, but pushes zeros onto the fixnum pdl. <n> mUlt be
between I and 10 octal. Used by code produced by the fast-arithmetic
compiler.

14.5.1 04/08/14

I II;; I, 14

Compilation

(JSP T (O~OPUSH -<n>>>
Similar to NPUSH, but pUlhes zeros onto the flonum pdl.
between 1 and 10 octal. Used by code produced by the
compiler.

(JSP 0 ~LCALL)

(n> must be
I ast-ari thmetic

This routine is called by user Isubrs produced by the lisp compiler.
It accounts for the number 01 arguments, and saves some information so
that the arg and setarg functions can find the arguments. Alter the
user Isubr has been executed it takes care 01 popping the arguments
off the pdl and returning to the caller.

(PUSHJ P IOGBND)
Used by compiled code to perform the iog function. Equivalent to the
code

(JSP T SPECBIND)
(0 0 (SPECIAL ~W»
(0 0 (SPECIAL ~Q»
(0 0 (SPECIAL ~R»
(0 0 (SPECIAL ~B»
(0 0 (SPECIAL ~N»

(JSP T (~MAP -(n»)
Used by compiled code to call the varioul mapping functions in the
common case where there are two arguments. The function should be in
B, and the list in A. (This il backwards from the standard order!)
(n> determines which mapping function as follows:

1 mapl1st 3 map 5 mapcon
2 mapcar 4 mapc 6 mapcan

(JSP T -SET)
Used for compiling calls to the function iet. Accumulator A should
have the value (second argument to set), while ARI should have the
atomic symbol which is to get the value (first argument to set).

(JSP T -STORE)
Used for compiling calls to the function store. (The conventions for
this routine are undergoing some change, and thus are not described
here.)

(JSP T -NSTORE)
This ia to ihe nstore runction al -STORE il to store.

04/08/74 14.5.7 Page' 215

MACLISP Reference Manual

(PUSHJ P ~UDT)
Used by compiled code for handlin, undefined computed ,0 tags in
compiled progl. 'rhe ta, il in accumulator A. It handles the case
where the tag il really a fixnum; and if n~t, li,nals a come table
error and pollibly returnl with a correcte. tat in A.

(JSP TT ERSETUP)
Used lor compilin, calls to the function ERRSET. Accumulator A has
the second argument to ERRSET, an. 8 haa the -addresa to ,0 to ir an
error .ccura. Thil routine pUlhes v.r.ioUI ,thin,s -onto the re,ular
pdl.

(JRST 0 ERUNDO)
If' all the code compiled for the lirst argument to an errset runs
without error, it must go to ERUNDO to undo the errset, i.e. to pop
the things orr the pdl which ERSETUP pushed. Control is returned to
the address given in 8 when ERSETUP was called.

(JSP T G08RK)
Used by compiled code when a go il .one within an errset (yech!). It
is similar to ERUNDO, but returnl to the instruction rollowin, the
(JSP T GOBRK), rather than to the place lpeciried t. -ERSETUP.

(JSP TT (ERSETUP -1-»
Used 'to compile
similar to errset.
c-Itch (the catch
throw i-s done.

calls to the function cltch, which intemally is
Accumulator A contains the ,Iecond argument to

ta,), and B the return address which is used ir •

(JRST 0 (ERUNDO -1»
lust al ERUNDO undoes an errset, so ERUNDO-l un.oes a catch.

(JSP T (G08RK -1»
Similar to GOBRte, but breaks out or a catch rather than an errset.

ARGLOC
This is not a routine Itut a variable, which c.nlainl the ad.reu or
the pdl slot jUlt below the ar,uments to lhe mOlt recently called
lex,r or user Isubr, or zero if none has been call.. Thai the call
(ARG 2) may be coded in lap r.u,h I, al:

(HOVE T ARGLOC)
(ADDI T 2)
(HRRZ A 0 T)'

14.5.1

\

I

04/08/'14

til L;;;I;L::Liiiiiill' iii I -;; I

Compilation

This is one of the variables set up by IIILCALL

ARGNUM
This, like ARGLoc, is a variable. It contains the number of arguments
to the most recent lexpr or user Isubr call, as a lisp number.
(accessing ARGNUM indirectly will of course fetch the machine number.)
Th us one migh t wri te a function:

(LAP ARGN-2 SU6R)
(ARGS ARGN-2 (NIL. 0»

(HOVE TT It ARGNUM) ;get number or args
(CA I GE TT 3) ;need at least 3
(LERR 0 (X SIX61T LESS THAN 3 ARGS»
(ADD TT ARGLOC) ;fetch the last
(HRRZ A -2 TT) ; arg but 2
(POPJ P)

NIL

14.5.8 - Routin.. For U.. by Hlnd-Cod.d LAP

There are some routines internal to pdp-tO lisp which are not used by
code produced by the compiler, but which may be of use to those writing
functions in lap. Unless specified otherwise, the symbols for these
routines are also predefined to 1 ape

(PUSHJ P PRINTA)
This routine il the internal lisp print function. It does not
actually perform any output, but merely supplies a stream of
characters. It is called with the S-expression to be printed in
accumulator A, and the address of a routine in R. The sign bit of R
controls the use of slashes: zero means produce characters like prinl
and explode would, one means like prine and explodec. PRINTA will
generate characters and pass them one at a time to the routine
specified in R by placing the ascii code in accumulator A and doing a
(PUSHJ P 0 R). (This violates the rule about puUing
non-S-expressions in gc-protected accumulators, but for numbers less
than ahout 2000 octal this is guaranteed to be a safe procedure
anyway.) The routine may do anything it wants to with the character,
but must avoid destroying the contents of accumulators B. C. TT, and
R, which are assumed by PRINTA to be sale. On the other hand, ARl and
AR2A are not altered by PRINTA and may be used to communicate over
successive calls to the routine; e.g. they may hold byte pOinters,
etc. (Again, a violation of the rule, but this is all right as long
as they point to "safe" places, like pdl slots or binary code.) When
PRINTA is done it will return to the instruction after the PUSHJ to
it. The contents. of accumulator A are not preserved. Example: Here

04/08/74 14.5.8 Page 21'1

MACLISP Referehce Mahual

is a lanny version of r 1 ate which only counts capital lette

(LAP ALPHlATC SUBR)
(ARGS ALPHLATC (NIL . 1»

(PUSH P (X 0 0 FIX1)}
(PUSH FXP (I 0»
(HOVEl AR2A 0 FXP)
(HRROI R COUNT)
(PUSHJ P PRINTA)
(POP FKP TT)

; (-POPJ P)
COUNT (CAIGE A 101)

(POPJ P)

NIL

(PUSHJ P GETCOR)

(CAIG A 132)
(AOS 0 0 AR2A)
(POPJ P)

;it's NCAll.ble!
leGunter
;remember where it is
;,rinc Ityle

;po, count

;only count capital
; letten

This symbol il not known to 1 api it is intended primarily lor systems
proBrammers on ITS who need large hlocks of core lor lpecial I/O
devices; however, it also exists in dec-10 lilp. It il called with
the number of tIC. hlocks of core desired in TT. Lilp allocates a
sinBle block of core that large and returnl the acldress of the fint
word of the block in TT. It may destroy leveral other .ccumu on in
the process. Lisp mayor may not. actually cause the core to eKi,tl
it merely allocates' address space and promises ftot to use it for
a")'thinB else. The caller should do the appropriate • calK calls on
ITS to cause the core to exist. (On dec-lO lilp will ca.. the core
to eKist, lor the preseht.)

INHIBIT
This il a variable which, if non-zero, specifies that Ca) uler
interrupts may not be processed, but must be delayed, and (h) lilp may
not relocate any arrays when garbage collecting (it may if the array
(unctions are called, however). This is used primarily hy the lis,
system; the n01nterrupt (unction is usually su"icient for usen.
When INHIBIT is reset to zero the routine INTREL should be called, to
check for any delayed int.errupts whieh may be pending. Note that
INHIBIT does not prevent uncorrectable errorl and control G or control
X quits. Thus, it is preferable to the no1nterrupt function when it
is desired to inhibit uler interrupts but not quits (such ait.ali ...
are rare eKeept in lap code). The standard ula,e of this switch is:

(PUSH FKP INHI8IT)
(SETOH 0 INHIBIT)

process with uler interrupts inhibited
(PUSHJ P INTREL)

Note that INTREL will do a (POP FKP INHI8IT).

P.ge 218 14.5.8 04/08/14

III ill iii 1 I; : : : :

Compilation

NOQUIT
Thil switch inhibits all interrupts and quits. The left half is for
ule by the garbage collector, and only the garbage ' collector! The
right half may be used by user programs by using (HLLOS 0 NOQUIT) to
turn it on, and (HLLZS 0 NOQUIT) to turn it back off. After turnin,
it back 0((the routine CHECKI should be called to check for any
delayed interrupts or quits. Thul the standard usage il:

(HLLOS 0 NOQ,UIT)
process with NOQUIT non-zero ._

(HLLZS 0 NOQUIT)
(PUSHJ P CHECKI)

This il somewhat lesl useful than the user no1nterrupt function,
but wal implemented first. Note that the routine INTREL described
above under INHI81T is equivalent to

(POP FXP INHI8IT)
(JRST 0 CHECKI)

and thul if for some reason one wants to pop the old value of INHI81T
oneself, CHECKI may be used instead of INTREL CHECKI preservel all
accumulators.

(PUSHJ P UINITA)
This routine lets things up for opening a file, old I/O style. It
takes a file name lilt (namel name2 dey user) in accumulator A, and on
ITS a mode in the right half of TT. If the file name list is short
the default file names are applied as for the uread function. In the
dec-lO implementation, the device name is placed at location UTIN, and
the ppn in USN (the latter tag il not known to 1 ap; beware!); the
file namel are returned in T and TT. In the ITS implemenution, the
mode, device, and file names are placed in a three-word block suitable
lor .OPEN at location UTIN, and the lilp's sname il set to the
appropriate user name. The contents of accumulator A are preserved.
U I NITA also does the eqUivalent of

(PUSH FXP INHIBIT)
(SETOM 0 INHIBIT)

thus locking out user interrupts, on the theory that lome 1/0
operation will take place which should not be interrupted. It is up
to the caller subsequently to unlock interrupts, e.g. by doing (JRST 0
I NTREL). Example: on ITS, these functions provide a (relatively
inefficient) method for binary input (I/O channel 17, presently unused

04/08/74 14.5.8 Page 219

MACLISP Relerence Manual

in pdp-l0 lisp, il uBurped; heware, lor thi. lact will chan,e!):

(LAP BINOPEN' FSUBR)
(HOVE I T 4) ;im.,.e unit input
(PUSHJ P-UINITA) ~t up
(*OPEN 17 UTIN) ;try to open it
(LER3 O· (X SI)(8IT BIN FILE NOT FOUND»
(JRST 0 I NTREL) ;mult .. nloek iDterrupta

(ENTRY BINGET SUBR)
(ARGS BINGET (NIL . 0»

(PUSIt P (I 0 0 F IXI » ;NCALLable!·
(*IOT 17 TT) ;input a binary wont
(POPJ P) ;ret.um _. lian .. m

(ENTRY 81NCLOSE SUBR)
(ARGS BINCLOSE (NIL . 0»

(*CLOSE 11) ;Close the channel
(POPJ P)

NIL

14.5.8 04/08/'14

li"IXilii:::::: iiiJilUM" .. "'iliii1;t-

Compilation

14.& - Internll Detlill of the Multici Implementation

***** TO BE SUPPLIED *****

04/08/74 14.6

MACLISP Reference Manual

Thi. pale intentionally lert hlank.

!
I

P... HI 14.6' 04/08"4

The Trace Facility

15 The Trice Facility

The LISP trace package provides the ability to perform various actions
at the time a function is called and at the time it returns. This can be
used for traditional tracing or lor more sophisticated debugging actions.

The trace package is not part of the initial environment; however, it
is automatically loaded in on the first reference to the function trace.

The lisp trace package consists of three main functions, trace, untrace,
and remtrace, all of which are lexprs.

