CARNEGIE-MELLON UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
| SPICE PROJECT ' |

Internal Design of Spice Lisp

Scott E. Fahlman
Guy L. Steele
Gail E. Kaiser!
Walter van Roggen

'19 July 1982

Spice Document S026 .
Keywords and index categories: PE Lisp
Location of machi.nc-r'cadablc file: SLGUTS.MSS.72 @ CMU-20C

' Copyright © 1982 Camqgic-Mcllon University

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. 'The vicws and
“conclusions contained-in this document are those of the authors and should not be interpreted as representing
the official policics, cither expressed or implied, of the Defense Advanced Rescarch Projects Agency or the

]Gail E. Kaiser is supported by the Fannie and John Hertz Foundation.




/INTERNAL DESIGN OF SPICE LISP ' ‘ v - | | 1
1. About This Document

1.1. Scope and Purpose

This document describes the internal details, formats, and mechanisms: of Spice Lisp? as it is implemented
on microcodable personal machines. It is intended to be the definitive document on these things: if the code
does not do what is described here (that is, in the current version of this document), it is considered to be a
bug until it is proven not to be and the document is changed. This is a working document, and it will change
frequently as the system is develope'd and maintained. All questions and comments on this material should
be directed to Scott Fahlman @ CMUC.

Spice Lisp is described here for 32-bit microcodable machines, or machines which can easily be viewed as
having 32 bits per word. Where some detail refers specifically to the Perq implementation, we have tried to
indicate this. One could obviously make a version of Spiée Lisp that would run on a 36-bit machine, or one
with some other word size, by adjusting the lengths of varioﬁs fields, but we will not try to indicate here what
these adjustments would be. Implementations of Common Lisp alsb exist for conventional machines with

fixed instruction sets; these are very different internally and are described in other documents.

1.2. Bit and Byte Numbering

All addresses within Spice Lisp refer to 32-bit words. The low-order bit of each word is numbered 0; the
high-order bit is numbered 31. 1f a word is broken into smaller units, these are packed into the word from
right to left. For example, if we break a word into bytes, byte 0 would occupy bits 0-7, byte 1 would occupy
8-15, byte 2 would occupy 16-23, and byte 3 would occupy 24-31. Similarly, on the 16-bit PERQ, a word- |
pointer P would point to a word whose low-order half is at PERQ address 2P and whose high-order half is at
2P+ 1. In these conventions we follow the conventions of the VAX; the PDP-10 family follows the opposite

convention, packing and numbcring left to right.

All Spice Lisp documentation will use decimal as the default radix; other radices will be indicated by a

subscript (as in 778) or by a clear statement of what radix is in use..




" INTERNAL DUSIGN OF SPICE LISP
2. Data Formats for Spice Lisp

2.1. Lisp Object Data Formats

. Lisp objects are 32 bits long. They come in 16 basic types, divided into three classes: immediate data types,

pointer types, and forwarding pointer types. The storage formats are as follows:

Immediate Data Types:

| Type Code (4) | Immediate Data (28) |
Pointer and Forwardmg Types:

| Type Code (4) | Space Code (2) | Pointer (24) | Unused (2) |

2.2. Table of Type Codes

Code Type Class

0 Misc Immediate
1 Fixnum Immediate
2 Short-Flonum Immediate
3 U-Vector Pointer

4 String “Pointer

5 Xnum Pointer

6 Ynum Pointer

7 B-Vector Pointer

8 Function Pointer

9 Array Pointer
10 Symbol Pointer
11 List Pointer
12 Unused

13 Unused x

14 EVC-Forward ~Forward
15 GC-Forward

Forward

2.3. Table of Space Codes

Explanation

Various distinguished values.
28-bit integer.

28-bit floating point.

=> Vector of unboxed data words.
Vector of unboxed bytes.

A bignum or long flonum.

A ratio or complex number.
Vector of boxed cells.
Compited code for 1 function.
Array header, 1ike a B-Vector.
Lisp symbol, 6 boxed cells.
List cell, 2 boxed cells.

v Vv

weononononm
VVVVYyY

won
\4

> External value cell, 1ist space.
> Object 1in newspace of same type.

0 Dynamic-0 Storage normally garbage collected, space 0.
1 Dynamic-1 Storage normally garbage collected, space 1.
2 Static Permanent objects, never moved or reclaimed.
3 Read-Only Objects never moved, reclaimed, or altered.




INTERNAL DESIGN OF SPICE LISP : o : ' 3

2.4. Immediate Data Type Descriptions

Fixnum

Short-Flonum

Misc

A 28-bit two’s complement integer.

Short format floating point, allocated as follows:

The sign of the mantissa is moved to the left so that these flonums can be compared just
like fixnums. The exponent is the binary two’s complement exponent of the number, plus
128. The mantissa is a 21-bit two’s complement number with the sign moved to bit 27 and
the leading significant bit (which is always the complement of the sign bit and hence carries
no information) stripped off. The short flonum representing 0.0 has 0’s in bits 0 - 27. It is
illegal for the sxgn bit to be 1 with all the other bits equal to 0. This encoding gives a range
of about 10738 to 10738 and about 6 digits of accuracy. Note that long-flonums are
available for those wanting more accuracy, but they are slower to use because they generate
garbage that must be collected later. '

Reserved for assorted special values and semi-internal values. The 28-bit data field is
divided into 4 bits of sub-type and 24 bits of data. So far, the following sub-types have
been defined:

0 Trap  Tllegal object trap. If you fetch one of these, it’s an error except under
very specialized conditions. Note that a word of all zeros is of this type,
so this is useful for trapping references to uninitialized memory. This

" value also is used in symbols to flag an undefined value or definition.

1 Character A character' object whose low-order 24 bits contain the following
information: bits 0-7, the character code; bits 8-15, rescrved for various
control bits; bits 16-23, the font code.

2 System-area-ptr The low 24 bits are a pointer into the system table arca. Pointers of this
type are used in remote U-Vectors, and perhaps in other places. Objects
in this arca do not move around and are not allocated by the user.

3 Control-stack-ptr
The low 24 bits are a pointer into the control stack relative to its base.
Pointers of this form are returned by certain system routines for use by
debugging programs.

4 Binding-stack-ptr
The low 24 bits arc a pomter into the binding stack, relative to its base.
Pointers of this form are returned by certain systcm routines for use by
dcbuggmg programs.

5 Unused.




INTERNAL DISIGN OF SPICE LISP

6 Values-marker

7 Closure-marker

8 Frame-Header

Used to mark the presence of multiple values on the stack. The low 24
bits indicate how many values are being returned. These are pushed in
order, then the Values-Marker is pushed.

Goes in the CAR of a CLOSURE in list space. The low 24 bits are 0.

Marks the start of each frame on the control stack. The low-order 24
bits are used for certain special kinds of calls.

For a normal function call, as createdby. the CALL or CALL-0
instruction, the low 24 bits are always 0.

Bit 23, if 1, indicates a "break” type call frame: when the function
returns, the returned value is discarded instead of being pushed on the
stack and the condition code is restored to its value before the call. Bits
0, 1, and 2 contain the saved NULL, ATOM, and ZERO indicators,
respectively. '

“Bit 22, if 1, indicates an "escape to macro” call frame, created when a

9 Unsupplied-Arg

10 Frame-Barrier

macro-instruction cannot be completed entirely within the microcode.
In this case, bits 16-17 indicate where the tesult goes, as specified by the
A field of the instruction that bailed out; bits 0-15 contain a 16-bit offset
for A modes that need an offset. See section 6.9 for details. :

Bit 21, if 1, indicates a call frame that expects multiple values to be
returned. Such frames are created by Call-Multiple. On return, any
non-negative number of values (including 0) may have been pushed on
the stack, followed by N, the number that actually were pushed.

Bits 23, 22, and 21 are mutually exclusive. It is undefined what happens
when more than one of these are on at once. :

Bit 20, if 1, indicates a call associated with %SP-CATCH or some other
catch function. The first argument to this function must be the catch
tag. This bit is set by the MARK-CATCH-FRAME misc-op. See
6.11 for details. v ‘

Placed in stack frame argument slots to indicate optional arguments that
were not passed by the caller and must be given default values. The low
24 bits are 0.

Placed at the end of the args-and-locals arca of an active control stack
frame. Usc by stack-cxamining functions to find their way around. [In -
the Perq implementation, this also cnsures that the current args-and-
locals arca will not extend into the TOS register, which would make
extra work for the microcode. See section 6.1 for a description of the
TOS register.] The low 24 bits arc 0.




INTERNAL DESIGN OF SPICE LISP B ‘ o 5

2.5. Pointer-Type Objects and Spaces

Each of the pointer-type lisp objects points into a different Space in virtual memory.v There are separate
spaces for Xnums, Code, Symbols, Lists, and so on. The 4-bit type-code provides the high-order virtual
address bits for the object, followed by the 2-bit space code, followed by the 24-bit pointer address. This gives
a 30-bit virtual address to a 32-bit word; ona byte-addressed machine, the two low-order bits will be 0. In
effect we have carved a 30-bit space into a fixed set of 24-bit subspaces, not all of which are used. In a
machine with a virtual address space smaller than 30 bits, some method of folding these spaces into ﬂ;e

smaller space would have to be developed.

[Note: On the PERQ there are significant performance advantages to be gained by aligning all objects- on
the PERQ’s "quad-word" (64-bit) boundaries. This happens automatically for LIST objects, which are two

LISP-words long and for symbols, which are 6 long. For all other pointer-type objects, the allocator makes

sure that the object starts on a quad-word boundary, wasting a word with a MISC-TRAP code if necessary.

Thus, on the PERQ, every-24-bit pointer (except for control stack pointers) will have a low-order bit of 0.
This is a peculiarity of the PERQ version of Spice Lisp and is not part of the specification of Spice Lisp itself.

User-level code should never have to notice this distinction.]

. The space code divides each of the type spaces into four sub-spaces, as shown in the table above. At any
given time, one of the dynamic spaces is considered newspace, while the other is oldspace. The garbage
collector continuously moves accessible objects from oldspace into newspace. When oldspace contains no
more accessible objects it is considered empty. A "flip" can then be done, turning the old newspace into the

new oldspace. All type-spaces are flipped at once. Allocation of new objects always occurs-in newspace.

Optionally, the user (or system functions) may allocate objects in static or read-only space. Such objects are
never reclaimed once they are allocated -- they occupy the space in which they were initially allocated for the

lifetime of the Lisp process. The ad\)antage of static allocation is that the GC never has to move these objects,

thercby saving a significant amount of work, espccially if the objects are large. Objects in rcad-only space are

static, in that they are never moved or reclaimed; in addition, they cannot-be altered once they are set up.
Pointers in read-only space may only point to read-only or static space, never to dynamic space. This saves
even more work, since read-only space does not need to be scavenged, and pages of read-only material do not

need to be written back onto the disk during paging.

A type-space will contain boxed objects or unboxed objects, but not both. Similarly, a spacc will contain

cither ﬁXed-lcngth objects or vaﬁablc-icngth objects, but not both. A variable-length object always contains a

24-bit length ficld right-justified in the first word, with the Fixnum type-codc in the high-order four bits. The




INTERNAL DESIGN OF SPICE LISP o | - ’

remaining four bits can be used for sub-type information. The length field gives the size of the object in

32-bit words, including the header word. The garbage collector needs this information when the object is

moved, and it is also usc¢ful for bounds checking.

The format of objects in cach space are as follows:

Symbol

List

B-Vector

U-Vector

Xnum

‘Each symbol (a non-numeric Lisp atom) is represented as a fixed-length block of boxed

Lisp cells. The number of cells per symbol is 6, in the following order:

Value cell for shallow binding.

Definition cell: a function or Tlist.

Property Tist: a list of attribute-value pairs.

Print name: a string. ‘

Package: the obarray holding this symbol.

Hash: not currently used, may use for SXHASH value later.

T hWN RO

A fixed-length block of two boxed Lisp cells, the CAR and the CDR. '

Vector of boxed 32-bit lisp objects, any length. The first word is a fixnum giving the
number of words allocated for the vector (up to 24 bits). The highest legal index is this
number minus 2. The second word is vector entry 0, and additional entrics are allocated
contiguously in virtual memory. (See section 3 for further details.)

Vectors of unboxed data items, any length. The 24 low bits of the first word give the
allocated length in 32-bit words. The low-order 28 bits of the second word gives the length
of the vector in entries, whatever the length of the individual entries may be. The high-
order 4 bits of the second word contain access-type information that yiclds, among other
things, the number of bits per entry. . Entry 0 is right-justified in the third word of the
vector. Bits per entry will normally be powers of 2, so they will fit neatly into 32-bit words,
but if necessary some empty space may be left at the high-order end of each word. (See
section 3 for details.) : '

Xnums are unboxed and of variable length, and are identical in format to U-Vectors.
Because of this, bignums can be accessed and altered by the same macro-instructions that
are used for U-Vectors. The first word of each Xnum contains the fixnum type-code in the
first 4 bits, a sub-type code in the next 4 bits, and a 24-bit Iength ficld; the second word
contains an access-type code and a number of entries. Currently there are two sub-types of
Xnums: bignums and long flonums.

Bignums are infinite-precision integers. We cnvision that some implementations of Spice
Lisp will implement bignum arithmetic in macrocode and some in microcode. On the
current PERQ, all bignum arithmetic is in macrocode. Each bignum is stored as a serics of -
8-bit bytes, with the low-order byte stored first. The representation is two’s complement,
but the sign of the number is redundantly encoded in the subtype ficld of the bignum:
positive bignums arc sub-type 0, ncgative bignums sub-type 1.” 'The access-type code is
always 8-Bit.

Long flonums have sub-type code 2, and always contain 3 words of data plus the 2-word




INTERNAL DESIGN OF SPICELISP 7

Ynum

Array

String

Function

header. The first data- word is the 32-bit exponent in two's complement form. This is
followed by two words (64 bits) of mantissa, also in two's complement form, with the
low-order word first. This gives about 19 digits of accuracy and more range than you need.
For long flonums we do not bother with stealing the meaningless most-significant bit, as

- the small amount of added accuracy will not justify the extra work. The access-type code is

also 8-Bit.

A Ynum is an extended-format number like an Xnum, but the form is that of a B-Vector
rather than a U-vector. Thus, 2 Ynum can be built from any number of boxed Lisp
objects. Currently the only Ynum type defined is the Ratio, but this format may be used in
the future for non-normalized ratios, complex numbers and other esoterica.

A ratio is a Ynum of subtype 0. Ratios always contain two boxed items: the numerator
(index 0) and the denominator (index 1). Both must be integers (fixnums or bignums).
Ratios are normally stored in normalized form, with all common divisors factored out; if
the resulting denominator is 1, the normalized form for the ratio will in fact be represented
as a fixnum or blgnum

This is actually a header which holds the accessing information and other information
about the array. The actual array contents are held in a vector (either U-vector or B-vector)
pointed to by an entry in the header. The header is identical in format to a B-vector. For
details on what the array header contams see section 3.3.

A vector of unboxed bytes. Identical in form to U-Vectors with the access type always
8-Bit. However, instead of accepting and returning fixnums, string accesses accept and
return character objects (see section 5.8). Only the 8-bit code ficld is actually stored, and
the returned character object always has bit and font values of (.

