Programming Language Fulisp

Version, 0.95

Contents

1

10

11

i

Compliance e

Conventions
6.1 Layout and Typography
6.2 Meta-language L
6.3 Naming oo

Definitions e

SynbaX . ..
8.1 Whitespace and Comments

Modules
9.1 Imports
9.2 SYMEAX o o e e e e e
9.3 Exports e
9.4 Definitions and Expressions,
9.5 Module Processing.
9.6 Module Definition L

9.6.1 defmodule

ObjJects ... o e
10.1 Creating and Initializing Objects
10.1.1 initialize
10.1.2 initialize
10.2 Accessing Slots
10.3 External Representation
10.3.1 generic-prin...............
10.3.2 generic-write.....

Classes and Slot Desciptions.
11.1 Imheritance
11.2 Slot Descriptions
11.3 System Defined Classes
11.4 Defining Classes i
11.4.1 defstruct
11.4.2 defclass
11.4.3 <slot-description>
11.5 Creating Objects i
11.5.1 make...

Page

11.5.2 telos-condition 17

12 Generic Functions and Methods. 18
12.1 Defining Generic Functions and Methods 18
12.1.1 defgeneric i i 18
12.1.2 defmethod 19
12.1.3 no-applicable-method.......... 19
12.1.4 incompatible-method-signature 19
12.1.5 non-congruent-lambda-lists...................... 19
12.2 Specializing Methods 19
12.2.1 call-next-method 19
12.2.2 no-next-method L. 19
12.2.3 next-method-p....... L. 20

13 Threads and Semaphores 20
13.1 Threadso 21
13.1.1 <thread> 21
13.1.2 threadp e 21
13.1.3 thread-reschedule 21
13.1.4 current-thread 21
13.1.5 thread-start........ 22
13.1.6 thread-value............ 22
13.1.7 wait 22
13.1.8 thread-condition 22
13.1.9 wrong-thread............ 22
13.1.10 old-thread 22
13.1.11 generic—prin............... i 22
13.1.12 generic-write......... oL 22
13.2 Semaphores 23
13.2.1 <semaphore>... e 23
13.2.2 semaphorep e 23
13.2.3 open-semaphore 23
13.2.4 <close-semaphore 23
13.2.5 generic—prin............... 23
13.2.6 generic-write.......... 23

14 Conditions e 24
14.0.1 <condition>......... 24
14.0.2 execution-condition............ 24
14.0.3 enviromment—condition................. 24
14.1 Condition Handling 24
14.1.1 signal 24
14.1.2 wrong-condition-class 25
14.1.3 with-handler........ 25
14.2 Conditionsttt 26
14.2.1 conditionp e 26
14.2.2 condition-message 26
14.2.3 initialize-instance................ 26
14.2.4 eXTOoTot 26
14.2.5 CeXTOTo 26
14.2.6 defconditionm............ 26

15 Expressions, Definitions and Control Forms 27
15.1 Atomic EXpressions 27
15.1.1 comstant 27
15.1.2 defconstant........... i 27
15.1.3 symbol 27
15.1.4 deflocal 28
15.2 Literal Expressions 28
15.2.1 quote 28
15.3 Functions, Application, Definition 28
15.3.1 lambda 28
15.3.2 functioncall..... L . 28
15.3.3 invalid-operator 28
15.3.4 defmacro 29
15.3.5 defun......... 29
15.3.6 apply 29
15.3.7 bad-apply-argument 29

iii

15.4 Assignments 29

15.4.1 setqo 29
15.4.2 setter 30
15.4.3 mno-setter 30
15.4.4 cannot-update-setter........... 30

15.5 Conditional Expressions. 30
15.5.1 if .. 30
15.5.2 cond...... 30
15.5.3 and 30
15.5.4 0T . . oot 31

15.6 Varable Binding and Sequences 31
15.6.1 det/cC vt vt 31
15.6.2 labels 31
15.6.3 let ... 31
15.6.4 Let® ... o 31
15.6.5 Progn........ 32
15.6.6 unwind-protect 32
15.7 Waiting on Events L L 32
15.7. 1 waito 32
15.7.2 ticks-per-second 32

15.8 Quasiquotation EXpressions 33
15.8.1 quasiquote 33
15.8.2 unquote 33
15.8.3 wunquote-splicing 33
15.8.4 improper-unquote-splice 33

15.9 Summary of Level-0 Expressions and Definitions 33

Annexes

A Level-0 Module Library 35
A.1 Characters 35
A.1.1 character 35
A.1.2 <character>..... 35
A.1.3 characterp 35
A.1.4 (converter integer) 35
A5 equal ... 35
ATB COpPY -t 35
A.1.7T generic-prin............ ... L 35
A.1.8 generic-write.......... L .. 35
A.1.9 generic-write........ L L . 36

A2 llections 36
A2.1 empty=p .o e 36
A2.2 sizZe. 36
A2.3 member 36
A2.4 Ao ... 36
A25 map ... 36
A2.6 reduce..... 36
A2.7 reducel 36
A2.8 fill 36
A.2)9 catenate 36
AL2.10 filter 36

A.3 Comparing Objects 37
AB1 eq 37
ALB.2 = 37
A3.3 eql L 37
A34 equal 37
A3.5 equal ... 37

A4 Conversion 38
A4l convert 38
A.4.2 conversion-condition............... 38
A.4.3 no-comverter........... ... 38
Ad4 converter 38
A.4.5 (setter converter), 38

A.5 Copying Objects 39
ABL COPY -t 39
AB.2 COPY e 39

A.6 Double Precision Floats 39
A.6.1 double-floatttt 39

v

A.6.2 <double-float> i 39

A.6.3 double-float—pt 39
A.6.4 nmost-positive-double-float...................... 40
A.6.5 least-positive-double-float..................... 40
A.6.6 least-negative-double-float..................... 40
A.6.7 most-negative-double-float...................... 40
A.6.8 truncate 40
A.6.9 truncate 40
A6.10 round 40
A6.11 round 40
A6.12 floor 41
A6.13 floor 41
A6.14 ceiling 41
A6.15 cedling 41
A.6.16 (converter string) 41
A.6.17 (converter single-precision-integer) 41
A.6.18 integer-conversion-overflow..................... 41
AB.19 COPY - vt e 41
A.6.20 generic-prin............ ... i 41
A.6.21 generic-write........ L L . 41
A.7 Elementary Functions 42
ATl DL oo oot 42
A2 sin . 42
AT.3 cos L 42
AT.4 tan ... 42
AT.5 acos. ... 42
AT.6 asin.... ... 42
AT atan. 42
AT.8 atan2 42
ATO exXp oo 42
AT.10 log ... 42
A1 log2. ... 42
AT.12 loglO ... oo 43
ATA3 sqrb ..o 43
ATA4 sqrb ... 43
ATAS sqrb ..o 43
ATA6 expt.. .o 43
AT17T sinh. ... 43
AT18 cosh.. ... 43
AT19 tanh. 43
A7.20 asinh 43
A7.21 acosh 43
A7.22 atanh 43
A.8 TFormatted-IO 44
A.8.1 scan-mismatch............ L .. 44
AB.2 scan.... .. 44
AB8.3 format 45
A9 Theempty list...... 46
A9.1 O 46
A9.2 <null> .o 46
A9.3 null. ... 46
A9.4 length....... 46
A9.5 generic-prin.......... ... oo 46
A9.6 generic-write........... L i . 46
A.10 Numbers 47
A10.1 <number> 47
A10.2 numberp 47
A.10.3 <integer> 47
A.10.4 dntegerp 47
A10.5 <float> 47
AT0.6 floatpot 47
A.10.7 arithmetic-condition............... 47
AT0.8 equal ... 47
AT0.9 4+ e 47
AT0.10 - o 47
ATOIT # o 48
AT0.12 7/ 48
AT0.13 < e 48

AT0.14 > 48
AT0.15 <= o 48
AT0.16 >= o 48
A10. 17 max ... 48
A0 I8 min ..o 48
AT0D9 A o oo 49
AT0.20 Tem ..o 49
AT10.21 abs ..o 49
AT0.22 Zerop . o o 49
A10.23 sdgnum 49
AT10.24 positivep . oot 49
A.10.25 negativep 49
A10.26 binary-—plus.. . ..ttt e 49
A.10.27 binary-difference 49
A.10.28 negate 49
A.10.29 binary—times e 49
A.10.30 binary-divide 50
A10.31binary-1t e 50
A.10.32 binary-gcd 50
A.10.33 binary-1cCm e 50
A.11 Pairsand Lists 50
AT pair. ... 50
A11.2 <pair> ... 50
AT1.3 comsp ..o 50
Ad1.4 atom... 50
AdLS coms. 50
Ad1.6 car 51
ALLT cdr ..o 51
A11.8 (setter car) 51
A11.9 (setter cdr) 51
A.11.10 (converter string) 51
A.11.11 not-a-character 51
A.11.12 (converter string) 51
Ad1d3 equal .. 51
Ad1.04 Copy - v e 52
AT A5 Tast .ot 52
A11.16 length L 52
A11.17 copy-alist ... 52
A 1138 copy=list . oo v 52
A11.19 copy-tree . ..o 52
A11.20 generic-prin. L i 52
A.11.21 generic-write L L 52
A.12 Single Precision Integers 53
A.12.1 single-precision-integer 53
A.12.2 <single-precision-integer>....... 53
A.12.3 single-precision-integer-p...................... 53
Ad2.4 evenp 53
A28 evenp .. .o 53
Ad2.6 oddpo 53
Ad2.7 oddp ... oo 53
A.12.8 division-by-zero 53
A12.9 quotient 53
A12.10 quotient 54
Ad2.11 remainder L 54
Al2.12 remainder L 54
Ad2.13modulo 54
Ad2. 14 modulo 54
A.12.15 most-positive-single-precision-integer 54
A.12.16 most-negative-single-precision-integer 54
A.12.17 (converter character) 54
A.12.18 no-such-character 55
A.12.19 (converter string) 55
A.12.20 (converter double-float) 55
AT2.21 COPY - v e 55
A12.22 generic-prin.. L L L o 55
A.12.23 generic-write L L i 55
A3 Streams. 56

A13.1 <stream> 56

A.14

A.15

A.16

A.13.2 <file-stream>. 56

A.13.3 dnput-stream.......... 56
A.13.4 do-stream 56
A.13.5 ouput-stream.......... 56
A.13.6 file-streampt 56
A.13.7 stream-condition L .. 56
A.13.8 syntax—error 56
A.13.9 dnput-stream—p 56
A.13.10 output-stream—p 56
Ad3. 11 do-stream—p. oo 56
A.13.12 character—stream=—pt 57
A.13.13 binary=-stream—pttt e 57
Ad3. 04 open. ... 57
Ad3 05 0pen. ... 57
Ad3. 06 0pen—p .. .o 57
A3 1T open-—p . . oo 57
A13.18 close 57
A13.19 close 57
A13.20 write-unit L 57
A13.21 write-unit L 58
A13.22 write-unit 58
A13.23 write 58
A.13.24 generic-write. L o o 58
Ad3.25 prin. ... o 58
A.13.26 generic-prin.. L o 58
A13.27 read-unit 58
A13.28 read-unit L 58
Ad3.29read. 58
A.13.30 generic-read o 59
A.13.31 generic-read 59
A13.32 peek-unit 59
A.13.33 peek-unit 59
A13.34 flusho 59
A13.35 flush ... oo 59
Ad3.36 wait. ... 59

SEEINES . o ot ot e 60
A14.1 string 60
A14.2 <string> ... 60
A14.3 stringp 60
A.14.4 string-ref 60
A.14.5 (setter string-ref) 60
A.14.6 (converter pair) i 60
A14.7 equal ... 61
AT4.8 Copy ..ot e 61
A14.9 length 61
A14.10 string=-1t 61
A.14.11 string-slice 61
A.14.12 string-append 61
A.14.13 generic-prin.. o 61
A.14.14 generic-write L L L L o 62

Symbols . .. 62
A15.1 symbol ... 62
A15.2 <symbol> ... 63
A15.3 symbolp . ..o 63
A1B.4 gensym. 63
A.15.5 symbol-name........... ... 63
A.15.6 symbol-exXxiSts=—p 63
A.15.7 generic-prin........... ... i i 63
A.15.8 generic-write....... L L . 63
A.15.9 generic-write. L i 63

Tables 64
A16.1 <table> 64
A16.2 tablep 64
A.16.3 table-ref 64
A.16.4 (setter table-ref) 64
A.16.5 table-delete............ 65
A.16.6 generic-prin............ i 65
A.16.7 generic-write........ L . 65

vii

AT Vectors e 65

ATl vector 65
A17.2 <vector> 65
AdT7.3 vectorp . .o 65
A17.4 length 65
A17.5 vector-ref 66
A.17.6 (setter vector-ref) 66
A.17.7 make-initialized-vector 66
A.17.8 maximum-vector-index 66
A.17.9 (converter pair) 66
Ad730 equal ... 66
AdT01 Copy - v e 66
A17.12 generic-prin. L o 66
A.17.13 generic-write L L 66

B Programming Language EulLisp, Level-1. 67
B.1 Classes and Objects e 67
B.1.1 defclass 67

B.2 Generic Functions L 68
B.2.1 defgeneric 68
B.2.2 defmethod 68
B.2.3 generic-lambda 68
B.2.4 generic-labels 69

B.3 Reflection on Objects 70
B.3.1 class-of 70

B.4 Reflection on Classes and Slot Descriptions 70
B.4.1 <slot-description> 70
B.4.2 <local-slot-description> 70
B.4.3 class-mame 71
B.4.4 class-precedence-list........... 71
B.4.5 class-slot-descriptions 71
B.4.6 class-initargs 71
B.4.7 slot-description—nmame 71
B.4.8 slot-description-initfunction................... 71
B.4.9 slot-description-slot-reader.................... 71
B.4.10 slot-description-slot-writer.................... 71

B.5 Defining Metaclasses 72
B.5.1 defmetaclass............. 72

B.6 Initializing Classes 72
B.6.1 initialize 72

B.7 Initializing Slot Descriptions 72
B.7.1 initialize 72

B.8 Inheritance Protocol 72
B.8.1 compatible-superclasses—pc..c.ciinienn 72
B.8.2 compatible-superclasses—pc.eiiie.n 72
B.8.3 compatible-superclass—pc.c.iiii. 73
B.8.4 compatible-superclass—pc.c.tiii.n 73
B.8.5 compatible-superclass-pc.c.iii. 73
B.8.6 compatible-superclass—pc..tiii. 73
B.8.7 compute-class-precedence-list 74
B.8.8 compute-class-precedence-list 74
B.8.9 compute-slot-descriptions 74
B.8.10 compute-slot-descriptions 74
B.8.11 compute-initargs 74
B.8.12 compute-initargs 75
B.8.13 compute-inherited-slot-descriptions.............. 75
B.8.14 compute-inherited-slot-descriptions.............. 75
B.8.15 compute-inherited-initargs...................... 75
B.8.16 compute-inherited-initargs...................... 75
B.8.17 compute-defined-slot-description 75
B.8.18 compute-defined-slot-description 76
B.8.19 compute-defined-slot-description-class 76
B.8.20 compute-defined-slot-description-class 76
B.8.21 compute-specialized-slot-description............. 76
B.8.22 compute-specialized-slot-description............. 76
B.8.23 compute-specialized-slot-description-class........ 76
B.8.24 compute-specialized-slot-description-class........ T

B.9 Slot Access Protocol T7

viii

B.9.1 compute-and-ensure-slot-accessors
B.9.2 compute-and-ensure-slot-accessors
B.9.3 compute-slot-reader.................
B.9.4 compute-slot-reader.................
B.9.5 compute-slot-writer..............
B.9.6 compute-slot-writer...............
B.9.7 ensure-slot-reader
B.9.8 ensure-slot-reader
B.9.9 ensure-slot-writer
B.9.10 ensure-slot-writer
B.9.11 compute-primitive-reader-using-slot-description ...
B.9.12 compute-primitive-reader-using-slot-description ...
B.9.13 compute-primitive-reader-using-class.............
B.9.14 compute-primitive-reader-using-class.............
B.9.15 compute-primitive-writer-using-slot-description ...
B.9.16 compute-primitive-writer-using-slot-description ...
B.9.17 compute-primitive-writer-using-class.............
B.9.18 compute-primitive-reader-using-class.............
B.10 Predicates and Constructors
B.10.1 compute-predicateo
B.10.2 compute-predicate oo
B.10.3 compute-constructor............
B.10.4 compute-constructor.............
B.11 Instance Allocation
B.11.1 allocate
B.11.2 allocate
B.12 Low Level Allocation Primitives.
B.12.1 primitive-allocatet
B.12.2 primitive-class-of
B.12.3 (setter primitive-class-of)
B.12.4 primitive-ref
B.12.5 (setter primitive-ref)
B.13 Reflection on Generic Functions and Methods
B.14 Introspection
B.14.1 generic-function-name
B.14.2 generic-function-domain
B.14.3 generic-function-range
B.14.4 generic-function-method-class
B.14.5 generic-function-methods
B.14.6 generic-function-method-lookup-function
B.14.7 generic-function-discriminating-function
B.14.8 method-domain...............
B.14.9 method-range
B.14.10 method-function
B.14.11 method-generic—function
B.15 Special forms (or macros)
B.15.1 method-function-lambda
B.15.2 call-method...........
B.15.3 apply-method..........
B.16 Initializing Generic Functions and Methods
B.16.1 initialize
B.16.2 initialize
B.17 Method Lookup and Generic Dispatch
B.17.1 compute-method-lookup-function
B.17.2 compute-method-lookup-function
B.17.3 compute-discriminating-function
B.17.4 compute-discriminating-function
B.18 Extending Generic Functions by New Methods
B.18.1 add-method
B.18.2 add-method
B.18.3 remove-method......
B.18.4 remove-method......
B.19 Dynamic Binding.
B.19.1 dynamic e
B.19.2 dynamic-setq....... e
B.19.3 unbound-dynamic-variable
B.19.4 dynamic-let........
B.19.5 defvar.........