A call to trace has the lollowing lorm:

(trace IrtJCe .pee.)

A trace .pee in turn il either an atom (the name of the function to be
traced) or a list:

«function name> <options»

where the options are as follows:

break (,red>

cond (pred>

wherein (fn>

argpd 1 (pdl>

04/08/74

causes a break after printing the entry trace (if any) but
before applying the traced function to its arguments, if
and only if <pred> evaluates to non-n 11.

causes trace information to be printed for function entry
and/or exit if and only if <pred> evaluates to non-n 11.

causes the function to be traced only when called from the
specified function <fn>. One can give several trace specs
to trace, all specifying the same {unction but with
different wherein options, so that the {unction is traced
in different ways when called from different {unctions.
Note that if <In> is already being traced itself, the
wherein option probably will not work as desired, probably.
(Then again, it might.)

specifies an atom <pdl> whose value trace initially sets to
n 11. When the function is traced, a list of the current
recursion level for the function. the {unction's name, and
a list of the arguments is consed onto the <pdl> when the
function is entered, and cdr'ed back off when the function
is exited. The <pdl> can be inspected from a breakpoint,
for example, and used to determine the very recent history
of the function. This option can be used with or without
printed trace output. Each {unction can be given its own
pdl, or one pdl may serve several {unctions.

15. Page 223

entry <list>

8)(,1t

erg
va-lue
both
nil

(lilt)

MACLISP ReferenceM.nual

specifies a' list 01 arbitrary S-expressions whose values
are to be printed along with the usual entry trace. The
Jist of resultant values, when printed, is preceded hy a II
to separate them I rom the other information.

limilar to entry, but .pecifies
are printed with the exit trace.
printed i. preceded b,. II.

expressions whose values
A,ain, the lilt of values

specify that the Cunction's arg.uments, resultant value,
both, or neither are to be traced. If not specified, the
default is both. Any "options" following. one 01 these lour
are assumed to be arbitrary S-expressions whose values are
to be printed on both entry and exit to the runction.
However, il Irg is specified, the values are printed only
on entry, and if va·l ue, only on exit. Note that since arg.
value. both. nl1. Iwallow all followin, expreuionl lor
this, purpose, whichever one i. uled, should be the lut
option specified. Any luch values printed will be preeeded
by a II and will 10Uow any values lpeci(iecl by entry or
ex 1 t options.

If the variable' arg11st is uled in any of the expreuions given for, the
cond. break. ent'ry. or exit options, or after the, aTg,. va-lue. both. or' nil
option, when thOle expressions are evaluated the value of arg11st will
effectively, be· a list, of the arguments given to the traced function. Thul

(trace (foo break. (null (car arg11st)l»

would' eause a break in foo if and only if the first argument to roo il nil.
Similarly, the variable fnva'lue will effectively be the resulting value of
the traced function; for obvious reason., this ahould only~ be Uled with the
ex 1 t option.:

There exists a version of the trace package Called strace. On the AI and
ML pdp-lOs it is available in the COMLAP directory. On Multies, it ia
available in the same directory as lisp. It looks exactly like the norma)
trace' packa,e, except that one extra option is .vailable:

grind sp-ecifies that any trace output is to be done, not with the
usual call to print, but through the sprint function from
the ,rind packagej thus, trace output for that <trace spec>
will be "pretty-printed".

This leature il not included in the regular trace packa,e because it reany
eata up Iree storage.

15. 04/08/'14

Ii: hi 4$ 41 Ii iii: li4:; SU. ; ; iIi;m i iii: ; ::swat; , i Ii iUS 11 " ; 4 Iii i Ii I i Iii

•

l

The Trace Facility

Examples of calls to trace:

(1) To trace function foo, printing both argumentl on entry and result on
exit:

(trace fool or (trace (foo» or (trace (foo both».

(2) To trace function foo only when called from function bar, and then only
i r (cd r x) i. n 11:

(trace (foo wherein bar cond (null (cdr x»»

or (trace (foo cond (null (cdr x» wherein bar»

As this example showl, the order of the options makes no difference, except
for arg. value, both. or nil, which must be 1alt.

(3) To trace function quux, printing the resultant value on exiting but no
arguments on entry, printing the value of (car x) on entry, of fool. foo2,
and (fo03 bar) on exit, and of zxcvbnm and (qwerty shrdlu) on both entry
and exit:

(trace (quux entry «car x» exit (fool fo02 (fo03 bar»
(qwerty shrdlu»)

(4) To trace function foo only when called by functions bar and baz,
printing .rgs on entry and result on exit, printin, the value of (quux barf
barph) on exit from foo when called by baz only, and conditionally break in,
when called by bar if a- equals b:

(trace (foo wherein bar break (equal a b»
(foo wherein baz exit «quux barf barph»»

(5) To trace functions phoo and fu, never printing anything lor either, but
saving all arguments for both on a common pdl called foopdl, and breaking
inside phoo if x is nil:

(trace (phoo argpdl foopdl break (null x) cond nil nil)
(fu argpdl foopdl cond nil nil»

The "cand nil" prevents anything at all from being printed. The second nil
in each <trace spec> specifies that no args or value are to be printed;
although the cond nil would prevent the printout anyway, specifying this
too prevents trace from even setting up the mechanisms to do this.

(6) To trace function foobar, printing args on entry and result on hit,
plus the value of moby-expr on exit, and pretty-printing the output:

(trace (foobar grind exit (moby-expr»)

trace returns a8 its value a li.t of names of all functions traced; lor any
functions traced _ with the where in option, say (trace (foo where in bar»,
instead 01 returning just foo it returns a 3-list (foo where in bar). If

04/08/74 15. Page US

_I lliill::: Ii" Ii

MACLISP Reference Manual

trace finds a <trace spec) it doesn't like, instead of the function's name
it rfJturns a list whose car is ? and whOle cdr indicates what trace didn't
like. A lilt of possible error indications:

(1 wherein foo) trate couldn't find an expr. fexpr. or macro property for
the function Ipecified by the wherein option.

(1 argpdl foo) the item follow in, the argpdl option was not a non-nil
atomic symbol.

(1 foo not funct ion), indicates that the function specified to be traced was
non-atomic, or had no functional property. (Valid
functional properties are expr. fexpr. subr. fsubr. lsubr.
and macro.)

(? fool roo ia not a valid option.

Thus a call to traceluch as

(trace (faa wherein (nil» (bar argpdl nil»

would return, without setting up any traces,

«1 wherein (nil» (1 argpdl nil»

If you attempt to specify to trace a function already bein, traced, trace
calls untrace before letting qp the. new trace. If an error occurs, causinc
(? something) to he returned, the function for which the errol' occurred may
or may not .have been un traced. Beware!

It is possible to call trace with no arguments. (trace) retums as ita
value a list of all functions currently heing traced.

untrace is used to undo the effects of trace and restore functions to their
normal, un traced state. The argument to untrlce for a given function
should he essentially what trice returned for it; i.e. if trace returned
faa, use (untrace fOo); if trace returned (foo wherein bar) use (untrace
(faa wherein bar». untrace will take ,multiple specifications, e.g.
(untrace foo quux (bar wherein baz) fuphoo). Calling untrlce with no
arguments will untrace all functions currently being traced.

remtrace, oddly enough, expunges the entire trace package.
arguments.

15.

It takes no

04/08/'14

•

/

Formatted Printing of LISP Data

16 - Formatted Printinl of LISP D.t.

Pretty-printing, also called ",rinding," is the conversion of list
structure to a readable format. This chapter outlines the computational
problems encountered in such a talk and documents the current al,orithm in
use. This chapter was taken from AI memo 279 by Ira Goldstein.

The ",rind" package is used to print out. S-expressionl in a more
readable (orm t.han that provided by the standard functions print. prinl,
and prine. The grind package is accessed through three funct.ions:
grindef. grind. and grindO.

gr 1 ndef is used to grind the properties of an atom; usually the
(unctional properties expr. fexpr. and macro, and the atom's value. The
output of grindef is legible and is also readable back in to lisp.

grind and grindO are used to grind up an entire file. Comments in the
file are preserved, but everything is rearranged for readability. The Iile
may contain control lines beginning with ";;*", which are ignored when the
(ile is read into lisp, but are used to specify parameters to grind.

The grind package is not part of the initial environment; however, it is
loaded in on first reference to one of the functions grind. grindef.
gr1ndO.

16.1 Introduction

Pretty-printing is a fundamental debugging aid for LISP. List struqture
presented as an unformatted linear string is very difficult for a person to
understand. The purpose of pretty-printing is to clarify the structure o(
a LISP expression. The simplest class of pretty-printers accomplishes this
by the judicious insertion of spaces and carriage returns.

The new grind package differs from earlier ones in providing a larger
number of formats in which S-expressions and comments can be ground. A
variety of predefined formats exist which can be associated with any LISP
function. For' unusual formatl, the user can design his own procedures to
control grinding.

04/08/'74 16.1 Page 22'7

MACLISP Reference Manual

16.2 Top Level Functlonl

16.2.1 • .,ind and .rindO • fe.pr.

grind and gr1ndO convert files to pretty-printed for.... Their in,ut
lormat i. the same a. that of the LISP lile manipulatinc functions like
uread and uwr1te.

(grind lilfJntJmel 'ilename2 device uname)

uf11e"s a pretty-printed form of the file uader the same name. The asual
LISP convention. for default device, user and file names are ased. To
avoid possible disasters, use ->- as your second rile name. gr indO does
not uf 11 e. Hence, it is useful for filing the pretty-printed file ander a
different name. For example,

(gr1ndO geo > dsk 1rao

) (ufl1e glo print)

results in the pretty-prin'ted version bein, filed .. GEO PRINT.

In the Multica implementation, the form

(grind patAI path!)

may also be used. polhl and potA! must be strin,s. gr 1nd will take ita
input front' the segment named patl.l and put ita output in the .flllent named
pot"!, poth2 may be omitted, in which case the output is tent to a seement
named I gr ind • output in the working directory.

16.2.2 - Irindef· fexpr

gr 1nde' takes atoms as arguments. It then
fexpr, and macro properties, and their values..

pretty-prints
For example,

(gr1ndef programl program2)

pretty-prints these two LISP functions.

their u,r,

The delault properties pretty-printed by grindef can be modified in 'wo
ways.

(gr indef <list ol additional properties> <atom1> <atom2> _)

appends the additional properties to the list of default properties lor the
duration of the current call to grindef. A permanent change to the default
properties pretty-printed by grindef il made by tettin, the atom
grindpropert ies to a ftew list of properties.

Page 22S 16.2..2 04/08/7.

1$ qg . ,III; "i ; Ii" iiiiiiilAiIi:: "iii 4 ; ; ¥ ;; iii¥ Ii ll""" : "i

Formatted Printing of LISP Data

(grinder) will repeat the last call to grindef. This saves typing when
repeatedly gr1ndef9ing the same functions.

16.2.3 Formlttinl

The pretty-printer can be programmed in the following ways:

L C<,rind-control-Cn> <arguments» execute. the ,rind-control-fn
on the given arguments. A typical grind control function is
programspace. (programspace 80) sets the width available lor
pretty-printing code to 80. Complete documentation lollows in
section 16.3.

3. «grindCn or grindmacro> <lunction> <grind-Cormat» assigns the
grind-format to the function as either a grindCn or grindmacro.
Whenever the pretty-printer encounters the Cunction as the lirst.
element of a list, the list is printed using the special format.
The grind-format can either be the name of a function 01 no inputs
or the body of a lambda definition. A variety of predefined
formats such as prog-form are described in the next section. The
mechanism for building new formats is presented in section 16.5.1.

c. (un format <function» removes any special grindCn or
properties of the function.

grindmacro

For all of the above specifications, <function> can be replaced by <list 01
functions>. The grind specification is then applied to each function in
the list.

There are two ways in which format statements may be delivered to grind.
One is to insert them directly into the file being ground as

; :*(gr1ndfn thprog prog-form) (programspace 80.) <newline>

Comments beginning with -;i:t:- cause the pretty-printer to evaluate the
remainder of the line. II the line consists of only a single S-espression,
the toplevel parentheses are optional.

