
LISP: PROGRAM IS DATA

A HISTORICAL PERSPECTIVE ON MACLISP

Jon L White
Laboratory for Computer Science, M.I.T.*

ABSTRACT

For over 10 years, MACLISP has supported a variety of projects at M.I.T.'s Artificial Intelligence
Laboratory, and the Laboratory for Computer Science (formerly Project MAC). During this time, there
has been a continuing development of the MACLISP system, spurred in great measure by the needs of
MACSYMA development. Herein are reported, in a mosiac, historical style, the major features of the
system. For each feature discussed, an attempt will be made to mention the year of initial development,
and the names of persons or projects primarily responsible for requiring, needing, or suggesting such
features.

INTRODUCTION

In 1964, Greenblatt and others participated in the check-out phase of Digital Equipment
Corporation's new computer, the PDP-6. This machine had a number of innovative features that were
thought to be ideal for the development of a list processing system, and thus i t was very appropriate that
the first working program actually run on the PDP-6 was an ancestor of the current MACLISP. This
early LISP was patterned after the existing PDP-1 LISP (see reference l) , and was produced by using
the text editor and a mini-assembler on the PDP-1. That first PDP-6 finally found its way into M.I.T.'s
Project MAC for use by the Artificial lntelligence group (the A.1. group later became the M.I.T.
Artificial Intelligence Laboratory, and Project MAC became the Laboratory for Computer Science). By
1968, the PDP-6 was running the Incompatible Time-sharing system, and was soon supplanted by the
PDP-IO. Today, the KL-I 0, an advanced version of the PDP-10, supports a variety of time sharing
systems, most of which are capable of running a MACLISP.

MACSYMA (ref. 2) grew out of projects started o n the 7090 LISP 1.5, namely Moses' SIN
program and Martin's MATHLAB. By implementing the Project MAC Symbolic and Algebraic
manipulation system in LISP, many advantages were obtained. Of particular importance were
(i) a basic data convention well-suited for encoding algebraic expressions, (ii) the ability for many
independent individuals to make programming contributions by adhering to the programming and data
framework of LISP, and (iii) the availability of a good compiler and debugging aids in the MACLISP
system. As the years rolled by, the question was asked "What price LISP"? That is, how much faster
could the algebraic system be if the advantages brought by the LISP system were abandoned and an
all-out effort was made in machine language? Moses has estimated that about a factor of two could be
gained (private communication), but at the cost of shifting much of the project resources from mathe-
matical research to coding and programming. However, that loss could have been much larger had not
MACLISP development kept pace, being inspired by the problems observed during MACSYMA
development, and the development of other projects in the A.I. Laboratory. The most precarious strain
placed o n the supporting LISP system by MACSYMA has been its sheer size, and this has led to new
and fundamental changes to MACLISP, with more yet still in the future. Many times, the MACSYMA

*During the calendar year 1977, the author is located at the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

181

system was not able to utilize the solution generated for one of its problems, due to the familiar trap of
having already too. much code invested in some bypass solution; but there has generally been an
interchange of ideas amongst those groups using MACLISP at the A.I. Lab and LCS, and another group
may have received the benefit of an idea born by MACSYMA needs.

Because the system is still evolving after a decade of development, it is useful to think of it as one
big piece of data, a program still amenable to further critical review and emendation. Below are
presented some of the developments of this past 10 years, with a little bit of explanation as to their
significance and origin.

HOW WE GOT TO WHERE WE ARE

Clever Control Features

In 1966, Greenblatt suggested abandoning the a-list model for program variables, and returning to a
standard save-and-restore stack model such as might be used by a recursive FORTRAN. This was the
first LISP to do so, and a later LISP developed at Bolt, Beranek, and Newman (BBN) in Cambridge
used a model whereby storage for program variables was dynamically allocated on the top of a stack.
Both stack models could achieve a significant speed-up over the a-list models, but at a cost of limiting
the use of FUNCTION (see ref. 3) . The BBN LISP later became INTERLISP (ref. 4), and currently
has a stack model with the same function capabilities as the a-list model. In 1975, the PROGV feature
was added and is apparently unique to MACLISP. PROGV is essentially PROG, except that the list of
variables is not syntactically present, but rather is computed as an argument to PROGV; previously,
about the best one could do was to call EVAL (or APPLY) with a dynamically-constructed LAMBDA
expression.