1x

B.19.6 dynamic-multiply-defined 88

B.20 Conditional Extensions 88
B.20.1 when..... 88
B.20.2 unless 88
B.21 Exit Extensions 88
B.21.1 Dblock 88
B.21.2 return-from........ 89
B.21.3 catch e 89
B.21.4 throw e 89
B.22 Summary of Level-1 Expressions and Definitions 89
Bibliography 91
Indexes 92
Function Indexo o 92
Macro Index. . . .o oo 93
Generic Function Index 94
Method Index 95
Condition Index 96
Constant Index 97
General Index 98
Figures
1 Example of import and export directives 12
2 Level-0 initial class hierarchy 16
3 State diagram for threads L .. 21
4 Level-0 initial condition class hierarchy. 24
A.1 Level-0 number class hierarchy and coercion chart 48
B.1 Initialization Call Structure 73
Tables
1 Modules comprising level-0 L 3
2 Minimal character set L 11
3 Module syntax 13
4 generic-prinoutput syntax o L. 14
5 generic-write output syntax o o L, 15
6 defstruct syntax 17
7 defclasssyntax (level-0) 18
8 defgenericsyntax (level-0), 19
9 Quasiquote Syntax e 33
10 Expressions and Definitions (level-0) 34
A.2 Special Character Syntax 35
A.1 Character SYyntax. it e 36
A.4 Methods for double precision floats 39
A.3 Floating Point Syntax 40

A5 exptresult classes L L 44

A.6 Pair and List Syntax 51
A.8 Methods for single precision integers 53
AT Integer Syntax . .. oot e 54
A.9 Sign combination in modulo e 55
A.10Initial stream class hiearchy 56
A.11String escape digrams e 60
A.12Fxamples of string literals L L 60
A13String Syntax e 61
A.14Tdentifier/Symbol Syntax 63
AL1BVector Syntax 65
B.1 defclasssyntax (level-1) 67
B.2 defgenericsyntax (level-1) 69
B.3 Slot Description Metaobject Classes 70
B.4 Metaobject Classes i 83
B.5 Generic Function Metaobject Classes 83
B.6 Expressions and Definitions (level-1) 90

x1

Programming Language EuLisp, version 0.95

Foreword

The EULISP group first met in September 1985 at IRCAM in
Paris to discuss the need for a common European dialect of
Lisp. Subsequent meetings formulated the view of EULISP
that was presented at the 1986 ACM Conference on Lisp
and Functional Programming held at MIT, Cambridge, Mas-
sachussetts [Padget et al, 1986] and at the European Confer-
ence on Artificial Intelligence (ECAI-86) held in Brighton,
Sussex [Stoyan et al, 1986]. Since then, progress has not
been steady, but happening as various people had sufficient
time and energy to develop part of the language. Conse-
quently, although the vision of the language has in the most
part been shared over this period, only certain parts were
turned into physical descriptions and implementations. For
a nine month period starting in January 1989, through the
support of INRIA, it became possible to start writing this
document, the EULISP definition. Since then, affairs have
returned to their previous state, but with the evolution of
the implementations of EULISP and the background of the
foundations laid by the INRIA supported work, there is con-
vergence to a consistent and practical definition.

The acknowledgements for this report fall into three cate-
gories: intellectual, personal, and financial.

The ancestors of EULISP (in alphabetical order) are Com-
mon Lisp[Steele, 1984/90], InterLisP[Teitelman, 1978], LE-
Lisp [Chailloux et al, 1984], LisP/VM [Alberga et al, 1986],
Scheme [Clinger & Rees, 1986], and T [Rees et al, 1986]
[Slade, 1987]. There has also been some feedback from a lan-
guage which has been influenced by EuLisp, namely Dylan
[Shalit, 1992]. Thus, the authors of this report are pleased to
acknowledge both the authors of the manuals and definitions
of the above languages and the many who have dissected and
extended those languages in individual papers. The various
papers on Standard ML [Milner et al, 1986] and the draft
report on Haskell [Hudak, Wadler et al., 1988] have also pro-
vided much useful input.

The writing of this report has, at various stages, been sup-
ported by Bull S.A., Ecole Polytechnique (LIX), ILOG S.A.,
Institut National de Recherche en Informatique et en Au-
tomatique (INRIA), University of Bath, and Université Paris
VI (LITP). The authors gratefully acknowledge this sup-
port. Many people from European Community countries
have attended and contributed to EULISP meetings since

they started, and the authors would like to thank all those
who have helped in the development of EULISP.

Initially, funding for the EULISP group came from individu-
als’ institutions or companies, but since 1987 the Commis-
sion of the European Communities (CEC, as the EULISP
Technical Interest Group (TIG), also called the EULISP
committee, supported by DG XIII) has provided the as-
sistance without which this effort would have faded away.
In addition, the EULISP group is grateful for the sup-
port of: British Council in France (Alliance programme),
British Council in Spain (Acciones Integradas programme),
British Council in Germany (Academic Research Collab-
oration programme), British Standards Institute, Centre
d’Estudis Avangats de Blanes, CSIC, Departament de Llen-
guatges i Sistemes Informatics (LSI, Universitat Politécnica
de Catalunya), Gesellschaft fiir Mathematik und Datenver-
arbeitung (GMD), ILOG S.A., Insiders GmbH., Institut Na-
tional de Recherche en Informatique et en Automatique (IN-
RIA), Institut de Recherche et de Coordination Acoustique
Musique (IRCAM), Rank Xerox France, Science and Engi-
neering Research Council, Siemens AG, University of Bath,
University of Technology, Delft, University of Edinburgh,
Universitat Erlangen, Université Paris VI (LITP).

The following people (in alphabetical order) have con-
tributed in various ways to the evolution of the language:
Giuseppe Attardi, Javier Béjar, Russell Bradford, Harry
Bretthauer, Peter Broadbery, Christopher Burdorf, Jéréme
Chailloux, Thomas Christaller, Jeff Dalton, Klaus Dafler,
Harley Davis, David DeRoure, John Fitch, Richard Gabriel,
Brigitte Glas, Nicolas Graube, Dieter Kolb, Jurgen Kopp,
Pascal Kuczynski, Antonio Moreno, Eugen Neidl, Pierre Par-
quier, Keith Playford, Willem van der Poel, Christian Quein-
nec, Enric Sesa, Herbert Stoyan, and Richard Tobin.

The editors wish particularly to acknowledge the work of
Harley Davis on the first version of the description of the
object system and of Harry Bretthauer on the second version.

Julian Padget (japOmaths.bath.ac.uk)
School of Mathematical Sciences
University of Bath

Bath, Avon, BA2 TAY, UK

Greg Nuyens (nuyens@ilog.fr)
ILOG SA
2, Avenue Galliéni

94353 Gentilly CEDEX, FRANCE

editors.

Introduction

The purpose of this document is to define the programming
language EULISP. EULISP is a dialect of Lisp and as such
owes much to the great body of work that has been done
on language design in the name of Lisp over the last thirty
years. EULISP is the outcome of efforts on the part of many
people in countries of the European Community since 1986.
The guiding principles of the language are simplicity, expres-
siveness, completeness, orthogonality of constructs, formal
definition and efficient implementation.

EULISP does not claim any particular Lisp dialect as its
closest relative, although parts of it were influenced by fea-
tures found in Common Lisp, InterLISP, LE-LISP, LIsSP/VM,
Scheme, and T.

EULISP both introduces new ideas and takes from these
Lisps. It also extends or simplifies their ideas as necessary.
It takes a class system, but extends the notion by integrat-
ing the primitive types (classes) with user-defined classes.
It has a condition system. It introduces a module mecha-
nism for information hiding and separate compilation and it
has first-class continuations. But this is not the place for a
detailed language comparison. That can be drawn from the
rest of this report. However, it is important to stress that the
distinguishing features of EULISP are the integration of the
classical Lisp type system and the object system into a sin-
gle class hierarchy, the complementary abstraction facilities
provided by the class and the module mechanism and su-
port for concurrent execution. EULISP inherits from Scheme
the properties of static-scoping, a single lexical environment
for all variables and the uniform treatment of operator and
operands.

NOTE (version 0.95) — Changes between this version and 0.8
are: further improvements to the parallel processing model and
the addition and revision of some of the thread operations; a ma-
jor rewrite of input/output functions and the associated stream
classes; a major rewrite of telos to account for the revised meta-
object protocol; a major reorganisation of the document to reflect
better the structure of the language and (hopefully) to make it
easier to grasp the essentials of the design on first reading.

Overview

The operator and the operands of forms are treated in a uni-
form manner. Here, EULISP continues the tradition exempli-
fied in Scheme, T, Lisp/VM and Cambridge Lisp [Fitch &
Norman, 1977]. In common with other Lisp-like languages,
function parameters are passed by value, and, in common
with Scheme and some other Lisps, functions themselves are
first-class values.

EULISP breaks with LISP tradition in describing all its types
(in fact, classes) in terms of an object system. This is called
The EULISP Object System, or TELOS. TELOS incorporates
elements of the Common Lisp Object System (CLOS) [Bo-
brow et al., 1988], ObjVLisp [Cointe, 1987], Oaklisp [Lang &
Pearlmutter, 1988], and MicroCeyx [Chailloux et al, 1987].
The greatest debt of TELOS is to CLOS, from which it takes
the ideas of generic functions and multi-methods. In addi-
tion, most of the terminology, the names and format of the
user-level macros, and the names of many of the functions in
the internal protocol are inspired by CLOS. From ObjV Lisp,
TELOS takes the principle of a reflective architecture, which
emphasizes the power of metaclasses as an implementation
strategy. From Oaklisp, TELOS takes the idea of anonymous
classes. Finally, from MicroCeyx, TELOS takes the idea of
a small, highly efficient kernel tightly integrated with the
rest of the language. In TELOS, this integration is achieved
through the total merging of types with classes and message-
passing through normal function application. Classes are
first-class values. The class structure integrates the primitive
classes describing fundamental datatypes, the defined classes
and user-defined classes. The function class-of, given an
object, returns the class of which it is a direct instance.

Modules and classes are the building blocks of both the
EULISP language and of applications written in EULISP. The
module system exists to limit access to items by name. That
is, modules allow for hidden definitions. Each module defines
a fresh, empty, lexical environment. This fresh environment
is the top-lexical environment of that module. A defining
form creates a new binding in the top lexical environment of
the lexical environment in which it is evaluated.

Continuations are first-class in EULISP, but they are not as
general as in Scheme. They are weaker because they can
only be used within the dynamic extent of their creation.
That also implies they can only be used once. These weaker
continuations are suitable for controlling simple non-local
exits and form the basis of the condition system of handlers.
Functions, too, are first-class, comprising the environment
of definition (the closure of the definition) and an expression

as described by Landin in ISWIM [Landin, 1966].

Dynamically scoped bindings can be created in EULISP, but
their use is much more restricted than in most Lisps up to
now—except Scheme. EULISP enforces a strong distinction
between lexical bindings and dynamic bindings by requir-
ing the use of a special form (called dynamic-1let) for their
creation and two other special forms (called dynamic and
dynamic-setq) for access and update, respectively.

Multiple control threads can be created in EULISP and or-
derly access to data shared between more than one control
thread can be mediated by means of semaphores.

Language Structure
The EULISP definition comprises the following items:

Level-0 — comprises all the level-0 functions, macros
and special forms, which is this document minus annex B.
The class system can be extended by user-defined struc-
ture classes, and generic functions.

Level-1 — extends level-0 with the functions, macros
and special forms defined in annex B The class system
can be extended by user-defined classes and metaclasses.

The implementation of level-1 is not necessarily written or
writable as a conforming level-0 program.

Level-2 — is yet to be elaborated.

A level-0 function is a (generic) function defined by this re-
port to be part of a conforming processor for level-0. A func-
tion defined in terms of level-0 operations is an example of a
level-0 application. Note that, apart from new special forms,
the functionality for all level-1 functions can be defined in
terms of level-0 operations. Thus, any level-1 function is a
level-0 application. The same constructive definition applies
to level-2 functions being level-1 applications.

Much of the functionality of EULISP is defined in terms of
modules. These modules might be available (and used) at
any level, but certain modules are required at certain levels.
Whenever a module depends on the operations available a
given level, that dependency will be specified.

The main part of this document defines the kernel of level-0
of EulLisp. The annex A defines all the remaining classes and
modules which comprise level-0. The defined name of the
module providing level-0 of EuLisp is level-0-eulisp which
imports and re-exports the modules specified in Table 1.

Table 1 — Modules comprising level-0

Module Section
character Al
collection A2
compare A3
convert A4
copy A5
double A6
elementary-functions A.7
formatted-io A8
null A9
number A.10
pair Al
semaphore 13.2
spint A2
stream A.13
string Al4
symbol A5
table A.16
thread 13.1
vector A7

Level-1 of EuLisp is defined in annex B.

1 Scope

This document specifies the syntax and semantics of the
computer programming language EULISP by defining the re-
quirements for a conforming EULISP processor and a con-
forming EULISP program (the textual represenation of data
and algorithms).

This document does not specify:

a) The size or complexity of an EULISP program that
will exceed the capacity of any specific configuration or
processor, nor the actions to be taken when those limits
are exceeded.

b) The minimal requirements of a configuration that is
capable of supporting an implementation of an EULISP
processor.

¢) The method of preparation of an EULISP program for
execution or the method of activation of this EULISP pro-
gram once prepared.

d) The method of reporting errors, warnings or excep-
tions.

e) The typographical representation of an EULISP pro-
gram for human reading.

To clarify certain instances of the use of English in this doc-
ument the following definitions are provided:

must — a verbal form used to introduce a required prop-
erty. All conforming processors must satisfy the property.

should — A verbal form used to introduce a strongly rec-
ommended property. Implementers of processors are urged
(but not required) to satisfy the property.

2 Normative References

The following standards contain provisions, which through
references in this document constitute provisions of this def-
inition. At the time of writing, the editions indicated were
valid. All standards are subject to revision and parties mak-
ing use of this definition are encouraged to apply the most
recent edition of the standard listed below.

ISO 646, Information processing — ISO 7-bit coded char-
acter set for information interchange, 1983. Note: this stan-
dard is currently under revision and interested parties should
reference the 1990 Draft International Standard version of
ISO/IEC 646.

ISO 2382, Data processing — vocabulary.

ISO TR 10034 : 1990, Information technology — Guide-
lines for the preparation of conformity clauses in program-
ming language standards.

ISO TR 10176 : 1991, Information technology — Guide-
lines for the preparation of programming language standards.
Note: this is currently a draft technical report.

BS 6154, Method of defining — Syntactic metalanguage,
1981.

3 Conformance Definitions

The following terms are general in that they could be applied
to the definition of any programming language. They are

derived from ISO/TEC TR 10034: 1990.

3.1 configuration: Host and target computers, any op-
erating systems(s) and software (run-time system) used to
operate a language processor.

3.2 conformity clause: Statement that is not part of
the language definition but that specifies requirements for
compliance with the language standard.

3.3 conforming program: Program which is written in
the language defined by the language standard and which
obeys all the conformity clausesfor programs in the language
standard.