A compiled Spice Lisp function consists of both boxed and unboxed information. The
boxed information is stored in the Function space in a format identical to that used for
boxed vectors, with-a 24-bit length field in the first word. This object contains assorted
parameters nceded by the calling machinery, a number of pointers to symbols used as
special variables within the function, and a number of lisp objects used as constants by the
function. There is also a pointer to an unboxed "Code vector” that holds the actual
compiled byte codes for the function. For details of the code format and definitions of the
byte codes, see section 5 6

2.6. Forwarding Pointers

GC-Forward

| EVC-Forward

When a data structure is transported into ﬁcwspacc, a GC-Forward pointer is left behind in
the first word of the oldspace object.  'This points to the same type-space in which it is
found. For example, a GC-Forward in B-vector space points to a structure in the B-vector |

newspace. GC-Forward pointers are only found in oldspacc, and thcy always point into

the corresponding newspace.

This is uscd to implement closures. (Sce section 6.8.) 1t is placed in the valuc cell of a
symbol to indicate that the value is to be found in a cell of a closure structure in list space.




- INTERNAL DESIGN OF SPICE: LISP » o ‘ 8

Points to a list cell whose CAR is the external value cell. Always considered to point to
some list space, new or old. '

2.7. System and Stack Spaces

Some of the system’s type-spaces are unused because they correspond to immediate data types. Each

224

unused sub-space is words long. The system’s stacks and control areas are hidden in these spaces.

Currently the following spaces are allocated:

Type Co.de ~ Space Code Use

0 . 0 ‘ System Tables.

0 1 Control Stack. ‘

0 2 Special Binding Stack.

The system tables area is used by the Lisp system for various in-core data structures. These tables are fixed
in size and location in virtual memory. They,ére not managed by the garbage collector. Among the things
stored here are the table of garbage collection pointers for the various spaces, some I/0 status tables and
buffers, a table of microcode entry points, and so on. Some of the system tables structures want to be

accessible from Lisp; this is accomplished by the use of the "remote” U-Vector mechanism. (See section 3.)

The control stack grows upward (toward higher addresses) in memory, and is a framed stack. It contains
only boxed Lisp objebts (with some random things encoded as ﬁxnum_s or Misc codes). Every object pointed
to by an enitry on this stack is kept aﬁve. The frame for a function call contains an area for the function’s
arguments, an area for local variables, a pointer to the caller’s frame, and a pointer into the linear binding
stack. The stack pointers are Misc codes. The precise stack frame format can be found in a later section of

this document.

The special binding stack also grows upward. This stack is used to hold previous values of special variables
that have been bound. It grows and shrinks with the depth of the binding environment, as reflected in the

control stack. This stack contains symbol-value pairs; with only boxed Lisp objects present.

2.8. Symbols Known to the Microcode

A large number of symbols will be pre-defined when a Spice Lisp system is fired up. A few of these arc so
fundamental to the operation of the system that their names have to be assembled into the microcode. These
symbols arc listed here. All of these symbols are in static space, so they will not be moving around.

NIIL. ASOOOOOOM The value of NIL is always NIL; it yis an error to try to alter it: NIL is unique
among symbols in that you can take its CAR and CDR, yiclding NIL. in cither case.  An




INTERNAL DESIGN OF SPICE LISP ' S : 9

 alternative printed representation for NIL is "()".
T }\800001816 The value of T is always T; it is an crror to try to alter it.

ALLOCATION-SPACE :
A8000030 Thls symbol s value must be fixnum 0, 2, or 3, indicating that new cons cells or
other structures are to be allocated in Dynamic, Static, or Read-Only space, respectively.

%SP-INTERNAL-APPLY
A8000048 The function stored in the deﬁmtton cell of this symbol is called by the
mlcrocode whenever compiled code calls an interpreted fl]IlCthl’l See section 6.5 for
details.

%SP-INTERNAL-ERROR
A8000060 The function stored in the definition cell of this symbol is called whenever an
error is detected during the execution of a byte instruction. See section 6.12 for details.

%SP—INTERNAL-BREAK
A8000078,, The- function stored in the definition cell of this symbol is called whenever a
*B request or other Llsp-level break request is encountered. See section 6.13 for details.




INTERNAL DESIGN OF SPICELISP S o 10

3. Vectors and Arrays

Spice Lisp provides both boxed and unboxed vectors as fundamental data types, and attempts to make
access to them as fast as is possible on the machine at hand. Arrays of any number of dimensions are also
provided, bixt of course access to these is slower since index arithmetic must be done. Array access goes
through a header structure, itself in the form of a boxed vector, which contains the information nceded to
access the array contents. The array data is actually stored in a vector, B or U as the case may be. Itis possible

to have two array header structures point at the same data vector, which will result in possibly different modes

of accessing the same data. For example, one header might specify a 2-D array of bits with dimension N by 8, )

while another header might access the same data as as a 1-D array of N bytes.

3.1. B-Vectors

B-Vectors are the simplest case. B-Vectors contain only boxed lisp objects. The format is as follows:

e e e e e e e e - e e e e e e e e e ek e e e e A e e R o = A = e - - = - - — -

The first word of the vector is a header indicating its length; the remaining words hold the boxed entries of
the vector; one entry per 32-bit word. The header word is of type fixnum. It contains a 4-bit subtype field,
which is used to indicate several special types of B-Vectors. At present, the following subtype codes are
defined: '

0 Normal. Used for assorted things.

1 ﬁarﬁed structure created by DEFSTRUCT, with type name in entry 0.
i EQ Hash Table, last rehashed in ‘dynamic-0 space.

3 } o EQ Hasﬁ Table, last rehashed in dynamic-1 space.

4 EQ Hash Table, must be rchashed.

Following the subtype is a 24-bit ficld indicating how many 32-bit words arc allocated for this vector,
including the header word. Legal indices into the vector range from zcro to the number in the allocated
lcngth ficld minus 2, inclusive. The index is checked on every access to the vector. Entry 0 is stored in the

sccond word of the vector, and subsequent entries follow contiguously in virtual memory.




INTERNAL DESIGN OF SPICE LISP : ' B 11

'Once a vector has been allocated, it is possible to reduce its Iength by the %SP-SHRINK-VECTOR
operation, but never to increase its length, even back to the original size, since the space freed by the
reduction may have been reclaimed.” This reduction simply stores a new smaller value in the lenvgth field of

the header word.

It is not an error to create a B-Vector of length 0, though it will always be an out-of-bounds error to access
such an object. The maximum possible length for a B-Vector is 242 entries, and that is only possible if no

other B-vectors are present in the space.

Objects of type FUNCTION and ARRAY are identical in format to B-Vectors, though they have their own

spaces. In both cases, only 0 is currently used in the sub-typé field of the header word. o

Ynums are also identical in format and operation to B-Vectors, though they may also be operated on
directly by microcoded routines. For details of the currently-defined sub-types and their access-codes, see.

section 2.5.

3.2. U-Vectors

U-Vectors contain unboxed items of data, and their format is more complex. The data items come in a
variety of lengths, but are of constant length within a given U-Vector.  Data going to and from a U-Vector is
passed as a FIXNUM, right justified. Internally it is stored in packed form, ﬁllmg 32-bit words without any

type-codes or other overhead. The format is as follows:

| Fixnum code (4) | Subtype (4) | Allocated Tength (24) , |

| Access type (4) | Number of entries (28) _ ' |

The first word of a U-Vector contains the Fixnum type-code ‘in the top 4 bits, a 4-bit subtype code in the
next four bits, and the total allocated length of the vector (in 32-bit words) in the low-order 24 bits. At

present, the following subtype codes are defined:

0 : Normal. Used for assorted things.

1 Code. This s the code-vector for a function object.

The sccond word of the U-Vector is the one that is looked at every time the U-Vector is accessed. The



INTERNAL DESIGN OF SPICE LISP - ' ' g R 12

low-order 28 bits of this word contain the number of valid entrics in the U-Vector, regardless of how long
cach entry is. The lowest legal index into the U-Vector is always.0; the highest legal index is one less than this
number-of-entries field from the second word. These bounds are checked on every access. Once a‘vcctor‘ is
allocated, it can be reduced in size but not increased. The %SP-SHI{‘INK-V‘EC'I’OR operation changes both
the allocated length field and the number-of-entries field of a U-VECTOR.

The high-order 4 bits of the second word contain an access-type code which indicates how many bits are
occupied by each item (and therefore how many items are packed into a 32-bit word) and also whether the

access is local or remote. The encoding is as follows:

1-Bit ‘ 8 1-Bit-Remote
- 2-Bit 9 2-Bit-Remote
4-Bit .10 4-Bit-Remote
8-Bit 11 8-Bit-Remote
16-Bit 12 16-Bit-Remote
Unused - 13~ Unused

Unused : 14 Unused

Unused 15 Unused

NO O WN =O

~In local U-Vectors (the normal kind), the data items are packed into the third and subsequent words of the
‘vector. Item 0 is right justified in the third word, item 1 is to its left, and so on until the allocated number of
items has becn accommodated. All of the currently-defined access types happen to pack neatly into 32-bit
words, but if this should not be the case, some unused bits would remain at the left side of each ‘word. No

attempt will be made to split items between words to use up these odd bits.

In remote U-Vectors, only three words are allocated. The third word is a pointer (of the appropriate
MISC-code subtype) into the system tables area of virtual memory. Instead of being stored within the
U-Vector, the data items are stored at the system-table location pointed to. They are packed just as they

would be if the word pointed to were the third word of a local U-Vector.

When allocated, a local U-Vector is initialized to all 0’s. The user will not normally allocate remote
U-Vectors for himself, since these are for special use by internal system code. Rcmoté U-Vectors are often

filled with non-0 data at system startup.

As with the B-Vectors, it is not an error to create a U-Vector of length 0, but it will always be an error to -
access such a vector. The maximum possiblc length of'a U-Vector is 221 entries or 2243 words, whichever is

smaller.

Objects of type STRING are identical in format to U-Vectors, though they have their own space. Strings

‘always have subtype 0 and access-type 3 (8-Bit). Strings differ from normal U-Vectors in that the accessing




INTERNAL DESIGN OF SPICELISP ' - ' , ' » 13

functions accept and return objects of type Misc-Character rather than fixnpums.

Xnums are also identical in format and oper_ation to U-Vectors, though they may also be opcrated on
dircctly by microcoded routines. For details of the currently-defined sub-types and their access-codes, sce

section 2.5.

3.3. Arrays

An array header is identical in form to a B-Vector. Like any B-Vector, its first word contains a FIXNUM
type-code, a 4-bit subtype code, and a 24-bit total length field (this is the length of the array header, not of the
vector that holds the data). At present, the subtype code is always 0. The entries in the header-vector are

interpreted as follows: -

0 Type-code This is a fixnum which contains a variety of information about how the array is to be
accessed and interpreted. See the array-type-code table below. If the array contains
unboxed items, one part of this type-code is an access-type field identical in form to the
access-type field defined for U-Vectors. This field may be used instead of the actess-type
field of the data-vector in making accesses to the data. This allows for accessing a single
data vector through several array headers, each with a different format.

1Data Vector  Thisisa pointer to the U-Vector or B-Vector that contains the actual data of the array. Ina
multi-dimensional array, the supplied indices are converted mto a single 1-D index which
is used to access the data vector in the usual way.

2 Number of Dimensions , ,
This is a fixnum in the range 0 to 2°-6. - Of course, if an array of the maximum
dimensionality is created, there will probably not be enough space in virtual memory for
the data. An array of 0 dimensions is legal. It creates a single storage item which can be
accessed and stored by the unique 0-D index list, (). (Explanation: mathematicians define
the product of 0 things as 1. APL handles 0-D arrays in this way, so we may as well do it
this way t00.) A 1-D array is perfectly legal; it differs from a vector in that all accesses go
through the array header structure, and are therefore somewhat less efficient.

224

3 Number of F]cmcrrts
This is a fixnum indicating the number of elemcnte for which there is space in the data
vector.

4°Fill Pointer This is a fixnum indicating how many clements of the data vector are actually considered to

be in use. Normally this is initialized to the same value as the Number of Elements ficld,
but in somc array applications it will be given a smallcr value. Any access beyond the fill
pomtcr is illegal. - ‘

5 Displacement ~ This fixnum value is added to the final code-vector index after the index arithmetic is done
but before the access occurs. Used for mapping a portion of onc array into another. For
most arrays, this is 0. On some machines, it may be quicker to test for 0 and only add if the




INTERNAL DESIGN OF SPICE LISP _ ‘ . ‘ » 14

displaccment is non-0 than to really do the add. :

6 Structure name If this array implements a named DEFSTRUCT sturcture, the structure-type symbol is in
this slot. If the array is not a DEFSTRUCT structure, this slot contains NIL.

7 Range of First Index _ : _ :
This is the number of index values along the first dimension, or one greater than the largest
legal value of this index (since the arrays are always zero-based). A fixnum in the range 0
to 2241, 1f any of the indices has a range of 0, the array is legal but will contain no data
and accesses to it will always be out of range. In a 0-dimension array, this entry will not be
present.

§-N Ranges of Subsequent Dimensions

The ranges of all indices are checked on every access, during the conversion to a single data-vector index.
In this conversion, each index is added to the accumulating total, then the total is multiplied by the range of
the following dimension, the next index is added in, and so On. In 'other words, if the data vector is scénned
linearly, the last array index is the one that varies rhost rapidly, then the index before it, and so on. In our
initial implementation, the index computation for arrays is done in fnacrocode; when we have a larger

microstore, we will move this to microcode for greater speed.

The type-code word is divided as follows:

Bit0 0 = Boxed Data; 1 = Unboxed Data.
Bit1 0 = Use Vector’s own access-type code. 1 = Use the code supplied here.
Bits 4 -7 Access type code for unboxed data, used if bit 1 = 1.

Bits 5-27 Unused.




© INTERNAL DESIGN OF SPICE LISP _ o _ 15
4, Ston.ge Management

4.1. Allocation

New objects are allocated from the lowest unused addresses within the specified space. Each allocatioﬁ call
specifies how many words are wanted, and a FREE-STORAGE pointer is ihcrcmented by that amount. .
There is one of these FREE-STOR AGE pointers for each space, and it points to the lowest free address in the
space. Since most of the virtual address space may initially be set up as non-exmtent memory, new allocation
may require that the storage manager request additional pages of storage from the Spice kernel. (It remains to
be seen whether the optimal increment is one pagé or a group of pages.) If this request fails, perhaps because
the local disk is full, an error occurs within Lisp. _ Because no pointer to oldspace can pass through the
machine (see below) and into a newly-allocated object, new objects are guaranteed to be free of oldspace

pointers and do not need to be scavenged.

In unboxed spaces, objects copied from oldspace are allocated from low niemory; just as though they were

new objects. Unboxed objects are not scavenged.

In boxed spaces, objects that are copied from oldspace must be scavenged for pointers back into oldspace.
Therefore, these potentially "dirty" objects are kept separate from the "élean" newly-allocated objects. This is ’ |
done by storing them at the high-address end of the sub-space. A COPY-SPACE pointer is started at the
highest free address in a given sub-space and is moved down by the appropriate amount as space for éach
object is allocated. A second pointer, the CLEAN-SPACE pointer, also begins at thc top of thc space and is
moved down by the scavenger as it works Everything above the CLI:AN SPACE pointer is ceruﬁed to be

free of pointers to oldspace.