In 1969, Sussman, noticing features of the MULTICS operating system, demanded some similar
features for MACLISP: asynchronous interruption capability, such as alarmclocks, job-console control
keys, hardware faults, interprocess communication, and exceptional process conditions (chiefly, errors).
Many LISP systems now permit the user to supply functions for handling standard LISP errors, and
provide for some mechanism at the job-console to interrupt the system, putting it into a top-level-like
loop called BREAK. MACLISP permits interruption capability on any character of the input-console
keyboard; the user may designate any function to be run when a particular key is typed. To some
degree, these features appeared concurrently in INTERLISP, but especially the stackframe and
debugging facilities of INTERLISP inspired similar ones in MACLISP. In mid-1976, MACLISP could
finally give an interrupt to the user program on several classes of hardware-detected conditions: access
(read or write) to a specific address, attempted access to non-existent address, attempted write access
into read-only memory, parity error, and illegal instruction. Furthermore, some operating system
conditions could trigger special interrupts: system about to shut down in a few minutes, and console
screen altered by system. Evident from the development of LTSP-embedded systems was the need for a
NOINTERRUPT facility, which could protect user-coded processes from an accidental, mid-function
aborting such as might occur during an asynchronous interrupt. Steele designed and implemented the
current scheme in late 1973.

Sussman’s development of MICRO-PLANNER (ref. 5) required some more capabilities for
intelligent, dynamic memory management; and thus White, in 1971, introduced programmable parame-
ters for the garbage collector - a minimum size for each space, a maximum allowable, and a figure
demanding that a certain amount be reclaimed (or found free) after a collection. Then in the next year
came the GC-DAEMON mechanism, whereby a user function is called immediately after each garbage
collection so that it can intelligently monitor the usage of memory and purposefully modify the
memory-management parameters. Baker, who has recently done work on concurrent garbage collection
(ref. 6), has produced a typical storage monitor using the MACLISP mechanisms (ref. 7).

182

Sussman's later development of CONNIVER (ref. 8) showed the need for a sort of non-local
GOTO, as a means of quickly aborting a computation (such as a pattern-matching data-base search) that
had gone down a wrong path. Thus in 1972 White devised the CATCH and THROW facilities
(THROW provides a quick, non-local break-out to a program spot determined by CATCH), and
implemented FRETURN as a means of an impromptu "THROW" out of any stackframe higher up than
the current point of computation (this is especially effective if an error break occurs, and the user can
supply by hand a correct return value for some pending subroutine call several levels up the stack). In
1975, Steele coded the EVALHOOK feature, which traps each interpretive entry to EVAL during the
evaluation of a , piece of code; this permitted users to write debugging packages that can effectively
llsingle-step'' through an evaluation.

The embedding of advanced programming-language systems in LISP, such as MACSYMA,
MICRO-PLANNER, CONNIVER, and LLOGO (ref. 9) required a means of insulating the supporting
system (written as LISP code) from the users code (written in the new experimental language). Sussman
and White noticed that the action of INTERN was primarily a table look-up, and they implemented this
table (in 1971) as a LISP array, which array is held as the value of the global variable OBARRAY.
Thus a user can change, or even LAMBDA-bind, the INTERN environment. Similarly, the action of the
programmable reader could be controlled by exposing its syntax and macro table as the value of the
global variable READTABLE, which was done in 1972. In 1975, the MAPATOMS function as found in
INTERLISP was implemented for quickly applying a function to all the objects on a given OBARRAY.
All these. embedded systems wanted to have better control over the LISP top-level and break-level
loops; so in 1971 two features were added: 1) ability to replace the top-level ar,d break-level action
with a form of the user's choice, and 2) a facility to capture control after a system-detected error has
occurred but before re-entry to the top level. At first, the error-break permitted only exiting by quitting
out back to top level, but later these breaks were such that many errors could be corrected and the
computation restarted at the point just prior to the error detection. By early 1975, it was noted that
many applications wanted to alter what might be called the default input reader and the default output
printer; the former because their code files were written with many macro and special facilities, and the
latter because of the occurrence of circular list structure. Thus the two variables READ and PRINI, if
non-NIL, hold a user-supplied function for these operations.