3.4 conforming processor: Processor which processes
conforming programs and program units and which obeys all
the conformity clauses for processors in the language stan-

dard.

3.5 error: Incorrect program construct or incorrect
functioning of a program as defined by the language stan-

dard.

3.6 extension: Facility in the processorthat is not spec-
ified in the language standard but that does not cause any
ambiguity or contradiction when added to the language stan-

dard.

3.7 implementation-defined: Specific to the proces-
sor, but required by the language standard to be defined
and documented by the implementer.

3.8 processor: Compiler, translator or interpreter work-
ing in combination with a configuration.

4 Error Definitions

Errors in the languge described in this definition fall into one
of the following three classes:

4.1 dynamic error: An error which is detected during
the execution of an EULISP program or which is a violation
of the dynamic semantics of EULISP. Dynamic errors have
two classifications:

a) Where a conforming processor is required to detect
the erroneous situation or behaviour and report it. This is
signified by the phrase an error is signaled. The condition
class to be signaled is specified. Signalling an error con-
sists of identifying the condition class related to the error
and allocating an instance of it. This instance is initial-
ized with information dependent on the condition class. A
conforming EULISP program can rely on the fact that this
condition will be signaled.

b) Where a conforming processor might or might not de-
tect and report upon the error. This is signified by the
phrase ... is an error. Such errors should be detected and
reported.

4.2 environmental error: An error which is detected
by the configuration supporting the EULISP processor. The
processor must signal the corresponding dynamic error which
is identified and handled as described above.

4.3 static error: An error which is detected during the
preparation of a EULISP program for execution, such as a
violation of the syntax or static semantics of EULISP by the
EULISP program under preparation.

4

NOTE — The violation of the syntatic or static semantic re-
quirements is not an error, but an error might be signaled by the
program performing the analysis of the EULISP program.

All errors specified in this definition are dynamic unless ex-
plicitly stated otherwise.

5 Compliance

An EULISP processor can conform at any of the three levels
defined under Language Structure in the Introduction. Thus
a level-0 conforming processor must support all the basic
expressions, classes and class operations defined at level-0.
A level-1 conforming processor must support all the basic
expressions, classes, class operations and modules defined at
level-1. A level-2 conforming processor must support all the
classes, class operations and all of the modules defined at
level-2.

The following two rules govern the conformance of a proces-
sor at a given level.

a) A conforming processor must correctly process all pro-
grams conforming both to the standard at the specified
level and the implementation-defined features of the pro-
cessor.

b) A conforming processorshould offer a facility to report
the use of an extension which is statically determinable
solely from inspection of a program, without execution.
(It is also considered desirable that a facility to report the
use of an extension which is only determinable dynamically

be offered.)

A level-0 conforming program is one which observes the syn-
tax and semantics defined for level-0. A level-0 conforming
program might not conform at level-1. A strictly-conforming
level-0 program is one that also conforms at level-1. A level-
1 conforming program observes the syntax and semantics
defined for level-1. A level-1 conforming program is also a
level-2 conforming program. Hence, by extension, a level-
0 strictly-conforming program is also a level-2 conforming
program.

In addition, a conforming program at any level must not use
any extensions implemented by a language processor, but it
can rely on tmplementation-defined features.

The documentation of a conforming processor must include:

a) A list of all the implementation-defined definitions or
values.

b) A list of all the features of the language standard
which are dependent on the processor and not imple-
mented by this processor due to non-support of a partic-
ular facility, where such non-support is permitted by the
standard.

c) A list of all the features of the language implemented
by this processor which are extensionsto the standard lan-
guage.

d) A statement of conformity, giving the complete ref-
erence of the language standard with which conformity
is claimed, and, if appropriate, the level of the language
supported by this processor.

6 Conventions

This section defines the conventions employed in this docu-
ment, how definitions will be will be laid out, the typeface
to be used, the meta-language used in descriptions and the
naming conventions. A later section (7) contains definitions
of the terms used in this document.

6.1 Layout and Typography

Both layout and fonts are used to help in the description
of EULISP. A language element is defined with its name as
the heading of a clause, coupled with its classification, for
example:

special-form-name special form

function-name function
generic-function-name generic
generic-function-name method

condition-name super condition

Thus a sample entry might appear as:
sample-function

Ffunction

Arguments
argl: — An instance of class 1.
arg2: — An instance of class .

[arg3]: — An optional argument of class 3.

6.1.0.1 Result

The result class.

6.1.0.2 Remarks

Some clarifying background to the actions of the function.

6.1.0.3 Examples

Some examples of calling the function with certain argu-
ments and the result that should be returned.

6.1.0.4 See also: Cross references to other sections or to
other individual relevant language elements.

6.2 Meta-language

The terms used in the following descriptions are defined in
section 7.

A standard function denotes a immutable module binding of
the defined name. All the definitions in this document are
bindings in some module except for the special form opera-
tors, which have no bindings anywhere. All bindings and all
the special form operators can be renamed.

Frequently, a class-descriptive name will be used in the ar-
gument list of a function description to indicate a restriction
on the domain to which that argument belongs. In the case
of a function, it is an error to call it with a value outside
the specified domain. In the case of a generic function, the
domain can be widened arbitrarily by the definition of new
methods, similarly the range, except when the generic func-
tion was defined with a particular domain and/or range. In

this case, any new methods must respect the domain and/or
range of the generic function to which they are to be at-
tached. The use of a class-descriptive name in the context
of a generic function definition defines the intention of the
definition, and is not necessarily a policed restriction.

If it is required to indicate repetition, the notation:
ezpression” and expression” will be used for zero or more
and one or more occurrences, respectively. The arguments in
some function descriptions are enclosed in square brackets—
graphic representation “[” and “]”. This indicates that the
argument is optional. The accompanying text will explain
what default values are used.

The result-class of an operation, except in one case, refers
to a primitive or a defined class described in this definition.
The exception is for predicates. Predicates are defined to
return either the empty list—written ()—representing the
boolean value false, or any value other than (), representing
true. Although the class containing this set of values is not
defined in the language, notation is abused for convenience
and boolean is defined, for the purposes of this report, to
mean that set of values. If the true value is a useful value,
it is specified precisely in the description of the function.

6.3 Naming

Naming conventions are applied in the descriptions of prim-
itive and defined classes as well as in the choice of other
function names. Here is a list of the conventions and some
examples of their use.

6.1 “<name>” wrapping: By convention, the initial
bindings of classes have names which begin with “<” and
end with “>”.

6.2 “binary-” prefix: The two argument version of a n-
ary argument function. There is not always a correspondence
between the root and the name of the n-ary function, for
example binary-plusis the two argument (generic) function
corresponding to the n-ary argument + function.

6.3 “-class” suffix: The name of a metaclass of a set of
related classes. For example, function-class, which is the
metaclass of function, generic-function and any of their
subclasses and condition-classis the class of all conditions.
The exception is class itself which is the default metaclass.
The prefix should describe the general domain of the classes
in question, but not necessarily any particular class in the
set.

6.4 “generic-” prefix: The generic version of the func-
tion named by the stem.

6.5 hyphenation: Function and class names made up
of more than one word are hyphenated, for example:
compute-primitive-reader-using-slot-description.

I

6.6 “p” suffix: A predicate function is named by a “p
suffix if the function or class name is not hyphenated, for
instance, consp, and is named by a “-p” suffix if it is, for
instance compatible-superclass-p.

6.7 “-ref” suffix: For each builtin or defined class,
there is a field accessor named class-name-ref—where
appropriate—and a corresponding field updator (setter
class-name-ref)—also where appropriate, for example
table-ref. This convention is broken by historical prece-
dent for the accessors to slots of pairs, which are called car
and cdr.

7 Definitions

This set of definitions, which will be used throughout this
document, is self-consistent but might not agree with notions
accepted in other language definitions. The terms are defined
in alphabetical rather than dependency order and where a
definition uses a term defined elsewhere in this section it
is written in italics. Some of the terms defined here are
redundant. Names in courier font refer to entities defined
in the language.

7.1 accessor: An accessoris a association of a reader and
a writer.

7.2 applicable method: A method is applicable for a
particular set of arguments if each element in its signature is
a superclass of the class of the corresponding argument.

7.3 applicable method list: An applicable method list
is a list of all the methods applicable for a particular list of
arguments to a generic function, sorted according to method
stgnature specificity.

7.4 applicable object: An applicable object is an in-
stance of function.

7.5 binding: A location containing a value.

7.6 binding form: Any form or any macro expression
expanding into a form which causes the creation of inner
dynamzc or inner lexical bindings.

7.7 bound variable: A wvariable x is bound in an ex-
pression E if x occurs in the scope of a defining form which
creates inner-lexical bindings or of a binding form occurring
in F whose variable binding list contains x.

7.8 class: A class is an object which describes the struc-
ture and behavior of a set of objects which are its instances.
A class object contains inheritance information and a set of
slot descriptions which define the structure of its instances.
A class object is an instance of a metaclass. All classes in
EULISP are subclasses of object, and all instances of class
are classes.

7.9 class precedence list: Each class has a linearized
list of all its superclasses, direct and indirect, beginning
with the class itself and ending with the root of the in-
heritance graph, the class object. This list determines
the specificity of slot and method inheritance. A class’s
class precedence list may be accessed through the function
class-precedence-list. The rules used to compute this

6

list are determined by the class of the class through methods
of the generic function compute-class-precedence-list.

7.10 class option: A keyword and its associated value
applying to a class appearing in a class definition form, for
example: the predicatekeyword and its value, which defines
a predicate function for the class being defined.

7.11 closure: The closure of an expression E is the set
of all free variables that occur in F.

7.12 congruent: A constraint on the form of the
lambda-list of a method, which requires it to have the same
number of elements as the generic function to which it is to
be attached.

7.13 constant: A number, string, character or the
empty list.

7.14 constructor: A constructor is a function which
creates an instance of a particular class.

7.15 continuation: A continuation is a function of one
parameter which represents the rest of the program. For ev-
ery point in a program there is the remainder of the program
coming after that point. This can be viewed as a function
of one argument awaiting the result of that point. Such a
function is called a continuation.

7.16 converter function: The generic function associ-
ated with a class (the target) that is used to project an in-
stance of another class (the source) to an instance of the
target.

7.17 defining form: Any form or any macro ez-
pression expanding into a form whose operator is one
of defclass, defcondition, defconstant, defgeneric,
deflocal, defmacro, defmetaclass, defstruct, defun,
defvar.

7.18 direct instance: A direct instance of a class class;
is any object whose classis class;.

7.19 direct slot description: A class’s direct slot de-
scriptions are defined specifically for the class.

7.20 direct subclass: A class; is a direct subclass of
classy if class; is a subclass of classs, class; is not identical
to classz, and there is no other classs which is a superclass
of class; and a subclass of classs.

7.21 direct superclass: A direct superclass of a class
class; 1s any class for which class; is a direct subclass.

7.22 discrimination: Generic functionapplication con-
sists of two parts: finding a set of methods applicable to the
given set of arguments, and application of the method func-
tions of those methods. The first part is called discrimination

or method lookup. Generic functionshave an associated func-
tion called the discriminating function which implements the
discrimination. Users can define new classes of generic func-
tions which implement discrimination in new ways.

7.23 dynamic environment: The inner and top dy-
namic environment, taken together, are referred to as the
dynamic environment.

7.24 dynamic extent: A lifetime constraint, such that
the entity is created on control entering an expression and
destroyed when control exits the expression. Thus the entity
only exists for the time between control entering and exiting
the expression.

7.25 dynamic scope: An access constraint, such that
the scope of the entity is limited to the dynamic extent of
the expression that created the entity.

7.26 dynamically closer: If a form F2 is executed in
the dynamic extent of a form F'1 then within the dynamic
extent of F2, F'2 is dynamically closer than F'1.

7.27 extent: That lifetime for which an entity exists.
Extent is constrained to be either dynamic or indefinite.

7.28 form: One of constant, symbol, literal, function call
or special form.

7.29 free variable: A wvariable x is free in an expression
F if x does not occur in the lexical scope of any defining which
creates inner-lexzical bindings or any binding form occurring
in F whose variable binding list contains x.

7.30 function: A function comprises at least: an expres-
sion, a set of identifiers, which occur in the expression, called
the parameters and the closure of the expression with re-
spect to the lexical environmentin which it occurs, less the
parameter identifiers. Note: this is not a definition of the
class function.

7.31 generic function: Generic functions are functions
for which the method executed depends on the class of its
arguments. A generic function is defined in terms of methods
which describe the action of the generic function for a specific
set of argument classes called the method’s signature.

7.32 identifier: An identifier is the syntactic represen-
tation of a variable.

7.33 improper list: An improper list is a list whose fi-
nal pair contains something other than the empty list in its

cdr field.

7.34 indefinite extent: A lifetime constraint, such that
the entity exists for ever. In practice, this means for as long
as the entity is accessible.

7.35 indefinite scope: An access constraint, such that
the scope of the variable is unlimited.

7.36 indirect instance: A indirect instance of a class
class; 1s any object whose classis a subclass of class;.

7.37 indirect slot description: A slot descriptionis in-
direct for a class; if the slot descriptionis defined for class;,
but was originally defined for another class, which is a su-
perclass of class; and incorporated into class; through inher-
ttance. An indirect slot description is also called an inherited
slot description.

7.38 indirect subclass: A class; is an indirect subclass
of classz if classy is a subclassof classz, class; is not identical
to classz, and there is at least one other classs which is a
superclass of class; and a subclass of classs.

7.39 inheritance graph: A directed labelled acyclic
graph whose nodes are classes and whose edges are defined
by the subclass relations between the nodes. This graph has
a distinguished root, the class object, which is a superclass
of every class.

7.40 inherited slot description: See indirect slot de-
scription.

7.41 initarg: A symbol used as a keyword in an initlist
to mark the value of some slot. Used in conjunction with
make and the other object initialization functions to specify
initial slot values. An initarg may be declared for a slotin a
class definition form using the initarg slot option.

7.42 initform: A form which is evaluated to produce a
default initial slot value. Initforms are closed in their lexi-
cal environments and the resulting closure is called an init-
function. An initform may be declared for a slot in a class
definition form using the initform slot option.

7.43 initfunction: A function of no arguments whose
result is used as the default value of a slot. Initfunctions
capture the lexical environment of an initform declaration in
a class definition form.

7.44 initlist: A list of alternating keywords and values
which describes some not-yet instantiated object. Generally
the keywords correspond to the initargs of some slot descrip-
tion of some class.

7.45 inner dynamic: Inner dynamic bindings are cre-
ated by dynamic-let, referenced by dynamic and modified
by dynamic-setq. Inner dynamic bindings extend—and can
shadow—the dynamically enclosing dynamic environment.

7.46 inner lexical: Inner lexical bindings are created by
lambda and let/cc, referenced by variables and modified by
setq. Inner lexical bindings extend—and can shadow—the
lexically enclosing lexical environment. Note that let/cc
creates an immutable binding.

7.47 instance: Every object is the instance of some
class. An instance thus describes an object in relation to
its class. An instance takes on the structure and behavior
described by its class. An instance can be either deirect or
indirect.

7.48 instantiation graph: A directed graph whose
nodes are objects and whose edges are defined by the in-
stance relations between the objects. This graph has only
one cycle, an edge from class to itself. The instantation
graph is a tree and class is the root.

7.49 lexically closer: If a form F2 occursin a form F1,
then any bindings created by F'2 are lexically closer than
those of F'1.

7.50 lexical environment: The inner and top lexical
environment of a module are together referred to as the lex-
ical environment except when it is necessary to distinguish
between them.

7.51 lexical scope: An access constraint, such that the
scope of the entity is limited to the textual region of the form
creating the entity. See also lexically closer and shadow.

7.52 literal: An object created by use of the quote op-
erator.

7.53 macro: A macro is a function. A macro is distin-
guished from a function by when it is used: macro functions
are only used during the syntax expansion of modules to
transform expressions.

7.54 macro expression: A form whose operator names
a macro expansion function.

7.55 metaclass: A metaclass is a class object whose in-
stances are themselves classes. All metaclasses in EULISP are
instances of class, which is an instance of itself. All meta-
classes are also subclasses of class. class is a metaclass.

7.56 method: A method describes the action of a
generic function for a particular list of argument classes
called the method’s signature. A method is thus said to add
to the behavior of each of the classesin its signature. Meth-
ods are not functionsbut objects which contain, among other
information, a function representing the method’s behavior.

7.57 method-combination:The applicable method
list for an argument list determines the next method called
by the special form call-next-method: for any method in
the list, the next methodis simply the method following it in
the list.