Optional, for versions of Spice Lisp ‘on machines where microstore is afnp]e: treat LIST space specially by
scavenging CDRs first, then CARs. This leads to substantially greater locality in the newspace list structurés.
This implcmcntatidn uscs two CLEAN-SPACE pointers, one for CARs and one for CDRs. The scavenger
always works on the CLLEAN-CDR pointer unless it is at.the COPY-SPACE pointer; in that case, it works on
the CLLEAN-CAR until it too catches up to COPY-SPACE. When all thrcc pointers coincide, the arca 1s»’

clean.

Rcad-(mly sub-spaccs have two associated pointers: FREE-STORAGE aﬁd FREEZE. New items are
allocated at the low-address end of that space’s free storage, and the FREE-STORAGE is updated. Then the
-new structure is initialized. When this process is completed, the Freeze command is given, which moves all of

the FREEZE pointers up to mect their respective FREE-STORAGE pointers. Once it is below the FREEZE




INTERNAL DESIGN OF SPICE LISP A : S 16

pointer, the new structurc becomes read-only and cannot be altered again without causing an error. Also, any
pointer-type items written-into read-only space, even if they are above the freeze pointer, must point into
read-only or static space. Placing dynamic pointers in read-only space causcs an error, since these pointers

would have to be altered if the object pointed to i transported.

Sometimes, for purposes of sharing, it is desirable to keep certain read-only structures on separate pages of
memory. The New-Pure-Page command updates both the FREE-STORAGE and FREEZE pointers of a

given space to the next page boundary, wasting any remaining space on the current page.

4.2. The Transporter

All memory refer'ence;s made by the Lisp syétem should be made to newspace, st_atic space, or read-only
space; oldspace references can be made only for the purpose of moving the thing referenced to newspace. In
order to reference an object, or any words within an object, the machine must have a pointer to that object in
hand. Therefore, we can enforce the newspace-only reference policy by making sure that no pointer to an
oldspace object ever makes it into those registers of the machine from which references might be generated.
~ This is called the "barrier”. If an attempt is made to fetch an Voldspace pointer through the barrier, the
oldspace object must first be tranéported'to newspace; a pointer is then created to this newspace object, and it
is this pointer that is passed through the barrier. Forwarding pointers are also followed and collapsed as they
are moved through the barrier. We speak of objects within the barrier as being "in the machine", but some
machine registers involved in the transporting process must obviously be considered outside the barrier for

things to work.

Suppose we fetch lisp object B into the machine (across the barrier) from addrcés A. Since the pointer A

has already passed the barrier, it does not point into oldspace. The algorithm is as follows:

1. If B is an immediate data type, or a non-forwarding pointer into static space, read-only space, or
newspace, simply let B through. Ifitis a forwarding pointer, go to step 5.

2. Otherwise, we have just picked up a pomter to oldspacc which is not allowed to be in the
machine. Fetch what B points to, and call that C,

3. If Cis of type GC-Forward, it had better point ihto newspace. Vcﬁfy this. Form a new pointer
with the type-code from B and the-space-codce and pointer from C. This is the new B. erte itinto
location A and pass this new B through the barrier. :

4. 1If C is not GC-Forward, C is the first word of a structurc that must be copicd into newspace. The
~ size is cither a constant function of the space (check the type-code of B) or can be obtained from
the low-order 24 bits of C. Allocate the appropriate number of words in the proper copyspace and
copy all the words of the structure. Replace C in oldspace with a GC-Forward pointer to the new




INTERNAL DESIGN OF SPICE LISP - Y

copy. Create a new B pointing to the new copy. Write this into address A and pass the new B
through the barrier.

5. If the original B is of type EVC-Forward, perform the above steps if necessary, but where it says .
"pass B through the barrier”, you instead pick up the contents of the cell B points to and repeat
the process from step 1, using this as the new B. The EVC-Forward pointer in memory may be
transported to newspace, but it is not clobbered. -If the 0r1gma1 B is GC-Forward, this is an error,
since GC Forward should not be found in newspace:

One additional twist is needed to make it possible for the system to maintain hash tables full of Lisp objects
that are accessed via an EQ‘ test. Whenever a B-Vector with subtype code 2 or 3 is transported to newspace, its
subtype code is changed to 4. This code indicates to the accessing functions that the entries of the hash table
must be re-hashed before any access is made, since the items are hashed under their oldspace addresses which
will be changed as séon as the item is touched. - The rehashing is done by the hash-table functions in

macrocode; all that the microcode has to do is change the subtype code when the vector is transported.

4.3. The Scavenger

When objects are first transported into copyspace, they are dirty -- that is, they may contain pointers into
oldspace. The scavenger moves word by word through each of the copyspaces, transporting each lisp object
encountered by the algorithm listed above. This gradually cleans up copyspace, thbugh in the procéss new
objects may be copied. The CLEAN-SPACE pointer marks the boundary between space that is guaranteed
clean and space that may be dirty. Event_ually, as oldspace empties, the process will converge and the
CLEAN-SPACE pointer will catch up with the COPY-SPACE pointer. When one space has been completely
scavenged, the scavenger goes on to another space, and continues to cycle through spaées until all are clean.
At this point, we can be sure that every accéssible object in oldspace has been moved to newspace, and the

cycle of garbage collection is complete.

Each wbrd is scavenged individually, and the scavenging process can be intcrrupted between any two
* words. This means that we can run the scavenger incrementally, vscavcnging a few words at a time interleaved
with regular processing. This is normally tied to the allocation of new objects: for every word of new structure
that is allocated, we scavenge some number of words of copyspace. (A typical ratio is four words scavenged
for cach word allocated.) The user can also. specify that the scavenger is to run continuously until cither the
.current cycle is complete or the user interrupts and stops it. This option can be exercised by 1/0 code to run
the scavenger during waits for the keyboard and other lulls in the action. In a very large lisp system, afull -

scavenge cycle may take hours; disk paging time dominates.

Boxed static spaccs may contain pointers into dynamic space, and so must be scavenged after a flip. The



INTERNAL DESIGN OF SPICE LISP : ‘ _ . o 18

CLEAN-SPACE pointer for such a sbatc is set cqual to the FREE-STORAGE pointer after a ﬂip; and is

- moved downward by the scavenger until it hits the bottom of this space.

Read-only spaces do not contain pointers to dynamic space, o scavenging is not necessary.

- Flipping
A Spice Lisp system begins with only static space, read-only space, and newspace (dynamic-0 space) in use.
No scavenging or transporting is done until the dynamic space is flipped. At this point, dynamic-0 becomes
oldspace and dynamic-1 becomes newspace, and the system begins transporting objects out of dynamic-0.
~ When the scavenging process is complete, another flip can occur and objects are moved back into dynamic-0.
And so on. The user can either initiate flips himself (if the system is ready to be flipped) or he can have the

-system do this automatically. To run without garbage collection, the user simply prevents the system from

flipping.

If the system is controlling the flips, 'it‘ will wait until a certain number of words have been allocated,
totalled over all spaces; then it performs the first flip. After that, it will be able to flip again as soon as the
previous scavenge cycle has been cbmpleted or it inay wait until some amount of additional allocation has
been done before flipping again. The optimal strategy will have to be determined empirically, once the

system is up. Initially, we will flip by hand.

When a flip occurs, the system must immediately go through all of the registers inside the barﬂer‘énd
transport the contents of these registers, since many would otherwise point to oldspace. This task must be
completed before the system resumes normal processing. It is therefore important to keep the number of
items within the barrier reasonably small. For this reason, the binding and control stacks are considered to be
outside the barrier, except for the current frame on the control stack; this is inside the barrier and must be
~ scavenged during the flip. The remainder of this stack is scavenged from the top (most recent push) toward
the bottom,; this is the first thing the scavenger does, but this is not done during the flip. A CLEAN-STACK
pointer séparatcs the clean part of the stack from thé part not yet scavenged. After the control stack is clean,
the scavenger can go on to do the binding stack, then to the other boxed spaces. When the stackb is popped,
the system must check to sce whether the new stack vframe has been completely scavenged, and must
immediately clean any part of the new top frame that nceds it. Any access to a dirty part of cither stack must

be transported normaily as the data is brought through the barrier.



INTERNAL DESIGN OF SPICE LISP - , : 19

5. Macro Instruction S@t

5.1. General

This section documents the macro-instruction set to be used for Spice Lisp. This instruction set is based on,
but not identical to, that used by the MIT Lisp Machine. Some changes are necessary because some of our
underlying mechanisms are different: since we have no locative pointers and no CDR coding in the current
Spice Lisp, some of the instructions used on the Lisp Machine make ho sense. In addition, on the PERQ and
on several other machines to which we might want to port Spice Lisp in the future, there is a‘clear advantage
in fitting the instructions into §-bit bytes rather than 16-bit words, even if extra bytes must usually be fetched
to get address fields, etc. The current Lisp Machine instfuction set does not break neatly at 8-bit boundaries.
Finally, some operations have been added to make ub for weaknesses that have been noticed in the MIT
instruction set, notably in accessing vectors and strings, which happens much more frequently than anyone

expected.

The intent is that this instruction set should be a very direct mapping from the S-expression source it is

derived from. There should therefore never be any temptation for users to write macrocode by hand; all of

the system that is not in microcode should be written in Lisp. Since the compiler will run both in Spice Lisp

and in Maclisp, we need not hand-code things even for bootstrapping.

5.2. Function Object Format

Each compiled function is represented in the machine as a Function Object. This is identical in form to a
B-Vector of lisp objects, and is treated as such by the garbage collector, but it exists in a special function space.
(There is no particular reason for this distinction. ' We may decide later to store these things in B-Vector space,
if we become short on spaces or have some rcason to believe that this would improve paging behavior.)
Usually, the function objects and code vectors will be kept in read-only space, but nothing should depend on
this; some applications may create, compile, and destroy functions often enough to make dynamic allocation

of function objects worthwhile.

The function object contains a vector of header information needed by the function-calling mechanism: a

pointer to the U-Vector that holds the actual code, the number of required and optional arguments, and a few

~ other things. Following this information is a vector of symbol pointers (for symbols that arc used as special .

variables in the codce) and constants. ‘A constant is any boxed Lisp object diat is used but not altered by the

function. Constants in the range of -128 to +127 can be gencrated within the byte code, and so do not need



INTERNAL DESIGN OF SPICE LISP ' } ' _ o 20
to be represented here as full-word constants.

Spice Lisp uses an extended arglist format thh &optional and &rest arguments This_ is similar to the
system used in the Lisp Machine, but we will not be using the Lisp- Machine’s very complex argument
descriptor format. Instead we will initialize optional arguments in a simple and uniform way within the code
for the function. We will not support the use of random &quote arguments" within the arglist: either all of the
arguments are EVALed, or you use a FEXPR which evals none of them and always has é single argument.
Other quoting effects can be obtained through the ﬁse of macros, if desired. See section 6.7 for more details

on how optional arguments are handled.

After the one-word B-Vector header, the entries of the function object are as follows:

0 A fixnum with bit fields as follows:
0 - 14: Number of symbo1s/constants in this fn object (0 to 32K-1).
15 - 26: Not used.
27: 0 => A11 args evaled. 1 => This 1is a FEXPR.
1 Pointer to the unboxed Code vector holding the macro-instructions.
2 A fixnum with bit fields as follows:

0 - 7: The minimum Jegal number of args (0 to 255).

8 - 15: The maximum number of args, not counting &rest (0 to 255).
16 - 26: Number of local variables allocated on stack (0 to 2047)
27: 0 => No &rest arg. 1 => One &rest arg.

Name of this function (a symbol). :
Vector of. argument names, in order, for debugging use.
Reserved for future use.

Entry 0 of symbol/constant area.

Entry 1 ... and so on.

N o w

5.3. EXecution Environment

At any given time, the machine contains pointers to the current top of the bontrol stack, the start of the
current active frame (in which the current function is cxecuting), and the start of the most recent open frame.
In addition, there is a pointer to the current top of the special binding stack. An open frame is onc which has
been partially built, but which is still having arguments for it computed. When all the arguments have been
computed and saved on the frame, the function is then started. This means that the stack frame is completed,
~ becomes the current active frame, and the function is executed. At this time, special variables may be bound
and the old valucs arc saved on the binding stack. Upon return, the active frame is popped away émd the
result is cither sent as an argument to some previously opened frame or goes to somc other destination. The

binding stack is popped and old values are restored.

The active frame contains pointers to the previously-active frame, to the most recent open frame, and to the

point to which the binding stack will be popped on exit, among otlier things. Following this is a vector of



INTERNAL DESIGN OF SPICE LISP ‘ . . 21

storage locations for the function’s arguments and local variables. Space is allocated for the maximum

number of arguments that the function can take, regardless of how many are aCtually supplied.

~ In an open frame, the structure is built up to the point where the arguments are stored. Thus, as arguments
are computed, they can simply be pushed on the stack. When the function is finally started, the remainder of
the frame is built. The control stack is also used by the instruction set as the primary scratchpad area for

random computations.

The precise details of stack-frame formats and calling conventions can be found in a later section of this

document.

5.4. Implementation Note

On the PERQ we do not have any soﬁ of fast cache for the stack. The ESTK is shallow and does not allow
access to anything but the top 16 bits, and since we cannot index into registers, we cannot stash a piece of the
sfack there. So the stack must live in cbre and we must take our lumps on this; disk paging time will probably
be the dominant time-waster anyway. The cache promised for the extended PERQ will help a lot on this

_problem, if we ever get our hands on this.

What we can do is to save the top word of the stack in a register-pair rather than in core -- a sort of
one-word stack buffer. =Actually, this should help a great deal, since most of the macro instructions that
reference the stack look only at the top word. If an instruction pops an argument off the stack, does
something to it, and pushes the result, no memory 1/0 neéds to occur. If the net effect of the instruction is to
push or pop a word on the stack, then a memory write or read is 'requiréd. The register in question is

designated TOS for "top of stack”.

5.5. Indicators

Conceptually, the result produced by each macro-instruction is used to set a group of indicators, which can

be tested by subscquent conditional jump instructions. These indicatofs are NULL, ATOM, and ZERO. In

fact, on most machincs, it is more cfficient to just stash in a hidden register the result-word that should have

set the indicators, and to check for null-ness, atom-ness, or zero-ness when the qucstion comes up. In the
description of instructions below, if it is unclear what the natural "result” is, we will state explicitly what value

gocs into the indicators; in sopme cases, instructions leave the indicators unchanged.

The NULL "indicator™ is sct only by a result of NIL.



INTERNAL DESIGN OF SPICE LISP

[
two

The ATOM "indicator™ is set if the fcsult is not of type LIST. This indicator is set by a result of NIL.

The ZERO "indicator” is set by either a FIXNUM O or a FLONUM 0.0.