::~gr1ndfn thprog prog-rorm

·The normal LISP read-eval-print loop ignores semi-colon comments. Hence,
i;* comments only have effect when the lile is ground.

The second way to deliver format statements t.o the grind package is to
place them in the file which the grind package automatically reads when it
is loaded. On ITS this rile is called

GRIND (INIT)

04/08/74 16.2.3 Page 229

I Z i1Ailhi iilli;iE

MACLISP Reference Manual

and i. located in the uler'. directory. On Multica this file il called

and it il located in the uler'l home directory.

16.2.4 remlrind - fexpr

(remgrind) removes all of the grind package's funcUonl from t.he LISP
environment.. Alternatively. the user can be more selective in prunin, the
space occupied by the g.rind package by erasing only those feat.ures he does
not need. This is done as follows: .

(remgrind fl1e) - erases g.rind and gr1ndO.
gr indef is needed.

i
Useful "hen only

(

(remgrind ucontrol) - erales the formatting functions. It does not
erase those special formats already defined by the uler. But it
prevents him from defining any more. Useful alter the aMr h.
created his special formatl.

(remgrind format) - erases both the formatting luncUons .. well ..
all special formata.

(remgrind semi) - erases lpecial lunctionl lor handlin, .. mi-colon
commen

16.2.5 Functiona, Atoml, end Properti .. U •• d by Grind

***** [THIS SECTION IS QUITE OUT OF DATE] *****
Many functions and atoms are used by' the grind package. In addition,

the property-lis.t indicators grindfn and ,rindmacro are used for lpec:ifyinl'
lpecial grind formats.

The following atoms, are reterved by the grind package (at the time of
thil writing.)

/; /;/; /;/;1 Ad arg chrct cornnt comspace fill fonn gap gr1ndef
grindfn grindl1nct grindrnacro gr1ndpred1ct grindpropert1es
gr1ndreadtable grvers10n h 1 l1nel m macro n noff nomerge
oldcontrollstatus'oldsem1status pagew1dth predict prog? programspace
readtable remsemi sem1status topw1dth

The following r~ncti~n and array names are used by grind:

Pag.e

i1iiilii

block-form block-predict comment-form comsplce def-form done? fill
flatdata- form gblock gerror gflats1ze gprinl grind, gr1nd-unbnd-vrbl

Z~O 16.2.5 04/08/74

Imu" £I 1iZ1::1i: iiii iii

I

Ii; Ii

Formatted Printing of LISP Data'

gr1ndO gr1ndargs gr1ndef gr1ndfn grindmacro grindpage gr1ndreadtable
gtab gzap indent indent-to lambda-form maxpan mem-form merge newl1nel
nof111 nomerge nopred1ct oldstatus page pagew1dth panmax plnr popl
ppage ppr1n predict pr1nSOcom prinallcmnt prog-form prog-pred1ct

.programspace putgr1nd readmacro readmacr01nverse rem rem-realprop
rem/: rem/:/; remgr1nd remsem1 semi-comment semi? setq-form
setq-pred1ct sla,h1fy sla,h1fyl sprint spr1ntl stat-tab testl tj6
topw1dth tu~pr1 unformat

16.3 Predefined Formats

16.3.1 • Standard Format.

The following formats are used by the pretty-printer in the absence 01
any special formatting instructions. Choice depends on the aTailable width
and the cost in number of lines.

a. linear-form The expression is print.ed wit.h no extra insert.ion of
carriage-returns and spaces.
primitives. It is used
remaining on the line.

This is the format. used by the LISP print.ing
by grind only when t.here is sufficient. widt.h

"b. .,and.ard.-form - This is t.he preferred format. for lists beginning with
atomic funct.ions. It is also used on other lists if fewer lines are needed
to print t.he code this way.

«function) <pretty-print of arg(l»
<pretty-print of arg(2»

<pretty-print of arg(2»)

Co miaer-form This format. conserves the space remaining on t.he line.
When in widt.h trouble, function lists are printed this way.

«pretty-print of element(l»
<pretty-print of element(2»

<pretty-print of element(n»)

d. Iu.nny-form - Occasionally, this format. decreases the number of lines
needed to print an expression. It is used whenever this is the case. If
pred ict is nil, computation is saved by ignoring it.

«elementl) <elementZ> ... <pretty-print of elementN»

04/08/74 16.3.1 Page 231

2 aiL lI!i tUX:;;' JiLt £$4

ill I niii

MACLISP Reference Manual

16.3.2 - Specill Grind'ns

Each of the following grind-formats can be Uli,ned to an, function by:

(grindfn <function) <,rind-format»

a. "oell-form - the entire expression il g"und al teat
margin '0110 WI the openin, parenthesil of the expression.

(A 8 C 0 E f G
H I J K L M N
OPQRSTU

V W)('! Z)

where the left
For eKample,

Typically, argument lilts and planner patternl are ,round _ blockL

b. de/-/orm def-form il the lundaI'd format for grinding definitions.
The "derun", 'unction-name, indicators, and argument list are alwa,1 ,round
on the fint line. The ar,ument list is ground .. a block. ne remainin,
elements of the definition are ,round al a""",", i. .. depending on their
lise, they are ,round one under the other in:

i. either the .pace remainin, on the line, e. ,.

(de'un 'en-name <lrgl1st ground IS block) ******

-*****)

ii. in ltandard format, i. e. aligned under the function na :

(defun fen-name 1ndieator <argl1st ground as block)

******')

iii. or in miser format, i. e. ali,ned under the defun:

(defun (en-name indicator <arg11st ground as block)

Co lambde-/orm - the 1 ambda" and its variable-list are ground on the firlt
line. The variable-list ia ,round II a block. The remaining elements of
the lambda are ,round as a "hody" i. e. depentlin, Oft their lise, and in
order of preference,:

Page 232 16.3.2 04/oa/'I4

.i itt Ii $ I Z ; i Iii it ; ,. ; ::Ii:ii:::::: ;. I iii! Aill

Formatted Printing of LISP Data

i. in either the Ipace remaining on the line, e.,.
(lambda· (variable-l1st ground a, block) lItlltlUUtllt

lit lit * * lit lit
lItlltlltlltlltllt)

ii. in ltandard format:

(lambda <variable-list ground a, block>
lit lit lit lit lit lit lit lit lit lit JIll

JlllJIIIJIIIJlllJllllItlltlltlltlltllt)

iii. or in miser lormat:

,(lambda· <variable-list ground a, block)
JIll JIll JIll JIll lit JIll lit lit lit JIll lit lit lit

JlllJIIIJIIIlItlltlltlltJIIIlltlltlltJIIIllt)

d. prog-/orm - Thil format uled lor progl il limilar to lambda-form, eaeept
that tagl are unindented.

e. mem-/orm - The firlt argument is ground as code. The remainder are allo
ground al code uniesl quoted, in which case, they are ground .. a block.
For eaample,

(member x
'(a· b c d e f 9 h 1 j k 1

m n 0 p q r stu v w x
y z»

By delault, member, memq, the map functions, and the a,soc functions are
ground in this format.

I. comment-form - The cdr 01 the expression il ground al a block. For
eaample,

(comment this is a· very long
comment that tates
several lines)

comment and lItfexpr, lItexpr, JlIlexpr, lit lit array, special, and unspeciat clauses
of dec 1 are's are ground in this format.

g. .seq-form - Space permitting, variables and values are ground as pain.
For example,

(setq a (plus 1 1) b 0)

04/08/74 16.3.2

MACLISP B.relWice M"8ftual

II t.here il insufficient. Ipace, ltandard or naiser lormat il aled.

16.3.3 - Invertin. Reid· Macros

Quote-t.ype read macros can be inverted when pretty-printed.

reader pind
<char> <espr> - - -> (function <espr» - - -> <char> <espr>

Thil il accomplished via the readmaero runction:

(readmaero <function> <macro character or ch.racterl))

The macro charact.er is pr1nc'ed and t.hen t.he (ex,r> it pretty-printed. Two
examples are:

16.3.4 - System PICM,es

(readmacro quote I')
and

(rtadmacro thy lSI?)

A packa,e 01· lpecial lormats currently exilts, lor MICBO-PLNR. To
utilize them, ,lace either (PLNR) in your GRIND (IN IT) file or ;;*PLNR
directly in your micro.plnr fil ...

16.3.4 04/08/'14

liZ liiihl i .Ii" Ii::;; iii ; : i . i; P44U

Formatted Printing of LISP Data

16.4 - Comment.

Semi-colon comments are defined as a semi-colon followed by te~t and
concluded by a carriage return. These comments can be inserted anywhere in
an S-e~pression or appear alone at the top level. They are completely
ignored by the LISP reader. . The grind package pretty-prints these comments
in several formats depending on whether the comment begins with 1, 2 or 3
semi-eolonL

16.4.1 - Sinlle Semicolons

Comments beginning with a single semi-colon are printed to the right of
the code. Sequences of single-semi's are merged. The code is normally
ground in the first '70 spaces of the line (programspace) while the single
semi's are ground in the final 49 spaces (comspace). gap· 1 is the space
between code and comments.

-----pro'ramspace----- --,.p-- ------comspace-----
'70 1 49

--------------------pagewidth • 120-----------------

These values can be altered, for example, by inserting the following
. comment into a file:

;:~(pagew1dth 120. 89. 1. 30.)

This results in pro,ramspace becomin, 89, gap 1, and comspace 30.

For code that contains no single semi's, a programspace of SO. is
preferable.

16.4.2 Double Semicolons

These comments are printed as part of the code
indentation. Sequences of double semi's are merged.
topwidth • pagewidth is used. Inside code, double semi's
programspace. To alter topwidth, execute:

(topw1dth <new-v~lue»

04/08/'14 16.4.2

wi th the proper
At the top level,
are limited to

Page 235

I

I

MACLISP Reference' Manual

16.4.3 • Triple Semicolons

";;;. •• " are similar to ";;_" with respect to indentation. Rowever,
they are otherwise not modified by ,rind. Spaces are not lilled and
sequences of comments are never mer,ed. They are thus uaelul when the uler
desires his comment to be printed exactly .. ori,inally' typed.

Page 236 16.4..3 04/08/'14

Formatted Printing 01 ,LISP Data

16.5 Grind Control

Thele lunctions set various switches
pretty-printer. They may be invoked by the use
example, a comment like

::"'comspace 43.

and variablel lor
01 ~;;*. comments.

will cause (comspace 43.) to be evaluated when the file il ground.

the
For

1. fill causes multiple spaces appearing in single and double semi's to be
merged. Periods ending sentences are rollowed by two spaces. This is the
default case.

2. nof 111 causes multiple spaces to be treated as such. Triple semi's are
always nolill'ed.

3. merge causes double semi's to be merged, if sufficient comspace remain.
on the line.

4. nomerge
which triple

causes double &emi's not to be merged. Thil is the manner in
semi's are handled. The rull pagewidth is used.

5. page causes the output of a lormfeed character.

6. f f causes grind to insert I orml eeds approximately
toplevel, never

every 60 lines.
Formfeeds are only inserted at the appearing within
S-expressions. This il the delault case.

'1. noff limits the insertion of form feeds to explicit calls or page.

8. ppage causes grind to preserve original paging or user's file.

9. nopred 1ct - This switch makes the grind dumber but faster. The
algorithm no longer considers as many alternatives ror grinding each
expression. For PROG-FORM and DEF -FORM. format 1 is no longer considered.
Similarly, FUNNY-FORMAT is never considered. Dumb mode is the deraull.
state.

10. pred itt - All or the formats discussed in the previous pages are
considered.

11. pagew1dth <pagewidth> <programspace> <gap> <commentspace>

12. programspace <value> - resets the value of the programspace. Enlargin,
programspace shrinks comspace.

13. comspace <value> resets the width used for single semi comments. The
tradeoff il again with the programspace.

14. topw1dth <value> - resets the width used for toplevel double semi
comments.