7.58 method function: A function which implements
the behavior of a particular method. Method functions have
special restrictions which do not apply to all functions: their
formal parameter bindings are immutable, and the special
forms call-next-method and next-method-p are only valid
within the lexical scope of a method function.

8

7.59 method lookup: See discrimination.

7.60 method specificity: A signature signature; is
more specific than another signatures if the first class in
stgnature; is a subclass of the first class in signatures, or,
if they are the same, the rest of signature; is more specific
than the rest of signatures.

7.61 multi-method: A method which specializes on all
its arguments. All methods in this definition are multi-
methods.

7.62 new instance: A newly allocated instance, which
is distinct, but can be isomorphic to other instances.

7.63 object: Any entity that can be bound to a
variable—including entities from outside LISP’s memory. Ev-
ery object is an instance of some class.

7.64 proper list: A proper list is a list whose final pair
contains the empty list in its cdr field, or is just the empty
List.

7.65 reader: A reader is a function of one argument
which returns the value of a particular slotin instances of a
particular class.

7.66 reflective: A system which can examine and mod-
ify its own state is said to be reflective. EULISP is reflective to
the extent that it has explicit class objects and metaclasses,
and user-extensible operations upon them.

7.67 scope: That part of the extent in which a given
variable is accessible. Scope is constrained to be lexical, dy-
namic or indefinite.

7.68 self-instantiated class: A class which is an in-
stance of itself. In EULISP, class is the only example of
a self-instantiated class.

7.69 setter function: The function associated with the
function that accesses a place in an entity, which changes the
value stored that place.

7.70 shadow: If two entities are created for which the
same means of reference is used, and either the form creating
one occurs lexically in the form creating the other (where the
means of reference has lexical scope) or the form creating one
is executed in the dynamic extent of the form creating the
other (where the means of reference has dynamic scope), then
the outer entity is shadowed by the inner one.

7.71 signature: A signature is a list of classes derived
from a list of arguments, or the list of classes for which a
method is applicable.

7.72 slot: A named component of an object which can
be accessed using the slot’s accessor. Fach slot of an object

is described by a slot description object associated with the
class of the object. When we refer to the structure of an
object, this usually means its set of slots.

7.73 slot description: A slot description object de-
scribes a slot in the instances of a class. This descrip-
tion includes the slot’s name, its logical position in in-
stances, and a way to determine its default value. A
class’s slot descriptions may be accessed through the func-
tion class-slot-descriptions. A slot description can be
either direct or indirect.

7.74 slot option: A keyword and its associated value
applying to one of the slots appearing in a class definition
form, for example: the accessor keyword and its value,
which defines a function used to read or write the value of a
particular slot.

7.75 special form: A special form is a semantic prim-
itive of the language. In consequence, any processor (for
example, a compiler or a code-walker) need be able to pro-
cess only the special forms of the language and compositions
of them.

any form which must be evaluated in a specific way.

7.76 specialize: A verbal form used to describe the cre-
ation of a more specific version of some entity. Normally
applied to classes, slot-descriptions and methods.

7.77 specialize on: A verbal form used to describe re-
lationship of methods and the classes specified in their sig-
natures.

7.78 subclass: The behavior and structure defined by a
class class; are inherited by a set of classes which are termed
subclasses of classi. A subclass can be either direct or indi-
rect.

7.79 superclass: A class; is a superclass of classy iff
classy is a subclass of class;. A superclass can be either
direct or indirect.

7.80 symbol: A symbol is a data structure, often used
to represent an identifier.

7.81 textual slot description: A list of alternating
keywords and values (starting with a keyword) which rep-
resents a not-yet-created slot description during class initial-
isation.

7.82 top dynamic: Top dynamic bindings are cre-
ated by defvar, referenced by dynamic and modified by
dynamic-sgetq. There is only one top dynamic environment.

7.83 top lexical:
Top lexical bindings are created in the top lexical environ-
ment of a module by defclass,defcondition,defconstant,
defgeneric,defmacro,defmetaclass,defstruct and defun.

All these bindings are immutable. deflocal creates a muta-
ble top-lexical binding. All such bindings are referenced by
variables and those made by deflocal are modified by setq.
Each module defines its own distinct top lexical environment.

7.84 wvariable: A variable denotes a binding and is a
means to reference the value stored in the binding.

7.85 writer: A writer is a function of two arguments
which changes the value of a particular slotin instancesof a
particular class.

8 Syntax

Case is distinguished in each of characters, strings and iden-
tifiers, so that variable-name and Variable-name are dif-
ferent, but where a character is used in a positional number
representation (e.g. \#x3Ad) the case is ignored. Thus, case
is also significant in this document and, as will be observed
later, all the special form and standard function names are
lower case. In this section, and throughout this document,
the names for individual character glyphs are those used in

ISO/TEC DIS 646:1990.

The minimal character set to support EULISP is defined in
Table 2. The language as defined in this document uses
only the characters given in this table. Thus, left hand sides
of the productions in this table define and name groups of
characters which are used later in this definition: diget, upper,
lower, other, special and alphabetic.

The syntax of the classes of objects that can be read by
EULISP is defined in the section of this document correspond-
ing to the class: <character>(A.1l), <double-float>(?7?),
<null>(A.9), <pair>(A.11), <spint>(A.12),
<string>(A.14), <symbol>(A.15) and <vector>(A.17). The
syntax for identifiers corresponds to that for symbols.

8.1 Whitespace and Comments

Whitespace characters are space and newline. The newline
character 1s also used to represent end of record for configu-
rations providing such an input model, thus, a reference to
newline in this definition should also be read as a reference
to end of record. The only use of whitespace is to improve
the legibility of programs for human readers. Whitespace
separates tokens and is only significant in a string or when
it occurs escaped within an identifier.

A comment is introduced by the comment-begin glyph, called
semicolon (;) and continues up to, but does not include,
the end of the line. Hence, a comment cannot occur in the
middle of a token because of the whitespace in the form of
the newline. Thus a comment is equivalent to whitespace.

10

9 Modules

The EULISP module scheme has several influences: the exist-
ing Le-Lisp implementation, the model defined in the func-
tional language Haskell, the ML module system [MacQueen,
1984], the make-environment module mechanism used in C-
Scheme and T’s locales.

The module mechanism provides a means of abstraction and
a means of security for programs in a complementary style to
that provided by the object system. Indeed, although objects
do support data abstraction, they do not support all forms
of information hiding. For this reason it is important to
provide a mechanism offering the complete hiding of names.
A module defines a mapping between a set of names and the
bindings of those names in the imported module. Most such
bindings are immutable. The exception are those bindings
created by deflocal which may be modified by the defining
and importing modules. There are no implicit imports into
a module, and not even the special forms are available in a
module that imports nothing. A module exports nothing by
default.

A module definition creates two, new, empty lexical
environments—the internal and the external top-lexical en-
vironments of the module. All the bindings in the module
body are stored in the internal top-lexical along with those
bindings shared (by importation) with other modules. The
external top-lexical shares those bindings from the internal
top-lexical that are exported and also those of all the exposed
modules (modules which are exported but not imported).
The names of modules are bound in a disjoint binding en-
vironment which is only accessible via the module definition
form. That is to say, modules are not first-class. The rep-
resentation of the module environment is implementation-
defined. The body of a module definition comprises an im-
port directive followed by a syntax directive and a sequence
of definitions, expressions and export directives. The pro-
cessing of each of these is now discussed in detail.

9.1 Imports

The import directive is expressed in terms of module names
and the filters except, only and rename. The syntax of
import specifications is given in Table 3. An import-spec
is a sequence of module-names and or module-directives and
denotes the union of all the names generated by each element
of the sequence.

In processing import directives, every name should be
thought of as a pair of (module-name local-name) coupled
with some attributes (mutable, immutable, syntax, value).
Intuitively, a namelist of module-name/local-name pairs is
generated by giving the module name and then filtered by
except, only and rename. In addition, all names with a
syntax attribute are filtered out because syntax functions
can have no use at execution time. In an import directive,
when a namelist has been filtered, the names are regarded as
being defined in the internal top-lexical environment of the
module into which they have been imported. Should any two
instances of local-name have different module-names, then
there 1s a name clash which is a static error. Elements of an
tmport-spec are interpreted as follows:

except — Filters the names from each module-directive
discarding those specified and keeping all other names.
The except directive is convenient when almost all of the

Table 2 — Minimal character set

digit == 0| 1|2|3|4|5]|6|7]|8]?9
upper == A |B|C|D|E|F|G|H|I|J|K|L|M|N|O]|P|
Q|R|S|T|U|V|W]|X|Y]|Z
lower == a|blc|ale|t|g|n|ililkl1]nlnlolpl
alrlslslulviulxlylz
other ==]| $|%|&]|*|/]:|<|=|>[21" 11 10121 €L|¥|+]-]¢].
special = ||, N #])¢
alert | backspace | delete | formfeed | linefeed | newline | return | space | tab | vertical-tab
alphabetic = upper | lower

names exported by a module are required, since it is only
necessary to name those few that are not wanted to ex-
clude them.
module-name — All the exported names from module-
name.

only — Filters the names from each module-directive
keeping only those names specified and discarding all other
names. The only directive is convenient when only a few
names exported by a module are requied, since it is only
necessary to name those that are wanted to include them.

rename — Filters the names from each module-directive
replacing those with old-name by new-name. Any name
not mentioned in the replacement list is passed unchanged.
Note that once a name has been replaced the new-name
is not compared against the replacement list again. Thus,
a binding can only be renamed once by a single rename
directive. In consequence, name exchanges are possible.

9.2 Syntax

The syntax section defines the expansion functions for the
body of the module. This section comprises an import di-
rective for access to expanders defined in other modules and
a sequence of definitions. The import directive is processed
as described above except that all names which do not have
a syntax attribute are filtered out. The body of the syntax
section is expanded according to the syntax environment de-
fined by the import directive of the syntax section. All the
resulting functions are added to the syntax environment and
the body of the module i1s then expanded according to that
environment.

NOTE (version 0.95) — Currently the semantics of syntax expan-
sion are unsatisfactory because expanders are not opaque to the
user. That is to say, the resulting expansion can contain references
to bindings imported into the syntax module and those modules
must also be imported explicitly by the user of the macro using the
same binding renamings as the syntax module. Neither is there a
requirement for hygienic expansion, so expander and user bound
variables may interfere with one another. It is intended that the
next version of this document should specify a syntax expansion
scheme that is opaque to the user.

The basic expansion mechanism examines each form in the
module body, applying the following process:

a)

b) If the form is a list and the operator is an identifier
which is bound in the syntax environment then the asso-
ciated expansion function is called on a list of the (un-
evaluated) operands of the form. The expansion process
is applied to the resulting form.

If the form is not a list, the result is the original form.

c) If the identifier names a special form then the form
specific expansion function is invoked.

d) If the form is a list the expansion process is applied
to the operator and the operands of the form. The result
is a form containing the results of the expansion of the
operator and the operands in the order corresponding to
the order of the operator and the operands in the original
form. The expansion process is applied to the resulting
form.

The result of each step of the expansion process is a form
containing references to the bindings visible from the module
in which the expansion function is defined.

9.3 Exports

The export directive is expressed either in terms of bindings
names, using export or export-syntax, or module names
using expose.. The syntax of export specifications is given

in Table 3.

Processing export directives employs the same model as for
imports, namely, a module-name/local-name pair with the
same filtering operations. When the namelist has been fil-
tered, the names are added to the set of exportations of this
module. It is the union of all the export directives in the
body of a module defines the externally visible top-lexical
environment of the module. Should any two instances of
local-namehave different module-names, then there is a name
clash, which is a static error. Note that the external top-
lexical environment might not be a subset of the internal
top-lexical environment because the external one can refer-
ence modules which have not been imported.

The sequence of export-specs in the module body is treated
as the union of all the names generated by each export-spec.
It is a static error if any name occurs more than once. Each
export-specis interpreted as follows:

export — FEach of the names appearing in the export
form is added to the external top-lexical environment of
the module.

export-syntar— FEach of the names appearing in the
export form is added to the external top-lexical environ-
ment of the module with the syntax attribute set.

expose — Processes each of the module-directives appear-
ing in the expose form following the rules for import-spec
and adds the resulting set of names to the external top-
lexical environment of the module.

11

Figure 1 — Example of import and export directives

(defmodule example
(module-1
(except (function-a) module-2)
(only (function-b) module-3)
(rename ((function-c function-d)
function-d
(function-d function-c)) module-4))

(syntax
syntax-module-1
((rename ((syntax-a syntax-b)) syntax-module-2)
syntax-b

(rename ((syntax-c syntax-a)) syntax-module-3))
)

(expose module-5
(except (function-e) module-6))

(export local-definition-1
local-definition-2
local-definition-3)

9.4 Definitions and Expressions

Definitions in a module only contain unqualified names—
that is, local-names, using the above terminology. All top-
lexical module bindings are only ever created once and are
shared with all modules that import the module creating the
bindings. Only top-lexical bindings created by deflocal are
mutable and it is an error to modify an immutable bind-
ing. Expressions, that is non-defining forms, are collected
and evaluated in order of appearance at the end of the mod-
ule definition process when the top-lexical environment is
complete. The exception to this is the progn form, which is
descended and the forms within it are treated as if the progn
were not present.

9.5 Module Processing

The following steps summarize the module definition pro-
cess:

Import Processing — Module import clauses either
specify the importation of a module in its entirety or the
selective importation of specified bindings from a module.
For each import specification, the originating module must
exist and, in the case of selective specifications, the named
binding(s) must be exported from it. Each import specifi-
cation contributes a set of bindings to the top-lexical envi-
ronment of the module being defined. Each such binding
is checked for name-conflict, since no two imported names
can be the same. Note that mutually referential modules
are not possible because of the definition before use re-
quirement. Hence, the importation dependencies form a

DAG.

Syntax Expansion — The syntax section specifies the
modules required for syntax expansion and any locally
defined syntax. The body of the module is expanded ac-

12

H

H

H

H

H

H

H

H

H

H

H

; semport everything from module-1
;3 all but function-a from module-2

; but just function-b from module-3

; sexchange the names of the bindings of function-c and

; 3 from module-4

;5 all of the module syntax-module-1

;rename the binding of syntax-a from syntax-module-2 to

; s now rename syntax-c from syntax-module-3 as syntax-a

; export all of module-5

; s export all of module-6 except function-e

; 3 but Just three bindngs from this module

cording to the operators defined in the syntax environment
constructed from the syntax import directive and the local
definitions.

Environment Construction — All the defined variables
are collected and added to the module’s top-lexical en-
vironment.

Export Processing — The exportations are collected and
the set of exported names is constructed.

Static Analysis — The expanded body of the module is
analysed. It is a static error, if a variable in the body does
not have a binding in the top-lexical environment.

Initialization — The module is initialized by evaluating

the forms in the body in the order they appear.

9.6 Module Definition

9.6.1 defmodule syntazx

9.6.1.1 Syntax
The syntax of the text of a module is given in Table 3.

9.6.1.2 Arguments

module-name: A symbol used to name the module.
import-spec: An expression specifying the modules on
which the execution of this module depends and how their
exports are to be named for reference in this module.

Table 3 — Module syntax

(module-directive™)

tmport-spec
syntaz-spec
export-spec

module-directive
module-filter .=
except =

only ==

rename
module-expression
definition

() | (syntax smport-spec defmacro™)
export | export-syntazx | expose

export = (export name")
export-syntaxr = (export-syntax name")
expose = (expose module-directive®)

module-name | module-filter

except | only | rename

(except (name®) module-directive®)
(only (name*) module-directive
(rename ((old-name new-name)*) module-directive™)
export-spec | level-0-expression | definition | (progn expression)
level-O-deﬁnition{defmodule}

i)

syntaz-spec: An expression specifying the modules on
which the expansion of this module depends and how their
exports are to be named for reference in this module

module-expression™ A sequence of definitions, expres-
sions and export specifications.

9.6.1.3 Remarks

The defmodule form defines a module named by module-
name and stores a module object in the module binding en-
vironment under the name module-name.

9.6.1.4 Examples

An example module definition with explanatory comments
is given in Figure 1.

10 Objects

In EULISP, every object in the system has a specific class.
Classes themselves are first-class objects. In this respect
EULIsP differs from statically-typed object-oriented lan-
guages such as C++ and pCEYX. The EULISP object system
is called TELOS.

Programs written using TELOS typically involve the design
of a class hierarchy, where each class represents a category of
entities in the problem domain, and a protocol, which defines
the operations on the objects in the problem domain.

A class defines the structure and behavior of its instances.
Structureis the information contained in the class’s instances
and behavior is the way in which the instances are treated
by the protocol defined for them.