5.6. Macro-Instruction Formats

The majority of the macro-instructions in the spice Lisp Set are of the following form:

Instruction byte: | OP (6) : _ A (2) ]

Next byte (optional): | B (8) : |

Most instructions read from or write to an "effective address”, and possibly also push or pop 32-bit words

on the stack. When the OP field indicates that an effective address is to be read from, it is computed from the

A field and (sometimes) from the subsequent byte B as follows:

A=0
A=1
A=2
A=3

A=0

A

The operand is popped off the stack. Then the operation takes place, in some cases
popping a second (distinct) argument off the stack and/or pushing something onto the
stack. No B byte is fetched. '

The next byte is fetched and is converted (with sign extension) to a signed fixnum in the
range -128 to +127. This is used as the operand.

The next byte is fetched. If its sign bit is 0, the remaining 7 bits are used as an unsigned
offset (0 - 127) into the vector of symbols and constants in the code object of the current
function. If the sign bit is 1, the other 7 bits are used instead as an unsigned offset (0 - 126)
into the arguments and local variables area of the currently-active stack frame. The

" contents of this cell are used as the operand. If the fetched byte is all ones (377 octal), the

next two bytes are fetched to form a 16-bit offset. The sign bit of this extended offset
controls where the operand comes from, as in the 8-bit offscts. . In fetching this double
offset, the low-order byte comes in first. -

The next byte (or set of bytes) is fetched and is used as an offset into the code object, as
abovc; this will never be used with an offsct into the stack frame. . Instcad of being used
dircctly, the constant addressed is supposed to be a symbol pointer, and the operand is
fetched from its value cell. 1fthe valuc is Misc-Trap, an UNBOUND crror is signalled.

If the cffective address is being used as a place to write, the foilowing descriptions apply:

1

The result is pushed on the stack.

The result sets the indicators, then is thrown away.




INTERNAL DESIGN OF SPICE LISP : - 9

If the offset indicates a stack frame destination, the result is put there; if it points into the

code object, this destination is illegal, since the code object should not be altered.

This writes into the value cell of the symbol pointed to, forwarding the write through an
EVC-Forward pointer if one is present in the value cell.

In the following listing, the effective address is called "E™ and its contents are called "CE".

5.7. Instructions

Note: In the following descriptions, the number in the left margin is the 6-bit opcode, in decimal notation.

0 Unused

1Call

2 Call-0

3 Cali-Multiple

CE must be some sort of executable function: a code object, a lambda-expression in list
space, a closure, or a symbol with one of these stored in its function cell. A call block for
this function is opened, and computation proceeds to gather the arguments into the call
block. This is explained in more detail in the section on Control Conventions. The state of
the indicators after CALL is undefined.

CE must be an executable function, as above, but is a function of 0 arguments. Thus, there
is no need to collect arguments. The call block is opened and activated in a single
operation. The indicators are left in an undefined state.

Just like a Call instruction, but it sets bit 21 of the frame header word to indicate that

-multiple values are expected. See section 6.10.

4 Call-Maybe-Multiple

S Return

6 Throw

7 Unused.

8 Push

9 Push-l.ast

_If the current stack-frame header word has bit 21 set, this is identical to Call-Multiple. If

not, this is identical to Call.

Return from the current function call. After the current frame is popped off the stack, CE
is pushed as the result being returned. CE also scts the indicators. Sce section 6.6 for more
details. :

CE is the throw-tag, normally a symbol. The value to be returned, cither single or
multiple, is on the top of the stack. Sce section 6.11 for a description of how this
instruction works. ‘

CE is pushed onto the stack and sets the indicators. 1f A = 0, this is a NOOP, except that
the indicators are set according to the value of the itcm on top of the stack.

 CE is pushed onto the stack as the last operand for the most recent currcntly-obcn call
~ block. 'The call is then activated: the call block is finished and becomes the current



* INTERNAL DESIGN OF SPICELISP o | A

10 Push-Under

stack-frame. If A = 0, the effect of this operation is just to start the call. The indicators are
undefined at the start of the called function; they are set by thc returned value when
execu uon resumges in the callmg function.

CE is pushed onto the stack as the second item and sets the indicators; the top item of the
stack is unchanged If A = 0, this swaps the top two items on the stack. Push-Under
causes an error if the stack is empty or if A = 0 and the stack contains only one item.

CE is used to set the indicators, but is not put anywhere. If A = 0, the net effect is to pop

11 Check
the stack by one word, setting indicators.
12 Pop Pop the top item off tﬁe stack and store it in »E and also in the indicators.
13 Copy Copy the item on top of the stack ihto E, setting the indicators, without popﬁing the stack.
14 Make-Predicate - |

If the NULL indicator is on, put NIL in E. Else, put T in E. The NIL or T also sets the

" indicators..

15 Not-Predicate If the NULL indicator is not on, put NIL in E. Else, put T in E. The NILor T also sets the

16 CAR

17 CDR

18 CADR
19 CDDR |
20 CDAR
21 CAAR

22 SCDR
23 SCDDR

24 Trunc

mdlcators

CE had better be cither a pointer into list space or NIL. Its CAR is pushed on the stack
and sets the indicators.

The CDR of CE is pushed on the stack a'nd‘sets the indicators.

The CADR of‘ CE is pushed on the sﬁack and sets the indicators.
The CDDR of CE is ';)ﬁshed on the stack and sets the indicators.
The CDAR of CE is' pushed on the stack and sets the indicators.
The CAAR of CE is-pushcd on the ‘stack and sets the indicators.

Get the CDR of CE and store it in E and the indicators. Useful for CDRing down hsts
CE must be a list cell-or NIL.

Get the CDDR of CE and store it in E and thc indicators. Uscful for CDDng down
property lists. CE must be a list cell or NIL.

Performs the equivalent of the TRUNC functioniyas described in the Spice Lisp Manual.
After obtaining CE, take one valuc off the top of the stack. Call this N. There are now
three cases: :

e If CE is Fixnum 1, Trunc pushes three items: a fixnum or bignum rcprcscnting
the integer part of N (rounded toward 0), then cither 0 if N was alrcady an
integer or the fractional part of N represented as a flonum or ratio with the




INTERNAL DESIGN OF SPICELISP - _ , : 25

25 +

26 -
27*

28 /

29 Bit-And

30 Bit-Xor
31 Bit-Or

32 Eql

B =

same type as N, then Misc-Values-Marker 2 to mimic a multiple return of two
values.

o If CE and N are both fixnums or-bignums and CE is not 1, divide N by ‘CE
Push three items: the integer quotlent (a fixnum or bignum), the integer
remainder, and Misc- Va]ues Marker 2.

o If either CEorNisa ﬂonum or ratio, push a fixnum or bignum quotient (the
true quotient rounded toward 0), then a flonum or ratio remainder, then push
Misc-Values-Marker 2. The type of the remainder is determined by the same
type-coercion rules as for +. The value of the remainder is equal to (- N (* CE
QUOTIENT)). ’

In all cases the first thing pushed (the quotient) sets the indicators. If TRUNC uses the

" escape-to-macro mechanism (see section 6.9), it builds a multiple-value frame header

rather than an escape-type header.

CE is added to the value popped off the stack. The result is pushed back onto the stack
and sets the indicators. The addition is generic: two integers (fixnum or bignum) produce
an integer; two ratios or an integer and a ratio produce a normalized ratio; if either
operand is a flonum, the result is a flonum of that type, long or short; if one of the
operands is a long flonum and the other is a short flonum, the result is a long flonum.

Analogous, but CE is subtracted from TOS. Generic, as above.

Analogous, CE is multiplied by TOS. Generic, as above.

The TOS is divided by CE; the quotient goes back to TOS. This is generic, as above,
except when the operands are both integers. In that case, an integer is returned only if the

division is exact (that is, if the remainder is 0). If the division is not exact, the quotlcnt is
returned as a normalized rauo

- Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the

indicators. The operands must be fixnums or bignums.
Bitwise XOR.
Bitwise OR.

CEis compared to the value popped off the stack. If these arguments are EQ or if they are
both numbers of identical type and value, T scts the indicators; if not, NIL sets the
indicators. Nothing is pushed back onto the stack.

CE is compared arithmetically to the valuc popped off the stack. If they are equal, T scts
the indicators; if not, NIL scts the indicators. Nothing is pushed back onto the stack. This"
works for mixed number-types: if an integer is compared with a flonum, the integer is
floated first; if a short flonum is compared with a long flonum, the short one is first
extended. Flonums must be exactly identical (after conversion) for a non-null comparison.




INTERNAL DESIGN OF SPICELISP ~~ o .26

4>
35<

36 EQ

371+

38 1-

39 Bind-Null
40 Bind-T

41 Bind-Pop

42 Set-Nult
43 Set-0

.44 Set-T

45 - 47 Unused.

48 NPop

49 Unbind

50 Set-Lpush
51 Set-1.pop

52 List

53 List*

Analogous, but non-null if TOS > CE.

Analogous, but non-null if TOS < CE.

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp
objects, T sets the indicators; if not, NIL sets the indicators. Note: equal fixnums and

equal short flonums are EQ, but this does not hold for bignums or long flonums. So when
dealing with numbers use = or EQL unless you are sure you know what you are doing.

Add 1 to CE, store resﬁlt back into E. CE can be any kind of number.-

Subtract 1 from CE, store result back into E. CE can be any kind of number.

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is set.
CE must be a symbol. This is rebound and set to T, which also sets the indicators.

CE must be a symbol. Thls is rebound and is set to a value popped off the stack. This
value also sets the 1nd1cators

Store NIL in E.

Store fixnum 0 in E.

Store T in E.

CE is a fixnum N. If N is non-negative, N items are popped off the stack. If N is negative,
NIL is pushed onto the stack |N]| times. The indicators are unchanged.

CE is a non-negative fixnum indicating how many bindings are to be pop'ped off the

‘binding stack and restored to their previous values. Used in exiting open-coded PROGs '

and LAMBDAs. The indicators are unchangcd by this instruction.

Pop TOS, cons it onto CE (in the space indicated by the value of the symbol
ALLOCATION-SPACE), store result back into E. The new CE sets the indicators. -

CAR of CE is pushed onto the stack and sets the indicators; CDR of CE is stored back into
E.

CE is a non-negative fixnum N. Beginning with a list of NIL, N items arc popped off the

stack and CONSed onto this list, so that the last item popped ends up as the CAR of the
list. The consing is done in the space specified by the value of ALLOCATION-SPACE.
'The resulting list is pushed on the stack and sets the indicators.

CE'is a non-ncgative fixnum N. One item is popbcd off the stack, to begin the list L. Then



INTERNAL DESIGN OF SPICE LISP . ' : ; 21

54 Spread

55 Misc

56 Branch

N other items are popped and CONSed onto the front of L in succession, so that the last
item popped becomes the CAR of L. The consing is done in the space specified by the
value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the
indicators. , o '

CE is a list. Its elements are pushed onto the stack in lefi-to-right order. The last item
pushed sets the indicators. »

This is used for calling a large number of microcoded functions. The next byte in the
instruction stream is fetched, and this is used to indicate which of 256 Misc functions is to

- be.called. This operation will in general pop some arguments off the stack, compute a

single result, then place this result in the location indicated by the effective address E,
computed as usual from the A ficld of the first byte. Note that if one or more offset bytes
are needed for the effective address computation, these bytes are fetched affer the byte
telling which instruction is to be called. ‘The Misc codes are defined in a later section of
this document. (Initially, many fewer than 256 Misc functions are defined.)

Unconditional branch relative to the current byte-PC (which has been incremented to
point past the current instruction). The next byte or two bytes is fetched. This, treated as a
signed integer, is added to the PC. The indicators are unchanged. For all of the branch
instructions, the bits of the A field are interpreted as follows: :

Bit0 = 0 Fetch one byte for branches of -128 to +127 bytes.

Bit0 = 1 Fetch two bytes for ilonger branches. The low-order byte comes in first.
Bitl =0 Do not pop stack.

Bitl=1 Pqp stack if the (conditional) branch is nof taken.

57 Branch-If-Arg-Supplied

This is a special conditional branch that is used by the machinery that computes default
values for optional function arguments that were not supplied by the caller. The next byte
is rcad from the instruction stream and is taken as an offset (range 0 - 255) into the
args-and-locals arca“ of the stack frame. If the stack frame entry in question contains
Misc-Unsupplied-Arg, do not branch; otherwisc, take the branch. The branch is executed
normally, using the A-field of the instruction to control the usual branch options. The
branch offsct byte(s) will follow the argument offset byte in the instruction stream.

Branch if the NULL indicator is on. ;Ddcs not alter indicators (nordo'any of the other

58 Branch-Null
“branches).

59 Branch-Not-Null

Branch if the NULL indicator is not on.

60 Branch-Atom Branch if th_é ATOM indicator is on.

61 Branch-Not-Atom



INTERNAL DESIGN OF SPICE LISP ' . 28

Branch if the AT OM indicator is not on.
| 62 Branch-Zero  Branch if the ZERO indicator is on.

63 Branch-Not-Zero-
Branch if the ZERO indicator is not on. -

5.8. MISC Instructions

The following instructions afe members of the MISC group. Each of these expects a fixed number of
‘arguments to have been pushed on the stack in the order indicated (leftmost arg !pushed first). These
arguments are popped and a single return value is generated. This sets the indicators and goes to the E
location of the Misc operation. The numbers in the left margin are the 8-bit codes corresponding to each

instruction, in decimal format.

The user can access these functions directly from compiled Lisp code and can indirectly achieve the same

effect from interpreted code. See section 5.9 for details.

0Cons(XY) Conses up a list cell with X as CAR and Y as CDR. The allocation space is controlled by
the value of the symbol ALLOCATION-SPACE.

1 Alloc-Symbol (N) ‘ -
~ Allocates one symbol and returns a pointer to it. The allocation space is controlled by the
“value of ALLOCATION-SPACE. String N becomes the symbol’'s PNAME. The value is
initially Misc-Trap, the definition is Misc-Trap, the plist, package, and hash are initially
NIL. The symbol is not interned by this operation -- that is done in macrocode.

2 Alloc-B-Vector (N I) :

Allocates a B-Vector of N entries and returns a pointer to it. Allocation space is controlled
by the value of ALLOCATION-SPACE. 1 is the initial value with which the vector is
filled.

3 Alloc-U-Vector (N A)
' Allocate a local U-Vector w1th access-code A and a length of N items, and return a pointer
to it. Allocation space 1s controlled by the value of ALLOCATION-SPACE. All cntries
are initialized to 0.

4 Alloc-Remote-Vector (N A P) _
Allocate a remote U-Vector with N entries and access- code A, returning a pointer to it. Pis
the pointer to the data arca in system-table space. Allocation space is controlled by the
value of ALLOCAT]ON-SPACF :

5 Alloc-String (N) Allocate a string of Iength N, initialized to all 0" s, and return a pomtcr to it. Allocation
spacc is controlled by the value of ALTLOCATION-SPACE.




INTERNAL DESIGN OF SPICE LISP N ; : : 29

6 Alloc-Function (N)

Allocate a function object (like a B-Vector) of length N, not counting the 1-word header.
Allocation space is controlled by the value of ALLOCATION-SPACE. Initialized to 0
(Misc-Trap codes).

7 Alloc- Array (N) Allocate an array- -header for an array of N dlmensmns Allocation space is controlled by
the value of ALLOCATION-SPACE. The header is initialized to 0 (Misc-Trap codes), and
must be filled with the appropriate header info by other code. Returns a pointer to the
array header.

