MACLISP
REFERENCE MANUAL

by
David A. Moon

Project MAC - M.1.T.
Cambridge, Massachusetts

REVISION @
April 1974

Revision 0
04/08/74

it

MACLISP REFERENCE MANUAL

by David A. Moon

c Copyright 1973, 1974, Massachusetts Institute of Technology
All rights reserved '

Acknowledgements

Ira Coldstein, David P. Reed, Guy L. Steele, Alex Sunguroff, and Jon L.
White contributed advice and wrote sections of this document. The runoff
text preparation system on Multics helped with the clerical work. The
document was printed on the MIT AL Lab’%s Xerox Graphic Printer.

Errors in this Manual

This is an initial version of the LISP Manual and all readers’ comments
are solicited. Please point out any errors, inaccuracies, inconsistencies,
obscure points, etc. that you may find.

The following communication paths may be used to communicate with the
authors:

Multics mail to Moon.AutoProg
ITS mail to MOON on the MathLab machine

ARPA Network mail to MOON @ MIT-ML
thost 198. decimal, 306 octal)

US. Mail to D. A. Moon, Rm. 505
545 Technology Square
Cambridge, Mass. 02139

R s N

L %)

Table of Contents

1. General Information 1
1.1 The MACLISP Language 1
1.2 Structure of the Manual 1
1.3 Notational Conventions 2
2. Data 5
21 Data Types 5
22 Predicates for Checking Types 9
3 The Basic Actions of LISP 11
3.1 Binding 11
32 Evaluation 12
33 Application 13
3.4 A-list Pointers . 16
3.5 Functions to Perform These Actions 17
4, Functions for Manipulating List Structure 23
) 4.1 Examining Existing List Structure 23
42 Creating New List Structure 29
4.3 Modifying Existing List Structure 32
' 5. Flow of Control 35
5.1 Conditionals 36
5.2 Iteration 38
- 8.3 Nonlocal Exits 43
5.4 Causing and Controlling Errors ' 44
6. Manipulating the Constituents of Atomic Symbols . 47
6.1 The Value Cell 47
6.2 The Property List 49
6.3 The Print-Name 52
6.4 Miscellaneous Functions 53
6.5 Defining Atomic Symbols as Functions 54
(A Functions on Numbers . 57
11 Number Predicates 57
12 Comparison 59
. 13) Conversion ' 61
1.4 Arithmetic 63
N 15 Exponentiation and Log Functions 69
1.6 Trigonometric Functions . 70
. 1.1 Random Functions : u
1.8 Logical Operations on Numbers ' 12
8. Character Manipulation 13
8.1 Character Objects 13
8.2 Functions on Strings 6
9. Functions Concerning Arrays 9

10. "Mapping” Functions 83

04/08/74 contents Page i

121

124
1241
1242
1243

1244

125 .
1251
12.5.2 .
1253
12.6

1261

12.6.2
12.63
12.6.4
12.6.5
12.7
12.8
12.8.1
12.8.2
12.8.3
12.8.4

13,
13.1
132
13.21
1322
1323
13.24
133
13.4
13.4.1
13.4.2
13:4.3
135
13.6
1361
13.6.2
13.7
13.8
13.9

14,

14.1
14.1.1

Page ii

1231
12‘332.,:3\' i

MACLISP Reference Manual

" Sorting Functions

Functions for Controlling the Interpreter
The Top Level Function
Break Points
Control Characters
List of Control Characters
Control-Character Functions
Errors and User Interrupts
The LISP Error System
User Interrupts .
User Interrupt Functions and Variables
Autoload
Debugging
Binding, Pdl Pointers, and the Evaluator
Functions for Debugging
An Example of Debugging in Maclisp
Storage Management
Garbage Collection
Spaces
Storage Control Functions
Dynamic Space and Pdl Expansion
Initial Allocation
The Functions status and sstatus
Miscellaneous: Functions
Time
Getting into LISP
Getting Out of LISP
Sending Commands to the Operating System

Input and Output

Basic 1/0

Files
Naming Files
Opening and Closing

Specifying the Source or Destination for I/O

Handling End of File
Applying Defaults to File Names
Requests to the Operating System

Manipulating the Terminal

File System Operations

Random Access to Files
The Old "Uread” I/O System
Advanced Use of the Reader

The Obarray

The Readtable
Control of Printer Formatting
Input Format Expected by (read)
"Moby I/0"

Compilation

Peculiarities of the Compiler
Variables

contents

117
118
120
127
128
129
131
134

135
135
131
139
142
143
148
150
152
152
153
154
155
158
158
159
164
168
170

177

178
178

04/08/74

14.1.2
14.1.3
14.1.4
14.1.5
14.2

143

14.4

14.5

14.5.1
14.5.2
14.5.3
14.5.4
14.5.5
14.5.6
14.5.7
14.5.8
14.6

15.

16.
16.1
16.2
16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.3
16.3.1
16.3.2
16.3.3
16.3.4
16.4
16.4.1
16.4.2
16.4.3
16.5
16.5.1
16.5.2
16.5.3
16.5.4

17.
18.
Appendix
Appendix

Appendix
Appendix

04/08/74

Onws>

Table of Contents

In-line Coding
Function Calling
Input to the Compiler
Functions Connected with the Compiler
Declarations
Running Compiled Functions
Running the Compiler
LAP on the pdp-10
The LAP Function
Valid LAP Code Forms
LAP Syllables
Functions and Variables Used by lap and faslap
Differences Between lap and faslap
Conventions for Functions in Lisp
Internal Routines for use by LAP Code
Routines For Use by Hand-Coded LAP
Internal Details of the Multics Implementation

The Trace Facility

Formatted Printing of LISP Data
Introduction .
Top Level Functions

grind and grind0 - fexprs

grindef -~ fexpr

Formatting

remgrind - fexpr

Functions, Atoms, and Properties Used by Grind
Predefined Formats

Standard Formats

Special Grindfns

Inverting Read Macros

System Packages
Comments

Single Semicolons

Double Semicolons

Triple Semicolons
Grind Control

Defining New Formats

Vocabulary

Examples

Grindmacros

The LISP "Indexer”
The LISP Editor
Glossary
Index of Functions

Index of Atomic Symbols
Concept Index

contents

Page

179
180
181
182
184
188
190
194
194
196
198
201
206
207
211
2117
221

223

227
227
228
228
228
229

249
268
274
275

iii

General Information

1 <« General Information
1.1 « The MACLISP Langusge

MACLISP is a dialect of LISP developed at M.LT.s Project MAC for use
in artificial intelligence research and related fields. MACLISP is
descended from the commonly-known LISP 1.5 dialect, however many features
of the language have been changed or added.

This document is intended both as a reference source for the language
and as a user’s guide to three implementations. These are, in
chronological order, the M.LT. Artificial Intelligence Lab’s
implementation on the DEC pdp-10 computer under their operating system ITS,
hereafter referred to as “"the ITS implementation,” Project MAC’s
implementation on Honeywell’s version of the Multics system, hereaflter
referred to as “the Multics implementation,” and the version that runs on
the DEC pdp-10 under DEC’s TOPS-10 operating system, hereafter called “the
DEC-10 implementation." The DEC-10 implementation also runs under TENEX by
means of a TOPS-10 emulator. Since the ITS and DEC-10 implementations are
closely related, they are sometimes referred to collectively as the pdp-10
implementation.

These implementations are mostly compatible; however, some
implementations have extra features designed to exploit peculiar features
of the system on which they run, and some implementations are ‘temporarily
missing some features. Most programs will work on any implementation,
although it is possible to write machine-dependent code if you try hard
enough.

1.2 = Structure of the Manual

This manual is not specifically designed for LISP wusers of any
particular level of ability, though it does make assumptions as to what an
“average” user of LISP will require of a manual. Since it is intended for
a general class of users it must satisfy some constraints of design in
order to be of benefit to a user of some particular ability. The manual
must provide as much information as a user might need, yet provide it in a
manner such that a less experienced user might still have access to some of
that information.

The general structuring of the manual is by meaning; things of similar
meaning will be found grouped together. Explanatory text and function
definitions are interspersed. Usually text will be found at the beginnings
of chapters, sections, or subsections with definitions following.

04/08/14 1.2 ' Page 1

MACLISP Reference Manual

Complexity tends to increase across each subdivision of the manual while
usefulness to a new user tends to decrease. The chapters in the - beginning
of the manual are of more use to a new user, the later ones contain either
more complex or less useful information. If a chapter is undivided then it
will become more complex toward the end. If a chapter is subdivided, then
each section or subsection again follows the same criteria.

Accessing information in the manual is dependant on both the user’s
level of ability and the purpose for which she or he is using the manual.
Though cover to cover reading is not recommended (though not excluded), it
is suggested that someone who has never previously seen this manual browse
through it, touching the beginning of each subdivision that is listed in
the Table of Contents, in order to familiarize himself or herself with the
material that it contains. To find an answer to some particular question,
one must use one of the provided access methods. Since the manual is
structured by meaning one can use the Table of Contents that is found at
the beginning of the manual, to find where information of a general class
will be found. Entry into the manual by meaning is also facilitated by the
Glossary and the Concept Index which are found at the end. Also at the end
of the wmanual is a Function Index which is probably most useful to a
regular and repeated user of the dialect, or to an experienced wuser of
another dialect, who wishes to find out the answer to a question about a
specific function. However since the manual is structured by meaning, it
is useful to examine other functions in the vicinity of the first, for
usefulness.

It is again suggested that a new reader of this manual should
familiarize himself or herself with its contents.

13 = Notational Conventions

There are some conventions of notation that must be mentioned at this
time, due to their bheing used in examples.

A combination of the characters, equal sign and greater then symbol,
"= , will be used in examples of LISP code to mean evaluation (that is
the application of the function, eval.).

All uses of the phrase, "LISP reader," unless further qualified, refer
to that part of the LISP system which does input, and not to some person.

The two characters, accent acute, " ° ", and semi-colon, " ; ", are
cxamples of what are called macro characters. Though the macro character
facility, which is defined in .the chapter on Input/Output, is not of
immediate interest to a new user of the dialect, these two come preset by
the LISP system and are useful. When the LISP reader encounters an accent
accute, it reads in the next S-expression and encloses it in a call to the
function, quote. That is:

Page 2 13 : 04/08/74

General Information

“some-atom
turng into:
(quote some-atom)
and
“(cons “a ‘b)
turngs into
(quote (cons (quote a) (quote b)))

The semi-colon is used as a commenting feature. When the LISP reader
encounters it, it discards the rest of that line of input.

All LISP examples in this manual are written according to the
conventions of the Multics implementation, which uses both upper and lower
case letters and spells the names of most system functions in lower case.
Some implementations of MACLISP only use upper case letters because they
run on systems which are not equipped with terminals capable of generating
and displaying the full ascii character set. However, these systems will
accept input in lower case and translate it to upper case.

04/08/74 13 Page 3

Page 4

MACLISP Reference Manual

This page intentionally left

i

1.3

blank.

04/08/74

Data

2 = Data
2.1 -~ Data Types

LISP works with pieces of data called “"objects” or "S-expressions.”
These can be simple "atomic™ objects or complex objects compounded out of
other objects. Functions, the basic units of a LISP program, are also
objects and may be manipulated as data.

Objects come in several types. All types are self-evident, that is it
is possible for the system to tell what type an object is just by looking
at it, 80 it is not necessary to declare the types of variables as in some
other languages. It should be noted that LISP represents objects as
pointers, so that any object will fit in the same cell, and the same object
may have several different usages -- for example the same identical object
may be a component of two different compound objects.

The data-types are divided into three broad classes: the atomic types,
the non-atomic types, and the composite types. Objects are divided into
the same three classes according to their type. Atomic objects are basic
units which cannot be broken down by ordinary chemical means, while
non-atomic objects are structures constructed out of other objects, and
composite objects are indivisible entities which have subcomponents which
may be extracted and modified but not removed.

The atomic data types are numbers, atomic symbols, strings, and
subr-objects. ‘

In LISP numbers can be represented by three types of atomic objects:
fixnums, flonums, and bignums. A fixnum is a fixed-point binary integer
whose range of values is limited by the size of a machine word. A flonum
is a floating-point number whose precision and range of values are
machine-dependent. A Dbignum is an arbitrary-precision integer. It is
impossible to get “overflow" in bignum arithmetic, as any finite integer
can be represented as a bignum. However, fixnum and flonum arithmetic is
faster than bignum arithmetic and bignums require more memory. Sometimes
the word "fixnum” is wused to include both fixnums and bignums; in this
manual, however, the word “fixnum” will never include bignums wunless that
is explicitly stated.

The external representations for numbers are as follows: a fixnum is
represented as a sequence of digits in a specified base, usually octal. A
trailing decimal point indicates a decimal base. A flonum is represented
as a set of digits containing an embedded or leading decimal point and/or a
trailing exponent. The exponent is introduced by an upper or lower case
“e". A bignum looks like a fixnum except that it has enough digits that it
will not fit within the range available to fixnums. Any number may be
preceded by a + or - sign. Some examples of fixnums are 4, -1232, -191.,
+46. An example of a bignum is 1565656565656565656565656565656565. Some

04/08/74 21 Page 5

MACLISP Reference Manual

examples -of flonums are: 4.0, .01, -6e5, 4.2e-l.

‘Another LISP ‘data .type .is the string. This ‘is .a 'sequence of 0 or more
characters. Strings .are used to hold messages to -be typed out and to
manipulate -text when the structure of the text is ‘not -appropriate for the
use -of “list ‘processing.” The external representation of a string is a
sequence of characters enclosed in double-quotes, eg. "foo". If a " is to
be included in :the string, .it is -written twice, e.g. "foo""bar" is foo"bar.

‘One -of .the ‘most .important LISP -data types is :the atomic symbol. In
fact, -the -word “atom" is often used to mean -just ‘atomic ‘symbols, and not
the other ‘atomic types. ‘An atomic symbol has :a name, -a value, and possibly
a list ‘of "properties”. The name is used to refer :to :the symbol in input
and output. The external representation of -an -atomic symbol is just its
name. This name is often called the "pname,” .or "print-name,” as it is a
sequence -of characters ‘that are printed out. For ‘example, .an atomic symbol
with @ pname of fo0 ‘would ibe represented :externally as fo00; internally as a
‘structure -containing the -value, the pname "foo", -and the properties.

There -are ‘two ‘special atomic symbols, t and nil. These always have
themselves as values :and ‘their values may 'not be changed. nil is used as a
"marker” is many contexts; it is essential to the . maintenance of data
structures such as lists. t is usually used ‘when an -antithesis to nil is
required for some purpose.

The value of an .atomic symbol is any object of any type. There are
functions .to set and .get the value of a symbol. Because atomic symbols
have values -associated ‘with them, they can be -used ‘as variables in programs
and .as "dummy -arguments” .in functions. It is also ‘possible for .an atomic
symbol to ‘have no wvalue, in which case it is said to be "undefined” or
"unbound.”

The property list of an .atomic symbol will be explained in section 6.2.
It is used for such ‘things as recording the fact that a particular atomic
symbol is -the name of .a function.

An -atomic -symbol with less than two characters in. its pname is often
called a “character object" and used to represent an 'ascii character. The
atomic -symbol with :a zero-length pname represents the ascii null character,
and . the symbols ‘with l-character pnames represent the .character which is
their pname. Functions which take character ‘objects .as input usually also
accept ‘a string one character long or a fixnum -equal to the ascii-code
value for the character. Character objects are always interned on the
obarray (see ‘section "6.3).

A "subr-object” is a special atomic data-type whose use is normally
hidden in ‘the implementation. A subr-object represents executable machine
code. The functions built into the LISP system are subr-objects, as are
user functions that ‘have been compiled. A subr-object cannot be named
directly, so each system function has an atomic symbol which serves as its
name. The symbol has the subr-object as a “property.”

One composite data type is the array. An array consists of a number of

Page 6 21 04/08/74

Data

cells, each of which may contain any LISP object. The cells of an array
are accessed by subscripting. An array may have one or more dimensions;
the upper limit on the number of dimensions is implementation-defined. An
array is always associated with an atomic symbol which is its name. This
atomic symbol has on its property list a property with the indicator array
and a value, called an array-object or sometimes a ‘“special array cell,"
which permits the implementation to access the array. See chapter 9 for an
explanation of how to create, use, and delete arrays.

Another composite data type is the file-object, which is described in
chapter 13.

The non-atomic data type is the "cons™ A cons is a structure
containing two components, called the “car” and the “edr” for historical
reasons. These two components may be any LISP object, even another cons
(in fact, they could even be the same cons) In this way complex
structures can be built wup out of simple conses. Internally a cons is
represented in a form similar to:

| | |
| car { cdr |
|]]

where the boxes represent cells of memory large enough to hold a pointer,
and "car” and "cdr” are two pointers to objects. The external
representation of a cons is the “dotted-pair" notation

(A . B) where A is the car and B is the cdr.

Another way to write the internal representation of a cons, which s
more convenient for large structures, is:

There are three LISP functions associated with conses. The function
cons combines its two arguments into a cons; (1 . 2) can be generated by
(cons 1 2). The function car returns the car of its argument, and the
function cdr returns the cdr of its argument.

One type of structure, built out of conses, that is used quite often, is
the "list." A list is a row of objects of arbitrary length. A list of 3
things 1, 2, and 3 is constructed as (cons 1 (cons 2 (cons 3 nil))); nil is
a special atom that is used to mark the end of a list. The structure of a
list can be diagrammed as:

04/08/74 21 Page 1

MACLISP Reference Manual

<=3 0 ====)> 0 ====> 0 ----> nil

] e o
NC——
W

From this it can be seen that the car of a list is its first element, that
the cdr of a list is the list of its elements other than the first, and
that the list of no elements is the same as nil.

This list of 1, 2, and 3 could be represented in the dot-notation used
for conses as (L . (2. (3 . nil))), however a more convenient notation
for the external representation of lists has been defined: the
"list-notation” (1 2 3). It is also possible to have a hybrid of the two
notations which is used for structures which are almost a list except that
they end in an atom other than nil. For example, (A . (B . (3 . D))) can
be represented as (A B C . D).

A list not containing any elements is perfectly legal and frequently

used. This zero-length list is the atom nil. It may be typed in as either
nil or ().

Page 8 21 04/08/74

Data

2.2 =~ Predicates for Checking Types

A predicate is a function which tests for some condition involving its
argument and returns t if that condition is true and nil if it is not true.
These predicates return t if their argument is of the type specified by the
name of the function, nil if it is of some other type. Note that the name
of most predicates ends in the letter p, by convention.

atom SUBR 1 arg
The atom predicate is nil if its argument is a' dotted-pair or a list, '

and t if it is any kind of atomic object such as a number, a character
string, or an atomic symbol.

. fixp SUBR 1 arg

The fixp predicate returns t if its argument is a fixnum or a bignum,
otherwise ntl.

floatp SUBR 1 arg
The floatp predicate returns t if its argument is a flonum, nil if it
is not.

numberp SUBR 1 arg

The numberp predicate returns t if its argument is a number, nil if it
is not.

typep SUBR 1 arg

typep is a general type-predicate. It returns an atomic symbol
describing the type of its argument, chosen from the list

(fixnum flonum bignum 1ist symbol string random)

symbol means atomic symbol. random is for all types that don’t fit in
any other category. Thus numberp could have been defined by:

04/08/74 2.2 Page 9

O

MACLISP Reference Manual

(defun numberp (x)
(and (memq (typep x) “(fixnum flonum bignum))
t)) ‘

--- These two functions only exist in the Multics implementation, ---

stringp SUBR 1 arg
The stringp predicate returns t if its argument is a string, otherwise
nil.

subrp SUBR 1 arg

The subrp predicate returns t if its argument is a “"subr” object, i.e.

a pointer to the machine code for a compiled or system function.
Example:

(subrp (get “car ’subr).) =t

Page 10 22 04/08/74

The Basic Actions of LISP

3 - The Basic Actions of LISP

NOTE: This chapter is obsolete, inaccurate, and misleading. It will
be re-written in the next revision of this document.

3.1 -~ Binding

In LISP “binding" occurs when a variable is needed which is temporary
and local to a particular form, for example a temporary variable in a prog
or a do, or a lambda variable (what some other languages call a “parameter”
or a "dummy variable.") All variables in (interpreted) LISP are implemented
as the value cells of atomic symbols; binding an atomic symbol to a local
value consists of saving the old value, which is a global or at least less
local variable, and then giving the variable its new, local value. The
saving of the old value is done in such a way that it will automatically be
restored when control leaves the form in question, whether normally or
through an error or a throw.

An unusual feature of the binding of LISP variables is that while the
form in which the variable is bound is being evaluated, even if it has
called upon some function and control is nested deep within it, that
variable maintains its local value, rather than its global value. This can
be both useful and a source of problem

04/08/74 3.1 Page 11

MACLISP Reference Manual
3.2 = Evaluation

Evaluation is a transformation which takes ofi¢ object, called a form,
and produces another, called the value of that form. Evaluation is used
internally by LISP in processing typed input and in (recursively)
evaluating portions of a form in the process of evaluating that form.
Evaluation is available for explicit use as the function eval

Evaluation is performed by the LISP interpreter, following the ryles set
forth below.

Numbers and strings always evaluate to themselves.

Atomic symbols evaluate to the ’value’ associated with them. It is
possible for an atomic symbol to have no value, in which case the process
of evaluation encounters an error, which is handled as described in section
12.4. The special atomic symbols t and nil always have themselves as
values, consequently they evaluate like numbers rather than like atomic
symbols.

Random objects, such as subr-objects, files, and array-objects evaluate
to something random; often themselves. Note that an array-object is
different from an atomic symbol which is the name of an array; such an
atomic symbol is evaluated the same as any other atomic symbol.

The evaluation of non-atomic forms is more complex. The evaluator
regards a non-dtomic form as a list, whose first element (car) is a
function and whose rertaining elements (cdr) are arguments. The value of
the form is the result of the function when applied to those arguments,
according to the “application” procedure described below.

Page 12 32 04/08/74

The Basic Actions of LISP
3.3 <« Application

"Application” is the procedure by which a function is invoked with
specified arguments to produce a value (and possibly side effects.)

The first step in application is an examination of the function. If it
is atomic, then it is required to be an atomic symbol. The atomic symbol’s
property list is searched for one of the following properties, called
“functional properties™:

expr, fexpr, macro, subr, f{subr, lsubr, array, autoload

If none of these is found, then the atomic symbol is evaluated and its
value is taken to be the function being called and application is restarted
at the beginning. :

If an array property is found, there is a subscripted reference to the
array. The arguments are evaluated from left to right, and wused as
subscripts to the array. Consequently they must be fixnums and there must
be the same number of them as there are dimensions in the array and they
must lie within the bounds of the array. The result is the contents of the
array cell specified by the subscripts.

If a subr, lsubr, or fsubr property is found, the value of the property
must be a subr-object. The subr-object represents a machine-code
subroutine, which may he a function built in to the interpreter, a compiled
LISP function, or a function written in some other language made known to
LISP by some facility such as defsubr or lap, depending on the
implementation. The evaluator calls this subroutine, giving it the
specified arguments, and the result is the LISP object returned by the
subroutine. If the subr-object was in an fsubr property, the subroutine is
called with one argument which is the cdr of the list being evaluated.
Thus the arguments are not evaluated. If it was a subr or lsubr property,
the arguments are evaluated from left to right before they are passed to
the subroutine. A subr requires a certain fixed number of arguments, but
an lsubr can take a variable number of arguments, between two bounds which
depend on the particular lsubr. (See the args function).

If a fexpr property is found, the value of the property must be a list
whose car is the atom lambda and whose cadr is a list of one or two atomic
symbols, referred to as lambda-variables. The cddr is a list of zero or
more objects, referred to as the body. The first lambda-variable is bound
to the cdr of the form being evaluated, iie. to the list of unevaluated
arguments. Of course, the body of the fexpr may evaluate the arguments
itself by explicitly using the function eval. = The second lambda-variable,
if present, is bound to an "a-list pointer” which represents the binding
state which existed just before the fexpr’s lambda-variables were bound.
After the lambda-variables have been bound, the body of the fexpr is
evaluated from left to right. The resuit is the value of the last form
evaluated.

If an expr property is found, there are three cases: 1) If the value
of the property is an atomic symbol, that atomic symbol is taken as the

04/08/74 33 Page 13

MACLISP Reference Manual

function and application is restarted from the beginning. 2) If the value
of the property is a list whose car is the atom lambda and whose cadr is a
list of .zero or more atomic ~symbols, called lambda-~variables, then the
evaluation is the invocation of an interpreted function called an ’expr.’
There must be the same number of arguments as lambda-variables. The
arguments are evaluated from left to right and then the lambda-variables
are bound to the values of the arguments. Next the body of the -expr is
evaluated in the same way as for a fexpr. 3) If the value of the property
is a list whose car is the atom lambda and whose cadr is an atomic symbol
other than nil, the evaluation is an invocation of an interpreted function
called a ‘lexpr, which is the interpreted version of lsubr. The arguments
are evaluated from left to right and saved in a place where the functions
arg and setarg can find them. Then the single lambda-variable is bound to
the number of arguments, and the body is evaluated in the same way as for
an expr.

If a macro property is found, its value must look like the value of a
fexpr property. The difference between a macro and a fexpr is twofold.
One, the first lambda~variable is bound to the whole form, instead of just
the cdr of the form (the list of arguments) Two, the object returned by
the macro is treated as a form and re-evaluated and .its value becomes the
result of the .application.

If an autoload property is found, the definition of the function is
loaded in from an external file and then .usged. See section 1244 for
details. '

If the function is not an atom, it is what .is sometimes called a
"functional form." Note that actually a functional form is anything that
can be applied, .including atoms. One kind of functional form is a list
whose car is the atomic symbol lambda. This is often called a “"lambda"
expression. It is applied exactly the same way as if the function had been
an atomic symbol which had an expr property whose value was the
lambda-expression. -

Another kind of functional form is a list of the atom label, an atomic
symbo], and a functional form. The atomic symbol is bound to the
functional form, and then the functional form is applied to the arguments.
This is used for strange things like recursive lambda-expressions.
Generally a permanently-defined function is better than a label.

The third kind of functional form is a “"funarg,” which can be produced
by the function {unction. The funarg contains an a-list pointer. The
binding context .is temporarily set to the previous context indicated by
this a-list pointer, and then the functional form contained in the funarg
is applied.

If the functional form does not fall into any of the above cases, th is
evaluated and the wvalue is then used as the function being applied and
application starts over again at the beginning.

In addition to the variety of application which has just been described,

Page 14 33 " 04/08/74

The Basic Actions of LISP

which is used internally by the evaluation procedure, there is a similar
but not identical application procedure available through the function
apply. The main difference is that the function and the arguments are
passed to apply seperately. They are not consed wup into a form.
Consequently macros are not accepted by this version of application. In
addition, the arguments to exprs, lexprs, subrs, lsubrs, arrays, ete. are
not evaluated, since the caller of apply is presumed to have prepared the
arguments.

04/08/74 33 Page 15

MACLISP Reference Manual
34 - A-list Pointers

There is a special type of object called an "a-list pointer” which can
be used to refer to a binding context. Due to the stack implementation of
MACLISP, an a-list pointer is only valid while control is nested within the
binding context it names. It is not possible to exit from within a binding
context but keep it around by keeping an a-list pointer to it.

An a-list pointer is either a negative fixnum or nil. nil means the
“global” or "top level” binding context. The negative fixnum is a special
value of implementation dependent meaning which should be obtained only
from one of the three following sources: the function evalframe, the
function errframe, or the second lambda-variable of a fexpr.

The only wuse for a-list pointers is to pass them to the functions eval
and apply to specify the binding context in which variables are to be
evaluated during that evaluation or application. A-list pointers are also
used internally by »function. When it generates a funarg, it puts in the
funarg the functional form it was given and an a-list pointer designating
the binding environment current at the time xfunction was called.

Page 16 ‘ 34 04/08/74

The Basic Actions of LISP
35 = Functions to Perform These Actions

eval LSUBR 1 or 2 args

(eval x) evaluates %, just as if it had been typed in at top level,
and returns the result. Note that since eval is an lsubr, its
argument actually will be evaluated twice.

(eval x y) evaluates x in the binding context specified by the a-list
pointer .

apply LSUBR 2 or 3 args

(apply f y) applies the function f to the list of arguments y. Unless
f is an fsubr or fexpr such as cond or and which evaluates its
arguments in a funny way, the arguments in the list y are used without
being evaluated.
Examples:

(setq £ “+) (apply f (1 2 3)) => 6

(setq f “-) (apply f (1 2 3)) => -4

(apply “cons “((+ 2 3) 4)) =

((+ 23).4) not (5. 4)

(apply f y p) works like apply with 2 arguments except that the
application is done in the binding environment specified by the
"a-list" pointer p. \

quote FSUBR T
quote returns its unevaluated argument. quote is wused to include
constants in a form. For convenience, the read function normally
converts any S-expression preceded by the apostrophe (acute accent)
character into the form (quote <S-expression>). For example, the
form:
(setq x “(some 1ist))
is converted by the reader to:
(setq x (quote (some list)))
which causes the variable x to be set to the constant list value shown

upon evaluation. For more information on input syntax, see the
detailed discussion in chapter 13.

04/08/74 35 Page 17

o

MACLISP Reference Manual

function FSUBR

function is like quote except that its argumient is a function. It is
used when passing a functional argurient.
Example:

(f00 x (function (lambda (p q)
(cond ((numberp q) p)
((numberp p) q)
;or any other random function in here
\ (t (cons p q)))))
y ;

calls f00 with 3 arguments, the second of which is the function
defined by the lambda-expression.

Note: quote and: function are completely equivalent in the interpreter.
The compiler sometimes needs function to tell it that a
lambda-expression i8 a function to be compiled rather than a constant.

function makes no attempt to solve the "funarg problem.” xfunction
should be used for this purpose.

xfunction FSUBR

The value of (xfunction f) is a "funarg” of the function f. A funarg
can. be used like a function. It has the additional property that it
contains an a-list pointer so that the values of variables are bound
the same during the application of the funarg as at the time it was
created, provided that the binding environment in which the funarg was
created still exists on the stack. Hence if foo is a function that
accepts a functional argument, such as

(defun foo (F)
(append one-value (f the-other-value)))

then
(foo (xfunction bar))
works, but
(foo (prog-(x y 2)
(do something)
(return (xfunction bar))))
does not if bar intends to reference the prog variables x, y, and 2z
xfunction is .intended to help solve the "funarg problem,” however it
only works in some easy cases. In particular, two general cases of

the funarg problem are not solved. funarg’s generated by xfunction
are intended for use as functional arguments, and cannot be returned

Page 18 3.5 04/08/74

The Basic Actions of LISP

as values of functional applications. Also, due to the
implementation, which essentially generates a copy of the binding
context at the time xfunction is applied, assignments to variables in
this copied binding context do not affect the values of those
variables in the binding context which exists at the time xfunction is

applied. Thus, the user should be careful in his use of xfunction to
make sure that his use does not exceed the limitations of the funarg
mechanism.

A funarg has the form

(funarg <function> . <pdl-ptr>)

comment FSUBR
N comment ignores its arguments and returns the atomic symbol comment.
Example:

- (defun foo (x)
(cond ({(null x) 0)
(t (comment x has something in it)

(1+ (foo (cdr x))))))

Usually it is preferable to comment code wusing the semicolon-macro
feature of the standard input syntax. This allows the user to add
comments to his code which are ignored by the input package..

Example:

(defun foo (x)
(cond ({null x) 0)
(t (1+ (foo (cdr x)))) - ;x has something in it
))

. prog2 LSUBR 2 or more args

prog2 evaluates its arguments from left to right, like any lsubr, and
returns the value of its second argument.
Examples:

(prog2 (do-this) (do-that)) ;get 2 things evaluated

(setq x (prog2 nil y
(setq y x))) ;paraliel assignment.
;exchanges x and y.

04/08/74 35 Page 19

L

progn

MACLISP Reference Manual

LSUBR 1 or more args

progn essentially evaluates all of its arguments and returns the value
of the last one. Although lambda-expressions, prog-forms, do-forms,
cond-forms, and i{og-forms all wuse progn implicitly, there are
occasions upon which one needs to evaluate a number of forms for
side-effects when not in these forms. progn serves this purpose.
Example:

(progn (setq a 1) (cons a “(stuff))) => (1 stuff)

arg SUBR 1 arg
(arg nil), when evaluated inside a lexpr, gives the number of
arguments supplied to that lexpr.
(arg i), when evaluated inside a lexpr, gives the value of the i'th
argument to the lexpr. i must be a fixnum in this case. It is an
error if i is less than 1 or greater than the number of arguments
supplied to the lexpr.
Example:
(defun foo nargs ; define a lexpr foo.
{print (arg nil)) ; number of args supplied.
(print (arg 2)) ; print the second argument.
(+« (arg 1) (arg 3))) ; return the sum of the
; 1st and 3rd args.
setarg SUBR 2 args
setarg is used only inside a lexpr. (setarg i x) sets the lexpr’s
i’'th argument to ». i must be greater than zero and not greater than
the number of arguments passed to the lexpr. After (setarg i x) has
been done, (arg i) will return =.
1istify SUBR 1 arg
listify is a function which efficiently manufactures a list of n of
the arguments of a lexpr. With a positive argument n, it returns a
list of the first n arguments of the lexpr. With a negative argment
m, it vreturns a list of the last (abs n») arguments of the lexpr.
Basically, it works as if defined as follows:
Page 20 35 04/08/74

The Basic Actions of LISP

(defun listify (n)

(cond ((minusp n)
((tl1st1fy (arg n11) (+ (arg n11) n 1)))
t
(x1istify n 1))))

(defun x1istify (n m) ; auxiliary function.
(do ((1 n (1- 1))
(1 ni) (cons (arg 1) 1)))
((<1m)1)))

funcall LSUBR 1 or more args
. (funcall f al a2 .. an) calls the function f with the arguments al,
a2, .., an It is similar to apply except that the separate

arguments are given to funcall, rather than a list of arguments. If f
) is an expr, a lexpr, a subr, or an lsubr, the arguments are not
re-evaluated. If f is a fexpr or an fsubr there must be exactly one

argument. f may not be a macro.

Example:
(setq cons “plus)

(cons 1 2) => (1 . 2)
(funcall cons 1 2) => 3

04/08/74 35 Page 21

:

MACLISP Reference Manual

This page intentionally left blank.

Page 22 35 . 04/08/74

Functions for Manipulating List Structure

4 <~ Functions for Manipulating List Structure

4.1 - Examining Existing List Structure

car SUBR 1 arg

Takes the first part of a cons.
Examples:
(car “(a b)) = a
(car “(1 . 2)) = 1

cdr ' SUBR 1 arg

Takes the second part of a cons.
Example: (cdr “(a b ¢)) => (b c)
Note: the cdr of an atomic symbol is its property list.

c...r SUBR 1 arg

All the compositions of up to four car’s and cdr’s are defined as
functions in their own right. The names begin with ¢ and end with r,
and in between is a sequence of a’s and d’s corresponding to the
composition performed by the function.

For example,
(cddadr x) = (cdr (cdr (car (cdr x))))

Some of the most commonly used ones are: cadr, which gets the second
element of a list. caddr, which gets the third element of a list.
cadddr, which gets the fourth element of a list.

eq SUBR 2 args

eq is a predicate. (eq % y) is t if ¥ and y are exactly the same
object, nil otherwise. (cf. equal). It should be noted that things
that print the same are not necessarily eq to each other. In
particular, numbers with the same value need not bhe eq, and two
similar lists are usually not eq. In general, two atomic symbols with
the same print-name are eq, but it is possible with maknam or variable
obarrays to generate symbols which have the same print-name but are
not eq.

04/08/74 4.1 Page 23

MACLISP Reference Manual

Examples:
(eq “a 7b) => nil
(eq “a “a) => t
(eq “¢a b) “(a b)) => nil (usually)
(setg x “(a b)) {(eq x x) => t since it is
the same “(a b) in both arguments.
(eq .1 1) => t or nil depending on the implementation.
equal SUBR 2 args

The equal predicate returns t if its arguments are similar objects.
(cf. eq) Two numbers are equal if they have the same value (a flonum
is never equal to a fixnum though). Two strings are equal if they
have the same length, and the contents are the same. All other atomic
objects are equal if and only if they are eq For dotted pairs and
lists, equal is defined recursively as the two car’s being equal and
the two cdr’s being equal. Thus equal could have been defined by:

(defun equal {(x y)
(or (eq x y)
(and (equal (car x) (car y))
(equal (cdr x) (cdr y))))

As a consequence of this definition, it may be seen that equal need
not terminate when .applied to looped list structure. In addition, eq
.always implies equal. An intuitive definition of equal (which is not
quite -correct) is that two objects are equal if they look the same
when printed out.

assoc SUBR 2 args

(assoc x y) looks up x in the association list (list of dotted pairs)
y. The value is the first dotted pair whose car is equal to x, or nil
if there is none such.
Examples:
(assoc ‘r “((a .b) (c.d)(r.x)(s.y){r.2)))
= {r . x)
(assoc “fooo “((foo . bar) (zoo . goo))) => nil

It is okay to rplacd the result of assoc as long as it is not nil.
Example:

(setq values “((x . 100) (y . 200) (z . 50)))

(assoc ‘y values) => (y . 200)

{rplacd (assoc "y values) .201)

(assoc ‘y values) => (y . 201) now

(One should always be careful about using rplacd however)

Page 24 41 04/08/74

Functions for Manipulating List. Structure

assoc could have been defined by:

(defun assoc (x y)
(cond ((null y) nil)
((equal x (caar y)) (car y))
((assoc x (cdr y)))))

assqg SUBR 2 args

assq is like assoc except that the comparison uses eq instead of
equal. assq could have been defined by:

(defun assq (x y)
(cond ((null y) nil)
((eq x (caar y)) (car y))
((assq x (cdr y)))))

sassoc SUBR 3 args

(sassoc x y z) is like (assoc x y) except that if x is not found in ¥,
instead of returning nil sassoc calls the function 2z with no
arguments. sassoc could have been defined by:

(defun sassoc (x y 2)
(or (assoc x y)
(apply 2z nil)))

sassq SUBR 3 args

(sassq * y z) is like (assq » y) except that if x is not found in y,
instead of returning nil sassq calls the function z with no arguments.
sassq could have been defined by:

(defun sassq (x y 2)

(or (assq x ¥y)
(apply z nil)))

04/08/74 4.1 Page 25

last

MACLISP Reference Manual

SUBR 1 arg

last returns the last dotted pair of the list which is its argument.
Example:

(setq x “(a b ¢ d))

(last x) = (d)

(rplacd (last x) ‘(e f))

x=>(abcdef)

1ast could have been defined by:

(defun last (x)
{cond ({null x) x)
({(null (cdr x)) x)
((1ast (cdr x)))))

In some implementations, the null check above may be replaced by an
atom check, which will catch dotted lists. Code which depends on this
fact should not be written though, because all implementations are
subject to change on this point.

length SUBR 1 arg

length returns the length of its argument, which must be a list. The
length of a list is the number of top-level conses in it.
Examples:

(length nil) => 0

(length “(a b c d)) => 4

(length “(a (b c) d)) => 3

length could have been defined by:
(defun length (x)
{cond ((null x) 0) }
((1+ (length (cdr x))))))

The warning about dotted lists given wunder last applies also to
length.

member : SUBR 2 args

(member =z y) returns nil if x is not a member of the list y.
Otherwise, it returns the portion of y beginning with the first
occurrence of =% The comparison is made by equal. y is searched on
the top level only.

Page 26 41 04/08/74

memgq

Functions for Manipulating List Structure

Example:

(member “x ‘(1 2 3 4)) => nil
(member ‘x “(a(xy)cxdexf)) =>(xdex f)

Note that the value returned by member is eq to the portion of the
list beginning with % Thus rplaca on the result of member may be
used, if you first check to make sure member did not return nil.
eg. (rplaca (or (member x 2)
(throw nil “woops))
y)

member could have been defined by:

(defun member (x y)
(cond ((null y) nil)
((equal x (car y)) y) ((member x (cdr y)))))

SUBR 2 args

memq is like member, except eq is used for the comparison, instead of
equal. memq could have been defined by:

(defun memq (x y)
(cond ((null y) nil)
((eq x (car y)) y) ((memq x (cdr y)))))

not SUBR 1 arg

not returns t if its argument is nil, otherwise it returns nil.
null SUBR 1 arg

This is the same as not.
sxhash SUBR 1 arg

sxhash computes a hash code of an S-expression, and returns it as a
fixnum which may be positive or negativee. A property of sxhash is
that (equal x y) implies (= (sxhash x) (sxhash y)). The number
returned by sxhash is some possibly large number in the range allowed
by fixnums. It is guaranteed that:

1) sxhash for an atomic symbol will always be positive.

2) sxhash of any particular expression will be constant in a
particular implementation for all time

04/08/74 4.1 Page 21

MACLISP Roference Manual

3) Two different implementations may hash the same
different values.

4) sxhash of any object of type random will be szero.
§) sxhash of a fixnum will = that fixnum.

Page 28 41

expression

into

04/08/74

Functions for Manipulating List Structure

42 - Creating New List Structure

cons SUBR 2 args

This is a primitive function to construct a new dotted pair whose
car is the first argument to cons, and whose cdr is the second
argument to cons. Thus the following identities hold:

(eq (car (cons x y)) x) => t
(eq (cdr (cons x y)) y) => t

Examples:
(cons “a “b) => (a . b)
(cons “a (cons ‘b (cons ‘¢ ni1))) => (a b ¢)
. (cons ‘a“(bcdef)) =>(abcdef)

ncons SUBR 1 arg

(ncons x) = (cons x nil) = (1ist x)

XCons SUBR 2 args

xcons ("exchange cons”) is like cons except that the order of
arguments is reversed.
Example:

(xcons “a “b) => (b . a)

xcons could have been defined by: (defun xcons (x y) (cons y x))

Tist LSUBR 0 or more args

11st constructs and returns a list of the values of its arguments.
Example:

(115t 3 4 “a (car “(b . c)) (+ 6 -2)) => (34 a b 4)

04/08/74 42 Page 29

MACLISP Reference Manual

append LSUBR 0 or more args

The arguments to append are lists. The result is a list which is the
concatenation of the arguments. The arguments are not changed (cf.
nconc). For example,

(append “(abc) “(def)nil “(g)) =>(abcdefg)

A version of append which only accepts two arguments could have been
defined by: '

(defun append (x y)
(cond ((null x) y)
((cons (car x) (append (cdr x) y)))))

The generalization to any number of arguments could then be made using
a lexpr:

(defun full-append expr argcount
(do ((1 (1- argcount) (1- 1))

(val (arg argcount) (append (arg i) val)))
((zerop 1) val)))

reverse SUBR 1 arg
Given a list as argument, reverse creates a new list whose elements
are the eclements of its argument taken in reverse order. reverse does
not modify its argument, unlike nreverse which is faster but does
modify its argument. Example:
(reverse “(a b cd)) => (d c b a)
reverse could have been defined by:

{defun reverse (x)

(do ((1 x (cdr 1)) ; scan down argument,
(r n1
(cons (car 1) r))) ;putting each element into
((null 1) r))) ;1ist until no more elements.
subst SUBR 3 args

(subst = y z) substitutes x for all occurrences of y in %, and returns
the modified =z. The original ¥ is unchanged, as subst recursively
copies all of z replacing elements eq to y as it goes. If » and y are
nil, = is completely copied, which is a convenient way to copy
arbitrary list structure. '

Page 30 ‘ 4.2 04/08/74

Functions for Manipulating List Structure

Example:
(subst ‘Tempest “Hurricane
“(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined by:

(defun subst (x y 2)
(cond {(eq y z) x) ;if item eq to y, replace.
{(atom z) 2) ;if no substructure, return arg.
{(cons (subst x y (car z))
(subst x y (cdr 2))))))

sublis SUBR 2 args

sublis makes substitutions for atomic symbols in an S-expression. The
first argument to sublis is a list of dotted pairs, The second
argument is an S-expression. The return value is the S-expression
with atoms that are the car of a dotted pair replaced by the cdr of
that dotted pair. The argument is not modified - new conses are
created where necessary and only where necessary, so the newly created
structure shares as much of its substructure as possible with the old.
For example, if no successful substitutions are made, the result is eq
to the second argument.

Example:

(sublis “((x . 100) (z . zprime))
‘(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

04/08/74 4.2 Page 31

MACLISP Reference Manual

43 - Modifying Existing List Structure

rplaca) SUBR 2 args

(rplaca x y) changes the car of ¥ to y and returns (the modified) x.
Example: .

(setq 9 “(a b c))
(rplaca (cdr g) “d) => (d ¢)
Now g => (a d ¢)

rplacd ' SUBR 2 args

{rplacd = y) changes the cdr of to y and returns (the modified) =x.
Example:
(setq x “(a b c))
(rplacd x “d) => (a . d)
.Now x => (a . d)

nconc LSUBR 0 or more args

nconc takes lists as arguments. It vreturns a list which is the
arguments concatenated together. The arguments are changed, rather
than copied. (cf. append)

Example:.

(nconc “(abc)’(def)) =>(abcdef)

Note that the constant (a b c) has now been changed to (a b c d e F).
If this form is evaluated again, it will yield (a b c d e f d e f).

nconc could have been defined by:

(defun nconc (x y) for simplicity, this definition
(cond ((null x) y) ;only works for 2 arguments.
(t

(rplacd (last x) y);hook y onto x
x))) ;and return the modified x.

nreverse SUBR 1 arg

nreverse reverses its argument, which should be a list. The argument

is destroyed by rplacd’s all through the list (cf. reverse).
Example:

(nreverse ’(a‘ bc)) =>(chb a)

Page 32 43 04/08/74

Functions for Manipulating List Structure

nreverse could have been defined by:

(defun nreverse (x)
{(cond ((null x) nil)
((xnrev x nil))))

(defun xnrev (x y) ;auxiliary function
(cond ((null (cdr x)) (rplacd x y))
((xnrev (cdr x) (rplacd x y)))))
+: this last call depends on order of argument evaluation.

delete LSUBR 2 or 3 args

(delete x y) returns the list ¥ with all top-level occurrences of =x
removed. equal is wused for the comparison. The argument y s
actually modified (rplacd’ed) when instances of x are spliced out.

(delete x y n) is like (delete x y) except only the first n instances
of x are deleted. n is allowed to be zero. If n is greater than the
number of occurences of x in the list, all occurrences of % in the
list will be ‘deleted.

Example: (delete “a “(b ac (ab)dae)) =>(bc(ab)de)

delete could have been defined by:

(defun delete nargs ; lexpr definition for 2 or 3 args
(xdelete (arg 1) ; pass along arguments..
(arg 2)

(cond ((= nargs 3) (arg 3))
(123456789.)))) ; infinity

(defun xdelete (x y n) ;auxiliary function
(cond ((or (null y) (zerop n)) y)
((equal x (car y)) (xdelete x
(cdr y)
(1- n)))
({(rplacd y (xdelete x (cdr y) n)))))

delq LSUBR 2 or 3 args

delq is the same as delete except that eq is used for the corﬁparison
instead of equal. See delete,

04/08/74 4.3 Page 33

MACLISP Reference Manual

This page intentionally left blank.