04/08/'14 16.5 Page 231

/

MACLISP Reference MaAllal

16.5.1 Ceffninl New Format.

The user may wish to ,0 beyonc;l the predefined formats discussed ill
section 16.2. To do this, grindCn can be used to define special grind
functions (SCl's) of his own design. The syntax is. as follows:

(grindfn (atom or list of atoms> (grind-format»
~

where the definition is either the name of a O-input procedure or the body
of a lambda expression.

Grindens are processed as follows: assume the atom Ll has a ser
associated with it. Then, whenever expressions of the Corm (LI _ LN) are
encountered, grind prints -(- and then transfers control to the definition
of the ser. Upon entering the SeF, the Collowin, Cree variables are
relevant:

L <--- (Ll "., LN)
N <--- CHRCT - remaining line width, Coli owing the -(-.

Note that these variable names are lower case in the actual code but are
printed in, upper case here for the· sake of increased legibility.

A SCF generally processes some initial segment of L, cdr'ing, L in the
process. Note that the seF must at least process Ll. Upon completion, if
L has been set to nil, grind simply prints the clOSing parenthesis -)-.
If, on the other hand, L has been rebound to some terminal se,ment of
itself,

L • (Li ... Lo)

then grind prints the remainder of L as the body of a tle/-/orm, i.e. the
elements of L are printed one under the other in either

a. the space remaining on the line
b. aligned under 12

or Co aligned under Ll.

16.5.2 Vocabulary

The follOWing vocabulary is useful for defining SGrs:

1. (remsem1) - expr - This Cunct-ion processes any comments that occur as
initial elements of L, cdr'ing L in the process.

2. (ppr1n S F) - expr - S is printed in the format specified by r where r
can be:

'line - equivalent to pr1nl
'b lock - block-form
'list - comment-form

Page U8 16.5.2 04/08/'14

± Ph in:

Formatted Printing of LISP Data

'code - applies pretty-printer to S.

ppr in should not be given ; comments as input. (remsem1) is ,enerally used
to avoid this. pprin does not print a space following S.

3. (form F) - expr - This function is designed to relieve the user 01 an
explicit concern for comments. It also freel him from printing spaces
between elements of L Its definition is:

(remsemi)
(pprin (car 1) f)
(and (setq 1 (cdr 1»

(princ '1 »
Its action is to first apply remsem1, removing any initial comments Irom L
It then pretty-prints (car L) in the specified format F. Finally it eelr'.
L and prints a space if there is still more to go.

4. (turpri)
used.

expr - A carriage return is printed. terpr 1 should not be

5. (indent-to N) - expr - Thi. function causes chrct to be set to N by
printing a carriage return if necessary (N > chrct) and spaces. Note that
chrct is the current width. This number is equal to the indentation
subtracted from the total line width. A common bug is to treat N as the
indentation.

6. (1 ndent H) - expr - M spaces are printed. An error results if M exceeds
the space remaining on the line.

7. (pop1) - expr - L is set to (cdr L). Then remsemi is applied. The net
result is to cdr L until its car i. not a comment.

8. a. (test 1) - lexpr - returns the first element or L that IS NOT a
comment.

b. (tes t 1 j) - returns the jth element of L that is not a comment.

-0-,

c. (test 1 j t) - returns the entire remainder of L beginning WITH the
jth element.

9. (semi? Ie) - expr - returns t only if K. is a semi-eolon comment.

16.5.3 Example.

Following are some examples of SGl's. Lambda's are ,round by default in
del-/orm. The user could achieve the same effect by defining the lollowing
seF:

04/08/74

1
2

(grindfn lambda (form 'line)
(form 'block»

16.5.3 Page 239

MACLISP Reference Manual

(form ' line) in line 1 prints lambda" and pops' L (form'b lock) in line 2
print.s the argument Hst of the lambda in 610cle-,orm and a,ain pop. L
Control i. then returned to "rind and the remainder 01 the lambda il
printed a. a body.

Another example mi,ht be where the user wiah. to grind all • esp ions
of the form:

(defprop <atom> <definition> <expr, fexpr, or macro))

as de fun's. This would be done by:

1 (gr1nd'n defprop
2 (cond «memq (testl 4) '(expr fexpr macro»
3 (setq 1
4 (append (list 'defun (testl"2»
5 (cond «eq (testl 4) 'expr)
6 nil)
7 «list (testl 4»»
8 (cdr (testl 3» »
9
10

(def-form»
«form 11ne» »

The memq of line 2 checks for whether the indicator il a function propert)'.
If so, L is redefined as the appropriate defun:

(cadr L) • function name
The cORd of line 5 puts fexpr/macro into the defun
(cdr (caddr L» is the argument list of the function
(cddr (caddr L) is the body of the function

and then ground in de,-,orm. II not, defprop is printed and control il
returned" to grind.

Finally, consider a function called emeans whose argumenta are propert)'
lists. It is to be ,round as follows:

(emeans
«1nd-ll) <grind prop-ll)

<ind-In} <grind prop-In})

, «1nd-ml) <grind prop-ml)

<1nd-mn) <grind prop-mn»)

Suppose the additional subtlety is desired that properties with indicator
foo are ground as blocks while all other properties are ,roand ordinaril),
as code. The followin, SeF achieves this format.

Page 240 16.5.3 04/08/14

iii ,4

(grindfn
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Formatted Printing of LISP Data

emeans (prog nil
(form l1ne)
(setq n (- n 4.»
(remsemi)

a' « lambda' (1)

(car 1»

(prog nil
(indent-to (addl n»
(prine '/()

b (remsem1)
(indent-to n)
(eond «eq (car 1) 'foo)

(form 'line)
(form 'block»

«form'11ne)
(form ' code) »

(and (testl) (go b»
(princ'/»
(remsemi»)

(cond «popl) (go a»»)

Line 1 prints cmeans. Line 2 establishes the indentation of the arguments
of cmeans. Line 3 processes any comments preceding the first argument.
Line 4a binds the special free variable L to the current argument of cmeans
for use by form and rem. Line 6 indents lor the current argument. Line 8
processes any initial comments embedded in the argument. The cond of line
10 forks depending on whether or not the indicator is "foo". In line 15,
testl returns nil if L contains no more indicator-property pairs. Line 16
prints the closing parenthesis. 1'1 processes any remaining comments. By
line 19, the current argument of cmeans has been ground. Hence, L is
popped. If there are no more arguments, popl returns nil and the SG F i.
done.

16.5.4 Grindmacrol

A grind macro dilfers from the above grindfunctionl in that the grind
package takes nothing for granted. It does not automatically print the
opening parenthesis, the balance 01 L and the closing parenthesis. If the
grindmacro function returns t, then the pretty-printer does nothing more on
L The assumption is that the grindmacro has done all the work. This
would be the case lor a grindmacro for quote:

(gr1ndmacro quote (prine 'I')
(ppr1n (cadr 1) 'code)
t)

Alternatively, if the grindmacro returns nil, the pretty-printer prints L
as though nothing had happened. This mode is useful for a grind macro used
to print "index" information as comments preceding the S-expression.

04/08/74 16.5.4 Page 241

MACLISP Reference Manual

GrindmacrOi can he defined limilarly to ,rindfnL

(gr 1ndmacro (atom or Ii,t of atoma> <,rind.format>)

Again the definition can he either the body of a lambda or a function of 0
input&.

'Page 242 16.5.4 '04/08/'14

::(:; ::1:': 1411## Iii ill Ii ill la::liIIlil:l;; II II II ilili : II;;;;;; ill II iii I !£ Ii:: I. ; ;

The LISP -Indexer-

17 - The LISP ·'ndexe,·

TO BE SUPPLIED

04/08/74 17. Page 243

MACLISP Reference Manual

Thil pa,e intentionally left Itl •• k.

Pare 244 1'1. 04/08/'14
I

i1iiililiiilil ailli II I ""I ; " * ii4 ; Ii; III ; 441 lUX 4

The LISP Editor

18 The LISP Editor

At present the editor exists only in the pdp-l0 implementation of lilp.
It ia quite likely that a different editor will be substituted in the near
future. You have been warned!

Evaluating (ed 1 t) enters edit mode, wherein commands are given similar
to teco commands, action is taken on some expression currently in the
working space, and a window around the pointer is printed out alter every
command execution. (edit t) enters edit mode but does not type out the
window after every command. (the p command will cause printing of the
window useful when at a teletype). In this chapter the "I" character
represents ~altmode>. Commands are:

Q<space> ex.it from the editor back to lisp.

Y<space>atom<space> causes the function property of atom to be brought in
for editing.

YP(space>atom(space>prop<space> yank in the prop property of the atom atom.

YP<space>atom(space>SI<space> yanks the whole property list of atom.

J (space> causel the pointer (which is printed out as 8.) to jump to the top
of the working expression.

S<space>el • en<space>ll<space> learches for an occurrence ol the
sequence ol S-expressions el . • . en and moves the pointer just
to the right if successful. Note that the lisp reader is used
for read-in by the editor, so that the atom <altmode><altmode>
must be followed by some atom terminating character (such aa
<space».

I<space>el • . • en<space>SS<space> inserts at the current pointer position
the sequence el . • • en

K.(space> kills the S-expression just to the right of the pointer, and saves
it as the value of the atom 18.

IV <space>exp inserts the value of the S-expression expo especially useful
when inserting Ituff deleted from some prior point.

EV <space>exp merely evaluates expo

Henceforward, <space> will not be ex.plicitly written out, but will be
understood to be the command termination character. The next group ol
commands admit an optional numeric argument (base 10.), preceeding the
command, to be interpreted as a replication number:

04/08/74 18. Page 245

MACLISP Re(erence Manual

F move lorward (rightwarda) put Obe token.
parenthesis Or an atom.

C same as F

-B same aa F

B move back (leltwards) over one token.

-c same .. B

-F same as B

R move rightwarda paat the next S-expreuion.

L move lelt over one S-expression.

A token is eithe, •

D move ·down· into the lirst non-atomic S-expreaioft to the ri,ht of tlte
pointer.

U move ·up· out of the S-expreuion containing the pointer.

K kill also admits a replication numher.

PW the argument is not really a replication number, hut rather the "window
.. idth· in numher of tokens.

The lollowing little used commands may poslibly be 01 some inte t:

(insert a virtual open parenthesis.

insert a virtual close parenthesis.

D(virtually delete an open parens

D) vir.tually delete a close parens

() restructure the working S-expreuion a~rdin. to the virt.al
parenth .. and deletions.

Variahles Used by the Editor

edit VARIABLE

'The value of the variable edit is a list 01 th~ properties considered
lunctional by the 'editor. It is used hy' the Y command.

18. 04/08/'14

iakili:: 11::':1 iii

,;

"'" ; Ii fI

S$$

edit

The LISP Editor

VARIABLE

The value 01 the atom <altmode><altmode><altmode> i, a push-down li ...
01 -edit curlon. -

Function used by the Editor

SUBR no args

Typing (ed 1 t) caUles the editor to be' entered.

04/08/74 18. Page 241

MACLISP Reference Manual

This . pale intentionally l,'t .lank.

18. 04/08/'14

Ii] Mil Ii 14 II;;;; lIP I ,0

Clolsary

Appendix A Glos •• ry
GLOSSARY

a-liat pointer
An a-list pointer il a number which can be pa5S~d 8S an extra argument
to eva 1 or app 1 y to indicate a particular binding context in wh ich
v.riables will be evaluated. It il similar to, but not the same ai, a
pdl pointer. An a-list pointer may also be n 11, which indicates the
global or "top level" binding context. The name "a-list pointer" is
of historical meaning only.

abbreviation
Abbreviation il a feature which allowl large listl to be truncated
w~en printed out. See section 13.'7.

alarmcloek
A facility by which the user can specify a function to be called after
a specified amount of time has elapsed. "Time" may be measured as
real elapsed time or as CPU run time.

altmode
A character used in the pdp-l0 implementation of MACLISP. Also called
elcape or prefix.

application
Application consis" of "applying" a function to a list of argumentl
and obt.aining t.he value of the function for those argument&.
Application is explained in detail in chapter 3. cf. evaluation.

argument
An argument is an object which is given to a (unction to operate on.
Part of the process of evaluating a form consistl of deriving
arguments from the Corm, which is just a list of items. For example,
when the form (foo 3 4) is evaluated the arguments' to the function foo
are 3 and 4.

arithmetic

array

MACLISP contains
integers of arbitrary
precision of about
discussion of these

functions to perform arithmetic operations on
size and on floating-point number. with •
eight decimal places. See chapter '1 for a
Cunctions.