-8 Alloc-Xnum (N X)
Allocate an xnum N bytes in length, with sub-type code X. N and X must be fixnums. The
allocation space is controlled by the value of ALLOCATION-SPACE. All entries of the
XNUM vector are initialized to 0.

9 Alloc-Ynum (N X)
Allocate a Ynum N lisp- objects in length, with sub-type code X. N and X must be fixnums.
- The allocation space is controlled by the value of ALLOCATION-SPACE. All entries of
the YNUM vector are initialized to Misc-Trap codes.

10 Misc-Subtype (X)
X must be of type MISC. Returns the subtype ﬁeld (bits 24 27) of X rrght-Justxﬁed in a
ﬁxnum

11 Type (X) | Returns the 4-bit type-code of X as a fixnum.

12 Make- Immedlate-Type (OBJ TYPE)
OBJ can be any lisp object, TYPE is a fixnum in the range 0 - 2, which correspond to the
_ type-codes of immediate objects. Returns an object whose type-code bits are TYPE, but .
whose other bits are those of OBJ. Used for converting fixnums to misc-type objects,
~ converting pointer-type objects to fixnums so that the pointer can be examined, etc. '

13 Get—Vector-Subtype )
Returns the 4-bit subtype ficld of a vcctor-hke object V (B-vector, U-Vector, Array, Xnum
Ynum, String, Function). Retumed as a fixnum.

14 Set-Vector-Subtype (V X) : ‘
~ Stores the low order 4 bits of fixnum X as the subtype code of vector-like thing V. Returns
V. : o ' :

15 Get-Vector-Length (V) :
V is any vector-like thing. Rcturns the length of this vector which is one grcater than the
largest legal index, as a fixnum. ~

16 Get-Value (S) Gets the contents of the value ccll of the symbol S. Slgnals an UNBOUND error if the
valuc is Misc-T rap

" 17 Set-Valuc (S V)




INTERNAL DESIGN OF SPICE LISP ) R ' PR 30

Set the value cell of symbol S to V. If the cell contains an EVC-Forward pointer, this is
followed. Returns V.

18 Get-Definition (S) B
Returns the contents of the functional - definition cell of symbol S.Signals an
UNDEFINED error if the cell contains Misc-Trap.

19 Set-Definition (S D) ‘
Puts D into the functional definition cell of symbol S. Returns D.

20 Get-Plist (S) | Returns tﬁé prdperty list of symbol S.
21 Set-Plist (S P) Sets the property list of symbol S to P. P should be NIL or'a List object. ReturnsP. :
22 Get-PnAme S) Re;curns the pname of symbol S.
23 Set-Pname (S P) “.
Sets the pname of symbol S to P. P should be a string. ReturnsP.

24 Get-Package (S) ,
Gets the contents of the package cell of symbol S.

25 Set-Package (S P) _ »
Sets the package of symbol S to P. Returns P.

26 Get-Hash (S) ' Gets the contents of the hash cell of the symbol S.
27 Set-Hash (S H) Set the hash cell of symbol S to H. Returns H.

28 Boundp (S) S must be a symbol. Boundp returns NIL if the value cell of the symbol contains Misc-
Trap, T otherwise. -

29 Fboundp (S) S must be a symbol. Fboundp returns NIL if the definition cell of the symbol contains
Misc-Trap, T otherwise. . ' ,

30 Rplacé (LX) Replaces car ofL with X, returning the mociiﬁed L.
31 Rplacd (L X) Replaces cdr of L with X’, rctufning the modified L.
32 Unused. |
33 S-F]oaf X) . Turﬁs any number X into a short flonum.

34 1.-Float(X) = Turns any number X intd a long ﬂonum.

35 Negate (X)  For any number X, return the negative.




INTERNAL DESIGN OF SPICE LISP ‘ . 31

36 Lsh (N B) Both args are fixnums. Returns a fixnum that is N shifted left by B bits, with 0’s shifted in
on the right. If B is negative, N is shifted to the right with 0’s coming in on the left.

37 Get-Vector-Access-Type (V) ‘
'V must be a U-Vector. Returns the access—type code (b}ts 28-31.of the second header
word) right ]ustlﬁcd in a fixnum.

38 Logldb (SPN) ' ’ :

All args are fixnums. S and P specify a "byte” or bit-field of any length within N. This is
extracted and is returned right-justified in a fixnum. S is the length of the field in bits; P is
the number of bits from the right of N to the beginning of the specified field. P = 0 means
that the field starts at bit 0 of N, and so on. If the specified field is not entirely within the
28 bits of N, itis an error. :

39 Logdpb (VSPN)
All args are ﬁxnums Returns a number equal to N, but with the field specified by P and S
replaced by the S low-order bits of V. An error if the field does not fit into the 28 bits of N.

40 Abs (N) N is any kind of number. Retums the absolute value of N.

41 Subspace (X) X is any lisp object Returns the 2-bit allocauon space code.as a ﬁxnum Returns NIL if
the object is immediate.

42 Close-Over (L) L is a list-of symbols.” Creates and returns a closure-list for these symbols in the current
environment. See section 6.8 for details.

43 Activate-Closure (C) -
C must be a closure hst, as retumed by the Close-Over operation. Activate- Closure
restores the environment in which the closure list was created for the symbols closed over.
See section 6.8 for details. Returns C unchanged.

44 Typed-V-Access (A V 1)
A and I are fixnums, V points to a U-Vector or Xnum. ThlS returns entry 1 of the Vasa
fixnum, but uscs the low-order three bits of A as the access-type code instead of whatever
code is stored in the vector itself. The high-order bit of the access-type code, controlling
whether the vector is remote, is always taken from the vector itself, This is illegal if Vis a
string. Bounds checking should be done by the caller, though a reference to- a ficld that is
grossly out of bounds for this vector may be caught. '

45 Typed-V-Store (A V 1X) o
Like a V-Store, but stores X in entry 1 of V using A as the low-order 3 bits of the access-
type code, as above. Returns X. Illegal for strings.

46 Unused.

47 Freeze 0 Freezes all read-only spaces by moving the FREEZE pomters up to meet the FREE-
STORAGE pointers. Returns NIL.




INTERNAL DESIGN OF SPICE LISP - R 3R

48 New-Pure-Page (X)
X can be an item of any non- nnmcdtate data type. The type of X is examined, and the

current read-only page for that type of storage is closed. This is done by moving the

"~ FREE-STORAGE pointer for that space up to the next page boundary if it is not on a page
boundary already, and moving the FREEZE pointer to the same place. Returns X,

49 Shrink-Vector (V N)
V is any B-Vector, U-Vector, String, Function object, or Array header. N is the new

number of entries, a fixnum, which must be less than or equal to the current number of

‘entries. The length field and the number-of-entries field of the vector are altered to reflect
this new shorter length. If the object contains boxed entries, those beyond the new end of
the vector are set to 0 (Misc-Trap codes). Returns V, the vector which has been shortened.

50 Call- Break (F) Just like the Call operation, but starts the new frame with a break-type Misc-Frame-
Header word (bit 23 = 1) rather than the usual kind of header. This means that when the
called function ultimately returns, no return value is left on the stack. Gets F, the function

to be called, from the stack; returns NIL, though thlS w111 normally be called with

destlnatmn IGNORE.

51 Values-To -N (V)
V must be a Misc-Values-Marker. Returns the number of values mdxcated in the low 24
bitsof Vasa ﬁxnum :

52 N-To-Values (N)
N is a fixnum. Returns a Misc-Values-Marker with the same low-order 24 bits as N.

53 Arg-In-Frame (N F) . : ’

N is a fixnum, F is a control stack pointer as returned by the CURRENT-STACK-
FRAME and CURRENT-OPEN-FRAME operators. Returns the item in slot N of the
args-and-locals area of stack frame F. ‘

54 Current-Stack-Frame ()

Returns a control-stack pomter to the start of the currently active stack frame This will be

of type Misc-Control-Stack-Pointer.

55 Sct-Stack-Frame (P) ~
P must be a control stack pomter -This becomes the current active frame pomter Returns
NIL.

56 Current-Open-Frame () ‘
Returns a control-stack pointer to the start of the currcntly opcn stack: framc This will be
of type Misc-Control-Stack-Pointer.

57 Sct-Open-Frame (P) :
P must be a control stack pointer. This bccomcs the current opcn framc pointer. Rctums
NIL. :

58 Current-Stack-Pointer ()




INTERNAL DESIGN OF SPICE LISP _ o ' | _ ‘ 33

Returns the Misc-Control-Stack- Pomtcr that points to the cuncnt top of the stack (bcfmc
the result of this operation is pushcd) Note: by definition, this points to the first unused
word of the stack, not to the last thing pushed. The stack manipulation instructions make it
appear as if the stack is all in contiguous virtual memory, despite the fact that in some
implementations a TOS register or some other form of hardware buffer will be holding
part of the stack.

59 Current- Bmdmg-Pomter 0O
Returns a Misc- Bmdmg -Stack- Ptr that pomts to the first word above the current top of the
. binding stack.

60 Read-Control-Stack (F)
F must be a control stack pomter Returns the lisp object that resides at thlS location. If
the addressed object is totally outside the current stack, this is an error.

61 Write-Control-Stack (F V)
F is a stack pointer, V is any L1sp object. Writes V into the location addressed. Returns
V. If the addressed cell is totally outside the current stack, this is an error. Obviously, this
should only be used by carefully written and debugged system code, since you can destroy
the process using this operation.

62 Read-Binding-Stack (B) .
: B must be a binding stack pointer. Reads and returns the lisp object at this locatlon An
error if the location specified is outSIde the current binding stack.

63 Write- Bmdmg -Stack (B V) ‘
B must be a binding stack pointer. Writes V into the specified location. Returns V An
error if the location specified is outside the current binding stack.

64 Ldb(SPN)  All args are fixnums or bignums; S and P are non-negative. S and P specify a "byte" or
bit-field of any length within N. This is extracted .and is returned right-justified as a
positive integer. S is the length of the field in bits; P is the number of bits from the right of
N to the beginn'mg of the specified ficld. P = 0 means that the ficld starts at bit 0 of N,
and so on. N is considered to extend infinitely to the left; therefore, if the specified field
extends to the left of the internal representation of N, the rcmcumng bits are filled with
copies of the sign bit of N. '

© 65 Mask-Ficld(SP N)

Like LLDB, cxcept that the extracted field is returned in the same position it occuplcs in N
not moved to the right. The result is a positive fixnum or bignum with 0 in all positions
except that specified by the S-P field. '

66 Dpb (V'S P N) All args arc fixnums or bignums; P and § are non- ncgatlvc Returns a numbcr cqual to' N,
and with the same sign as N, but with the field specified by P and S replaced by the S
low-order bits of V. The result may be extended to the left of the ficld to make the sign
come out right.

67 Deposit-Ficld (V S P N)




INTERNAL DESIGN OF SPICE LISP - 34

Like DPB, except tﬁat the bits to be putin N are extracted from the corresponding field of
V, not from the rightmost S bits of V. :

68 Ash (N C). N and C are fixnums or bignums. Shift N left C places, shifting in zeros on the right. If C
is negative, shift N right -C places, preserving the sign of N.

69 Haulong (N) - N is a fixnum or bignum. Returns the number of significant bits of N.

70 V-Access(VI) V is any vector or vector-like object (B-Vector, U-Vector, String, Xnum, Array, or
Function Object). 1is a Fixnum. Returns entry I of V.If the vector is a U-Vector or
Xnum, the item returned is a fixnum; if a string, the item returned is a Char Object with
bits and font code of 0. :

71 V-Store (VIX) s
V is any vector or vector-like object. 1is a fixnum. X is the value to be stored into slot I of
vector V. For U-vectors and Xnums, X must be a fixnum, and is truncated to fit the vector
item size; for strings, X must be a Misc-Character code, -and only the 8-bit code portion is
saved. X is returned.

-7 Unused. Reserved for I/0 operators.

80 Force-Values ()

Returns NIL, but normatly this will be called with destination IGNORE.

81 Flush-Values () :
If the top of the stack is a Misc-Values marker remove this marker; if not, do nothmg
Returns NIL, but normally this will be called with destination IGNORE.

82 Mark-Catch-Frame 0
Set bit 20 of the header word of the current open frame, markmg this as a catch- tag frame.
Returns NIL.

83 Get-Newspace-Bit () :
' Returns a fixnum 0 or 1, mdlcatmg whether the current newspace is Dynamrc -0 or
Dynamlc -1

Misc-codes still to be defined: control of flipping and scavenging, interface to IPC and kernel...

5.9. Sub-Primitives

Itis intcndcd that no Spice Lisp code will be written directly in the macro-instruction Sct; cverything not

-microcoded will be written in Spice Lisp itself. Since the macro-compiler for Spiéc Lisp will run in Maclisp as

'wcll, we do not even need to write macrocode for b()otstrzlpping. This requires that some. systcm-level .

operations not available to normal users of Spice Lisp must be available within the Spice Lisp language to the

If the top of the stack is a Misc-ValueS marker, do nothing; if not, push Misc-Values 1.



INTERNAL DESIGN OF SPICELISP ‘ 35

system. implementors. Such system-level Lisp functions are called sub-primitives, and are identifiable by the
prefix %SP-. Since we are not attempting to be compatible with the Lisp Machine at the sub-primitive level,

we have deliberately chosen a different prefix to avoid confusion.

All of the Miscellaneous operations are accessiblé as sub-primitives. When the compiler sees something
like ” ’
(%SP-Type <arg>)
it generates something like

Push <arg> “ ;Push the single argument.
Misc Type . ;Call the Type Miscop.
;Return normally left on stack.

Of course, the compiler is free to use these misc operations in other situations as weﬂ. In a few cases, such

" as RPLACD, the misc operation will correspond directly to a user-visible function. In such a case, both a
RPLACD and a %SP—RPLACDAform will exist, and the compiler will generate the same code for both. In
general, sub-primitive functions will bé undefined if ,theybare encountered in non-compiled code, though we
will create a file of dummy definitions for the purpose of debugging uncompiled system code. (This file, at

least, must be compiled.)

A number of additional sub-primitives exist that vd.o not expand directly into misc-ops. Sce the section on

Sub-Primitives in the Spice Lisp User’s Manual for details.




INTERNAL DESIGN OFSPICELISP‘ v | : : S . N 36‘
6. Internal Con %ml Ceﬁvemons

6.1. Control Registers

The following 32-bit registers are kept within the processor and are accessed by microcode. All of these are
saved and restored across process breaks and kernel calls. Those registers that are "inside the barrier” and

whose contents must be transported by the flipper are marked with an asterisk *).

Flags - 28 single-bit state indicators, used for assorted purposes by microcode. - The high 4 bits
E contain a fixnum type-code so that this word can be pushed onto the stack if necessary.
(Actually, this code might not be present 1nterna11y, but only when the flags word is written
into boxed storage.)

TOS (*) The top (most recently pushed) entry of the control stack, unless the stack is empty. Kept
in a register for efficiency.