Page 34 43 ' 04/08/74

Flow of Control

S <« Flow of Control

MACLISP provides a variety of structures for flow of control.
Conditionals allow control to branch depending on the value of a predicate.

and and or are basically one-arm conditionals, while cond is a generalized
multi-armed conditional.

Recursion consists of doing part of the work that is to be done oneself,
and handing off the rest to someone else to take care of, when that someone
else happens to be (another invocation of) oneself.

Iteration is a control structure present in most languages. It is
similar to recursion but sometimes more useful and sometimes less useful.
MACLISP contains a generalized iteration facility. The iteration facility
also permits those who like “gotos” to use them.

Nonlocal exits are similar to a return, except that the return is from
several levels of function calling rather than just one, and is determined
at run time. These are mostly used for applications like escaping from the
middle of a function when it is discovered that the algorithm is not
applicable.

Errors are a type of non-local exit used by the lisp interpreter when it
discovers a condition that it does not like. Errors have the additional
feature of correctability, which allows a user-specified function (most
often a break loop), to get a chance to come in and correct the error or at
least inspect what was happening and determine what caused it, before the
nonlocal exit occurs. This is explained in detail in section 12.4.

04/08/714 5. Page 35

5.1 =« Conditionals
and ‘FSUBR
and evaluates its ‘arguments one at- a time, from left to right. If any
argument ‘evaludtes to nil, and immediately returns nil without
evaluating ‘the ‘remaining arguments. If all the arguments evaluate
non-nil, and returns the value of its last argument. and can be used
‘both for logical operations, where nil stards for False and t stands’
for True, and as a conditional expression.
Examples:
(and x y)
(and (setq temp (assq x y))
(rplacd temp 2))
(and (null (errset (something)))
(princ "There was an error."))
Note: (and) => t, which is the identity for this operation.
or ‘FSUBR
or ‘evaluates its arguments one by one from left to right. H an
argument -evaluates to nil, or proceceds to evaluate the next argument.
If ‘there are no more arguments, or returns nil. But if an argument
evaluates non-nil, or immediately returns that value without
evaluating any remaining arguments. or can be used both for logical
operations, ‘where nil stands for TFalse and t for True, and as a
conditional ‘expression.
Note: (or) => nil, the identity for this operation.
‘cond FSUBR
cond processes its arguments, called "clauses,” from left to right.
The car of each clause, called the “antecedent,” is evaluated. If it
is nil, cond advances to the next clause. Otherwise, the cdr of the
‘clause is treated as a list of forms, called “"consequents,” which are
evaluated from left to right. After evaluating the consequents, cond
returns without inspecting any remaining clauses. The value is the
value of the last consequent evaluated, or the value of the antecedent
if there were no consequents in the clause. If cond runs out of
clauses (i.e. if every antecedent is nil), the value of the cond is
nil.
Page 36 5.1 04/08/74

MACLISP Reference Manual

Flow | of Control

Example:
(cond ((zerop x) (+ y 3)) ;first clause.
;(zerop x) 1s antecedent.
;(+ y 3) is consequent.

((rull y)

(setq x 4)

(cons x 2)) ;& clause with 2 consequents

(2) ;a clause with no consequents.
;the antecedent is just z.

) ;this is the end of the cond.

This is like the traditional LISP 1.5 cond except that it is not
necessary to have exactly one consequent in each clause, and it is
permissible to run out of clauses.'

04/08/74 5.1 Page 317

MACLISP Reference Manual

82 <« [lteration

prog FSUBR

prog is the “program" function. It provides temporary variables,
sequential evaluation of statements, and the ability to do "gotos.”
The form of a prog is: :

a (tagd |
(prog (<var>...) < > ...)
Il. <statement> _I

The first thing in a prog is a list of temporary variables <var. -
Each wvariable has its value saved when the prog is entered and
restored when the prog is left. The variables are initialized to nil
when the prog is entered, thus they are said to be "bound to nil” by
the prog. |

The rest of a prog is the body. An item in the body may be an
atomic symbol which is a <tag> or a non-atomic <statement).

prog, after binding the. temporary variables, evaluates its body

sequentially. Ctag>s are skipped over; <{statementd>s are evaluated ’
but the values are ignored. If the end of the body is reached, prog
returns nil. If (return x) is evaluated, prog stops evaluating its

body and returns the value of ». If (go tag) is seen, prog jumps to
the part of the body labelled with the tag. The argument to go is not
evaluated wunless it is non-atomic.

It should be noted that the prog function is an extension of the
LISP 1.5 prog function, in that go’s and return’s may occur in more
places than LISP 1.5 allowed. However, the LISP compilers implemented
on ITS, Multics, and the DECsystem 10 for MACLISP require that go’s
and return’s be lexically within the scope of the prog. This makes a
function which does net contain a prog, but which does contain a go or
return uncompilable.

See also the do function, which uses a body similar to prog. The
do function and the catch and throw functions are included in MACLISP
as an attempt to encourage goto-less programming style, which leads to
more readable, more easily maintained code. The programmer is
recommended to use these functions instead of prog wherever possible.

Page 38 52 04/08/74

Flow of Control

Example:

(prog (x y 2) :x, y., 2 are prog variables - temporaries.
(setq y (car w) z (cdr w)) ;W is a free variable.
loop
{(cond ((null y) (return x))
((nul1 z) (go err)))

rejoin
(setq x (cons (cons (car y) (car 2))
x))
(setq y (cdr y)
2 (cdr 2))

(go loop)
err

(break are-you-sure? t)

(setq z y)

(go rejoin))

do FSUBR
do provides a generalized "do loop" facility, with an arbitrary number
of “control variables" whose values are saved when the do is entered
and restored when it is left, i.e. they are bound by the do. The
control variables are used in the iteration performed by do. At the
beginning they are initialized to specified values, and then at the
end of each trip around the loop the values of the control variables
are changed according to specified rules and iteration continues until
a specified end condition is satisfied. do comes in two forms.
The newer form of do is:

{(do ((<var> <init> <repeatd)...)

(<end-test> <exit-form>...)

<body>...)

The first argument of do is a list of zero or more control variable
specifiers. Each control variable specifier has as its car the name
of a wvariable, as its cadr an initial value <init), which defaults to
nil if it is omitted, and as its caddr a repeat value <repeat>. If
<{repeat> is omitted, the <var> is not changed between loops.

All assignment to the control variables is done in parallel. At
the beginning of the first iteration, .all the <init>s are evaluated,
then the <var>s are saved, then the <{var>s are setq’ed to the (<init)s.
Note that the <(init)s are evaluated before the <vard>s are bound. At
the beginning of each succeeding iteration those <var>s that have
{repeat>s get setq’ed to their respective <repeatds. Note that all
the <repeat>s are evaluated before any of the <var>s are changed.

The second argument of do is a list of an end testing predicate

04/08/74 5.2 Page 39

* MACLISP Reference Manual

<end-test> and zero or more forms, the <exit-form>s. At the beginning
of each iteration, after processing of the <repeatds, the <end-test>
is evaluated. If the result is ni), execution proceeds with the body
of the do. If the result is not nil, the <exit-formsd> are evaluated
from left to right and then do returns. The value of the do is the
value of the last <exit-form>, or nil if there were no <exit-form)s.
Note that the second argument to do is similar to a cond clause.

If the second argument to do is nil, there is no <end-test> or
<exit-form>s, and the the body of the do is. executed only once. In
this type of do it is an error to have <repeat>s. This type of do s
a "prog with initial values.”

The remaining arguments to do constitute a prog body. When the end
of the body is reached, the next iteration of the do begins. If
return is used, do returns the indicated value and no more iterations
occur. '

The older form is:
(do <var)> <init> <{repeatd> <end-test> <body>...)

The first time through the loop <var> gets the value of <init);
the remaining times through the loop it gets the value of <repeat),
which is re-evaluated each time. Note that <init> is evaluated before
the value of <var> is saved. After <var> is set, <end-test> is
evaluated. If it is non-nil, the do finishes and returns nil. If the
<{end-test> is nil, the <body> of the loop is executed. The <body> is
like a prog body. go may be used. If return is used, its argument is
the value of the do. If the end of the prog body is reached, another
loop begins.

Examples of the old form of do:

(do 1 0 (1+ 1) (> 1 (cadr (arraydims x)))
(store (x 1) 0)) ;zeroes out the array x

(do 2z x (cdr zz) (or (null zz) (zerop (F (car z2z2)))))

; this applies f to each element of x
; continuously until f returns zero.

Examples of the new form of do:

(do ((x) (¥) (2)) (n11) <body>)
is like
(prog (x y z) <body>)

except that when it run§ off the end of the <body>, do loops but prog
returns nil,

Page 40 , 5.2 ’ 04/08/714

go

Flow of Control

(do ((x y (f x))) ((p x)) <body>)
is like
(do x y (f x) (p x) <body))

(do ({(x x (cdr x))
(y vy (cdr y))
(z n11 (cons (f x y) 2))) ; exploits parallel assignment
((or (null x) (null y)) /
(nreverse 2z))) ; typical use of nreverse
; body has been omitted
is like (maplist “f x y).

(do ((x e (cdr x)) (0ldx x x)) ({null x)) <body>)

This exploits the parallel assignment to control variables. On the
first iteration, the value of o0ldx is whatever value x had before the
do was entered. On succeeding iterations, 0ldx contains the value
that x had on the previous iteration.

In either form of do, the <body> may contain no forms at all.

FSUBR

The go function is used to do a "go-to" within the body of a do or a
prog. If the argument is an atom, it is not evaluated. Otherwise it
is repeatedly evaluated until it is an atom. Then go transfers
control to the point in the body labelled by a tag eq or = to the
argument. (Tags may be either atomic symbols or numbers). If there
is no such tag in the body, it is an unseen-go-tag error.

Example:

(prog (x y 2)
(setq x something)
loop
<do something)
(and <{some predicate> (go loop)) ;regular go
<do something more>
(go (cond ((minusp x) “loop) ;"computed go"
(t “endtag)))
endtag
(return 2))

04/08/714 52 Page 41

MACLISP Reference Manual

return SUBR 1 arg

return is wused to return from a prog or a do. The value of return’s
argument is returned by prog or do as its value. In addition, break
recognizes the top level form (return value) specially. If this form
is typed at a break, velue will be evaluated and returned as the value
of break. If not at the top level of a form typed at a break, and not
inside a prog or do, return will cause a fail-act error.

Example:
(prog (x)
(setq x (reverse y))
(or (cddr x) (return (cadr x)))
(return (caddr x)))

If yis (zyxwyuts) this returns uu If y is “(a b), this
returns &

Page 42 5.2 04/08/74

Flow of Control

53 - Nonlocal Exits

catch FSUBR

catch is the LISP function for doing structured non-local exits.
(catch x) evaluates x and returns its value, except that if during the
evaluation of # (throw y) should be evaluated, catch immediately
returns y without further evaluating =x.

catch may also be used with a second argument, not evaluated, which is
used as a tag to distinguish between nested catches. (catch = b) will
catch a (throw y b) but not a (throw y z). throw with only one
argument always throws to the innermost catch. catch with only one
argument catches any throw. It is an error if throw is done when
there is no suitable catch.
Example:
(catch
(mapcar (function (lambda (x)
(cond ({minusp x)
(throw x negative))
(t (F x)))))
y)
negative)

which returns a list of f of each element of y if y is all positive,
otherwise the first negative member of Y.

The wuser of catch and throw is recommended to stick to the 2 argument
versions, which are no less efficient, and tend to reduce the
likelihood of bugs. The one argument versions exist primarily as an
easy way to fix old LISP programs which use errset and err for
non-local exits. This latter practice is rather confusing, because
err and errset are supposed to be used for error handling, not general
program control.

throw FSUBR |
throw is used with catch as a structured nonlocal exit mechanism.

(throw x) evaluates ¥ and throws the value back to the most receat
catch.

(throw = <tagd) throws the value of x back to the most recent catch
labelled with <tag> or unlabelled. catch’es with tags not eq to <tag>
are skipped over.” x is evaluated but <tag> is not.

See the description of catch for further details.

04/08/74 5.3 ~ Page 43

. MACLISis Riéf cren&"MVarnr\rml

54 - Causing and C\ontrolling Errors

error LSUBR 0 to 3 args

This is a function which allows user functions to signal their own
errors using the LISP error system.

(error) is the same as (err).

(error message) signals a simple error - no datum is printed and no
user interrupt is signalled. The error message typed out is message.

(error message datum) signals an error with message as the message to
be typed out, datum as the LISP object to be printed in the error
message. No user interrupt is signalled.

(error message datum uint-chn) signals an error but first signals a
user interrupt on channel uint-chn, provided that there is such a
channel and it has a non-nil service function. uint-chn may be the
channel number or the atomic symbol whose value is the interrupt
service function for the channel -- see section 12.4.2. If the
service function returns an atom, error goes ahead and signals a
regular error. If the service function returns a list, error returns
as its value the car of that list In this cate it was a
“correctable” error. This is the only case in which error will
return.

errset FSUBR

errset evaluates its first argument. If no errors occur, the result
is cons’ed with n1l and returned. If an error occurs during the
evaluation of the first argument, the error is prevented from escaping
from inside the errset and errset returns nil. errset may also be
made to return any arbitrary value by use of the err function.

If a second argument is given to errset, it is not evaluated. If it
is n1l, no error message will be printed if an error occurs during the
evaluation of errset’s first argument. If the second argument is not
nil, or if errset is used with only one argument, any error messages
generated will be printed.

Examples:

If you are not sure x is a number:
(errset (setq x (addl x)))

This last example may not work in compiled code if the compiler

chooses to open-code the addl rather than calling the addl subroutine.
The user of such code must be extremely careful if he wishes to use it

Page 44 - , 5.4 04/08/74

err

Flow of Control

compiled.
To suppress message if the value of 2 is not an atomic symbol:
(errset (set a b) nil)

To do the same but generate one’s own message:

(or (errset (set a b) nil)
(print (11st a “1s “not “a “variable)))

FSUBR

(err) causes an error which is handled the same as a LISP error except
that there is no preliminary user interrupt, and no message is typed
out.

(err x) is like (err) except that if control returns to an errset, the
value of the errset will be the result of evaluating x, instead of
nil.

(err x nil) is the same as (err z). (err x t) is like (err x) except
that x is not evaluated until just before the errset returns it. That
is, ¥ is evaluated after unwinding the pdl and restoring the bindings.

Note: some people use err and errset where catch and throw are
indicated. This is a very poor programming practice. See writeups of
catch and throw for details.

04/08/74 5.4 Page 45

' MACLISP Reference Manual

This page intentionally left blank.

Page 46 5.4 | 04/08/74

Manipulating the Constituents of Atomic Symbols

6 = Manipulating the Constituents oi Atomic Symbols

6.1 = The Value Cell

Each atomic symbol has associated with it a "value cell," which is a
piece of storage that can hold a LISP object. Initially this value cell is
“unbound” or "undefined,” ie. empty. An object can be placed into an
atomic symbol’s value cell by setqling or binding. Once this has been
done, this object will be returned when the atomic symbol is evaluated.
The atomic symbol is said to have this object as its value.

setq FSUBR
setq is used to assign values to variables (atomic symbols.) setq
takes its arguments in pairs, and processes them sequentially, left to
right. The first member of each pair is the variable, the second is

the value. The value is evaluated but the variable is not. The value
of the variable is set to the value specified. You must not setq the
special atomic-symbol constants t and nil. The value returned by setq
is the last value assigned, ie. the value of its last argument.

Example: (setq x (+ 1 2 3) y (cons x nil))
returns (6) and gives x a value of 6 and y a value of (6).

Note that the first assignment is processed before the second

assignment is done, resulting in the second use of x getting the value
assigned in the first pair of the setq.

set SUBR 2 args
set is like setq except that the first argument is evaluated; also set
only takes one pair of arguments. The first argument must evaluate to
an atomic symbol, whose value is changed to the value of the second
argument. set returns the value of its second argument. Example:
(set (cond ((predicate) “atoml) (t “atom2)) “stba)
evaluates to stba and gives eithe:'- atoml or atom2 a value of stba

set could have been defined by:

(defun set (x y)
(apply “setq (1ist x (1ist “quote y))))

04/08/74 6.1 Page 41

'MACLISP Reference Manual
boundp SUBR 1 arg

The argument to boundp must be an atomic symbol. If it has a value,
cons of nil with that value is returned. Otherwise nil is returned.
Example:

(boundp “t) = (nil . t) ssince the value of t is t

definedp SUBR 1 arg

This predicate returns t if its argument (a symbol) has a value, and
nil otherwise.

makunbound SUBR 1 arg

The argument to makunbound must be an atomic symbol. Its value is
removed and it becomes undefined, which is the initial state for
atomic symbols.
Example:

(setq a 1)

& =]

‘(makunbound “a)

& => unbnd-vrbl error.

makunbound returns its argument.

Page 48 6.1 04/08/74

Manipulating the Constituents of Atomic Symbols

6.2 =~ The Property List

A property-list is a list with an cven number of elements. Each pair of

elements constitutes a property: the first element is called the
"indicator® and the second is called the “value” The indicator is
generally an atomic symbol which serves as the name of the property. For

example, one type of functional property uses the atom expr as its
indicator. = The value is a LISP object. In the case of an expr-property,
the wvalue is a list beginning with lambda. An example of a property list
with two properties on it is:

(expr (1ambda (x) (plus 14 x)) foobar t)

The first property has indicator expr and value (lambda (x) (plus 14 x)),
the second property has indica}or foobar and value t. :

Each atomic symbol has associated with it a property-list - which is kept
on its cdr. It is also possible to have "disembodied” property lists which
are not associated with any atom. These also keep the property list on
their cdr, as the form of a disembodied property list is (<anything)
plist). The way to create a disembodied property list is (ncons nil).

It is all right to ask for a property of a number, using the get and
getl functions described below. nil will always be returned since numbers
have no properties.

The user familiar with LISP 1.5 will want to note that the property list

"flags” which are allowed on LISP 15 property lists do not exist in
MACLISP.

Some implementations have special args, pname, and value properties
which are used to store internal information. Consequently user programs
should never use properties with these names.

get SUBR 2 args

(get x y) gets xs y-property. x can be an atomic symbol or a
disembodied property list. The value of x%s y-property is returned,

04/08/74 6.2 Page 49

getl

MACLISP Reference Manual
unless x has no y-property in which case nil is returned. Example:

(get “foo “bar)

=> nil ;foo has no bar property
(putprop “foo “zoo “bar) ;give foo a bar property
=) 200
(get “foo “bar)
=> 200
(cdr “foo) ;look at foo’s property list.

=> (bar zoo ...other properties...)

SUBR 2 args

(getl =z y) is like get except that y is a list of properties rather
than just a single property. getl searches x’s property list until a
property in the list y is found. The portion of x’s property list
beginning with this property is returned. The car of this is the
property name and the cadr is what get would have returned. getl
returns nil if none of the properties in y appear on the property list
of x. getl could have been defined by:

(defun getl (x pl)
(do {(q (cdr x) (cddr q))) ; scan down cdr of x
((or (nul1 q) (memq (car q) p1)) g)))

putprop SUBR 3 args

(putprop x y z) gives ¥ a z-property of y and returns . * may be an
atomic symbol or a disembodied property list. After somebody does
(putprop x y z), (get x z) will return y.

Example: (putprop “foo ‘bar “often-with)

defprop 'FSUB‘R

(defprop x y =2) gives x a z-property of y. The arguments are not
evaluated. Example:
(defprop foo bar often-with)

Page 50 | 62 04/08/14

Manipulating the Constituents of Atomic Symbols

remprop SUBR 2 args
(remprop x y) removes x’s y-property, by splicing it out of x’s
property list. The wvalue is t if «x had a y-property, nil if it

didn’t. =z may be an atomic symbol or a disembodied property list.
Example: ‘

(remprop “foo “expr)
undefines the function foo if it was defined by

(defun foo (x) ...)

04/08/74 6.2 Page 51

* MACLISP' Reference Manual
6.3 = The Print=-Name:

Each: atomic symbol has an associated character string called its
“print-name;,” or "pname"™ for short. This character string is used as the
external representations of the symbol. If the string is typed in, it is
read as a reference to the symbol. If the symbol is asked to be printled,
the string is typed out. Generally pnames are unique - there is only one
atomic symbol whose pname: is a. particular string of characters. However,
by using multiple obarrays (see: section 12.4) or "uninterned” atomic
symbols (ones whose pnames are not "interned™ or registered in an obarray),
it is possible to get two atoms with the same pname.

Sce also Chapter 8, on strings, for some other functions which have to do
with pnames.

samepnamep SUBR 2 args

The arguments to- samepnamep must evaluate to atomic symbols or to
character strings. The result is t if they have the same pname, nil
otherwise. The pname of a character string is considered to be the
string itself.
Examiples: ,

('samepnamep “xyz (maknam “(x y 2))) => t

(samepnamep ‘xyz (maknam “(w x y))) => nil

(samepnamep ‘x "x") = t

alphalessp SUBR 2 args

(alphalessp x y¥), where * and y evaluate to atomic symbols or
character strings, returns t if the pname of x occurs earlier in
alphabetical. order than the pname of . The pname of a character
string is considered to be the string itself. Examples:

(alphalessp “x “xl) => t
(alphalessp “z “q) => ni)
(alphalessp "x" “y) => t

Note that the "alphabetical order” used by alphalessp is actually the

ASCII collating sequence. Consequently all upper case letters sort
before all lower case Iletters.

Page 5% | 63 04/08/74

Manipulating the Constituents of Atomic Symbol.s'

6.4 - Miscellaneous Functions

getchar SUBR 2 args

(getchar =x n), where x» is an atomic symbol and n is a fixnum, returns
the n'th character of x’s pname, where n = 1 sgelects the leftmost

character. The character is returned as a character object. nil is
returned if n is out of bounds. '
intern SUBR 1 arg

(intern x), where x is an atomic symbol, returns an atomic symbol
which is “interned. on the obarray” and has the same pname as x. If x»

. is not already interned on the current obarray, this will be a copy of
it. It is as if » was printed out and read back in.

remob SUBR 1 arg

The argument to remob must be an atomic symbol. It is removed from
the current obarray if it is interned on that obarray. This makes the
atomic symbol inaccessible to any S-expressions that may be read in or
loaded in the future. remob returns nil.

gensym LSUBR 0 or 1 args

gensym creates and returns a new atomic symbol, which is not interned
on the obarray (is not recognized by read.) The atomic symbol’s pname
is of the form <prefix>\number>, eg. g¢g000l. The <number> is
incremented each time.

If gensym is given an argument, a numeric argument is used to set the
<number>. The pname of an atomic-symbol argument is used to set the
<prefix>. For example:

if (gensym) => g0007
then (gensym “foo) => f0008

(gensym 40) => f0032
and (gensym) => f0033

Note that the <number> is in decimal and always four digits, and the
<prefix> is always one character.

04/08/74 6.4 Page 53

MACLISP Reference Manual
6.5 =~ Defining Atomic Symbols as Functions

Atomic symbols may be used as names for fumctions. This is done by
putting the actual function (a subr-object or a lambda-expression) on the
property list of the atomic symbol as a “[unctional property,” ie under
one of the indicators expr, fexpr, macro, subr, lsubr, or fsubr.

Array properties (see chapter 9) are also considered to be functional
properties, so- an atomic symbol which is the name of an array is also the
name of a function, the accessing function of that array.

When an atomic symbol which is the name of a function appears in
function position in a form being evaluated, or is "applied,” the function
which it names is used.

args LSUBR 1 or 2 args

(args f) determines the number of arguments expected by the function
f. U [wants n arguments, args returns (nil . m). If f can take
from m to n arguments, args returns (m . n). If f is an fsubr or a
lexpr, expr, or fexpr, the results are meaningless.

(args [»), where x is (nil . n) or (m . n), sets the number of
arguments desired by the function f. This only works for compiled,
non-system functions. .

defun FSUBR

defun is used for defining functions. The general form is:

(defun <name> <{type>
(<lambda-variabled...)
<body>...)

however, <name> and <type> may be interchanged. <{typed>, which is
optional, may be expr, fexpr, or macro. If it is omitted, expr is
assumed. Examples:

(defun addone (x) (1+ x)) ;defines an expr
(defun quot fexpr (x) (car x)) - ;defines a fexpr
(defun fexpr quot (x) (car x)) ;is the same

(defun 22z expr x
(foo (arg 1)(arg 2))) ;this is how you define a lexpr.

Page 54 ' 6.5 04/08/74

Manipulating the Gonstituents of Atomic Symbols

Note: the functions defprop and putprop may also be used for defining
functions. ‘

04/08/14 6.5 Page 55

O

* MACLISP Reference Manual

This page intentionally left blank.

Page 56 6.5 04/08/4

Functions on Numbers

7 = Functions on Numbers

For a description of the various types of numbers used in MACLISP, see
chapter 2.

7.1 = Number Predicates

bigp SUBR 1 arg
The predicate bigp returns t if its argument is a bignum, and nil
otherwise.

zerop SUBR 1 arg

The zerop predicate returns t if its argument is fixnum zero or flonum
zero. (There is no bignum zero) Otherwise it returns nil.

plusp SUBR 1 arg
The plusp predicate returns t if its argument is strictly greater than

zero, nil if it is zero or negative. It is an error if the argument
is not a number.

minusp SUBR 1 arg
The minusp predicate returns t if its argument is a negative number,

nil if it is a non-negative number. It is an error if the argument
is not a number.

oddp SUBR 1 arg

The oddp predicate returns t if its argument is an odd number,
otherwise nil. The argument must be a fixnum or a bignum.

04/08/74 1.1 Page 57

MACLISP Reference Manual
signp FSUBR
The signp predicate is used to test the sign of a number. (signp ¢ =)
returns t if 2’ sign satisfics the test ¢, nil if it does not. =z is

evaluated but ¢ is not. It is an error if ¥ is not a number. ¢ can
be one of the following:

1 means x<0
le * x<0
e " x=0
n . " xfo
ge " x>0
g " %0

Examples:)
{(signp Te -1) => t
{(signp n 0) s> nil

hautong SUBR 1 arg

(haulong x) returns the number of significant bits in . x can be a
fixnum or a bignum. The result is the least integer not less than the
base-2 logarithm of |x|+l. Examples:

{(haulong 0) => 0

{haulong 3) => 2

(haulong -7) => 3

(haulong 12345671234567) => 40.

Page 58 11 04/08/74

Functions on Numbers

7.2 - Comparison

=) SUBR 2 args

(= x y)is tif ¥ and y are numerically equal. x and y must be both
fixnums or both flonums.

greaterp LSUBR 2 or more args

greaterp compares its arguments, which must be numbers, from left to
right. If any argument is not greater than the next, greaterp returns
nil. But if the arguments to greaterp are strictly decreasing, the

result is t. Examples:

(greaterp 4 3) => t
(greaterp 1 1) => nil
(greaterp 4.0 3.6 -2) => t
(greaterp 4 31 2 0) => nil
> SUBR 2 args
(> » y) is t if x is strictly greater than y, and nil otherwise. x

and y must be both fixnums or both flonums.

lessp LSUBR 2 or more args

lessp compares its arguments, which must be numbers, from left to
right. If any argument is not less than the next, lessp returns nil
But if the arguments to lessp are strictly increasing, the result is
t. Examples: '

(lessp 34) => t

(lessp 1 1) => nil

(lessp -2 3.6 4) => t

(lessp 0 21 3 4) => ni}

< SUBR 2 args

(< % y) is t if x is strictly less than y, and nil otherwise. = and y
must be both fixnums or both flonums.

04/08/74 12 Page 59

MACLISP Reference Manual
max LSUBR 1 or more args

max returns the largest of its arguments, which must be numbers.

min LSUBR 1 or more args

min returns the smallest of its arguments, which must be numbers.

Page 60 12 04/08/74

Functions on Numbers
73 =« Conversion
fix SUBR 1 arg
(fix x) converts ¥ to a fixnum or a bignum depending on its magnitude.
Examples:
(fix 7.3) => 7
(Fix -1.2) => -2
float SUBR 1 arg
(float x) converts » to a flonum. Example:
(float 4) => 4.0
abs SUBR 1 arg
(abs x) = |x|, the absolute value of the number =. abs could have
been defined by:
(defun abs (x) (cond ((minusp x) (minus x))
(x)))
minus SUBR 1 arg
minus returns the negative of its argument, which can be any kind of
number. Examples:
) {minus 1) => -1
(minus -3.6) => 3.6
haipart SUBR 2 args
(haipart x» n) extracts n leading or trailing bits from the internal
representation of % x may be a fixnum or a bignum. n must be a
fixnum. The value is returned as a fixnum or a bignum. If n is
positive, the result contains the n high-order significant bits of
abs(x). If n is negative, the result contains the abs(n) low-order
bits of abs(x). If abs(n) is bigger than the number of significant
bits in =, abs(x) is returned.
04/08/74 13 Page 61

' MACLISP Reference Manual

Examples:
(haipart 34567 7) => 162
(haipart 34567 -5) => 27

(haipart -34567 -5) => 27

Page 62 1.3 04/08/74

Functions on Numbers

7.4 = Arithmetic

General Arithmetic

plus LSUBR 0 or more args

plus returns the sum of its arguments, which may be any kind of
numbers. Conversions to flonum or bignum representation are done as
needed. Flonum representation will be used if any of the arguments
are flonums; otherwise fixnum representation will be used if the
result can fit in fixnum form. If it cannot, bignum representation
will be used.

difference LSUBR 1 or more args

difference returns its first argument minus the rest of its arguments.
It works for any kind of numbers.

times LSUBR 0 or more args
times returns the product of its arguments. It works for any kind of
numbers.

quotient LSUBR 1 or more args

quotient returns its first argument divided by the rest of its
arguments. The arguments may any kind of number. (cf. / and /8)
Examples:

(quotient 3 2) =1 ;fixnum division truncates

(quotient 3 2.0) => 1.5 ;but flonum division does not.

(quotient 6.0 1.5 2.0) => 2.0

add1l SUBR 1 arg

(addl x) => z+l. x may be any kind of number.

04/08/74 1.4 Page 63

'MACLISP Reference Manual
subl SUBR 1 arg

(subl x) = x-1. x may be any kind of number.

remainder SUBR 2 args
(remainder x y) => the remainder of the division of % by y.- The sign

of the remainder is the same as the sign of the dividend. The
arguments must be fixnums or bignums.

gecd SUBR 2 args

(gcd x y) => the greatest common divisor of * and y. The arguments
must be fixnums or bignums.

expt SUBR 2 args

k4
(expt x y) = «x

The exponent y may be a bignum if the base x is 0, 1, or -1; otherwise
¥y must be a fixnum. 2 may be any kind of number.

Page. 64 o 14 | 04/08/74

Functions on Numbers
. Fixnum Arithmetic

LSUBR 0 or more args

+ vreturns the sum of its arguments. The arguments must be fixnums,
and the result is always a fixnum. Overflow is ignored. Examples:
(+ 26 -1) =>7
(+ 3) => 3 strivial case
(+) =50 ;identity element

LSUBR 0 or more args

This is the fixnum-only subtraction function. It does not detect
overflows. ‘

(=) => 0, the identity element

(- x) => the negative of x.

(-xy)=> x - y.

(-xy2)=dx-y-2
etc.

LSUBR 0 or more args

x returns the product of its arguments. The arguments must be
fixnums. The result is always a fixnum. Overflow is not detected.
Examples:

(x 45 -6) => -120.

(x 3) =>3 ;trivial case

(x) =51 ;identity element

LSUBR 0 or more args

This is the fixnum-only division function. The arguments must be
fixnums and the result of the division is truncated to an integer and
returned as a fixnum. Note that the name of this function must be
typed in as //, since LISP uses / as an escape character.

(/) = 1, the identity element.

(// xz) = the fixnum reciprocal of x, which

is 0 if |x|] > 1.
(// x y) => x]y.
(/7 x y z) => (x/y)/=

etc.

04/08/74 1.4 Page 65

MACLISP Reference Manual
1+ SUBR 1 arg

(1+ x) => x+]l. x must be a fixnum. The result is always a
Overflow is ignored.

1- SUBR 1 arg

fixnum.

(1- %) = z-1. x must be a fixnum. The result is always a fixnum and

overflow is not detected.

\ SUBR 2 args

(\ % y) returns the remainder of x divided by y, with the sign of ».

x and y must be fixnums. Examples:
(\52) =1

(\65. -9.) => 2
(\ -65. 9.) = -2

Page 66 4

04/08/74

+3$

x$

/$

Functions on Numbers

Flonum Arithmetic

LSUBR 0 or more args

+$ returns the sum of its arguments. The arguments must be flonums
and the result is always a flonum. Examples:

(+$ 4.1 3.14) => 7.24

(+¢ 2.01.5 -3.6) =>-0.1

(+$ 2.6) => 2.6 itrivial case
(+$) =>0.0 ;identity element

LSUBR 0 br more args

This is the flonum-only subtraction function.

(-$) => 0.0, the identity element
{(-$ x) = the negation of =.
(-3 x y) = x -y
(-$xyz)D=zx-y-2

etc.

LSUBR 0 or more args

x$ returns the product of its arguments. The arguments must be
flonums and the result is always a flonum. Examples:

(x$ 3.0 2.0 4.0) => 24.0

(x$ 6.1) => 6.1 itrivial case
(x$) => 1.0 ;identity element

LSUBR 0 or more args

This is the flonum-only division function. Note that the name of
this function must be typed in as //8, since LISP uses / as an escape

character.
(//%) => 1.0, the identity element
(//8 x) = the reciprocal of x. /
(//$ x y) = x|y
(/7% = y 2) = (x/y)/=
etc.

04/08/74 1.4 Page 67

MACLISP Reference Mamﬁi
1+3 SUBR 1 arg

"(1¢$ x) = x+10. 2 must be a flonum. The result is always a flonum.

1-$ SUBR 1 arg

(1-$ z) = %-10. % must be a flonum. The result is always a flonum.

Page 68 14 ' 04/08/74

Functions on Numbers

75 =~ Exponentiation and Log Functions

sqrt SUBR 1 arg

(sqrt =) => a flonum which is the square root of the number x.

isqrt SUBR 1 arg
(isqrt z) => a fixnum which is the square root of =x, truncated to an
integer.

exp SUBR 1 arg

x
(exp x) = e

log SUBR 1 arg

(log x) = the natural log of x.

04/08/74 1.5 Page 69

* MACLISP Reierence Manual

76 = Trigonometric Functions

sin SUBR 1 arg

(sin %) gives the trigonometric sine of 2. x is in radians. = may be
a fixnum or a flonum.

cos SUBR 1 arg

(cos =) returns the cosine of x. =z is in radians. % may be a fixnum
or a flonum.

atan LSUBR 1 or 2 args

(atan x) returns the arctangent of x, in radians. x and y may be
fixnums or flonums. (atan x y) returns the arctangent of =z/y, in
radians. ¥ may be 0 as long as x is not also 0.

Page 70 1.6 04/08/74

Functions on Numbers

7.7 = Random Functions

random . LSUBR 0 or 1 arg
(random) returns a random fixnum.
(random nil) restarts the random sequence at its beginning.

(random %), where ¥ is a fixnum, returns a random fixnum between 0 and
x-1 inclusive.

2underf low SWITCH

If the value of zunderflow is non-nil, floating point arithmetic
underflow will produce a result of 00. If the value of 2zunderflow is
nil, any wunderflows that occur will cause fail-acts.

04/08/14 1.1 Page 71

MACLISP Reference Manual

78 <= Logical Operations on Numbers
boole LSUBR 3 or more args
(boole & x y) computes a bit by bit Boolean function of the fixnums »
and y under the control of k. &k must be a fixnum between 0 and 17
(octal). If the binary representation of k is abed, then the truth
table: for the Boolean operation is:
Yy
1 0 1
0] a ¢
x |
11 b d
If boole has more than three arguments, it goes from left to right;
thus
(boole k x y z) = (boole k (boole k x y) 2)
The most common values for k are 1 (and), 7 (or), 6 (xor). You can
get the complement, or logical negation, of » by (boole 6 » -1).
Ish SUBR 2 args
(1sh x y), where x and y are fixnums, returns % shifted left y bits if
y is positive, or x shifted right |y| bits if y is negative. 0 Dbits
aré shifted in to fill unused positions. The result is undefined if
lyl > 36. Examples:
(1sh 4 1) => 10 (octal)
(1sh 14 -2) => 3
(I1sh -1 1) => -2
rot SUBR 2 args
(rot x y) returns as a fixnum the 36-bit representation of x, rotated
left y Dbits if y is positive, or rotated right |yl bits if y is
negative. » and y must be fixnums. The results are undefined if |y|
> 36. Examples:
(rot 1 2) =>4
(rot -17) = -1
(rot 601234 36.) => 601234
(rot 1 -2) => 200000000000 (octal)
' Page 12 18 04/08/74

Character Manipulation

8 = Character Manipulation
8.1 =~ Character Objects

An atomic symbol with less than two characters in its pname is often
called a “character object” and used to represent an ascii character. The
atomic symbol with a zero-length pname represents the ascii null character,
and the symbols with l-character pnames represent the character which is
their pname. Functions which take a character object as an argument
usually also accept a string one character long or a fixnum equal to the
ascii-code value for the character. Character objects are always interned
on the obarray (see section 6.3), so they may be compared with the function
eq.

ascii SUBR 1 arg

(ascii x), where x is a number, returns the character object for the
ascii code =x.
Examples:

(ascii 101) => A

(ascii 56) => /.

maknam SUBR 1 arg

maknam takes as its argument a list of characters and returns an
uninterned atom whose pname is determined by the list of characters.
The characters may be represented either as fixnums (ascii codes) or
as character objects. Example:

(maknam “(a b 60 d)) => ab0d

implode SUBR 1 arg
implode is the same as maknam except that the resulting atom is
interned.

04/08/74 ' 81 Page 73

12

MACLISP Reference Manual

explode SUBR 1 arg

(explode z) returns a list of characters, which are the characters
that would bhave been typed out if (prinl x) was done, including
slashes for special characters but not including extra newlines
inserted to prevent characters, from running off the right margin.
Each character is represented by a character object.

Example:

(explode “(+ 1/23)) > (/(+/ /7 /)Y 127 /3 /))
#iNote the presence of slashified spaces in this list.

explodec SUBR 1 arg

(explodec x) returns a list of characters which are the characters
that would have been typed out if (princ z) was done, not including
extra newlines inserted to prevent characters from running off the
right margin. Special characters are not slashified. Each character
is represented by a character object.
Example:

(explodec “(+ 1x 3))=>(/(+/ /1x/ /37))

exploden' SUBR 1 arg

(exploden x=) returns a list of characters which are the characters
that would have been typed out if (princ x) was done, not including
extra newlines. inserted to prevent lines characters from running off
the right margin. Special characters are not slashified. Each
character is represented by a number which is the ascii code for that
character. cf. explodec. Example:

(exploden “(+ 1x 3)) => (50 53 40 61 170 40 63 51)

flatc SUBR 1 arg
flatc returns the length of its argument in characters, if it was

printed out without slashifying special characters. (flatc =) is the
same as (length (explodec x)).

flatsize , SUBR 1 arg
flatsize returns the length of its argument in- characters, if ‘it was

printed out with special characters slashified. (flatsize x) is the
same as (length (explode x)).

Page 14 8.1 04/08/74

Character Manipulation

readlist SUBR 1 arg

The argument to readlist is a list of characters. The characters may
be represented either as fixnums (ascii codes) or as character
objects. The characters in the list are assembled into an
S-expression as if they had been typed into read (See chapter 13 for a
description of read) If macro characters are wused, any calls to
read, readch, tyi, or tyipeek in the macro character functions take
their input from readlists’s argument rather than from an I/O device
or a file
Examples:

(readlist “(a b ¢)) => abc

(readlist “(/(pr151nt/ / foo/)))

2> (print (quote foo))

Note the use of the slashified special characters left parenthesis,
space, quote, right parenthesis in the argument to readlist

04/08/14 8.1 Page 15

MACLISP Réfer;ﬁ;e I&ann‘al
8.2 =~ Functions on Strings

These character string functions only exist at present in the Multics
implementation of MACLISP. A predicate to test if your implementation has
these functions is

(status feature strings)

These functions all accept atomic symbols in place of strings as arguments;
in this case 'the pname of .the atomic symbol is used as the string. When
the value of one of these functions is described as a string, it is always
a string and never an atomic symbol.

catenate LSUBR 0 or more args

The arguments are character strings. The result is a string which s
all the arguments concatenated together. Example:

(catenate "abc" "-" "bar") => "abc-bar"

index SUBR 2 args

index is like ‘the PL/I builtin function index. The arguments are
character strings. The position of the first occurrence of the second
argument in the first is returned, or 0 if there is none. Examples:

{(index "foobar" "ba") = 4

.(index "foobar" "baz") => 0

(index “goobababa" "bab") => 4

stringlength SUBR 1 arg

The argument to stringlength must be a character string. The number
of characters in it is returned. Examples:

(stringlength "foo") => 3

(stringlength "") => 0

substr LSUBR 2 or 3 args
This is like the PL/I substr builtin. (substr x m n) returns a string
n characters long, which is a portion of the string x» beginning with
its m’th character and proceeding for n characters. m and n must be
fixnums, * must be a string.

(substr x m) returns the portion of the string x beginning with its

Page 76 . 82 04/08/74

Character Manipulation

m'th character and continuing until the end of the string.
Examples:

(substr "foobar" 3 2) => "ob"

(substr "resultmunger" 6) => “"tmunger"

get_pname SUBR 1 arg

(get_pname x) returns the pname of x as a character string. x must be
an atomic symbol.

make_atom SUBR 1 arg

Ctol

ItoC

make_atom returns an atomic symbol, uninterned, whose pname is given
as a character string argument. Example:
(make_atom "foo") => foo ;which is not eq to a
;foo that is read in.

SUBR 1 arg

Ctol returns as a fixnum the ascii code for the first character of its
argument, which must be a string.
Example: (Ctol "2") => 172

SUBR 1 arg

ItoC returns a string one character long, consisting of the character

whose ascii code is the argument.
Example: (ItoC 101) => "A"

04/08/14 8.2 Page 11

Page 78

MACLISP Reference Manual

This page intentionally left blank.

8.2

04/68/74

Functions Concerning Arrays

9 = Functions Concerning Arrays

MACLISP provides arrays of any number of dimensions. = The contents of
the arrays can be any LISP objects. The different elements of an array
nced not be of the same type.

An array is implemented as a space in which to keep the contents of the
array and a function to access it. The name of the function is the name of
the array. The arguments to the function are the subscripts. LISP arrays
are always O0-origin indexed, that is, the subscript values start at 0. The
subscripts must be fixnums. The array-accessing function returns as its
value the contents of the selected array cell and as a side-effect saves a
pointer to this cell for the use of the store function (see below). The
functional property of an array-accessing function is kept under the
indicator array.

There is a special type of array called an "un garbage collected” array.
If an object other than an atomic symbol is only referenced from an element
of a normal array, that object will stay around, but if an object is only
referenced by an element of an un pgarbage collected array then the object
will be taken away by the garbage collector and the element of the wun
garbage collected array will be changed to something random. In other
words, un garbage collected arrays do not protect the objects they contain.

Some implementations of MACLISP also have “"number arrays,” which can
only hold either fixnums or flonums (but not both). They are more
efficient for this purpose than regular arrays. The construction and use
of number arrays is the same as described below, except that a special flag
is specified when a number array is initially constructed. See the =xarray
function described below.

Here is an example of a use of arrays:

(array x t 500.)

(array y t 500.) ;define 2 arrays :

(do 1 0 (1+ 1) (= 1 (cadr (arraydims “x)))
(store (x i) (//% (float 1) 100.0))
(store (y 1) (sin (x 1)))
) ;end loop '

(plot "x “y) ;call a plotting routine

;for example, the following:

(defun plot (xarr yarr)

(cursorpos ‘C) ;erase the display
(do i 0 (1+ 1) (= i (cadr (arraydims xarr)))
(cursorpos
(yarr i)
(xarr 1)) ;move plotting device to
(princ 7/.))) ;position and put a dot there.

04/08/74 - 9. Page 19

 MACLISP Reference NManﬁal

xarray LSUBR 3 or more args

(xarray » y b1 b2 .. bn) defines * to be an n-dimensional array. The
first subscript may range from 0 to bl-1, the second from 0 to b2-1,
etc. If ¥y is t a normal array is created; if y is nil an “un garbage
collected” array is created. If y is the atom fixnum or the atom
flonum, then a number array would be created.

array FSUBR

(array x y b1 b2 .. bn) is like (xarray » y b1 b2 .. bn) except that
x, the name of the array, and y, the type of array, are not evaluated.
The other arguments are evaluated.

Arearray LSUBR 1 or more args
xrearray is used to redefine the dimensions of an array.

(xrearray x) gets rid of the array =z « is evaluated - it must
evaluate to an atomic symbol. The value is t if it was an array, nil
if it was not. :

(xrearray x type diml dim2 ... dimn) is like (xarray x type diml dim2
dimn) except that the contents of the previously existing array
named x are copied into the new array named x.

store FSUBR

The first argument to store must be a subscripted reference to an
array. The second argument is evaluated and stored into the
referenced cell of the array. store evaluates its second argument
before its first argument.
Examples:

(store (data 1 j) (plus i j))

(store (sine-values (fix (x$ x 100.0)5f
(sin x)) ‘

arraydims SUBR 1 arg

(arraydims x), where x evaluates to an atomic symbol which is an array
name, returns a list of the type and bounds of the array. Thus if A
was defined by (array A t 10 20),

Page 80 | 9. | 04/08/74

Functions Concerning Arrays

(arraydims “A) => (t 10 20)

bltarray SUBR 2 args
bitarray is used to copy one array into another.

(bltarray =% y) moves the contents of the array x into the contents of
the array . If x is bigger than y, the extra elements are ignored.
If x is smaller than 1y, the rest of ¥ is unchanged. x and y must
evaluate to atomic symbols which have array properties.

fillarray SUBR 2 args

(Fillarray A L) fills the array A with consecutive items from the list
L. If the array is too short to contain all the items in the list,
the extra items are ignored. If the list is too short to fill up the
array, the last element of the list is used to fill each of the
remaining slots in the array. fillarray could have been defined by:

(defun fillarray (a x)
(do ((x x (cond ({cdr x))
(x)))
(n 0 (1+ n))
(hbound (cadr (arraydims a))))
((= n hbound))
(store (a n) x)
))
An extension to the LISP definition is that fillarray will work with
arrays of more than one dimension, filling the array in row-major
order. fillarray returns its first argument.

listarray SUBR 1 arg

(listarray arrey-name) takes the elements of the array specified by
array-name and returns them as the elements of a list. The length of
the list is the size of the array and the elements are present in the
list in the same order as they are stored in the array, starting with
the zeroth element. If the array has more than one dimension
row-major order is used.