1 / 0 Facilities

In 1968, White proposed a programmable, macro-character input reader, and by the summer of
1969, the reader was in operation. Since that time, some other LISPS have added certain special
features to their readers, such as inputting 'A as (QUOTE A), or as in INTERLISP, permitting the user
to change the meaning of break, separator, and escape characters; but to the author's knowledge none
have any user-programmable macro' facility, nor so wide a range of parsing options as does MACLISP.

The PRINT function of MACLISP has remained relatively neglected over the years; but in 1973
Steele implemented the PRINLEVEL and PRINLENGTH facilities as inspired by the INTERLISP
PRINTLEVEL facility. LISP has always had the notion of "line length", such that if more than a
specified number of characters were output without an intervening newline character, the a newline was
automatically inserted by the system (this was especially practical in the days when model 33 Teletypes
were the main terminal used, and the operating system did not take care of preventing too long a line).
MACLISP allowed an override on this automatic insertion feature, but in 1,976 Steele modified this
facility so that, even when not overriden, it would not insert the generated newline character in the
middle of some atom. Along with the macro-reader in 1968, White installed dynamically-variable base
conversion for fixnums, so that any base between 2 and 36 could be used; for what it's worth, Steele
extended this for roman numerals also in 1974.

. "_ ~~~

Of course the macro functions are written in LISP, what else!

183

The problem of "perfect" output for floating-point numbers on the PDP-10 has apparently not been
solved in any other system. That is, given the more-or-less standard input algorithm for base conversion
from floating-point .decimal numbers (dfpns) to floating-point binary numbers (bfpns), construct an
output conversion algorithm such that

i) every representable bfpn is converted to a shortest dfpn, and
ii) if e is a representable bfpn, and e* is its dfpn image by the output algorithm, then the input

In 1972, White devised and installed in MACLISP an algorithm that was more nearly ''perfect'' than any
other known to the author or to persons of his acquaintance; and in May 1977 White and Steele
improved that algorithm so that they think it is "perfect'' (a proof of which is forthcoming). Most other
algorithms will increase the least-significant bit of some numbers when passed through the read-in of
print-out cycle (see reference 10 for a possible explanation of why this problem is so hard). Golden
anticipates MACSYMA's usage of this capability, "perfect" print-out, if i t indeed is truly so.

algorithm applied to e* produces exactly e.

Inspired by LISP 1.6 (ref. 1 l) , a preliminary version of a multiple 1 / 0 scheme was coded up by
Stallman in 197 1. Prior to this, MACLISP could effectively READ from at most one file at a time, and
PRINT out onto at most one file at a time; furthermore, there were no provisions for 1 / 0 other than the
ASCII streams implicit in READ and PRINT. That preliminary version was abandoned in early 1973,
and a decision was made to copy the design of the MULTICS version 1 / 0 (which had been developed
rather independently). This scheme, coded by Steele and ready for use early in 1975, has been termed
"Newio''. It has since been undergoing continuing check-out and development up until now, and in
January 1977 became the standard MACLISP on the ITS versions, although we have not yet made the
necessary modifications to the TOPS-10 version.

Between 1967 and 1971, the A.1. Lab Vision Group, and MACSYMA Group saw the need for a
faster method of getting compiled LISP subroutines off disk storage and into a running system. Back
then, the compiler would produce a file of LAP code, which would be assembled in each time it was
required. The first step in this direction was taken in 1969 when White devised a dynamic array space,
with automatic garbage collection. Then White and others worked out a relocatable format for disk
storage such that the load in time could be minimal; Steele and White implemented this scheme between
1972 and 1973, called FASLOAD. Golden reported that the time to load in all the routines comprising
the then-existing MACSYMA dropped from about an hour to two minutes; continuing MACSYMA
development certainly required this FASt LOADing scheme. Closely following in time was the
AUTOLOAD scheme, whereby a function that was not part of the in-core environment, but resident in
FASL format on disk, would be FASLOADed in upon first invocation.