A protocol defines the operations which can be applied to in-
stances of a set of classes. This protocol is typically defined
in terms of a set of generic functions, which are functions
whose behavior depends on the classes of their arguments.
The particular class-specific behavior is partitioned into sep-
arate units called methods. A method is not a function itself,
but is a closed expression which is a component of a generic
function.

It may be possible in an implementation to acquire a pointer
that does not correspond to any EULISP object. It is an error
to pass such a pointer to a function. The default domain for
arguments of functions is <object>.

10.1 Creating and Initializing Objects

Objects can be created calling
— constructors (predefined or user defined) or
— make, the general constructor function.

The general constructor make creates a new object calling
allocate and initializes it calling initialize. allocate
discriminates on the class, while initialize discriminates
on the new object. Both initialize and allocate, as well
as more specific constructors, are described in more detail
in section ?7. The default allocate method creates a new
uninitialized object, that is, all slots are unbound. The de-
fault initialize method (see below) is applicable to any
object, although there are also more specific methods for
classes, slot descriptors, generic functions and methods.

13

10.1.1 initialize generic function

10.1.1.1 Generic Arguments
(object <object>): The object to initialize.
(enetlist <1ist>): The List of initialization arguments.

10.1.1.2 Result
The initialized object.

10.1.1.3 Remarks

Initializes an object using the most specific method for the
class of the object and returns the initialized object as the
result.

10.1.2 initialize method

10.1.2.1 Specialized Arguments
(object <object>): The object to initialize.

(enetlist <1ist>): The List of initialization arguments.

10.1.2.2 Result
The initialized object.

10.1.2.3 Remarks

This 1s the default method attached to initialize. This
method performs the following steps:

a) Check if the supplied initargs are legal and signal an
error otherwise. Legal initargs are those specified in the
class definition directly or inherited from a superclass. Ini-
targs may be slot-names or other symbols.

b) Initialize the slots of the object according to the ini-
targ, if supplied, or according to the initfunction stored
in the slot-description followed by calling the anonymous
writer stored in the slot-description. The initfunction may
return “unbound” if no initform has been specified di-
rectly in the class definition or none was inherited from a
superclass.

Legal initargs which do not name a slot are ignored by the
default initialize method. The default method can be
specialized by calling call-next-method from more specific
initialize methods.

10.1.2.4 See also: initialize methods for classes, slot de-
scriptors, generic functions and methods, make, allocate.

10.2 Accessing Slots

Object components (slots) can be accessed using reader and
writer functions (accessors) only. For system defined object
classes there are predefined readers and writers. Some of
the writers are accessible using the setter function. If there

14

Table 4 — generic-prin output syntax

structure | prin-symbol
any-character
prin-string-char™
prin-string
any-character

prin-character
prin-string
prin-symbol
prin-string-char

prin-datum = prin-character | number | prin-string |

is no writer for a slot, its value cannot be changed. When
users define new classes, they can specify which readers and
writers should be accessible in a module and by which bind-
ing. Accessor bindings are not exported automatically when
a class (binding) is exported. They can only be exported
explicitly.

At the metalevel there is a protocol which allows user de-
fined methods for the computation of special accessors, for
example, those checking the type of a value when storing a
new one.

10.3 External Representation

10.3.1 generic-prin generic function

10.3.1.1 Generic Arguments
(object <object>): An object to be output on stream.

(stream <stream>): The stream on which objectis to be
output.

10.3.1.2 Result
The object supplied as the first argument.

10.3.1.3 Remarks

The individual methods for specific classes define the for-
mat of the output. The representation produced by
generic-prin, may be more convenient for human reading,
but is not guaranteed to by syntactically correct input for a
Eulisp processor. Specifically, generic-prin will not out-
put escaping information in characters, strings or symbols.
This is summarised in the grammar in Table 4.

10.3.2 generic-write generic function

10.3.2.1 Generic Arguments
(object <object>): An object to be output on stream.
(stream <stream>): The stream on which objectis to be

output.

10.3.2.2 Result
The object supplied as the first argument.

Table 5 — generic-write output syntax

datum ::= character | number | string | structure |
symbol
structure = list | vector

10.3.2.3 Remarks

The individual methods for specific classes define the for-
mat of the output. The representation produced by
generic-write is guaranteed to be syntactically correct in-
put for a Eulisp processor and will result in an object equal
to the original entity. The syntax of objects output by
generic-write is given in Table 5.

11 Classes and Slot Desciptions

A class describes a set of objects, called its instances, in
the problem domain. Classes define the structure of their
instances through a set of slots which each instance contains.
Classes also define the behavior of their instances through
the methods which specialize on them.

Inheritance is implemented through classes. Fach class has
a class precedence list, a linearized list of all the class’s su-
perclasses, which defines the classes from which the class
inherits structure and behavior. Slots and methods defined
for a class will also be defined for its subclasses but a subclass
may specialize them.

In EULISP, classes are first-class objects and are instances of
some specific class. These classes of classes are called meta-
classes. Extensions, such as multiple inheritance, support
for the change-class functionality of CLOS, and persistent
objects can be supported through metaclasses. In addition,
metaclasses can provide new kinds of classes with reduced
power but increased efficiency; the class <structure-class>
is an example.

Classes are defined wusing the defstruct (11.4.1),
defcondition (??) and defclass (?7) defining forms. New
metaclasses are defined using defmetaclass (77).

11.1 Inheritance

The structure and behaviour defined for a class is inherited
by all of its subclasses. In practice, this means that an in-
stance of a class will contain all the slots defined directly in
the class as well as all of those defined in the class’s super-
classes. In addition, a method specialized on a particular
class will be applicable for direct and indirect instances of
the class.

TELOS level-0 provides only single inheritance, meaning that
a class can have exactly one superclass—but indefinitely
many subclasses. In fact, all classes in the level-0 class in-
heritance tree have exactly one superclass except the root
class <object> which has no superclass.

Metaclasses control the structure and behaviour of their in-
stances and the representation of their metainstances. It
might not be possible to form a subclass link between two
classes of different metaclasses. The meta-object protocol
(MOP) provides means to control compatibility between
classes with respect to the subclass relationhsip.

11.2 Slot Descriptions

The components of an object are called its slots. Each slot of
an object is defined by its class. It is represented by a slot de-
scription object, which defines where the slot is to be stored,
how it can be accessed, and its default value. At level-1 of
EULISP and above the slot description mechanism is special-
izable and extensible. New slot description classes to support
extensions such as the facets found in many knowledge rep-
resentation languages, multi-valued slots, typed slots, and
slots whose values are not stored in the instance. Slots
are defined within a defstruct, defcondition or defclass
defining form. New slot description classes are defined by
defclass.

15

11.3 System Defined Classes

The basic classes of EULISP are elements of the object system
class hierarchy, which is shown in Figure 2. Indentation indi-
cates a subclass relationship to the class under which the line
has been indented, for example, <condition> is a subclass
of <object> and the name following the class is the name
of the metaclass, for example, the class of <condition>is
<condition-class>. The names given here correspond to
the bindings of names to classes as they are exported from
the level-0, level-1 or level-2 modules.

Figure 2 — Level-0 initial class hierarchy

<object> [<class>]
<character> [<class>]
<class> [<class>]
<condition-class> [<class>]
<function-class> [<class>]
<number-class> [<class>]
<structure-class> [<class>]

<condition> [<condition-class>]
<function> [<function-class>]

<method> [<class>]
<null®> [<class>]
<number> [<number-class>]

<pair> [<class>]

<semaphore> [<class>]

<stream> [<class>]

<string> [<class>]

<structure> [<structure-class>]
<symbol> [<class>]

<table> [<class>]

<thread> [<class>]

<vector> [<class>]

The root of the instantiation hierarchy is the class <class>,
which is an instance of itself. The root of the inheritance
hierarchy is the class <object>. <class> defines the basic
methods for access and modification of objects components.
In this definition, unless otherwise specified, all objects de-
clared to be of a certain class may be indirect instances of
that class. Furthermore, unless otherwise specified, classes
declared to be subclasses of other classes may be indirect
subclasses.

11.4 Defining Classes

11.4.1 defstruct defining form

11.4.1.1 Syntax

(defstruct class-name superclass (slot-description™) class-
option™)
11.4.1.2 Arguments

class-name: A symbol naming a binding to be initialised
with the new structure class.

superclass: A symbol naming a binding of a class to be
used as the superclass of the new structure class.

16

(slot-description™): A list of slot specifications (see be-
low), comprising either a slot-name or a list of a slot-name
followed by some slot-options.

class-option™ A sequence of keys and values (see below).

11.4.1.3 Remarks

defstruct creates a new structure class. The first argument
is the name to which the new class will be bound. The
second is identifier which names a variable to which the su-
perclass is bound. If superclassis (), the superclass is taken
to be the root structure class <structure>. The list of slot-
descriptions 1s described below. Finally, a class-optionis a
identifier followed by a corresponding value, which, taken
together, apply to the class as a whole. The syntax of
defstruct is defined in Table 6.

The slot-options are interpreted as follows:

initarg symbol: The value of this option is a identifier
naming a symbol, which is the name of an argument to be
supplied in the init-options of a call to make on the new
class. The value of this argument in the call to make is the
initial value of the slot. This option must only be specified
once for a particular slot. The same initarg name may be
used for several slots, in which case they will share the
same initial value if the initarg is given to make.

initform form: The value of this option is a form, which
is evaluated as the default value of the slot, to be used if
no initarg is defined for the slot or given to a call to make.
The form is evaluated in the lexical environment of the call
to defstruct and the dynamic environment of the call to
make. The form is evaluated each time make is called and
the default value is called for. The order of evaluation of
the initforms in all the slots is determined by initialize.
This option must only be specified once for a particular
slot.

reader symbol: The value is the identifier of the variable
to which the reader function will be bound. The reader
function is a means to access the slot. The reader function
is a function of one argument, which should be an instance
of the new class. No writer function is automatically cre-
ated with this option. This option can be specified more
than once for a slot, creating several readers. It is an error
to specify the same reader, writer, or accessor name for
two different slots.

writer symbol: The value is the identifier of the variable
to which the writer function will be bound. The writer
function is a means to change the slot value. The creation
of the writer is analogous to that of the reader function.
This option can be specified more than once for a slot. It
is an error to specify the same reader, writer, or accessor
name for two different slots.

accessor symbol: The value is the identifier of the vari-
able to which the reader function will be bound. In ad-
dition, the use of this slot-option causes the creation of
a writer function, which is anonymous, but associated to
the reader via the setter mechanism. This option can be
specified more than once for a slot. It is an error to specify
the same reader, writer, or accessor name for two different
slots.

The class options are interpreted as follows:

Table 6 — defstruct syntax

reader-name
writer-name
class-option

constructor-spec
constructor-name
predicate-name

class-name = identifier
superclass {an instance of <structure-class>}
slot-description slot-name | (slot-name slot-option™)
slot-name tdentifier
slot-option = initarg identifier |

initform form |

reader reader-name |

writer writer-name |
accessor reader-name
tdentifier

tdentifier

constructor constructor-spec |
predicate predicate-name
(constructor-name init-option™)
tdentifier

tdentifier

constructor constructor-spec: Creates

a constructor function for the new class. The construc-
tor specification gives the name to which the constructor
function will be bound, followed by a sequence of legal ini-
targs for the class. The new function creates an instance
of the class and fills in the slots according to the match
between the specified initargs and the given arguments to
the constructor function. This option may be specified any
number of times for a class. Specifying the constructor in
this way is equivalent to writing a defconstructor form
for the class.

predicate symbol: Creates a predicate function for the
new class. The predicate specification gives the name to
which the predicate function will be bound. This option
may be specified any number of times for a class. Speci-
fying the constructor in this way is equivalent to writing
a defpredicate form for the class.

11.4.2 defclass defining form

11.4.2.1 Syntax

(defclass class-name (superclass)
class-option™)

(slot-description™)

11.4.2.2 Arguments

class-name: A symbol naming a binding to be initialised
with the new class.

(superclass™): A list of a single symbol naming the bind-
ing of the class to be used as the superclass of the new
class. Multiple superclasses can be specified at level-1 (see
section B.1.1).

(slot-description™: A list of slot specifications (see be-
low), comprising either a slot-name or a list of a slot-name
followed by some slot-options.

class-option™ A sequence of keys and values (see below).

11.4.2.3 Remarks

This defining form defines a new class. The resulting class
will be bound to class-name. The second argument is a list

containing the superclass. If this list is empty, the superclass
is <object>. The third argument is a list of slot-descriptions,
the format of which is an extension of that for defstruct.
The remaining arguments are class options. The syntax of
defclass is given in Table 7. All the slot options and class
options are exactly the same way as for defstruct (11.4.1).

11.4.3 <slot-description> class

The abstract class of all slot descriptions.

11.5 Creating Objects

11.5.1 make function
11.5.1.1 Arguments

class: The class of the object to create.

keyi1 obji ... keyy, obj,: Initialization arguments.

11.5.1.2 Result

An instance of class.

11.5.1.3 Remarks

The general constructor make creates a new object calling
allocate and initializes it by calling initialize. allocate
discriminates on the class, while initialize discriminates
on the new object.

11.5.2 telos-condition condition

This is the general condition class for conditions arising from
operations in the object system.

17

Table 7 — defclass syntax (level-0)

class-name
superclass
slot-description
slot-name
level-0-slot-option

tdentifier

{<class> or the name of one of its subclasses}
slot-name | (slot-name slot-option™)
tdentifier

initarg identifier |

initform form |

reader reader-name |

writer writer-name |

accessor reader-name |
level-0-class-option ::= constructor constructor-spec
predicate predicate-name

12 Generic Functions and Methods

A generic function is a function whose application behaviour
is determined by the classes of its arguments. Each potential
behavior is defined by a method, which specifies a signature
of classes for which it is applicable. A program’s protocol
is a set of generic functions and the relationships between
them.

Generic functions replace the send construct found in many
object-oriented languages. In contrast to sending a message
to a particular object, which it must know how to handle,
the method executed by a generic function is determined by
all of its arguments. Methods which specialize on more than
one of their arguments are called multi-methods.

Generic functions are defined using the defgeneric defining
form, which creates a named generic function in the top-
lexical environment of the module in which is appears, and
generic-lambda, which creates an anonymous generic func-
tion. These forms are described in detail later in this section.

A method describes the application behaviour of a generic
function for a particular sequence of classes, called the
method’s domain. Methods are not functions themselves,
but objects attached to a generic function containing closed
expressions.

Like slots, methods are inherited from the superclass(es) of
an object. That is, if a method is applicable for a class
C1, 1t is also applicable for all of C;’s subclasses as well.
New methods may also be defined for these subclasses, and
these methods are said to be more specific than the meth-
ods defined on the super classes. However, the more general
methods are accessible from the more specific through the
call-next-method form. Thus, behavior can be inherited
and extended in subclasses.

Methods can either be defined at the same time as the generic
function, or else defined separately using the defmethod
macro, which adds a new method to an existing generic func-
tion. This macro is described in detail later in this section.

12.1 Defining Generic Functions and Methods

12.1.1 defgeneric defining form

12.1.1.1 Syntax

(defgeneric gf-name gen-lambda-list level-0-init-option™)

18

12.1.1.2 Arguments

gf-name: One of a symbol, or a form denoting a setter
function or a converter function.

gen-lambda-list: The parameter list of the generic func-
tion, which may be specialised to restrict the domain of
methods to be attached to the generic function.

init-option™: Options as specified below.

12.1.1.3 Remarks

This defining form defines a new generic function. The re-
sulting generic function will be bound to gf-name. The
second argument is the formal parameter list. An er-
ror is signaled (condition: non-congruent-lambda-lists)
if any method defined on this generic function does not
have a lambda list congruent to that of the generic
function. In addition, an error is signaled (condition:
incompatible-method-signature) if the method’s special-
ized lambda list widens the domain of the generic function.
In other words, the lambda lists of all methods must spe-
cialize on subclasses of the classes in the lambda list of the
generic function. This applies both to methods defined at
the same time as the generic function and to any methods
added subsequently by defmethod or add-method. An init-
optionis a identifier followed by a corresponding value. The
syntax of defgenericis given in Table 8:

The net-option is:

method method-spec: This option is followed by a method
description. A method description is a list comprising the
specialized lambda list of the method, which denotes the
signature, and a sequence of forms, denoting the method
body. The method body is closed in the lexical envi-
ronment in which the generic function definition appears.
This option may be specified more than once.