An array is an ordered set of cells. Each cell may contain a LISP

04/08/74 Appendix A Page 249

I

/

ascii

MACLISP Reference Manual

object. The name of the array is also the name 01 an accessing
function which when given subscripts as arguments, returns the
contents of the cell selected by the subscripts. The function store
may be used to assign values to the cells or an array. LISP arrays
are similar to FORTRAN arrays except that the lubscripts begin at 0
inltead of 1, and they are more general because the occupants of the
leveral cellI need not all be 01 the lame type.

"alcii" is the American Standard Code for Information Interchange.
This is the character code used internally by MACLISP.

assignment
A value may be assigned to a variable in two ways: 1) by usin, the
function setq, which is similar to the assigri",ent ltatement in ~me
other languages, and by the related functions set and makunbound. Z)
by "binding," accomplished by lambda; prog, or do. Binding is a local
assignment. When control leaves the function which caused the
binding, the value of the variable is restored to what it was prior to
the binding.

association list

atom

An association list is a list of dotted pairs, olten used with the
fUnctions assoc, assq, sassoc, and sassq. For example, «a· • 4) (b
'00 1) (x . ~» associates a· with 4, b with ('00 1), and x with ~.

An atom is a LISP object which il usually thought of as indivisible.
Atoms come in several types: fixnums, flonums, bignums, strings, and
atomic symbols.

atomic symbol
An atomic symbol is a type of atom which has a pname, a value cen,
and a property lilt. A pname is a Itring 01 characterl which identify
the symbol. A value cell il a place, associated with an atom, in
which any LISP object may be stored. A property Hst is used to
remember named "properties" or "attributes" of an atomic symbol. The
value cell allows atomic symbols to be used al variables. The pname
and property list make atomic symbols useful al terminal symbols in
symbolic manipulation.

autoload
The autoload feature allows the definitionl of functions not initially
present in the environment to be loaded· in from a file automatically
when they are required. It is used' in the implementation 01 special
utility packages, such as trace, grind, and large application systems.

Page 250 Appendix A 04/08/74

ihiLi

I

/

Glolsary

back trace

base

A display of pending evaluations, which can be uled in debugging to
determine the chain 01 calls leading to the point of error. The
function baktrace prints this out.

The value of the variable base is the' radiI in which the output
routines represent numbers. It is initially 8.

bignum
A bignum is an integer of arbitrarily large magnitude. The arithmetic
functions plus, times, difference, etc. use bignums where necessary
and automatically manage the varying storage required. For example,
bignums make the computation of 1000 factorial easy to write. Because
of this power bignum arithmetic is noticeably slower than fiKnum
arithmetic.

binary program space
In the pdp-lO implementation of MACLISP, an area of memory in which
arrays and compiled functions are stored.

binding
A variable may be "bound" to a value by use of 1 ambda. prog. or do.
The value of the variable is set temporarily, but will be restored to
the previous value when the variable is "unbound." Unbinding happens
when the form that bound the variable is exited, whether normally, by
an error, or by throw.

binding context
The binding context consists of the values of all bound variables.
MACLISP includes a partial ability to manipulate binding contelts, the
a-list pointer facility, which allows binding contexts to be used as
long as control is nested somewhere within them.

Boolean operations
MACLISP includes a full set of Boolean operations on bits. The 36.
bits which make up a fixnum may be operated on by the boo 1 e function.
The "and," "or," and "not" operations on logical values are also
included, with t standing for true and nil for false. A variety of
predicate functions, which return a true or false (i.e. t or n11)
value, are included.

"

bound variable
A bound variable il an atomic symbol whose current value was assigned
to it by means of a binding. It is something like a local variable.

04/08/74 Appendix A Page 251

MACtISP Reference Manual

break level
A level of control at which computation has been 'emporarily 1 .. lpended
by a breakpoint (q.v.), allowin, t,,,in Irom the conlole. cl. top
level, where typein il aUowed Irom the conlole, .aule no computation
is in pro,ress.

breakpoint

car

A breakpoint is a point in a pro,ram where computation i, temporarily
luspended and control is returnecl to the conlole, enabling the uler to
explore the state of the computation. Most errors caule a breakpoint,
and the trace r~cility can be uled to insert breakpoints. A .. Ier can
make a breakpoint with the function break.

The first member of a dotted pair or a list. The name derives from
Contents of Address Relister on the IBM 1094, where LISP w.. fint
implemented.

catch tag

cdr

An object which il used to relate throw', and catch' ..

The second member or a dotted pair, or the -rest- of a lilt (i.e. all
members except the IirsL) The name 'derive. from Conten... of
Decrement Re,ister on the IBM 1094, where LISP was fi,.t implemented.

character
One of the 128. ASCII characten. On a typewriter a character il
represented by a printed mark or It, a f ormattin, operation luch as •
backspace. Internally a character may be represented as a number,
which is the ascii code for die character, or as a character object
(q.v.). Charactera are also used in p8ames aad in .trings.

character object
An atomic symbol which .ymbolizes a character. The nuU character is
symbolized by the atomic ,ymhol whose pname is of zero len,th; each
or the other character. is l)'IIIbolized by an atomic .,mbol whose pname
is that character.

character tranilation
A featqr. in the reader which allows characters to be translated to
other characters when they are read, in. For example, pdp-l0' MACLISP
ules thil feature to translate lower-case letters to QPper~

Page 252 ' Appendix A 04/08/14

li5£ Lam:: ;: ia: II Ii::: Ii q ; ,;"" ,

Glossary

charpos

The number of character positions from the left margin. Describes the
position of the typing element on a typewriter or the cursor on a
display. The notation is extended to files on any device.

chrct
This is an older version of charpos. It is the number of character
positions from the rig'" margin.

clOSing a file

Some operating systems require a "cleaning up" operation after all use
of a file has been completed. This is called clOSing the file. '. The
MACLISP garbage collector will usually do this automatically.

comment
Comments are descriptive text, not interpreted by the LISP system,
which are inserted into programs for the edification of a reader of
that program. In MACLISP there is a comment function, which does
nothing with its arguments and so may be used for comments, but a
better way to write comments is with the semicolon macro character,
which makes everything from it to the end of the line a comment. For
example,

(foo (bar x» :wh1zzo the framm1s.

compilation

cons

Compilation is a process which can be applied to a MACLISP function to
make it run faster. The cost of compilation is that debugging is made
more difficult. Generally debugging is done by interpretation (q.v.)

A cons, also called a dotted pair, is the basic unit for the
construction of data structures in MACLISP. A cons contains two
members, the car and the cdr, which can be any objects whatsoever.

control characters
Control characters are used to tell the MACLISP system to perform some
action immediately, no matter what it is currently doing. See section
12.3.

correctable errors
Most errors in MACLISP are correctable. This means that they cause a
uler interrupt, which either invokes a uler-specified function to
correct the error, or causes a breakpoint, which allows the user to
determine how to correct it, inform MACLISP of the correction, and
continue the interrupted computation.

04/08/74 Appendix A Page 253

MACLISP Referenee Manual

croSl reference
The ·index· paeka,e may be used to produce ·crou ref nce.· of LISP
pro,rams. See chapter 11.

data types
In MACLISP, objects come in .. ver.l t,pea, which are explained in
chapter 2.

declaration
Declarations are used to ,ive the compiler eatra information. not
needed by the in·ter,reter, which clarifies the pro,ramm.r's intent and
makes possible the compilation of more efficient code. The ' .. nctio ..
declare i. provided for this purpose.

debugging
Debugging is the usually long an. painful process of finding mistakes
(bugs) in programs and removing them. MACtISP provides a number 01
tools to allist in debu"in,. See erron, U1er interrupta, a.,k t~ace,
break·points, trace, the *r.et •• itch, and interpretation.

display slave
The "difple, Ilave" i. part of t.he Moby 1/0 lacility in MACLISP. When
the pdp-l0 implemeblation 01 MACtlSP ia tunni", on tIM MIT A.t. Lab
pdp l0, the display sla.e ma, be used to display teat and ,ra,hies..
Eatension of the disp)a" slave to other sit.es and implementations i,
anticipated.

do loop
A clear and concise notation for iterative al,orithms, provided hy the
do function in MACLISP.

dot notation
A notation in wh·ich a dotted pair is writt~n with p.rentheses and a
period. A dotted pair whose car ,.' a and who.. ctlr i. b i, written:

,(a- • b)

Any struct.ure of
necessarily clearly t

dotted list

doued pairs can be written unambi,uoullYt but not
this way:

«(a' . b) . e). (d • e»

A structure which would be a Ult ,except that it does not end in nil.
It is written in a hybrid of dot notation and list notation. For
example:

(a·. (b . e»

Page 254 Appendis A

II::":: 111::11111" i idA Ii Ii:: i #. 4 ; lilli'iiiill ';ij

•

Glossary

would be written:
(a' b • c)

dotted pair
See cons.

edit
The pdp-l0 implementation of LISP contains an S-expression editor,
described in chapter 18. The Multics implementation does not
presently have a built-in editor, however several editors, written in
LISP, exist.

end-of-file
When
some

an input lile il being read, eventually it comes to the end and
special action may have to be performed. See section 13.2.4.

endpagefn
A function, associated with each output file, which is invoked
whenever a new page of output is started.

environment

eoHn

eq

equal

A LISP environment consists of a complete set of objects, variable
values, function definitions, and files, which together make up an
application system or a user's current work. Section 12.8.3 describes
ways to save the current environment and later resume working with it.

A function, associated with each input file, which is invoked when an
attempt is made to read past the end of the data in the file.

eq is a function for comparing two objects, which returns t if they
are completely identical, nil if they are not. (In machine terms,
completely identical means they have the same storage address.) eq is
not defined for numbers and strings. cf. equa 1.

equa'l is a function for comparing two objects, which returns t if they
are similar, nil if they are not. Similar means approximately that
they would look the same if printed out. equal works for numbers and
strings: numbers are equal if their values are numerically equal,
strings are equal if they contain the same characters. Atomic symbols
are equa 1 if they are eq. Two dotted pairs are equa 1 if their can
are equa 1 and their cdrs are equa 1.

04/08/74 Appendix A Page 255

/
MACLISP Reference Manual I

errors
Handling 01 errors in MACLISP il very flexible, in recognition 01 the
lact that e .. rors are a major tool in debugging. See aection 12.4.

esclp'e
See altmode;.

evaluation

expr

The proe_s by which a lorm, which may be" almost' any' LISP object, il
made t~ produce a, value. Evaluation may inv~lve taking the values 01
v.riables and applying functions when, a lunction can il indicated by
a list a8 a form: Evaluation is explained in detail in chapter 3.

An expr i. an interpreted lunction which takes a specific number 01
evaluated ar,ument~

I'ail-act

fexpr

lile

A catch-aU categC)ry of errors, which cause a breakpoint to occur.
The atom Irg5 is bound to ulelul information about the error.

An int~tpreted I'unction which does not reteive ita argumentl
evaluated. (At' least it does not evaluate them in' the· re,ular way.)

A lequence or characters in the external world, and al80 an object
with in the lisp' environment which is uled to communicate with that
sequence 01' characters. See chapter 13.

file name der aults
There' is' a system' 01 defaults for rUe names which is intended to
increase the' convenience of users and, programmers., See chapter 13.

rile object
An object within the LISP environment which symbolizes a file in the
,outside world. See lile.

filtnum
A fixRum is a type of number, specifically an integer whose absolute
value is leas than some machine-dependent maximum. In the pdp-IO and
Multics implementations, this maximum is 2*:1:35-1. or, 34359138361.
Compiled code can perform fixnum arithmetic, very efficiently.