Arithmetic Capabilities

Perhaps the most stunning achievement of MACLISP has been the method of arithmetic that has
permitted FORTRAN-like speed from compiled LISP code. In 1968, Martin and Moses, foreseeing
future needs of MACSYMA, demanded better arithmetic capabilities from MACLISP. In 1969, Martin
changed the implementation of numbers so that FIXNUMs and FLONUMS consumed only one word,
rather than three - that is, the LISP 1.5 format was abandoned and numbers were implemented merely
as the pointer to the full-word space cell containing their value. Such a scheme had already been
accomplished, partially, in other LISPS. After that change in the interpreter had been completed, some
new functions were introduced for type-specific arithmetic:

for fixed point: + - * / 1+ 1-
for floating point: +$ -$ *$ /$ 1+$ 1-$
for either (but not mixed): = < >

Later, more functions were added, such as fixed-point square-root, and greatest-common-divisor. The
fixed-point functions would be an automatic declaration to the compiler that all arguments and results
would be fixnums, and that all arithmetic can be modulo 235; similarly, the flonum functions would
specify the use of floating point hardware in the compiled code.

1 84

At the same time, Binford suggested installing- separate full-word stacks for FIXNUMs and for
FLONUMs, and interpreting these stack addresses as the corresponding type number. Then White
proposed eliminating the discontinuity in FIXNUM representation caused by the INUM scheme,.so that
open-compilation of numeric code would need no extra, interpretive-like steps to extract the numerical
value from a LISP number;2 White also designed a scheme for using the number stacks, interfacing
compiled subroutines with one another and with the interpreter. The redesign of number storage, and
the design of a numeric subroutine interface, was for the purpose of permitting the compiier to produce
code similar to what a PDP-10 FORTRAN compiler could produce on essentially numeric program^.^
Work then began on the compiler to take advantage of all this, and a preliminary version for arithmetic
code was operational by late 1971, under the care of Golden and Rosen who did most of the early
coding. Rosen and White developed optimization in the compiler during 1972, and White continued this
work through the end of 1976. In 1974, White and Steele extended the array data facilities of
MACLISP to include FORTRAN-like arrays of fixnums and flonums so that the compiler could optimize
array references in numerical code; see Steele's paper describing the current output available from the
compiler (ref. 13).

Early along in MACSYMA development, Moses and Martin saw the need for variable-precision
integer arithmetic, and thus the BIGNUM functions were born, with most algorithms taken from Knuth
(ref. 14). During 1972 and 1973, Golden suggested the need in MACSYMA for some of the usual
transcendental functions, like SIN, COS, natural logarithm and anti-logarithm, and arc-tangent (these
were adapted from some rational approximations originally developed by White in 1967); for CCD,
HAULONG, HAIPART, and improvements to the the exponentiation function EXPT; and for the
ZUNDERFLOW switch, which permits interpretive arithmetic routines to substitute a real zero for any
floating-point result that causes a floating-point underflow condition. By combining the binary and
Lehmer algorithms from Knuth (ref. 15). Gosper produced a C C D algorithm early in 1976 which runs
much faster on bignum inputs. Also, in 1976, a feature was added to the interpretive floating-point
addition and subtraction routines such that if the sum is significantly less than the principal summand,
then the sum is converted to zero; the variable ZFUZZ holds a scale-factor for this feature, which is
still considered experimental (LISP370 has a more pervasive use of a similar feature in all floating-point
arithmetic and 1 / 0 functions).

Randomness has always been a property of MACLISP, having had a linear-shift-register RANDOM
number generator since early times. This generator produced a maximally-long sequence, was extremely
fast, and moderately acceptable for most applications. However, i t failed the correlated-triples test, and
when i t was used to generate random scenes for display on the LOGO Advent color projector. it
produced some very nice kaleidoscopic pictures; so in late 1976, a modification of Knuth's Algorithm A
(ref. 16) was'coded by Horn.