Control-Stack-Ptr The stack pointer for the main or control stack. Points to the first unused word of control-

: stack space. That is, the upward-growing stack uses a write-increment/decrement-read
discipline. The high 8 bits of this word contain a Misc-Control-Stack-Ptr type-code.
(Again, this code may not be present internally, but ohly when the reglster is written into
memory.)

Binding-Stack-Ptr The stack pointer for the special variable binding stack. Same discipline as for the Control-
Stack-Ptr. The type code is Misc-Binding-Stack-Ptr.

Active-Frame Points to the first word of the control stack frame for the function currently executing.
Type Misc-Control-Stack-Ptr. Note: the virtual address of the start of the Args-and-Locals
area of the active frame is this pointer plus a constant (see section 6.3).

Open-Frame Points to the first word of the control stack frame being built (args being evaluated) but not
yet entered. Type Misc-Control-Stack-Ptr.

Active-Function * '
Points to the boxed function object for the currently cxccutmg function. Note: the virtual
address of the start of the Symbols-and-Constants arca of the current function is this
pointer plus a constant. Sce scction 5.2 for the value of this offsct.

Active-Code (*)  Points to the unboxed code vector for the currently-exccuting function. Note: only the
\ flipper can'move this object, since to get into this register it must already be in newspace.

PC Conceptually, this is a fixnum that indicates which byte of the code-vector contains the
next instruction to be executed. This i is the form in which the PC is stored externally. The
internal format is machine-specific. :

On'the PERQ, the PC is stored internally as an offsct (cnding in three zeros) to the start of -
the PERQ gquad-word containing the next byte code and a 3-bit entry in the hardware BPC




INTERNAL DESIGN OF SPICE LISP S , - 37

indicating which byte of this quadword is to be rcad or exccuted next. The quadword in

question is cached in the instruction buffer of the PERQ. Note that the Current Code
object can only be moved by the flipper, and that the PC, BPC, and instruction buffer
contents do not need to be altered when such a movement occurs. The operation of

" computing a virtual address and reloading the instruction buffer must be atomic with

respect to flipping, but this is easy to achieve. All of this depends on the fact that the old
and new versions of the code vector have the same quad-word alignment; this is assured
since all objects in the PERQ implementation are quad-word aligned.

6.2. Binding Stack Format

Each entry consists df two boxed (32-bit) words. Pushed first is a pointer to thé symbol being bound.
Pushed second is the symbol’s old value (any boxed item) that is to be restored when the binding is popped.
6.3. Control Stack Frame Format

Each function call creates a new frame on the control stack. If the function is a compiled Function Object,
the stack frame is as follows. The entry marked 0 is the word pointed to by the Active-Frame register if this

frame is current.

0 Header word. Type Misc-Frame-Header.

1  Function object or EXPR for this call.

2 Closure List (or NIL if not a cldsure).

3 = Pointer to previous active frame. Type Misc-Control-Stack-Ptr.
4 Pointer to previous open frame. Type Misc-Control-Stack-Ptr.

5 Pointer to previous binding stack. Type Misc-Binding-Stack-Ptr.
6 Saved PC of caller. A fixnum. B

7 Args-and-Tlocals block starts here. .This is entry 0.

N  Misc-Frame-Barrier. Push after the args and locals.

6.4. Call Instruction

This macro-instruction opens a call block on the stack, but does not actually begin the call. Instead, the
arguments are evaluated and pushed on the stack, and the call is actually started by the PUSH-LAST
instruction when the last argument is in place. Note that in evaluating the arguments for one function, other

functions may have to be called, so a chain of several open call blocks may be present at one time.

The CALL instruction receives the function to be called as CE. 1t then cheeks the type of CE and procecds

as follows, according to the type:

If CE is a symbol, fetch the contents of the symbol’s definition cell. If this is Misc-Trap or another symbol,



INTERNAL DESIGN OF SPICE LISP o : - - 38

signal an error. Else, go on from here as if this were the origi‘nal CE. (We cannot allow chains of symbols
defined as other symbols, since this could lead to a very nasty kind of infinite loop that would be expensive to
‘check for.) '

1f CE is a function object, perform the following steps:

1. Note the current value of Control-Stack-Ptr.

2. Push Misc-Frame-Header on control stack.

3. Push CE (the function being called).

4. Pusﬁ NIL as thé closure list.

5. Push Acti;ze-Frame.

6. Push Open-Frame.

7. Push Bmdmg -Stack-Ptr.

‘8 Push Fixnum -1 (thls will later be filled with caller’s PC)
9. Open-Frame <= = Stack frame pointer saved in step 1.

The new open frame is now ready to have arguments pushed by code in the calling function, terminated by -
a PUSH-LAST to start the call.

If CE is a list, and its CAR is of type Misc-Closure-Marker, then this is a closure. Its CADR is the function
or Lambda to be called, and its CDDR is the closure list. Proceed with the call as if the CADR were the
original CE, but push the CDDR into entry 2 of the stack frame instead of NIL.

if CE is a list whose CAR is not of type Misc-Closure-Marker, it is probably a LAMBDA expression. The
call proceeds exactly as specified above, with the list stored in the function slot of the new frame. The
arguments will ‘be p‘ushcd normally, then %SP-INTERNAL-APPLY will be called when PUSH-LAST is
exccuted. (See below.) %SP—IN"I‘ERNALfAPPIJY' will verify that this is in fact a lcgél LAMBDA or

something clse that it knows how to handle.

If CEvis anything else, an ILLEGAL-FUNCTION error is signalled. ‘




- INTERNAL DESIGN OF SPICE LISP ' v ‘ ' . 39

6.5. The Push-Last Instruction

This pushes CE (unless A = 0, in which case the stack is unchanged) and starts the function responsible. for
the current open frame. Note that CAI L-0 opens the frame then j jumps in here nnmcdlately, since there are

no args to set up.

If Open-Frame is null, signal an error. If there is a frame, and it is for a compiled function (entry 1 of the

open frame is of type Function), proceed as follows:

1. Insert the current PC (points to the NEXT instruction of the caller’s code vector) in the PC slot of
the open frame. .

2. Active-Functibn <= = Called function (from slot‘ 1of open frame).
3. Active-Code <= = Code vector for new active function. o
4. Note nﬁmber of args pushed by caller.

5. If number of args < minimum, signal an error.

6. If number of args > maximum and a &REST arg is present, pop excess args into a list, push this
list back on stack as the &REST arg, then go to step 9. :

7. If number of args > maximum and no &REST arg, signal an error.

8. If number of args is between min and max (mcluswc) push a MISC-UNSUPPLIED-ARG for
each remaining optional and NIL for the &REST arg, if any.

9. Push NIL for as many locals as the function requires.
- 10. Push Misc-Frame-Earrier to finish frame.
11. Active-Frame {= = Open-Frame ’
12. Open-Frame <¥ = NIL
13. Set up PC = 0 (Note: this points to entry 0 in the code vector, which. is always the address of the
first instruction. Internally on the Perq, we must actually sct up PC, BPC, and fill the instruction

buffer.)

14. If slot 2 (the closure list) of the current frame is non-null, perform an ACTIV ATE-CLOSURE
opcration on this list. : , :

15. Return to macro-code execution loop to run new function.

If the object in cntry 1 of the open frame is a lambda cxpression rather than a function object, we must call

the %SP-INTERNAL-APPLY function to interpret this expression with the given arguments. To achieve this




INTERNAL DESIGN OF SPICE LISP . ' o 40

we proceed as follows:

1. Note the number of args pushed in the current open frame (call this N) and the frame pointer for
this frame (call it F). Also remember the lambda-expression in this frame (call it L). ‘

2. Perform steps 1 and 10 - 14 of the sequence specified above for a riormal PUSH-LAST.

3. Perform the equivalent of a CALL-MAYBE-MULTIPLE instruction with the symbol %SP-
INTERNAL-APPLY as CE. (This symbol is in a fixed location known to the microcode. See
section 2.8 )

4.Push L, N, and F in that order as the three arguments to %SP—INTERNAL—APPLY.

5. Perform the equivalent of a PUSH-LAST with A = 0 to start the call.

%SP-INTERNAL-APPLY, a compiled function of three ‘argumé_nts,' now eﬂraluates the lambda expression
L, obtaining the arguments from the frame pointed to by F. These arguments are obtained using the ARG-
IN-FRAME Misc-op. Just prior to returning, %SP-INTERNAL-APPLY sets the ACTIVE-FRAME register
to F, so that it returns from frame F. ' '

6.6. Return Instruction

Returns from the current function, popplng the stack frame and then pushmg some number of returned

values as determmed by the nature of CE and the bits set in the frame header word.

If CE is any type of object except a Misc-Values-Marker, the function is trying to return a single value,
namely CE. If the current frame begins with a break-type frame header, CE is discarded and the saved
indicator values are restored. If the current frame begins with an escape-to-macro type header, CE is placed
" in the location indicated by the codes stored in the header word. If the framé begins with a multiple-value ‘
- frame header, the single value is returned and the Misc—Valucs—Markcr with 1 in the Jow 24 bits is pushed on

top of it, indicating that 1 value is being returned.

The steps are as follows:

1. Pop binding stack back to value saved in slot 5 of the active control frame. For each symbol/value
-pair popped off the binding stack, restore that value for the symbol.

2. Temp <= = Previous active frame from slot 3 of current frame.
3. Open-Frame <= = Saved value in current frame,

4. PC <== Saved value in current frame. Note that on the PERQ this requires setting up the
internal PC, the BPC, and the instruction buffer. '



INTERNAL DESIGN OF SPICE LISP ' N S 41

5. Active-Function <= = Saved value from previous frame, A pointer to-this frame is in Temp.
6. Active-Code <= = Code Vector obtained from entry in restored Active-Function object.

7. Pop current frame off stack:

Control-Stack-Pointer <= = Active-Frame.
Active-Frame (= = Temp.
- Pop top of stack into TOS register.
Since the active frame is inside the barrier, make sure the new top
frame has been scavenged, or do it now.

8. If frame exited was normal (began with Misc-Frame-Header), push the return value onto the stack
and use it to set the indicators.

9. If frame exited was of break type, restore the indicators from the values saved in the header word,
but push nothing on the stack. '

10. If frame exited was of escape-to-macro type, place the return value wherever the saved A field and
offset indicate that it should go. The return value also sets the indicators.

11. If frame exited was of multiple-value type, push the return value on the stack and use it to set the
indicators. Then push Misc-Values-Marker 1 to indicate that only one value was returned.

12. Resume execution of function popped to.

If RETURN is called with CE of type Misc-Values-Marker, the low 24 bits of CE indicate how many
values are to be returned; call this number N. The N things to be returned have already becen pushed as the
top N items on the stack. In this case the return proceeds as follows: e

1. Note the value of the current stack pointer (after CE is popped off if it came from the stack) as
OLDSP.

2. Perform steps 1 - 7 of the RETURN protocol described above. Do not release the space occupied.
by the old stack frame back to the system, since we will need to get at the return valucs that are
still in the old frame. (This space is not currently released anyway.) '

3. Examine the header word of the frame being 'retumcd from to detcrmine the type of the call.
Proceed as follows: : .

_ a. For an ordinary call, if N = 0 push NIL as the single return value. Elsc, pick up the first’
. return value from location (OLLDSP) - N and push that as the return value. In either case,
the thing rcturned sets the indicators. ' :

| b. For escape- to-macro call, place the first returned value (or NIL if thcrc arc 0 values) in the
place indicated by the header word, dlscardmg any other values.

¢. For break-type call, do just -what an ordinary RHURN would do: restore the saved
mducators and push no rcturn value.



INTERNAL DESIGN OF SPICELISP . : 42

" d. For multiple-value call, do a block transfer loop pushing the N words starting at (OLDSP)
- N onto the stack as return values. Then push the original CE, which is Misc-Values-
Marker N. The first returncd value sets the indicators, or NIL if Nis 0.

4. Resume execution of the caller.

6.7. Handling Optional Arguments‘

Spice Lisp subports &OPTIONAL, &REST, and &AUX arguments like those in the Lisp Machine. We do
not plan to support the &KQUOTE mechainisrri; all arguments to a function are evaluated. (The only exception -
to this is.in functions of the FEXPR type; in which the entire argument list is passed unevaluated to the
function as its single argument.) Some arguments and &AUX variables are local (lexically bound on the

stack) while others are special (shallow-bound in the value cell of the symbol).

In the Lisp Machine this vériability is handled by a variety of rather complex mechanisms which we cannot
afford to duplicate in our more limited microstore. Instead, we handle the variation in a uniform way,
primarily within the macrocode of the function. As has already been described, the function object contains
" information indicating the maximum and minimum number of arguments and whether there is a &REST
argument. At the time a call is started, all of the arguments (whether special or not) are present on the stzick,
with MISC-UNSUPPLIED-ARG codes in the place of any optional argumenté that were not supplied by the
- caller. Space has also been allocated for any non-argument locals, and these have been initialized to NIL. At

this point the function’s macrocode is entered at PC = 0.

Note that all of the arguments passed by the caller are executed in the caller’s environment, but that in
evaluating default value expressions for unsupplied arguments and initialization expressions for &AUX
variables, the assumption is that evaluation and binding proceeds left to right: 'each initialization expression

can assume that the variablcs to its left have already been set up.

If an &optional argument is a 3-elefnent list (FOO INIT FOOP), the FOOP value gets sct to NIL if the
caller supplied no argument, T if the argument was supplied. In the description below, the third clement will

be called a "foop” parameter.

The macrocodc proceeds through the following steps:

1. Bind any spccial variables associated - with required arguments, to their new values. The
~ arguments arc lcft on the stack as passed, but future accesses and SETQs are to the value cell of
the symbol. ' ‘ :

2. For cach optional argument, in order from left to right, the following code is generated:




INTERNAL DESIGN OF SPICE LISP. , . ' 43

If there is a FOOP, set it to T if it is local,
bind it to T if it dis special.
Branch-If-Arg-Supplied Arg-number Dest
If there is a FOOP, set it to NIL.
<Code to initialize argument on stack>
Dest: <Code to bind argument to value on stack 1f arg 1is special>

3. Code to bind the &REST argument if it exists and is special.

4. Code to initialize &AUX variables, and to bind those that are special. These are initialized and
bound in left-to-right order, so that the initialization code for each variable can use the values of
variables to its left. :

5. Code for the function itself.

6.8. Closures

When a closure of a function is created, thé binding environment in which the closure was created is saved;
when the closure is called, any references to special vari"a'blesi from_‘within the,closed‘function will see the
versions of the variables that existed at the time the closure was created, rather than the current execution
environment. This is true even if the closing environment has been exited, which under normal conditions

would have popped and destroyed this environment.

-

In Spice Lisp we use a‘closure scheme invented by the MIT Lisp Machine group. Itsaves the environment
brﬂy for a set of variables which the user specifies, and not the entire environment present at the time of the
closure. At the time of the creation of the closure, an Extérnal Value Cell (EVC) is created in list space for
each symbol closed over. The symbol’s current value is placed in the EVC, and an EVC-Forward pointer is
placed in the valuc; slot of the symbol. Any attempt to reference or altcrvthe value of the symbol will now be
- forwarded by this pointer and will reference or alter the vahie in the EVC instead. The EVC (but not the
.forwarding pointer) survives any popping of the current binding environment. When the closure is called, the

EVCs for all the closed variables can be sct up again by the creation of new EVC-Forward pointers. The-
existence of closures thus costs nothing if this feature is not used, and costs relatively little even when closures

arc used. The two key operations in dealing with closures are Close-Over and Activate-Closure.