P_ge 256 Appendix A ' 04/08/1.

UJlliiiiiill i:: ,,:: iii I I Ii ii' iii 4iil 1,1 ¥ I Iii':: I J i

•

Glossary

flonum
A flonum is a type of number, specificalJy a 1I0ating-point number,
similar to REAL in FORTRAN, which has machine-dependent range and
preClSlon. In the Multics and pdp-tO implementations the range is
about 10**-38 to 10**38 and the precision is about 8 decimal digits.

flow of control

form

The logical sequence in which parts of a program are executed. This
includes decision, recursion, iteration, and function calling. In
LISP flow of control il generally linear except al othe~wise
specified, except that the use of functional composition causel' the
arguments to a function to be evaluated before the function. The
functions cond, and, or, do. prog. go, throw. and return are among
those functions used for their effect on the flow of control.

A form is an S-exprelsio'n which il intended to be evaluated. It may
be an atomic symbol, an atom such al a Itring or a number which
evaluates to itself, or . a list of forms, the first of which is a
functional form and the relt of which are argument forms.

formatting
The grind package may be used for the formatted printing of LISP
functions or data. See chapter 16.

free storage

free

fsubr

In the pdp-l0 implementation of MACLISP, free storage il that part or
memory set aside for various types of LISP data objects. In some
versions the size of this area must be specified when LISP is first
entered. The r ree storage area is managed by a garbage collection
algorithm.

variable
A free variable
determined by
Either it has
then called the

is an atomic symbol whose current value was not
binding within the currently evaluating function.
a global value or it was bound in some function which
current function.

An fsubr is a machine-language function which does not receive its
arguments evaluated. When a fexpr is compiled it becomes an fsubr. A
number of the builtin functions, such al cond, are flubrs.

funarg
A functional form, palled al an argument ulually, which, carriea with
it the binding context in which it il to be applied. See the

04/08/74 Appendix A Page 257

MACLISP Reference Manual

IIrfunct ion function.

function
A LISP object suitable ,for application. Given arguments, it performs
some arbitra,ry calculation and returns some LISP object as a value.
Functions are the fundamental ,control (and syntactic) structure in
LISP.

I unctional form
Any S-expression which can be used as a function. However, often the
term "functional form" i. reserved for non-atomic functions, luch as
lambda-expressionl, labels, or random forms which are evaluated to
prod uce a function.

garbage collection
The basic memory management scheme of all LISP implementations.
Objects ,are retained until there are no references to them, at which
time since the object can never again ,be ,used the storage it occupies
can be reclaimed. Reclamation (',arbage collection) occurs
periodically when the system decides it would be • ,ood thing to do.

\
gc-daemon \.

A uler inte~rupt which occurl after each
a uler-specifie~ fUnction to gain control and
,make decision1 based on the efficiency
program. \

I

,arbage collection, allowing
monitor the program or
of Itorage ula,e of the

gensym
An atomic symbol which hal a unique name or thelorm gOOOl. g0002,
etc. gens¥JII'ed atoms are not "interned" so they cannot be referenced
from the console. They are generated by the function gensym.

global variable

grind

ibase

A variable which does not currently have a local binding.
is whatever .aluehas been aSligned to it in the global
context, lor ,instance if it has been setq'ed at top level.,

Its value
binding

A package for printing LISP functions and list
indented form that is easy to read. See chapter 16.

structure in an

The value of the variable ibise is the radix in which numbers read by
the reader will be converted. It i. initially 8.

P'age 258 Appendix A 04/08/'14

hUiI" I Ii A a;;,;.;:":41 ; i

I
I

i .$1;

Glossary

index
A cross-referencing package for LISP programs. See chapte~ 17.

indicator
An atomic symbol (ulually) which seJ:'ves to label an item in a property
list.

input source
The file from which input is taken, when no source is specified.
Determined by the variable 1nr118.

integer
A type of number which can be represented in MACLISP by either a
fixnum or a bignum, depending on how large it is.

intern
When an atomic symbol is read in, it is placed in a special table
called the obarray; this is called interning the atomic symbol. The
obarray allows the same (according to the function eq) atomic symbol
to be used the next time the same pname is read.

interpretation

I/O

A method for executing LISP programs in which S-expressions are
processed by an interpreting program without preliminary translation.
This is the usual mode for execution of lisp. It is more efficient
than compilation (q.v.) for evaluating once-only expressions such a.
directly typed-in input, and for debugging.

Input/Output, or communication between LISP programs and the outside
world. See chapter 13.

iteration
See do loop.

label
1) see prog tag.
2) a type of functional form.

lambda
lambda-expressions are the most common type of (non-atomic) functional
form. A lambda-expression i. written as a list (1 ambda ((vars))
(body)).

04/08/74 Appendix A Page 259

MACLISP Reference Manual

lambda-variables

lexpr

linel

~ ariables bound in a lambda-expression are called lambda-variables.

An interpreted function which takes a variable number
arguments. An expr with an atomic s,mbol in
lambda-variables list is a lexpr.

The number of character positions per line.

of evaluated
place of the

linenum

LISP

liat

The line number, starting from 0 at the top of the page, of the
current input or output position in a file.

A language for list processing and manipulation of symbolic and
structured information. The MACLISP ·dialect of LISP is described in
this manual.

A data structure in LISP, composed of several conses. The car of each
cons is a member of the list, and the cdr- of each cons is the next
cons, except that the cdr of the last cons is nil, which marks the end
of the list.

list notation

load

A more concise form than dot notation for writing lists. For example,

(a . (b . (c . nil»)

is (abc) in the list notation.

Loading is the process of bringing function definitions, variable
values, atomic symbol propert.ies, etc. into the current LISP
environment from an outside source, such as a file. See the load
funct.ion.

looping
See do loop.

18ubr
An 18ubr is a machine-language function which takes a variable number

Page 260 Appendix A 04/08/74

,

fji:

Clossary

of evaluated arguments. A compiled lexpr is an lsubr.
the builtin ,functions, such as plus, are lsubrs.

A number of

macro
A type of function which produces as 'its value a form which is then
automatically evaluated to yield the final result of the {unction
call.

macro character
A macro character is a character which, when read, causes a function
to be invoked. Macro characters are used to implement complicated
special input syntax. The character is an example 01 a macro
character.

mapping
A type of iteration in which a function is applied to successive parta
of a list. See chapter 10.

moby I/O
A leature in lome versions of the pdp-lO implementation of MACLISP by
which various peculiar hardware devices may be manipulated by LISP
programs.

nameHst
A list of atomic symbols which specifies the name of a file in the
form of multiple components.

namestring

newio

A character string
implementation-depemlent

which specifies the name of a file in
format.

The I/O system described in chapter 13. Some LISPs s\ill use an older
I/O system which is less general, described in section 13.5.

newline

nil

The chaFacter or sequence of characters used in the host operating
system to indicclte the separation between lines.

An atomic symbol which indicates "Ialse," "delault," or "end 01 lisL"
nil is a constant since its value is initially nil and cannot be
changed.

04/08/74 Appendix A Page 261

MACLISP Reference Manual

non-local exits
Escaping from ,nested function calls without ,oing through the normal
f unction-return mechanism. See catch and throw.

Dumber
See fixnum, £lonum, ,bignum.

obarray
A ,table of interned atomic symbols, used by the ,reader to insure that
each time a pname is typed in it will relerto the same (according to
the function eq) atomic symbol.

object

octal

Any piece of data used by LISP. Programs are also objects.

The number system used by MACLISP, unless SOme other is specified.
,Fi,xnums and bignums are converted for .input and output in octal (base
8). Note that flon,ums are always in decimaL

opening a file
Creating a file object so that a file in the outside world is usable
by LISP.

output destinations

pagel

Those files to which output is sent if a destination is not explicitly
"Specified. The value of the variable outf11es is a list of the output
destinations.

Tho number of lines per page in a file.

pagenum

pdl

The current ,page number in a file, starting with 0 at the time it is
opened.

Push-down
internally

list or push-down stack. MACLISP
for binding and recursive evaluation.

uses 'several pdls

pdl overflow
Pdl overflow is what happens when a depth 01 recursion is used that is
more than the implementation can handle. It generally indicates an

Appendix A 04/08/'14

liilll liil; 4"; ; Ii ; ;

Glossary

error.

pdl pointer
A fixnum which indicates a particular point in a pdl. Pdl pointers
are used to denote particular pending evaluations in eva 1 frame and
related debugging functions.

pname
The pname, or print-name, of an atomic symbol is a sequence of
'characters which are typed in or out to denote that symbol.

predicate
A function which tests the truth or falsity of a perticular condition,
returning t if it is true or nil if it is false.

prinlength
A variable which can be set. to the maximum number 01 atoms in a list
that will be printed before the printer will give up and put
Operates under the control of (sstatus abbreviate).

prinlevel

prog

A variable which can be set to the maximum depth of nested lists which
will be printed before the printer will give up and put Operates
under the control of (sstatus abbreviate).

A prog is a LISP form based on the function
control structure of sequential statements
composed functions, to be used.

prog which allows a
and gotos, rather than

prog tag
An atom which tags or labels a particular statement in a prog so that
it can be referred to with the go function.

prog variable
A variable which is bound by a prog; each prog contains a list of prog
variables which are bound to nil when the prog is entered and can be
used as temporary variables within the prog.

property
Associated with each atomic symbol are properties, which can be any
LISP object. Each property is named by an "indicator," which is jUlt
an atomic symbol used to refer to that property. Thus we would refer
to the "fsubr property" of cond, which has the atom fsubr as indicator

04/08/74 Appendix A Page 263

MACLISP Reference Manual

and is an internal pointer to the machine code for cond.

property list

quote

The list of indicators and properties kept on the cdr 010 each atomic
symbol.

A special function which is used to pre'nnt the evaluation of
arguoments to other functions. (quote a-) e •• luates to the atomic
symbol a, while just ao evaluates to the value 01 L (quote ao) is
usually abbreviated ' L

read table
A table which specifies the lexical significance of each ascii
character. The read table is used by the function read to direct the
parsing of input. It can be altered by the user to implement special
extensions to LISP syntax or to allow use of the read lunction to
lexically analyze languages other than LISP. There can be more than
one read table; at any given time the one that is Qled il the one that
is the value of the atom read tab 1 e.

recursion
See recursion!

rplaca
Chang.ing the car of a previously-existing cons to lomething other than
what. it was originally created a.. All references to that coni will
find that ita car has been changed on the.... Thil ope~ation has hidden
dangers and should not be used lightly.

rplacd
Changing the cdr of a previously-existing cons. Similar to rplaca.

S-expression
Another name for "LISP object."

lingle character object
An atomic symbol whose pname is a single character is a "single
character object" if the synt.ax of that charact.er has been set 10 that
the character reads as a seperate atomic Iymbol even if it il not.
surrounded by' spaces 'or other' delimiters.

slashify
"Slashifying" a character is preceding it with a .Iash (I> charact.er.

Page 264 Appendix A 04/08/'14

1~-___ .. 't ____________________ :""jJj_IIIII:.i!i!liil!liii".!£l!",,:.: """ .. : "'; ;.;!11111;4"'4:IIII!W~;IIII; II!IO .,. .. ,,.;.:----: .(".:;: .. ;~-------.... -..,..

Glossary

This can be done to special characters such as space or parent.hesis to
indicate that they should be treated the same as alphabetic letters
and their special meanings should be ignored. Slashification is the
convention by which pnames may contain these special characters.

sorting
MACLISP includes a generalized sorting facility. An array or a list
of objects can be sorted if a function can be written to determine for
any pair of such objects, which is the lesser. See chapter 11.

special array cell

stack

Some MACLISP implementations use "special array cells" as values of
array properties. These cells are communicat.ion words which allow the
array to be addressed by both compiled and interpreted code.·

"stack" is synonymous with ·pell: q.v.

string

subr

One of the MACLISP data types is the string of characters, written
"foo".