12.1.1.4 Examples

In the following example of the use of defgeneric a generic
function named gf-0 is defined with three methods attached
to it. The domain of gf-0 is constrained to be <object>x
<class-a>. In consequence, each method added to the
generic function, both here and later (by defmethod), must
have a domain which is a subclass of <object>Xx <class-a>,
which is to say that <class-c>, <class-e> and <class-g>
must all be subclass of <class-a>.

(defgeneric gf-0 (argl (arg2 <class-a>))
method (((mi-argl <class-b>) (ml-arg2 <class-c>)) ...)

Table 8 — defgeneric syntax (level-0)

gf-name
gen-lambda-list
level-0-init-option
method-description
spec-lambda-list ::=
spec-vartable

class

class-name

identifier | (setter identifier) | (converter identifier)
spec-lambda-list

method method-description

(spec-lambda-list form™)

(spec-variable™ [.
(variable class) | variable

variable])

method (((m2-argl <class-d>) (m2-arg2 <class-e>)) ...)
method (((m3-argl <class-f>) (m3-arg2 <class-g>)) ...)
)

12.1.1.5 See also: add-method.

12.1.2 defmethod macro

12.1.2.1 Syntax

(defmethod gf-name spec-lambda-list form™)

or

(defmethod (setter identifier) spec-lambda-list form™)

or

(defmethod (converter identifier) spec-lambda-list form™)

12.1.2.2 Remarks

This macro is used for defining new methods on generic func-
tions. A new method object is defined with the specified
body and with the signature given by the specialized lambda
list. This method is added to the generic function bound to
gf-name or convertor function associated with class. In the
former case, if the specialized-lambda-list is not congruent
with that of the generic function, an error is signaled (condi-
tion: non-congruent-lambda-lists). In addition, an error
is signaled (condition: incompatible-method-signature) if
the method’s specialized lambda list would widen the domain
of the generic function.

12.1.3 no-applicable-method telos-condition

12.1.3.1 Init-options

generic function: The generic function which was ap-
plied.

domain list: The domain of the sought method.

12.1.3.2 Remarks

Signalled by the discriminating function of a generic function
when there is no method which satisfies the given signature.

12.1.4 incompatible-method-signature telos-condition

12.1.4.1 Init-options
generic function: The generic function to be extended.

method method: The method to be added.

12.1.4.2 Remarks

Signalled by add-method if the signature of the method
would widen the domain (that is, is less specific) than the
generic function.

12.1.5 non-congruent-lambda-lists telos-condition

12.1.5.1 Init-options
generic function: The generic function to be extended.

method method: The method to be added.

12.1.5.2 Remarks

Signalled by add-method if the lambda list of the method is
not congruent to that of the generic function.

12.2 Specializing Methods

The following operators
(call-next-method and next-method-p) are used to spe-
cialize more general methods by calling them and perhaps
performing some additional computations before and/or af-
ter calling the next method. It is an error to use either of
these operators outside a method body. Argument bindings
inside methods are immutable. Therefore an argument in-
side a method retains its specialized class throughout the
processing of the method.

12.2.1 call-next-method special form

12.2.1.1 Syntax
(call-next-method)

12.2.1.2 Result

The result of calling the next most specific applicable
method.

12.2.1.3 Remarks

The next most specific applicable method is called with the
same arguments as the current method. An error is signaled
(condition: no-next-method)if there is no next most specific
method.

12.2.2 no-next-method telos-condition

12.2.2.1 Init-options

19

method method: The method which called

call-next-method.

operand-list list: A list of the arguments to have been
passed to the next method.

12.2.2.2 Remarks

Signalled by call-next-methodif there is no next most spe-
cific method.

12.2.3 next-method-p special form

12.2.3.1 Syntax
(next-method-p)

12.2.3.2 Result

If there is a next most specific method, next-method-p re-
turns a non-() value, otherwise, it returns ().

20

13 Threads and Semaphores

The basic elements of parallel processing in EULISP are pro-
cesses and mutal exclusion, which are provided by the classes
thread and semaphore respectively.

A thread is an abstract data type protecting some
implementation-defined data. A thread is allocated and ini-
tialised like all other object, by using make. This function
is called the initial function and is where execution starts
the first time the thread is dispatched by the scheduler. The
discussion identifies four states of a thread: new, running,
aborted and finished. These are for conceptual purposes only
and are not distinguishable in practice. The transitions be-
tween these states are summarised in figure 3. The initial
state of a thread is new. The union of the two final states is
known as determined.

A thread is made available for dispatch by starting it, us-
ing the function thread-start, which changes its state to
running. From running a thread becomes either finished or
aborted. When a thread has finished, the result of the initial
function may be accessed using thread-value. If a thread
is aborted, which can only occur as a result of a signal han-
dled by the default handler, then thread-value will signal
the condition on the thread accessing the value. Note that
thread-value blocks until the specified thread has been de-
termined.

Access to shared resources or an undetermined thread while
a thread is running may cause it to become blocked. Thus,
a thread may be blocked on a semaphore, input-output or
thread-value. In each of these cases, thread-resechedule
is called to allow another thread to execute. This function
may also be called voluntarily. A thread may be unblocked
by some other thread executing close-semaphore on the
semaphore on which the first thread is blocked. Thus, the
call to thread-reschedule returns.

The actions of a thread can be influenced externally by
signal. This function registers a condition to be sig-
nalled when the specified thread is rescheduled for execu-
tion. The condition must be an instance of a subclass of
thread-condition. Conditions are delivered to the thread
in order of receipt. A signal on a determined thread has no
effect on either the signalled or signalling thread. See also
section 14.

A semaphore is an abstract data type protecting a binary
value; call these values zero and one. The operations on a
sempahore are cloge-semaphore and open-semaphore. The
open-semaphore operations sets the value to zero if it is one,
or changes the state of the thread executing the operation
to blocked, if the value is zero and reschedules the thread.
The close-semaphore operation sets the value to one and if
there are any threads blocked on this semaphore, one will be
selected and unblocked.

The programming model is that of concurrently executing
threads, regardless of whether the configuration is a multi-
processor or not, with some constraints and some weak fair-
ness guarantees.

a) A processor is free to use run-to-completion, timeslic-
ing and/or concurrent execution.

b) A conforming program must assume the possibility of
concurrent execution of threads and will have the same

Figure 3 — State diagram for threads

|
make |
|
v
NEW
|
thread-start
|

v
RUNNING
/ \
default / \ initial
signal / \ function
handler / \ returns
v v

ABORTED FINISHED

semantics in all cases—see discussion of fairness which fol-
lows.

c) The default condition handler for a new thread, when
invoked, will change the state of the thread to aborted,
save the signalled condition and reschedule the thread.

d) An error is signaled (condition: wrong-thread), if a
continuation is called from a thread other than the one on
which it was created. That is to say, a continuation must
only be called from within its dynamic extent.

e) The lexical environment (inner and top) associated
with the initial function is shared by the thread, as is the
top-dynamic environment, but each thread has a distinct
inner-dynamic environment.

f) The creation and starting of a thread represent
changes to the state of the processor and as such are not
affected by the processor’s handling of errors signaled sub-
sequently on the creating/starting thread (c.f. streams).
That is to say, a non-local exit to a point dynamically out-
side the creation of the subsidiary thread has no default
effect on the subsidiary thread.

g) The behaviour of i/o on the same stream by multiple
threads is undefined.

The parallel semantics are preserved on a sequential run-
to-completion implementation by requiring communication
between threads to use only thread primitives and shared
data protected by semaphores—both the thread primitives
and semaphores will cause rescheduling, so other threads can
be assumed to have a chance of execution.

There is no guarantee about which thread is selected next.
However, a fairness guarantee is needed to provide the il-
lusion that every other thread is running. A strong guar-
antee would ensure that every other thread gets scheduled
before a thread which reschedules itself is scheduled again.
Such a scheme is usually called “round-robin”. This could
be stronger than the guarantee provided by a parallel imple-
mentation or the scheduler of the host operating system.

A weak but sufficient guarantee is that if any thread resched-
ules infinitely often then every other thread will be scheduled
infinitely often. Hence if a thread is waiting for shared data
to be changed by another thread and is using a semaphore,
the other thread is guaranteed to have the opportunity to

change the data. If it is not using a semaphore, the fairness
guarantee ensures that in the same scenario the following
loop will exit eventually:

(while (= data 0) (thread-reschedule))

13.1 Threads

The defined name of this module is thread. This section
defines the operations on threads.

13.1.1 <thread> class

The class of all instances of <thread>.

13.1.1.1 Init-options

initfn enetial-function: an instance of function which
will be called when the resulting thread is started.

size integer: a positive integer specifying, in
implementationdefined units, the size of the thread to be
allocated.

13.1.2 threadp function

13.1.2.1 Arguments
obj. object to examine.

13.1.2.2 Result

The supplied argument if it is an instance of thread, other-
wise ().

13.1.3 thread-reschedule function

This function takes no arguments.

13.1.3.1 Result
The result is ().

13.1.3.2 Remarks

This function is called for side-effect only and causes the
thread which executes it to become blocked. If conditions are
pending on the thread when thread-reschedule continues,
one is selected arbitrarily and signalled. No further pending
conditions will be signalled until the handler processing the
condition has exited. Upon exit from the handler the thread
is rescheduled again.

13.1.3.3 See also: thread-value, thread-signal.

13.1.4 current-thread function

This function takes no arguments.

21

13.1.4.1 Result

The thread on which current-thread was executed.

13.1.5 thread-start function

13.1.5.1 Arguments

thread: the thread to be started, which must be in state
new. If not an error is signaled (condition: old-thread).

obsi ...obj,: values to be passed as the arguments to the
initial function of thread.

13.1.5.2 Result

The thread which was was supplied as the first argument.

13.1.5.3 Remarks

The state of thread is changed to running. The values obj;
to obj, will be passed as arguments to the initial function of
thread.

13.1.6 thread-value function

13.1.6.1 Arguments

thread: the thread whose finished value is to be accessed.

13.1.6.2 Result

The result of the initial function applied to the arguments
passed from thread-start. However, if a condition is sig-
nalled on thread which is handled by the default handler
the condition will now be signalled on the thread executing
thread-value.

13.1.6.3 Remarks

If thread is mnot determined, the thread executing
thread-value is blocked until thread is determined.

13.1.6.4 See also: thread-reschedule, thread-signal.

13.1.6.5 Result
The result is ()

13.1.6.6 Remarks

Registers the specified condition, or, by default, an instance
of thread-condition, to be signalled when threadis resched-
uled for execution. A thread-signal on a determined thread
has no effect on either the signalled or signalling thread.

13.1.6.7 See also: thread-reschedule, thread-value.

22

13.1.7 wait method

13.1.7.1 Specialized Arguments
(thread <thread>): The thread on which to wait.

(timeout <object>): The timeout period.

13.1.7.2 Result

Returns thread if thread is determined.

13.1.7.3 See also: wait.

13.1.8 thread-condition condition

13.1.8.1 Init-options

current-thread thread: Thread which is signalling the
condition.

13.1.8.2 Remarks

This is the general condition class for all conditions arising
from thread operations.

13.1.9 wrong-thread thread-condition

13.1.9.1 Init-options
continuation continuation: A continuation.

thread thread: Thread on which continuation was cre-
ated.

13.1.9.2 Remarks

Signalled if the given continuation is called on a thread other
than the one on which it was created.

13.1.10 old-thread thread-condition

13.1.10.1 Init-options

thread thread: A thread.

13.1.10.2 Remarks

Signalled by thread-start if the given thread has been
started already.

13.1.11 generic-prin method

13.1.12 generic-write method

13.1.12.1 Specialized Arguments

(thread <thread>): The thread to be ouptut on stream
(stream <stream>): The stream on which the represen-

tation is to be output.

13.1.12.2 Result
The thread supplied as the first argument.

13.1.12.3 Remarks

Outputs the external representation of thread on stream.
The external representation of thread is processor-defined.

13.2 Semaphores

The defined name of this module is semaphore.

13.2.1 <semaphore> class

The class of all instances of <semaphore>. This class has no
init-options. The result of calling make on <semaphore> is a
new, open semaphore.

13.2.2 semaphorep function

13.2.2.1 Arguments

obj. object to examine.

13.2.2.2 Result

The supplied argument if it is an instance of semaphore,
otherwise ().

13.2.3 open-semaphore function

13.2.3.1 Arguments

semaphore: the semaphore to be opened.

13.2.3.2 Result

The semaphore supplied as argument.

13.2.3.3 Remarks

Set the value of semaphore to zero if it is one or block the
thread executing open-semaphore if the value is to zero and
call thread-reschedule. This operation is atomic. On be-
ing unblocked the call to open-semaphore will continue by
attempting to open the semaphore.

13.2.3.4 See also: close-semaphore

13.2.4 close-semaphore function

13.2.4.1 Arguments

semaphore: the semaphore to be closed.

13.2.4.2 Result

The semaphore supplied as argument.

13.2.4.3 Remarks

Set the value of semaphore to one and if there are any threads
blocked on this semaphore, select one and unblock it. This
operation is atomic. That thread may then attempt to open
the semaphore again.

13.2.4.4 See also: open-semaphore

13.2.5 generic-prin method

13.2.5.1 Arguments
semaphore: the semaphore to be ouptut on stream

stream: the stream on which the representation is to be
output.

13.2.5.2 Result
The thread supplied as the first argument.

13.2.5.3 Remarks

Outputs the external representation of semaphore on stream.
The external representation of semaphore is processor-

defined.

13.2.6 generic-write method

13.2.6.1 Arguments
semaphore: the semaphore to be ouptut on stream

stream: the stream on which the representation is to be
output.

13.2.6.2 Result
The thread supplied as the first argument.

13.2.6.3 Remarks

Outputs the external representation of semaphore on stream.
The external representation of semaphore is processor-

defined.

23

14 Conditions

The defined name of this module is condition.

The condition system owes much to the Common Lisp er-
ror system [Pitman, 1988] and to the Standard ML excep-
tion mechanism. It is a simplification of the former and an
extension of the latter. Following standard practice, this
document has defined the behaviour of functions in terms
of their normal behaviour. Where an exceptional behaviour
might arise, this has been defined in terms of a condition.
However, not all exceptional situations are errors. Following
Pitman, we use condition to be a kind of occasion in a pro-
gram when an exceptional situation has been signaled. An
error is a kind of condition—error and condition are also used
as terms for the objects that describe exceptional situations.
A condition can be signaled continuably or non-continuably.

These two classes are characterised as follows:

a) A condition might be signaled when some limit has
been transgressed and some corrective action is needed
before processing can resume. For example, memory zone
exhaustion on attempting to heap-allocate an item can be
corrected by calling the memory management scheme to
recover dead space. However, if no space was recovered a
new kind of condition has arisen. Another example arises
in the use of IEEE floating point arithmetic, where a con-
dition might be signaled to indicate divergence of an op-
eration. A continuable condition should be signaled when
there is a strategy for recovery from the condition.

b) Alternatively, a condition might be signaled when
some catastrophic situation is recognised, such as the
memory manager being unable to allocate more memory
or unable to recover sufficent memory from that already
allocated. a non-continuable condition should be signaled
when there is no reasonable way to resume processing.

A condition class is defined with defconditionor defclass.
The definition of a condition causes the creation of a new
class of condition, including a new condition class construc-
tor. A condition is signaled using the function signal, which
takes an instance of a condition and a resume continuation
or the empty list, signifying a non-continuable condition, as
arguments. A condition can be handled using the special
form with-handler, which takes a function—the handler
function—and a sequence of forms to be protected. The
initial condition class hierarchy is shown in Figure 4.

14.0.1 <condition> class

14.0.1.1 Init-options

message string: A string, continaing information which
should pertain to the situation which caused the condition
to be signalled.

14.0.1.2 Remarks

The class which is the superclass of all condition classes.

24

Figure 4 — Level-0 initial condition class hierarchy

<condition> [<condition-class>]
<execution-condition> [<condition>]
<invalid-operator> [<condition>]
<bad-apply-argument> [<condition>]
<cannot-update-setter> [<condition>]
<no-setter> [<condition>]
<improper-unquote-splice> [<condition>]
<environment-condition> [<condition>]
<arithmetic-condition> [<condition>]
<division-by-zero> [<condition>]
<conversion-condition> [<condition>]
<no-converter> [<condition>]
<stream-condition> [<condition>]
<syntax-error> [<condition>]
<thread-condition> [<condition>]
<telos-condition> [<condition>]
<no-next-method> [<condition>]
<non-congruent-lambda-lists> [<condition>]
<incompatible-method-signature> [<condition>]
<no-applicable-method> [<condition>]

14.0.2 execution-condition condition

This is the general condition class for conditions arising from
the execution of programs by the processor.

14.0.3 environment-condition condition

This is the general condition class for conditions arising from
the environment of the processor.