04/08/74 9. Page 81

MACLISP Reference Manual

This page intentionally left blank.

Page 82 9, 04/08/74

"Mapping” Functions

10 = "Mapping" Functions

Mapping is a type of iteration in which a function is successively
applied to pieces of a list. There are several options for the way in
which the pieces of the list are chosen and for what is done with the
results returned by the applications of the function.

For example, mapcar operates on successive elements of the list. As it
goes down the list, it calls the function giving it an element of the list
as its one argument: first the car, then the cadr, then the caddr, etc.
continuing until the end of the list is reached. The value returned by
mapcar is a list of the results of the successive calls to the function.

An example of the wuse of mapcar would be mapcar’ing the function abs
over the list (1 -2 -4.5 6.0el5 -4.2). The result is (1 2 4.5 6.0el5 4.2).

The form of a call to mapcar is
(mapcar f %)

where f is the function to be mapped and x is the list over which it is to
be mapped. Thus the example given above would be written as

(mapcar “abs
(1 -2 -4.5 6.0el5 -4.2))

This has beer) generalized to allow a form such as
(mapcar f x1 x2 .. xn)

In this case f must be a function of n arguments. mapcar will proceed down
the lists 1, %2, .., xn in parallel. The first argument to f will come
from x1, the second from x2, etc. The iteration stops as soon as any of
the lists becomes exhausted.

There are five other mapping functions besides mapcar. maplist is like
mapcar except that the function is applied to the list and successive cdr’s
of that list rather than to successive elements of the list. map and mapc
are like maplist and mapcar respectively except that the return value is
the first of the lists being mapped over and the results of the function
are ignored. mapcan and mapcon are like mapcar and maplist respectively
except that they combine the results of the function using nconc instead of
list.

Sometimes a do or a straight recursion is preferable to a map; however,
the mapping functions should be used wherever they naturally apply because
this increases the clarity of the code.

Often f will be a lambda-type function rather than the atomic-symbol
name of a function. For example,

04/08/14 10. : Page 83

MACLISP Reference Manual
(mapcar “(lambda (x) (cons x something)) some-1ist)

The functional argument to a mapping function must be acceptable to
apply: it cannot be a macro. A fexpr or an fsubr may be acceptable however
the results will be bizarre. For instance, mapping set works better than
mapping setq, and mapping cond is unlikely to be useful.

It is permissible (and often useful) to break out of a map by use of a
go, return, or throw in a lambda-type function being mapped. This is a
relaxation of the usual prohibition against "non-local® go’s and return’s.
Consider this function which is similar to and, except that it works on a
list.

(defun andl (x)
(catch

(progn

(mapc (function (lambda (y)
(or y (throw nil the-answer))))
x)

t)

the-answer))

Here is a table showing the relations between the six map functions.

applies function to !

| successive | successive |

| sublists | elements |
--------------- L R L LT DRy
its own | | |
second | map | mapc |
argument | | |
--------------- Ll D L L L D s DL LSy
1ist of the | | |
returns function | maplist | mapcar |
results | | |
--------------- e it D it T TS
nconc of the | | |
function | mapcon | mapcan |
results | | }
--------------- L bbb DAL LD LR LTS Y L DL LTy

Page 84 ’ 10. 04/08/74

"Mapping" Functions

map LSUBR 2 or more args

The first argument to map is a function, and the remaining arguments
are lists. map "goes down" the lists, applying the function to the
lists each time. The value returned by map is its second argument.
map stops as soon as one of the lists is exhausted. Example:
(map “(lambda (x y 2) (print (Vist x y 2)))
‘(1234) “(abcde) (+-x1]))
prints
((1234) (abcde)(+-x1]))
((234)(bcde) (-x1))
((34) (cde) (x]))
((4) (d e) (1))
and returns (1 2 3 4).

mapc LSUBR 2 or more args

mapc is just like map except that the function is applied to
successive elements of the lists rather than to the lists «themselves.
Thus the example given under map would print

(1 a+)

(2b -)

(3 ¢ x)

(4d|)

and return (1 2 3 4)

mapcar LSUBR 2 or more args

mapcar is like mapc except that the return value is a list of the
results of each application of the function. Thus the example given
with mapc would return, not (1 2 3 4), but
((La+)(2b-)(3cx)(4d]))

maplist LSUBR 2 or more args

maplist is like map except that the return value is a list of the
results of each application of the function. Thus the example given
with map would return, not (1 2 3 4), but

(((1 234)(abcde)(+-x]))((234)(bcde)(-x1])) ((34)
(cde)(x 1)) ((4) (de) (1))

04/08/74 10. Page 85

MACLISP Reference Manual

mapcan LSUBR 2 or more args

mapcan is like mapcar except that the values returned by the function
are nconc’ed together instead of being 1ist'ed together. Thus the
example would return

(La+2b-3cxd4d])

mapcon LSUBR 2 or more args

mapcon is like maplist except that the values returned by the function
are nconc’ed together instead of being list'ed together. This can
have disastrous effects on the arguments to mapcon if ome is not
careful. The example would return
((1234)(abcde)(+-x|)(234)(bcde)(-x])

(34) (cde) (x])(4) (de) ()

Page 86 10, 04/08/74

Sorting Functions

11 = Sorting Functions

Several functions are provided for sorting arrays and lists. These
functions use algorithms which always terminate no matter what sorting
predicate is used, provided only that the predicate always terminates.
These sorts are not necessarily stable, that is equal .items may not stay in
their original order.

After sorting, the argument (be it list or array) is rearranged
internally so as to be completely ordered. In the case of an array
argument, this is accomplished by permuting the elements of the array,
while in the list ‘case, the list is reordered by rplacds in the same
manner as nreverse. Thus if the argument should not be clobbered, the user
must sort a copy of the argument, obtainable by bltarray or append, as
appropriate.

Should the comparison predicate cause an error, such as a wrong type
argument error, the state of the list or array being sorted is undefined.
However, if the error is corrected the sort will, of course, proceed
correctly. .

Both sort and sortcar handle the case in which their second argument is
the function alphalessp in a more efficient manner than usual This
efficiency is primarily due to elimination of argument checks at comparison
time.

sort SUBR 2 args

The first argument to sort is an array (or list), the second a
predicate of two arguments. Note that a “number array” cannot be
sorted. The predicate must be applicable to all the objects in the
array or list. The predicate should take two arguments, and return
non-nil if and only if the first argument is strictly less than the
second (in some appropriate sense).

The sort function proceeds to sort the contents of the array or
list under the ordering imposed by the predicate, and returns the
array or list modified into sorted order, ie. its modified first
argument. Note that since sorting requires many comparisons, and thus
many calls to the predicate, sorting will be much faster if the
predicate is a compiled function rather than interpreted.

Example:

04/08/74 11 Page 87

MACLISP Reierence Manual

(defun mostcar (x)
(cond ((atom x) x)
((mostcar (car x)))))

(sort ‘fooarray
(function (lambda (x y)
(alphalessp (mostcar x) (mostcar y)))))

If fooarray contained these items before the sort:

(tokens (the lion sleeps tonight))
{carpenters (close to you))
({rolling stones) (brown sugar))
({beach boys) (i get around))
(beatles (1 want to hold your hand))

then after the sort fooarray would contain:

({beach boys) (1 get around))
(beatles (i want to hold your hand))
(carpenters (close to you))
({(rolling stones) (brown sugar))
(tokens (the lion sleeps tonight))

sortcar SUBR 2 args

sortcar is exactly like sort, but the items in the array or list
being sorted should all be non-atomic. sortcar takes the car of each
item before handing two items to the predicatee Thus sortcar is to
sort as mapcar is to maplist.

Page 88 1. 04/08/74

Functions for Controlling the Interpreter

12 = Functions for Controlling the Interpreter

121 = The Top Level Function

When LISP is at its "top level,” it continually evaluates the following
form.

(errset (setq ~r nil Aq n1l ...) ;reset internal variables
(mapc “eval errlist) ;(come in here on error)
(setq x “x)
(do ntl (ni{1) ;then do the following forever
(setq x (cond ((status toplevel) .
(eval (status toplevel)));user’s
(t (print x) ;system’s,
(terpri) ;print prev. result
(eval (read))) ;read and eval next.
))))

which causes a “read-eval-print loop," ie. each S-expression that is typed
in gets evaluated and the value is printed, then the next S-expression is
read. Notice that there is a place in the middle where the user can insert
his own special form to be evaluated, using (status toplevel). See the
sstatus function (section 12.7).

When the LISP subsystem is entered, it is at top level. At this time, a
x is typed out and LISP begins continually evaluating the top level form.
LISP can return to top level from the middle of one of these evaluations
when an error occurs. Generally errors do not immediately return to top
level; rather they give the programmer a chance to find the cause of the
error. However, if an error is not corrected it will eventually get to top
level unless there is an errset in the way. When LISP returns to its ~ top
level, it again types a % and begins continuously evaluating the top level
form.

errlist VARIABLE

The value of errlist is a list of forms which are evaluated when
control returns to top level either because of an error or when an
environment is initially started. This feature is used to provide
self-starting LISP environments and to provide special error handling
for subsystems written in LISP.

04/08/74 121 Page 89

MACLISP Reference Manual
N VARIABLE

The value of % is the result of the last evaluation performed at top
level or in a break loop. When the lisp environment is first enteyed
and when control is returned to top level from an error, the value of
» is the atomic symbol x itself.

Page 90 121 04/08/14

Functions for Controlling the Interpreter

122 =~ Break Points

break FSUBR

(break tag pred) evaluates pred, but not tag. If the value of pred
is not nil, the state of the I/O system is saved, ";bkpt tag" is typed
out, and control returns to the terminal. We say that a "break loop"
has been entered. tag may be any object. It is wused only as a
message typed out to identify the break. It is not evaluated.

Forms may be typed in and evaluated as at top level. break does an
errset so that errors cannot cause an abnormal return from the break

If $p is typed in, break returns nil. This "$p" is <dollar> p
<newline> 'in the Multics implementation, but <altmede> P <spaced -in
the pdp-10 implementations.

If (return =x) is typed in, break evaluates x and returns that
value. When break returns, the state of the I/O system is restored.

break can be used to allow user intervention in a program when
something unexpected happens. It is used in this way by the LISP
error system. ‘

(break tag pred form) is the same as (break tag pred) except that

if $p is typed, the form is evaluated and used as the value of the
break instead of nil.

04/08/74 12.2 Page 91

" MACLISP Reforence Manuaal

123 = Control Characters

LISP can be directed to take certain actions by entering “contrel
characters” from the terminal. The difference between control characters
and normal input is that control characters take effect as soon as they are
entered while normal input only takes effect when LISP asks for it, by wuse
of functions such as read, or by being in the top level read-eval-print
loop or in a break loop.

Control characters can be typed in from the terminal according to some
procedure that depends on the implementation. A program can mimic the
effects of the various control characters using the function ftoc.

Although control characters are usually processed as soon as they are
typed, they will be delayed if there is a garbage collection . in progress or
LISP is in (nointerrupt t) mode - see the nointerrupt function.

Entering Control Characters in ITS LISP

In the ITS implementation of MACLISP, control characters are entered by
means of the "CTRL" key on the terminal. For example, CTRL/G is entered by
holding down "CTRL" and striking the “C" key. Control characters echo as
an uparrow or circamflex followed by the character. Numbers may not be
used as control characters.

Entering Control Characters in DEC-10 LISP

Control characters may be entered in the same way as in ITS LISP if LISP is
currently (read)’ing from the terminal. If a LISP program is actively
running, it is necessary to first gain its attention by striking comtrel-C.
LISP rings the bell and types a ? and an up-arrow, prompting for the emtry
of a character to be treated as a control character. If you typs a second
control-C control will return to the monitor.

Entering Control Characters in Multics LISP

Page 92 12.3 04/08/714

Functions for Controlling the Interpreter

In the Multics implementation of MACLISP, one signals one’s desire to
enter a “control” character by hitting the “attention® key on the terminal.
This is called "break,” “"interrupt,” “attn", “quit,” etc. on different
terminals. If Multics is being accessed through the ARPA network, an
“interrupt process” signal should be transmitted. This causes lisp to type
out "CTRL/" After this has been typed, you may type one control character,
which ie a letter from the list in section 123.3 which will be interpreted
to have its “control” meaning. The control character must be followed by a
newline.

You may also enter a number, which will be interpreted in decimal. A
user interrupt will be issued on the user interrupt channel indicated by
the number you typed in. If there is no such interrupt, or the interrupt
service function for that channel is nil, ro warning will be issued. The
argument passed to the interrupt service function is the atom 1oc The
most useful interrupt channel numbers are 0, which is the same as CTRL/@;
1, which is the same as CTRL/h, and 2 which is the same as CTRL/a (exactly,
including the changing of the value of the atom *a) Note that certain
characters, notably @, may have special meaning to the Multics typewriter
DIM and may have to preceded by a backslash.

Note: any input that has been typed in but has not yet been read by lisp
when the attention key is pushed will be lost. Usually this is the current
line of input.

It is also possible to enter “control® characters from an input
character stream, which may have its source at the terminal or in an
exec_com, without the use of the “attention™ key. The desired control
character is prefixed by a \036 character.r If two of these prefix
characters occur together, one \036 character is read and no “control”
action is performed. Otherwise, the character following the \036 is
processed as a control character, then reading continues. This method only
works with the letter and special-symbol control characters, not with the
number control characters.

NB: Control characters will be accepted in upper or lower case. All
characters other than those with defined meanings are rejected with an
error message. Only one control character may be entered at a time. When
a “"user interrupt” is caused, if the interrupt is not enabled nothing
happens. If the interrupt is enabled, then a user-specified function is
called. The interrupt may be enabled by using the function sstatus. E.g.:
(sstatus interrupt 2 “f00) causes f00 to be called with one argument when
interrupt 2 occurs.

04/08/74 12.3 Page 93

Example:
>
>
>
>
>
>

>>>
>

Page 94

MACLISP Reference Manual
(lines containing user input are preceded by >)>>)

(defun loop (x) (loop (addl x)))
loop
(1oop 0)

. function runs for a long time,
CATTN> then user hits attention button.
CTRL/B LISP types "CTRL/", user types "B"
:bkpt *b system enters break loop :
X user looks at value of x
4067
CATTN> user hits attention button again
CTRL/G and returns to top level
Quit
]

123

04/08/74

Functions for Controlling the Interpreter

123.1 <~ List of Control Characters

These are the control characters that have defined meanings

A makes the value of the atom “a non-nil and causes user interrupt
2

B causes user interrupt number 1, which (usually) enters the “bkpt
Ab" breakpoint.

Cc sets the value of the atom ~d to nil, turning off garbage
collector messages

D sets the value of the atom ~d to t, turning on garbage collector
messages

quits back to top level of lisp, undoing all bindings

Q sets the value of the atom *q to t, enabling input from the
source selected by the value of infile, or by use of the function
uread.

R sets the value of the atom “*r to t, enabling output to the

destinations selected by the value of outfiles, or by use of the
uwrite function.

S sets the value of the atom “q to nil, enabling input from the
terminal

T sets the value of the atom “r to nil, disabling output to the
destinations that CTRL/r enables.

U causes the current call to (read) to be restarted from the
beginning.

v sets the value of the atom *w to nil, enabling output to the
terminal

w sets the value of the atom “w to t, disabling output to the
terminal

X causes an error which can be caught by errset

yA On the pdp-10 returns to DDT. On Multics returns to Multics

command level. (start re-enters lisp) This control character is
handled immediately even when LISP is garbage collecting or
running in (nointerrupt t) mode, unlike most of the others.

(] causes user interrupt 0. Note that on Multics an escape must be
used to type the @ sign.

04/08/14 12.3.1 Page 95

O

MACLISP Reference Manual

\ causes user interrupt 14. Note that on Multics an escape must be
used to type this backslash character.

causes user interrupt 15.

A causes user interrupt 16.

The following control characters only exist in the Maultics
implementation.

does nothing, used to speed up a slow process by causing an
interaction. This control character is handled immediately even
when LISP is garbage collecting or running in (nointerrupt t)
mode, unlike most of the others.

? asks the LISP subsystem what it is doing: running, waiting for
input, collecting garbage, or running with user-interrupts masked
off. . This control character is handled immediately even when
LISP is garbage collecting or rumning in (nointerrupt t) mode,
unlike most of the others.

The following control characters only exist in pdp-10 implementations
with the "moby I/O" capability.

F cause display slave to seize a display.
N turn on display.

0 turn off display.

Y interrogate display slave.

The following control characters only work in the pdp-10 implementation.

K redisplay the current input. This allows you to get a clean copy
of your input after rubouts have been used..

L erases the screen if the terminal is a display, then does a
control K.

4] if the terminal is a display, and in (sstatus pagepause t) mode,

and the end of the screen has been reached, typing control u will
tell lisp to continue typing out.

1

Page 96 ‘ . 12.3.1 A 04/08/74

Functions for Controlling the Interpreter

1232 = Control=Character Functions

ioc

1og

FSUBR

The argument to ioc is processed as if it were a “control character”
that had been typed in. Numbers are taken as a whole, pname atoms
(atomic symbols) are processed character by character, except that n1l
causes an immediate return. Examples:

(10c 1) causes user interrupt 1.

(1oc vt) switches output to the terminal.
(1oc q) switches input to a file.

(1oc g) quits back to the top level of lisp.

If 4oc returns, its value is t

FSUBR

fog first saves the values of the I/O switches q, “r, and *w. Then
it processes its first argument the same as ioc. Next the remaining
arguments to 10g are evaluated, from left to rightt The values of the
variables “q, Ar, and *vw are restored, and the value of the last
argument is returned. Example:

(1og vt (princ "A Message."))

gets a message to the console no matter what the 1/O system is doing.
It evaluates to "A Message." - ‘

VARIABLE

When a CTRL/a is done, the value of the atom *a is made non-n1l (user
interrupt 2 is also signalled.)

04/08/74 1232 Page 97

MACLISP Reference ﬂandal

124 <+« Errvors and User Interrupts
124.1 - The LISP Error System

The errvors detected by the LISP subsystem are divided into two types:
correctable and uncorrectable. The uncorrectable errors will be esplained
first since they are simpler.

An uncorrectable error is an error that causes the destruction of the °
evaluation in which it occurs. An example of an uncorrectable error is
illegal format in a ’do>. When an uncorrectable error occurs, the first
thing that happens is the printing of an error message. The error message
goes to the terminal and nowhere else, no matter how the I/O switches and
variables are set. The error message consists of some explanatory text and
(sometimes) the object or form that caused the error.

After the error message has been printed, control is returned to the
most recent error-catcher. There is an error-catcher at top level, and
error-catchers are set up by the functions errset and break. All variable
bindings between the error-catcher and the point where the error occurred
are restored. Thus all variables are restored to the values they had at
top level or at the time the errset was done, unless they were setg'ed
without being hound.

What happens next depends on how the error-catcher was set up. At top
level, (mapc “eval errlist) is done, a ® is typed, and the read-eval-print
loop (or a user specified top level form) is re-entered. If an ervor
returns to break, it simply re-enters its read-eval-print loop. In the
Multics implementation the fact that break has caught an error is signalled
by doing something to the terminal such as blinking a light, rmgnu a
bell, or twiddling the typeball, depending on the type of termimal. I an
error returns to errset, errset returns nil and evaluation proceeds.

The above description is slightly simplified. It is possible for a nser
interrupt to occur between the typing of the message and the unwinding of
bindings and return of control to an error-catcher. This user interrupt is
normally a break loop which allows the wuser to examine the values of
variables before the bindings are restored, in hope of finding the cause of
the error. If the error is going to return to top level, the arset-trap
user interrupt (number 19.) is signalled. In (arset t) mode @ break loop
ie entered, but in (xrset nil) mode the user interrupt is ignored by the
system supplied handler. If the error is going to return to a break or an
errset, the errset wuser interrupt (number 4) is signalled. The initial
environment contains a null handler for this interrupt, but the wuser may
supply a break loop or other handler.

Correctable errors are errors which may be corrected by wser

Page 98 1241 04/08/14

Functions for Controlling the Interpreter

intervention. If such an error is properly corrected, evaluation will
proceed as if no error had occurred. If the option to correct the error is
not exercised, this type of error will be handled the same as an
uncorrectable error.

When a correctable error occurs, a user interrupt is signalled. - See
section 1242 for user interrupt channel assignments for these errors.
The initial environment contains handlers for these errors which print an
error message similar to the message printed for an uncorrectable error and
then enter a break loop.

The argument passed to the user interrupt handler is usually a list
describing the error. See section 1242 for details. If the wuser
interrupt handler is nil, or if it returns a non-list, the error is treated
like an uncorrectable error. But if the handler returns a list, the car of
that list is wused to correct the error in a way which depends on the
particular error which occurred.

If the most recent error-catcher is an errset (or a break), correctable
errors will be treated as uncorrectable errors unless there is a non-null
handler for user interrupt 4, the errset interrupt. This is to prevent
multiple confusing "nested” error breaks unless the user indicates that he
is sophisticated by setting up a handler for the errset interrupt.

04/08/74 12.4.1 Page 99

MACHS? ﬁefenm Manual

1242 =« Usger Interrupts

LISP provides a number of "user interrupts,” which are a mechanism by
which a user procedure may temporarily gain control when an exceptional
condition happens. The exceptional conditions that use the user interrupt
system include certain control characters, the alarmeclock timers, the
garbage collector, and many of the errors that are detected by the
interpreter or by the system f{unctions.

The user interrupts are divided up into several channels. Each channel
is designated by a number. Each channel has associated with it a “service
function." If the service function is nil, interrupts on that channel will
be ignored. If the service function is not nil, it is a function which is
called with one argument when the user-interrupt occurs. The nature of the
argument depends on which channel the interrupt is on; wusually it is an
S-expression which <can be used to localize the cause of the interrupt.
Some user interrupts use the value returned by the service function to
decide what to do about the cause of the interrupt.

The service function for user interrupt channel # can be obtained by
(status interrupt n). It can be set by (sstatus interrupt mn f). The
initial values ‘for the service functions of the various interrupts are
provided by the system as break loops for some interrupt channels and nil
for others. '

Some user interrupt channels keep their ‘service functions as the values
of variables accessible to the user; this allows them to be lambda-bound.
See section 1243

The interrupt channels with entries in the return value column of the
table of wuser interrupts included in this section are wuser interrupts
signalled by correctable error conditions. The argument to the service
function is a description of the error in the form shown. If the service
function returns nil (or any atom), the normal error procedure occurs -
control returns to the most recent errset or to top level if there was no
errset. If the service function returns a list, it is interpreted as the
form shown in the return value column. The car of the list is wused to
attempt recovery from the error. Note that interrupts 6 and 9. evaluate
this before they use it. In the table, an apostrophe is used to indicate
that the new value for user interrupt 6 will be evaluated unless you quote
it. Often you would give a substitute atomic symbol which would then be
evaluated to get the new value If recovery is successful executien
proceeds from the point where the error occurred. If recovery is
unsuccessful another error is signalled.

Page 100 12.4.2 \ 04/08/14

3

Functions for Controlling the Intarpretér

Table of User Interrupt Channels

Chn Symbol Whose Reason for Argument passed Return
Num Value is Fen. Interrupt to function Value
0 -none- ctrl @ nil -
1 Ab ctrl b nil -
2 -none- ctrl a nil -
3 alarmclock a timer went off time or runtime -
4 errset error caught by errset nil -
5 undf-fnctn undefined function (fen) (new-fen)
6 unbnd-vrbl undefined symbol (symb) (new-val)
1 wrng-type-arg bad arg to a fen. (arg) (new-arg)
8. unseen-go-tag go or throw error (bad-tag) (new-tag)
9, wrng-no-args wrong number of args (form args-prop) (new-form)
or (form lamhbda-list)

10. gc-lossage out of memory space-name -
11 fail-act miscellaneous error see below see below
12. pdl-overflow infinite recursion pdl-name (t)
13. gc-overflow a space is filled space-name (t)
14. -none- ctrl \ nil -
15. -none- ctrl] nil -
16. -none- ctrl A nil -
18. -none- autoload {fen . property) -
19. Xrget-trap error return to top level nil -
20. gc-daemon garbage collection see below -

The fatl-act interrupt, number 11, is wused for a vwvariety of
miscellaneous error conditions. Here is a table giving the types of
04/08/14 1242 Page 101

MACLISP Reference Manual

arguments that may be passed to the fail-act service function. For each
type the cause of the interrupt and the return value to correct the ervor
are given.

(arrayindex (mame indices..)) An out-of-bounds array access occurred om
the array name. Sometimes it is not possible to determine the name of
the array, in which case name will be 2. For example, this can happen
if the array has been remob’ed. The return form is ((name subs...))

which will retry the access with the new subscripts subs.. name s
ignored.

(go return) go or return was used outside of a prog. The return value does
not matter; this. error is not actually correctable.

(arg (n)) The arg function was called with argument n, but this wﬁ not
done inside a lexpr.

(setarg (n value)) The function setarg was called with arguments n and
value and an error similar to the preceding occurred.

(1base) The reader variable ibase had a bad value: not a fixnum or not
between 2 and 36. It is reset to 8. before the user interrupt occurs.
Returning (t) will cause the reader to continue reading.

(base) The printer variable base had a bad value: not a fixnum or not
between 2 and 36. It is reset to 8 before the user interrupt occurs.
Returning (t) will cause the printer to continue.

(infile x) The input file = is invalid for one reason or another. rq has
been reset to nil If (t) ic returned by the service function, “q
will be set back to t and the function that lost trying to input from
x will proceed, taking input from infile.

(setqg (nil)) You aren’t allowed to change the value of nil.
(setqg (t)) You aren’t allowed to change the value of t

(read-eof) The reader found an end of file in the middle of an object.
Usually this indicates mismatched parentheses. If (t) is returned, it

will go on reading the broken object from whatever input source is now
selected.

(outfile x) The output file x is invalid for one reason or another. *r is
reset to nil before the user interrupt occurs. If (t) is returned, *r
will be set back to t and the function that lost trying to output to =
will go on its way.

(f1lepos x) The filepos function was used on the file x, but this file is
not equipped for random access. If (‘new-val) is returned, filepos
returns new-val to its caller without further ado.

(filepos x n) The filepos function was used in the form (filepos x m), but
R is not a position inside the file . If (“new-val) is returned,

Page 102 12.42 04/08/74

Functions for Controlling the Interpreter

filepos returns new-val to its caller without further ado.

(openi =), (openo x), (opena x), (rename x y), (deletef x) The file system
complained in some way: eg. file not found, incorrect access. The
argument passed to the service function represents the form which was
evaluated to cause the error, except that the values of the arguments
are the values they have after being mergef’ed over the defaults, i.e.
they are precise namelists. If (“new-vel) is returned, the function
that lost returns new-val as its value without further ado.

(zunderflow) A floating-point arithmetic underflow has occurred, ie. a
result was developed whose magnitude was too small to be represented
by the machine. Setting the variable zunderflow to t would have
prevented the fail-act from happening; instead the result would have
been taken as 0.0. Returning a non-atomic value from the (fail-act
will cause this to happen.

(quotient 0) An attempt was made to dividle a number by zero. If (sstatus
divov t) has been evaluated, the fail-act would not have occurred.
Instead the result of the division would have been taken as the
numerator + 1. Returning a non-atomic value from the fail-act causes
this to occur.

Here is an example of a user interrupt service function. This is the one
supplied by the system for unbound variable errors when the user does not
specify one

(setq unbnd-vrbl
“(tambda (args)
(1og vt (errprint nil))
((1ambda (readtable obarray)
(break unbnd-vrbl t))
(get ‘readtable “array)
(get ‘obarray “array))))

04/08/14 12.4.2 Page 103

© MACLISP Reference Manual

1243 = User Interrupt Functions and Variables

alarmclock SUBR 2 args

alarmclock is a function for controlling timers. It can start and
stop two seperate timers; onme is a real-time timer (which counts
seconds of elapsed time) and the other is a cpu-time timer (which
counts microseconds of machine run time) 'The first argument to
alarmclock indicates which timer is being referred to: it may be the
atom time to indicate the real-time timer or the atom runtime te
indicate the cpu-time timer.

The second argument to alarmclock controls what is done to the
selected timer. If it is a positive (non-big) number the timer is
started. Thus if n is a positive fixnum or flonum, evaluating
(alarmclock ‘time n) sets the real-time timer to go off in n seconds,
and (alarmclock “runtime n) sets the cpu-time timer to go off in n
microseconds. If the timer was already rumning the old setting is
lost. Thus at any given time each timer can only be running for one
alarm, but the two timers can run simultaneously.

H the second argument to alarmclock is not' a positive number, the
timer is shut off, so (alarmclock x nil) or (alarmclock = -1) shuts
off the x timer.

alarmclock returns t if it starts a timer, ntl if it shuts it off.

When a timer goes off, user interrupt 3 occurs. The service function
is run in (nointerrupt t) mode so that it can not be interrupted until
it has done its thing. If it wants to allow interrupts, other timers,
etc. it can evaluate (nointerrupt nil). In any case the status of the
nointerrupt flag will be restored when the service function. returns.
The argument passed to the user interrupt service function is a list
of one element, the atom time or the atom runtime, depending on the
first argument in the call to alarmclock that set up the timer. See
also the function nointerrupt.

alarmclock VARIABLE

The value of alarmclock is the service fumction for user interrupt
number 3, which is the user interrupt signalled when a timer set up by
the alarmclock function goes off.

Page 104 \ 1243 04/08/74

Functions for Controlling the Interpreter

nointerrupt SUBR 1 arg

(nointerrupt t) shuts off LISP interrupts. This prevents alarmclock
timers from going off and prevents the use of control characters such
as CTRL/g and CTRL/b. Any of these interrupts that occur are simply
saved. (nointerrupt t) mode is used to protect critical code in large
subsystems written in LISP. It is also used by the LISP subsystem
itself to protect against interrupts in the garbage collector.

(nointerrupt nil) turns interrupts back on. Any interrupts which were
saved will now get processed.

nointerrupt returns the previous state of the intempi disable
gwitch, t or nil. The normal, initial state is nil.

errset VARIABLE
The value of the atom errset is the service function for wuser

interrupt number 4, which is signalled when an error is caught by an
errset.

fatl-act VARIABLE
The value of fail-act is the service function for wuser interrupt

number 11, which is signalled when any of a large variety of
miscellaneous error conditions occurs.

gc-daemon VARIABLE

The value of gc-daemon is the service function for user interrupt 20,
which is signalled after each garbage collection.

gc~-lossage VARIABLE

The value of gc-lossage is the service function for wuser interrupt
number 10, which is signalled when there is no more memory. In the
Multics implementation, there is always enough memory, so this user
interrupt never occurs.

04/08/74 1243 Page 105

~ MACLISP Reference Manual

unbnd-vrbd1 'VARIABLE

The value of unbnd-vrbl is the service function for user interrupt
number 6, which is signalled when an attempt is made to evaluste én
atomic symbol which does not have a value (an unbound varisble.)

unqlf~fnctn VARIABLE

The wvalue of undf-fnctn is the service function for user interrupt
number §, which is signalled when an attempt is made to call an
undefined function. ‘

unseen-go-tag - VARIABLE

The value of unseen-go-tag is the service function for wuser interrupt
8., which is signalled when go or throw is used with a tag which does
not exist in the current prog body or in any catch, respectively.

§

wrng-no-args VARIABLE

The value of wrng-no-args is the service function for user inuri-npt
channel 9, which is signalled when a function is called with the
wrong number of arguments. -

wrng-type-arg VARIABLE

The value of wrng-type-arg is the service function for user interrupt
number 7, which is signalled when an argument is passed to a system
function which is not acceptable to that function.

xrset-trap VARIABLE

The value of xrset-trap is the service function for user interrupt
19, which is signalled when an error returns control to top level,
just before the bindings are restored. By convention, the handler for
this interrupt should not do anything unless the variable arset is
non-nil. ’

Page 106 1243 , 04/08/74

Functions for Controlling the Interpreter

1244 - Autoload

The “autoload” feature provides the ability for a function not present
in the environment to be automatically loaded in from a file the first time
it is called. When eval, apply, funcall, or the version of apply used by
compiled LISP searches the property list of an atom looking for a
functional property, if the first functional property found is under the
indicator autoload, automatic loading will occur.

Automatic loading is performed by means of user-interrupt 18; thus the
user may assert any desired degree of control over it. When the autoload
property is encountered, the user-interrupt 18. handler is called with one
argument, which is a dotted pair whose car is the atomic gymbol which is
the function being autoload’ed, and whose cdr is the value of the autoload

property. The system-supplied handler for user interrupt 18. could have
been defined by:

(sstatus interrupt 18.
“(1ambda (x)
(1oad (cdr x))))

Note: in the pdp-10 implementations the system autoloid handler presently
uses fasload rather than load because the load function requires the newio
feature. This affects the form of an autoload property as described below.

When the interrupt handler returns, it had better have put a functional
property on the property list of the function being autoloaded. If not, an
undf-fnctn error will occur with a message such as

“function undefined after autoload”

Note that the functional property must be placed on the property list
before the autoload property. This is normally the case

Examples of setting up functions to be autoloaded:
In the Multics implementation:

(putprop “foo "yudd>AutoProgdL ibrary>foo-function” “autoload)

In the ITS implementation:

(putprop “foo “(foo fasl dsk me) “autoload)

04/08/74 12.4.4 Page 107

MACLISP Reference Manual

125 -« Debugging

125.1 - Binding, Pdl Pointers, and the Evaluator

The MACLISP evaluator is conceptually based on a push down list (pdl),
or stack, which holds bindings, evaluation frames, and sundry internal
data. Bindings are values of atomic symbols which are saved when the
symbols are used as lambda variables, prog vgm@hles, or do variables.

Evaluation frames are constructed when .2 non-atomic form is evalulted or

when apply is used. They correspond to function calls.

As the evaluator recursively evaluates a form, information is pushed
onto the pdl and later popped off. When the xrset and nouuo flags are t
this .information is .sufficiently detailed to be of use in debugging. (See
the variables xrset .and nouuo.) A position within the pdl may be named by
means of a "pdl pointer,” which is a negative fixnum whose value has
meaning to the -evaluator. nil is also accepted as a pdl pointer. It means
the top of the :stack, ie. the most recent evaluauon. ‘Note that this is

different from -ni1 .as an a-list pointer, which means the bottom of the

stack or the outermost evaluation. 0 is also aecepted as a pdl pointer;
it designates _the .frame at the bottom of the stack. Pdl pointers may be

-used - as .arguments -to .several debugging - functions dugnlml in the next
- section.

Several ..of -the debugging functions described in .the next section can be

“used ‘ to -generate :pdl . pointers. -Since the -fixnum y&lue of a pdl pointer has

only . internal . meaning, : generally a pdl pointer cannot be obtamed from user
input. .

An important thing to note about pdl pointers is their limited scope of
validity. - If .the ..information on the pdl which is ;wped by a pdl pointer

‘has -been - popped .off . since the pdl pointer was created, the pdl pointer no

longer - has . valid . meaning.

" Page: 108 1250 04/08/74

[—

Functions for Controlling the Interpreter

1252 - Functions for Debugging

See also Chapter 15, on the trace package.

Note: the functions' below which return “frames” are subject to change.
The exact format of the list returned may vary from time to time and
implementation to implementation, so try it on your implementation and see
what it does. At some time in the future this will probably be stabilized.

xrset SUBR 1 arg

(xrset x) sets the krset flag to n11 if % is nil, to t if = is
non-n1l, and returns the value it set it to. If the *rset flag is t,
extra information is kept by the interpreter to allow the debugging
functions, such as baktrace and evalframe, to work.

baktrace LSUBR 0 to 2 args

baktrace displays the stack of pending function calls. It only works
in (xrset t) mode. The first argument is a pdl pointer, as with
evalframe. If it is omitted, n1l is assumed, which means start from
the top of the pdl. The second argument is the maximum number of
lines to be typed; if it is omitted the entire stack is displayed.

errframe SUBR 1 arg

errframe returns a list describing an error which has been stacked up
because of a user interrupt. The list has the form (pdiptr message
alist), where pdliptr is a number which describes the location in the
pdl of the error, message is a character string which can be printed
out as a description of the error, and alist is a number which can be
used as a second argument to eval or a third argument to apply to
cause evaluation wusing the bindings in effect just before the error
occurred.

The argument to errframe can be nil, which means to find the error at
the top of the stack; i.e. the most recent error. It can also be a
pdl ptr, in which case the stack is searched downward from the

indicated. position. Thus the second most recent error may be found
by:

(errframe (car (errframe ni1)))

04/08/74 125.2 Page 109

MACLIS? Reference Mﬂamnl

The argument to errframe may also be a positive number, which is the
negative of a pdl ptr. This means start from the position in the
stack marked by the pdl ptr and search upwards.

If no error is found, errframe returns nil.

errprint SUBR 1 arg

errprint treats its argument the same as errframe. The message
portion of the error frame is princed. errprint returns t if a
message was typed out and nil if no error frame was found. - . .

evalframe SUBR 1 arg

The argument to evalframe is a pdl ptr, as with errframe. The pdl s
searched for an evaluation of a function call, using the same rules
about starting point and direction as errframe uses. - evalframe always
skips over any calls to itself that it finds in the pdl

The value is a list (pdiptr form alist), where pdliptr is a pdl pointer
to the evaluation in the stack, suitable for use as an argument to
evalframe or errframe or baktrace, form is the form being evaluated or
the name of the function being applied, and alist is am a-list pointer
which can be wused with eval to evaluate something in the binding
context just before the evaluation found by evalframe.

evalframe returns nil if no evaluation can be found.

evalframe only works in (xrset t) mode

freturn ' SUBR 2 args
(freturn p x) returns control to the evaluation designated by the pdl

pointer p, and forces it to return ¥ This "non-local-goto” function
can be used to do fancy recovery from errors.

The following functions only exist in the Multics .implementation.

baktracel LSUBR 0 to 2 args

baktracel is the same as baktrace except that a-list ptrs

. suitable for use with eval and apply are displayed along with the
function names.

Page 110 125.2 : 04/08/74

Functions for Controlling the Interpreter

baktrace2 LSUBR 0 to 2 args

baktrace2 is the same as baktracel except that pdl point;cu,
suitable for use with baktrace and evalframe, are displayed along
with the function names and a-list pointers.

04/08/74 12.5.2 Page 111

MACLISP Reference Manual

1283 = An Example of Debugging in Maclisp

TO BE SUPPLIED

. Page 112 125.3 04/08/74

Functions for Controlling the Interpreter

126 <~ Storage Management

In MACLISP storage for programs and data is automatically managed by the
system. The casual user need not concern himself with storage management
and need not read this section. However, the user who is curious about the
implementation or who has to construct a subsystem on top of MACLISP may
need to be concerned with how the internal storage management routines work
and how to control their general functioning. In no case is it necessary
to control the exact step by step operations of storage management, but a
variety of functions are provided to set the general policy followed by the
lisp storage management procedures.

126.1 - Garbage Collection

Garbage collection is the mechanism which LISP uses to control storage
allocation. Whenever LISP feels that too much storage is being used, a
garbage collection is initiated. @ The garbage collector traces through all
the S-expressions which can be reached by car’ing and cdr’ing from atomic
symbols’ values and property lists, from forms and temporary results
currently being used by the evaluator, from data used by compiled code, and
from the saved values of bound variables. All the data which it finds in
this way is "good” data, in that it is possible for it to be used again.
Everything else is garbage, which can never again be used for anything
because it cannot be accessed, so the storage used by it is reclaimed and
reused.

gc FSUBR

(gc) causes a garbage collection and returns nil.

gctwa FSUBR

gctwa is used to control the garbage collection of “truly worthless
atoms,” which are atomic symbols which have no value and no
properties, and which are not referenced by any list structure, other
than the obarray (the current obarray if there is more than one).

(gctwa) causes truly worthless atoms to be removed on the next garbage
collection.

(gctwa t) causes truly worthless atoms to be removed on each garbage
collection from now on. Note: gctwa does not evaluate its argument.

(gctwa nil) causes this continual removal of truly worthless atoms to
be shut off, but it does not affect whether the next garbage

04/08/74 12.6.1 Page 113

" MACLISP Reference Manual

collection removes twa's.

The value returned by gctwa is a fixnum which is 0 if no garbage
collection of truly worthless atoms will be done, 1 if twa’s are to be
gc’ed on the next garbage collection, 10 if twa’s are to be gced on
all garbage collections, or 11 if both. (These numbers are octal)

~d SWITCH

If the wvalue of ~d is non-nil, the garbage collector prints an
informative message after each garbage collection.

See also the variables gc-daemon and gc-lossage.

1262 - Spaces

In MACLISP the storage used for LISP objects is divided into several
conceptual subdivisions, called spaces. Each space contdins a different
type of object. Allocation proceeds separately in the different spaces,
but garbage collection of all spaces occurs together since an object in one
space could contain a pointer to an object in any other space.

For example, in the "Bibop™ version of the pdp-10 implementation, the
spaces are as follows:

LIST conses (dotted pairs) and lists.
FIXNUM fixnums.
FLONUM flonums.
BIGNUM bignum headers. bignums also occupy fixnum and list space.
SYMBOL atomic symbols.
ARRAY “special array cells.”
REGPDL the "regular” pushdown list.
SPECPDL the "special® pushdown list, used in binding.
FXPOL the fixnum pushdown list, used for temporary numeric values.
FLPDL the flonum pushdown list, used for temporary numeric values.
Binary Program Space wused to hold arrays and compiled code.
pure LIST, pure FIXNUM, pure FLONUM, pure BIGNUM
See the Bibop manual; these spaces are not of general interest.

In the Multics implementation, the spaces are:

Tist conses (dotted pairs), lists, atomic symbols, bignums, and
strings.
Static Storage arrays, files, and linkage to compiled code.

markedpd1 a pushdown list of lisp objects.

Page 114 \ 12.6.2 ' 04/08/74

Functions for Controlling the Interpreter

unmarkedpdl a pushdown list of machine data, not lisp objects.

Note: in the Multics implementation there is no space for numbers because
numbers are stored in such a way that they do not take up any extra room.

Associated with each space is information determining when an attempt to
allocate in that space should cause a garbage collection. The idea is that
one should allocate for quite a while in a space, and then decide that it
is worth the trouble of doing an expensive garbage collection in order to
prevent the space from using too many bits of actual storage.

The exact nature of this information varies with the space. In a
pushdown list (pdl) space, all information must be stored contiguously so
the only parameter of interest is how big the pdl is. This can be measured
in three ways, so there are three parameters associated with a pdl:

pdlsize the number of words of valid data in the pdl at the moment.

pdimax the size to which the pdl may grow before intervention is
required. This is used to detect infinite recusion.

pdiroom the size beyond which the pdl may not grow no matter what.

A space such as a list space has three parameters, called the gcsize,
gemax, and gcmin. These are are in machine-dependent units of "words.”
The gcsize is the expected size of the space; as objects are allocated in
the space it will grow without garbage collection until it reaches this
size. When it gets above this size garbage colletion will occasionally be
required, under control of the other two parameters.

The gcmax is the maximum size to which the space should grow; if it gets
this big garbage collections will occur quite frequently in an attempt to
prevent it from growing bigger.

The gcmin specifies the minimum amount of free space after a garbage
collection. It may be either a fixnum, which specifies the number of words
to be free, or a flonum which specifies the fraction of the space to be
free. The exact interpretation of this depends on the implementation. In
the pdp-10 implementation, which uses free storage lists, the gcmin is the
number of words which must be on the free storage list after a garbage
collction. If there are not this many, the space is grown, except if its
size approaches gcmax it may not be grown by the full amount. In the
Multics implementation, which uses a compacting garbage collector, the
criterion for garbage collection is not when a free list is exhausted but
when the space reaches a certain size. This size is the maximum of gcsize
and the sum of the size after compactification plus gemin (if it is a
fixnum) or the size after compactification times 1/(1-gcmin) (if gemin is a
flonum.) The effect of this is to allow the same amount of allocation
between garbage collections as there would be in the pdp-10 implementation
with the same gcmin.

Note that these controls over the sizes of spaces are somewhat inexact,

04/08/74 12.6.2 Page 115

. 4 0

" MACLISP Reference Manual

since there is rounding. For instance, the Bibop version of the pdp-10
impementation allocates memory to spaces in units of 256. or 512 words.
The Multics implementation allocates at least 16,384 words between garbage
collections and presently controls the size of pushdown lists in units of
1024. words.

Some spaces, such as Binary Program Space in the pdp-10 implementation
or Static space in the Multics implementation are not subject to detailed
control by the user. The management of these spaces is entirely automatic.
Generally these are spaces where the rate of allocation is fairly placid
and most objects, once allocated, are used forever and never freed. Hence
the exact policy wused for storage management in these spaces is not too
important.

1263 =~ Storage Control Functions

alloc SUBR 1 arg

The alloc function is used to examine and set parameters of various
spaces having to do with storage management. To set parameters, the
argument to alloc should be a list containing an even number of
elements. The first element of a pair is the name of a space, and the
second is either a fixnum or a 3-list. A fixnum specifies the pdlsize
(for a pdl space) or the gcsize (for other spaces) A 3-list cannot
be wused with a pdl space It specifies, from left to right, the
gesize, gcmax, and gemin. nil means “don’t change this parameter.”
Otherwise a fixnum must be supplied, except in the third element (the
gcmin), where a flonum is acceptable.

An example of this use of alloc, in the pdp-10 Bibop implementation:

(alloc “(1ist (30000. 5000. 0.25)
fixnum (4000. 7000. n1l)
regpdl 2000.))

or, in the Multics implementation:

(alloc “(11st (30000. nil 0.3)
markedpd1 5000.
unmarkedpd1 5000.))

alloc may aleo be called with an argument of t, which causes it to
return a list of all the spaces and their parameters. This list is in
a form such that it could be given back to alloc at some later time to
set the parameters back to what they are now.

Page. 116 1263 04/08/14

Functions for Controlling the Interpreter

The following functions are certain cases of the status and sstatus
functions which are described in section 12.7.

(status spcnames)

Returns a list of the names of all the spaces available in the LISP
being used. These are the spaces acceptable to the alloc function.

(status spcsize space)

Returns the actual, current size of space, in words. space is
evaluated.

(status pdisize space)

Returns the current number of words on a pdl

(status pdiroom space)

Returns the "pdiroom™ of a pdl, ie. the maximum size to which it may
ever grow.

(status pdimax space)

Returns the current value of the "pdimax" parameter of a pdl.

(sstatus pdimax space size)

Sets the pdlmax parameter for the pdl space to size. Both arguments
are evaluated.

1264 = Dynamic Space and Pdl Expansion

There are several user interrupts generated by the storage management.
See sgection 124 for a description of user interrupts. The gc-daemon
interrupt (number 20.) occurs after each garbage collectionn The argument
passed to the gc-daemon interrupt handler is a list of items; each item has
the form (space before . after), where space is the name of a space, before
indicates the number of cells free before the garbage collection, and after

04/08/74 / 1264 Pago 111

MACLISP Rei; erence Manual

indicates the number of cells free afterwards. (In the Multics
implementation, where “free cells” is a meaningless concept, only the
difference of these two numbers is significant. It represents the amount
of compaction achieved.)