A subr is a machine language function which takes a fixed number of
evaluated arguments. When an expr is compiled, it becomes a subr. A
number of the builtin functions, such as memq, are subrs.
OccaSionally the term subr is used to include all machine executable
functions, fsubrs and lsubrs as well as true subrs.

.ubr object
The value o(a subr, fsubr, or lsubr property. In some implementation
dependent way, a subr object tells lisp how to get to the machine
language (unction given its name (an atomic symbol with a subr, 1 sub,.,
or fsubr property.)

substitution
One S-expression may be substituted for another within a third by
using the functions subst and sub 115. See chapter 4.

switch
A "switch" is an atomic symbol whose value is by convention eit.her t
or nil, representing on and off respectively. There are a number of
switches which affect the operation of the lisp system.

04/08/74 Appendix A Page 265

MACLISP Reference Manual

symbol
See atomic .ymbol.

syntax

ta,

See read table.

An at.omic symbol which is used ror expressin, truth. Like nil, it is
a constant beeause its value it always itself.

See prog tag, cI.tch tag.

terminal

time

MACLISP is almost always used interactively by a user communicating
with it through a terminal. The phrase "the terminal" or "the
console" is used in this document to mean the particular terminal
which is controlling the computation under disculSion.

MACLISP keeps track of two types of time. "time" is elapsed time in
seconds, since lome arbitrary event such as the last time the computer
system was started. "runtime" il the number or microseConds of CPU
running time that. 'has been used.

top level

trace

The level of recursion which lisp is at when first entered. The user
at his terminal is in control. Lisp will accept typed-in rorms,
evaluat.e them, and print the results.

A package for, debugging LISP programs which allows control to be
seized whenever specified functions are called. Variou. operations to
be performed, such as displaying of argumentl, examination of
specified variables, and temporarily returning control to the console
via a breakpoinL See chapter 15.

truly worthless atom
An atomic symbol which is not referenced by any list structure, has no
value, . and has no properties. In most cases no one would notice if a
truly worthless atom was removed from the environment' and recreated
when someone later referred to its pname. Therefore MACLISP provides
the gctwa function which can be' used to direct the ,arbage collector
to remove truly worthless atoms, in the interests of savin, memory.

Page 166 Appendix A 04/08/14

liiii iiiili

...

'.

type

Glossary

See chapter 2 for a description of the builtin data types in MACLISP,
and a list of predicates for ty,pe-checking. Numeric type-conversions
can be done with the functions listed in section '7.1.3. Other type
conversions can be done with a host of functions listed mostly in
chapter 13. The user may, efficiently define new data types simply by
defining functions to manipulate them.

type checking
See section 2.1 for a list of predicates which return t if their
argument is of a specified data type. In the interpreter most
functions automatically check their arguments for correct type, but in
compiled code types are usually assumed to be correct, and if they are
not, the internal mechanisms which support MACLISP may be damaged.

unbound variable
A variable which has no value is called "unbound."
evaluate such a variable will cause an error.

Attempting to

user interrupts

uuo

The user jnterrupt facility allows a user-specified function to gain
control when a specified condition occurs, no matter what else may be
happening (except that response to a user interrupt may be delayed
while garbage collection takes place.) User interrupts are used for
error recovery, alarmclock timers, and real-time response to the entry
of certain "attention getting" characters from the terminal. See
section 12.4 for details.

For historical reasons, the term "uuo" is used to describe the direct
linkage between compiled or builtin functions which is used to
increase the efficiency of function calling. This linkage eliminates
the necessity to search property lists each time a function is called
when both. the caller and the callee are machine language (compiled or
builtin) functions. In the pdp-lO implementation of MACLISP, this
linkage is 'accomplished by a mechanism which includes the use of UUO
instructions, hence the term "uuo." Note that the function (sstatus
uuol1nks) can be used to break this linkage, for example so that
tracing may be used. Setting the variable nouuo non-n 11 prevents the
linkage from being established in the first place.

value cell
The value cell is that part of an atomic symbol in which its value is
kept. In some implementations the value cell is kept on a "value"
property, but in others it is kept in a "hidden" cell which is
associated with the atomic symbol and il not accessible except to let
or get the symbol's value.

04/08/'14 Appendix A Page 261

MACLISP Reference Manual

Appendix B • Incle. of Functions

* · · · · · · · · 6S LSUBRO or more ar,.
*8 . · 61 LSUBRO or more ar,1
*.rr.y • · · · · 80 LSUBR3 or more ar,.
*function · · · · · 18 FSUBR
*rearr.y · · · · · · · · 80 LSUBRl or ~ore ar,1
*rleL · · · · 109 SUBRI arg
~inelude, · · · · · · 182 FSUBR
+ · · · · 6S LSUBRO or more ar,1
+, . · · · · · · · · 61 LSUBRO or more args
- · 65 LSUBRO or more argl
-I . · · 67 LSUBRO or more args , · , · · · · · 65 LSUBRO or more ar,1 ,8 . · · · · · · 67 LSUBRO or more ar,.
1+ . · · · · · · · · 66 SUBRI ar,
1+' · · · · 68 SUBRI arg
1- • · · · · · 66 SUBRI arg
1-' 68 SUBRI arg
< · · · · 59 SUBR2 args
• · · · · 59 SUBR2 args
> · · · · 59 SUBR2 ar,s
abs · · · · · · · · 61 SUBRI arg
addt • 63 SUBRI arg
alarmclock 104- SUBR2 arg.
aUriles · · · · 154 SUBRI arg
alloc · · · · · 116 SUBRI arg
alphalessp · · · · · 52 SUBR2 arp
and · · · · · · · · 36 FSUBR
ap,pend • 30 LSUBRO or more ar,.
apply · · · · 11 LSUBR2 or 3 ar,1
.-rg · · · · · · · · 20 SUIRI ar,
args . · · · · 54 LSUBR1 or 2 ar,'
array · · · · · 80 FSUBR

I
arraydims · · · · · 80 SUBRI arg
ascii · · · · · · · · · 73 SUBRI arg
alloc · · · · · 24 SUBR2 ar,s
assq · · · · · · 25 SUBR2 argl
aLan . · 70 LSUBRl or 2 args
aLom. · · · · · · '. 9 SUBRI arg
baktrace 109 LSUBRO to 2 args ,;

baktracel 110 LSUBRO to 2 args
baktrace2 · · · · · III LSUBRO to 2 ar,s
bigp . · · · · · · · 57 SUBRI arg
bltarray · · · · 81 SUBR2 ar,s
boo Ie · · · · · · 72 LSUBR3 or more ar,.
boundp ,. · · · · 48 SUBRI arg
break 91 FSUBR
caaaar · · · · · · · 23 SUBRI ar,
caaadr 23 SUBRI arg
caaar · · · · · 23 SURRI arg
caad'ar · · · · · 23 SUBR1, at,

Page 268 Appendix B 04/08/'14

Ii;; Jri;;!if ,,; t ; J; ; ; rts¥ pc;;; •

Function Index

caaddr · 23 SUBRI arg
caadr · · · 23 SUBRI arg
caar . · 23 SUBRI arg
cadaar · · · · · · · · 23 SUBRI arg
cadadr • · · · · · 23, SUBRI arg
cadar · · · · · 23 SUBRI arg
caddar · · · 23 SUBRI arg
cadddr · · · · 23 SUBRI arg
caddr · · · 23 SUBRI arg
cadr . · · 23 SUBRI arg
car . · · · · 23 SUBRI arg
catch · · · 43 FSUBR
catenate · · · 76 LSUBRO or more args
cdaaar · · · · · 23 SUBRI arg
cdaadr 23 SUBRI arg
cdaar 23 SUBRI arg
cdadar · · · · · · · 23 SURRI arg
cdaddr . · · · · · · 23 SURRI arg
cdadr · · · · 23 SUBRI arg
cdar . · · 23 SUBRI arg
cddaar · · · · · · 23 SURRI arg
cddadr · · · · 23 SUBRI arg
cddar · · · · · · 23 SURRI arg
cdddar 23 SURRI arg
cddddr . · 23 SURRI arg
cdddr · · · · 23 SURRI arg
cddr . · · · · 23 SUBRI arg
cdr · · · 23 SURRI arg
charpos · · · · 166 LSURRI or 2 args
chrct 166 LSURRI or 2 args
clear-input · ~ · 154 SURRl arg
cline · · · · · 134 SURRI arg
close · · · · 143 SUBRI arg
comment · 19 FSUBR
cond . · · · · 36 FSUBR
cons 29 SUBR2 args
cos . · · · · · 70 SUBRI arg
crunit · · · · · · 156 FSURR
CtoI . 77 SURRI arg
cursorpos · · · 152 LSUBRO to 2 args
declare 182 FSUBR
defaultf · 141 SURRI arg
definedp · · 48 SUBRI arg
defprop · · · · · · 50 FSUBR
defsubr · · · · · · 188 LSUBR3 to 7 args
defun · · · · 54 FSUBR
delete · · · 33 LSUBR2 or 3 args
deletef 153 SUBRI arg
delq . · · 33 LSUBR2 or 3 args
difference · 63 LSURRI or more args
disaline · · · · 173 LSUBR3 to 5 args
disapoint · · · · 173 LSUBR2 or 3 args

04/08/74 Appendix B Page 269

MACLISPReference Manual

disblink 1'12 SUBR2args
dischange 173 SUBR3 arg.
discopy 1'12 SUBRl arg
discreate · . 1'11 LSUBRO or 2 ar,.
discribe 172 SUBRI arg
discuss .. · . . 174 LSUBR4 or 5 ar,.
diset 1'13 SUBR3 args
disflush 1'12 LSUBRO or more ar,.
disgobble 1'14 SUBRI arg
disgorge 1'14 SURRI arg
disini · · .. . · 1'11 LSUBRO or 1 ar,.
dislink 173 SUBR3 ar,.
disHst · · 1'13 LSUBRO or 1 ar,
dislocate 172 SURR3 args
dismark 172 SUBR2 args
dismotion · • • Ito •

174 SUBR4 args
display 172 SUBR2 args
do . · · · · · · . .. 39 FSUBR
edit · · · · 247 SUBRno ar,s
endpageCn · · · .. . · 167 LSUBRI or 2 arg.
eoffn 149 LSUBRI or 2 ar,s
eq. · · 23 SUBR2 args
equal 24 SUBR2 args
err 45 FSUBR
errframe .. · 109 SUBRI arg
error .. · 44 LSUBRO to 3 arg.
errprint · ... · 110 SUBRI arg
errset · 44 FSUBR
eva) · .. · · .. · . 17 LSUBRI or 2' args
evalframe · · · · 110 SUBRI ar,
exp · · · · · · . 69 SUBRI arg
explode 74- SUBRI arg
explodec · .. · .. 74- SUBRI arg
exploden 74- SUBRI arg
expt .. · · .. · · 64 SUBR2 args
fasload · · 188 FSUBR
Cilepos 154- LSUBRI or 2 ar,.
Cillarray · .. 81 SUBR2 args
fix · · · 61 SUBRI arg
fixp · · · · . · • .. 9 SURRI arg
flatc 74 SUBRI arg L
flatsize · · · 74 SUBRI arg
float .. · · .. 61 SUBRI arg
floatp · 9 SUBRI arg
force-output · · · . · 154- SUBRI arg
freturn 110 SURR2 args
funcaU • · 21 LSUBRI or more .r,.
{unction 18 FSUBR
gc • · · .. · .. 113 FSUBR
gcd · .. 64 SUBR2 arg.
gctwa · 113 FSUBR
,en.ym. · 53 LSUBRO or 1 ar,.