14.1 Condition Handling

Conditions are handled with a function called a handler.
Handlers are established dynamically and have dynamic
scope and extent. Thus, when a condition is signaled, the
processor will call the dynamically closest handler. Note that
it s the first handler accepting to process the condition that
is used and not necessarily the most specific. Handlers are
established by the special form with-handler.

14.1.1 signal function

Called to indicate that specified condition has arisen during
the exection of a program.

14.1.1.1 Arguments
condition: The condition to be signaled.

function: The function (or continuation) to be called if
the condition is handled and resumed, that is to say, the
condition is continuable.

[thread]: If this argument is not supplied, the condition
is signalled on the thread which called signal, otherwise,
thread indicates the thread on which condition is to be
signalled.

14.1.1.2 Result

signal should never return. It is an error to call signal’s
continuation.

14.1.1.3 Remarks

If the third argument is not supplied, signal calls the dy-
namically closest handler with condition—the condition be-
ing signaled—and either continuation or (). If the second
argument is a subclass of function, that is the resume con-
tinuation to be used in the case of a handler deciding to re-
sume from a continuable condition. If the second argument
is (), 1t indicates that the condition was signaled as a non-
continuable condition—in this way the handler is informed
of the signaler’s intention.

If the third argument is supplied, signal registers the
specified condition to be signalled when thread is resched-
uled for execution. The condition must be an instance of
thread-condition, otherwise an error is signalled (condi-
tion: wrong-condition-class)on the thread calling signal.
A signal on a determined thread has no effect on either the
signalled or signalling thread.

14.1.1.4 See also: thread-reschedule, thread-value,
with-handler.

14.1.2 wrong-condition-class thread-condition

14.1.2.1 Init-options
condition condition: A condition.

Signalled by signal if the given condition is not an instance
of thread-condition.

14.1.3 with-handler special form

14.1.3.1 Syntax

(with-handler handler-function protected-form)

14.1.3.2 Arguments

handler-function: A function or a generic function which
will be called if a condition is signaled during the
synamic extent of protected-forms. A handler function
takes two arguments—a condition, and a resume func-
tion/continuation. The condition is the condition object
that was passed to signal as its first argument. The re-
sume continuation is the continuation (or ()) that was
given to signal as its second argument.

protected-form™: The sequence of forms whose execution

is protected by the handler-function specified above.

14.1.3.3 Result

The value of the last form in the sequence of protected-forms.

14.1.3.4 Remarks

A with-handler form is evaluated in four steps:

a) The new handler-functionis constructed and identifies
the dynamically closest handler.

b) The dynamically closest handler is shadowed by the
establishment of the new handler-function.

c) The sequence of protected-forms is evaluated in order
and the value of the last one is returned as the result of
the with-handler expression.

d) the handler-function is disestablished, and the previ-
ous handler is no longer shadowed.

The above is the normal behaviour of with-handler. The
exceptional behaviour of with-handler happens when there
is a call to signal during the evaluation of protected-form.
signal calls the dynamically closest handler-function pass-
ing on the two arguments given to signal. The handler-
function is executed in the dynamic extent of the call to
signal. However, any signals occurring during the exe-
cution of handler-function are dealt with by the dynami-
cally closest handler outside the extent of the form which
established handler-function. A handler-function takes one
of three actions:

a) Return. This causes the mnext-closest enclosing
handler-function to be called, passing on the condition
and the resume continuation. This is termed declining
the condition. The situation when there is no next closest
enclosing handler is discussed later.

b) Call the resume continuation. This action might be
taken if the condition is recognised by the handler function
and might be preceded by some corrective action. This is
termed resuming the condition.

c) Not return and not call the resume continuation. This
action might be taken if the condition is recognised by the
handler function and might be preceded by some corrective
action before some kind of transfer of control. This is
termed accepting the condition.

It is an error if the condition is declined and there is no next
closest enclosing handler. In this circumstance the identified
error is delivered to the configuration to be dealt with in an
implementation-defined way.

14.1.3.5 Examples

An illustration of the use of all three cases is given in the
following (unrealistic) example:

(let/cc accept
(with-handler
(generic-lambda (condition resume)
method ;;error fizable, return to cerror (resume)
(((c continuable-condition))
(resume (fix (condition))))
method ;;serious error, exit from with-handler (accept)
(((c condition))
(accept))
;s otherwise, by omission, let another handler deal
;s with it (decline)
)
; ;the protected expression
(something-which-might-signal-an-error)))

25

14.1.3.6 See also: signal.

14.2 Conditions

14.2.1 conditionp function

14.2.1.1 Arguments

obj. object to examine.

14.2.1.2 Result

Returns objif objis a subclass of condition, otherwise ().

14.2.2 condition-message function

14.2.2.1 Arguments
condition: an instance of condition.

14.2.2.2 Result

Returns the contents of the message slot of condition, which
is a string.

14.2.3 initialize-instance method

14.2.3.1 Arguments
condition: an instance of condition.

init-option™: a sequence of options.

14.2.3.2 Result

A new, initialised condition.

14.2.3.3 Remarks

First calls call-next-method to carry out initialization spec-
ified by superclasses then does the condition specific ini-
tialization. The following init-option is recognised by this
method:

message: — The value must be a string, which should be
used to convey information about the condition that has
arisen.

14.2.4 error function

14.2.5 cerror function

14.2.5.1 Arguments
error-message: a string containing relevant information.

condition-class: the class of condition to be signalled.

26

init-option™: a sequence of options to be passed to
initialize-instance when making the instance of con-
dition.

14.2.5.2 Result
The result of both of these functions is ().

14.2.5.3 Remarks

The cerror and error functions signal continuable and non-
continuable errors, respectively. Each calls signal with an
instance of a condition of condition-classinitialized from init-
options, the error-message and a resume continuation. In the
case of cerror the resume continuation is the continuation
of the cerror expression. In the case of error, it is (),
signifying that the condition was not signaled continuably.
cerror and error can be defined in terms of more primitive
operations:

(cerror error-message condition init-arg®)

(let/cc cerror-fixed-up
(let ((c (make condition init-arg*)))
(signal ¢ cerror-fixed-up)
;; return comes here
(no-handler ¢ cerror-fixed-up)))
;; resume comes here

(error error-message condition init-arg™)

(let ((c (make condition init-arg*)))
(signal ¢ ()
;; return comes here

(no-handler ¢ ())))

The function no-handler is that which changes the state of
the thread to aborted and saves the signaled condition for
future reference. This function is called after all handlers
have declined the condition. That is, no-handler is only
called when none of the handlers can deal with the condition.
Note that both the condition and the resume continuation
are given to no-handler, as for any other handler function,
so that, for instance, execution could be resumed from the
debugger. Also note that no-handleris called in the envi-
ronment of the signal, so that all the handlers in force at
the time of signaling are also in force during the call to no-

handler.

14.2.6 defcondition defining form

14.2.6.1 Syntax

(defcondition condition-name superclass init-option™)

14.2.6.2 Arguments

condition-name: A symbol naming a binding to be ini-
tialised with the new condition class.

superclass: A symbol naming a binding of a class to be
used as the superclass of the new condition class.

init-option™: A sequence of symbols and expressions to
be passed to allocate-instance and initialize-instance.

14.2.6.3 Remarks

This defining form defines a new condition class. The first
argument is the name to which the new condition class will
be bound. The second is the superclass of the new condition
and an énit-option is a identifier followed by its (default)
initial value. If superclassis (), the superclass is taken to be
condition. Otherwise superclass must be condition or one
of its subclasses.

15 Expressions, Definitions and Control
Forms

This section gives the informal syntax of well-formed expres-
sions and describes the semantics of the special-forms, func-
tions and macros of the level-0 language. In the case of level-
0 macros, the description is augmented with an expansion
which has the required semantics. However, these descrip-
tions are not prescriptive of any processor and a conforming
program cannot rely on adherence to these expansions.

15.1 Atomic Expressions

15.1.1 constant syntazx

There are two kinds of constant, literal constants and defined
constants. The latter are considered under symbols. A literal
constant is a number, a string, a character, or the empty list.
The result of processing such a literal constant is the constant
itself—that is, it denotes itself. The external representation
of the empty list is (). The empty list is the only instance
of the class null. For historical reasons, the symbol nil is
defined to be immutably bound to the empty list.

15.1.1.1 Examples

O the empty list

123 a single precision integer
#\a a character

"abc" a string

15.1.2 defconstant defining form

15.1.2.1 Syntax
(defconstant ¢dentifier form)

15.1.2.2 Arguments

identifier: A symbol naming an immutable top-lexical
binding containing the value of form.

form: The form whose value will be stored in the binding
of identifier.

15.1.2.3 Remarks

The value of form is stored as the module value of name. It
is an error to set the value of a defined constant to a different
value.

15.1.3 symbol syntax

The current lexical binding of symbol is returned. A symbol
can also name a defined constant—that is, an immutable
top-lexical binding. The defined constant t has the value t .
The defined constant nil has the value () , which represents
the abstract boolean value false. The abstract boolean value
true can represented by any value other than false—that is,
other than ().

27

15.1.4 deflocal defining form

15.1.4.1 Syntax
(deflocal identifier form)
15.1.4.2 Arguments

tdentifier: A symbol naming a binding containing the
value of form.

form: The form whose value will be stored in the binding
of identifier.

15.1.4.3 Remarks

The value of form is stored as the module binding value of
name. The binding created by a deflocal form is mutable.

15.2 Literal Expressions

15.2.1 quote special form

15.2.1.1 Syntax
(quote datum)

15.2.1.2 Arguments

datum: the datum to be quoted.

15.2.1.3 Result

The result is datum.

15.2.1.4 Remarks

The result of processing the expression (quote datum) is da-
tum. The object datum can be any external representation of
a EULISP object. The special form quote can be abbreviated
using apostrophe—graphic representation ’ in the standard
tokenisation scheme—so that (quote a) can be written ’a.
These two notations are used to incorporate literal constants
in programs. [t is an error to modify the contents of a literal
expression. Within a single module, multiple references to
the same (eq) literal produce the same literal.

15.3 Functions, Application, Definition

15.3.1 lambda special form

15.3.1.1 Syntax
(lambda lambda-list body)
15.3.1.2 Arguments

lambda-list: The parameter list of the function conform-
ing to the syntax specified below.

body: A sequence of forms.

28

15.3.1.3 Result
A function with the specified lambda-list and body.

15.3.1.4 Remarks

The function construction operator is lambda. Access to the
lexical environment of definition is guaranteed, which may
cause the creation of a closure. The syntax of lambda-list is
defined by the following grammar:

lambda-list ::= identifier | simple-list | rest-list
simple-list = (identifier™)
rest-list = Cidentifiert . identifier)

If lambda-list is an identifier, it is bound to a newly allo-
cated list of the actual parameters. This binding has lexical
scope and indefinite extent. If lambda-list is a simple-list,
the arguments are bound to the corresponding identifiers.
Otherwise, lambda-list must be a rest-list. In this case, each
tdentifier preceding the dot is bound to the corresponding
argument and the identifier succeeding the dot is bound to
a newly allocated list whose elements are the remaining ar-
guments. These bindings have lexical scope and extent. It
is an error if the same identifier appears more than once in
a lambda-list.

15.3.2 function call special form

15.3.2.1 Syntax

(operator operand™)

15.3.2.2 Arguments

operator: 'This may be a symbol—being either the name
of a special form, or a lexical variable—or a function call,
which must result in an instance of function. An error is
signaled (condition: invalid-operator)if the operator is
neither the name of a special form nor a function.

operand*: Each operandmust be either an atomic expres-
sion, a literal expression or a function call.

15.3.2.3 Result

The result is the result of the application of operator to the
evaluation of operand®.

15.3.2.4 Remarks

The operand expressions are evaluated in order from left to
right. The operator expression may be evaluated at any time
before, during or after the evaluation of the operands.

15.3.2.5 See also: constant, symbol, quote.

15.3.3 invalid-operator execution-condition

15.3.3.1 Init-options

invalid-operator object: The object which was being
used as an operator.

operand-list list: The operands prepared for the oper-
ator.

15.3.3.2 Remarks

Signalled by function call if the operator is not an instance
of function.

15.3.4 defmacro defining form

15.3.4.1 Syntax

(defmacro macro-name lambda-list body)

15.3.4.2 Arguments

macro-name: A symbol naming a binding containing the
function with the specified lambda-list and body.

lambda-list: The parameter list of the function conform-
ing to the syntax specified under lambda.

body: A sequence of forms.

15.3.4.3 Remarks

The defmacro form defines a function named by macro-name
and stores the definition as the module binding value of
macro-name. In addition, the function macro-name is ex-
ported with the syntax attribute set. The interpretation of
the lambda-list is as defined for lambda (see section 15.6).
The binding created by defmacro is immutable.

15.3.4.4 See also: lambda.

15.3.5 defun defining form

15.3.5.1 Syntax

(defun function-name lambda-list body)
or
(defun (setter function-name) lambda-list body)

15.3.5.2 Arguments
The first argument can take two forms:

function-name — A symbol naming a binding contain-
ing the function with the specified lambda-list and body.

(setter function-name) — An expression denoting
the setter function to correspond to function-name.

lambda-list: The parameter list of the function conform-
ing to the syntax specified under lambda.

body: A sequence of forms.

15.3.5.3 Remarks

The defun form defines a function named by function-name
and stores the definition as the module value of function-
name. The interpretation of the lambda-listis as defined for
lambda (see section 15.6). The binding created by defun is
immutable.

15.3.6 apply function

15.3.6.1 Syntax
(apply function obji ... objn)

15.3.6.2 Arguments

function: An expression which must evaluate to an in-
stance of function.

obji ... objn—1: A sequence of expressions, which wil be
evaluated according to the rules given in function call.

objn: An expression which must evaluate to a proper list.
An error is signaled (condition: bad-apply-argument) if
objy is not a proper list.

15.3.6.3 Result

The result is the result of calling function with the actual
parameter list created by appending obj. to a list of the
arguments obj; through obj,_1. An error is signalled (con—
dition: invalid-operator) if the first argument is not an
instance of function.

15.3.6.4 See also: function call.

15.3.7 bad-apply-argument execution-condition

15.3.7.1 Init-options
arglist list: A list of the objects passed to apply.

15.3.7.2 Remarks

Signalled by apply if its first argument is not an instance of
function.

15.4 Assignments

An assignment operation modifies the contents of a binding
named by a identifier—that is, a variable.

15.4.1 setq special form

15.4.1.1 Syntax
(setq identifier expression)
15.4.1.2 Arguments

tdentifier: The identifier whose lexical binding is to be
updated.

form: An expression whose value is to be stored in the
binding of identifier

15.4.1.3 Result

The result is the value of form.

29

15.4.1.4 Remarks

The form is evaluated and the result is stored in either the
closest lexical binding named by identifier. It is an error to
modify an immutable binding.

15.4.2 setter function

15.4.2.1 Arguments

access-function: An expression which must evaluate to
an instance of function.

15.4.2.2 Result

The update-function corresponding to access-function.

15.4.2.3 Remarks

A generalized place update facility is provided by setter.
Given access-function, setter returns the corresponding up-
date function. If no such function is known to setter, an er-
ror is signaled (condition: no-setter). Thus (setter car)
returns the function to update the car of a pair. New up-
date functions can be added by using setter’s update func-
tion, which is accessed by the expression (setter setter).
Thus ((setter setter) an-accessor an-updator) installs
the function which is the value of an-updator as the updator
of the accessor function which is the value of an-accessor.
Defined updator functions in this report have the same im-
mutable status as other standard functions, such that at-
tempting to redefine such a function, for example ((setter
setter) car a-new-value), signals an error (condition:
cannot—update—setter)

15.4.2.4 See also: defun, defmethod.

15.4.3 no-setter execution-condition

15.4.3.1 Init-options

object object: The object given to setter.

15.4.3.2 Remarks

Signalled by setter if there is no updator for the given func-
tion.

15.4.4 cannot-update-setter execution-condition

15.4.4.1 Init-options
accessor objecti: The given accessor object.

updator object>: The given updator object.

15.4.4.2 Remarks

Signalled by (setter setter) if the updator of the given
accessor 1s immutable.

15.4.4.3 See also: setter.

30

15.5 Conditional Expressions

15.5.1 if special form

15.5.1.1 Syntax

(if expression expression expression)

15.5.1.2 Arguments

antecedent: An expression which may evaluate to any ob-
ject.

consequence: An expression which may evaluate to any
object.

alternative: An expression which may evaluate to any ob-
ject.

15.5.1.3 Result

Either the value of consequence or alternative depending on
the value of antecedent.