Ancillary Packages

A number of ancillary functions have been coded in LISP, mostly by persons who were LISP users
rather than system developers, and are kept stored in their compiled, FASL format for loading in when
desired. In 1970, Binford coded a small, but powerful, subset of the INTERLISP in-core editor as a
LISP package, but this was later recoded in machine language; a more extensive version of the
lNTERLZSP editor has been coded by Gabriel in 1975. In 1970, Winston designed and coded INDEX,

*MACLISP, by inspecting the numerical value of a number coming into the FIXNUM-comer, supplies a
canonical, read-only copy for fixnums in the range of about -1000. to +2000. This significantly
reduces the number of new cells required by running arithmetic code, without significantly slowing
down the operations. Currently, no similar action is taken for FLONUMs.

3The generally-accepted opinion in 1968, and indeed in some quarters up until 1973, was that LISP is
inherently a hundred times slower on arithmetic than is FORTRAN. Fateman's note in 1973 effectively
rebutted this opinion (ref. 12), but in 1969 it tonk faith to go ahead with this plan; only Martin and
the author had a clear resolve to do so then.

~. .. ~ - " - . ~~~~ ~~

185

a package to analyze a file of LISP programs and report on- certain properties therein. During 1972,
Goldstein replaced an existing, slow pretty-printer (called GRIND) with a programmable pretty-printer
(ref. 17), and Steele spruced-up an existing TRACE package to have more features. After the Newio
scheme became operational, two packages were coded for the fast dumping onto disk and retrieval
therefrom of numeric arrays, and a FASDUMP package was implemented for MACSYMA that could
quickly and efficiently store list structure on disk (Kulp had a hand in developing this package, but it
may no longer be in use). Many of these user-supplied packages now reside on a disk area called
LIBLSP, which includes a FORMAT package by White for printing out numbers under control of a
format (such as is used in FORTRAN), a package for reading and printing circular list structures,
various debugging packages and s-expression editors, and many others.

In 1973 Pratt was continuing work on a "front end'' for LISP, CGOL (ref. 18), which he had
begun at Stanford University in 1971, and he had it generally operational a t a number of sites by 1975.
It exemplifies the Pratt operator-precedence parser (now used at the front end of MACSYMA), and has
some of the character of MLISP (ref. 19). However, the CGOL-to-MACLISP conversion is dynamic and
fast, and furthermore, an acceptable inverse operation has been implemented, so that one can effectively
use this ALGOL-like language while still retaining all the advantages of MACLISP (fast interpreter,
good compiler, many debugging aids, ,etc.). It is not at all impractical to replace the MACLISP default
reader and printer with CGOL's (see notes on READ and PRINl in the last paragraph of "Clever
Control Features'' above), so that CGOL may be properly thought of as an alternate external syntax for
LISP. See reference 7 for a practical example - one particular GC-DAEMON function for MACLISP,
coded in CGOL.

MIDAS, the A.I. Lab's assembly-language system for the PDP-IO, cooperates with MACLISP to
the extent of being able to produce a FASL format file. A number of these ancillary packages have thus
been coded in machine language for greater efficiency. In mid 1973, Steele coded a version of
Quicksort (ref 20) which is autoloadable as the function SORT; in 1976, after Newio became stable,
Steele coded a file-directory query package (called ALLFILES), and designed a package for creating and
controlling subjobs (tasks) in the ITS time-sharing environment (called HUMBLE). Using the HUM-
BLE package, Kulp and others interfaced the text editor TECO with MACLISP, for increased program-
mer efficiency in debugging and updating LISP programs. Kulp and others had proposed a text-
processing system suitable for use with a photo-composer to be written in MACLISP and using these
features, but this has not yet been realized. With the ALARMCLOCK facility for periodic interrupts,
and HUMBLE for driving sub-tasks, MACLISP is fully equipped for becoming a time-sharing system.

Export Systems

Martin's desire to be able to use MACSYMA on the MULTICS system led to the start of a
MULTTCS version of MACLISP, begun in late 1971 by Reed; after this was fully operational in 1973,
Moon, who had worked on it wrote the now-extinct MACLISP Reference Manual published in March
1974 (ref. 21). Although there has been little use of MACSYMA on the MULTICS version, it was
successfully transplanted there; several other extension systems developed on the PDP-10 version were
also successfully tested on the MULTICS version, such as LLOGO and CONNIVER.