The gc-lossaye interrupt (number 10.) occurs if the garbage collector
tries to expand a space but fails because, for example, the operating
system will not give it any more storage. The argument passed to the
interrupt service function is the name of the space that lost.

The pdl-overflow interrupt (number 12.) is signalled when some pushdown
list exceeds its pdlmax. The pdlmax is increased slightly so that the
interrupt handler will have room to run. The argument passed to the
interrupt function is the name of the pdl that overflowed. If the
interrupt function uses too much pdl, this interrupt will occur again. If
this happens enough times, the pdlmax will reach the pdlroom, there will be
no room in the pdl to take a user interrupt, and an uncorrectable error
will occur.

The interrupt function can decide to terminate the computation that
overflowed the pdl, by doing an (1oc g) or a (throw), or it can increase
the pdimax by using alloc or (sstatus pdimax) and then continue the
computation by returning. Note that unlike most other user interrupts, if
the pdi-overflow interrupt function returns nil for the ";bkpt
pdl-overflow® is $p'ed), the computation is continued as if the pdl
overflow had not occurred.

The gc-overflow interrupt (number 13.) occurs when some space (other
than a pdl) exceeds its gemax. This gives the user a chance to decide
whether the size of the space should be increased and the computation
continued, or that something is wrong and the computation should be
terminated. The argument passed to the interrupt handler is the name of
the space that overflowed. The interrupt handling function will be able to
run because the garbage collector makes sure that the space is sufficiently
large before signalling the interrupt, evem if this makes it become
somewhat larger than its gemax.. This interrupt is similar to pdl-overflow;
if the interrupt handler function returns at all, even if it returns nil,
the interrupted computation proceeds. To terminate the computation an
explicit (ioc g), (throw), or (error) must be done.

1265 - Initial Allocation

The pdp-10 implementations of MACLISP run on a machine with a
limited-gize address space. Consequently the allocation of portions of
this address space to different uses, such as LISP storage spaces, becomes
important. This is particularly true of implementations without the
"Bibop" feature, which do not take advantage of paging.

When LISP is first entered, it goes through a dialogue with the user
known as “allocation." Normally the dialogue simply consists of the user

Page 118 126.5 04/08/74

Functions for Controlling the Interpreter

declining to specify anything, in which case LISP chooses suitable
defaults. If a large problem is to be worked on, the defaults may be
inappropriate and it may be necessary to explicitly allocate a larger
amount of storage. It is also possible for the user’s replies to come from
a file

If LISP is called with a command line from DDT, for example
:LISP INDEX LOADER COM:

it reads the indicated file in the same way that it would read .LISP.
(INIT). See below.

On the other hand, if LISP is called without a command line, it
identifies itself and asks

ALLOC?

Suitable responses are Y, N, and CTRL/Q. There are other obscure
characters which can be used as replies to this question, but these three
are sufficient. "N" means that you do not want to specify allocation. You
will get the default. "Y" means that you wish to go through the following
sequence of questions and answers.

LISP types out the names of various spaces and their sizes. The first
one, "CORE", is special. It is not a space but the total amount of address
space desired, and the size is in pages rather than words. After each
question you may enter altmode, which terminates the dialogue and gives the
remaining parameters default values, or space which goes on to the next
question. Before your altmode or space you may put a number which is the
size you want that space to be, instead of the number that was printed.
Again, there are various other magic characters besides space and altmode.

If you reply with a control-Q, it means to read your .LISP. (INIT) file.
The first form in the file should be a comment which is used to answer the
questions. Note that supplying nonexistent space names in the comment
doesn’t . hurt, so you can use the same comment for both Bibop and non-Bibop
LISP. An example of the form of this comment is:

(comment fxs 4000 fixnum 5000 f1s 2000
symbol 4000 flonum 2000 bignum 1400)

04/08/74 12.6.5 Page 119

MACLISP Reference Manual

127 = The Funclions status and cstatus

status FSUBR

The status function is wused to get the value of various system
variables. Its first argument, not evaluated, is an atomic symboel
indicating which of its many functions status should perform. The use
of additional arguments depends on what the first argument is.
Omitted arguments are assumed to be nil. The following “status
functions” exist:

STATUS FUNCTIONS FOR THE 1/0 SYSTEM

Note: in the following, ¢ represents an argument specifying a
character. If ¢ is non-atomic it is evaluated, and the value must be
a fixnum which is the ascii code for a character. If ¢ is atomic it
is not evaluated, and it may be a fixnum or a character object.

(status 1oc ¢) gives the state (t or nil) of the control-"c"-switch.
For example, (status toc q) is t if input is from a file, nil if input
is from the terminal

(status uread) returns a 4-list for the current uread input source, or
nil if uread is not being done.

(status uwrite) returns the corresponding list for the curremt uwrite
output destination.

(status crunit) returns a 2-list of the current unit; i.e. device and
directory.

(status crfile) returns a 2-list giving the file names for the current
file in the “uread” I/O system.

(status 'tabsize) returns the number of character positions assumed
between tab stops.

(status newline) returns a fixnum which is the ascii code for the

character which marks the end of a line of input. For example, (=
(setq ch (tyi)) (status newline))

(status charmode f) returns the value of the character-mode switch for
the file object f. If f is nil or omitted the terminal is assumed.
If this switch is t (the normal case for the terminal) output is sent
to the device as soon as it is generated. If the switch is nil (the
normal case for files other than the terminal) output is held until a
newline is typed, an error occurs, input is requested, or the buffer
becomes full. This provides increased efficiency at the cost of not
immediately seeing all output. :

Page 120 127 ' 04/08/14

Functions for Controlling the Interpreter

STATUS FUNCTIONS FOR THE READER

See section 13.6.2 for a description of how the data examined by these
functions is used. '
(status chtran c) gets the character translation table entry for the
character e. This is the ascii code of a character substituted for ¢
when it appears in a pname being read in.

(status syntax ¢) returns the 26 syntax bits for the character ¢, as a
fixnum.

(status macro c¢) returns nil if ¢ is not a macro character. If ¢ is a
macro character it returns a list of the macro character function and
the type, which is n1l for normal macros and s for splicing macros.

(status +) gets the value of the + switch (t or ni11). This switch is
normally n1l. If it is t, atomic symbols more than one character long
beginning with a + or a - are interpreted as numbers by the reader
even if they contain letters. This allows the use of input bases
greater than ten.

- (status ttyread) returns the value of the ttyread switch, which s
kept in the readtable. At present this is not used for anything in
the Multics implementation. In the pdp-10 implementation it controls
whether tty “force feed” characters are used.

STATUS FUNCTIONS FOR THE PRINTER

(status terpri) returns the value (t or nil) of the terpri switch,
which is kept in the readtable. This switch is normally ni1l. If it
is t, the output functions such as print and tyo will not output any
extra newlines when lines longer than 11inel are typed out.

(status _) returns the value (t or nil) of the — switch, which is kept

in the readtable. If this switch is t, the _ format for fixnums with
lots of trailing zeroes is not used.

(status abbreviate) returns the value of the abbreviation control.
See section 13.7 for a description of the abbreviation control.

STATUS FUNCTION FOR THE GARBAGE COLLECTOR

(status gctime) returns the number of microseconds spent
garbage-collecting.

ENVIRONMENT ENQUIRIES

(status date) returns a 3-list indicating the current date as
(year-1900. month_number day)

(status daytime) returns a 3-list of the 24-hour time of day as (hour
minute second).

04/08/74 12.7 Page 121

The

~ >MACI..ISP Reference Manual

(status time) is the same as (time), the number of seconds the system
has been up.

(status runtime) is the gsame as (runtime), the number of microseconds
of cpu time that has been used.

(status system x) returns a list of the system properties of the
atomic symbol %, which is evaluated. @~ This list may contain subr,
fsubr, macro, or Isubr if x is a function, and value if this atomic
symbol is a system variable.

(status uname) returns an atomic symbol whose pname is the wuser’s
login name. In the Multics implementation this is in the format
User.Project; the dot will be slashified if print is used to display
this.

(status udir) returns the name of the user’s directory. In the ITS
implementation this is the same as the wuser’s name as returned by
(status uname). In the Multics implementation this is the user’s
default working directory. In the DEC-10 implementation this is a
list (proj prog).

(status 1lispversion) returns the version number of lisp.

(status jc1) returns the “job command line" from DDT in the ITS
implementation. In the Multics implementation it returns the
explodec’d second argument of the lisp command, or else nil if the
lisp command did not have two arguments. If lisp was invoked by

lisp environment_name “foo bar”

then (status jcl) => (fFoo/ bar)

following status functions only exist in the Multics implementation.

(status paging) returns a list of the paging-device page faults and
total page faults that have been incurred.

(status arg n) returns the n+1’'th argument of the lisp command, as an
interned atomic symbol. nil is returned if n is greater than the
number of arguments on the lisp command.

MISCELLANEQOUS STATUS FUNCTIONS

(status toplevel) returns the top-level form, which is continually
evaluated when LISP is at its top level. If this is nil, a normal
read-eval-print loop is wused.

(status interrupt n) returns the service function for user interrupt
channel n. n is evaluated.

Page 122 ‘ 121 04/08/74

Functions for Controlling the Interpreter

(status pagepause) returns the value of the pagepause flag. See
(sstatus pagepause) for a description of this flag.

(status wuuolinks) returns a number which represents the number of
available slots for linking between compiled functions.

(status divov) returns the state of the “divide overflow™ switch. If
this switch is nil an attempt to dividle by zero causes an error. If

the switch is t the result of a division by zero is the numerator plus
1.

(status features) returns a list of symbols representing the features
implemented in the LISP being used. The following symbols may appear
in this list:

bibop pdp-10 big-bag-of -pages memory
management scheme

lap this LISP has a Lisp Assembly Program

sort the sorting functions described in
chapter 11 are present

edit the edit function described in chapter
18 is present

fasload the fasload facility described in
chapter 14 is present

nf the “"moby I/O" facility is present

bignum the arbitrary-precision arithmetic
package is included in this LISP

strings character strings and the functions on
them described in chapter 8 are present

newio the 1/0O functions described in chapter

13 are included in this LISP; if this
feature is not present only some of
those functions are available.

ml this LISP is on the MathLab machine at
MIT

ai this LISP is on the AI machine at MIT

H6180 this LISP is on the H6180 Multics
machine at MIT

its this LISP is on some ITS system

Multics this LISP is on some Multics system

decl0 this LISP is on some DEC TOPS-10 system;

or on some TENEX system since the TENEX
implementation runs under a TOPS-10
emulator.

(car (last (status features))) is generally considered to be an
implementation name, such as its or decl0 or Multics. The main idea
behind this status call is that an application package can be loaded
into any MACLISP implementation and can decide what to do on the basis
of the features it finds available.

04/08/14 127 Page 123

MACLISP Reference Manual

Example:

(cond ((memg “bignum (status features))
(prog2 nil (eval (read)) (read))) ;use first
(t (read) (eval (read)))) ;use second

(defun factorial (n) :bignum version
(cond ((zerop n) 1)
((times n (factorial (subl n))))
)

(defun factorial (n) :fixnum-only version
(do () ((not (> n 13.))) :do until n < 13.
(error "argument too big - factorial®
n
‘wrng-type-arg))
(cond ((zerop n) 1)
({(x n (factorial (1- n))))))

(status feature foo) is roughly equivalent to (memq ‘foo (status
features)), ie. it determines whether this LISP has the foo-feature.
Note that foo is not evaluated. ‘

(status status foo) returns t if foo is a valid status function. {4
it is not, nil is returned. '

(status status) returns a list of valid status functions. The names
are truncated to some implementation-dependent numbeér of characters,
such as 4 or §.

(status sstatus foo) returns t if foo is a valid sstatus fumction. If
it is not, nil is returned.

(status sstatus) returns a list of valid sstatus functions. As with

(status status), the names are truncated to some
implementation-dependent number of characters, such as 4 or §.

sstatus FSUBR
sstatus is like status. It has a first argument which tells it whas
to do and how to interpret the rest of its arguments. sstatus is used
to set various system variables. The following “sstatus functions”
exist:

SSTATUS FUNCTIONS FOR THE 1/0 SYSTEM
(sstatus 1oc cec) is the same as (1oc cee)

(sstatus uread --args--) is the same as (uread --args--)

Page 124 121 ‘ 04/08/74

Functions for Controlling the Interpreter

(sstatus uwrite --args--) is the same as (uwrite --args--)
(sstatus crunit --args--) is the same as (crunit --args--)

(sstatus charmode x f) sets the character-mode switch of the file £ (f
may be nil to signify the terminal) to x, which may be t or nil. =«

and f are evaluated. f may be omitted, in which case the terminal is
assumed.

SSTATUS FUNCTIONS FOR THE READER

See section 13.6.2 for a description of how the switches and tables
set by these functions are used.

(sstatus chtran ¢ k) sets c¢’s character translation to k. k follows

the same rules as ¢ ie it may be a list which evaluates to a

fixnum, or an unevaluated atom such as a fixnum or a character object.
. The value returned is k as a fixnum ascii code.

(sstatus syntax ¢ m) sets c’s syntax bits to m. m is evaluated and
returned.

Note that in the above 2 calls, if ¢ is a macro character it is
‘changed back to its standard syntax and chtran before the requested
operation is performed. However, if in the standard readtable ¢ is a
macro (i.e. *° and ;), instead of being changed to its standard syntax
and chtran its syntax is set to 502 (extended alphabetic) and its
chtran is set to itself.

(sstatus macro ¢ f) makes ¢ a macro character which calls the function
f with no arguments. f is evaluated. A fourth argument to sstatus
may be supplied. It is not evaluated. If it is an atomic symbol
whose pname begins with s, ¢ is made a splicing macro. If f is nil,
instead of ¢ being made a macro-character, ¢’s macro abilities are
taken away and ¢ becomes an ordinary extended-alphabetic character.

(sstatus + x) sets the + switch to t or nil depending on z, which is
evaluated. - The new value of the + switch is returned.

| (sstatus ttyread =x) sets the ttyread switch to t or ntl depending on
| x, which is evaluated. The new value of the switch is returned.

SSTATUS FUNCTIONS FOR THE PRINTER
(sstatus terpri =x) sets the terpri switch.

(sstatus abbreviate mnr) sets the abbreviation control to n.

(sstatus abbreviate nil) turns off abbreviation.

(sstatus abbreviate t) turns on a maximal amount of abbreviation. See
section 13.7 for a description of the abbreviation control.

04/08/14 127 Page 125

- ‘B_IACLl—SVPV Ref —el:e"nce May;u;ll
SSTATUS FUNCTION FOR THE GARBAGE COLLECTOR

(ssta.tus\ gctime n) resets the gctime counter to n and returns the
previous value of the gctime counter.

MISCELLANEOUS SSTATUS FUNCTIONS

(sstatus toplevel =) evaluates and returns » and sets the top level
form to this value.

(sstatus uuolinks) causes all links between compiled functions to be
“unsnapped.” This should be done whenever (nouuo t) is done to insure
that the interpreter always gets a chance to save debugging
information on every function call

(sstatus divov x) sets the “divide overflow” switch to x. nil means
division by zero should cause an error, while t means the result of
division by zero should be a quotient of the numerator plus 1 and a
remainder of zero.

(sstatus interrupt =n f) sets the service function for user interrupt
channel n to f. The arguments are evaluated. f is returned.

(sstatus pagepause x) sets the pagepause switch to =%, which may
evaluate to t or nil. If the pagepause switch is t, and a display
terminal is being used, LISP will stop when it gets to the end of the
screen and wait for the wuser to hit control-U before it erases
anything. (This feature is not presently available in the Multics
implementation.)

arset SWITCH

The value of »rset is the “krset flag” manipulated by the status and
sstatus functions. If =xrset is t, the interpreter keeps extra
information and makes extra checks to aid in debugging. =arset should
neve)r be setq'ed - always use (sstatus arset t) or (sstatus =rset
nil).

Page 126 12.7 04/08/14

Functions for Controlling the Interpreter

128 = Miscellaneous Functions

sysp SUBR 1 arg
The sysp predicate takes an atomic symbol as an argument. If the
atomic symbol is the name of a system function (and has not been
redefined), sysp returns the type of function (subr, 1subr, or fsubr).
Otherwise sysp returns nil.

Examples:
(sysp “foo) => nil (presumably)

(sysp “car) => subr

(sysp “cond) => fsubr

04/08/74 12.8 Page 127

MACLISP Reference Manual

128.1 =~ Time

runt ime SUBR no args

(runtime) returns the number of microseconds of cpu time used so far
by the process in which LISP is running. The difference between two
values of (runtime) indicates the amount of computation that was done
between the two calls to runtime.

time SUBR no args
(time) returns the time that the system has been up, in seconds. (As a
flonum.)

sleep SUBR 1 arg

(sleep n) causes a real-time delay of n seconds, then returns . n
may be a fixnum or a flonum. '

See also the alarmclock function, section 12.4.3.

Page 128 1281 T 04/08/14

Functions for Controlling the Interpreter

1282 <~ Getting into LISP
in the Multics implementation

The LISP subsystem is entered by means of the lisp command. If lisp is
called with no arguments, a copy of the standard initial environment
containing all the system functions and variables is made the current
environment. If the lisp command is issued with an argument, the argument
concatenated with “sv.lisp” is the pathname of a saved environment (see
the save function in section 12.83) which is copied into the current
environment. Additional arguments to the lisp command in this case are
actually arguments to the programs in the saved environment, which can
retrieve them by using the (status arg n) function.

The LISP subsystem may also be entered through the lisp_compiler
command, which is like calling lisp with an argument of the pathname of the
saved environment containing the LISP compiler.

When the standard initial environment is entered, lisp checks for a
segment named start_uplisp in the wuser’s home directory. If such a
segment exists, it is read in, using the 1load function. This facility
allows users to “customize” LISP.

When a saved environment is entered, (mapc “eval errlist) is done. This
feature can be used to make the saved environment self-starting.

in the ITS implementation

LISP may be entered by the ™:LISP" or "LISPAK" command. The environment
set up by this command is the standard initial environment. Lisp checks
for a file named .LISP. (INIT) in the user’s directory, or a file named
UNAME .LISP. in the (INIT) directory if the user does not have a directory.

If it is found, it is read in and each form is evaluated. This allows a
user to "customize” lisp. The .LISP. (INIT) file may begin with a comment
in the form

{(comment name number name number ...)

which is used to specify allocationn. @ The names are the names of the
various spaces, and the numbers are the sizes to be allocated. If there is
no .LISP. (INIT) file, lisp asks the question ALLOC? A reply of n causes
standard allocation, a reply of y allows allocation to be specified
conversationally.

LISP may be entered by the command :LISP namel name2 dev dir where dev

and dir default to DSK and the user’s directory. In this case the file
dev:dir;namel name2 is read in the same way as a .LISP. (INIT) file.

04/08/74 128.2 Page 129

MACLISP Reference Manual

If a lisp containing some data other than the initial envi;ronment has

been saved (see section 12.8.3) as TS NAME, the :NAME command will retrieve
it. The first action performed by lisp is (mapc ‘eval erriist), which
allows the user programs to start up.

in the DEC-10 implementation

Type the monitor command, R LISP. LISP will ask the question "ALLOC?",
and the possible answers are as described above for the ITS implementation
of LISP. Similarly to the ITS implementation, if a lisp has been saved as
NAMESAY, the RUN NAME command will retrieve it and the first thing it will
do when retrieved is (mapc “eval errlist).

Page 130 1282 04/08/74

Functions for Controlling the Interpreter
1283 - Getting Out of LISP

Evaluating (1oc 2z) will cause LISP to temporarily release control.
Control can be returned to LISP by an implementation defined method. There
is also an implementation-defined way to leave LISP permanently, freeing
any storage used by the current LISP environment or else saving it.

in the Multics implementation

(ioc 2) will cause a QUIT. The start command may be used to re-enter
the lisp subsystem. release may also be used, in which case LISP will
clean itself wp.

There are also the functions quit and save. quit causes the lisp
subsystem to exit, throwing away the current environment. save causes the
lisp subsystem to exit, saving the current environment in a specified file,
whose name always ends in “.sv.ligp”

quit SUBR no args

(quit) causes the lisp subsystem to remove itself and return to its
caller. The current environment is lost. (cf. save)

save FSUBR

(save foo) saves the current LISP environment in a file named
foo.sv.lisp in the working directory. The argument is not evaluated.
The command

1isp foo

can be used to retrieve this saved environment. All variable values,
file objects, array contents, and function definitions (and other
properties) are saved, but the contents of the push down lists,
including previous values of bound variables, cannot be saved, so save
should only be used from top level

See also the function cline (described in section 12.8.4), which is used to
get out of LISP, execute one Multics command line, and return into LISP.

04/08/74 1283 Page 131

MACLISP Reference Manual
in the ITS implementation

(ioc z) will cause a return to DDT. $P may be used to re-enter LISP.
(valret “KILL) will cause LISP to exit, throwing away the current
environment. The macdmp function, explained below, may be used to save the
current environment. :

macdmp LSUBR -0 or 1 args

If LISP is a top-level procedure (for instance if it is disowned),

macdmp simply logs out. Otherwise it prepares the LISP for dumping as

follows:

(1) if the display slave is open, it is closed.

(2) all bit tables, pdl areas, and free storage lists are zeroed out.
(Remember, dumping with 8Y uses a special compression technique on

. blocks of zeros.)

(3) if macdmp was given an argument, this is explodec’ed and valret'ed
as with the valret function. Otherwise, macdmp returns to DDT
with a .BREAK 16,100000.

Commonly one ‘will write a setup routine for some LISP package like
this:
{progn

(terprt)

(princ “options:)

. read in options ..

{terpri)

{princ ‘loading)

... load in files of functions ...

(macdmp “:$ALL/ DONE/ -/ hooray!$/))

The LISP (with some new functions loaded) is now ready for dumping.
Alternatively, one might write

(macdmp “$Y/ USER/;FOO/ BAR/ :$ALL/ DONES/)
which will do the dump and then print a message when done.
When such a dumped LISP is loaded and restarted, the effect is very
similar to a AG quit: LISP’s top level is entered after evaluating all
items on the errlist. Thus if before the macdmp is done the errlist is

setqged to some list of initialization procedures, these procedures
will be invoked when the dumped LISP is restarted.

Page 132 1283 04/08/74

Functions for Controlling the Interpreter
in the DEC-10 implementation

Typing two control-C’s causes control to be returned to the monitor.

The CONTINUE command will return control to LISP. Running another program
causes LISP to be thrown away.

The LISP may be saved for later use by evaluating (macdmp), which
prepares for saving and then returns control to the monitor. The SAVE
command may now be used. When the saved LISP is run at some later time,

(mapc “eval erriist) will be automatically performed. This allows the
saved program to be self-starting.

04/08/74 12.8.3 Page 133

MACLISP Reference Manual

1284 <~ Sending Commands to the Operating System

in the Multics implementation

cline SUBR 1 arg

(cline x), where » is a character string, executes the Multics command
z and returns nil.

Example:
(cline "who -long")
in the ITS implementation
valret LSUBR 0 or 1 args

(valret) is like (1oc z); that is, it does a .LOGOUT if LISP is a top
level procedure, and otherwise valrets “:VK " to DDT.

(valret =x) effectively performs an explodec on x (in practice = is
some strange atomic symbol like :PROCED/ :DISOWN/ , but it may be any
S-expression). If the string of characters is ome of “"$AX.", “:KILL %,
or " KILLAM® then valret performs a “silent kill® by executing a
.BREAK 16,20000; otherwise valret performs a .VALUE, giving the
character string to DDT to evaluate as commands.

Examples:

(valret “:PROCED/ :DISOWN/)
procedes and disowns the LISP.

(valret 7/ :KILL/ :TECO/"M)
kills the LISP and starts up a TECO.

(valret “Os$N)

causes DDT to print out the contents of all non-zero locations in
LISP.

in the DEC-10 implementation

There is currently no way to do this in the DEC-10 implementation.
However, (valret) will return control to the monitor so that a command
may be manually typed. Then type CONTINUE to resume lisp.

Page 134 12.8.4 04/08/74

Input and Output

13 = Input and ompqt
13.1 - Basic 1/0

Input and output can be done in LISP in terms of S-expressions or in
terms of characters. Operations may also be performed on certain devices,
such as displays, robot arms, etc, in terms which are peculiar to the
particular device, using the so-called "moby I/O" (facility.

Initially we will discuss just I/O on the user’s terminal.

S-expressions can be input by using the function read. (read) reads one
S-expression, which is either a list enclosed in matching parentheses or an
atom delimited by a special character such as a space or a parenthesis,
which is saved and used to begin the next S-expression read. read returns
the S-expression which it read, converting it from the external
representation as characters to LISP internal form. See Chapter 2 and
section 13.1.2.

(readch) reads in one character and returns it as a character object.

(tyi) reads in one character and returns a number which is the ascii
code for the character.

(print x) prints out the S-expression ¥ in a form which is readable by
humans but which could also be read back into LISP if it was printed to a
file rather than to the terminal. See section 13.2.3 for an explanation of
how to do this.

The expression printed out is preceded by a newline and followed by a
space. If special characters are wused with other than their normal
meanings, for example if a parenthesis appears in the pname of an atom,
they are preceded by slashes so that the output could be read back in.
Strings are enclosed in double quotes for the same reason.

(prinl x) is the same as (print x) except that the leading newline and
trailing space are omitted. prinl can be used to print multiple items on a
line, but spacing between the items must be provided for explicitly, for
example by evaluating (tyo 40).

(princ x) is like (prinl z) except that special characters are not
glashified and strings are not quoted. This makes the output more pleasing
in certain situations, however it cannot be read back into LISP.

(terpri) types out a newline.

Output of characters can be accomplished using either tyo or princ

(tyo n) outputs a character whose ascii code is given by the number n.
princ may be used to output character objects.

04/08/74 13.1 Page 135

MACLISP Reference Manual

As implied above, these functions can also be used to do [/O on devices
other than the terminal. The ways to do this will be explained in section
13.2.3.

Note that what LISP does when it is at its “top level,” that is when you
first start talking to it, is first to call read, then to call eval on what
was read, then to print the result and advance the terminal to a new line
on which the next piece of input may be typed. This may be expressed as
repeated evaluation of:

.t

{prog2 (terpri)
(print (eval (read))))

Page 136 131 04/08/74

Input and Output

13.2 = Files

I/O in LISP consists of communication between the LISP environment and
sequences of characters called files, located in the external world. LISP
refers to these files by wusing “file objects,” which are special objects
within the LISP environment which serve as representatives of, or symbols
for, the files in the external world. Because .there is a one-to-one
correspondence between files and file objects, it is often convenient to
confuse the two and call them both “file." '

The LISP system includes functions which can manipulate files in various
ways: A file may be "opened,” that is a file object may be created and
associated with a named file in the external world.

A file may be "closed,” that is the association between the file-object
and the external file may be broken and the file-object deleted.

The file-accessing information contained in a file-object may be
examined or changed; for example, the line length of an output file may be
adjusted.

The characters of information in the external file may be read or
written.

The attributes of the external file, such as its name, may be changed.

In order to "open" a file, the external file and the file object must be
named so that a connection may be established between them. The problem of
naming file objects is solved trivially by making the rule that whenever a
file object is created its name is decided by the system and returned as
the value of the function that created it. File objects are then referred
to in the same way as any S-expression. Note that the name of a file
object does not have a printable form, so that if you want to manipulate
the file object by typing from the terminal (rather than from a program),
you must keep the file object as the value of an atomic symbol.

The naming of files in the outside world is more difficult because
MACLISP has to operate with several different outside worlds, that is,
under several different operating systems. It was thought undesirable to
build too many assumptions about the operating system into the language,
because that would restrict the transporting of programs between MACLISP
implementations.

The assumptions that are built in are that the operating system provides
named files located in named directories or on named devices, which may be
accessed sequentially as streams of characters. The function filepos makes
the additional assumption that simple random-access facilities are
available. An interactive environment is also assumed. Some of the I1/0
functions assume that the names of files may be broken up into an arbitrary
number of components, so that names take on a form such as “foo.bar.lisp”
or "moby mess". However, it is possible for a MACLISP to operate with
somewhat reduced effectiveness under an operating system which does not

04/08/74 13.2 Page 137

M;ACLISP Reference Manual

satisfy all of these assumptions.

The user of a program or a subsystem written in LISP wants to be able to
type in file names in the form customary in the particular operating system
being used, and he wants to see them typed out in the same form. But if a
program wants to do more with the file name supplied by the wuser than
simply pass it on to the system I/O functions, it needs to have that name
translated to a uniform internal format, in which the interesting
components of the name are seperate atoms in a list, not buried inside a
character string whose format is not even known to the program. To resolve
this conflict, two forms for file names have been defined, and functions
are provided to make the implementation-dependent translation from one form
to the other. The forms of a file name are called the namelist and the
namestring.

The namestring is the implementation dependent form. Namestrings are
represented as LISP character strings, however atomic symbols may also be
used, in which case the pname of the atomic symbol is used as the character
string. The contents of a namestring is just a sequence of characters
which have meaning to the user and to the function namelist, which converts
a namestring to a namelist. Namestrings should be read in using the
readstring function and printed out using princ, so that no quotes will
appear around them.

A namelist is a list whose car somehow specifies the device and/or
directory which contains the file, and whose cdr specifies the name of the
file. The exact way in which the car specifies the device/directory is
implementation-dependent. It should not be of concern to programs. The
cdr of a namelist is a list of names which are the components of the file
name if the operating system uses multi-component file names. Each name is
represented as an atomic symbol, which is "interned” so that it may be
tested with the function eq

An additional feature of namelists is the "star convention,” by which a
namelist may contain unspecified components, which are indicated by the
atom X, Certain other constructions, explained in section 13.3, may also
be used. The star convention allows a single namelist to specify a class
of files, and allows programs to apply defaults to their file-name
arguments in a straightforward fashion.

Some additional information about file objects has been collected here.
It is in brief form and will be elaborated in later sections.

There is no way to input file objects to the reader, because they do not
have pnames or anything of that sort, but for convenience in error messages
and debugging the printer will print a file object as a sharp sign (e),
followed by the namestring of the external file to which the file object is
attached. # is the character which is used to indicate that an object of
unknown type is being printed.

The information contained within a file object is here described
briefly.

Page 138 132 04/08/74

Input and Output

Namelist the namelist for the external file of which the file
object is a representative.

Eoffn a function which is applied when the end of an input
file is reached.

Endpagefn a function which is applied when the end of a page is
reached on an output file.

Linel the number of characters per line on an output file.

Charpos ~ the horizontal position on the line, where 0 is the

left margin.

Chret the number of character positions remaining on the
current line of an output file,

Pagel the number of lines per page.
Linenum the number of the current line, with 0 being the top of
" the page.
Pagenum the number of the current page, with the first page
being 0.
Filepos the position within the file of the character currently
being accessed. (Not necessarily meaningful for all

kinds of files.)

Other internal information used by the LISP I/0 functions in
transactions with the operating system.

Note that as a special case nil is considered to be a file object which
represents the terminal. This is in addition to nil’s other identities as
an atomic symbol and as a list.

13.2.1 =~ Naming Files

Some examples may help clarify the connection between namelists and
namestrings.

In the Multics system, files are stored in a tree structure of
directories. A file’s name consists of a sequence of names seperated by
the ™" character. The last name is the name of the file, and preceding
names are the names of directories in a path from the “"root” directory down
through the tree to the file in question. Each name may consist of several
components seperated by periods. Thus a typical namestring in the Multics
implementation of MACLISP would be

04/08/74 13.2.1 Page 139

MACLISP Reference Manual

">udd>AutoProg>Hacker>hacks>my.new. hack"
The corresponding namelist is:
(>udd>AutoProg>Hacker>hacks my new hai:k)

In addition, the star convention for namelists may also be represented in
namestring form. Some examples of the correspondence are:

(x foo) == "foo" - omitted components are X
(x foo x bar) == "foo.x.bar"

(frotz foo . bar) == "frotz>foo.xx bar"

(x foo . x) == "foo.%xx"

Multics LISP can also use “streams” for files. Streams are a
sequential-I/O entity in Multics. For example, input from and output to
the terminal are performed by means of streams. In LISP the convention has
been defined that a "$" character at the beginning of a namestring
distinguishes the name of a stream from the name of a file stored in the
directory hierarchy. Thus the namestring

“$user_input"

indicates the stream used for input from the terminal. The corresponding
namelist is:

(stream user_input)

In the ITS (pdp-10) system, files are stored in directories which are
kept on devices. Directories may not be kept within directories, so there
is no tree structure. KEach file-name has exactly two components. @ Thus a
file whose name has first component foo and second component bar, located
in directory comlap on device ml, would have the namestring:

ml:comlap;foo. bar
Ae a namelist this \ would be represented:
({m) . comlap) foo bar)
If the device and directory were omitted, thé namelist would be:

(x foo bar)

If only one componeht of the name were specified, the second would be %

In the DEC-10 implementation, namestrings take the usual

dev:name.ext[proJ,prog]

Page 140 13.2.1 04/08/74

Input and Output

form, and the corresponding namelist is
((dev proj prog) name ext)

and *’s are substituted for omitted components in the same way as for the
ITS version described above.

namelist SUBR 1 arg

namelist converts its argument to a namelist. Omitted or * components
in the argument produce *’s in the result.

The argument to namelist can also be a file object or nil. Giving

namelist a file object causes it to return the namelist of that file
object. GCiving it nil causes it to return the default namelist.

namestring SUBR 1 arg

namestring converts its argument from a namelist to a namestring. It
is the opposite of namelist.

The argument to namestring can also be a file object or n1l. Giving
namestring a file object causes it to convert that file object’s

namelist to a namestring and return it. Giving namestring ni1l causes
it to convert the default namelist to a namestring and return it

shortnamestring SUBR 1 arg

shortnamestring is just like namestring except that there is no
mention of directory or device in the resulting string. Example:

(shortnamestring “(abc d e)) => "d.e"

defaultf SUBR 1 arg
(defaultf =x), where x is a namelist or a namestring, sets the default
namelist to . The default namelist is used to fill out any X’s in
the argument to openi, openo, etc.
In Multics MACLISP, the default namelist is initially set to:
(working-directory . x)

when LISP is first entered.

04/08/74 13.21 Page 141

MACLISP Reference Manual

In ITS MACLISP, the default namelist is initially set: to:
((dsk udir) . %)

when LISP is first entered. udir is what (status wudir) returns,
namely the user's directory. In DEC-10 MACLISP the default namelist
is set to .

((dsk proj prog) . %)
when LISP is first .entered.

Note: to obtain the default namelist, use (namelist nil).

1322 - Opening and Closing

opent SUBR 1 arg

This function is used to create a file object and associate it with
a file in the -external world. The argument is a namelist or
namestring which specifies the file to be opened. The return value is
the file object which was created.

openi first creates a file object and initializes its endpagefn
(for an output file) or eoffn (for an input file) to the defauit. The
linel and pagel are set to appropriate values for the type of device
on which the file resides. The charpos, linenum, and pagenum are set
to zero. The namelist is set by merging the argument to openi and the
default namelist. See the description of the mergef funmction, in
section 13.3, for the full details. Basically what happens is that
components of the file name not specified by the argument to openi are
obtained from the default namelist. openi now negotiates with the
operating system to obtain the file. A fail-act correctable error
occurs if this does not succeed. ‘

The file created by openi can be used for input.

Example:
(inpush (openi “input_f1le_1"))

openo SUBR 1 arg

openo is like openi except that the file object created is used for
output. Any pre-existing file of the same name is over-written.
Example:

(setq outfiles (1ist (openo "output.data")))

Page 142 | 1322 04/08/74

Input and Output

The following function only exists in the Multics implementation, at
present.

opena SUBR 1 arg

opena is just like openo except that if there is a pre-existing file
with the same name, the output is appended to the end of the (file,
where openo would erase the old contents of the file and begin
outputting at the beginning of the file. Note that the pagenum,
linenum, and charpos are set to zero, not the number of pages, lines,
etc. actually present in the file.

close SUBR 1 arg

(close x), where x is a file, closes % and returns t. If x is already
clogsed nothing happens, otherwise the file system is directed to
return ¥ to a quiescent state.

For a description of the way in which the argument to openi, openo, or
opena hae the defaults applied to it, see section 13.3.

1323 = Specifying the Source or Destination for 1/0

When an I/O function is called, the source (file) from which it is to
take ite input or the destinations (files) on which it is to put its output
may be specified directly as an argument to the function, or they may be
specified by default. The default input source and output destinations are
specified by several system variables, which may be setq’ed or lambda-bound
by the user. They are described below.

infile is the default input source, if the switch “~q is t If “~q is
nil the terminal is used as the default input source.

outfiles is a list of default output destinations. Qutput is sent to
all of these files if the ~r switch is t. Output also goes to the terminal
unless the “w switch is t.

Note that in the values of infile and outfiles nil means the terminal,
and anything other than nil must be a file object.

04/08/74 13.23 Page 143

‘MACLISP Reference Manual

infile VARIABLE

The value of infile is a file object which is the default input source
if ~q is non-nil. infile can also be nil which specifies that input
will be from the terminal even if “q is not nil. ‘The initial value of
infile is nil.

~q SVITCﬂ
If the value of *q is non-nil, the default input source is the value

of the atom infile. If Aq is nil, the default input source is nt),
i.e. the terminal

instack VARIABLE

The value of 1instack is a list of pushed-down values of infilee It is
managed by the function inpush. The initial value is nil.

outfiles VARIABLE

The wvalue of outfiles is a list of file objects which are output
destinations if ~r is not nil. Elements of the list outfiles may be
either file objects created by openo or opend, or nil meaning output
to the terminal. Note that output goes to the terminal anyway if Aw
is nil, so it is possible to get double characters this way.

Ar SWITCH

If the value of *r is non-nil, the default output destinations include
the files in the list which is the value of the atom outfiles.

w SWITCH

If the value of “w is non-nil, the default output destinations do not
include the terminal. (Unless *r is on and n1l is a member of the
outfiles list.)

Page 144 1323 04/08/74

Now

read

Input and Output
the basic I/O functions can be explained in full detail:

LSUBR 0 to 2 args
This is the S-expression input function.
(read) reads an S-expression from the default input source.

(read f), where f is a file or n1l meaning the terminal, reads an’
S-expression from f. During the reading, infile and ~q are bound so
that evaluation of (read) within a macro-character function will read
from the correct input source.

(read x), where x is not a file, not n1l, and not t, passes » as an
argument to the end-of-file function of the input source if the end of
the file is reached. Usually this means that read will return x if
there are no more S-expressions in the file.

(read t) suppresses the calling of the end-of-file function if the end
of the file is reached. Instead, read just returns t.

(read = f) or (read f x) specifies the end-of-file value x and selects
the input source /.

readch LSUBR 0 to 2 args

readch reads in one character and returns a character object. The
arguments are the same as for read.

readline LSUBR 0 to 2 args

tyt

readline reads in a line of text, strips off the newline character or
characters at the end, and returns it in the form of a character
string. The arguments are the same as for read. The main use for
readline is reading in file names typed by the user at his terminal in
response to a question.

LSUBR 0 to 2 args

tyi inputs one character and returns a fixnum which is the ascii code
for that character. The arguments are the same as for read.

04/08/74 13.23 Page 145

MACLISP Reference Manual
(‘tyipe.k <as belowD &2 args as for read >)

tyipeek LSUBR 0 or 1 arg

(tyipeek) is like (tyi) except that the character is not eaten; it is
still in the input stream where the next call to an input function
will find it. Thus (= (tyipeek) (tyi)) is (almost) always t. If the
end of the file is reached, tyipeek returns 3, the ascii code for “end
of text." The end of file function is not called, and the file is not
closed.

(tyipeek n), where n is a fixnum less than 200 octal, skips over
characters of input until one is reached with an ascii code of n.
That character is not eaten. :

(tyipeek n), where n is a fixnum 3 1000 octal, skips over characters
of input until one is reached whose syntax bits from the readtable,
logically anded with (1sh n -9.), are nonzero.

(tyipeek t) skips over characters of input until the beginning of an

S-expression is reached. Splicing macro characters, such as s
comments, are not considered to begin an object. If one is
encountered, its associated function is called as usual (s0o that the
text of the comment can be gobbled wup or whatever) and tyipeek
continues scanning characters.

prinl LSUBR 1 or 2 args

(prinl %) outputs x to the current output destination(s)) in a form
suitable for reading back in.

(prinl = f) outputs & on the file f, or the terminal if f is nil.

print | LSUBR 1 or 2 args

print is like prinl except that the output is preceded by a newline
and followed by a space. This is the output function most often used.

(print x) prints ¥ to the default output destinations.

(print x f) prints x to the file f, or to the terminal if f is nil.

Page 146 13.2.3 04/08/14

Input and Output

princ LSUBR 1 or 2 args

princ is like prinl except that special characters are not slashified
and strings are not quoted.

(princ x) outputs x to the current output destination(s).

(princ x f) outputs x to the file f, or the terminal if f is nil.

tyo LSUBR 1 or 2 args

(tyo n) types out the character whose ascii code i¢ m on the current
output destination(s).

(tyo » f) types out the character whose ascii code is » on the file [
or on the terminal if f is nil. tyo returns its first argument.

terpri LSUBR 0 or 1 arg
(terpri) sends a newline to the current output destination(s).

(terpri f) sends a newline to f, where f may be an output file or ni1}
meaning the terminal ,

inpush SUBR 1 arg
(inpush f), where f is a file object open for input or nil to specify
the terminal, pushes the current input source onto the input stack and
selects f as the current input source. This is like
(setq instack (cons infile 1instack)) (setq infile f)
f is returned.
(inpush 0) just returns infile.

(inpush -1) pops a new input source off of the input stack:

(setq infile (car instack)
instack (cdr instack))

except that in the case where 1nstack is nil, ie. empty, inpush
leaves instack nil and makes infile nil, which means the terminal.

(inpush -n) does (1inpush -1) n times.

(inpush 1) does (1inpush (inpush 0)), (inpush +n) does that n times.

04/08/74 1323 Page 1417

MACLISP Reference Manual

The result of inpush is the newly selected input source. If 1{npush
causes infile to be set to nil, *q is set to n1l since the terminal
has become the input source.

1324 <« Handling End of File

Calls to the input functions read, readch, readline, and tyi specify an
argument called the "eofval.” If this argument is omitted nil is assumed.
If the end of the input file is reached during the execution of the
function, the eofval argument is used by the following procedure:

Each input file object has an end-of-file handler, its eoffn. When an
end of file occurse while input is being taken from this file, the eoffn s
examined. (Eof on the terminal cannot occur.) If the eoffn is nil, then
the following default action is taken: If eofval on the call to read was
not supplied, then the input file is closed and read continues taking
characters from a new input file popped off the input stack. If the input
stack is empty, (setq “q nil) is done and read continues reading from the
terminal. If an eofval was supplied on the call to read, then read
immediately returns it. The input file is not closed.

This is not strictly true in the case where the input function is read
{or. readline) and it is in the middle of an object (or a line). In this
case, rather than allowing the object to cross files, a fail-act error
occurs. The argument passed to the user interrupt service function is the
list (read-eof). If the interrupt service function returns an atom ({such
as nil), read signals an error; but if it returns a list, read goes on
reading from the new input source as if there had not been any end-of-file.

If the eoffn for the input file is not nil, then it is a function and it
is applied with two arguments. The first argument is the file object that
eof’ed. The second argument is the eofval on the call to read, or, if an
eofval was not supplied, nil. If the eoffn returns ntl, the file is closed
and reading continues from the input source popped off the inpuyt stack.
The above prohibition of objects crossing eofs applies. If the eofin
returns 1{, reading continues from whatever input source was made the
current default one by the eoffn. If the eoffn returns something other
than t or nil, then read immediately returns whatever the eoffn returned,
and the file is not closed unless the eoffn closes it.

Page 148 ‘ 1324 04/08/174

Input and Output

eoffn - LSUBR 1 or 2 args

(eoffn %), where x is an input file, gets 2’ end-of-file function.
The end-of-file function is called if the end of the file is reached

during input.

(eoffn ni1) gets the default end-of-file function.
(eoffn x f) sets x’s end-of-file function to /f.

(eoffn nil f) sets the default end-of-file function to f.

f may be nil, which means that no end-of-file function is to be used.

04/08/714 1324 Page 149

MACLISP Reference Manual
133 = Applying Defaults to File Names

The 1/O system provides a mechanism for applying defaults which programs
can use and which is used when a file object is created by the open
functions.

A default namelist, eoffn, and endpagefn are remembered for
initialization of file objects when they are created by the openi, openo,
or opena function. These defaults may be examined and modified by use of
the eoffn, endpagefn, namelist, and defaultf functions. Passing nil
instead of a file object indicates that the defaults are being referred to.

There is also a system of defaults for file names (actually for
namelists), which is based on the use of namelists containing the special
atom K,

If one of the elements in a namelist is the atom X, it indicates that
that component is not specified. Thus the namelist

(x foo bar)

specifies a file named foo.bar but it is not said in what directory or on
what device it exists. Similarly a namelist like

(dir foo x)

indicates a file in directory dir, with a two component name of which the
first component is foo, but the second component is not specified.

A namelist may also be dotted, that is, it may end with an atom rather
than with nil. If it ends with an atom other than X, ie if it looks
like

(devdir namel name2 name3 . foo)
it specifies a file ~whose name begins with the components
namel.name2.name3, ends with the component foo, and may also have any
number of components in between. For example, ignoring directories, in a
system such as Multics where the namestring consists of the file-name
components from the namelist concatenated together with periods, the
namelist
(-- moe larry . mung)

could specify all of the following file names:

moe. larry.mung

moe. larry.curly.mung

moe. larry.foo.bar.blech.mung

and so on. This form of namelist can be used to apply yhat is sometimes

Page 150 13.3 04/08/74

Input and Output

called a “default extension.”
A namelist can also have a dotted star, that is it can be in the form
(devdir -names- . x)

This specifies a file whose name begins with the components -names-, and
may have zero or more components following those. Thus

(-- mung bung . x)
means any of these file names:
mung.bung mung.bung. lung mung.bung.foo.goo.zo0

The process of applying defaults to file names consists of "merging” two
(or more) namelists into a single namelist, where one of the namelists is a
user-supplied file specifier and the other is a set of defaults. For this
purpose, the function mergef is supplied. Mergef is also used by openi and
openo when they combine their argument with the default namelist to get the
namelist of the file being opened.

mergef LSUBR 2 or more args

mergef is used for applying defaults to file specifiers, which may be
namelists or namestrings.

(mergef x y) returns a namelist obtained by selecting components from
x and y, which are converted to namelists. Where a component of x is
%, the corresponding component of y is selected. It is an error if ¥
is not that long. When a component of z is not *, it is selected and
the corresponding component of y is skipped. If y ends with a dotted
atom other than a X this atom is added to the end of the namelist if
it is not already there. The same applies if * ends with a dotted
atom. If x ends with a dotted x, the rest of y is copied over.