P.,e 210 Appendix B 04/08/'14

I]IIliiiI ill I iii iii: II I¢ II $I I i Iii , ;

Function Index

get 49 SUBR2 args
getchar · · · · · · · · 53 ' SUBR2 args
getl · · · · · 50 SUBR2 ar,s
get....,pname · · · · 77 SUBRI arg
go • · · 41 FSUBR
greaterp 59 LSUBR2 or more args
grind · · · · · 227 FSUBR
grindO 227 FSUBR
grinder · 227 FSUBR
haipart · · · 61 SUBR2 args
haulong · · · · 58 SUBRI arg
implode · · · · 73 SUBRI arg
index · · · · · 76 SUBR2 arg.
inpush · 147 SUBRI arg
intern · 53 SUBRI arg
ioc · · · · · 97 FSUBR

l iog 97 FSUBR · · ·
isqrt · · · · · 69 SUBRI arg
Itoe . · · · · 77 SUBRI arg
last · 26 SUBRI arg
length · 26 SUBRI. arg
lessp · · · · 59 LSUBR2 or more args
linel · · · · 165 LSUBRI or 2 args
linenum · · · · 166 LSUBRI or 2 args
list · · · · 29 LSUBRO or' more arg.
listarray · · · · · · 81 SUBRI arg
listen · · · 153 SUBRno args
listie, 20 SUBRI arg
load 188 SUBRI arg
log · · · · · 69 SUBRI arg
Ish · · · · · · · 72 SUBR2 args
macdmp. · · 132 LSUBRO or 1 args
make_at.om . · · · · · 77 SUBRI arg
maknam. · · · · · 73 SUBR1 arg
makoblist 158 SUBRI arg
makreadt.able · · · · · 163 SUBRI arg
mak unbound. · · · · 48 SUBRI arg
map · · 85 LSUBR2 or more args
mapc • · · · · · · · 85 18UBR2 or more args
mapcan. · · · · 86 LSUBRZ or more args

1 mapcar • · · · · · · · · 85 LSUBR2 or more arg
mapcon. · · · · · 86 LSUBR2 or more args
maplist · · 85 LSUBR2 or more args
max · · 60 LSUBRI or more args
member. · · · 26 SUBR2 args
memq. · · · · · · 27 SUBR2 args
merger. lSI LSUBR2 or more args
min · · · · · 60 LSUBRI or more args
minus · · · · · 61 SUBRI arg
minusp . 57 SUBRI arg
namelist 141 SUBRI arg
namestring · · · · 141 SUBRI arg

04/08/74 Appendix B Page 2'l1

'MACLISPReference Manual

nconc • • • • • • • • • 32 LSUBRO or more, ar,.
ncon. • • • • 29 SUBRI ar,
nointerrupt •••• 105 SUBRI ar,
not • • • 21 SUBRI ar,
nouuo • • • • • 183 SUBRI ar,
nre.ene • • • • • • 32 SUBRt ar,
null • • • • • • . 21 .: SUBRI ar,
numberp . • • ..9 SUBRI arg
oddp ., • • • • • . • • • 5'7 SUBRI ar,
opena • • • • • • 143 SUB R I arl
openi • • • • • • 142 SUBRI ar,
openo • • • • 142 SUBRl ar,
or • • • • •• • • • 36 FSUBR
pagebpor, • • • • 201 SUBRno arg.
pagel 166 LSUBRI or 2 ar,.
pagenum • 166 LSUBRI or 2 ar,.
pi UI • • • • • 63 LSUBRO or more ar,.)

plusp • • . . • • . 51 SUBRI arg
·prinl •••••.••• 146 LSUBRI or 2 ar,.
princ 14'7 LSUBRl or 2 81\,.
'print 146 LSUBRI or 2 ar,1
prog . • • • • • . • • . 38 FSUBR
prog2 19 LSUBR2 or more ar,.
progn . 20 LSUBRI or more .r,.
purcopy • • • . . 183 SUBRI arg
pur,ry • . . • • . • • . 201 SUBR3 ar,l
putprop • •• . 50 SUBR3 ar,s
quit . .• • . • • . 131 SUBRno ,ar,1
quote . • • • • • 11 FSUBR
quotient • • • 63 LSUBRI or more ar,.
random. . • • . .• 11 LSUBRO or 1 ar,
read • • 145 LSUBRO to 2 ar,.
readch • • • • • • • • • 145 LSUBRO to 2 ar,.
readline 14S LSUBRO to ~ .r,.
read lilt • 15 SUBRI arg
remainder •••• • 64 SUBR2 ar,.
remob • 53 SURRI arg
remprop • 51 SUBR2 arl'
remtrace • . 226 FS,UBR
rename. • 153 SUBR2 args
return • . 42 SUBRI ar,
reverse . . . 30 SUBRI arg
rot 12 SUBR2 args
rplaca • . • • • • 32 SUBR2 arls
rplacd . . 32 SUBR2 arls
runtime . • • • • 128 SUBRno arg.
samepnamep. • 52 SUBR2 args
sasloc . • • • 25 SUBR3 args
sassq . 25 SUBR3 args
save . 131 FSUBR
set • • • • • 4'7· SUBR2 arg.
aetar, 20 SUBR2 ar,a

Appendix B 04/08/"'4

""i::

Function Index

setq · · · · · · 4'1 FSUBR
setsyntax 162 SUBR3 args
shortnamestring 141 SURRI arg
signp 58 FSUBR
sin · · · · . '10 SUBRI arg
sleep · . . · 128 SUBRI arg
sort . · · 8'1 SUBR2 args
sort car · 88 SUBR2 args
sqrt · . · 69 SUBRI arB
sstatus 124 FSUBl\
status · · 120 FSUBR
store · · · · 80 FSUBR
stringlength · · · '16 SUBRI arg
stringp 10 SUBRI arg
suhl . · · · 64 SUBRI arg
sublis 31 SUBR2 arg'
subrp · · · · 10 SUBRI arB
subst . · 30 SUBR3 arBs.
substr . · · · · '16 LSUBR2 or 3 arBS
sxhash . · · · · 2'1 SUBRI arg

". 12'1 SUBRI arg sysp . .
terpri 14'1 LSUBRO or 1 args
throw · · · · 43 .FSUBR
time. 128 SUBRno args
times 63 LSUBRO or more arg.
trace · · · · 223 FSUBR
tyi 145 LSUBRO to 2 args
tyipeek · · · · · 146 LSUBRO or 1 arg
tyo · 14'1 LSUBRI or 2 args
typep · · 9 SUBRI arB
urile · · · 156 FSUBR
ukill 156 FSUBR
untrace · · · · . · · 226 FSUBR
uread · · · · 156 FSUBR
uwrit.e • · 156 FSUBR
valrel 134 LSUBRO or 1 ar,'
xcons · 29 SUBR2 arg.

• • 5'1 SUBRI arB zerop
\ . . · · · · · · · 66 SUBR2 arg'

04/08/'14 Appendix B Page 2'13

MACLISP Reference Manual

Appendix C • Index of Atomic Symboll

:I: . · · · · · · 90 outfile 102
:l:nopoint · · · · 164' outfit. 0 0 0 · 144
*pure " · .. · · 205 prinlength 0 · · · 161
*rset · · · · 126 prinle.el 161 I · · · · :t:rset-trap 106 pure • 0 · 0 204
SSt · · · · 241 random. · · · · · 9
8, . · · · · · · · · · 91 read ... f · · 102
? . · · · · · · · · 102 readtahle · · · · 161
alarmelock · · · · · · 104 runtime 104
arrayindex · · · · 102 I . . 121
autoload · · · · · · · · · 10'1 Itream • · · · · · · · · · 140
base · · · · · · · · 164 Itrin, · · · 9-
bignum. · · · · · 9 Iymbol • · · 9
bpend · · · · 204 time. · · · · · · 104
bporg · · · · · · · 204 tty . · · · · · · · 152
edit · · · 246 unbnd-vrhl · 106
errlilt .. · · · · · · · · 89 undl-fnctn · · · · 106
errset · · · · · · 105 unleen-,o·&8, · · · · 106 .~

rail-act · · · · · · · 105 uread 156
fixnum • · 9 uwrite · · · 151
lIonum • 0 0 9 value 0 0 · 122
funarg • 0 19 wrn,-no-ar,_ 0 106
ge-daemon' 105 wra,-type ... r. 106
ge-lossage 105 zunderflow · · · · 11
ibase · · · · · 168 1\8 • · . . 91
inCne · · · · 144 I\d 0 · · · · · .. · .. . 114
instack 144 I\q • · ,. · 0 144
list · · · · · · · · · · · 9 I\r • · · · · · 144
nouuo · · · · · · · 183 I\w. · · 144
obarra)' · · · · · · · · · 158

..

Pa,e 2'14 Appendix C 04/08/'14

M Ii ,i

, Concept Index

Appendix D - Concept Index

a-list pointer · · · · · · 16 fsubr · · · · · · 13
abbreviation · · · · · 166 (unarg · 13
alarmclock · · 104 funarg problem . · · · · 18
application · · · 13 function · · · 13
argument. · · · · 13 functional property 13
arithmetic · 57 garbage collection · · · 113
array · · · · · · · · 6 gc . · · 113
association list · 24 gensym. · · · · · 53
atom. · · · · · · · · 5 grinding · . · · · · · · · 227
atomic symbol · 6 1/0 . · · 135
autoload · · · · · · 107 indicator 49
back trace 109 input source 143
bignum. · · · · · · · · 5 iteration 35
binding · · · · 11 lab~l 13 , boolean operations · 72 lambda. · 13
break loop · · · · · · 91 lambda variable 13
breakpoint · · · · 91 lap · · · · 194
car · · · · · · · · · 7 lexpr 13
cdr · · · · · · 'I linel 165
character manipulation · · '13 list . · · · · · · 7
character object · 6 loading · · · 188
charpos 166 looping · · · 35
chrct · · · · 166 Isubr 13
closing a rile 143 macro · 13
comment · · · · · · 19 macro character 169
compilation · · · 17'1 mapping · 83
cons · · · · · 'I mathematical runctions 69
control characters · 92 moby I/O • · · · · 170
correctable errors 98 nameHst 138
debugging · · · 108 namestring · · · · 138
declarations · · · 184 nil · · 6
defining functions · 54 non-local exit 35
display slave · · · · 170 number. · · · · · · 5
dot · · · · · · · · · 'I obarray 158
dot.ted pair 'I object · 5 • editing 245 opening a rile 142 · · · · · · · · · · ·
end of rile · · · · 148 output destinations 143
eoCfn 148 pdl pointer 108
eq versus equal · · · 23 pname · · · · · 52
errors · · · 35 predicate 9
evaluation · · · · · · · · 12 pretty-printing 227
expr · · · · · · 13 property 49
fexpr · · · · · 13 property Ust 49
file 137 quote · · 17
file name defaults · · 150 readtahle · · 159
file-object · · · 137 recursion 35
fixnum . · · · 5 S-expression · · 5
flonum . · · 5 saving · 129
flow of control as sorting 8'1
form. . · · · 12 special array cell 7

04/08/74 Appendix D Page 215

splicin, macro. · · · · Istatus functions
status lunctioftl · · · · stora,e spaeet
strin, . · · · . "' · subr . . · · · . · · subr-object. · · · substit.ution · · · symbol. · · ·

Page 216'

MACLlSPReferenee Ma"ual

· 169 t. . . . · · 124 t.ime . . · · 120 t.op l~.el · · 114 tracin, · · · 6 t.ruly wort.hl ...
13 user interrupts

· 6 QlIO link · · 30 •• 1ue cell · · 6

cont.enh

· · · . . · · · · · · atom.

· · · . . ·

6
128
89
223
113
100
180 .,

04/08/1.

i
./

' .
..

..

. 1.

	Contents
	1 General Information
	2 Data
	3 The Basic Actions of LISP
	4 Functions for Manipulating List Structure
	5 Flow of Control
	6 Manipulating the Constituents of Atomic Symbols
	7 Functions on Numbers
	8 Character Manipulation
	9 Functions Concerning Arrays
	10 "Mapping" Functions
	11 Sorting Functions
	12 Functions for Controlling the Interpreter
	13 Input and Output
	14 Compilation
	15 The Trace Facility
	16 Formatted Printing of LISP Data
	17 The LISP "Indexer"
	18 The LISP Editor
	A Glossary
	B Index of Functions
	C Index of Atomic Symbols
	D Concept Index