In the summer of 1973, the MACLISP system was extended to permit its use on TOPS-10, DEC's
non-paged time sharing system. Much help on this development has come from members of the
Worcester Polytech Computation Center, and from the resources of the Computer Science department of
Carnegie-Mellon University. The impetus for having a TOPS-10 version came from many academic
institutions, where students with interests in artificial intelligence had been intrigued by MICRO-
PLANNER and CONNIVER and their applications, and had wanted to experiment with these systems
on their own PDP-10s. Later, as M.I.T. graduate students and professors moved to other universities,
they took with them the desire to use MACLISP, rather than any of the other available LISP alterna-
tives. The major difficulty in export to these other institutions has been their lack of adequate amounts
of main memory - few places could even run the MACLISP compiler, which requires 65+K. At one

186

time Moses had a desire to export MACSYMA through this means, but this has not proved feasible.
Even for the KI-10 and KL-10 processors, which have paging boxes, the TOPS-10 operating system
does not give user programs sufficient control over the page-map; consequently, this version of
MACLISP is to some degree less efficient in its memory utilization.

The TENEX and TOPS-20 operating systems should be able to support the TOPS-10 version of
MACLISP, under a compatibility mode, but there has been some. difficulty there. In 1971, a specially
tailored version of MACLISP was run under the TENEX system, but this version died out for lack of
interest. If future interest demands it, there should be no trouble in getting almost the full range of
MACLISP features found on the ITS version to be implemented in a TOPS-20/TENEX version. In
1976 Gabriel adapted the TOPS-10 version to run on the Stanford A.I. Laboratory operating system,
and there is currently an increasing body of users out there.

Revised Data Representations .

A major step was taken in 1973 when the long-awaited plans to revise the storage strategy of
MACLISP saw the light. A plan called Bibop (acronym for Blg Bag Of Pages), inspired in part by the
prior INTERLISP format, was designed by White, Steele, and Macrakis; and this was coded by Steele
during the succeeding year. The new format relieves the need for a LISP user to make precise alloca-
tions of computer memory, and permits dynamic expansion of'each data space (although only the array
storage area can be dynamically reduced in size). In 1974, numeric arrays were added, and in 1976 a
new data type called HUNK was added as a s-expression vector without any of the overhead associated
with the array data type. Steele's paper in these proceedings (ref. 22) gives a detailed account of how
the current storage picture looks inside MACLISP.

Especially MACSYMA, as well as Winograd's SHRDLU and Hewitt's PLASMA systems, needed
the efficiency and versatility of these new formats. The concept of "pure free storage" entered the
picture after Bibop became operational: this is list and s-expression structure that is essentially constant,
and which can be removed from the active storage areas that the garbage collector manages. Further-
more, it can be made read-only, and shared among users of the same system; in MACSYMA, there are
myriads of such cells, and the consequent savings is enormous. Thus the incremental amount of memory
required for another MACSYMA user on the system starts at only about 45K words!

The Compiler

Greenblatt and others wrote a compiler for the PDP-6 lisp, patterned initially after the one for 7090
LISP on CTSS. This early attempt is the grandfather of both the current MACLISP and current
LISP 1.6 compilers. However, optimizing LISP code for the the PDP-6 (and PDP-IO) is a much more
difficult task than i t might first appear to be, because of the multiple opportunities provided by the
machine architecture. That early compiler had too many bugs to be really useful, but it did provide a
good, basic structure on which White began in 1969 (joined by Golden in 1970) to work out the plans
for the fast-arithmetic schemes (see ref. 13). The LISP 1.6 compiler has apparently not had so
thorough a check-out and debugging as the MACLISP compiler, since its reputation is unreliability. The
INTERLISP compiler was produced independently, and seems to be quite reliable; but comparisons have
shown that average programs compile into almost twice as many instructions through it than through the
MACLISP compiler.