(mergef x ni1) strips off the last component of =.
(mergef w x y z) /

is equivalent to ,
(mergef (mergef (mergef w x) y) x).

04/08/74 13.3 Page 151

MACLISP Reference Manual
13.4 =~ Requests to the Operating System

134.1 = Manipulating the Terminal

tty VARIABLE

The value of the atom tty is initially set to a number describing the
type of terminal being used. The values presently defined are:
0 normal terminal with no special capabilities

1,2 datapoint
3 Imlac

4 ARDS

5 pdp-11 TV

Except in the ITS implementation, tty will generally always be 0.

CUrsorpos LSUBR 0 to 2 args

The cursorpos function is wused to manipulate the cursor on those
display terminals which are similar to the Datapoint in that they show
exactly one character at each position on the screen ‘and can change
each of these characters separately.

With no arguments it returns the dotted pair (1ine . column), where
line is the line number, starting from 0 at the top of the screen, and
column is the column position, starting from 0 at the left edge of the
screen. If the terminal being used is not a display terminal with
this type of cursor, nil is returned instead.

With two arguments, (cursorpos line column) moves the display cursor
to the indicated position and returns t if it was successful, or nil
if the terminal was incapable of doing this. Either of the two
arguments may be nil, indicating that that coordinate should not be
altered.

With one argument, cursorpos executes a number of special control
operations. The argument must be a character object chosen from the
following list:

move one space to the right

move one space to the left

move down by one line

move up by one line

clear the screen

go to top left corner of screen

go to bottom left corner of screen

erase contents of screen after current point
erase from current point to end of line

CENEO DR

Page 152 13.41 ' 04/08/7¢

Input and Output

X delete character to left
listen SUBR no args Uisten <tty?) — ato “""“("‘*Cﬂm
Mo LISP

(1isten) returns a fixnum which is non-zero if there is any input that
has been typed in on the terminal but has not yet been read. In the
ITS implementation it also waits for all terminal output and cursor
motion to be completed.

1342 - File System Operations

deletef SUBR 1 arg

(deletef =x), where =« is a namelist, a namestring, or a file object,
deletes the file specified by x. The return value is the namelist of

- the file actually deleted, i.. ¥ mergef’ed over the defaults.
Examples:

In the Multics implementation,
(deletef “foo.bar") => (dudddprojduserdjunk foo bar)

In the ITS implementation,
(deletef "foo bar") => ((m! loser) foo bar)

rename SUBR 2 args

(rename % y), where x and y are namelists, namestrings, or file
objects, renames the file specified by (mergef x (names nil)) to the
name specified by (mergef y x (names nil)). The directory part of y
is ignored; a file may not be renamed onto a different device or
directory. The return value is the namelist of the new name of the
file.

Examples:

In the Multics implementation,
(rename "foo.baz" "x.bar") => (Duddd>Bar>Foo foo bar)
and renames >udd>Bar>Foo>foo.baz to foo.bar.

In the ITS implementation,
(rename “foo baz" "x bar") => ((ml loser) foo bar)
and renames ml:loser;foo baz to foo bar.

04/08/14 13.4.2 Page 153

MACLISP Reference Manual

alifiles SUBR 1 arg

(alif1les =), where x is a namelist, returns a list of namelists which
are precise; ie. they do not contain any stars or dotted parts.
These are the namelists for all the files in the file system which
match the namelist =. Whatever search rules are customary in the
particular operating system are used.

allfiles with a precise namelist as an argument can be used as a
predicate to determine whether or not a file .exists.

The argument to alifiles may also be a namestring or a file object.

clear-input SUBR 1

(clear-input), where = is a file or ni) meaning the terminal, causes
any input that has been received from the device but has not yet been
read to be thrown away, if that makes sense for the particular device
involved.

force-output SUBR 1

(force-output x), where =z is a file or n1l meaning the terminal,
causes any buffered output to be immediately sent to the file, if that
makes sense for the particular device involved.

13.43 - Random Access to Files

f1lepos LSUBR 1 or 2 args

(filepos z), whére x is a file object open for input, returns , the
current character position within the file as a fixnum. The beginning
of the file is 0.

(filepos x n), where = is a file object open for input and n is a
non-negative fixnum, resets the character position of the file to
position specified by n. It is an error if this position does not lie
within the file or if the file is not randomly accessible. n is
returned.

Page 154 1343 ‘ 04/08/74

Input and Output
135 - The Old "Uread” 1/0 System

The functions uread, uwrite, ufile, ukill, and crunit are part of an
older LISP I/O system. They are retained for compatibility. Various

"status” functions are also part of this older I/O system. (See section
12.7)

These five functions name files in a different way from the other I/O
functions. A file is named by a 4-list, '

(namel name2 dev dir)
Namel and name2 together make up the “filename," dev is the “device," and

dir is the “directory.” In the ITS implementation of MACLISP, these go
together to make up the ITS file name:

DEV: DIR; NAME1 NAME2
In the DEC-10 implementation, dev is the device name, namel is the file

name, name2 is the extension, and dir is a list of two fixnums, the project
number and the programmer number. Thus the 4-list

(namel ext dev (proj prog))
represents the file
dev:ﬁamel.ext[proj.prog]

In the Multics implementation, dev is ignored and dir is the directory
pathname. The entry-name is namel.name2. Thus the Multics filename is:

dir>namel.name2

These five functions maintain their own set of defaults, which are
updated every time one of these functions is called, so that the defaults
correspond to the last file that was used. The defaults may be examined
with (status crfile), which returns the first two elements of the default
4-list, and (status crunit) which returns the last two.

It is not necessary to specify all four parts of the 4-list when one of
these five functions is used. If the list contains less than four
elements, the elements at the end which were dropped are supplied from the
defaults.

These functions are fsubrs which do not evaluate their arguments. They
may be applied to a 4-list, eg.

(apply “uread (cons filename “(stuff dsk macsym)))

or they may be called with the 4-list as four arguments, which is
convenient when calling them from top level. eg.:

04/08/74 135 Page 155

MACLISP Reference Manul

(uread foo bar dsk crock)

uread FSUBR
Thie function selects an input file. The argument list is a 4-list as
described above. The specified file is made the default input source

Note that the ~q switch must be turned on before input will be
automatically taken from this file

uwrite FSUBR
uwrite bpens an output filee. When done with this file, ufile must be
used to close it and give it a name. The arguments are the last two
elements of a 4-list, specifying the device and directory on which the

file is to be written. The first two parts of the 4-list are not
specified until the file is ufile’d.

ufile FSUBR
(uf1le namel name2) closes the uwrite output file and gives it the

name namel.rame2. The arguments are not evaluated. (ufile) sakes
namel and name2 from the defauits. ‘

crunit FSUBR
(crunit) returns the current device and directory.
(crunit dev dir) scets the device and directory and returns it. The

arguments are not evaluated. = Example:
(crunit) => (dsk >udd>Bard>Foodsubdirectory) .

ukill FSUBR

(uk11l -args-), where -args- are as for uread, deletes the specified
file.

uread VARIABLE

The value of uread is a file object being used for input initiated by
the uread function, or nil if no file is currently being wuread.

Page 156 | 135 "~ 04/08/74

Input and Output
uwrite VARIABLE

The value of uwrite is a file object heing used for output initiated
by the uwrite function, or nil if no file is currently being uwritten.

There are also some status/sstatus functions associated with these. These
are (status crunit), (status crfile), (status uread), and (status uwrite).

04/08/74 135 Page 151

136

MACLISP Reference Manual

= Advanced Use of the Reader

13.6.1 = The Obarray

obarray VARIABLE & ARRAY

The value of obarray is an array which is a table of known atomic
symbols - when an atomic symbol is read in it is “interned” on this)
obarray, that is made eq to any atomic symbols with the same pname
that were previously read in. If an atomic symbol, such as one
created by (gensym), is not in this table an atomic symbol read in
with the same pname will not be the same - there will be two separate
copies.

The obarray may be manipulated by the functions remob and intern
A new obarray may be created by using the makoblist function. The
atom obarray may be setq’ed or lambda-bound to different obarrays at
different times, which allows multiple sets of atomic symbols to be
kept seperate - you can have different atomic symbols with the same
pname interned on different obarrays at the same time.

Note that the value of obarray is not an atomic symbol which names
an array, but the array-object itself, as obtained by (get “name
‘array). .

The array property of obarray is the same array as its initial
value,

Example of the use of multiple obarrays:

(setq private-obarray
(get (makoblist “private-obarray) ‘array))
;make another obarray.

((1ambda (obarray) (read)) private-obarray)
;read using atoms on private obarray
;instead of regular one

makoblist SUBR 1 arg

(makoblist n1il) returns a list of lists of atomic symbols which is a
representation of the current obarray.

(makoblist @) gives the atom a an array property of a copy of the
current obarray, ie. it makes @ an obarray which is a copy of the
current one. The value returned is the argument; in this case, a.

Page 158 1361 04/08/74

Input and Output

See also the functions remob and intern

136.2 <= The Readtable

The readtable is a special table used to control the reader. It has an
entry for each character, containing 26. syntax bits and a “chtran"
character translation code. The “chtran” allows characters to be
translated when they are put into pnames that are being read in. The
syntax bits are wused by the reader to determine the significance and
syntactic meaning of each character it encounters. A table of the meanings
of the bits follows. Inmitially the syntax bits are set to give the
standard LISP meanings for all the characters, but the user can change them
to make the read function usable as a lexical analyzer for a wide variety
of input formats or languages. It is also possible to have several
readtables containing different syntax and to switch from one to the other
by binding the atom readtable.

Table of Syntax Bits

Octal Value Meaning

1 alphabetic: A-Z and a-z

2 "extended alphabetic® - wused for characters which are not
letters, but which are to be treated the same as letters. E.g.

:" in the standard syntax table.

'S

digit: 0-9

40 This is the “alternate meaning” bit. When added in it alters the
meaning of other bits. For example, 10 is plus sign but 10+40 is
minus sign.

10 plus sign.

50 minus sign.

20 fixed-point-scaling number modifier character. In the standard

readtable "A" has this syntax. An example of use is 13A2, which

is the same as 1300.

60 fixed point left-ghift number modifier. In the standard

readtable "_" has this syntax. An example of its use is 7_5,
which is 7 shifted left 5 bits, or 340 octal.

100 Indicates that the character should be “"slashified” by print,

04/08/74 13.6.2 Page 159

200

1000

4040

10000
10040

100000

Page 160

MACLISP Reference Manual

prinl, and explode if it appears in a pname but is not the first
character in that pname. '

Decimal point. Embedded in a number it indicates floating point.
At the end of a number it indicates that the number is to be
interpreted in decimal regardless of the value of ibase. Note
that the decimal point need not be the same as the dotted-pair
dot.

The character will be "slashified” by print, prinl, and explode
if it is the first character in a pname. Thus special characters
which need to be slashified usually have 500 = 1004400 in their
syntax bits.

Indicates that this character is the “rubout” character. (in the
pdp-10 implementations only.)

The slashifier character, which is used as an escape. It makes
special characters like space and parentheses look like letters.
Normally "/" has this syntax. If this character appears in input
to read or readlist, the following character is taken to have a
syntax of 000000002 and its chtran is not used. This allows it
to be used in a pname even if it is a special character.

indicates a macro character. This bit should not be set
explicitly, only by using (setsyntax ¢ ’macro f) or (setsyntax ¢
*splicing f). When this character is seen in input to read or
readlist, an associated function is called and the value returned
by the function is assumed to have been read.

same as 4000 except the macro is “splicing.” That is, the
associated function returns not an object to be inserted in the
list being read, but a list to be spliced (nconc’ed) into the
list being read. Splicing macros at top level (not inside a
list) have their values ignored by the reader. The same applies
to splicing macros that return nil, as this is the empty list.

Right parenthesis.

Right super-parenthesis. A super parenthesis cancels out all
left parentheses back to the beginning of the object or to a left
super-parenthesis. ‘ ,

The dotted-pair dot.

Left parenthesis.

Left super-parenthesis. =~ The chtran of a left super-parenthesis
must be set to the ascii code for the corresponding right
super-parenthesis g0 that the reader can check for proper

matching of super parentheses.

A blank, ie. a character which delimits an atom or a number but

13.6.2 04/08/74

400000

1000000

1000040

The

Input and Output

is otherwise ignored. In the standard read table, space, tab,
comma, and newline have this syntax.

“Single-character object." This character begins, ends, and is
an atomic symbol. The difference between a single character
object and a letter is that a single character object need not be
delimited by spaces or any other special chcracters. If ™" had
this syntax then “(::)" would read as a list of length three,
unlike "(aaa)" which reads as a list of length 1. In the
standard readtable no characters have this syntax.

" A character with this syntax bit turned on ends pnames and

numbers. In the standard readtable all the special characters
such as space, parentheses, and dot have this syntax.

This character is the exponent introducer (e) for floating-point
numbers.

This character is the string quote, which begine and ends
character strings (usually a " sign)

This character causes vertical motion (newline, newpage.)

In the pdp-10 implementation, this bit indicates a *force feed”
character. This is a character which causes LISP to "wake up”
and read typed input. Initially such characters as space and
right parenthesis have this syntax. In the Multics
implementation newline is always a forcefeed character and no
other character can be a force feed.

syntax for most characters is a combination of several of these

bits. Here is a table of the syntax codes assigned to various characters
in the standard readtable:

worthless

control characters
000400500

backspace 000000002 (to allow underlining in pnames)
space, tab, newline, newpage (the “white space” characters)

O~ ¥ I >/ v 3

H?O-
N

04/08/74

000500500 (002500500 for nl and np)
001400540
000404500
000440500
000410500
000000410
000000450
000500500
000420700
000402500
000000404
000404540
000000001
001000001

13.6.2 Page 161

MACLISP Reference Manual

A 000000022
- 000000062
a-z 000000001
e 001000001

The remaining special characters have 000002 syntax.

| setsyntax’ SUBR 3 args

(setsyntax ¢ s) adjusts the syntax of the character ¢ in the
readtablee. ¢ can be a fixnum which is the ascii code for a character,
or it can be a character object or a string ome character long. 8 can
be nil, meaning don’t change the syntax of ¢, or a fixnum, meaning set
the syntax bits for ¢ to that fixnum, or the atom single, meaning set
the syntax of ¢ to the syntax for single-character objects, or the
atom macro, meaning set the syntax of ¢ to be a macro character in
which case x is the function for the macro, or the atom splicing which
is like macro except it makes a splicing macro, or a character object
or string in which case the standard initial syntax for this character
is used. % can be a fixnum to which ¢’s chtran should be set, or a
character object or one-character string to which ¢’s chtran should be
set, or nil meaning don’t change ¢’s chtran, or a function if the
second argument was splicing or macro.

If ¢ is a macro character, it is changed back to its standard
syntax and chtran before anything else is done, unless it is a macro
in the standard readtable, in which case its syntax is set to 502
(extended alphabetic) and its chtran is set to itself.

setsyntax always returns t.

readtable VARJABLE & ARRAY

The value of readtable is an array which contains tables used by the
reader to determine the meaning of input characters. This array may
be manipulated using the functions setsyntax, status, and sstatus.
Multiple readtables may be constructed by using the makreadtable
function, and the atom readtable may be lambda-bound or setg’ed to one
or another of these readtables.

Note that the value of readtable is not an atomic symbol which names
an array, but the array-object itself, which is the result of (get “x
“array) if x names an array.

The array property of readtable is the same as its initial value,
which is the read table with the standard meanings for all characters.

‘Page 162 - ‘ 13.6.2 04/08/74

Input and Output

makreadtable SUBR 1 arg

(makreadtable a) gives the atom & an array property which is a copy of
the current readtable, a table which is used by the reader to
determine the syntactic properties of characters.

(makreadtable nil) is the same except that the array property is hung
on a (gensym)’ed atom.

(makreadtable t) is like (makreadtable nil) except that a copy of the
initial readtable is used rather than a copy of the current readtable.
The initial readtable has the standard meanings for all the
characters, eg. (and) delimit lists, * is used for quoting, etec.

makreadtable returns the atomic symbol on which it has hung the array
property. To switch to this readtable, evaluate

(setq readtable (get (makreadtable whatever) “array))

See also the functions status and sstatus.

04/08/14 13.6.2 . Page 163

MACLISP Reference Manual
13.7 <« Control of Printer Formatting

This section describes how the functions print, prinl, princ, explode,
exploden, and explodec convert LISP objects to strings of characters so
that they can be printed out in readable form.

Atomic symbols are represented by their "pnames,” which are the strings
of characters by which they were originally typed in. When special
characters appear in a pname, they are sometimes ‘slashified,” i.e.
preceded by a "/" to remove their special meaning. See the descriptions of
the individual functions to see which slashify and which don’t.

Strings are printed out as the characters they contain. Those functions
which slashify put quotes (") around strings to distinguish them from
atomic symbols and to indicate that any special characters, such as space
or period, they contain are not to be considered to have their special
meanings.

Flonums are printed out in decimal radix, with an embedded decimal
point. If the magnitude of the number is outside of a certain range, a

trailing exponent delimited by an "e" is printed.

Fixnums are printed in the radix specified by the variable base.
Negative fixnums have a preceding "-" signn. H base is ten and the
variable xnopoint is nil, which it is unless changed by the wuser, fixnums
will be printed with a trailing decimal point. If the base is greater than

ten, letters will be used as digits.

Fixnums with many trailing zeros are made more legible by use of the
"_", or left-shift, operator, unless (sstatus _ nil) is done The “_"
character ' is used because on certain formerly-used terminals it was printed
as a leftward arrow. The use of the "_" can be described by example: in

octal radix, "12345000000" would be printed instead as "12345_18."

Bignums are printed in much the same format as fixnums.

xnopoint SWITCH

If the value of =xnopoint is nil, trailing decimal points are printed
when numbers are printed out in base ten. This allows these numbers
to be read back in correctly even if ibase is not ten. If xnopoint is
non-nil, the trailing decimal points are suppressed. The initial
value of =xnopoint is nil.

 base VARIABLE

The value of base ie a number which is the radix in which'numbers are
to be printed. The initial value of base is 8.

Page 164 13.1 ' 04/08/74

Input and Output

Lists or "conses” are represented using the parentheses notation that
has been wused throughout this manual. A dotted pair whose cdr is nil is
printed as a list but other dotted pairs are printed using the dot. Thus
(cons “a nil) prints as (a), while (cons “a “b) prints as (a . b). (1ist
‘a ‘b “c) prints as (& b c) rather than (a . (b . (c . ni1))).

© Other types, such as arrays, subrs, and files, have no proper printed
representation, They are printed as a “"»" sign followed by some string
that has internal meaning, such as an octal number.

Most files have a limit on the number of characters that may be printed
on a single line when output is done to these files. For example, on the
user terminal the maximum number of characters per line is determined by
the width of the platen or display screen. This limit is called the file’s
"Tinel.” When a file-object is created, its 1linel is set to a value
appropriate for the device on which the file resides.

Each file also has another number associated with it, called its
“charpos.” The charpos is the horizontal position, starting at 0 at the
left margin. If no backspaces or tabs are wused it is the number of
characters that have been printed so far on the current line. As
characters are sent to the file, charpos increases for printing characters
or is adjusted appropriately for format effectors such as carriage return
or backspace. When charpos exceeds 1inel, an automatic newline is provided
by the output functions, such as print, to ensure that the line being sent
to the file is mnot longer than the file’s 1inel. This feature can be
turned off by use of the (sstatus terpri) function. Note that the 1inel is
not an absolute limit since some implementations will not break atoms
across lines, so that a particularly long atom near the right margin could
result in a line longer than linel

Some other attributes of a file are ite 1inenum, pagel, and pagenum
The 1linenum is the line number, starting with 0 at the top of a page. The
pagel is the number of lines per page. The pagenum is the page number,
starting with zero at the beginning of the file

The following functions can be uged to examine or modify the attributes
of files:

l1inel LSUBR 1 or 2 args
(1inel f), where f is an output file, gets the number of characters
per line on f. Lines output to f that exceed this length get an extra
newline inserted at the next break between atoms. If the linel = 0,
this feature is suppressed.
(1inel ni1l) gets the linel of the terminal.
(1inel f n) sets the file f’s linel to the fixnum n.

(1inel nil n) sets the terminal’s linel to the fixnum n.

04/08/74 137 Page 165

' MACLISP Reference Manual ,

charpos LSUBR 1 or 2 args

(charpos f), where f is a file or nil meaning the terminal, returns
the current character position of f, with 0 being the left margin.

(charpos f: n) sets the charpos of f to the fixnum n. This does not
move a cursor or anything of that sort. .

chret LSUBR 1 or 2 args
This is an older, now obsolete, version of charpos.
(chrct x), where x is an output file -or nil meaning the terminal,

returns the number of character positions left on the line being
output to %. ' ‘

(chrct x y), where = is a file and y is a fixnum; gets x’¢ chret to ¥
and returns ¥.

pagel LSUBR 1 or 2 args

(page! f), where f is a file or nil meaning the terminal, returns the
number of lines per page of the file f.

(pagel f n) sets the number of lines per page of the file f to the g
fixnum n. f

11nenum LSUBR 1 or 2 args

(Yinenum f), where [is a file or nil meaning the terminal, returns
the current line number of f, with 0 being the top of the page.

(1inenum f n) sets the line number of f to the fixnum n. Note that

this does not causes any physical motion, it simply changes the
number.

pagenum LSUBR 1 or 2 args
(pagenum f), where f is a file or N1l meaning the terminal, returns
the current page number of f, which is 0 when the file is first
opened. :

(pagenum f n) sets the page number of the file f to the fixnum. n. .

The printing of large lists can be limited by wuse of the variables

Page 166 13.7 .) 04/08/74

Input and Output

prinlevel and prinlength. If these variables are nil, they have no effect,
but if they are set to fixnum values they take effect as follows:
prinlevel specifies the maximum depth of nested parentheses that will be
printed. If this depth of nesting is exceeded, a sharp sign (#) will be
printed and the list structure below that depth will be omitted.
prinlength specifies the maximum number of list elements (atoms or
sub-lists) that will be printed in any one list. If more than this number
need to be printed, the excess will be omitted and 3 dots (..) will be
printed to indicate the omission. These features operate under the control
of some abbreviation control bits set by (sstatus abbreviate). (sstatus
abbreviate 1) enables it for print, prinl, etc. when they output to files.
(sstatus abbreviate 2) enables it for flatsize, flatc, explode, etc.
(sstatus abbreviate 3) enables it for both. (sstatus abbreviate t) enables
it for everything (currently the same as 3. (sstatus abbreviate nil) or
(sstatus abbreviate 0) turns it off. Note that abbreviation is always in
effect for the terminal. The only way to turn it off is to setq prinlevel
and prinlength to nil.

prinlevel VARIABLE

prinievel can be set to the maximum number of nested lists that will
be printed before the printer will give up and just put a "e". If it
is nil, which it is initiallyy, any number of nested lists can be
printed. Otherwise, the value of prinlevel must be a fixnum. The
effect of prinlevel is under the control of (sstatus abbreviate).

prinlength VARIABLE

prinlength can be set to the maximum number of elements of a list that
will be printed before the printer will give up and just put “..°
If it ig nil, which it is initially, any length list can be printed.
Otherwise, the value of prinlength must be a fixnum. The effect of

prinlength is under the control of (sstatus abbreviate).

endpagefn LSUBR 1 or 2 args

(endpagefn f), where f is an output file, returns the end of page
function of f. This is a function which is invoked whenever the file
is advanced to a new page. nil is returned if f has no endpagefn.

(endpagefn f z) sets the endpagefn of the file f to the functional
form . If z is nil fs endpagefn is removed.

Note that if f is nil it means set the endpagefn of the terminal,

which may or not be implemented depending on the implementation and
the type of terminal

04/08/74 13.7 Page 167

» MACHéP i‘é{erence M;lnual
138 = Input Format Expected by (read)

This section describes the forms of input which will be accepted by the
read function and converted to LISP objects.

A string of digits, with an optional leading sign and trailing decimal
point, is read as a fixnum, unless it is too large to fit in a fixnum, in
which case it is read as a bignum. If a trailing decimal point is
included, the number is converted in decimal radix. Otherwise the variable
ibase sgpecifies the radix. Initially it is eight. If ibase is greater
than ten, and the number begins with a leading "+" or "-" sign, and (status
+) is not nil, upper- or lower-case letters may be used as digits, with “a”
" being 10., "b" 11, etc. If (status +) is nil, the standard initial
setting, this feature is turned off and what looked like a number with
letters as digits would be read as an atomic symbol.

ibase VARIABLE

The value of ibase is a number which is the radix in which numbers
will be read. The initial value of ibase is 8.

“Fixed point number modifier" characters may be used in fixnums or

bignums. In the standard readtable these characters are "_° and “A"
“mmm_nn" causes the number mmm to be shifted left nn bits. Note that nn is
interpreted in the ibase radix unless a trailing decimal point is placed on
it. If mmm is to be read in decimal, a trailing decimal point may be
placed just before the "_". "mmmAnn" is read in as mmm followed by nn
zeros, ie. as mmm multiplied by the nn’th power of the input radix. nn
must have a trailing decimal point if it is not to interpreted in the

ibase radix. ,

A string of digits with a leading or embedded decimal point, and/or an
exponent introduced by "e" or "E", is read as a flonum. The number and the
exponent may be optionally signed. The number and the exponent are
interpreted in decimal radix regardless of 1ibase. The number is generally
converted to binary and rounded to the equivalent of 6 to 8 decimal digits
of precision, depending on the implementation.

A string of letters, numbers, and “extended alphabetic® characters
represents an atomic symbol whose pname is the string, provided that it
does not look like a number (e.g. all numeric characters.) A special
character, such as a parenthesis, a period, or a space, may be included in
an atomic symbol by preceding it with a slash. A slash itself is
represented by two slashes. A string of digits may be made to represent an
atomic symbol rather than a number by preceding one of the digits with a
slash, to make it into an alphabetic character.

—

A parenthesized sequence of items such as atoms or parenthesized lists

Page 168 138 04/08/74

LT

Input and Output

is read in as a list. The items may be seperated by spaces or commas. If
a dot appears, it must be between the last two items, and a dotted pair or
a list ending in an atom other than nil is created. Where there would be
ambiguity between a dotted-pair or a decimal point, the decimal-point
interpretation will be chosen, so dotted-pair dots should be surrounded by
spaces. Thus (1.2) is different from (1 . 2).

A sequence of characters enclosed in quotes (such as "foo") is read as a
character string. If a quote is to be included in the string, two quotes
must be written.

The readtable may be set up so that certain characters are “single
character objects." These characters read in as atomic symbols whose pname
is the single character, without the benefit of delimiting spaces or
commas. In the standard readtable there are no single character objects.

Characters may be defined as wmacro characters. (See the setsyntax

function.) When these characters are encountered by the reader, a special
action defined by a LISP function is performed, wunless, of course, the
character is slashified. Two macro characters included in the standard

*

readtable are and ;. ‘X is equivalent to (quote x), similarly “(a b) is
equivalent to (quote (& b)). The ; is used to introduce a comment: the
semicolon and the rest of the line to the right of the semicolon are

skipped over.

Note that the specific characters used in all the constructions defined
above are only the initial default characters for these constructions. Any
other characters may be substituted by changing the readtable. See the
setsyntax function.

04/08/74 13.8 Page 169

MACLISP Reference Manual
139 = “Moby /0"

This section describes how to wuse some of the peculiar I/O devices
present on the MIT AL Lab pdp-10.

The Display Slave

The Display Slave runs on the pdp-6, if it is available, otherwise on
the pdp-10. It displays pictures on the 340 display under control of
commands sent to it by certain LISP functions.

The following conventions are wused in the descriptions of these
functions:

z,y are assumed to be fixnum arguments to line drawing, point
inserting, and other such functions. They represent coordinates.

n is a fixnum argument whose meaning is described under the
particular functions which wuse it.

item is the numerical index or name of some display slave item,
returned by discreate.

bright each item has a brightness level associated with it, ranging
between 1 and 8. The default is 8.

scale each item has a scale, or magnification, factor associated with
it. The scale factor ranges between 1 and 4 The default is 1.
2 doubles the length of drawn lines and the size of text; 3
quadruples; and 4 multiplies by 8. Text looks much nicer {on the
340) if drawn with a magnification of 2

flag is an indicator, which if nil specifies that a given action is to
be undone, or if non-nil specifies that the given action is to be
done.

bsl is either nil indicating no change, or is a list (bright scale)

specifying new values of these parameters for a given action.

All numbers in this section are octal unless followed by a decimal point,
in which case they are decimal.

The display slave maintaine a number of items, whose names are indicated
by ‘item’ above. [Each item has associated with it variables determining
the brightness, scale, and visibility of points and lines in the item.
Like the LOGO Turtle, we think of the item as having a "pen" which can be
"down” g0 that a line is visible when the turtle is requested to move from
one place to another, or "up” so that no visible mark is made.

For the functions which affect brightness, scale, or the penup status, 0

generally means no change Functions which take an optional ’bsl’
argument, namely disapoint, discuss, and disaline, will treat it as a

Page 170 | 139 ‘ 04/08/74

P,

e n g o
PN

Input and Output

temporary setting for these values, and upon exit will restore them to
their values prior to the call. The optional penup argument to disaline is
similarly treated as temporary.

Arguments that are intended to specify coordinates on the screen for the
functions disaline, disapoint, and discuss are interpreted in one of four
ways depending on the slave variable "astate,” which can be set by disini.
“astate™ is mnot a lisp variable.

0 relative mode - the point specified is in relation to the “home® of
the item on which the function is acting.

1 absolute mode - x and y are interpreted as direct screen coordinates,
modulo 1024, with (0,0) at the lower left-hand corner.

2 incremental mode - the coordinates specified are relative to the
current position of the pen of the item which is being acted upon.

3 polar mode - like incremental, but the x and y arguments, which must
be flonums instead of fixnums, are considered as the radius and angle
respectively in a polar coordinate system centered on the current pen
position, with zero degrees being horizontal and to the right.

NB: functions like discreate, dislocate, and dismotion, which specify an
item’s home, always take the coordinates of the home in absolute mode.

To emphasize that the interpretation of ¥ and y is controlled by astate, we
will write astate(x,y) to mean the point specified by » and ».

discreate LSUBR 0 or 2 args

(discreate x y) creates a new display item with home at (x,y) on the
screen. (discreate) creates one with home at (0,0). discreate
returns the item number of the newly-created item, by which it may be
referred to in later calls

disini LSUBR 0 or 1 args

disini seizes and initializes the slave. If the user already has the
slave (this is not the first disini), it is re-initialized. astate is
set to the argument if there is one, provided it is 0, 1, 2, or 3.
Otherwise astate is not changed. Initially astate is 0. The previous
value of astate is returned.

04/08/74 139 Page 171

AMACIQISP Reference Manual

display SUBR 2 args

(display item flag) makes the ftem vigsible or not depending on whether
flag is t or nil.

disflush | LSUBR 0 or more args

(disflush) flushes the slave. (disflush item item .. item) flushes
the indicated items, ie. deletes them from the slave’s memory.

dislocate SUBR 3 args

(dislocate item x y) moves the item’s home to (x,5).

disblink SUBR 2 args

(disblink item flag) makes item blink if flag is non-nil, stop
blinking if J[flag is nil.

discopy SUBR 1 arg

(discopy item) makes a copy of item, and returns the new item, which
has its home at the same location.

dismark SUBR 2 args
(dismark item n) if n = 0, removes marker from item. If m < O,

inserts standard marker on item. If n > 0, inserts display-item n as
marker on item. .

discribe SUBR 1 arg

(discribe item) returns a list of the parameters of item:

(home-x, home-y, pen-pos-x, pen-pos-y, bright, scale, penup, marker)

Page 172 | 139 04/08/74

Input and OQutput

d1ischange 'SUBR 3 args

(dischange item bright scale) adds bright and scale to the
corresponding variables of item.

dislink SUBR 3 args

(dislink item-1 item-2 flag) links or unlinks item-1 to item-2 (links
if flag non-ni), unlinks if flag nil) item-2 is the “inferior™ of
item-1, and will be dislocated, dischanged, displayed, and disblinked
whenever item-1 is.

dislist LSUBR 0 or 1 args

(disVist) returns a list of a.ll items "on display,” that is made
visible by (display item t).
(dislist item) returns a list of all inferiors of item.

diset SUBR 3 args

(diset item n bsl) sets the values for penup, brightness, and scale
for the item. If n is -1, put pen down. If n is +1, lift pen. If n
is 0, leave pen alone. Set bright and scale from bsl, as described
above. .

disaline LSUBR 3 to 5 args

(disaline item x y bsl n) sets penup, bright, and scale from bsl and n
as in diset, then moves pen position to astate(x,y), leaving a visible
line if the pen is down, and restore the item’s penup, bright, and
scale.

The forms (disaline item x y), (disaline item x y n), and (disaline
item x y bsl) are also allowed. The unspecified parameters are left
unchanged.

disapoint LSUBR 2 or 3 args
(disapoint x y bsl) displays a point at astate(x,y) as part of item.

bsl is interpreted as by disaline, as a temporary setting of bright
and scale. It may be omitted.

04/08/74 139 Page 173

MACLISP Reference Manual

discuss LSUBR 4 or 5 args

(discuss dtem =x y text bsl) processes bsl as disapoint does, then
inserts the characters of text, as if princed, into the item
beginning at the point astate(r,y). bsl may be omitted.

dismotion SUBR 4 args

(dismotion item =x y speed) causes item to be slowly dislocate’ed so
that its home eventually becomes (x,;y). If either * or ¥ is negative
the item is placed under control of spacewar console 1. ‘The button
returns control to the tty. [???] The argument speed is an inverse
measure of the speed at which the item will move. speed = 0 is the
maximum.

disgorge SUBR 1 arg

(disgorge item) creates a (gensym) atom, gives it an array property,
and fills the array with the internal display code of item.

disgobblie SUBR 1 arg

(disgobble array-name) takes the array named array-name and generates
a display item from the internal display code in the array.

Examples:

A subroutine to draw a light box with a medium point inside it at the
center of the screen. A description of the item is returned.

((1ambda (oastate b)

(disaline b -100 -100 1) ;go to lower left corner of box

(diset b 0 (1ist 3 boxscale));set scale from global variadble
;set bright but don’t change penup

(disaline b 0 200) ;draw box in incremental mode

(disaline b 200 0)

(disaline b 0 -200)

(disaline b -200 0)

(disini 0) ;g0 to relative mode to
(disapoint b 0 0 “(6 0)) :draw the point
(disini oastate) ;restore astate
(discribe b)) ;return value,
(disini 2) ;enter with astate 2
(discreate 1000 1000)) ;and b set to this item.
Page 174 139 04/08/74

Input and Output

To add some text on top of the box, assuming astate = 0 and that b is the
item asg above:

(discuss b -200 207 "here is the box - see the box" ‘(6 2))
To move the box b right 100 units: ‘ /

(setq foo (discribe b))
(setq foo (1ist (car foo) (cadr foo)))
(dislocate b (+ 100 (car foo)) (cadr foo))

To put a cross where the pen is now, and some text where it used to be
before it was moved:

(dismark b -1)
(discuss b (caddr foo) (cadddr foo) "turtle slept here"))

To brighten the box and point (but text is already brightest, so it does
not change):

(dischange b 2 0)
To get rid of the box:
(disflush b)
To get rid of the slave:

(disflush)

The display slave is also available in the Multics implementation of
MACLISP, in a somewhat different form. The Multics Graphics System is used
so the “display” can be any devicee Normally it is the terminal, but it
can be directed elsewhere by attaching the stream “graphic_output,” before
using the display slave.

The Multics display slave is not part of the initial LISP environment.
It must be loaded in. (As of this writing, 21 January 1974, the Multics
display slave is actually not yet available @~ However it is expected to be
finished soon.)

The Multics display slave does not implement brightness or scale.
Blinking is simulated by the wuse of dotted lines. dismotion is not
implemented. The graphic data does not actually appear wuntil (disgo) is
evaluated. (diserase) should be called if an item is changed or removed,
rather than simply added, so that the display will be redrawn from the
beginning the next time (disgo) is used. The Multics display slave accepts
both fixnums and flonums as coordinates.

04/08/74 139 Page 115 ‘

MACLISP Reference Manual

The display slave consists of a set of LISP functions which are
autoloaded in when disini is first called. '

Arms, Hands, and Eyes
TO BE SUPPLIED

Page 176 " 139 ' 04/08/74

Compilation

14 <« Compilation

LISP programs can be compiled into machine code. This representation of
a program is more compact than the interpreted list-structure
representation, and it can be executed much more quickly. However, a price
must be paid for these benefits. It is not as easy to intervene in the
execution of compiled programs as it is with interpreted programs. Thus

most LISP programs should not be compiled wuntil after they have been
debugged. :

In addition, not all LISP programs can be compiled. There are certain
things which can be done with the interpreter that cannot be effectively
compiled. These include indiscriminate use of the functions eval and
apply, especially with pdl-pointer arguments; "nonlocal” use of the go and
return functions; functions which modify themselves. Also there are a
number of functions which detect illegal arguments when they are called
interpretively but not when a call to them is compiled - therefore
erroneous compiled programs can damage the LISP environment and can cause
strange errors to occur - be forewarned. However, most “normal® programs
are compilable.

04/08/74 14. Page 177

MACLISP Reference Manual
141 - Peculiarities of the Compiler

Some operations are compiled in such a way that they will behave
somewhat differently than they did when they were interpreted. It is
sometimes necessary to make a “declaration” in order to obtain the desired
behavior. This is explained in section 14.2.

14.1.1 <= Variables

In the interpreter “variables” are implemented as atomic symbols which
possess shallow-bound value cells. The continual manipulation of value
cells would decrease the efficiency of compiled code, &0 the compiler
defines two types of variables: "special variables” and "local variables.”
Special variables are identical to variables in the interpreter.

Local variables are more like the variables in commonly-used algebraic
programming languages such as Algol or PL/I. A local variable has no
associated atomic symbol, thus it can only be referred to from the function

that possesses it. The compiler creates. local variables for
prog-variables, do-variables, and lambda-variables, unless directed
otherwise. The compiled code stores local variables in machine registers

or in locations. within a stack.

The principal difference between local variables and special variables
is in the way a binding of a variable is compiled. (A binding has to be
compiled when a prog-, do-, or lambda-expression is compiled, and for the
entry to a function which has lambda-variables to be bound to its
arguments.) If the variable to be bound has been declared to be special,
the binding is compiled as code to imitate the way the interpreter binds
variables: the value of the atomic symbol is saved and a new value s
stored into .its value cell. If the variable to be bound has not been
declared special, the binding is compiled as the declaration of a new local
variable. Code is generated to store the value to which the variable is to
be bound into the register or stack-location assigned to the new local
variable.

Although a special variable is associated with an atomic symbol which is
the name of the variable, the name of a local variable appears only in the
input file - in compiled code there is no connection between local
variables and atomic symbols. Because this is so, a local variable in one
function may not be used as a "free variable" in another function since
there is no way for the location of the variable to be communicated between
the two functions.

When the wusage of a variable in a program to be compiled does not
conform to these rules, i.e. it is somewhere used as a “free variable,” the
variable must be declared special. There are two common cases in which
this occurs. One is where a "global® variable is being used, i.e. a
variable which is seiq’ed by many functions but is never bound. The other

Page 178 14.1.1 | 04/08/74

Compilation

is where two functions cooperate, one binding a variable and then calling
the other one which uses that variable as a free variable.

1412 <« In-line Coding

Another difference between the compiler and the interpreter is “in-line
coding,” also called “open coding." When a form such as (and (foo x)
(bar)) is evaluated by the interpreter, the built-in function and is called
and it performs the desired operation. But to compile this, form as a call
to the function and with list-structure arguments derived from (foo x) and
(bar) would negate much of the advantage of compiling. Instead the
compiler recognizes and as part of the LISP language and compiles machine
code to carry out the intent of (and (foo x) (bar)) without actually
calling an and function. This code might look like:

pick up value of variable x

call function foo

is the result nil?

if yes, the value of the and is nil

if no, call the function bar

the result of the and is what bar returned.

This "in-line coding” is done for all “"special forms" (cond, prog, and,
errset, setq, etc.), thus compiled code will usually not call any of the
built in fsubrs.

Another difference between the compiler and the interpreter has to do
with arithmetic operations. Most computers on which MACLISP is implemented
have special instructions for performing all the common arithmetic
operations. The MACLISP compiler contains a "number compiler” feature
which allows the LISP arithmetic functions to be “in-line coded” using
these instructions.

A problem arises here because of the generality of the MACLISP
arithmetic functions, such as plus, which are equally at home with fixnums,
flonums, and bignums. Most present-day computers are not this versatile in
their arithmetic instructions, which would preclude open-coding of plus.
There are two ways out of this problem: one is to use the special purpose
functions which only work with one kind of number. For example, if you are
using plug but actually you are only working with fixnums, use + instead.
The compiler can compile (+ a b c) to use the machine’s fixnum-addition
instruction. The second solution is to write (plus a b ¢) but tell the
compiler that the values of the variables a, b, and ¢ can never be anything
but fixnums. This is done by means of the "number declarations” which are
described in section 14.2.

Another problem that can arise in in conmection with the in-line coding
of arithmetic operations is that the LISP representation of numbers and the
machine representation of numbers may not be the same. Of course, this
depends on the particular implementation. If these two representations are

04/08/74 14.1.2 Page 179

MACLiSP Rel;efence Manual

different, the compiler would store variables which were local and declared
to be numeric-only in the machine form rather than the LISP form. This
could result in compilation of poor code which frequently converts number
representations and in various other problems. Compilers which have this
problem provide a (closed t) declaration which inhibits open coding of
arithmetic operations.

1413 = Function Calling

Another property of compiled code that should be understood is the way
functions are called. In the interpreter {function calling consists of
searching the property list of the called function for a functional
property (if it is an atomic symbol) and then recursively evaluating the
body of the function if it is an expr, or transferring control to the
function if it is a subr. In compiled code funmction calling is designed
according to the belief that most of the functions called by compiled code
will be machine executable, ie “subrs:" other compiled functions, or
builtin functions, and only infrequently will compiled code «call an
interpreted function. Therefore a calling mechanism is used which provides
for = efficient transfer between machine-executable functions without
constant searching of property lists. This mechanism is called the “uuo
link®™ mechanism for historical reasons.

When a compiled function is first loaded into the environment, it has a
uuo link for each function it will calll. This uuo link contains
information proclaiming that it is “unsnapped” and giving the name of the
function to be called, which is an atomic symbol. The first time a call is
made through such a uuo link, the fact that it is “unsnapped” is recognized
and a special linking routine is entered. This routine searches the
property list of the function to be called, looking for a functional
property in just the same way as the interpreter would. If the function
turns out to be an expr, or is undefined, the interpreter is used to apply
the function and the result is given back to the compiled code. The link
is left “unsnapped” so that every time this function is called the
interpreter will be invoked to interpret its definition.

If the function being called is machine executable (a ‘subr), the link is
"snapped.” Exactly what this means is implementation dependent but the
effect is that from now on whenever a call is made through this uuo link
control will be transferred directly to the called function wusing the
subroutine-calling instruction of the machine, and neither the linking
routine nor the interpreter will be called.

There is a flag which can be set so that links will not be snapped even
if they go to a function which is machine executable. This flag is the
value of the atomic symboel nouuo. There is also a function, (sstatus
uuolinks), which unsnaps all the links in the environment. These
facilities are used in circumstances such as when a compiled function is
redefined.

Page 180 141.3 04/08/74

Compilation

In the pdp-10 implementation a uuo link is implemented as an instruction
which is executed when a call is to be made through the link.. An
“"unsnapped” link consists of a special instruction, "uuo”, which causes the
LISP linking routine in the interpreter to be called. The address field of
the uuo points to the atomic symbol which names the function to be called.
The operation code and accumulator fields indicate the type of call and
number of arguments. When the link is snapped the uuo instruction is
replaced with a "push;" instruction, which is the machine instruction for
calling subroutines.

In the Multics implementation, a uuo link is implemented as a pointer.
To call through this link a “tspbp" instruction indirect through the
pointer is used. An unsnapped link points at the linking subroutine and
various fields in the pointer, left unused by the machine, indicate the
type of call, number of arguments, and the atomic symbol which names the
function. When the link is snapped the pointer is changed to point at the
first instruction of the called function.

Before a function can be used it must be made known in the LISP

environment. Interpreted functions are made known simply by putting a
functional property on the property list of the atomic symbol which names
the function. This is usually done using the built in function defun.

Compiled functions must be made known by a more complex mechanism known as
"loading,”" because of the complexity of the support mechanisms needed to
make compiled functions execute efficiently. In some dialects of LISP the
compiler automatically makes the compiled functions known, but in MACLISP
the compiler creates a file in the file system of the host operating
system, and this file has to be loaded before the compiled function can be
called. In the pdp-10 implementation this file is called a “fasl file.”
In the Multics implementation it is called an "object segment." Loading is
described in detail in section 14.3.

1414 - Input to the Compiler

The input to the compiler consists of an ascii file containing a number
of S-expressions. The format of this file is such that it could be read
into a LISP environment using a function such as load or uread, and then
the functions defined in this file would be executed interpretively.

When a file is compiled, the compiler reads successive S-expressions
from the file and processes them. Each is classified as a function
definition, a declare, or a “"random form” according to what type of object
it is and according to its car if it is a list.

A function definition is a form whose car is one of the atoms defun,
defprop. When the compiler encounters a function definition if it defines
a macro the macro is defined for use at compile time. If it defines an
expr or a fexpr, the compiler translates the definition from LISP to
machine code and outputs it into the "fasl file" or "object segment” which
is the output from the compiler. If it defines some other property, it is

04/08/74 14.1.4 Page 181

MACLIS? Referenco Manual

treated as a random form.

A random form is anything read from the input file that is not a
function definition or a declare. It is simply copied into the output. file
of the compiler in such a way that when that file is loaded it will be
executed.

A declare is a form whose car is the atom declare. It is ignored by the
interpreter because there is an fsubr called declare in MACLISP which does
nothing.

Note that if a form is read from the input file and its car has been

defined as a macro, the compiler will apply the macro and then process the
result as if it had been read from the input file

14.15 = Functions Connected with the Compiler

declare FSUBR

In the interpreter, declare is like commeht. In the compiler, the
arguments are evaluated at compile time. This is wused to make
declarations, to gobble up input needed only in the interpreter, or to
print messages at compile time. Examples:

(declare (special x y) (xfexpr £00))

(declare (read)) (needed-only-in-the-interpreter)

(declare (1og vt (princ "Now comp'lling fubar")))

Xinclude FSUBR

(Xinclude name) is used to cause an "include file* to be included in
the file being read. This works in both the compiler and the

interpreter. name may be a string or an atomic symbol. The
include-file search rules are wused.

Note: this function presently exists only in the Multics
implementation.