Close-Over is a miscellancous operation that takes one argument, a list of symbols that are to be closed over

in the current environment. It returns a closure-list, which is a list with the following format: |
((valuel . symbol1l) (value2 . symbol2) ... (val ueN . symbolIN))

~ This list is built by performing the following steps for each symbol Sin thc argument list:

1. Get the contents of the value cell of S. Call this V. Do not follow EVC-Forward pointers in this -




INTERNAL DESIGN OF SPICE LISP o ' AT 44

fetch.

2.If V is of type EVC-Forward, get a (non-forwarding) pointer to the list cell that this points to.
CONS that onto the closure list to be returned. (If two different closures are created of the same
binding of a symbol, we share the EVC rather than letting the EVC-Forward pointers chain.)

3. Else, CONS up a new list cell in dynamic space, putting V in the CAR and S in the CDR. Cons

this cell onto the list to be returned. Create an EVC-Forward pointer to the new cell and put this
in the value cell of S.

Once the closure list is created, it is turned into a function closure by. CONSing on the function and a

Misc-Closure-Marker. This is done in macro-code.

The Activate-Closure function takes a closure list as its single argument and restores the environment that

this closure list represents. It does this by CDR-ing down the closure list, creating an EVC-Forward pointer

to each element in the list and rebinding the symbol in this cell to the EVC-Forward pointer. The previous

values of these symbols are saved -on the binding stack, as in all rebindings. Activate-Closure is called

internally by the Push-Last operation when the function being started is a closure.

6.9. The Escape to Macro Convention

Spice Lisp will be implemented on a variéty of machines, not all of which will have enough microstore
space for all of our needs. Some of the macro_-instruétions that we have defined are relatively sindple for most
cases, but can be arbitrarily complex for some cases. For example, the arithmetic instructions can handle
fixnums and (maybe) flonums in microcode, but (oﬁ the Perq, at least) we would like to escape to a

macrocode routine if we discover that we have to deal in bignums.

Such cases could be handled by a full-scale microcode-to-niacrocode subroutine call, which upon a return
comes back to the designated return address in the microcode and restores any micro-state that may have
been clobbered. This may ultimately be needed if we ever implement a micro-compiler for lisp, but for now
we can get by with a simpler scheme. If the microcode for any macro-instruction decides that it has a case too
difficult to handle, it can call a maicrocddcd function that docs whatever the original macro-instruction was
supposed to do. It docs this by opening an escape-type frame on the control stack, pushing an appmpriate set

of arguments, and then starting the call as though a push-last had been done in macrocode. When the

macrocoded escape function returns, the returned value goes wherever the original macro-instruction was:

supposed to place its result, and the original instruction strecam continues on as if the macrocode instruction

had cxited normally without an escape.




INTERNAL DESIGN OF SPICE LISP r o v ' 45

Macro and misc instructions can place their returﬁ valucs in any of sévcral dcst.inétibns: push oﬁ thé stack,
throw away but sct the condition codes, store in the current stack frame, or sct the valuc'of a symbol. The
escape call must set up the frame header word to indicate which of thesc locations is to get the value returnéd
by the macro-coded escape function. The appropriate A value is stored in bits 16-17. The offset, if any, is
stored in bits 0-15. A long (two b‘yte) offset is always used here, since we don’t have room to alternate
between one and three bytes. Given this information in the frame header, RETURN will do the right thing to

make it appear that the original macro-instruction had exited normally. .

Some macro-ops, notably TRUNC, niay want to return multiple values from an escape function. These
values will alwayé be returned on the stack. In this case, the escape mechanism builds a multiple-value call

frame rather than an escape call frame, then escapes in the usual way.

The macro-coded escape functions all live in read-only function space. A table of pointers to these
functions is stored in a fixed location in physical memory, and the address of the start of this table is known to
the microcode. This means that microcode routines can select the desired function by means of a table index,

and it is not necessary to assemble the addresses of all these functions into the microcode.

The escape mechanism is implemented by a micro-subroutine named ESCAPE, which can be called (or
rather, jumped to, since ESCAPE never returns to the cailer) by any micro-routiney that wants to escape to
macrocode. ESCAPE is passed the index of the macro-function to be called and from 0 to 4 lisp objects as
arguments. (The mechanism of this internal argument—passihg is up to the microcode implementor.)

ESCAPE then performs the following steps: '

1. It is determincd where the currently executing macroinstruction is going to place its result, and an
appropriate escape-type frame heéader word is generated.

2. A pointer to the desired function object is fetched from the table of escape functions, as
determined by the index that was passed to ESCAPE.

3. The equivalent of a Call instruction is executed for thns function object, but the header word
detcrmmed in step 1 is used instcad of the normal header word

4. The specified arguments, if any, arc pushcd onto the control stack. The new function is then
started by exccuting the equivalent of a PUSH-LAST instruction.

A sccond entry point, ESCAPE-MULTIPLE, docs the same thing as ESCAPE but creates a mu]tipile-value

frame header instcad of an cscape frame header.




INTERNAL DESIGN OF SPICE LISP ‘ ' 46

6.10. Multiple Value Returns

Spice Lisp implements multiple value returns in the style of the Lisp Machine. The xnacro-instructions
needed to implement this feature, and their use, are described here. See also the description of the RETURN

instruction in section 6.6.

The CALL-MULTIPLE instruction is used to start a call which is expected to return multiple values. This
is identical to the CALL instruction, except that bit 21 of the frame header word is set. '

The form (VALUES v1 ... vN) compiles into code that pushes the N values on the stack, then pushes a
Misc-Values-Marker on top. This marker has N recorded in its low 24 bits. -

When RETURN is called with a CE of type Misc-Values-Marker, it returns from the current function call
frame as usual, but instead of pushing a single return value, it pushes the N values it found on the stack,

followed by the Misc-Values-Marker from the original CE. See section 6.6 for details.

The net result of performing a multiple-valued call is that N+1 words have been pushed onto the stack:
the returned values, in order, with Misc-Values-Marker N on top. Now let us see how this can be used to get

the effects of various source constructs.

Todo (MULTIPLE-VALUE-LIST (FOO A B)):

(CALL-MULTIPLE (CONSTANT [FO00]))

(PUSH [A])

(PUSH-LAST [B])

(MISC %SP-VALUES-TO-N STACK) :

(LIST STACK) ;Pop N from stack, then 1istify N things.

In the MULTIPLE-VALUE call the symbols listed in the first arg are to be sct to the respective return

values, with missing values defaulting to NIL. To do (MULTIPLE-VALUE (XY Z) (FOO A B)):

(CALL-MULTIPLE (CONSTANT [FO00]))
(PUSH [A]) :

(PUSH-LAST [B]) ' '

(MISC %SP-VALUES-TO-N STACK) o '
(- (CONSTANT [3])) "~ ;Get number offered - number wanted.

(NPOP STACK) ‘ ;Flush surplus returns or push NILs.
(POP [Z]) S ;Now put the three values wherever they
(POP [Y]) ©; are supposed to go.

(POP [X]) o : :

In some tail recursive situations, such as in the last form of a PROGN, one function (caII it FOO) may want

to call anqthcr function BAR and rcturn "whatever BAR returns”. 1f BAR rctumé multiple values, and




INTERNAL DESIGN OF SPICE LISP _ ‘ C o 47

FOO's caller is expecting multiple values, these values should be passed through. This is done using the

CALL-MAYBE-MULTIPLE instruction. Suppose, for example, we are complhng the following:

(defun foo (x y)
(bar x y))

This compiles into the following macro-instructions:

(call-maybe-multiplie (constant bar))
(push (arg x))

(push-last (arg y))

(return stack) -

If the caller of FOO expects a multiple value, the CALL-MAYBE—MULTIPLE will opefate just as a
CALL-MULTIPLE does; if the caller of FOO expects a single value, this will operate as a regular CALL.

6.11. Catch and Throw

The Spice Lisp compiler translates (catch tag . expressions) into a call to %sp-catch. This call is opened on
ﬂle stack, then the following arguments are pushed: TAG, CATCHER, THROWP, and PC. This frame is
marked on the stack with the %sp-mark-catch-frame misc-op, so that the throw operation can findit. TAG is
of course the catch-tag. CATCHER is NIL for normal calls to catch. ‘THROWP ié initially set to NIL, but is
overwritten with the throw-tag if a throW to this tag occurs. The PC argumerit is a fixnum that indicates where

in the calling function’s code vector execution should resume after a THROW.

Once these initial arguments have been pushed, the expressions in the catch-form are evaluated as in a
- progn. It is during the evaluation of these expressions that a throw to this catch may occur. If there is no
throw, the last expression may push a value or multiple values the stack. Then the %sp-catch call is started

with a push-last.

%Sp-catch itself is a simple macrocoded function that ignores its first four arguments and returns the rest as
multiplc values. The definition of %sp-catch (which must be compiled for all of this to work properly) is as

follows:

(defun %sp-catch (1gnore 1gnore ignore ignore &rest vhst)
(values-Tlist viist))

A call of the form (CATCH <tag> <expressions>) produces the following code:



INTERNAL DESIGN OF SPICE LISP L | *®

(CALL-MAYBE-MULTIPLE %SP-CATCH) ;Set up the %SP-CATCH call.

(MISC %SP-MARK-CATCH-FRAME IGNORE) ;Mark it as a CATCH frame.
(PUSH <tag>) _ ;Push the arguments.
(SET-NULL STACK) o ;Catcher.

(SET-NULL STACK) o ~ ;Throwp.

(PUSH <fixnum return-tag>) ;PC to go to after throw.

<code for expressions as progn> ;Throw may occur anywhere in here.

(MISC %SP-FLUSH-VALUES IGNORE) ;Get rid of Misc-Values marker.

(PUSH-LAST STACK) ;If no throw, start %SP-CATCH here.
RETURN-TAG » ;End up here on throw or no throw.

The other catching functions -- catch-all, unwind-all, and unwind-protect have their own interﬁal functions,
all of which take the same four initial arguments as %sp-catch. Catch-all and unwind-all always have a TAG
of NIL; which matches any throw-tag, and use the CATCHER argument for passing in the associated
function. Unwind-protect is called with a TAG of T, which catches any throw, but only if a matching tagora
tag of NIL appears higher up on the stack so that the subsequent throw to the same tag will succeed.

The throw macro-op gets a throw-tag, which must be a symbol, as CE and finds a single or multiple value
on top of the stack. The intent is that the throw will look up thé stack for-an open call with the catch-frame

marker set and with either é matching tag or a tagf of NIL. If no such tag is found, the THROW signals an
' error without popping anything off the stack. If a catch-frame with tag T is found, the throw treats it as a
match, but only if it finds a truly matching tag or a tag of NIL highe_r on the stack; otherwise, an error is
signalled as though the throw had found no match at all.’ |

Once a matchmg open catch-frame is found, the associated call is actlvated but with certain of 1ts

arguments altered. More precisely, THROW does the following:

1. We need two temporary registers for searching up the stack. Begin with the current Open Frame
pointer in register A. Sct register B to NIL.

2. 1f the header word of frame A has bit 20 set, go to step 4.' ‘Otherwise, go on to step 3 to find a new
A.

3. If the Previous Open Frame slot of frame A is not NIL, pick up this value, make it the new A, and
return to step 2. If the Previous Open Frame slot of frame A is NIL, examine the Previous Active
Frame of A. If this is NIL., we have run out of stack and must signal an UNSEEN-THROW-TAG
error. If non-NIL, pick up this value, make it the new A, and repeat step 3 with this new A,

4. Examine the first argument slot of frame A. If this argument is NIL or is I-Q to the tag being
thrown to, we have a match. Go on to step 5. 1f the argument is T and register B is still NIL, save
the pointer to frame A in B. Thcn. return to step 3 and continue scarching up the stack.

5. At thIS point, we have found a match. 1f register B is non-NlL, that is thc frame we actually want
to throw to. Stuff the contents of Binto A, :




INTERNAL DESIGN OF SPICE LISP . , : 49

6. Over-write the third argument of frame A with the throw’s tag.

7. Shuffle the value of values that were passed to the throw into position as the fifth and subsequent
arguments in this frame. Only the values themselves are moved, not the Misc-Values marker.
The control stack is then popped so that the last of these values is the top entry on the stack. -

8. Unwind the binding stack to the value saved in frame A, restoring the saved values.
9. Begin the call in frame A as though a PUSH-LAST had been done, but arrange for the the fourth
(PC) argument of A to be saved in the "saved PC of caller” slot on the stack frame, instead of the

PC that would normally be pushed there. This ensures that the catch-function will return to the
right place. ' ' '

6.12. Error Handling

When an error is detected during the execution of a macro-op or misc-op, the microcode simulates a call to
the function stored as the definition of %SP-INTERNAL-ERROR, a static symbol whose location is known

to the microcode (see section 2.8). This call is identical to the calls created by the escape to macrocode

mechanism, in that an escape-type frame header is used, and this records where the result of the failing
macro-instruction was supposed to end up. (See section 6.9 for details.) This means that the error-handling

function has the- option, in some cases at least, of returning a value for the losing instruction and continuing

with the next sequential macro-instruction. If an errgr occurs during an operation that does not return a value

(a branch, for example), the header word should indicate a destination of IGNORE. (Handlers for errors in
- these operations will normally not try to return a corrected value in any event; they might instead restart the

current Lisp function at the beginning or throw to some higher level.)

The %SP-INTERNAL-ERROR function is passéd a fixnum error code as its first argument. The second
argument is a ﬁxnﬁm offset into the current code vector that points to the lbcation imrnedi_ately following the
macro-op that encountered the trouble. From this offset, the Lisp-lcvcl crrorvhandlcr can reconstruct the PC
of the losing instruction, -which is not readily available in the micro-machine. Following the offset, there may
be ‘0 - 2 additional arguments that provide information of possible use to the error handler. For example, an

unbound-symbol error will pass a pointer to the symbol in question as the third arg. )

The following error codes are currently defined. Unless otherwise specified, only the error code and the

code-vector offsct are passcd as arguments.

1 Control Stack Overflow .
'The control stack has éxcceded the allowable sizc, currently 2% words.

2 Control Stack Underflow .
Can only result from a compiler bug or misusc of a sub-primitive.



. INTERNAL DESIGN OF SPICE LISP : o - L 50

3 Binding Stack Overflow

The binding stack has exceeded the allowable size, curremly 2%

words.

4 Binding Stack Underflow :
Can only result from a compiler bug or misuse of a sub- pnmluve

5 Virtual Memory Overflow
Some data space has exceeded the maximum size of its segment in virtual memory.

6 Unbound Symbol
Attempted access to the spec1a1 value of an unbound symbol. Passes the symbol pointer as
the third argument to %Sp-Internal-Error.