Ad-Hoc Hacs

As the number of new and interactive features grew, there was observed need for a systematic way
to query and change the status of various of the operating system and LISP system facilities. We did not
want to have to introduce a new LISP primitive function for every such feature (there are scores!), so
thus was born in 1969 the STATUS and SSTATWS series. The first argument to these functions selects
one of many operations, ranging from getting the time of day from a home-built clock, to reading the
phase of the moon, and to setting up a special TV terminai line to monitor the garbage collector. Later,

187

in 1975, the function SYSCALL was added as a LISP entry into the time-sharing system's CALL series
of operations. (See reference 23 for information on the ITS system.)

Between 1970 and 1972, the demands of the A.I. Lab Vision group necessitated the installation of
a simulated TV camera, called the FAKETV, along with a library file of disk-stored scene images. A
cooperative effort between the Vision group and the LOGO group led' to the design of a Display-slave
- a higher, display-orientated language for use with the Lab's 340 Display unit using the PDP-6 as an
off-line display processor. Goldstein, because of his interest in LLOGO (ref. 9), participated in the
initial design along with Lerman and White; the programming and coding were done by the latter two.

In 1973, terminal-input echo processing (rubout capability) was enhanced, and cursor control was
made available to the user for the existing display terminals. When the A.T. Lab began using the
home-built TV terminal system, Lieberman coded a general-purpose display packages in LISP for use on
the TV display buffer. When Newio became available in 1975, Lieberman and Steele showed examples
of split-screen layouts usable from LISP, and in 1976 Steele showed how to code a variety of "rubout"
processors in LISP. Furthermore, Newio permitted extended (12-bit) input from the keyboards
associated with these terminals.

In 1973, MACLISP copied a feature from LISP 1.6 for improving facilities in linkage between
compiled subroutines - the UUOLINKS technique. All compiled- subroutine calls are done indirect
through a table, which contains interpretive links for subroutine-to-subroutine transfer. Under user
option, these links may be "snapped" during run time - that is, converted to a single PDP-10 subrout-
ine transfer instruction. A read-only copy is made of this table (after a system such as MACSYMA is
generated) so that i t may be restored to its unsnapped state at any time. The advantage of this is that,
normally, subroutine transfers will take place in one or two instruction executions, but if i t is desired to
debug some already compiled subroutines, then one need only restore the interpretive links from the
read-only copy.

Inspired by MACSYMA's history variables, MACLISP adopted the convention in early 197 1 that
the variable "*" would hold the most recent quantity obtained at top level.

In 1973, White coded an s-expression hashing algorithm called SXHASH, which has been useful to
routines doing canonicalization of list structure (by hashing, one can greatly speed-up the search to
determine whether or not there is an s-expression copy in a table EQUAL to a given s-expression).

To accommodate the group that translated the lunar rocks query-information system from
INTERLISP to MACLISP, the convention was established in 1974 that car[NIL]=cdr[NlL]=NlL. This
seems to have been widely accepted, since i t simplifies many predicates of the form
(AND X (CDR X) (CDDR X)) into something like (CDDR X).

WHERE DO WE GO FROM HERE?

The major problem now with MACLISP, especially as far as MACSYMA is concerned, is the
limitation imposed by the PDP-10 architecture - an 18.-bit address space, which after overhead is
taken out, only leaves about 180K words for data and compiled programs. Steele discusses some of our
current thinking on what to do about this in his paper (ref. 22) of these proceedings, under the section
"The Address Space Problem". Since the LISP machine of Greenblatt (ref. 24) is such an attractive
alternative, and is even operational now in 1977, we will n o doubt explore the possibilities of incorporat-
ing into PDP-IO MACLISP some of its unique features, and in general try to reduce the differences
between them. For the future of MACSYMA, we foresee the need for new, primitive data types for
efficient use of complex numbers and of double-precision floating-point numbers. We anticipate also the
need to have a version efficiently planted in the TOPS-20 system.