Page 182 : 14.1.5 04/08/74

Compilation

nouuo SWITCH

If the nouuo switch is on, function calls made by compiled functions

to compiled functions or system functions are forced to go through the

interpreter each time. This aids in debugging. If the nouuo switch

is off, the normal case, compiled calls can be made to go directly,
* which is much faster.

nouuo SUBR 1 arg
(nouuo t) sets the noouo switch.
(nouuo nil) turns off the noouo switch. (thig is the initial state.)

nouuo returns t or nil according to whether it turned the nouuo switch
. on or off.

purcopy SUBR 1 arg

This function is of use only in the "bibop” implementation of pdp-10
lisp, which is presently under development on ITS. It has the effect
of making a copy of its argument in pure free storage, so that
constant list structure may be placed on sharable pages. This is
primarily of wuse in the creation of large sharable systems like
macsyma. On other implementations purcopy simply returns its
argument.

04/08/14 14.1.5 Page 183

MACLISP Reference Manual
142 = Declarations

It is often necessary to supply information to the compiler in order to
compile a function beyond the definition of the function with defun, which
is all that the interpreter needs in order to interpret the function. This
information can be supplied through declares.

A declare is a list whose first element is the atom declare and whose
remaining elements are forms called “declarations.” The compiler processes
a declare by evaluating each of the declarations, at compile time. Usually
the declarations call on one of the declaration functions which the
compiler provides. These are described below. However it is permissible
for a declaration to be any evaluable form, and it is permissible for a
declaration to read from the input file by using the read function. This
may be used to prevent the compiler from seeing certain portions of the
input which are only needed when a program is run interpretively.
Prefixing a form in the input file with (declare (eval (read))) would cause
it to be evaluated at compile time if the file was compiled or at read-in
time if the file was interpreted. Arbitrarily complex compile-time
processing may be achieved by the combination of declarations and macros.

The remainder of this section describes the declaration functions
provided by the compiler. Note that if a declaration function described
below is of the form (foo t), its effect can be reversed by using the form
(foo n1l).

(spectal varl var2 ..)
Declares varl, var2, etc. to be special variables.

(unspecial varl vaerl ..)
Declares varl, var2, etc. to be local variables.

(xexpr fenl fen2 ..)
Declares that fenl, fen2, etc. are expr- or subr-type functions that
will be called. This declaration is generally supplied by default by
the compiler but in some peculiar circumstances it is required to
avoid error messages.

(xlexpr fenl fen2 ..) ,
Declares fenl, fen2, etc. to be lexpr- or 1subr-type functions that
will be called. This declaration is required for non-builtin
functions unless the functions are defined in the file being compiled

and are not referenced by any functions that are defined before they
are.

Page 184 142 04/08/74

Compilation

(xfexpr fenl fen2 ..)
Declares fenl, fen2, etc. to be fexpr- or fsubr-type functions that
will be called. This declaration is required for non-builtin
functions unless the functions are defined in the file being compiled
and are not referenced by any functions that are defined before they
are.

(xxarray arrl arr2 ..)
Declares arrl, arr2, etc. to be arrays that will bhe referred to. See
the note under =expr.

(fixnum varl var2 ..)
Declares varl, var2, etc. to be variables whose values will always be
fixnums.

(fixnum (fen typel type2 ..) ...)
Declares fen to be a function which always returns a fixnum result.
Also the types of the arguments may be declared as typel, type2, etc.
An argument type may be fixnum meaning the argument must be a fixnum,
flonum, meaning the argument must be a flonum, or notype, meaning the
argument may be of any type.

The two types of fixnum declarations may be intermixed, for example
(fFixnum x (f00 fixnum) y).

(flonum varl var2 ... (fen typel ...) ...)
Is the same as the fixnum declaration except the variables or
function-results are declared to always be flonums.

(notype varl var2 ... (fen typel ...) ...)
Is the same as the fixnum declaration except the variables or
function-results are declared not to be of any specific type.

(fixsw t)
Causes the compiler to assume that all arithmetic is to be done with
fixnums exclusively, except that obviously functions such as +$ and
cos will still use flonums.

(fixsw nil)
Turns off the above.

(flosw t)
Causes the compiler to assume that all arithmetic is to be done with
flonums exclusively, except that obviously functions such as + and tyo
will still use fixnums.

04/08/74 142 Page 185

MACLISP Reference Manual

(flosw nil)
Turns off the above.

fixsw and flosw are variables so0 (setq fixsw t) is an equivalent
declaration to (fixsw t).

(setq special t)
Causes all variables to be special.

(setg nfunvars t)
Causes the compiler to disallow functional variables.

(macros t)
Causes macros to be defined at run time as well as at compile time.

{macros nil)
Causes macros to be defined only at compile time. This is the defauit
case.

(genprefix foo)
Causes auxiliary functions generated by the compiler (for such things
as lambda-expressions passed as arguments) to be named foon, where n
is a number incremented by 1 each time such a function is generated.
The genprefix declaration is used when several separately compiled
files are to be loaded together, in order to avoid name clashes.

(arrayx (type arrl nl arr2 n2 ..) ...)
Is used to declare arrays arrl, arr2, etc typ¢ may be fixnum,
flonum, or notype; it indicates what type of objects will be contained
in the arrays. nl, n2, etc. are the number of dimensions in arrl,
arr2, etc. respectively.

(arith (typel fenl fen2 ...) (type2 fen2l fem22 ...) ...)

Is used to declare a general arithmetic function such as plus to be
replaced by a one-type arithmetic function such as +. fenl, fen2,
etc. are the functions to be replaced. typel, etc. is the type of
function to replace them with: fixnum means replace them with the
corresponding fixnum-only functions, e.g. replace plus by «+. flonum
means replace them with the corrésponding flonum-only functions, e.g.
replace plus by +3$. notype means turn off a previous arith
declaration for these functions.

The following declarations are useful only in the pdp-10 implementation;
however, the Multics implementation will accept them and ignore those which
are irrelevant.

Page 186 142 04/08/74

Compilation

(mapex t)
In the pdp-10 implementation, causes all map-type functions to be
open-coded as do loops. (This is always done in the Multics
implementation.) The resulting code is somewhat larger than
otherwise, but also somewhat faster.

(noargs t)
Causes the compiler not to output information as to the number of
arguments each function compiled takes; this provides some saving of
memory space in some pdp-10 implementations.

(messioc chars)

Causes an (1ioc chars) to be done just before printing out each error
message. In this way one may direct error messages to the LAP file
instead of to the terminal on the pdp-10.

(muzzled t)
Prevents the pdp-10 fast-arithmetic compiler from printing out a
message every time closed compilation of arithmetic is forced.

(symbols t)
Cauges the pdp-10 lisp compiler to output LAP directives so that the
LAP assembler will attempt to pass assembly symbols to DDT for
debugging purposes.

04/08/14 14.2 Page 187

MACLISP Reference Manual
143 =~ Running Compiled Functions

After a file of functions has been compiled, those functions can be
loaded into an environment and then called. They can be loaded either by
using the load or fasload functions described below, or by using the
autoload feature described in section 12.4.4.

The following function is at present available only in the Multics
implementation.

load SUBR 1 arg

(load x), where ~ is a file specification acceptable by opent, ie a
namestring or a namelist, causes the specified file to be loaded into
the environment. The file may be either a source file or a compiled
file (called a "fasl® file in the ITS implementation and an object
segment in the Multics implementation.) load determines which type of
file it is and acts accordingly. A source file is loaded by openi’ing
and 1inpush’ing it. A read-eval loop is then executed until the end of
the file is reached. An object file is loaded by reading it, defining
functions as directed by specifications inserted in the file by the
compiler. '

fasload FSUBR
fasload takes the same arguments as uread. It causes a file of
compiled functions, called a “"fasl” file in some implementations, to
be loaded in. Example:

(fasload foo fasl dsk macsym)

The following function only exists in the Multics implementation.

defsubr LSUBR 3 to 7 args
defsubr is the function used to define new machine code functions. It
defines various types of functions, depending on its arguments. The
way to define a subr written in PL/I is
(defsubr "segname" "entryname" nargs)
which defines segnamesentryname as a subr expecting nargs arguments.

The value returned is a pointer which can be putprop’ed under the subr
property or the fsubr property. The way to define an 1subr written in

Page 188 143 04/08/14

Compilation

PL/T1 is |
(defsubr "segname" "entryname" nargs2x1000+nargsl -2) /

which defines segname$entryname as an 1subr allowing from nargsl to
nargs2 arguments. The 1000 is octal. The value returned should be
putprop’ed under the 1subr property.
Examples:

(putprop “mysubr (defsubr "myfuns" "mysubr" 1) “subr)

(putprop ‘myfsubr (defsubr "myfuns" “myfsubr" 0) “fsubr)

(putprop “mylsubr

(defsubr "myfuns" “mylsubr” 2001 -2) “1subr)

A function defined in this way receives its arguments and returns its
value on the marked pdl, which may be accessed through the external
static pointer

. lisp_static_vars_8stack_ptr

See section 14.6 for details on how to access the arguments, and on
the internal format of LISP data. lisp_static_vars_$nil and
lisp_static_vars_$t_atom are fixed bin(71) external static; they
contain nil and t

04/08/74 143 Page 189

MACLISP Reference Manual
144 =~ Running the Compiler
in the Muitics implementation

The compiler is invoked by the lisp_compiler command to Multics. This
command can be abbreviated lcp. The arguments to the command are the
pathname of the input file and options. The compiler appends "lisp® to
the given pathname unless it is preceded by the -pathname or -pn option.
The output object segment is created in the working directory with a name
which is the first component of the name of the input file. For example,
the command

lep dir>{oo.bar

reads the file “"dird>oo.barlisp”" and produces an object segment named
“foo” in the working directory.

Usually no options need be supplied, since there are defaults. The
options available are:

-pathname -pn -p
Causes the following argument to be taken as the exact pathname of the
input file, even if it begins with a minus sign. “lisp” will not be
appended.

-eval '
Causes the following argument to be evaluated by LISP. For example,
lisp_compiler foo -eval "(special x y 3z)°

-time -times -tm
As each function is compiled, its name and the time taken to compile
it will be typed out.

-total_time -total -tt
At the end of the compilation, print metering information.

-nowarn -nw :
Suppresses the typing of warning messages. Error messages of a
severity greater. than “warning” will still be typed.

-macros -mc
Equivalent to the (macros t) declaration: Causes macro definitions to
be retained at run time.

~all_gpecial

Causes all variables to be made special. Equivalent to the (setq
special t) declaration. ‘

Page 190 14.4 04/08/74

Compilation

-genprefix -gnp -gp
Takes the following argument as the prefix for names of auxiliary
functions automatically generated by the compiler. Equivalent to the
genprefix declaration.

~check -ck

Causes only the first pass of the compiler to be run. The input file

is checked for errors but no code is generated and no object segment
is produced.

-ioc
If the following argument is %, (1oc z) is evaluated.

-list -ls
Causes a listing file to be created in the working directory,
containing copy of the source file and an assembly language listing,
with commentary, of the generated code. If the object segment is
named “"name”, the listing file will be named “name.list”.

-no_compile -ncp
Causes the compiler not to attempt to compile the file Instead the
input file is simply treated as being composed entirely of random
forms. It is digested into a form which can be processed quickly by
the load function.

in the ITS pdp~10 implementation

There are presently two versions of the LISP compiler on the ITS pdp-10
systems. CGOMPLR is the standard compiler, NCOMPLR the fast-arithmetic
compiler; one must use the latter to produce open-compiled arithmetic code,
but when this is not required the standard compiler is faster. (Note that
it does not hurt to include fast-arithmetic declarations in files compiled
by COMPLR; any irrelevant declarations are simply ignored.) Except for
this one difference the use of the two compilers is identical, and the rest
of this section applies to both unless otherwise specified. The word
COMPLR will similarly mean "either COMPLR or NCOMPLR".

When you say COMPLRAK the compiler will announce itself, print an
underscore or backarrow, and accept a command line, which should be of the
standard form

. Coutput file> _ <input file> (switches)

The file specifications gshould be standard ITS file names, e.g.
DEV:DIRNAM;FNAME! FNAME2. If it is necessary to get a “funny” character
such as _ into the file name, it may be quoted with a slash.

The compiler normally processes a file of LISP functions and produces a
so~called “"LAP file”, containing S-expressions denoting pdp-10
machine-language instructions, suitable for use with LAP (the Lisp Assembly
Program). However, one may direct the compiler instead to produce a binary

04/08/74 14.4 Page 191

MACLISP Referenceﬂﬁianual

object file, called a “FASL FILE", suitable for use with the fasload
function or the autoload featuree A third option is to process a
previously generated file of LAP code to produce a FASL file. This is
especially useful in the case where special-purpose functions have been
hand-coded in LAP.

If one specifies only an input file name, say FOO BAR, then by default
the name of a generated LAP file will be FOO LAP, and of a FASL file, FOO
FASL.

The various modes of operation of the compiler may be controlled by
specifying various switches, which are single letters, inside parentheses
at the end of the command line. A switch may be turned off by preceding
the switch letter with a minus sign. Extraneous or invalid switches are
ignored. Initially all switches are off (the use of minus sign described
above is provided in case the compiler is wused for several files in
succession). Valid switches to the compiler are:

A Assemble only. The specified input file contains LAP code which is
to be made into a binary FASL file.

D Disown. Causes the compiler to disown itself after .it has started
running. This is the safest way to disown a COMPLR, because the
compiler will know that it can’t try to get any information from
DDT.

F Fasl. Accept a file of LISP functions, produce a LAP file, and
then assemble the LAP file into a FASL filee This is probably the
most useful mode.

K Kill LAP file. Delete the LAP file after assembly. Usually used
in conjunction with the F switch.

M Macros. Equivalent to (declare (macros t)). Causes macro
definitions to be defined at run time as well- as at compile time.

N No args properties. Equivalent to (declare (noargs t)). Normally
the compiler outputs information in the LAP code as to how many
arguments each function requires, so that args properties may be
created on the appropriate atomic symbols at load time. In some
implementations these properties occupy a significant amount of
list space; thus it may be desirable to eliminate these properties.

S Special. Equivalent to (declare (setq special t)). Causes all
variables to be considered special.

T Tty notes. Causes the compiler to print a note on the wuser’s
terminal as each function is compiled or assembled. This switch is
normally off so that a COMPLR may be proceeded and allowed to run
without the TTY. In any case error message will be printed out on
the terminal. »

Page 192 ' 14.4 04/08/74 .

Compilation

U Unfasl comments. Useful only in conjunction with the F or A
switch. Causes the assembler to output comment messages into a
file whose second file name is UNFASL. (Actually, this file s
always created, and error comments will be directed into this file
also if messioc so specifies; but the file is immediately deleted
if it contains nothing significant.) These comment messages
describe the size of each function assembled, and give other random
information also.

Y no functional Variables. Equivalent to (declare (nfunvars t)).

w muzzled (i.e. Whisper) Equivalent to (declare (muzzled t)).
Prevents the fast-arithmetic compiler from printing out a message
when closed compilation of arithmetic is forced.

X map eXpand. Equivalent to (declare (mapex t)). Causes all
map-type functions to be open-coded as if they were do loops. The
resulting code is somewhat larger, but also somewhat faster.

YA Zymbols. Equivalent to (declare (symbols t)). Causes the compiler
to output a special directive in the LAP code so that the LAP
assembler will attempt to pass assembly symbols to DDT for
debugging purposes. Primarily of use to machine language hackers.

COMPLR will accept a "Job Command Line" if desired; simply type
:COMPLR <command line><cr>

In this mode COMPLR will automatically proceed itself and run without the
TTY, and kill itself when done.

It may be desirable to execute some LISP functions in the compiler
before actually compiling a file. Typing ctrl/G will cause the compiler to
announce itself and then type an asterisk; you will then be at lisp’s top
level. To make the compiler accept a command line, say (maklap). One
useful command for debugging and snooping around is cl; {c] foo) will
compile the function foo, which should be defined in the compiler’s lisp
environment, and print LAP code onto whatever device(s) are open for
output.

04/08/74 14.4 Page 193

MACLISP Reference Manual

145 <~ LAP on the pdp-10

The lisp compiler for the pdp-10 implementation does not output binary
object files directly; rather, it outputs a series of S-expressions
denoting the machine-language instructions of the compiled function. There
are two programs which accept such S-expressions and convert them to binary
machine language, called lap and faslap. (Historical note: the word “lap”
dates back to 7090 LISP, and is derived from the phrase "Lisp Assembly
Program®) lap is an in-core assembler; it reads in the S-expressions
(hereafter referred to as “lap code”) and deposits the resulting binary
instructions in the binary program space of the current lisp environment.
faslap, on the other hand, takes a file of lap code and produces a binary
file suitable for use with fasload. faslap is normally part of the pdp-10
lisp compiler. Both assemblers will accept the same lap code, except for
certain peculiar conditions. This section will describe the lap function
and lap code; differences between 1lap and faslap will be treated in a
special section.

1451 - The LAP Function

lap is an fsubr which is executed primarily for its side effect -
loading in a binary program. It accepts a series of S-expressions similar
in form to a program written in MIDAS or MACRO-10. It is not intended to
be a fancy assembler: it does not have conditional assembly, macros, or
complex literal generation features. It does, however, contain sufficient
power to load the output of the compiler, plus enough extra features that
simple machine-language functions may be hand-coded in it. (See the
section on conventions for writing lap code by hand later in this chapter.)
The major operational differences between lap and MIDAS or MACRO-10 are
that (1) lap is one-pass, while the others take two, (2) 1lap wuses the
function read to input lap code, while the others are more efficient, and
(3) lap assembles directly into the lisp environment, while the others
produce a binary object file (note that faslap differs only in the first
two respects).

The lap function is an fsubr which expects to get two atomic symbols as
arguments; the first is the name of the function to be assembled, and the
second is the type (i.e. the property under which it is to be stored on the
property list.) Thus

(1ap quux subr)

would assemble a subr called quux. When invoked, 1ap repeatedly calls - the
read function, operating on the S-expressions thus obtained, until a nil is
encountered, at which time the assembly ends. Some messages may be printed
out as this happens. If the assembly completed successfully, the variable
bporg is updated to reflect the new size of binary program space, and the
appn;)priate property is placed on the property list of the specified atomic
symbol. ‘

Page 194 . 145.1 04/08/14

Compilation

Normally, 1ap does not reside in the initial lisp system, though the
initial system does contain several specialized functions for use by 1lap.
Instead, lap has an autoload property of (lap fas! com) on ITS and (lap
fasl sys) on the 10/50 system. Thus, if one simply reads in a file of lap
code lap will load automatically and assemble the functions.

Here is an example of some lap code which corresponds roughly to the
lisp function memq:

(LAP FUNNY-MEMQ SUBR)
(ARGS FUNNY-MEMQ (NIL . 2))
MEMBEG (JUMPE B MEMEND) ;result nil if arg 2 nil

(HLRZ T 0 8) ielse look at car of arg 2
(CAINT O A)
{(JRST 0 MEMEND) swin if same as arg 1
(HRRZ B 0 B) selse take cdr of arg 2
(JRST 0 MEMBEG) ; and try again

MEMEND (MOVEI A 0 B) jreturn arg 2
(POPJ P) sexit from function

NIL

Note that this is greatly different in style from 7090 lap, which took
the entire program as one argument, and a symbol table as the other. The
drawback with the 7090 method is that the entire program must be read in
before it is assembled; this can require prohibitively large amounts of
memory, especially for the lap output from compilation of a large lisp
function. The method used by pdp-10 lap is much more reasonable in
practical situations (e.g. reading in lap code from a file).

lap does not use an a-list for its symbol table, either. Rather, the
value of the symbol is stored on the property list under the sym property.
Thus (defprop ztesch 43 sym) would make the symbol 2ztesch known to 1lap,
with the value 43. lap has a number of symbols initially defined,
including the names of all the accumulators, and the addresses of some
useful routines internal to lisp. It also uses the function getmidasop on
a symbol if the symbol is otherwise undefined to determine whether it is a
pdp-10 instruction (the getmidasop function contains a concise table of all
pdp-10 instructions and most monitor calls, as well as names of UUO’s used
internally by lisp). In this way lap can recognize all standard
instruction mnemonics without defining 400 or more sym properties. If
lisp’s symbol table has been loaded into DDT, then lap will ask DDT about
the values of symbols as a last resort. In this manner hand-coded lap code
may refer to any location internal to lisp (with an appropriate amount of
caution, of course).

When lap terminates, it returns as its value a list of the new value of
bporg and the entry poini(s) of the function defined (hand-coded functions
may have more than one entry point). If any symbols were wundefined or
multiply defined, they will be printed out first. It is generally a good
idea to let lap terminate naturally, rather than quitting out of it, since
it hacks the lisp environment in various peculiar ways.

04/08/74 145.1 Page 195

MACtlSP Reference Mnnﬁ#l
1452 = Valid LAP Code Forms

lap acts on the Saéxpressions it reads as follows:

nil
Terminate assembly and return. Any literale generated are assembled
into memory at the end of the function, temporary symbol definitions
are flushed, and (gctwa t) is evaluated. The nil sghould be followed
by a space, because carriage return is not always an atom separator.

<atomic symbol>
Assign to the atomic symbol (non-nil, of course) a temporary sym
property equal to the address of the next word to be assembled into.
If (symbols t) is in effect lap will pass the value of this symbol to
DDT if lisp>s symbol table has been loaded. Thus one uses atomic
symbols as location tags.

(defsym <atoml)> <valuel> .. <atomn> <valuen))
For each i -define <atomi> with a sym property of (eval <valuei>). No
binary words are generated, and these symbols are not passed to DDT.
Note that this performs a lisp evaluation, not a 1ap evaluation!

(entry <name> <{typed) or (entry <name))
Defines the ‘atomic symbol <name> to be a function of type <{type> with
entry point at the current location. If <{typed is not specified, it
defaults to the second argument to lap. No binary words are
generated. This form is not used by the output of the lisp compiler,
and is provided only as an aid to writers of hand-coded lap code. It
allows several functions to share symbols and storage areas.

(args <atom> <args-prop>)
B {3 the assembly terminates successfully, then <atom> gets <args-prop>
as its args property. <atom> must be an entry point of the function
being assembled. No binary words are generated. The pdp-10 lisp
compiler will output this declaration in each function compiled unless
(declare (noargs t)) or the N switch is given. faslap requires that
each args declaration follow the corresponding entry point.

{comment ...)
This form is totally ignored. Of course, since the lisp reader is
used to input lap code, segnicolon comments may be used as well.

Page 196 ‘ 14.5.2 04/08/74

Compilation

(eval <forml> .. <formn)>)
Applies the function eval to each form in turn. No binary words are

generated. This is useful for such things as (eval (setq ibase 23.))
or whatever.

(symbols <t-or-nil>)

Controls the lap feature which tries to pass symbolic location names
to DDT. Furthermore, if the symbols pseudo-operation occurs anywhere
within a given lap function, the names and locations of the entry
points of that function will also be passed to DDT. No binary words
are generated. Note that there is possibility for confusion. here
because lap will accept as tags atomic symbols with names of any
length, while MIDAS and DDT truncate tags to six characters. Thus
quuxbar and quuxbaz are two different symbols to lap, but will
interfere with each other when passed to DDT. When symbols are passed
to DDT, the names are truncated to six characters, and any non-squoze
character (a character other than A-Z, 0-9, ., 8, or 7) is assumed to
be a dot. Since dots must be slashified to be read into lisp, the
standard convention is to wuse * (the lisp compiler wuses this
convention). Thus one would write (JSP D xLCALL) instead of (JSP ‘D
/ .LCALL).

(block <fixnum))
Assembles a block <fixnum> words long, containing zeros.

(ascit <S-expression>)
Explode’s the <(S-expression> and assembles the characters obtained
into successive words, five per word, in ASCII code.

(sixbit <(S-expression)>)
Similar to ascii, but characters are assembled six per word in sixbit
code (ascii characters between 40 and 137 are represented as 0 to 17).

(squoze <atomd) or (squoze <fixnum> <atom))
(ITS only) Produces a word of squoze code, which is a left-justified
radix-50 code, from the first six characters of the print name of
<atom>. If <fixnum)> is present, then it is dividled by 4 and the low
four bits of the quoutient are added into the high four bits of the
squoze value (the MIDAS convention).

<any other list>
Assembles a single word, which is assumed to be an instruction of some
kind. First, if the list contains the atomic symbol @, it is deleted
from the list and saved. Then the first four components of the list
are processed in order. These must all be lap "syllables” (described
below). If the length of the list is less then four, missing elements
are assumed to be zero. The four elements of the list are assumed to

04/08/74 145.2 Page 197

" MACLISP Reference Manual

be, in order, the operation code, accumulator, address, and index
fields of a pdp-10 instruction. These are evaluated by the lap
syllable evaluator to obtain four numbers, which are then added
together after being modified as follows:

opcode no change

accumulator shift left 23. places

address clear left half

index swap halves !

Finally, if the atom @ had been present, the octal number 20000000 is
logically ored into the result, thus turning on the indirection bit.
Note that neither the accumulator nor the index field is truncated to
four bits. This has many useful applications; see, for example, the
description of the specbind routine below.

There is a fairly strong similarity between code written in lap and
equivalent code written in MIDAS or MACRO-10. The essential difference is
that lap processes assembly fields in order from left to right in order to
determine which field is which. One pitfall to avoid is writing such
instructions as (JRST FOO) or (SETZM FOO) when one intends rather (JRST O
FOO) or (SETZM 0 FO0). Another difference to remember is that lap uses the
lisp reader to input lap code; thus one must remember to put spaces around
an @, and that one cannot write (JRST 0 FOO+3) unless FOO+3 really is a
tag! (For arithmetic operations within assembly fields, see the
description of lap syllables below.) If it is desired to make lap code
look more like the standard assembly languages, one may use the fact that
comma is like a space to lisp, and that extra parentheses don’t hurt, and
write (MOVE A,TABLE(10)) instead of (MOVE A TABLE 10).

1453 = LAP Sylisbles

Each of the four components of assembly words are evaluated by the lap
evaluator to produce numeric quantities; these are then combined to form
an assembly word. Note that @ is treated specially and is not a component.
Forms to be evaluated by the lap evaluator are called lap syllables. Valid
forms for lap syllables are as follows:

<number>
Fixnums evaluate to themselves, and may be operated upon by lap
arithmetic operations. . Flonums also evaluate to themselves, but

arithmetic operations on them will not work. Flonums should not be
used in the address field, because the left halves will be truncated
off; they should be wused only in the opcode or index fields (the
latter is useful for writing (FADRI 7 0 3.0) or something like that).

Page 198 14.5.3 04/08/74

Compilation

nil
same as (quote nil).

Evaluates to the address of the word into which the current
instruction will be assembled. Equivalent to . in MIDAS and MACRO-10
(however, see the note below about literals).

<atomic symbol>
Any atomic symbol other than ®, *, and nil evaluates to its assembly
symbol value. That is, if the symbol has a sym property, then it is
the value of that property; otherwise, the value returned by the
getmidasop function if non-nil; otherwise, the value which DDT assigns
to it. An error occurs if no value can be found for a symbol.

(quote <s-expression>)
Protects <S-expression> from garbage collection, and evaluates to the
address of the S-expression. Thus (MOVEI A (A B)) puts the address
of the S-expression (A B) into accumulator a. Warning: faslap permits
this syllable only in the address field.

(function <s-expression>)
Same as (quote <s-expression>), but emphasizes that (S-expression) is
a function. Thus one might write (CALL 2 (FUNCTION CONS)).

(special <atom>)
Evaluates to the address of the value cell of the atomic symbol
<atom>. If <atom> does not have a value cell, one is created for it
first. Thus, for example,

(MOVE A (SPECIAL QUUX))
(MOVEM B (SPECIAL ZTESCH))

Accomplishes the equivalent of (SETQ ZTESCH QUUX). faslap permits
this syllable only in the address field.

(array <atom))
Evaluates to the address of the sar0 of the array which is on the
property list of <atom>. If <atomd> is not yet an array, a dummy array
property is created. This is of use for open-coded array accessing.
(At present this feature is not yet implemented.)

04/08/14 1453 Page 199

'MACLISP Reference Manual

(asci1 <s-expression>)
Evaluates to a 36-bit quantity consisting of the ascii representation
of the first five explodec’d characters of <(S-expression>. Note that
the ascii pseudo-op may generate several binary words as a lap form,
but only a single-word quantity as a syllable

(sixbit <S-expressiony)
Like ascii, but uses the first six characters and produces a sixbit
representation quantity.

(squoze <atom>) or (squoze <fixnum)> <atom)>)
(ITS only) Similar to the same form as a lap form: produces a word of
squoze code as its wvalue.

(+ <lapsyl> <lapsyl> .. <lapsyD)
Adds together the values of the lap syllables. (Thus note that 1lap
syllables are defined recursively.) This allows one to write such
things as (JRST 0 (+ FOO 3)).

(- <lapsyD)
Evaluates to the negative of the value of <lapsyD.

(- <lapsyl> <dlapsyl> .. dapsyD)
Subtracts the values of all the lap syllables after the first from the
value of the first.

(lapsyl> <lapsyl> .. <lapsyD)
Same as (+ <lapsyDd <dlapsyl> .. <lapsyD).

(<lapsyl>) ‘ .

Evaluates to the value of <lapsyD. It most definitely does not
evaluate to the swapped-halves value of <lapsyl>, as some might think!
When one writes (MOVE A,FOO(B)), the value of b gets swapped because
it is in the index field, and not because it is in parentheses.

(Z <lap assembly word>)
Generates a literal; i.e. the cdr of the list is saved and assembled
at the end of the function. The value of the syllable is the address
of this remotely generated word. <lap assembly word> must be an
instruction, or one of the ascii, sixbit, or block pseudo-ops. (The
block pseudo-op is relatively wuseless here.) Thus, for example,
(MOVEI T (X SIXBIT LONG-MESSAGE!)) is perfectly valid. There are some
restrictions on the use of literals: they cannot be nested, ie. a
literal may not contain in its assembly word another literal. Also, *
in a literal refers to the location of the literal, not of the

Page 200 14.5.3 04/08/74

Compilation

referencing instruction. Thus (JUMPE A (X AOJA T (+ % 1))) will not
do what you might expect from using MIDAS. Finally, faslap permits
literals only in the address field.

1454 - Functions and Variables Used by lap and faslap

The functions described in this section are available in the initial
pdp-10 lisp system primarily for the benefit of lap and faslap. Some of
them may be of use to the user, however. Those which are probably not of
use to the user are flagged with a xxx.

6bit| *%x SUBR 1 arg

The argument is explodec’ed, the first six characters assembled into
one word in sixbit code, and the result returned as a fixnum.

asci| **k% SUBR 1 arg

The argument is explodec’ed, the first five characters are assembled
into one word in ascii code, and the result returned as a fixnum.

sqoz| *xx% SUBR 1 arg

The argument should be a list of one or two items. The last item
should be an atomic symbol, and the first, if present, should be a
fixnam. The first six characters of the atom’s print name are
converted to ITS-style (left-justified) squoze code, with non-squoze
characters assumed to be dots. If the fixnum is present, then it is
divided by four, and the low four bits of the result become the high
four bits of the squoze code. The squoze code is then returned as a
fixnum.

pagebporg SUBR no args

Causes the variable bporg to be adjusted upwards so as to lie on a
page boundary. This is principally useful on ITS in conjunction with
the function purify. pagebporg returns the new value of bporg

purify SUBR 3 args

The first two arguments to purify should be fixnums, and delimit a
range of memory within the lisp system. The third argument is a flag.
If it is nil, then the pages covered by the specified range of memory
are made impure, i.e. writablee If it is t, then the pages are made
pure, i.e. read-only and sharable. If it is bporg, then the pages are

04/08/74 14.5.4 Page 201

" MACLISP Reference Manual

also made pure, but in addition some work is done to make sure that no
uuo on those pages may ever be "clobbered”. ‘This option should always
be used if the pages involved contain binary code loaded by 1lap or
fasload. Presently purify does nothing in the dec-10 implementation;
it is intended primarily for producing systems built on lisp, such as
Macsyma, in such a way that pure pages can be shared between users.
Example: the following sequence of commands might be used to produce
a sharable system on ITS:

(SETQ LOPAGE (PAGEBPORG)) isave low page address
{SETQ PURE T) ispecifies pure code
(FASLOAD FUNNY FASL) load up system
(FASLOAD WEIRD FASL)

(UREAD SOME LAP)

(SETQ ERRLIST “((TERPRI) stuff for system startup
(PRINC “WELCOME/ TO/ SUPERSYSTEM/!)
(TERPRI)))

(SSTATUS TOPLEVEL et up top level for system

(FUNCTION TOP-HANDLER))
(SETQ HIPAGE (PAGEBPORG)) save high page address
(PURIFY LOPAGE (1- HIPAGE) “BPORG) ipurify pages
(MACDMP 7 :PDUMP/ SYS:TS/ SUPER/*M) ;tell DDTto dump

getddtsym - SUBR 1 arg

The argument to getddtsym is explodec’ed and the first six characters
converted to squoze code, as with the sqoz| function. This code is
then given to DDT to determine its value. This value is returned as a
fixnum, if there is a value; if there is no value, or if there is but
the symbol table has not been loaded into DDT, then n1l is returned.
Presently this function always returns ni1l in the dec-10
implementation. Note that this function works as well for system
symbols, which are of course known to DDT; thus (GETDDTSYM “/=xRSNAM)
will return 16.

getmidasop SUBR 2 args

This function is similar to getddtsym, but works only for standard
pdp-10 operation codes such as HLRZ and JFFO, for names of UUO’s wused
by lisp, and on dec-10 for names of monitor calls such as LOOKUP. The
pdp-10 lisp system containe its own symbol table in a compact format
for these symbols; it permits their values to be determined without
having to consult DDT. This is of course of great value to lap and
faslap. Example: (GETMIDASOP “JRST) would return 254000000000.

Page 202 14.5.4 04/08/74

Compilation

putddtsym SUBR 2 args

This is the inverse of getddtsym The first argument is wused to
obtain squoze code, and the second should be a fixnum. The function
attempts to tell DDT that the symbol has the specified value. It
returns t if it succeeded, and otherwise nil. In the dec-10
implementation it always returns nil.

putddtsym| %%k SUBR 2 args

This is a special entry to putddtsym for use by lap only.

lapsetup| *xx SUBR 2 args

This function is used for initialization of lap, and should not be
used by the user.

gwd| *x* SUBR 1 arg

This function assembles instructions for Tap; it resides in the
initial lisp system for efficiency. For use by lap only.

rpatch| *xx SUBR 3 args
This function primarily handles the problem of forward references
during the one-pass lap assembly by modifying previously assembled
words when a symbol is eventually defined. For use only by lap.

faslapsetup| *x% LSUBR 0 or 1 args

Used for initializing faslap.

smallnump SUBR 1 arg

This function determines whether a given fixnum lies in the range of
fixnums which are “"uniquized® for efficiency reasons by the pdp-10
lisp system. This aids lap somewhat in determining whether a number
needs protection from the garbage collector.

gcprotect *k%k SUBR 1 arg

The argument to gcprotect is “uniquized® (ie. “interned”) on a
special array internal to the pdp-10 lisp system, and the unique copy
returned. This array is the one whose size is controlled by (sstatus
losef <fixnum>). This is of use to lap for protecting from garbage
collection S-expressions which are referred to by lap code, e.g. via

04/08/74 14.5.4 Page 203

MACLISP Reference Manual

the quote syllable.

gcrelease x%x¥ SUBR 1 arg

This is the inverse to gcprotect. If it is used, extreme caution must
be exercised!

Some system variables are also required by lap and fasload; these are
described below.

bporg VARIABLE

The value of bporg should always be a fixnum, whose value is the
address of the first unused word of binary program space. This wvalue
generally should not be altered by the user, but only examined. bporg
is updated whenever binary code is loaded by lap or fasload.

bpend %k YARIABLE

pure

This variable should also always have a fixnum as its value; this
indicates the first address above the last available word of binary
program space. This is updated by many internal lisp routines, such
as the garbage collector, the array allocator, and lap and fasload.

VARIABLE

This variable, initially nil, should be made non-nil by the user
before loading binary code which is to be made pure. It signals lap
and fasload to be circumspect about any UU0Os in the code, because
pure UUO® cannot be clobbered to be PUSHTs or JRSTs. lap solves
this problem by clobbering the UUO immediately if the referenced
function is already defined and is itself a subr rather than an expr;
otherwise the UUO is made permanently unclobberable (ie. CALL is
converted to CALLF, etc.)

fasload is somewhat more clever: it too tries to clobber each UUO
immediately, but if it can’t it puts the address of the UUO on a list
called purclobrl, which is checked at the end of each call to fasload,
and each UUO on the list is clobbered at that time, if the appropriate
function had been loaded by that call to fasload. If the function
never does get defined, then purify will also check purcliobrl and
convert each UUO to its permanently .unclobberable form.

If pure has a fixnum as its value, then fasload (but not lap) behaves
somewhat differently. If the value of pure (which must be between 1
and 8 or e0) is, say, 3, then fasload calls. pagebporg, and then
reserves 6=2%3 pages of binary program space, unless a previous call

Page 204 14.5.4 04/08/14

Compilation

to fasload has already reserved them (ie. they are reserved only
once). Thus fasload has two sets of 3 pages to work with; we shall
call the first set "area 1" and the second set "area 2". Now whenever
fasload has to load a clobberable UUO, it does not place it in the
code being loaded, but rather hashes it and places it in area 1 if it
was not there already; a copy is placed in the same relative position
in area 2. Then an XCT instruction pointing to the UUO in area 1 is
placed in the binary code. When all loading has been done, area 2 may
be purified, but area 1 may not.

Now when running the code, the UUO’s pointed to by the XCTs may be
clobbered (the pdp-10 lisp UUO handler is clever about XCT), and the
code will run faster the second time around because the XCT's will
point to PUSHJs. However, if (sstatus uuolinks) is called, then area
2 is copied back into area 1, effectively unclobbering all the UUO’s.
Naturally, an area large enough to contain all the UUO's should be

reserved; (status uuolinks) (q.v.) yields information relevant to
. this.

Thus the example given under the purify function above might be
modified as follows:

(SETQ LOPAGE (PAGEBPORG)) isave low page address

(SETQ PURE 3) ;specifies pure code
(SETQ LOPAGE (+ LOPAGE 6000)) ;allow for area 1
(FASLOAD FUNNY FASL) sload up system

(FASLOAD WEIRD FASL)
(UREAD SOME LAP)

(SETQ ERRLIST “((TERPRI) stuff for system startup
(PRINC “WELCOME/ TO/ SUPERSYSTEM/!)
(TERPRI)))

(SSTATUS TOPLEVEL et up top level for system

(FUNCTION TOP-HANDLER))
(SETQ HIPAGE (PAGEBPORG)) jsave high page address
(PURIFY LOPAGE (1- HIPAGE) “BPORG) ;purify pages
(MACDMP “:PDUMP/ SYS:TS/ SUPER/"M) itell DDTto dump

xpure *%x VARIABLE
This variable is relevant only to the "bibop” implementation on ITS,

and controls certain kinds of automatic purification of S-expressions
and atomic symbols.

purclobrl %%k VARIABLE

Used by fasload to keep track of UUO’s which are potentially but not
immediately clobberable.

04/08/74 14.5.4 Page 205

MACLISP Refefénce M;nual

gwd|, lapsetup|, rpatch| xkk VARIABLES

The values of these variables are wused for internal communications
within lap and should not be disturbed by the user.

1455 =~ Differences Between lsp and faslap

Much effort has been made to keep lap and faslap compatible. There are
of necessity, however, some differences. One is that lap reads in a
function only once, whereas faslap presently reads a file of functions
twice through; if funny things such as macro characters are happening
during reading this may cause problems. A related problem is that faslap
reads the lap code at assembly time, and not at load time, which means that
read macro characters and obarray hackery will not happen at fasload time.
faslap and fasload cooperate in a scheme to gain speed by calling the
function intern only once on each atomic symbol needed by a file of
functions; faslap creates a table of such symbols and passes them when
encountered into the binary filee This means that switching obarrays in
the middle of a fasload file will probably lose.

There are also some internal differences due to the different modes of
operation. As an in-core assembler, 1ap does not need to worry about
questions relating to relocatability. faslap, however, does not know where
in memory a binary file will be loaded, and thus must produce relocatable
binary code. This implies that faslap must distinguish between relocatable
and absolute symbols. This is done by using non-numeric sym properties for
relocatable symbols; the user who hand-codes lap code and expects to look
at sym properties at assembly time should be aware of this.

faslap furthermore does not know into what version of lisp the binary
file will be loaded. This poses a problem because compiled code needs to
refer to routines and locations internal to lisp, such as FLOATl] and
ERSETUP. This is solved by the so-called globalsym convention; these
labels, which for 1lap have numeric sym properties, in faslap have
non-numeric Sym properties, and direct faslap to output directions to
fasload to find the correct value of a symbol for the lisp being loaded
into. For most purposes such symbols should be treated as a funny kind of
relocatable symbol.

faslap imposes some restrictions on the wuse of certain constructs.
Multiple and negative relocatability is not permitted. Relocatable
symbols, the quote, function, special, and sar0 constructs, and literals
are permitted only in the address field of an instruction.

Page 206 14.5.5 04/08/74

Compilation
1456 - Conventions for Functions in Lisp

This section briefly describes some of the internal conventions of
"pdp-10 lisp, and contains enough information for a person who knows pdp-10
machine language to understand the output of the compiler, and possibly to
write simple l1ap functions for use with lisp. However, the information
within this section is subject to change. Whenever any location within
lisp is referred to symbolically in this section, that symbol is predefined
to lap and may be used by any lap program even if DDT does not have lisp’s
symbols loaded.

The names of the accumulators and their uses are, briefly:

0 ntl atom header of the atomic symbol nil

1 A first argument to a function; value of function
2 B second argument

3 ¢ third argument

4 ARl fourth argument

5 AR2A fifth argument

6 T negative of the number of args to an lsubr; temp
T 717 super-temporary; value from numeric function
10 D semi-temporary; arithmetic

11 R semi-temporary; arithmetic

12 F semi-temporary; arithmetic

13 FREEAC unused, except saved/used/restored by gec

14 P regular pushdown list (pdl) pointer

15 FLP flonum pdl pointer

16 FXP fixnum pdl pointer

17 SpP special (variable bindings) pdl pointer

In general, S-expressions should be manipulated in the five argument
accumulators; the contents of these are protected by the garbage collector.
Random arithmetic should not be done in them; this might accidentally
generate the address of something the garbage collector should not protect.
Arguments to subrs are passed through these five accumulators, and the
value of a function is returned in accumulator A The single argument to
an fsubr is likewise passed through accumulator A

It is generally assumed that when an argument is passed or a value
returned through these five accumulators that that the left half will be
zero, while the right half will contain a pointer to an S-expression. Much
code depends on the left half being zero; in particular, tests for nil
(which is the zero pointer) use JUMPE instructions, which require that the
left half be =zero so that the test of the right half will be valid. In
general, then, instructions like HRRZ and HLRZ should be wused to fetch
items into these accumulators.

S-expressions are represented in such a way that if a pointer to a
dotted pair is in, say, accumulator A, then

(HLRZ B 0 A)

04/08/74 145.6 Page 201

MACLISP Reference Minual

will get, as a pointer, the car of the S-expression and put it in
accumulator B, and

(HRRZ B 0 A)

will get the cdr. If the S-expression whose address is in A is a fixnum or
flonum, then

(MOVE TT 0 A)

will get the machine representation of the number and put it in accumulator
TT. ‘

Accumulators T through F may be used as scratch registers, in general.
When an Isubr is called, however, the negative of the number of arguments
is passed through accumulator T. Many useful internal routines are called
by JSP T,F00, and the argument or value is commonly passed through TT.
Functions compiled by the fast-arithmetic compiler return their values in
TT. TV is also used in connection with array accessing.

FREEAC is presently unused by the lisp system, except for the gari:age
collector, which, however, saves and restores it. This fact should not be
taken as permanent; it is mentioned primarily because it can be useful for
debugging purposes.

The lisp system uses no fewer than four pushdown lists, or stacks. The
regular and special pdis, whose pointers are in P and SP, are marked from
by the garbage collector; thus an S-expression is "safe” from gc is pushed
on either of these pdis. (Only the right half of each pdl slot is marked
from; the laft half may contain garbage) The special pdl is used to hold
variable bindings, and its contents are highly structured. The user should
not use SP except through the routines SPECBIND and UNBIND, described
below. P may be used for any purpose, provided that totally random things
are not put into the right halves of pdl slots (the same restriction as for
argument accumulators). The fixnum and flonum pdls are used primarily by
compiled code produced by the fast-arithmetic compiler, and their contents
are not affected by gc in any way. If it is desired to save random
quantities on a stack, the fixnum pdl should be used if possible.

The standard function calling convention in pdp-10 lisp requires that
functions be effectively called via a (PUSHJ P <function>) and exit via
(POPJ P). The arguments to subrs and fsubrs are as described above.
Lsubrs take their arguments on the regular pdl (where they are safe from
gc), and T has minus the number of arguments. The return address is also
on the pdl, under the arguments. This usually requires code of this sort:

(PUSH P (X 0 0 G0475))
(PUSH P A)
(PUSH P “(funny 1ist))
(MOVNI T 2)
(JRST 0 FOO-LSUBR)
60475 ~--- 1subr returns to here ---

Page 208 14.5.6 04/08/74

Compilation

That is, the return address must be pushed ahead of time. It is the
responsibility of the called lsubr to remove its arguments from the pdl and
return with a POPJ.

Interfacing between compiled code and the interpreter is accomplished
via a large set of UUO instructions. All of them work in the same fashion:
the effective address must be the address of an S-expression which is the
function to be invoked. The arguments to this function are passed in the
manner described above, and the accumulator field describes which argument
passing convention has been used (hopefully the same as that required by
the called function): 0-5 means a call to a subr with that many arguments,
16 means a call to an lsubr, and 17 means a call to an fsubr. Thus the
function CONS might be called with the UUO (CALL 2 (FUNCTION CONS)).

There are several variants on this basic UU0 type. One variant is the
JRST wvs. PUSHJ mode; sometimes instead of writing a PUSHJ to a function
one wants to write a JRST for efficiency. To see why, consider that

(PUSHJ P FOO)
(POPJ P)

is in effect equivalent to

(JRST 0 F0O).