7 Undefined Symbol
Attempted access to the definition cell of an undefined symbol. Passes the syrnbol-pomter
as the third argument to %Sp- Internal—Error

8 Itlegal Effective Address
: Can only result from a compller bug.

9 Altering T or NIL
Attempt to bind or setq the spec1a1 value of T or NIL.

10 Unused.

11 Write Into Read-Only Space
Self-explanatory.

12 Object Not Character
The object is passed as the third argument

13 Object Not System Area Pointer
The object is passed as the third argument. .

14 Object Not Control Stack Pointer :
- The object is passed as the third argument.

15 Object Not Binding Stack Pointer
The object is passed as the third argument.

16 Ob_]CC[ Not Valucs Marker
: The object is passcd as the third argumenL

17 Ob_]CCt Not Fixnum )
FThe object is passcd as thc third argument.

18 Object Not Vector-Like




INTERNAL DESIGN OF SPICE LISP R o 51

The object is passed as the third argument.

19 Object Not Xnum or U-Vector
The object is passed as the third argument.

20 Object Not Symbol
The object is passed as the third argument.

21 Object Not List
- The object is passed as the third argument.

22 Object Not List or Nil |
~ The object is passed as the third argument.

23 Object Not String
The object is passed as the third argument.

24 Object Not Number ,
' The object is passed as the third argument.

25 Object Not Misc Type
The object is passed as the third argument.

26 Object Not Unboxed Vector
The object is passed as the third argument.

27 Illegal Allocation Space Value'
Self explanatory.

28 Illegal Vector Size :
‘Attempt to allocate .a vector with negative size or size too large for vectors of this type.
Passes the requested size as the third argument.

29 Tllegal Immediate Type Code
Passcs the code as the third argument.

30 Illegal Control Stack Pointer
Passes the mcgal pointer as the third argument

31 llegal Binding Stack Pointer
Passes the illegal pointer as the third argument.

32 Ilicgal Macro Operatlon
- Must be duc toa compﬂcr CITOr Or 10 using obsolctc code that docs not match the current
microcode. No additional args :

33 Megal Misc Opcration




- INTERNAL DESIGN OF SPICELISP - : ' . " R - 52

Must be duc toa comp11e1 error or to using obsolcte code that docs not match the current

microcode. No additional args.

34 Tllegal Divisor The divisor is mteger or floating 0. Returns the divisor and d1v1dend as the third and
fourth args. : '

35 Tllegal Vector Access Type
The specified access type is returned as the third argument.

36 Illegal Vector Index : ,
The specified index is out of bounds for thls vector.  The bad index is passed as the third
argument.

37 Illegal Byte Pointer °

Bad S or P value to LDB or related function. Returns S and P as the thlrd and fourth

arguments.

38 lllegal Function »
Bad object being called as a function. The object is passed as the third argument.

39 Too Few Arguments
Attempt to activate the call to a function with too few arguments on the stack. Returns the
number of arguments passed as the third argument, the function being called as the fourth.

40 Too Many Arguments
: . Attempt to activate thecall to a functlon with too few arguments on the stack. Returns the
number of arguments passed as the third argument, the function being called as the fourth.

41 Unseen Throw Tag '
Returns the tag as the third argument.-

42 Null Open Frame
~ Attempt to activate a function call, but no frame has been opened. No additional args.

43 Undefined Type Code
Can only result from a bug in the mlcro-machme Returns the strange ObjCCt as the third
argument.

44 Return From Initial Function
Sclf-cxplanatory.

45 GC Forward Not To Newspace
Can only result from internal errors in thc micro-machine. No additional args.

46 Attcmpt To Transport GC Forward
Can only result from internal errors in the micro-machine. No addmonal args.

47 Object Not Integer




INTERNAL DESIGN

48 - 63 Unused.

Codes above 63

OF SPICE LISP R | 53

The object is passed as the third argument.

are used for implementation-dependent I/0 and system interface errors. In the Tops-20

virtual machine, the following‘codes are defined:

64 Illegal File Token

The bad token is passed as the third argument.

65 Illegal 170 Mode Specifier

6.13. Interrupts

The bad mode is passed as the third argument.

and Breaks

There are three kinds of interrupt in Spice Lisp:

“Internal Interrupts

-~ On the Perq, and on most other machines on which Spice Lisp might be implemented,

certain I/0 events must be checked for periodically, and if such an event is detected, some -
low-level 170 processing must be done. The time constraints are such that we may not be

“able to wait for a convenient time to do this processing. These are called internal

interrupts. The key feature of an internal interrupt is that it is handled by the 170

" microcode without altering the state of the Lisp process or its registers in any way. The

Process Breaks

Lisp Breaks.

internal interrupt code may access wired-down pages of main memory, but may not do
anything that might cause a page fault or process swap. In some cases (for example, a clock
tick) the internal interrupt may set a flag that tells Lisp to take a process break at the next
convenient time. ' '

" These are more serious. At a process break, the Spice scheduler is given the opportunity to

run another process. This may require that the entire state of the Lisp process, including
all of its internal registers, be saved in main memory and restored later. Process breaks can
occur at the time of any kernel call, between any two macro-instructions, and whenever a
main memory reference is made which may result in a page fault. At each of these times,
the Lisp process must have no state hidden in parts of the micro-machine that cannot be
dumped and restored, and the amount of other state should be at a minimum. However,
after the break has returned, there is no change in the state of the Lisp process, and
processing can go on as though nothing had happened.

These are breaks in the flow of pmcessivng that are handled within the Lisp procéss. The

usual causc of a Lisp break is the user typing B (or some system-dependent cquivalent),
which indicates that he wants to enter a Lisp breakpoint at the current point in the

- processing.” The microcode will normally check for a pending lisp-break request (a flag bit)

between cach macro-instruction exccution and, if such a request is detected, will create a

* break-type call to the %SP-INTERNAL-BREAK function (sce section 2.8, passing it a

single argument, a code representing the reason for the break. Currently, only code 0 is
defincd; this indicates the arrival of a 1B, Becausce this is a break-type call, if the break



INTERNAL DESIGN OF SPICE LISP . ' o 54

function returns normally, the return value is discarded and the indicators are restored to
the state they had prior to the break. The break function may, however, have other side
effects within the Lisp process. : '




INTERNAL DESIGN OF SPICELISP’

.Index

%SP- (prefix for subprimitives) 34
%SP-INTERNAL-APPLY 9,39
%SP-INTERNAL-BREAK 9
%SP-INTERNAL-ERROR 9

&AUX 42 .

&OPTIONAL 20,42

&QUOTE (not supported) 20, 42
&REST 20,42

* (macro instruction) 25
+ (macro instruction) 25
- (macro instruction) 25
/ (macro instruction) | 25

1+ (macro instruction) 26
1- (macro instruction) 26

< (macro instruction) 26
= (macro instruction) 25
> (macro-instruction) 25

A-field of byte codes 22
ABS ‘31 :
Access-type codes 12
ACTIVATE-CLOSURE 31, 39, 43
Active frame 20 '
ACTIVE-CODE register 36
ACTIVE-FRAME register 36
ACTIVE-FUNCTION register 36
ALLOC-ARRAY 29
ALLOC-B-VECTOR 28
ALLOC-FUNCTION 28
ALLOC-REMOTE-VECTOR 28
ALLOC-STRING 28
ALLLOC-SYMBOL 28
ALLOC-U-VECTOR 28
ALLOC-XNUM 29
ALLOC-YNUM 29

Allocation of objects 15
ALLOCATION-SPACE 9
ARG-IN-FRAME 32

Array format 7,11

‘Array header format 13

Arrays 13

ASH 34

ATOM indicator 21

B-Vector format™ 6, 10
Barrier 16, 18
Bignum format 6
BIND-NULL 26




INTERNAL DESIGN OF SPICE LISP

BIND-POP 26
BIND-T 26
Binding stack format 37
Binding stack space 8 ;
BINDING-STACK-POINTER register 36
Bit numbering - 1
BIT-AND 25
BIT-OR 25
BIT-XOR 25
BOUNDP 30
BRANCH 27
BRANCH-ATOM 27
BRANCH-IF-ARG-SUPPLIED 27
BRANCH-NOT-ATOM 27
BRANCH-NOT-NULL 27
BRANCH-NOT-ZERO 28
BRANCH-NULL 27
BRANCH-ZERO 28
Breakpoints 53 -
" Byte code formats 22
‘Byte codes 19
Byte numbering 1

CAAR 24 R
Cache for control stack 21
CADR 24
CALL 23,37
CALL-0 23,37
CALL-MAYBE-MULTIPLE 23,46
CALL-MULTIPLE 23,46
Calling conventions 37, 39
CAR 24
CATCH 47
CDAR 24
CDDR 24
‘CDR 24
 CE (contents of effective address) 23
Character object 3
CHECK 24
- CLEAN-CAR pointer 15
CLEAN-CDR pointer 15
CLEAN-SPACE pointer 15, 17
CLOSE-OVER 31,43
Closure marker 4
Closures 43
Code vector 19
CONS 28
Constants in code 19
Control registers 36
Control stack frame format 37
Control stack space 8 »
CONTROL-STACK-POINTER register 36
COPY 24 ‘
COPY-SPACE pointer 15
CURRENT-BINDING-POINTER 33
. CURRENT-OPEN-FRAME 32
CURRENT-STACK-FRAME 32
* CURRENT-STACK-POINTER 32

Definition cell 6

56




INTERNAL DISIGN OF SPICE LISP

DEFSTRUCT 10

Deposit-Field 33

Destination field for byte codes 22 -
DPB 33 . :
E (effective address) 23
Effective address calculation 22
EQ (macro instruction) 26
EQL 25

Error handling 49
Escape-to-macro convention 44
EVC-Forward pointer 7,43
External value cell 7

FBOUNDP 30

FEXPRs 20,42

Fixnum format 3 -

FLAGS register 36

Flipper 18

Floating point formats 3, 6
Flonum formats 3,6
FLUSH-VALUES 34
FORCE-VALUES 34
Forwarding pointers 7
Frame Header format 4
Frame-Barrier 4
FREE-STORAGE pointer 15
FREEZE 31 )
FREEZE pointer 15
Function object format 7,11

Garbage Collection™ 15
GC-Forward pointer 7
GET-DEFINITION 30
GET-HASH 30
GET-NEWSPACE-BIT 34
GET-PACKAGE 30

GET-PLIST 30

GET-PNAME 30

GET-VALUE 29
'GET-VECTOR-ACCESS-TYPE 31
GET-VECTOR-LENGTH 29
GET-VECTOR-SUBTYPE 29 -

Hash cell 6
Hash tables 10, 17
HAULONG 34

Immcdiatc object format 2
Indicators 21
“Interrupts 53

I-FLOAT 30
1LDB 33

Lisp objects 2
LIST 26

Listcell 6

1IST* 26

‘Local U-Vectors 12
LOGDPB 31

57




ISTERNAL DESIGN OF SPICE LISP

LOGLDB 31
Long-Flonum format 6
LSH 30 :
Magcro instruction formats 22
Macro instruction'set 19
MAKE-IMMEDIATE-TYPE 29
MAKE-PREDICATE 24 »
"MARK-CATCH-FRAME 34
MASK-FIELD 33

MISC (macro instruction) 27,28
Misc type codes 3
Misc-Binding-Stack-Pointer 3
Misc-Character object 3
Misc-Closure-Marker 4
Misc-Control-Stack-Pointer 3
Misc-Frame-Barrier 4
Misc-Frame-Header 4
MISC-SUBTYPE 29
Misc-System-Area-Pointer 3
Misc-Trap 3
Misc-Unsupplied-Arg 4
Misc-Values-Marker 3
Muitiple value returns 24, 46

N-TO-VALUES 32
NEGATE 30
NEW-PURE-PAGE 31
Newspace 16

NIL 8
NOT-PREDICATE 24
NPOP 26

NULL indicator 21

Oldspace 16

Open frame 20
OPEN-FRAME register 36
Optional arguments 20, 42

Package cell 6

PC register 36 _
Perq quadword alignment $
Plistcell 6

Pnamecell 6

Pointer object format 2,5
POP 24

Print name cell 6

Program counter 36
Property list cell 6

PUSH 23 )
PUSH-LAST 23,39
PUSH-UNDER 24

Quadword alignment 5

Ratio format 7
READ-BINDING-STACK - 33
READ-CONTROL-STACK .33
Read-only space S, 15
Registers 36

5§




INTERNAL DESIGN OF SPICE LISP

Remote U-Vectors 12
RETURN 23,40
RPLACA 30
RPLACD 30

S-FLOAT 30

Scavenger 17

SCDDR 24

SCDR 24

SET-0 26
SET-DEFINITION 30
SET-HASH 30
SET-LPOP " 26 .
SET-LPUSH 26
SET-NULL 26 -
SET-OPEN-FRAME 32
SET-PACKAGE 30
SET-PLIST 30
SET-PNAME- 30
SET-STACK-FRAME 32
SET-T 26 '
SET-VALUE 29
SET-VECTOR-SUBTYPE 29
Short-Flonum format 3
SHRINK-VECTOR 32
-Source field for byte codes 22
Space codes 2,5

" Special binding stack space 8
SPREAD 27

Stack frame format 37
Stack spaces 8

Static space 5

Storage management 15
String format 7,12 .
Sub-Primitives 34
SUBSPACE 31

Symbol 6

System table space 8

T9 :
THROW 23,4

TOS register 21, 36
Transporter 16

Trap code 3

TRUNC 24,45

TYPE 29

Type codes 2
TYPED-V-ACCESS 31
TYPED-V-STORE 31

"U-Vector format 6, 11
UNBIND 26
Unsupplied Arg marker 4

-V-ACCESS 34
V-STORE 34
Value cell 6 -
Values-Marker 3
VALUES-TO-N 32
Vector format 6

59 -




60




INTERNAL DESIGN OF SPICE LISP

Table of Contents

1. About This Document

1.1. Scope and Purpose
1.2. Bit and Byte Numbering

2. Data Formats for Spice Lisp

2.1. Lisp Object Data Formats

2.2. Table of Type Codes

3.3. Table of Space Codes

2 4. Immediate Data Type Descriptions
2.5. Pointer-Type Objects and Spaces
2.6. Forwarding Pointers '
2.7. System and Stack Spaces

2.8. Symbols Known to the Microcode

3. Vectors and Arrays

3.1. B-Vectors
3.2. U-Vectors
3.3. Arrays . -

4. Storage Management

4.1. Allocation
4.2. The Transporter.
4.3. The Scavenger

5. Macro Instruction Set

5.1. General

5.2. Function Object Format
5.3. Execution Environment

" 5.4. Implementation Note

5.5. Indicators '

5.6. Macro-Instruction Formats
5.7. Instructions '
5.8. MISC Instructions

5.9. Sub-Primitives

6. Internal Control Conventions

6.1. Control Registers

" 6.2. Binding Stack Format

6.3. Control Stack Frame Format

6.4. Call Instruction

6.5. The Push-Last Instruction

6.6. Return Instruction

6.7. Handling Optional Arguments
6.8. Closures

6.9. The Escape to Macro Convention

et fd pd b
WO &

-
(7]

e
AW

[y
-]

W NN N
PRUBBRREBGE

2

W W W W W
O NI

268

PO AUNWNNEN N - =

S
(o]




INTERNAL DESIGN OF SPICE LISP

6.10. Multiple Value Returns
6.11. Catch and Throw

6.12. Error Handling

6.13. Interrupts and Breaks

Index

46
47
49
53

55