188

FULL NAMES OF PERSONS ASSOCIATED WITH MACLISP DEVELOPMENT
AND MENTIONED IN THIS PAPER

MIT Professors
Joel Moses
William A. Martin
Gerald J. Sussman
Ira P. Goldstein
Vaughan Pratt
Patrick H. Winston
Terry L. Winograd*
Carl E. Hewitt
Richard J . Faternan*
Berthold K. P. Horn
* = N o longer at M.1.T

Research Staff
Jon L White
Jeffrey P. Golden
Richard Greenblatt
Thomas 0. Binford*
Jerry B. Lerman*
K. William Gosper*

Students
Guy L. Steele Jr.
David A. Moon
Eric C. Rosen*
John L. Kulp
Richard P. Gabriel*
Henry Lieberman
Richard M. Stallman
Stavros Macrakis
David P. Reed
Henry G . Baker, Jr.

REFERENCES

1. Deutsch, L., and Berkeley, E.; The LISP Implementation for the PDP-1 Computer, in THE
PROGRAMMING LANGUAGE "LISP". edited by Berekeley, E., and Bobrow, D., Information
International Inc., 1964.

2. MACSYMA Reference Manual, Project MAC Mathlab Group, M.I.T., November 1975.
3. Moses, J.; The Function of FUNCTION in LISP. AI Memo 199, Artificial Intelligence Lab, M.I.T.,

4. Teitelman, W.; INTERLISP Reference Manual (Revised edition). Xerox Palo Alto Research Center,

5 . Sussman, G., Winograd, T, and Charniak, E.; Micro-Planner Reference Manual (revised). AI Memo

6. Baker, H . ; A Note on the Optimal Allocation of Spaces in MACLISP. Working Paper 142, Artificial

7. Baker, H . ; List Processing in Real Time on a Serial Computer. Working Paper 139, Artificial

8. McDermott, D., and Sussman, G.; THE CONNIVER REFERENCE MANUAL. AI Memo 259A,

9. Goldstein, I . ; LLOGO: An Implemenlalion of LOGO in LISP. AI Memo 307, Artificial Intelligence

June 1970.

1975

203A, Artificial Intelligence Lab, M.I.T., December 197 1 .

intelligence Lab, M.I.T., March 1977.

Intelligence Lab, M.I.T., February 1977.

Artificial Intelligence Lab, M.I.T., January 1974.

Lab, M.I.T., June 1974.
10. Matula, D.; In-and-Out Conversions. CACM I / , I, January 1968, pp. 47-50.
1 1 . Quam, L.; STANFORD LISP 1.6 MANUAL. SAILON 28.3. Artificial Intelligence Lab, Stanford

12. Fateman, R.; "Reply to an Editorial", SIGSAM Bulletin, 25, March 1973, pp. 9-1 1.
13. Steele, G.; Fast .Arithmetic in MACLISP. Proceedings of the 1977 MACSYMA Users Conference,

14. Knuth, D.; The Art of Computer Programming, V2. Addison-Wesley, 1969, pp. 229-240.

University, 1969.

NASA CP-2012, 1977. (Paper no. 22 of this compilation).

15. - , ibid., pp. 293-307.
16. ~ , ibid., pp. 26-27.
17. Goldstein, I . ; Prelty-Prinling, Converting List to Linear Structure. AI Memo 279, Artificial

18. Pratt, V.; CGOL - An Alternative External Representation for LISP Users. Working Paper 121,

19. Smith, D.; MLISP. AIM-135, Artificial Intelligence Lab, Stanford University, 1970.
20. Knuth, D.; The Art of Computer Programming. V3, Addison-Wesley, 1973, pp. 114-1 16. .
21. Moon, D.; MACLISP Reference Manual, Revision 0. Laboratory for Computer Science (formerly

22. Steele, G . ; Data Representations in PDP-10 MACLISP. Proceedings of the 1977 MACSYMA

23. Eastlake, D.; ITS Status Report. AI Memo 238, Artificial Intelligence Lab, M.I.T., April 1972.
24. Greenblatt, R.; The Lisp Machine. Working Paper 79, Artificial' Intelligence Lab, M.I.T.,

Intelligence Lab, M.I.T., Feburary 1973.

Artificial Intelligence Lab, M.I.T., March 1976.

Project MAC), M.I.T., March 1974.

Users Conference, NASA CP-2012, 1977. (Paper no. 21 of this compilation).

November 1974.

I .