This kind of UUO is also useful for calling lsubrs (see the example
above).]‘
|

A second variant is the “clobberable” ve. the “unclobberable” UUO. If
certain conditions are met, it is possible for the UUO handler to replace
the invoking UUO by the equivalent PUSHJ or JRST, so that next time the
same code is used it will call the desired function directly. In some
cases, however, it is not desirable for the UUO to be so clobbered, for
example if the function to be invoked is an argument in an accumulator, and
is to be invoked via something like (CALL 1 0 A). A UUO may therefore
specify that it may never be clobbered. A third option is used by code
compiled by the fast arithmetic compiler. It is undesirable for a function
which returns a number to do a "number cons” in order to return the number
as an S-expression if the number will only be converted back to a machine
number and used in more open-coded arithmetic. (It is undesirable because
number consing, like ordinary consing, eventually causes garbage
collection, an expensive process.) Thus a UUO may specify that it wants
only a machine number as a result; this is to be returned in accumulator
TT, rather than a lisp number in A The mnemonics for all these UUOs are
summarized here:

clobberable unclobberable
PUSHJ JRST PUSHJ JRST
standard result CALL JCALL CALLF JCALLF

numeric result NCALL NJCALL NCALLF NJCALF

04/08/74 14.5.6 Page 209

MACLISP Reference Manual
Thus the example of an lsubr call above would actually be written:

(PUSH P (X 0 0 G0475))

(PUSH P A)

(PUSH P “(FUNNY LIST))

(MOVNI T 2)

(JCALL 16 (FUNCTION FOO-LSUBR))
G0475

Functions _produced by the fast arithmetic compiler follow a convention
so that NCALLs will work properly: If a function is to be NCALL’ed, and
returns a fixnum, the first instruction of the function should be (PUSH P
(¥ 6 0 FIX1)); if it returns a flonum, the first instruction should be
(PUSH P (X 0 O FLOAT1)). (For a description of the FIX1 and FLOATL
routines, see below.) If the function is NCALL’ed, the function is entered
at the second instruction, i.e. after the PUSH. The appropriate machine
number is returned in accumulator TT, as expected by the caller. If, on
the other hand, the function is simply CALL’ed, then it is entered at the
normal entry point, and the address of FIXl1 or FLOAT] goes on the stack.
When the function exits, it will transfer to FIX1 or FLOATI, which will
convert the machine number to a lisp number and then return to the original
caller.

Some other UUO’s besides the CALL UUO’s are useful to compiled code and
hand-coded lap. The STRT (STRing Typeout) UUO is quite useful for printing
out constant strings of characters. The effective address of the STRT UUO
must ‘be the first of several words of sixbit characters. Several
characters in the string have special significance:

A Complement the 100 bit of the character before printing it. (This
occurs after 40 has been added to convert it to ascii) Thus AM in

the sixbit string causes a carriage return to be printed. Similarly,
A4 is a lower case t.

! Terminate typeout.

. Quote the next character. This is used to get ## A, and ! into a
string.

Thus, for examplé,' to print the message "YOU LOSE!™ in lap code, preceded
and followed by a carriage return, say

(STRT 0 (SIXBIT /AMYOU/ LOSE#!/~MI1))

(The slashes are necessary because lap will read this using the lisp
reader!)

The LERR (Lisp ERRor) UUO takes a string like the ones STRT takes, and
signals an uncorrectable error, with the string as the error message.

Because the error is uncorrectable, control never returns to after the
LERR; it is like a JRST to the error handler.

The LER3 UUO is similar to LERR, but also takes an S-expression in
accumulator A; this expression should be followed by the string which

Page 210 14.5.6 . 04/08/74

Compilation

constitute the error message.

The ERINT UUO is used to signal correctable errors. It too takes a

string argument and an S-expression in A The accumulator field of the
ERINT UUO indicates the type of error:

undef-fnctn

unbnd-vrbl

wrng-type-arg

unseen-go-tag

wrng-no-args

gc-lossage (ordinarily used only by gc)
fail-act

OV bLbWLWN~O

The S-expression becomes the argument to the error interrupt handler for
the given type of error (in the case of types 0 to 3, the error handler
automatically applies the function ncons to this object before passing it
as the argument). If the handler returns a corrected value (e.g. the user
in a standard error break used the return function) then this new value s
passed back in A and control returns to the instruction after the ERINT.

A typical piece of lap code to use this might be:
(LAP FOO SUBR)

(PUSH P A)

TEST (JSP T FXNV2) ;get numeric value in 4
(TRNE D 3) jwant a multiple of 4
(JRST 0 LOSE)
(POPJ P)

LOSE (EXCH A B) ;get bad arg in a
(ERINT 2 (X SIXBIT NOT A MULTIPLE OF 4))
(EXCH A B) iswitch back again
(JRST 0 TEST) ;80 try again

NIL

UUO’s never change the values in any accumulators except ERINT, which
may return a new value in A, and the various CALL UUO’s, which may clobber
everything if they have to invoke eval to link to an interpreted function.
CALL UUOs save all accumulators when linking from one compiled or
handcoded function to another. This implies that the called function will
get whatever was placed in accumulators T through F as well as A through
ARZA. It does not imply, however, that any accumulators will have been
preserved by the time the called function has returned to the caller.

1457 - Internal Routines for use by LAP Code

Compiled code requires a certain set of support routines. The names and
addresses of these routines are predefined to lap. It should not be
assumed that a given routine saves any accumulators unless it is

04/08/74 145.7 Page 211

MACLISP Reference Manual

specifically described as doing so. They are briefly described here:

(Jse

(Jsp

T SPECBIND)

This routine handles the binding of special variables. The call is
followed by one or more specifications of the form (<type> <where>
(special <atom))), where <type> is either 7_41 or 0. The value of the
atomic symbol <atom), which is in the word pointed to by the effective
address of the argument, is saved on the special pdl, and a new value
is placed in the value cell, as specified by <type> and <whered. If
both <type> and <where> are zero, the new value is nil. If <type> is
zero, then <where> is the number of an accumulator containing the new
value. If <type> is 7_41, then the new value is in the regular pdl
slot addressed by subtracting <where> from the current contents of
accumulator P; <where> may be any number less than 2000 octal. (This
is a case where not truncating the accumulator field of a 1lap
instruction to four bits is very wuseful) Any number of
specifications may follow the call to SPECBIND; the end of the call is
determined by the fact that a valid pdp-10 instruction within lisp
cannot be zero in the first nine bits or ones in the first three. All
the values pushed in a single call form a single bind block; this fact
is wused by the UNBIND routine. SPECBIND destroys the contents of
accumulator R

T (SPECBIND -1)))

This is an alternate entry to SPECBIND, which has the additional
effect of passing all new values through the routine PDLNMK (see
below) before placing them in the value cells. It is wused by code
compiled by the fast-arithmetic compiler.

(PUSHJ P UNBIND)

Pops one bind block off the special pdl, thus restoring the old values
of the atoms whose values were formerly saved. Example: the following
lisp code and lap code are roughly equivalent:

((LAMBDA (SPECVAR) (ZORCH)) “BARF)

(MOVEI B (QUOTE BARF))
(JSP T SPECBIND)

(0 B (SPECIAL SPECVAR))
(CALL 0 (FUNCTION ZORCH))
(PUSHJ P UNBIND)

UNBIND does not destroy amy accumulators.

(JSP T PDLNMK)

"Pdl number make". This routine examines the S-expression in
accumulator A, and if it is a pdl number it replaces it with a freshly
number-consed copy. Used by code produced by the fast-arithmetic
compiler. Does not destroy any other accumulators, even TT. '

Page 212 145.1 ‘ 04/08/74

Compiiation

(JRST 0 PDLNKJ)

(Jsp

(Jsp

(Jsp

(Jse
(Jsp
(Jsp

(Jsp

Equivalent to
(JSP T PDLNMK)
(POPJ P)

T FXCONS)

Takes a machine fixnum in accumulator TT and returns an equivalent
S-expression number in accumulator A The wvalue in TT is not
preserved. No other accumulators are disturbed. Another name for
FXCONS is FIX1A; they are entirely equivalent. Note that lisp fixnums
are represented in such a way that the address in A will point to a
word containing what was in TT.

T FLCONS)
Similar to FXCONS, but takes a floating-point machine number in TT,
and returns a lisp flonum in A

T FXNV1)
Verifies that the S-expression in accumulator A is a fixnum; if it is
not, a correctable ,wrng-type-arg error is signaled. If it does

contain a fixnum, or if the error break eventually returns a fixnum,
then it returns with the equivalent machine fixnum in accumulator TT.
This routine is useful primarily for the error checking; if it is
already known that A contains a lisp fixnum, the instruction (MOVE TT
0 A) serves just as well. Such knowledge, for example, can be derived
from declarations by the fast-arithmetic compiler.

T FXNV2)
T FXNV3)
T FXNV4)
Similar to FXNV], but take arguments and return machine fixnums in
different accumulators:

FXNV2 B ->0

FXNV3 C ->R

FXNV4 ARl -> F

There is no FXNVS - you must move an argument in AR2A into some other
accumulator first.

T IFIX)
Takes a machine flonum in TT and converts it to a (truncated) machine
fixnum, returned in TT. Destroys accumulator D.

04/08/74 145.7 Page 213

(Jsp

MACLISP Reference Manual
T IFLOAT)

Takes a machine fixnum in TT and converts it to a machine flonum,
returned in TT. Does not destroy any other accumulators.

(JRST 0 FIX1)
(JRST 0 FIx2)
(JRST 0 FLOAT1)
(JRST 0 FLOAT2)

(Jsp

(Jsp

(Jsp

These are convenient exits to the following code internal to the lisp
system:
FIX2 (JSP T IFIX)
FIX1 (JSP T FXCONS)
(POPJ P)
FLOAT2 (JSP T IFLOAT)
FLOAT1 (JSP T FLCONS)
(POPJ P)

T FLTSKP)

Verifies that the S-expression in A is a fixnum or flonum; if it s
not, a wrng-type-arg error is signaled. If it is, then the machine
number is returned in accumulator TT; moreover, the return skips if it
is a flonum. Example: here is a simplified version of the subl
function which does not accept bignums:

(LAP SUBINOBIG SUBR)
(ARGS SUBINOBIG (NIL . 1))
(JSP T FLTSKP)
(SOJA TT FIX1)
(FSBRI TT 0 1.0)
(JRST 0 FLOATI)
NIL

T (NPUSH -<n>)) This routine pushes <n> nils onto the regular pdl;
i.e. it is equivalent to writing (PUSH P (214 0 0 NIL)) <n> times.
<n> must be between 1 and 20 octal. Note the minus sign in the above:
to push 4 nils one writes (JSP T (NPUSH -4)). This routine is used
greatly by compiled code to create pdl slots for local variables.

T (OPUSH -<md))

Similar to NPUSH, but pushes zeros onto the fixnum pdl. <n> must be
between 1 and 10 octal. Used by code produced by the fast-arithmetic
compiler.

Page 214 145 : ' 04/08/74

(Jsp

(Jsp

Compilation

T (0x0PUSH -<nd))

Similar to NPUSH, but pushes zeros onto the flonum pdl. <n> must be
between 1 and 10 octal. Used by code produced by the fast-arithmetic
compiler.

D =LCALL) '

This routine is called by user lsubrs produced by the lisp compiler.
It accounts for the number of arguments, and saves some information so
that the arg and setarg functions can find the arguments. After the
user lsubr has been executed it takes care of popping the arguments
off the pdl and returning to the caller.

(PUSHJ P 10GBND)

(Jsp

(JsP

(Jsp

(Jsp

Used by compiled code to perform the iog function. Equivalent to the
code

(JSP T SPECBIND)

(0 0 (SPECIAL "W))

(0 0 (SPECIAL ~Q))

(0 0 (SPECIAL “R))

(D 0 (SPECIAL ~B))

(0 0 (SPECIAL ~N))

T (*xMAP ~<n>))

Used by compiled code to call the various mapping functions in the
common case where there are two arguments. The function should be in
B, and the list in A (This is backwards from the standard order!)
<n> determines which mapping function as follows:

1 maplist 3 map 5 mapcon
2 mapcar 4 mapc 6 mapcan
T =SET)
Used for compiling calls to the function set. Accumulator A should

have the value (second argument to set), while ARl should have the
atomic symbol which is to get the value (first argument to set).

T xSTORE)

Used for compiling calls to the function store. (The conventions for
this routine are undergoing some change, and thus are not described
here.)

T *NSTORE)
This is to the nstore function as *STORE is to store.

04/08/74 14.5.7 Page 215

MACLISP Reference Manual

(PUSHJ P »UDT)
Used by compiled code for handling undefined computed go tags in
compiled progs. The tag is in accumulator A It handles the case
where the tag is really a fixnum; and if not, signals a correctable
error and possibly returns with a corrected tag in A

(JSP TT ERSETUP) .
Used for compiling calls to the function ERRSET. Accumulator A has
the second argument to ERRSET, and B has the address to go to if an
error eccurs. This routine pushes various things onto the regular

pdl.

(JRST 0 ERUNDO)
If all the code compiled for the first argument to an errset runs
without error, it must go to ERUNDO to undo the errset, ie. to pop
the things off the pdl which ERSETUP pushed. Control is returned to
the address given in B when ERSETUP was called.

(JSP T GOBRK) ‘
Used by compiled code when a go is done within an errset (yech!). It
is similar to ERUNDO, but returns to the instruction following the
(JSP T GOBRK), rather than to the place specified te ERSETUP.

(JSP TT (ERSETUP -1))
Used to compile «calls to the function catch, which internally is
similar to errset. Accumulator A contains the second argument to
catch (the catch tag), and B the return address which is used if a
throw is done.

(JRST 0 (ERUNDO -1))
Just as ERUNDO undoes an errset, so ERUNDO-1 undoes a catch.

(JSP T (GOBRK -1))
Similar to GOBRK, but breaks out of a catch rather than an errset.

ARGLOC .
This is not a routine but a variable, which centains the address of
the pdl slot just below the arguments to the most recently called

lexpr or user lsubr, or zero if none has been called. Thus the call
(ARG 2) may be coded in lap reughly as:

(MOVE T ARGLOC)
(ADDI T 2)
(HRRZ A 0 T)

Page 216 1457 04/08/74

Compilation
This is one of the variables set up by =xLCALL.

ARGNUM :
This, like ARGLOC, is a variable. It contains the number of arguments
to the most recent lexpr or wuser Ilsubr call, as a lisp number.
(accessing ARGNUM indirectly will of course fetch the machine number.)
Thus one might write a function:

(LAP ARGN-2 SUBR)
{(ARGS ARGN-2 (NIL . 0))
(MOVE TT @ ARGNUM) ;get number of args

(CAIGE TT 3) ;need at least 3
(LERR 0 (X SIXBIT LESS THAN 3 ARGS))
(ADD TT ARGLOC) ifetch the last
(HRRZ A -2 TT) ; arg but 2
(POPJ P)

NIL

1458 - Routines For Use by Hand-Coded LAP

There are some routines internal to pdp-10 lisp which are not wused by
code produced by the compiler, but which may be of use to those writing
functions in lap. Unless specified otherwise, the symbols for these
routines are also predefined to 1lap.

(PUSHJ P PRINTA)

This routine is the internal lisp print function. It does not
actually perform any output, but merely supplies a stream of
characters. It is called with the S-expression to be printed in

accumulator A, and the address of a routine in R The sign bit of R
controls the use of slashes: zero means produce characters like prinl
and explode would, one means like princ and explodec. PRINTA will
generate characters and pass them one at a time to the routine
specified in R by placing the ascii code in accumulator A and doing a
(PUSHI P 0 R). (This violates the rule about putting
non-S-expressions in gc-protected accumulators, but for numbers less
than about 2000 octal this is guaranteed to be a safe procedure
anyway.) The routine may do anything it wants to with the character,
but must avoid destroying the contents of accumulators B, C, TT, and
R, which are assumed by PRINTA to be safe. On the other hand, ARl and
AR2A are not altered by PRINTA and may be used to communicate over
successive calls to the routine; e.g. they may hold byte pointers,
etc. (Again, a violation of the rule, but this is all right as long
as they point to "safe" places, like pdl slots or binary code.) When
PRINTA is done it will return to the instruction after the PUSHJ to
it. The contents. of accumulator A are not preserved. Example: Here

04/08/74 14.5.8 Page 217

MACLISP Reference Manual

is a funny version of flatc which only counts capital letters.

(LAP ALPHLATC SUBR)
(ARGS ALPHLATC (NIL . 1))
(PUSH P (X 0 0 FIX1)) ;it’s NCALLable!

(PUSH FXP (% 0)) ;jcounter
(MOVEI AR2A 0 FXP) sremember where it is
(HRROI R COUNT) sprinc style
(PUSHJ P PRINTA)
(POP FXP TT) ipop count

- (POPJ P)

COUNT (CAIGE A 101) sjonly count capital

(POPJ P) s letters
(CAIG A 132)
(AOS 0 0 AR2A)
(POPJ P)

NIL

(PUSHJ P GETCOR)

This symbol is not known to 13p; it is intended primarily for systems
programmers on ITS who need large blocks of core for special I/0
devices; however, it also exists in dec-10 lisp. It is called with
the number of 1K blocks of core desired in TT. Lisp allocates a
single block of core that large and returns the address of the [first
word of the block in TT. It may destroy several other accumulators in
the process. Lisp may or may not actually cause the core to exist;
it merely allocates address space and promises mnot to wuse it for
anything else. The caller should do the appropriate .CBLK calls on
ITS to cause the core to exist. (On dec-10 lisp will cause the core
to exist, for the present.)

INHIBIT

This is a variable which, if non-zero, specifies that (a) user
interrupts may not be processed, but must be delayed, and (b) lisp may
not relocate any arrays when garbage collecting (it may if the array
functions are called, however. This is used primarily by the lisp
system; the nointerrupt function is wusually sufficient for users.
When INHIBIT is reset to zero the routine INTREL should be called, to
check for any delayed interrupts which may be pending. Note that
INHIBIT does not prevent uncorrectable errors and control G or control
X quits. Thus, it is preferable to the nointerrupt function when it
is desired to inhibit user interrupts but not quits (such situations
are rare except in lap code) The standard usage of this switch is:

(PUSH FXP INHIBIT)

(SETOM 0 INHIBIT)

« process with user interrupts inhibited ..
(PUSHJ P INTREL)

Note that INTREL will do a (POP FXP INHIBIT).

Page 218 1458 04/08/74

Compilation

NOQUIT
This switch inhibits all interrupts and quits. The left half is for
use by the garbage collector, and only the garbage collector! The
right half may be used by user programs by using (HLLOS 0 NOQUIT) to
turn it on, and (HLLZS 0 NOQUIT) to turn it back off. After turning
it back off the routine CHECKI should be called to check for any
delayed interrupts or quits. Thus the standard usage is:

(HLLOS 0 NOQUIT)
.. process with NOQUIT non-zero ...
(HLLZS 0 NOQUIT)
(PUSHJ P CHECKI)

This is somewhat less useful than the wuser nointerrupt function,
but was implemented first. @ Note that the routine INTREL described
above under INHIBIT is equivalent to

(POP FXP INHIBIT)
(JRST 0 CHECKI)

and thus if for some reason one wants to pop the old value of INHIBIT
oneself, CHECKI may be used instead of INTREL. CHECKI preserves all
accumulators.

(PUSHJ P UINITA)
This routine sets things up for opening a file, old I/0 style. It
takes a file name list (namel name2 dev user) in accumulator A, and on
ITS a mode in the right half of TT. If the file name list is short
the default file names are applied as for the uread function. In the
dec-10 implementation, the device name is placed at location UTIN, and
the ppn in USN (the latter tag is not known to 1ap; beware!); the
file names are returned in T and TT. In the ITS implementation, the
mode, device, and file names are placed in a three-word block suitable
for .OPEN at location UTIN, and the lisp’s sname is set to the
appropriate user name. The contents of accumulator A are preserved.
. UINITA also does the equivalent of

(PUSH FXP INHIBIT)
(SETOM 0 INHIBIT)

thus locking out wuser interrupts, on the theory that some 1/O
operation will take place which should not be interrupted. It is wup
to the caller subsequently to unlock interrupts, eg. by doing (JRST O
INTREL). Example: on ITS, these functions provide a (relatively
inefficient) method for binary input (I/O channel 17, presently unused

04/08/74 14.5.8 Page 219

MACLISP Reference Manual

in pdp-10 lisp, is usurped; beware, for this fact will change!):
(LAP BINOPEN FSUBR)

(MOVEL T 4) jimage umit input

(PUSHJ P_UINITA) - et up

(xOPEN 17 UTIN) try to open it

(LER3 O (X SIXBIT BIN FILE NOT FOUND))

{JRST 0 INTREL) smust unlock interrupts

(ENTRY BINGET SUBR)
(ARGS BINGET (NIL . 0))
(PUSH P (% 0 0 FIX1)) ;NCALLable!
(x10T 17 TT) sinput a binary word
(POPJ P) ireturn as a fixnum
(ENTRY BINCLOSE SUBR)
(ARGS BINCLOSE (NIL . 0))
(xCLOSE 17) iclose the channel
(POPJ P)
NIL

Page 220 1458 04/08/14

Compilation
146 -~ Internal Details of the Muitics Implementation

*)kxxxk TO BE SUPPLIED ik

04/08/14 14.6 . Page 221

MACLISP Reference Manual

This page intentionally left blank.

Page 222 . 146 04/08/74

The Trace Facility

15 <= The Trace Facility

The LISP trace package provides the ability to perform various actions
at the time a function is called and at the time it returns. This can be
used for traditional tracing or for more sophisticated debugging actions.

The trace package is not part of the initial environment; however, it
is automatically loaded in on the first reference to the function trace.

The lisp trace package consists of three main functions, trace, untrace,
and remtrace, all of which are fexprs.

A call to trace has the following form:
(trace trace specs)

A trace spec in turn is either an atom (the name of the function to be
traced) or a list:

(¢function name> <options>)

where the‘ options are as follows:

break <pred> causes a break after printing the entry trace (if any) but
- before applying the traced function to its arguments, if
and only if <pred> evaluates to non-nil.

cond <pred> causes trace information to be printed for function entry
and/or exit if and only if <pred> evaluates to non-nil.

wherein <fn> causes the function to be traced only when called from the
specified function <fn>. One can give several trace specs
to trace, all specifying the same function but with
different wherein options, so that the function is traced
in different ways when called from different functions.
Note that if <fn> is already being traced itself, the
wherein option probably will not work as desired, probably.
(Then again, it might.)

argpdl <pdD specifies an atom <pdl> whose value trace initially sets to
nil. When the function is traced, a list of the current
recursion level for the function, the function’s name, and
a list of the arguments is consed onto the <pdl> when the
function is entered, and cdr’ed back off when the function
is exited. The <pdl> can be inspected from a breakpoint,
for example, and used to determine the very recent history
of the function. This option can be used with or without
printed trace output. Each function can be given its own
pdl, or one pdl may serve several functions.

04/08/74 185. Page 223

MACLISP Reference Manual

entry («list> specifies a list of arbitrary S-expressions whose values
are to be printed along with the usual entry trace. The
list of resultant values, when printed, is preceded by a ||
to separate them from the other information.

exit dlist) similar to entry, but specifies expressions whose values
are printed with the exit trace. Again, the list of values
printed is preceded by 1II.

arg

value

both

nil specify that the function’s arguments, resultant value,
both, or neither are to be traced. If not specified, the
default is both. Any "options” following one of these four
are assumed to be arbitrary S-expressions whose values are
to be printed on both entry and exit to the function.
However, if arg is specified, the values are printed only
on entry, and if value, only on exit. Note that since arg,
value, both, nil, swallow all following expressions for
this purpose, whichever one is used should be the last
option specified. Any such values printed will be preceded
by a // and will follow any values specified by entry or
exit options.

If the variable arglist is used in any of the expressions given for the
cond, break, entry, or exit options, or after the arg, value, both, or nil
option, when those expressions are evaluated the wvalue of arglist will
effectively be a list. of the arguments given to the traced function. Thus

(trace (foo break (null (car arglist))))

would cause a break in foo if and only if the first argument to foo is nil.
Similarly, the variable fnvalue will effectively be the resulting value of
the traced function; for obvious reasons, this should only be used with the
exit option.

There exists a version of the trace package called strace. On the Al and
ML pdp-10s it is available in the COMLAP directory. On Multics, it is
available in the same directory as lisp. It looks exactly like the normal
trace package, except that one extra option is available:

grind specifies that any trace output is to be done, not with the
usual call to print, but through the sprint function from
the grind package; thus, trace output for that <trace spec>
will be “"pretty-printed"”.

This feature is not included in the regular trace package because it really
eats up free storage.

Page 224 | 5. 04/08/74

The Trace Facility

Examples of calls to trace:

(1) To trace function foo, printing both arguments on entry and result on
exit:

(trace foo) or (trace (foo)) or (trace (foo both)).

(2) To trace function foo only when called from function bar, and then only
if (cdr x) is nil:

(trace (foo wherein bar cond (null (cdr x))))
or (trace (foo cond (null (cdr x)) wherein bar))

As this example shows, the order of the options makes no difference, except
for arg, value, both, or nil, which must be last.

(3) To trace function quux, printing the resultant value on exiting but no
arguments on entry, printing the value of (car x) on entry, of fool, foo02,
and (foo3 bar) on exit, and of zxcvbnm and (qwerty shrdlu) on both entry
and exit:

(trace (quux entry ((car x)) exit (fool foo2 (foo3 bar))
(qwerty shrdlu)))

(4) To trace function foo only when «called by functions bar and baz,
printing args on entry and result on exit, printing the value of (quux barf
barph) on exit from foo when called by baz only, and conditionally breaking
when called by bar if a equals b:

(trace (Foo wherein bar break (equal a b))
(foo wherein baz exit ((quux barf barph))))

(5) To trace functions phoo and fu, never printing anything for either, but
saving all arguments for both on a common pdl called foopdl, and breaking
inside phoo if x is nil:

(trace (phoo argpdl foopd] break (null x) cond nil nil)
(fu argpdl foopdl cond nil nil))

The “"cond nil" prevents anything at all from being printed. The second n1il
in each <trace spec> specifies that no args or value are to be printed;
although the cond nil would prevent the printout anyway, specifying this
too prevents trace from even setting up the mechanisms to do this.

(6) To trace function foobar, printing args on entry and result on exit,
plus the value of moby-expr on exit, and pretty-printing the output:

(trace (foobar grind exit (moby-expr)))
trace returns as its value a list of names of all functions traced; for any

functions traced with the wherein option, say (trace (foo wherein bar)),
instead of returning just foo it returns a 3-list (foo wherein bar). If

04/08/74 ' 15. . Page 225

MACLISP Reference Manual

trace finds a <trace spec> it doesn’t like, instead of the function’s name
it returns a list whose car is ? and whose cdr indicates what trace didn’t
like. A list of possible error indications:

(? wherein foo) trace couldn’t find an expr, fexpr, or macro property for
the function specified by the wherein option. :

(? argpd) foo) the item following the argpdl option was not a non-nil
) atomic symbol.

(? foo not function) indicates that the function specified to be traced was
non-atomicc, or had no functional property. (Valid
functional properties are expr, fexpr, subr, fsubr, Isubr,
and macro.)

(? foo) foo is not a wvalid option.
Thus a call to trace such as
(trace (foo wherein (nil)) (bar argpd! nil))
would return, without setting up any traces,
((? wherein (nil)) (? argpdl n11))

If you attempt to specify to trace a function already being traced, trace
calls untrace before setting up the new tracee. If an error occurs, causing
(? something) to be returned, the function for which the error occurred may
or may not have been untraced. Beware!

It is possible to call trace with no arguments. (trace) returns as its
value a list of all functions currently being traced.

untrace is used to undo the effects of trace and restore functions to their
normal, untraced state. The argument to untrace for a given function
should be essentially what trace returned for it; iie. if trace returned
foo, use (untrace foo); if trace returned (foo wherein bar) use (untrace
(foo wherein bar)). untrace will take multiple specifications, e.g.
(untrace foo quux (bar wherein baz) fuphoo). Calling untrace with no
arguments will untrace all functions currently being traced.

remtrace, oddly enough, expunges the entire trace package. It takes no
arguments.

Page 226 15. : 04/08/74

Formatted Printing of LISP Data

16 = Formatted Printing of LISP Data

Pretty-printing, also called “grinding,” is the conversion of list
structure to a readable format. This chapter outlines the computational
problems encountered in such a task and documents the current algorithm in
use. This chapter was taken from Al memo 279 by Ira Goldstein.

The “grind” package is used to print out S-expressions in a more
readable form than that provided by the standard functions print, prinl,
and princ The grind package is accessed through three functions:
grindef, grind, and grind0.

grindef is used to grind the properties of an atom; usually the
functional properties expr, fexpr, and macro, and the atom’s value. The
output of grindef is legible and is also readable back in to lisp.

grind and grind0 are used to grind up an entire file. Comments in the
file are preserved, but everything is rearranged for readability. The file
may contain control lines beginning with ";%", which are ignored when the
file is read into lisp, but are used to specify parameters to grind.

The grind package is not part of the initial environment; however, it is
loaded in on first reference to one of the functions grind, grindef,
grind0.

16.1 = Introduction

Pretty-printing is a fundamental debugging aid for LISP. List structure
presented as an unformatted linear string is very difficult for a person to
understand. The purpose of pretty-printing is to clarify the structure of
a LISP expression. The simplest class of pretty-printers accomplishes this
by the judicious insertion of spaces and carriage returns.

The new grind package differs from earlier ones in providing a larger
number of formats in which S-expressions and comments can be ground. A
variety of predefined formats exist which can be associated with any LISP
function. For- unusual formats, the user can design his own procedures to
control grinding.

04/08/74 16.1 Page 227

MACLISP Reference Manual
162 =~ Top Level Functions
162.1 <« grind and grind0 - fexprs

grind and grind0 convert files to pretty-printed form. Their input

format is the same as that of the LISP file manipulating functions like
uread and uwrite.

(grind filenamel filename2 device uname)
ufile’s a pretty-printed. form of the file under the same name. The wusual
LISP conventions for default device, user and file names are used. To
avoid possible disasters, use ">" as your second file name. grind0 does
not ufile. Hence, it is useful for filing the pretty-printed file under a
different name. For example, :

(grind0 geo > dsk ira) (ufile geoc print)
results in the pretty-printed version being filed as GEO PRINT.
In the Multics implementation, the form

(grind pathl path2)

may also be used. pathl and path2 must be strings. grind will take its
input from the segment named pathl and put its output in the segment named

path2. path2 may be omitted, in which case the output is sent to a segment
named Igrind.output in the working directory.

1622 = grindef = fexpr
grindef takes atoms as arguments. It then pretty-prints their expr,
fexpr, and macro properties, and their values. For example,
(grindef programl program2)
pretty-prints these two LISP functions.

The default properties pretty-printed by grindef can be modified in two
ways.

(grindef <list of additional properties> <atoml> <atom2> ..)
appends the ad(iitional properties to the list of default properties for the
duration of the current call to grindef. A permanent change to the default

properties pretty-printed by grindef is made by setting the atom
grindproperties to a new list of properties.

Page 228 S 1622 04/08/74

Formatted Printing of LISP Data

(grindef) will repeat ihe last call to grindef. This saves typing when
repeatedly grindef’ing the same functions.

16.23 = Formatting

The pretty-printer can be programmed in the following ways:

a. (<grind-control-fn> <arguments>) executes the grind-control-fn
on the given arguments. A typical grind control function s
programspace. (programspace 80) sets the width available for

pretty-printing code to 80. Complete documentation follows in
section 16.3.

3. (<grindfn or grindmacro> <function> <grind-format>) assigns the
grind-format to the function as either a grindfn or grindmacro.
Whenever the pretty-printer encounters the function as the first
element of a list, the list is printed using the special format.
The grind-format can either be the name of a function of no inputs
or the body of a lambda definition. A variety of predefined
formats such as prog-form are described in the next section. The
mechanism for building new formats is presented in section 16.5.1.

c. (unformat <function>) removes any special grindfn or grindmacro
properties of the function.

For all of the above specifications, <function> can be replaced by <list of

functions). The grind specification is then applied to each function in
the list.

There are two ways in which format statements may be delivered to grind.
One is to insert them directly into the file being ground as

;:x(grindfn thprog prog-form) (programspace 80.) <newline>
Comments beginning with ";%" cause the pretty-printer to evaluate the
remainder of the line. If the line consists of only a single S-expression,
the toplevel parentheses are optional.

;:xgrindfn thprog prog-form

The normal LISP read-eval-print loop ignores semi-colon comments. Hence,
3+ comments only have effect when the file is ground.

The second way to deliver format statements to the grind package is to
place them in the file which the grind package automatically reads when it
is loaded. On ITS this file is called

GRIND (INIT)

04/08/74 16.2.3 Page 229

MACLISP Reference Manual

and is located in the user’s directory. On Multics this file is called
start_ub.grmd

and it is located in the user’s home directory.

1624 <« remgrind - fexpr

(remgrind) removes all of the grind package’s functions from the LISP
environment. Alternatively, the user can be more selective in pruning the
space occupied by the grind package by erasing only those features he does
not need. This is done as follows:

(remgrind file) - erases grind and grindd. Useful when only:
grindef is needed.

(remgrind ucontrol) - erases the formatting functions. It does not
erase those special formats already defined by the user. But it
prevents him from defining any more. Useful after the user has
created his special formats.

(remgrind format) - erases both the formatting functions as well as
all special formats.

(remgrind semi) - erases special functions for handling semi-colon
comments.

1625 - Functions, Atoms, and Properties Used by Grind

*xkkk [THIS SECTION IS QUITE OUT OF DATE] sk

Many functions and atoms are used by the grind package. In addition,
the property-list indicators grindfn and grindmacro are used for specifying
special grind formats. 4

The following atoms are reserved by the grind package (at the time of
this writing.)

/i /i/i /i/;? *d arg chrct comnt comspace fi11 form gap grindef
grindfn grindlinct grindmacro grindpredict grindpropert ies
grindreadtable grversion h 1 1inel m macre n noff nomerge
oldcontrolistatus oldsemistatus pagewidth predict prog? programspace
readtable remsemi semistatus topwidth

The following fﬁnctiqn and array' names are used by grind:
block-form block-predict comment-form comspace def-form done? fi11

flatdata form gblock gerror gflatsize gprinl grind grind-unbnd-vrb)

Page 230 | 16.2.5 . 04/08/74

Formatted Printing of LISP Data

grind0 grindargs grindef grindfn grindmacro grindpage grindreadtable
gtab gzap indent indent-to lambda-form maxpan mem-form merge newlinel
nofill nomerge nopredict oldstatus page pagewidth panmax pinr popl
ppage pprin predict prinS0com prinalicmnt prog-form prog-predict
.programspace putgrind readmacro readmacroinverse rem rem-realprop
rem/; rem/;/; remgrind remsemi semi-comment semi? setqg-form
setq-predict slashify siashifyl sprint sprintl stat-tadb testl tjé
topwidth turpri unformat

163 =~ Predefined Formats
163.1 = Standard Formats

The following formats are used by the pretty-printer in the absence of
any special formatting instructions. Choice depends on the available width
and the cost in number of lines.

a. linear-form - The expression is printed with no extra insertion of
carriage-returns and spaces. This is the format used by the LISP printing
primitives. It is wused by grind only when there is sufficient width

remaining on the line.

.b. standard-form - This is the preferred format for lists beginning with
atomic functions. It is also used on other lists if fewer lines are needed
to print the code this way.

(<function) <pretty-print of arg(l)>
{pretty-print of arg(2)>

<pretty-print of arg(2)>)

c. miser-form - This format conserves the space remaining on the line.
When in width trouble, function lists are printed this way.

(<pretty-print of element(1)>
{pretty-print of element(2)>

<pretty-print of element(n)>)
d. funny-form - Occasionally, this format decreases the number of lines
needed to print an expression. It is used whenever this is the case. If
predict is nil, computation is saved by ignoring it.

{<elementl> <element2) ... <(pretty-print of elementN>)

04/08/74 16.3.1 Page 231

MACLISP Reference Manual

1632 <~ Special Grindfns

Each of the following grind-formats can be assigned to any function by:
(grindfn <function> <grind-format>)
a. block-form - the entire expression is ground as text where the left
margin follows the opening parenthesis of the expression. For exymple,

ABCDEFG
MN
TU

L7 g

H1JK
OPQR
VWXY2)

Typically, argument lists and planner patterns are ground as blocks.

b. def-form - def-form is the standard format for grinding definitions.
The “defun”, function-name, indicators, and argument list are always ground
on the first linee The argument list is ground as a block. The remaining
elements of the definition are ground as a "body", i. e depending om their
size, they are ground one under the other in:

i. either the gpace remaining on the line, e g.

(defun fcn-name <arglist ground &8s block)> xxaxax
RRRK AKX

KRXXXX)

ii. in standard format, i. e. aligned under the function name:

(defun fcn-name indicator <arglist ground as block>
RERRXK

ARXRKX
KARAKK)

iii. or in miser format, i. e. aligned under the defun:

(defun fcn-name indicator <arglist ground as block)
RXKRKRKK

ARXAXK
KRAKKX)

c. lambda-form - the lambda and its variable-list are ground on the first
line. The variable-list is ground as a block. The remaining elements of
the lambda are ground as a "body” i. e. depending on their size, and in
order of preference, :

Page 232 : | 1632 04/08/74

Formatted Printing of LISP Data

i. in either the space remaining on the line, eg.

(1ambda <varfable-list ground as block) xxxxxx
AORK K KR
RAKKKK)

ii. in standard format: 4

(lambda <variable-list ground as block)
RRARRRRKKARK

RARRXKKKRRKK)

iii. or in miser format:

(lambda <variable-1ist ground as block)
T RRKKARRRKRKRAK

ARKKKKKKKKAKK)

d. prog-form - This format used for progs is similar to lambda-form, except
that tags are unindented.

e. mem-form - The first argument is ground as code. The remainder are also
ground as code unless quoted, in which case, they are ground as a block.
For example,

(member x
‘(labcdefgh
mnopgqrstu
y 2))

J k1

VWX

By default, member, memq, the map functions, and the assoc functions are
ground in this format.

f. comment-form - The cdr of the expression is ground as a block. For
example,

(comment this s a very long
comment that takes
several lines)
comment and xfexpr, ®xexpr, xlexpr, xxarray, special, and unspecial clauses
of declare’s are ground in this format.

g. setq-form - Space permitting, variables and values are ground as pairs.
For example,

(setq a (plus 1 1) b 0)

04/08/14 16.3.2 Page 233

MACLISP Reference Manual

If there is insufficient. space, standard or miser format is used.

1633 = Inverting Read Macros

Quote-type read macros can be inverted when pretty-printed.

reader grind .
<char) <expr> - - -> (function <exprd)) - - => <chard <exprd

This is accomplished via the readmacro function:
(readmacro <function> <macro character or characters>)

The macro character is princed and then the <expr> is pretty-printed. Two
examples are:

" (readmacro quote /)

and
(readmacro thv /$/?)

1634 -~ System Packages

A package of special formats currently exists for MICRO-PLNR. To
utilize them, place either (PLNR) in your GRIND (INIT) file or ;*PLNR

divectly in your micro-plnr files.

Page 234 16.3.4 ‘ 04/08/14

Formatted Printing of LISP Data

164 - Comments

Semi-colon comments are defined as a semi-colon followed by text and
concluded by a carriage return. These comments can be inserted anywhere in
an S-expression or appear alone at the top level. They are completely
ignored by the LISP reader. The grind package pretty-prints these comments

in several formats depending on whether the comment begins with 1, 2 or 3
semi-colons.

1641 - Single Semicolons

Comments beginning with a single semi-colon are printed to the right of
the code. Sequences of single-semi’s are merged. The code is normally
ground in the first 70 spaces of the line (programspace) while the single
gemi’'s are ground in the final 49 spaces (comspace) gap = 1 is the space
between code and comments.

49
pagewidth = 120

These values can be altered, for example, by inserting the following
. comment into a file:

; ix(pagewidth 120. 89. 1. 30.)
This results in programspace becoming 89, gap 1, and comspace 30.

For <code that contains no single semi’s, a programspace of 80. is
preferable.

'16.42 - Double Semicolons

These comments are printed as part of the code with the proper
indentation. Sequences of double semi’s are merged. At the top level,
topwidth = pagewidth is used. Inside code, double semi’s are limited to
programspace. To alter topwidth, execute: .

(topwidth <new-value))

04/08/14 16.4.2 Page 235

MACLISP Reference: Manual

1643 <« Triple Semicolons

T are similar to “j;." with respect to indentation. However,
they are otherwise not modified by grind. Spaces are not filled and
sequences of comments are never merged, They are thus useful when the user
desires his comment to be printed exactly as originally typed.

Page 236 16.4.3 | 04/08/74

Formatted Printing of LISP Data

165 - Grind Control

These functions set various switches and variables for the
pretty-printer. They may be invoked by the use of ";;%" comments. For
example, a comment like

: ;xcomspace 43.
will cause (comspace 43.) to be evaluated when the file is ground.

1. f111 causes multiple spaces appearing in single and double semi’s to be
merged. Periods ending sentences are followed by two spaces. This is the
default case.

2. nofill causes multiple spaces to be treated as such. Triple semi’s are
always nofill’ed.

3. merge causes double semi’s to bhe merged, if sufficient comspace remains
on the line.

4. nomerge causes double semi’s not to be merged. This is the manner in
which triple semi’s are handled. The full pagewidth is used.

5. page causes the output of a formfeed character.

6. ff causes grind to insert formfeeds approximately every 60 lines.
Formfeeds are only inserted at the toplevel, never appearing within
S-expressions. This is the default case.

7. noff limite the insertion of formfeeds to explicit calls of page.

8. ppage causes grind to preserve original paging of wuser’s file.

9. nopredict - This switch makes the grind dumber but faster. The
algorithm no longer considers as many alternatives for grinding each
expression. For PROG-FORM and DEF-FORM, format 1 is no longer considered.
Similarly, FUNNY-FORMAT is never considered. Dumb mode is the default
state.

10. predict - All of the formate discussed in the previous pages are
considered.

11. pagewidth <pagewidth> <programspace> <{gap> <commentspace>

12. programspace <valued> - resets the value of the programspace. Enlarging
programspace shrinks comspace.

13. comspace <value> resets the width used for single semi comments. The
tradeoff is again with the programspace.

14. topwidth <value> - resets the width used for toplevel double semi
comments.

04/08/74 16.5 Page 237

MACLISP Reference Manual

16.5.1 <« Defining New Formats

The wuser may wish to go beyond the predefined formats discussed in
section 16.2. To do this, grindfn can be wused to define special grind
functions (SGF’s) of his own design. The syntax is as follows:

(grindfn <atom or 1 ist of atoms> <grind-format>)

where the definition is either the name of a O-input procedure or the body
of a lambda expression. ‘

Grindfns are processed as follows: assume the atom Ll has a SGF
associated with it. Then, whenever expressions of the form (L1 .. LN) are
encountered, grind prints “(" and then transfers control to the definition
of the SGF. Upon entering the SGF, the following free variables are
relevant:

L <--- (L1 .. LN)
N <--- CHRCT = remaining line width, following the "(*.

Note that these variable names are lower case in the actual code but are
printed in upper case here for the sake of increased legibility.

A SGF generally processes some initial segment of L, cdr’ing ‘L in the
process. Note that the SGF must at least process L1. Upon completion, if
L has been set to nil, grind simply prints the closing parenthesis ™).
If, on the other hand, L has been rebound to some terminal segment of
itself,

L » (Li .. Ln)

then grind prints the remainder of L as the body of a def-form, ie. the
elements of L are printed one under the other in either

a. the space remaining on the line

b. aligned under L2
or c. aligned under LI.

1652 =« Vocabulary

The following vocabulary is usefulv for defining SGF's:

1. (remsemi) - expr - This function processes any ; comments that occur as
initial elements of L, cdring L in the process.

.2 (pprin S F) - expr - S is printed in the format specified by F where F
can be:

’line - equivalent to prinl

block - block-form
'tist - comment-form

Page 238 C 16.5.2 04/08/74

Formatted Printing of LISP Data

’code - applies pretty-printer to S.

pprin should not be given ; comments as input. (remsemi) is generally used
to avoid this. pprin does not print a space following S.

3. (form F) - expr - This function is designed to relieve the user of an
explicit concern for comments. It also frees him from printing spaces
between elements of L. Its definition is:

(remsemi)

(pprin (car 1) f)

(and (setq 1 (cdr 1))
(princ “/))

Its action is to first apply remsemi, removing any initial comments from L.
It then pretty-prints (car L) in the specified format F. Finally it cdr’s
L and prints a space if there is still more to go.

4. (turpri) - expr - A carriage return is printed. terpri should not be
used.

5. (indent-to N) - expr - This function causes chrct to be set to N by
printing a carriage return if necessary (N > chrct) and spaces. Note that
chrect is the current width. This number is equal to the indentation
subtracted from the total line width. A common bug is to treat N as the
indentation.

6. (indent M) - expr - M spaces are printed. An error results if M exceeds
the space remaining on the line.

1. (popl) - expr - L is set to (cdr L). Then remsemi is applied. The net
result is to cdr L until its car is not a comment.

8. a. (testl) - lexpr - returns the first element of L that IS NOT a *"
comment.
b. (testl j) - returns the jth element of L that is not a comment.
c. (testl j t) - returns the entire remainder of L beginning WITH the
jth element.

9. (semi? K) - expr - returns t only if K is a semi-colon comment.

1653 <« Examples

Following are some examples of SGF's. Lambda’s are ground by default in

def-form. The user could achieve the same effect by defining the following
SGF:

1 (grindfn lambda (form “1ine)
2 (form “block))

04/08/14 1653 Page 239

MACLISP Reference Manual

(form “1ine) in line 1 prints lambda and pops L. (form “block) in line 2
prints the argument list of the lambda in block-form and again pops L.
Control is then returned to grind and the remainder of the lambda is
printed as a body.

Another example might be where the user wishes to grind all ; expressions
of the form:

(defprop <atom> <definition> <expr, fexpr, or macro>)
as defun’s. This would be done by:

1 (grindfn defprop

2 (cond ((memq (testl 4) “(expr fexpr macro))
3 (setq 1

4 (append (1ist “defun (testl 2))

5 (cond ((eq (testl 4) “expr)
6 nil)

7 ((1ist (testl 4))))
8 (cdr (testl 3)))) -

9 (def-form))

10 ((form line))))

The memq of line 2 checks for whether the indicator is a function property.
If so, L is redefined as the appropriate defun:

(cadr L) = function name

The cond of line 5 puts fexpr/macro into the defun
(edr (caddr L)) is the argument list of the function
(cddr (caddr L)) is the body of the function

and then ground in def-form. If not, defprop is priﬁted and control is
returned: to grind.

Finally, consider a function called cmeans whose arguments are property
lists. It is to be ground as follows:

(cmeans
(<ind-11> <grind prop-11>

<ind-1n> <grind prop-1n>)

- (<ind-m1> <grind prop-ml)>
<ind-mn> <grind prop-mn>))
Suppose the additional subtlety is desired ‘that properties with indicator

foo are ground as blocks while all other properties are ground ordinarily
as code. The following SGF achieves this fprmat.

Page 240 \ 16.5.3 " 04/08/74

Formatted Printing of LISP Data

(grindfn cmeans (prog nil

| (form “1ine)

2 (setq n (- n 4.))

3 (remsemi)

q a ((1ambda (1)

5 (prog nil

6 (indent-to (addl n))
7 (princ “/()

8 b (remsemi)

9 (indent-to n)

10 (cond ((eq (car 1) “foo)
11 (form “1ine)
12 (form “block))
13 ((form “1ine)
14 (form ‘code)))
15 ' (and (testl) (go b))
16 (princ /7))

17 (remsemi)))

18 (car 1))

13 (cond ((popl) (go a)))))

Line 1 prints cmeans. Line 2 establishes the indentation of the arguments
of cmeans. Line 3 processes any comments preceding the first argument.
Line 4 binds the special free variable L to the current argument of cmeans
for use by form and rem. Line 6 indents for the current argument. Line 8
processes any initial comments embedded in the argument. The cond of line
10 forks depending on whether or not the indicator is "foo". In line 15,
testl returns nil if L contains no more indicator-property pairs. Line 16
prints the closing parenthesis. 17 processes any remaining comments. By
line 19, the current argument of cmeans has been ground. Hence, L is
popped. If there are no more arguments, popl returns nil and the SGF s
done.

1654 +« Grindmacros

A grindmacro differs from the above grindfunctions in that the grind
package takes nothing for granted. It does not automatically print the
opening parenthesis, the balance of L and the closing parenthesis. If the
grindmacro function returns t, then the pretty-printer does nothing more on
L. The assumption is that the grindmacro has done all the work. This
would be the case for a grindmacro for quote:

(grindmacro quote (princ “/”)
(pprin (cadr 1) “code)
t) ‘

Alternatively, if the grindmacro returns nil, the pretty-printer prints L
as though nothing had happened. This mode is useful for a grindmacro used
to print “index" information as comments preceding the S-expression.

04/08/74 16.5.4 Page 241

MACLISP Reference Manual

Grindmacros can be defined similarly to grindfns.
(grindmacro <atom or list of atomsd> <grind-format))

Again the definition can be either the body of a lambda or a function of 0
inputs.

Page 242 16.5.4 ' 04/08/14

The LISP “Indexer"

17 = The LISP "Indexer”

TO BE SUPPLIED

04/08/74 .

Page 243

MACLISP Reference Manual

This page intentionally left blank.

Page 244 ' 17, 04/08/74

The LISP Editor

18 = The LISP Editor

At present the editor exists only in the pdp-10 implementation of lisp.
It is quite likely that a different editor will be substituted in the near
future. You have been warned! '

Evaluating (edit) enters edit mode, wherein commands are given similar
to teco commands, action is taken on some expression currently in the
working space, and a window around the pointer is printed out after every
command execution. (edit t) enters edit mode but does not type out the
window after every command. (the p command will cause printing of the
window - useful when at a teletype) In this chapter the "$" character
represents <altmode>. Commands are:

Q<space> exit from the editor back to lisp.

Y<space>atom<{space> causes the function property of atom to be brought in
for editing.

YP<space>atom<space>prop<{space> yank in the prop property of the atom atom.
YP<spacedatom<space>$8<space> yanks the whole property list of atom.

J<space> causes the pointer (which is printed out as $8) to jump to the top
of the working expression.

S<spacedel . . . endspace>$8<space> searches for an occurrence of the
sequence of S-expressions el . . . en and moves the pointer just
to the right if successful. Note that the lisp reader is used
for read-in by the editor, so that the atom <altmoded><altmode>
must be followed by some atom terminating character (such as
<space>).

I<spacedel . . . en{space>$8¢space> inserts at the current pointer position
the sequence el . . . en

K<space> kills the S-expression just to the right of the pointer, and saves
it as the value of the atom $8.

IV<spacedexp inserts the value of the S-expression exp. especially useful
when inserting stuff deleted from some prior point.

EV<spacedexp merely evaluates exp.
Henceforward, <space> will not be explicitly written out, but will be
understood to be the command termination character. The next group of

commands admit an optional numeric argument (base 10.), preceeding the
command, to be interpreted as a replication number:

04/08/74 18. Page 245

MACLISP Reference Manual
F move forward (rightwards) past one token. A token is
parenthesis or an atom.
C same as F
-B same as F
B move back (leftwards) over one token.
-C same as B
-F same as B
R move rightwards past the next S-expression.
L move left over one S-expression.

1

D move “"down" into the first non-atomic S-expression to the right
pointer.

U move "up” out of the S-expression containing the pointer.
K kill also admits a replication number.

PW the argument is not really a replication number, but utller the
width” in number of tokens.

either a

1

of the

*window

The following little used commands may possibly be of some interest:

(insert a virtual open parenthesis.
) insert a virtual close parenthesis.
D(virtually delete an open parens
D) virtually delete a close parens

() restructure the working S-expression according to the
parentheses and deletions.

Variables Used by the Editor

edit VARIABLE

‘The value of the variable edit is a list of the properties
functional by the editor. It is used by the Y command.

Page 246 18.

virtual

considered ‘

04/08/74

The LISP Editor
s VARIABLE

The value of the atom <altmode><altmode><altmode> is a push-down list
of “edit cursors.”

Function used by the Editor

edit ’ SUBR no args

Typing (edit) causes the editor to be entered. ‘

04/08/74 18. Page 247

MACLISP Reference Manual

This page intentionally left blank.

Page 248 18. ~ 04/08/74

Glossary

Appendix A =~ Glossary
GLOSSARY

a-list pointer
An a-list pointer is a number which can be passed as an extra argument
to eval or apply to indicate a particular binding context in which
variables will be evaluated. It is similar to, but not the same as, a
pdl pointer. An a-list pointer may also be nil, which indicates the
global or “"top level” binding context. The name "a-list pointer” is
of historical meaning only.

abbreviation
Abbreviation is a feature which allows large lists to be truncated
when printed out. See section 13.7.

alarmclock
A facility by which the user can specify a function to be called after
a specified amount of time has elapsed. "Time™ may be measured as
real elapsed time or as CPU run time.

altmode

A character used in the pdp-10 implementation of MACLISP. Also called
escape or prefix.

application
Application consists of "applying” a function to a list of arguments
and obtaining the value of the function for those arguments.
Application is explained in detail in chapter 3. cf. evaluation.
argument

An argument is an object which is given to a function to operate on.
Part of the process of evaluating a form consists of deriving
arguments from the form, which is just a list of items. For example,
when the form (foo 3 4) is evaluated the arguments to the function foo
are 3 and 4.

arithmetic
MACLISP contains functions to perform arithmetic operations on
integers of arbitrary size and on floating-point numbers with a
precision of about eight decimal places. See chapter 7 for a
discussion of these functions.

array
An array is an ordered set of cells. Each cell may contain a LISP

04/08/74 Appendix A Page 249

MACLISP Reference Manual

object. The name of the array is also the name of an accessing
function which when given subscripts as arguments, returns the
contents of the cell selected by the subscripts. The function store
may be used to assign values to the cells of an array. LISP arrays
are similar to FORTRAN arrays except that the subscripts begin at 0
instead of 1, and they are more general because the occupants of the
several cells need not all be of the same type.

ascii
"ascii" is the American Standard Code for Information Interchange.
This is the character code used internally by MACLISP.

assignment

A value may be assigned to a variable in two ways: 1) by using the
function setq, which is similar to the assignment statement in some
other languages, and by the related functions set and makunbound. 2)
by "binding," accomplished by lambda, prog, or do. Binding is a local
assignment. When control leaves the function which caused the
binding, the value of the variable is restored to what it was prior to
the binding. .

association list
An association list is a list of dotted pairs, often used with the
functions assoc, assg, sassoc, and sassq For example, ((a . 4) (b
foo 1) (x . y)) associates a with 4, b with (foo 1), and x with y.

atom
An atom is a LISP object which is usually thought of as indivisible.
Atoms come in several types: fixnums, flonums, bignums, strings, and
atomic symbols.

atomic symbol

An atomic symbol is a type of atom which has a pname, a value cell,
and a property list. A pname is a string of characters which identify
the symbol. A value cell is a place, associated with an atom, in
which any LISP object may be stored. @A property list is wused to
remember named "properties” or "attributes” of an atomic symbol. The
value cell allows atomic symbols to be used as variables. The pname
and property list make atomic symbols useful as terminal symbols in
symbolic manipulation.

autoload
The autoload feature allows the definitions of functions not initially
present in the environment to be loaded in from a file automatically
when they are required. It is used in the implementation of special
utility packages, such as trace, grind, and large application systems.

Page 250 ‘ ‘ Appendix A - 04/08/74

Glossar}

backtrace
A display of pending evaluations, which can be used in debugging to
determine the chain of calls leading to the point of error. The
function baktrace prints this out.

base
The value of the variable base is the radix in which the output
routines represent numbers. . It is initially 8.

bignum

A bignum is an integer of arbitrarily large magnitude. The arithmetic
functions plus, times, difference, etc. use bignums where necessary
and automatically manage the varying storage required. For example,
bignums make the computation of 1000 factorial easy to write. Because
of this power bignum arithmetic is noticeably slower than fixnum
arithmetic.

binary program space _
In the pdp-10 implementation of MACLISP, an area of memory in which
arrays and compiled functions are stored.

binding ‘
A variable may be "bound” to a value by use of lambda, prog, or do.
The value of the variable is set temporarily, but will be restored to
the previous value when the variable is "unbound." Unbinding happens
when the form that bound the variable is ented whether normally, by
an error, or by throw.

binding context
The binding context consists of the values of all bound variables.
MACLISP includes a partial ability to manipulate binding contexts, the
a-list pointer facility, which allows binding contexts to be wused as
long as control is nested somewhere within them.

Boolean operations
MACLISP includes a full set of Boolean operations on bits. The 36.
bits which make up a fixnum may be operated on by the boole function.
The "and,” "or," and “not" operations on logical values are also
included, with t standing for true and nil for false. A variety of
predicate functions, which return a true or false (ie. t or nil)
value, are included.

bound variable
A bound variable is an atomic symbol whose current value was assigned
to it by means of a binding. It is something like a local variable.

04/08/714 Appendix A Page 251

MACLISP Reference Manual

break level
A level of control at which computation has been temporarily suspended
by a breakpoint (q.v.), allowing typein from the comsole. cf. top
level, where typein is allowed from the console becsuse no computation
is in progress.

breakpoint
A breakpoint is a point in a program where computation is temporarily
suspended and control is returned to the console, enabling the user to
explore the state of the computation. Most errors cause a breakpoint,
and the trace facility can be used to insert breakpoints. A user can
make a breakpoint with the function break

car
The first member of a dotted pair or a list. The name derives from
Contents of Address Register on the IBM 7094, where LISP was first
implemented.

catch tag
An object which is used to relate throw’s and catch'es.

cdr .
The second member of a dotted pair, or the "rest” of a list (ie. all
members except the first) The name ‘derives from Contents of
Decrement Register on the IBM 7094, where LISP was first implemented.

character

One of the 128. ASCII characters. On a typewriter a character is
represented by a printed mark or by a formatting operation such as a
backspace. Internally a character may be represented as a number,
which is the ascii code for the character, or as a character object
(g.v.). Characters are also used in pnames and in strings.

character object : ‘
An atomic symbol which symbolizes a character. The null character is
symbolized by the atomic symbol whose pname is of zero length; each
of the other characters is symbolized by an atomic symbol whose pname
is that character.

character translation
A feature in the reader which allows characters to be translated to
other characters when they are read in. For example, pdp-10 MACLISP
uses this feature to translate lower-case lotters to upper-case.

Page 252 Appendix A 04/08/74

Glossary

charpos
The number of character positions from the left margin. Describes the
position of the typing element on a typewriter or the cursor on a
display. The notation is extended to files on any device.

chret
This is an older version of charpos. It is the number of character
positions from the right margin.

closing a file .
Some operating systems require a "cleaning up” operation after all use
of a file has been completed. This is called closing the file. .The
MACLISP garbage collector will usually do this automatically.

comment

Comments are descriptive text, not interpreted by the LISP system,
which are inserted into programs for the edification of a reader of
that program. In MACLISP there is a comment function, which does
nothing with its arguments and so may be used for comments, but a
better way to write comments is with the semicolon macro character,
which makes everything from it to the end of the line a comment. For
example,

(foo (bar x)) ;whizzo the frammis.

compilation
Compilation is a process which can be applied to a MACLISP function to
make it run faster. The cost of compilation is that debugging is made
more difficult. Generally debugging is done by interpretation (q.v.)

cons '
A cons, also called a dotted pair, is the basic unit for the
construction of data structures in MACLISP. A cons contains two
members, the car and the cdr, which can be any objects whatsoever.

control characters
Control characters are used to tell the MACLISP system to perform some
action immediately, no matter what it is currently doing. See section
12.3.

correctable errors
Most errors in MACLISP are correctable. This means that they cause a
user interrupt, which either invokes a user-specified function to
correct the error, or causes a breakpoint, which allows the user to
determine how to correct it, inform MACLISP of the correction, and
continue the interrupted computation.

04/08/74 Appendix A Page 253

MACLISP Reference Manual

cross reference
The “index" package may be used to produce "cross references” of LISP
programs. See chapter 17.

data types
In MACLISP, objects come in sceveral types, which are explained in
chapter 2. :

declaration

Declarations are used to give the compiler extra information, not
needed by the interpreter, which clarifies the programmer’s intent and
makes possible the compilation of more efficient code. The [function
declare is provided for this purpose.

14

debugging
Debugging is the usually long and painful process of finding mistakes
(bugs) in programs and removing them. MACLISP provides a number of
tools to assist in debugging. See errors, user interrupts, baktrace,
breakpoints, trace, the krget ewitch, and interpretation.

display slave .
The “display slave” is part of the Moby 1/O facility in MACLISP. When
the pdp-10 implementation of MACLISP is running on the MIT A.l. Lab
pdp-10, the display slave may be used to display text and graphics.
Extension of the display slave to other sites and implementations is
anticipated.

L

do loop

A clear and concise notation for uenclvo algorithms, provided by the
do function in MACLISP.

dot notation
A notation in which a dotted pair is wmten with parentheses and a
period. A dotted pair whose car is a and whose cdr is b is written:
{(a . b)

Any structure of dotted pairs can be written unambiguously, but not
necessarily clearly, thiz way: ‘

(((a.b) . ¢c).(d.ce))

dotted list
A structure which would be a list except that it does not end in il
It is written in a hybrid of dot notation and list notation. For -

example:
(a. (b.c))

Page 254 Appendix A , 04/08/74

Glossary

would be written:
(ab.c)

dotted pair
See cons.

edit
The pdp-10 implementation of LISP contains an S-expression editor,
described in chapter 18. The Multics implementation does not

presently have a built-in editor, however several editors, written in
LISP, exist.

end-of-file
When an input file is being read, eventually it comes to the end and
some special action may have to be performed. See section 13.2.4.

endpagefn
A function, associated with each output file, which is invoked
whenever a new page of output is started.

environment
A LISP environment consists of a complete set of objects, variable
values, function definitions, and files, which together make wup an
application system or a user’s current work. Section 12.8.3 describes
ways to save the current environment and later resume working with it.

eoffn
A function, associated with each input file, which is invoked when an
attempt is made to read past the end of the data in the file.

eq .
eq is a function for comparing two objects, which returns t if they
are completely identical, nil if they are not. (In machine terms,
completely identical means they have the same storage address.) eq is
not defined for numbers and strings. cf. equal.

equal

equal is a function for comparing two objects, which returns t if they
are similar, nil if they are not. Similar means approximately that
they would look the same if printed out. equal works for numbers and
strings: numbers are equal if their values are numerically equal,
strings are equal if they contain the same characters. Atomic symbols
are equal if they are eq Two dotted pairs are equal if their cars
are equal and their cdrs are equal.

04/08/14 Appendix A Page 255

MACLISP Reference Manual

errors
Handling of errors in MACLISP is very flexible, in recognition of the
‘hct that errors are a major tool in debugging. See section 12.4.

escape
See altmode:

evaluation
The process by which a form, which may be almost any LISP object, is
nmade to produce a value. Evaluation may involve taking the values of
variables and applying functions when a function call is indicated by
a list ae a form. Evaluation is explained in detail in chapter 3.

expr
An expr is an interpreted function which takes a specific number of
evaluated arguments: -

fail-act
A catch-all category of errors, which cause a breakpoint to occur.
The atom args is bound to useful information about the error.

fexpr
An interpreted function which does not receive its arguments
evaluated. (At least it does not evaluate them in the regular way.)

file
A sequence of characters in the external world, and also an object
within the lisp environment which is used to communicate with that
sequence of characters. See chapter 13.

file name defaults :
There' is a system of defaults for file names which is intended to
increase the convenience of users and programmers. See chapter 13.

file object
An object within the LISP environment which symbolizes a file in the
outside world. See file.

fixnum
A fixnum is a type of number, specifically an integer whose absolute
value is less than some machine-dependent maximum. In the pdp-10 and
Multics implementations, this maximum is 2%%35-1, or 34359738367.
Compiled code can perform fixnum arithmetic very efficiently.

Page 256 : Appendix A 04/08/74

Glossary

flonum
A flonum is a type of number, specifically a floating-point number,
similar to REAL in FORTRAN, which has machine-dependent range and
precision. In the Multics and pdp-10 implementations the ' range is
about 10:#%-38 to 10%%38 and the precision is about 8 decimal digits.

flow of control

The logical sequence in which parts of a program are executed. This
includes decision, recursion, iteration, and function calling. In
LISP flow of control is generally linear except as othexwise
specified, except that the use of functional composition causes ~ the
arguments to a function to be evaluated before the function. The
functions cond, and, or, do, prog, go, throw, and return are among
those functions used for their effect on the flow of control.

form
A form is an S-expression which is intended to be evaluated. It may
be an atomic symbol, an atom such as a string or a number which
evaluates to itself, or a list of forms, the first of which is a
functional form and the rest of which are argument forms.

formatting
The grind package may be used for the formatted printing of LISP
functions or data. See chapter 16.

free storage
In the pdp-10 implementation of MACLISP, free storage is that part of
memory set aside for various types of LISP data objects. In some
versions the size of this area must be specified when LISP is first
entered. The free storage area is managed by a garbage collection
algorithm.

free variable
A free variable is an atomic symbol whose current value was not
determined by binding within the currently evaluating function.
Either it has a global value or it was bound in some function which
then called the current function. ’

fsubr
An fsubr is a machine-language function which does not receive its
arguments evaluated. When a fexpr is compiled it becomes an fsubr. A
number of the builtin functions, such as cond, are fsubrs.

funarg
A functional form, passed as an argument usually, which carries with
it the binding context in which it is to be applied. See the

04/08/74 Appendix A ‘ Page 257

MACLISP Reference Manual
~xfunction function.

function ‘ ‘
A LISP object suitable for application. Given arguments, it performs
some arbitrary calculation and returns some LISP object as a value

Functions are the fundamental .control (and syntactic) structure in
LISP.

functional form
Any S-expression which can be used as a function. However, often the
term "functional form"™ is reserved for non-atomic functions, such as
lambda-expressions, labels, or random forms which are evaluated to
produce a function.

garbage collection
The basic memory management scheme of all LISP implementations.
Objects are retained until there are no references to them, at which
time since the object can never again be used the storage it occupies
can be reclaimed. Reclamation (garbage collection) occurs
periodically when the system decides it would be a good thing to do.

\

1

gc-daemon
A user interrupt which occurs after each garbage collection, allowing
a user-specifim; function to gain control and monitor the program or
.make decisionﬂ based on the efficiency of storage usage of the
program. \

gensym
An atomic symbol which has a unique name of the form g0001, g0002,
etc. gensymed atoms are not “interned,” so they cannot be referenced
from the console. They are generated by the function gensym

global wvariable
A variable which does not currently have a local binding. Its value
is whatever value has been assigned to it in the global binding
context, for .instance if it has been setq'ed at top level..

grind
A package for printing LISP functions and list structure in an
indented form that is easy to read. See chapter 16.

ibase

The value of the variable ibase is the radix in 'whicln numbers read by
the reader will be converted. It is initially 8.

Page 258 ~ Appendix A | 04/08/74

Glossary

index
A cross-referencing package for LISP programs. See chapter' 17.

.

indicator

An atomic symbol (usually) which serves to label an item in a property
list.

input source)
The file from which input is taken, when no source is specified.
Determined by the variable infile.

integer ,
A type of number which can be represented in MACLISP by either a
fixnum or a bignum, depending on how large it is.

intern '
When an atomic symbol is read in, it is placed in a special table
called the obarray; this is called interning the atomic symbol. The
obarray allows the same (according to the function eq) atomic symbol
to be used the next time the same pname is read.

interpretation
A method for executing LISP programe in which S-expressions are
processed by an interpreting program without preliminary translation.
This is the usual mode for execution of lisp. It is more efficient
than compilation (g.v.) for evaluating once-only expressions such as
directly typed-in input, and for debugging.

I/0 .
Input/Output, or communication between LISP programs and the outside
world. See chapter 13.
iteration
See do loop.
label
1) see prog tag.
2) a type of functional form.
lambda

lambda-expressions are the most common type of (non-atomic) functional
form. A lambda-expression is written as a list (lambda (<vars>)
<body>).

04/08/74 Appendix A Page 259

MACLISP Reference Manual

lambda-variables '
Variables bound in a lambda-expression are called lambda-variables.

lexpr
An interpreted function which takes a variable number of evaluated
arguments. An expr with an atomic symbol in place of the
lambda-variables list is a lexpr.

linel
The number of character positions per line.

linenum
The line number, starting from 0 at the top of the page, of the
current input or output position in a file

LISP
A language for list processing and manipulation of symbolic and
structured information. The MACLISP dialect of LISP is described in
this manual.

list

A data structure in LISP, composed of several conses. The car of each
cons is a member of the list, and the cdr of each cons is the next
cons, except that the cdr of the last cons is nil, which marke the end
of the list.

list notation
A more concise form than dot notation for writing lists. For example,
(a.(b.(c.nil)))

is (& b ¢) in the list notation.

load ,
Loading is the process of bringing function definitions, variable
values, atomic symbol properties, etc. into the current LISP
environment from an outside source, such as a file. See the load
function. ‘
looping
See do loop.
Isubr 4
An lsubr is a machine-language function which takes a variable number
Page 260 Appendix A ' © 04/08/74

Glossary

of evaluated arguments. A compiled lexpr is an lsubr. A number of
the builtin functions, such as plus, are lsubrs.

macro .
A type of function which produces as its value a form which is then
automatically evaluated to yield the final result of the function
call.

macro character
A macro character is a character which, when read, causes a function
to be invoked. Macro characters are used to implement complicated
special input syntax. The ° character is an example of a macro
character.

mapping
A type of iteration in which a function is applied to successive parts
of a list. See chapter 10.

moby 1/0
A feature in some versions of the pdp-10 implementation of MACLISP by
which various peculiar hardware devices may be manipulated by LISP
programs.

namelist
A list of atomic symbols which specifies the name of a file in the
form of multiple components.

namesiring
A character string which specifies the name of a file in
implementation-dependent format.

newio
The I/O system described in chapter 13. Some LISPs still use an older
I/O system which is less general, described in section 13.5.

newline :
The character or sequence of characters used in the host operating
system to indicate the separation between lines.

nil
An atomic symbol which indicates “false,” “default,” or "end of list.”
nil is a constant since its value is initially ni) and cannot be
changed.

04/08/74 Appendix A Page 261

MACLISP Reference Manual

non-local exits
Escaping from nested function calls without going through the normal
function-return mechanism. See catch and throw.

number
See fixnum, flonum, bignum.

obarray
A table of interned atomic symbols, used by the reader to insure that
each time a pname is typed in it will refer to the same (according to
the function eq) atomic symbol.

object
Any piece of data used by LISP. Programs are also objects.

octal
The number system wused by MACLISP, unless some other is specified.
Fixnums and bignums are converted for input and output in octal (base
8). Note that flonums are always in decimal.

opening a file
Creating a file object so that a file in the outside world is usable
by LISP.

output destinations
Those files to which output is sent if a destination is not explicitly

specified. The value of the variable outfiles is a list of the output
destinations.

pagel
The number of lines per page in a file.

pagenum
The current page number in a file, starting with 0 at the time it is
opened.

pdl
Push-down list or push-down stack. @MACLISP uses 'several pdls
internally for binding and recursive evaluation.

pdl overflow

Pdl overflow is what happens when a depth of recursion is used that is

more than the implementation can handle. It generally indicates an

Page 262 Appendix A ’ - 04/08/74

Glossary
error.

pdl pointer ‘
A fixnum which indicates a particular point in a pdl. Pdl pointers
are used to denote particular pending evaluations in evalframe and
related debugging functions.

pname
‘The pname, or print-name, of an atomic symbol is a sequence of
characters which are typed in or out to denote that symbol.

predicate .
A function which tests the truth or falsity of a perticular condition,
returning t if it is true or nil if it is false

prinlength
A variable which can be set to the maximum number of atoms in a list

that will be printed before the printer will give up and put “..
Operates under the control of (sstatus abbreviate).

prinlevel
A variable which can be set to the maximum depth of nested lists which
will be printed before the printer will give up and put "s". Operates
under the control of (sstatus abbreviate).

prog
A prog is a LISP form based on the function prog which allows a
control structure of sequential statements and gotos, rather than
composed functions, to be used.

prog tag
An atom which tags or labels a particular statement in a prog so that
it can be referred to with the go function.

prog variable
A variable which is bound by a prog; each prog contains a list of prog
variables which are bound to nil when the prog is entered and can be
used as temporary variables within the prog.

property :

Associated with each atomic symbol are properties, which can be any
LISP object. Each property is named by an “indicator,” which is just
an atomic symbol used to refer to that property. Thus we would refer
to the "fsubr property” of cond, which has the atom fsubr as indicator

04/08/74 Appendix A Page 263

MACLISP Reference Manual
and is an internal pointer to the machine code for cond.

property list
The list of indicators and properties kept on the cdr of each atomic
symbol.

quote
A special function which is used to prevent the evaluation of
arguments to other functions. {(quote a) evaluates to the atomic
symbol a, while just a evaluates to the value of a (quote a) is
usually abbreviated ‘a

readtable

A table which specifies the lexical significance of each ascii
character. The readtable is used by the function read to direct the
parsing of input. It can be altered by the user to implement special
extensions to LISP syntax or to allow use of the read function to
lexically analyze languages other than LISP. There can be more than
one readtable; at any given time the one that is used is the one that
is the value of the atom readtable.

recursion
See recursion!

rplaca -
Changing the car of a previously-existing cons to something other than
what it was originally created as. All references to that cons will
find that its car has been changed on them. This operation has hidden
dangers and should not be used lightly. '

rplacd :
Changing the cdr of a previously-existing cons. Similar to rplaca.

S-expression :
Another name for "LISP object.”

single character object
An atomic symbol whose pname is a single character is a “single
character object” if the syntax of that character has been set so that
the character reads as a seperate atomic symbol even if it is not
surrounded by spaces or other delimiters.

slashify .
"Slashifying” a character is preceding it with a slash (/) character.

Page 264 Appendix A ~ 04/08/74

Glossary

This can be done to special characters such as space or parenthesis to
indicate that they should be treated the same as alphabetic letters
and their special meanings should be ignored. Slashification is the
convention by which pnames may contain these special characters.

sorting
MACLISP includes a generalized sorting facility. An array or a list
of objects can be sorted if a function can be written to determine for
any pair of such objects, which is the lesser. See chapter 11.

special array cell
Some MACLISP implementations use "special array cells” as values of
array properties. These cells are communication words which allow the
array to be addressed by both compiled and interpreted code. -

stack
"stack” is synonymous with “pdl," q.v.

string
One of the MACLISP data types is the string of characters, written
"“foo".

subr
A subr is a machine language function which takes a fixed number of
evaluated arguments. When an expr is compiled, it becomes a subr. A
number of the builtin functions, such as memg, are subrs.
Occasionally the term subr is used to include all machine executable
functions, fsubrs and lsubrs as well as true subrs.

subr object
The value of a subr, fsubr, or lsubr property. In some implementation
dependent way, a subr object tells lisp how to get to the machine
language function given its name (an atomic symbol with a subr, 1subr,
or fsubr property.)

substitution)
One S-expression may be substituted for another within a third by
using the functions subst and sublis. See chapter 4.

switch
A "switch" is an atomic symbol whose value is by convention either 1t
or nil, representing on and off respectively. There are a number of
switches which affect the operation of the lisp system.

04/08/74 Appendix A Page 265

MACLISP Reference Manual

symbol

See atomic symbol.

syntax

See readtable.

t .
An atomic symbol which is used for expressing truth. Like nil, it is
a constant because its value is always itself.

tag
See prog tag, catch tag.

terminal
MACLISP is almost always used interactively by a user communicating
with it through a terminal. The phrase “the terminal® or “the
console” is wused in this document to mean the particular terminal
which is controlling the computation under discussion.

time
MACLISP keeps track of two types of time. “time" is elapsed time in
seconds, since some arbitrary event such as the last time the computer
system was started. “runtime" is the number of microseconds of CPU
running time that has been used. '

top level
The level of recursion which lisp is at when first entered. The user
at his terminal is in control. Lisp will accept typed-in forms,
evaluate them, and print the results.

trace

A package for debugging LISP programs which allows control to be
seized whenever specified functions are called. Various operations to
be performed, such as displaying of arguments, examination of
specified variables, and temporarily returning control to the console
via a breakpoint. See chapter 15.

truly worthless atom

Page

An atomic symbol which is not referenced by any list structure, has no
value, and has no properties. In most cases no one would notice if a
truly worthless atom was removed from the environment and recreated
when someone later referred to its pname. Therefore MACLISP provides
the gctwa function which can be used to direct the garbage collector
to remove truly worthless atoms, in the interests of saving memory.

266 Appendix A - 04/08/14

type

type

Glossary

See chapter 2 for a description of the builtin data types in MACLISP,
and a list of predicates for type-checking. Numeric type-conversions
can be done with the functions listed in section 7.1.3. Other type
conversions can be done with a host of functions listed mostly in
chapter 13. The user may. efficiently define new data types simply by
defining functions to manipulate them.

checking '

See section 2.1 for a list of predicates which return t if their
argument is of a specified data type. In the interpreter most
functions automatically check their arguments for correct type, but in
compiled code types are usually assumed to be correct, and if they are
not, the internal mechaniems which support MACLISP may be damaged.

unbound wvariable

user

uuo

value

A variable which has no value is called “unbound.” Attempting to
evaluate such a variable will cause an error. '

interrupts :

The user interrupt facility allows a user-specified function to gain
control when a specified condition occurs, no matter what else may be
happening (except that response to a user interrupt may be delayed
while garbage collection takes place.) User interrupts are wused for
error recovery, alarmclock timers, and real-time response ta the entry
of certain "attention getting” characters from the terminal. See
section 124 for details.

For historical reasons, the term "uuo” is used to describe the direct
linkage between compiled or builtin functions which is used to
increase the efficiency of function -calling. This linkage eliminates
the necessity to search property lists each time a function is called
when both the caller and the callee are machine language (compiled or
builtin) functions. In the pdp-10 implementation of MACLISP, this
linkage is ‘accomplished by a mechanism which includes the use of UUO
instructions, hence the term "uuo." Note that the function (sstatus
uuolinks) can be used to break this linkage, for example so that
tracing may be used. Setting the variable nouuo non-nil prevents the
linkage from being established in the first place.

cell
The value cell is that part of an atomic symbol in which its value is
kept. In some implementations the value cell is kept on a "value”
property, but in others it js kept in a “hidden” cell which is
associated with the atomic symbol and is not accessible except to set
or get the symbol’s value.

04/08/14 Appendix A Page 267

MACLISP Reference Manual

Appendix B - Index of Functions

. 65
*$. 00 61
Karray 0 .00 0 80
*function 18
Xrearray 80
Krset 109
Zinclude 182
e e e e e e e e e 65
48 67
e e e e e e e e e e 65
“$ e e e e 67
2 65
/$. 61
) 66
148 68
I-. . . .o ... 66
| 66
e e e e e e e e e e 59
B e e e e e e e e 59
b 59
abs 61
addl 63
alarmclock 104
allfiles 154
alloe 116
alphalessp 52
and 36
append 30
apply 17
ArE . . . e e e e e 20
ArgS v e e e . 54
Array o4 . . . 80
arraydims 80
ascii 13
ABBOC .« ¢ . . 4 e oe . 24
assq v 4 25
atan 70
atom.9
baktrace 109
baktracel 110
baktrace2 111
bigp 57
bitarray 81
boole 12
boundp. 48
break 91
€823ar 23

caaadr 23
caaar 23
caadar 23
Page 268

LSUBRO or
LSUBRO or
LSUBR3 or
FSUBR

LSUBR!1 or
SUBR1 arg
FSUBR

LSUBRO or
LSUBRO or
LSUBRO or
LSUBRO or
LSUBRO or
LSUBRO or
SUBRI1 arg
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBR2 args
SUBR2 args
SUBR2 args
SUBRI arg
SUBR1 arg
SUBR2 args
SUBRI1 arg
SUBR1 arg
SUBR2 args
FSUBR

LSUBRO or
LSUBR2 or
SUBRI1 arg
LSUBR1 or
FSUBR

SUBR1 arg
SUBR1 arg
SUBR2 args
SUBR2 args
LSUBRI1 or
SUBR1 arg
LSUBRO to
LSUBRO to
LSUBRO to
SUBRI! arg
SUBR2 args
LSUBR3 or
SUBR1 arg
FSUBR

SUBR1 arg
SUBR! arg
SUBR! arg
SUBRI1 arg

more args
more args
more args

more args

more args
more args
more args
more args
more args
more args

more args
3 args

2 args

2 args
2 args

2 args
2 args

more args

* Appendix B

04/08/74

caaddr 23
caadr 23
Cadr 23
cadaar 23
cadadr 23
cadar 23
caddar 23
cadddr 23
caddr 23
cadr 23
CAT . . . e e e e e e 23
catch 43
catenpate 16
cdaaar 23
cdaadr 23
cdaar 23
edadar 23
cdaddr 23
cedadr 23
edar 23
cddaar 23
cddadr 23
eddar 23
cdddar 23
cddddr 23
edddr 23
eddro 23
edr 23
charpos 166
chret 166
clear-input 154
cline 134
close 143
comment 19
cond 36
CONE .+ « o ¢ o o o o o o« 29
COS . .« « 4 4 o 10
crunit 156
Ctol 1
cursorpos 152
declare 182
defaultf 141
definedp 48
defprop 50
defsubr 188
defun 54
delete 33
deletef 183
delq 33
difference 63
disaline 1713
disapoint 173
04/08/74

Function Index

SUBRI1 arg
SUBRI1 arg
SUBR1 arg
SUBRI1 arg
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBRI1 arg
SUBR1 arg
SUBRI1 arg
SUBRI1 arg
FSUBR

LSUBRO or more args
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBRI1 arg
SUBRI1 arg
SUBR1 arg
SUBRI1 arg
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBRI arg
SUBRI arg
SUBRI arg
SUBR1 arg
SUBR1 arg
LSUBR1 or 2 args
LSUBR1 or 2 args
SUBR1 arg
SUBR1 arg
SUBR1 arg
FSUBR

FSUBR

SUBR2 args
SUBR! arg
FSUBR

SUBRI arg
LSUBRO to 2 args
FSUBR

SUBR1 arg
SUBRI1 arg
FSUBR

LSUBR3 to 7 args
FSUBR

LSUBR2 or 3 args
SUBRI1 arg
LSUBR2 or 3 args
LSUBR1 or more args
LSUBR3 to 5 args
LSUBR2 or 3 args

Appendix B

Page 269

MACLISPReference Manual

disblink 172
dischange 173
discopy 172
discreate 11
discribe 172
discuss 174
digset 173
disflush 172
disgobble 174
disgorge 14
disini 11
dislink 1713
dislist 173
dislocate 172
dismark 172
dismotion 174
display 172
do. 39

edit 241
endpagefn 167

eoffn 149
L 23
equal 24
L 2 45
errframe . . ., 109
error 44
errprint 110
errset 44
eval 17
evalframe 110
eXP e e e e 69
explode 14
explodec 14
exploden 14
expt 64
fasload 188
filepos 154
fillarray 81
fix 61
fixp 9
flate 4
flatsize 14
float 61
floatp 9
force-output 154
freturm 110
fu ncall S e e e s e e » 21
function 18
€C - .+ o v i e e 113
ged 64
getwa 113
gensym 53
Page 270

SUBR2 args
SUBR3 args
SUBRI1 arg
LSUBRO or 2 args
SUBR1 arg
LSUBR4 or 5 args
SUBR3 args
LSUBRO or more args
SUBR1 arg
SUBRI arg
LSUBRO or 1 args
SUBR3 args
LSUBRO or 1 arg
SUBR3 args
SUBR2 args
SUBR4 args
SUBR2 args
FSUBR

SUBRno args
LSUBR1 or 2 args
LSUBRI or 2 args
SUBR2 args
SUBR2 args
FSUBR

SUBR! arg
LSUBRO to 3 args
SUBRI1 arg

FSUBR

LSUBRI or 2 args
SUBR1 arg
SUBRI1 arg
SUBRI1 arg
SUBR1 arg
SUBR1 arg
SUBR2 args
FSUBR

LSUBRI or 2 args
SUBR2 args
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBR1 arg
SUBRI! arg
SUBR1 arg
SUBRI1 arg
SUBR2 args
LSUBR1 or more args
FSUBR

FSUBR

SUBR2 args
FSUBR

LSUBRO or 1 args

Appendix B

04/08/74

o

get 49
getchar 53
getl 50
get_pname T
€O V.. 41
greaterp 59
grind 227
grind0 221
grindef 2217
haipart 61
haulong 58
implode 13
index 16
inpush 147
interm 53
ijoe 97
fog 97
isqrt 69
IteC 1
last 26
length 26
lessp 59
linel 165
linenum 166
list 29
listarray 81
listem 153
listify 20
load 188
leg 69
Ish 12
macdmp. 132
make_atom 1
maknam. 13
makoblist 158
makreadtable 163
makunbound. 48
Map . . . v v e e e e 85
mapc. 85
mapcan 86
mapear 85
mapeon 86
maplist 85
MAX . . & o o o o o o . 60
member. 26
memq. 21
mergef 151
mn ¢ 60
minus 61
minusp 51
namelist 141
namestring 141
04/08/14

Function Index

SUBR2 args

" SUBR2 args

SUBR2 args

SUBRI arg

FSUBR

LSUBR2 or more args
FSUBR

FSUBR

FSUBR

SUBR2 args

SUBR1 arg

SUBRI1 arg

SUBR2 args

SUBRI1 arg

SUBR1 arg

FSUBR

FSUBR

SUBR1 arg

SUBR1 arg

SUBR1 arg

SUBRI1. arg

LSUBR2 or more args
LSUBRI1 or 2 args
LSUBR1 or 2 args
LSUBRO or more args
SUBR1 arg

SUBRno args

SUBR1 arg

SUBR1 arg

SUBR1 arg

SUBR2 args

LSUBRO or 1 args
SUBRI1 arg

SUBRI1 arg

SUBRI arg

SUBR1 arg

SUBRI1 arg

LSUBR2 or more args
LSUBR2 or more args
LSUBR2 or more args
LSUBR2 or more arg
LSUBR2 or more args
LSUBR2 or more args
LSUBRI1 or more args
SUBR2 args

SUBR2 args

LSUBR2 or more args
LSUBR1 or more args
SUBRI1 arg

SUBR1 arg

SUBR1 arg

SUBRI1 arg

Appendix B

Page 271

"MACLISPReference Manual

neone 32
NCONB . . . « « « o « & 29
nointerrupt 105
not e e e e 21
nOUUG 183
nreversé 32
null 21
numberp 9

oddp 57
opema 143
openi 142
opend 142
OF & + ¢ v ¢« o o o o . 36
pagebporg 201
pagel 166
‘pagenum 166
plas 63
plusp §1
prinl 146
princ 147
print 146
Prog« .+ 38
prog2 19
progn 20
purcopy 183
purify 201
putprop 50
quit 131
quote 17

quotient 63
random. u

read 145
readch 145
readline 145
readlist 15
remainder 64
remob 53
remprop 51
remtrace 226
rename 153
return 42
FEVErSE . . . « « o & & 30
rot 0. 12
rplaca 32
rplacd 32
runtime 128
samepnamep. 52
SaSSOC 25
$a8Sq 25
6AVE e e e . 131
set 47
setarg 20

‘Page 272

LSUBRO or more args
SUBR1 arg
SUBR1 arg
SUBRI1 arg
SUBR1 arg
SUBR1 arg

: SUBR1 arg

SUBR1 arg

SUBR1 arg

SUBR1 arg

SUBR1 arg

SUBRI1 arg

FSUBR

SUBRno args
LSUBR1 or 2 args
LSUBR1 or 2 args
LSUBRO or more args
SUBRI1 arg

LSUBR1 or 2 args
LSUBRI or 2 args
LSUBR1 or 2 args
FSUBR

LSUBR2 or more args
LSUBR1 or more args
SUBRI1 arg

SUBRS3 args

SUBR3 args

SUBRno args

FSUBR

LSUBR1 or more args
LSUBRO or 1 arg
LSUBRO to 2 args
LSUBRO to 2 args
LSUBRO to 2 args
SUBR1 arg

SUBR2 args

SUBR1 arg

SUBR2 args

FSUBR

SUBR2 args

SUBR1 arg

SUBR1 arg

SUBR2 args

. SUBR2 args

SUBR2 args
SUBRno args
SUBR2 args
SUBR3 args
SUBR3 args
FSUBR

SUBR2 args
SUBR2 args

Appendix B _ 04/08/74

fa

setq v ... N
setsyntax, . . 162
shortnamestring 141
signhp 58
11| Y 10
sleep 128
SOFt « « & « « « o o o 81
SOrtCar . . .+ « « « o o 88
SQrt e e e e . 69
sstatus 124
status 120
StOTe e . . . 80
stringlength 16
stringp 10
sublo 64
sublis 31
subrp 10
subst 30
substr 16
sxhash 217
SYSP -« <+ o 0 e e s e . 121
terpri 141
throw 43
time 128
times 63
trace o . . 223
tYi . . . e e e e e 145
tyipeek 146
LYO . 4 . e s e e e e e 147
typep . . .« o o o o . . 9

ufile 156
wukillo 0oL 156
untrace - . . . 226
uread 156
uwrite 156
valret e .. 134
XCONE .« « o o o . 29
ZETOP .+ « o « « o o o o LY
N\ - e e e e 66
04/08/14

Function Index

FSUBR

SUBR3 args
SUBRI1 arg
FSUBR

SUBRI arg
SUBRI1 arg
SUBR2 args
SUBR2 args
SUBR1 arg
FSUBR

FSUBR

FSUBR

SUBR1 arg
SUBRI! arg
SUBR1 arg
SUBR2 args
SUBR1 arg
SUBR3 args .
LSUBR2 or 3 args
SUBR1 arg

SUBR1 arg
LSUBRO or 1 args
FSUBR

SUBRno args
LSUBRO or more args
FSUBR

LSUBRO to 2 args
LSUBRO or 1 arg
LSUBRI1 or 2 args
SUBR1 arg
FSUBR

FSUBR

FSUBR

FSUBR

FSUBR

LSUBRO or 1 args
SUBR2 args
SUBR1 arg
SUBR2 args

Appendix B

Page 273

L

MACLISP Reference Manual

Appendix C = index of Atomic Symbols

S 3 9
Xnopoint 164
pure 205
Krget 126
Krset-trap 106
$88 247
8. 91
e e e e e e e e e 102
alarmclock 104
arrayindex 102
autoload 107
bagse 164
bignum. 9

bpend 204
bporg 204
edit,... 246
errlist S e e e e e e 89
errset« . 105
fail-act 105
fixnum 9

flonum 9

funarg e o .. 19
ge-daemon 105
gc-lossage 105
ibase 168
infile 144
instack 144
ist 9

mouuos, 183
obarray 158
Page 274

outfile e s e . . 102
outfiles 144
prinlength 167
prinlevel 167
Pure e . . . 204
random. 9

read-eof 102
readtable . . . 162
runtime 104
Bt ot e e e e e e e e e 121
stream, 140
string A
symbol 9

time 104
tty e e e e e . 152
unbnd-wrbl 106
undf-factn 106
unseen-go-tag 106
uread 156
uwrite 157
value 122
wrng-no-args 106
wrng-type-arg 106
zunderflow n
A, . . oLl e e e e 97
. . 114
M. oot e e e e 144
Ar . .t e e e e e e e 144
AW. . . . ot e e e e .. 144

Appendix C 04/08/14

“~

. Concept Index

Appendix D = Concept Index

a-list pointer 16
abbreviation 166
alarmclock 104
application 13
argument 13
arithmetic 57
array e e e e e 6

association list 24
atom e e e e 5

atomic symbol 6

autoload 107
back trace 109
bignum. 5

binding 11
boolean operations .12
break loop 91
breakpoint 91
CAT v« v v v e e e e 1

cedr e 1

character manipulation . . 13
character object 6

charpos 166
chret 166
closing afile 143
comment 19
compilation 1711
CONS + « o« o« v 4 o o o o » 1

control characters . 92
correctable errors 98
debugging 108
declarations 184
defining functions 54
display slave 170
dot1

dotted pair 1

editing 245
end of file 148
eoffn 148
eq versus equal 23
€rrors . . . « « o o+ o 4 o 35
evaluation 12
EXPr e e e e e e 13
fexpr 13
file 137
file name defaults 150
file-objeet 137
fixnum 5

flonum 5

flow of control 35
form. 12

04/08/14

Appendix D

fsubr 13
funarg 13
funarg problem 18
function 13
functional property . . . 13
garbage collection 113
BC - v v vt e e e e e e 113
gensym. 53
grinding 221
Io 135
indicator 49
input source 143
iteration 35
label 13
lambda 13
lambda variable 13
lap 194
lexpr 13
linel e .. . 165
list 1

loading 188
looping 35
lsubr 13
Macro . . . « « « + + & » 13
macro character 169
mapping 83
mathematical functions . . 69
mobyIl/O. 170
namelist 138
namestring 138
nil ... 00000 6

non-local exit 35
number.)

obarray 158
object)

opening a file 142
output destinations . . . 143
pdl pointer 108
prame 52
predicate 9

pretty-printing 221
property 49
property list 49
quote 17
readtable 159
recursion 35
S-expresgion 5

BAVIDE 129
sorting a1
special array cell 17

Page 275

MACLISPReference Manual

splicing macro. 169 t ... O

sstatus functions 124 time« . . 128
status functions 120 top level 89
storage spaces 114 tracing 223
string 6 truly worthless atom. . . 113
subr 13 user interrupts 100
subr-object 6 wwolink { 180
substitution 30 value ecell 41
sgymbol 6

Page 276 . contents ' 04/08/74

	Contents
	1 General Information
	2 Data
	3 The Basic Actions of LISP
	4 Functions for Manipulating List Structure
	5 Flow of Control
	6 Manipulating the Constituents of Atomic Symbols
	7 Functions on Numbers
	8 Character Manipulation
	9 Functions Concerning Arrays
	10 "Mapping" Functions
	11 Sorting Functions
	12 Functions for Controlling the Interpreter
	13 Input and Output
	14 Compilation
	15 The Trace Facility
	16 Formatted Printing of LISP Data
	17 The LISP "Indexer"
	18 The LISP Editor
	A Glossary
	B Index of Functions
	C Index of Atomic Symbols
	D Concept Index