15.5.1.4 Remarks

The antecedent is evaluated. If the result is true the conse-
quence is evaluated, otherwise the alternative is evaluated.
Both consequence and alternative must be specified. The
result of if is the result of the evaluation of whichever of
consequence or alternative is chosen. consequence is a single
form, but alternative is a sequence of forms. Each form in al-
ternative is evaluated in order and the result of the last form
is the result of the if expression. Additional conditional
forms (when, unless) are given in section B.20.

15.5.2 cond macro

15.5.2.1 Syntax

(cond (antecedent form™)™)

15.5.2.2 Remarks

The cond macro provides a convenient syntax for collections
of if-then-elif...else expressions. The rewrite rules for cond
are:

(cond)
(cond (antecedent) ...)
(cond (t form™*)) (progn form™*)
(cond (or antecedenty
(antecedenty) (cond
(antecedents form*) (antecedents form*)
) D)

(cond

O

(or antecedent ...)

= (if antecedenty
(antecedenty form*) (progn form*)
(antecedents form*) (cond
L) (antecedents form*)
L))
15.5.3 and macro

15.5.3.1 Syntax

(and form™)

15.5.3.2 Remarks

The expansion of an and form leads to the evaluation of the
sequence of forms from left to right. The the first form in
the sequence that evaluates to () stops evaluation and none
of the forms to its right will be evaluated. The result of and
is (). If none of the forms evaluate to (), the value of the
last form is returned. The rewrite rules for and are:

(and) = ot

(and form) = form

(and formj formg ...) = (if formg (and formz ...) O)
15.5.4 or macro

15.5.4.1 Syntax

(or form™)

15.5.4.2 Remarks

The expansion of an or form leads to the evaluation of the
sequence of forms from left to right. The value of the first
form that evaluates to true is the result of the or form and
none of the forms to its right will be evaluated. If none of the
forms evaluate to true, the value of the last form is returned.
The rewrite rules for or are:

(or) = O
(or form) = form
(or formy formg ...) = (let ((x formi1))
(if x x (or forma ...)))
where x does not occur free in any of forms ... form,.

15.6 Variable Binding and Sequences

15.6.1 let/cc special form

15.6.1.1 Syntax
(let/cc identifier body)

15.6.1.2 Arguments

tdentifier: To be bound to the continuation of the let/cc
form.

body: A sequence of forms.

15.6.1.3 Result
The result of evaluating the last form in body.

15.6.1.4 Remarks

The identifier is bound to a new location, which is initial-
ized with the continuation of the let/cc form. This binding
is immutable and has lexical scope and indefinite extent.
Each form in body is evaluated in order in the environment
extended by the above binding. It is an error to call the con-
tinuation outside the dynamic extent of the let/cc form that
created it. The continuation is a function of one argument.

15.6.1.5 See also: block, return—from.

15.6.2 labels special form

15.6.2.1 Syntax
(labels (function-name lambda-list body)™ labels-body)

15.6.2.2 Remarks

The labels operator provides for local mutually recursive
function creation. Each function-name is bound to a new
location holding an unspecified value, making a new envi-
ronment extended by those bindings. Then for each set of
formal parameters and body, a function is constructed, using
lambda, and the binding of the corresponding function-name
is updated to have the value of the lambda expression. The
scope of the function-names is the entire labels form. The
lambda-list is either a single variable or a list of variables—
see lambda. Each form in labels-bodyis evaluated in order in
the above extended environment. The result of evaluating
the last form is returned as the result of the 1abels form.

15.6.3 let macro

15.6.3.1 Syntax
(1let Lidentifier] (binding™) body)

15.6.3.2 Remarks

The optional identifierdenotes that the let form can be called
from within its body. This is an abbreviation for 1labels com-
bined with let. A binding is specified by either an identifier
or a two element list of an identifier and an initializing form.
All the initializing forms are evaluated in order from left to
right in the current environment and the variables named
by the identifiers in the bindings are bound to new locations
holding the results. Each form in body is evaluated in order
in the environment extended by the above bindings. The
result of evaluating the last form in body is returned as the
result of the 1let form. The rewrite rule for let is:

(et O form™)
(let ((idy formy)

(progn form™)
((lambda (id7 idy 2d3 ...)

(idy forma) form™®)
1ds formy forms O ...)
D)
form™®)
15.6.4 letx* macro

15.6.4.1 Syntax
(let#* [identifier] (binding®) body)

15.6.4.2 Remarks

The optional identifierdenotes that the let form can be called
from within its body. This is an abbreviation for 1labels com-
bined with let*. A bindingis specified by a two element list
of a variable and an initializing form. The first initializing
form is evaluated in the current environment and the corre-
sponding variable is bound to a new location containing that

31

result. Subsequent bindings are processed in turn, evaluat-
ing the initializing form in the environment extended by the
previous binding. Each form in body is evaluated in order in
the environment extended by the above bindings. The result
of evaluating the last form is returned as the result of the
let#* form. The rewrite rules for let# are:

(let* O form™)
(let* ((vary formi)
(varz formsy)

(progn form™)
(let ((wary formp))
(Let* ((vary forma)

vars vars
S S
form™) form™))
15.6.5 progn special form

15.6.5.1 Syntax
(progn form™)

15.6.5.2 Arguments

form™: A sequence of forms and in certain circumstances,
defining forms.

15.6.5.3 Result

The sequence of forms is evaluated in order, returning the
value of the last one as the result of the progn form.

15.6.5.4 Remarks

If the progn form occurs enclosed only by progn forms and
a defmodule form, then the forms within the progn can be
defining forms. It is a static error if this rule is violated.

15.6.6 unwind-protect special form

15.6.6.1 Syntax

(unwind-protect protected-form after-form*)

15.6.6.2 Arguments
protected-form: A form.

after-form™: A sequence of forms.

15.6.6.3 Result
The value of protected-form.

15.6.6.4 Remarks

The normal action of unwind-protectis to process protected-
form and then each of after-forms in order, returning the
value of protected-form as the result of unwind-protect. A
non-local exit from the dynamic extent of protected-form,
which can be caused by processing a non-local exit form,
will cause each of after-forms to be processed before con-
trol goes to the continuation specified in the non-local exit
form. The after-forms are not protected in any way by the
current unwind-protect. Should any kind of non-local exit

32

occur during the processing of the after-forms, the after-
forms being processed are not reentered. Instead, control is
transferred to wherever specified by the new non-local exit
but the after-forms of any intervening unwind-protects be-
tween the dynamic extent of the target of control transfer
and the current unwind-protect are evaluated in increasing
order of dynamic extent.

15.7 Waiting on Events

15.7.1 wait generic function

15.7.1.1 Arguments
obj: An object.

timeout: One of (), t or an instance of integer.

15.7.1.2 Result

Returns () if temeout was reached, otherwise a non-() value.

15.7.1.3 Remarks

wait provides a generic interface to blocking operations. Ex-
ecution of the current thread will continue beyond the wait
form only when one of the following happened:

a) A predicate associated with obj returns true;
b) After timeout time units;
c) A signal is received.

wait returns () if timeout occurs, else it returns a non-nil
value.

A timeout argument of () or zero denotes a polling opera-
tion. A timeout argument of t denotes indefinite blocking.
A timeout argument of a non-negative integer denotes the
minimum number of time units before timeout. The number
of time units in a second is given by the implementation-
defined constant ticks-per-second.

15.7.1.4 Examples

This code fragment copies characters from stream s to the
current output stream until no data is received on the stream
for a period of at least 1 second.

(labels (
(Loop O
(when (wait s cuckoo-heartbeat)
(print (read-char s))
(loop))))
(loop))

15.7.1.5 See also: threads, streams.

15.7.2 ticks-per-second double-float

The number of time units in a second expressed as a
double precision floating point number. This value is
implementation-defined.

Table 9 — Quasiquote Syntax

anti-quotation =

unquotation s
unquote-splice ,0
quasiquotation quasiquotationy

templatey ::= expression
quasiquotation; 1=
template; =

list-template; ::=

vector-template; ::=
unquotation;
template-or-splice;
splicing-unquotation; =

‘template; | (quasiquote template;)

oneofsemple-datum, list-template;, vector-template;, unquotation;
(template-or-splice}) | (template-or-splice} .
> template; | quasiquotation; 41

(template-or-splice})

, template;_1 | (unquote template;_1)
template; | splicing-unquotation;
,@template;_1 | (unquote-splicing template;_1)

template;) |

15.8 Quasiquotation Expressions

15.8.1 quasiquote macro

15.8.1.1 Syntax

(quasiquote skeleton) or ‘skeleton

15.8.1.2 Remarks

Quasiquotation 1is also known as “backquoting”. A
quasiquoted expression is a convenient way of building a
structure. The skeleton describes the shape and, generally,
many of the entries in the structure but some holes remain
to be filled. The quasiquote macro might be abbreviated by
using the glyph called grave accent (¢), so that (quasiquote
expression) can be written ‘expression. A complete defi-
nition of the syntax of quasiquote expressions is given in

Table 9.

15.8.2 unquote syntax

15.8.2.1 Syntax

(unquote form) or ,form

15.8.2.2 Remarks

See unquote-splicing.

15.8.3 unquote-splicing syntax

15.8.3.1 Syntax

(unquote-splicing form) or ,Qform

15.8.3.2 Remarks

The holes in a quasiquoted expression are identified by un-
quote expressions of which there are two kinds—forms whose
value is to be inserted at that location in the structure and
forms whose value is to be spliced into the structure at that
location. The former is indicated by an unquote expres-
sion and the latter by an unquote-splicing expression. In
unquote-splice the form must result in a proper list. An
error is signaled (condition: improper-unquote-splice) on

attempting to unquote-splice an improper list. The in-
sertion of the result of an unquote-splice expression is as if
the opening and closing parentheses of the list are removed
and all the elements of the list are appended in place of the
unquote-splice expression.

The syntax forms unquote and unquote-splicing can be
abbreviated respectively by using the glyph called comma
(») preceding an expression and by using the diphthong
comma followed by the glyph called commercial at (,@) pre-
ceding a form. Thus, (unquote a) may be written ,a and
(unquote-splicing a) can be written ,Qa.

15.8.4 improper-unquote-splice execution-condition

15.8.4.1 Init-options

skeleton skeleton: The skeleton that unquoteis process-
ing.

splice-list list: The improper list which has lead to
the error.

15.8.4.2 Remarks

Signalled by quasiquote
if the result of an unquote-splicing form is not a proper
list.

15.9 Summary of Level-0 Expressions and Def-
initions

The syntax of all level-0 expressions and definitions is given
in Table 10. Any productions undefined here appear else-
where in the definition, specifically: the syntax of certain
classes of data are defined in their own sections.

33

34

Table 10 — Expressions and Definitions (level-0)

level-0-definition
defcondition
defconstant
deflocal

defmacro
defmodule
tmport-spec
syntaz-spec
export-spec

export
export-syntax
expose
module-directive
module-filter
except

only

rename
module-expression
definition
defgeneric
gf-name
gen-lambda-list
level-0-inat-option
method-description
spec-lambda-list
spec-variable
class

defstruct

defun

level-0-expression
level-0-special

lex-ref

literal
quotation
lex-assign
conditional
lambda
lambda-list
semple-list
rest-list

let/cc

progn
with-handler
unwind-protect
self-evaluating
procedure-call
macro-call
procedure-operator
operand
macro-operator
variable

body

defconstant | defcondition | deflocal | defmacro | defmodule | defstruct| defun
(defcondition condition-name superclass init-option™)

(defconstant ¢dentifier form)

(deflocal identifier form)

(defmacro macro-name lambda-list body)

(defmodule module-name import-spec syntaz-spec module-expression™)
(module-directive™)

() | (syntax tmport-spec defmacro®)

export | export-syntaz | expose

(export name*)

(export-syntax name")

(expose module-directive™)

module-name | module-filter

except | only | rename

(except (name*) module-directive™)

(only (name*) module-directive™)

(rename ((old-name new-name)™) module-directive
export-spec | level-0-expression | definition | (progn expression)
level-O-deﬁnition{defmodule}

(defgeneric gf-name gen-lambda-list level-0-init-option™)
identifier | (setter identifier) | (converter identifier)
spec-lambda-list

method method-description

(spec-lambda-list form™)

(spec-variable® [. variable])

(vartable class) | variable

class-name

(defstruct class-name superclass (slot-description™) class-option™)
(defun function-name lambda-list body) |

(defun (setter function-name) lambda-list body)

")

lez-ref | literal | procedure-call | macro-call | level-0-special | quasiquotation
conditional | lambda | let/cc | progn | lez-assign | unwind-protect |
with-handler

tdentifier

quotation | self-evaluating

(quote datum)

(setq identifier expression)

(if expression expression expression)

(lambda lambda-list body)

identifier | simple-list | rest-list

(identifier™)

(identifiert . identifier)

(let/cc identifier body)

(progn form™)

(with-handler handler-function protected-form)
(unwind-protect protected-form after-form™)
character | number | string | vector
(procedure-operator operand™)

(macro-operator operand™)

expression

expression

symbol

tdentifier

expression™

Annex A
(normative)
Level-0 Module Library

A.1 Characters

The defined name of this module is character.

A.1.1 character syntax

Character literals are denoted by the extension glyph, called
hash (#), followed by the character-extension glyph, called
reverse solidus (\), followed by the name of the character.
For most characters, their name is the same as the glyph as-
sociated with the character, for example: the character “a”
has the name “a” and has the external representation #\a.
Certain characters in the group named special (see Table 2
and also Table A.2) have symbolic names, for example: the
newline character has the name newline and has the exter-
nal representation #\newline. These special cases are the
characters named in Table A.2.

Table A.2 — Special Character Syntax

Name Syntax

alert #\alert
backspace #\backspace
delete #\delete
formfeed \formfeed
linefeed #\linefeed
newline #\newline
return #\return
tab #\tab

space #\space
vertical-tab #\vertical-tab

Any character which does not have a name, and thereby
an external representation dealt with by the above cases is
represented by #\x followed by up to four hexadecimal dig-
its. The value of the hexadecimal number represents the
position of the character in the current character set. Exam-
ples of such character literals are #\x0 and #\xabcd, which
denote, respectively, the characters at position 0 and at po-
sition 43981 in the character set current at the time of read-
ing or writing. The syntax for the external representation of
characters is defined in Table A.1.

NOTE — At present this document refers to the “current char-
acter set” but defines no means of selecting alternative character
sets. This is to allow for future extensions and implementation-
defined extensions which support more than one character set.

A.1.2 <character> class

The class of all instances of <character>.

A.1.3 characterp function

A.1.3.1 Arguments

obj: Object to examine.

A.1.3.2 Result

Returns obj if obj is an instance of a subclass character,
otherwise ().

A.1.4 (converter integer) method

A.1.4.1 Arguments

character: A character.

A.1.4.2 Result

Returns an instance of single-precision-integer which
corresponds to the position of the instance of character in
the default character set.

A.1.5 equal method

A.1.5.1 Arguments
charactery: an instance of character.

characters: an instance of character.

A.1.5.2 Result

Each instance of character is converted to a integer and the
two values are compared using =. The result of equal is the
first argument if the result of = is non-(). If not, the result

s ().

A.1.6 copy method

A.1.6.1 Arguments
character: A character

A.1.6.2 Result

Constructs and returns an instance of character, whose
value is the same (under equal) as the source.

A.1.7 generic-prin method

A.1.8 generic-write method

A.1.8.1 Arguments
character: Character to be ouptut on stream.

stream: Stream on which characteris to be ouptut.

35

Table A.1 — Character Syntax

character-name
literal-name
control-name

character-extension =
control-extension

character ::= eatension character-extension character-name

literal-name | special-name | control-name | numeric

alphanumeric | non-alpha

control-ezstension literal-name

special-name = alert | backspace | delete | formfeed | linefeed | newline |
return | tab | space | vertical-tab

numeric = string-hex digit(16) [digit(16) [digit(16) [digit(16)1]1]

A.1.8.2 Result

The character character.

A.1.8.3 Remarks

Output the interpretation of character on stream.

A.1.9 generic-write method

A.1.9.1 Arguments
character: Character to be ouptut on stream.
stream: Stream on which characteris to be ouptut.

A.1.9.2 Result

The character character.

A.1.9.3 Remarks

Output external representation of characteron stream in the
format #\name as described at the beginning of this section.

36

A.2 Collections

The defined name of this module is collection. A collection
is defined as an instance of one of string, list, vector,
table or any user-defined class for which a method is added
to any of the collection manipulation functions. Collection
does not name a class and does not form a part of the class
hierarchy.

A.2.1 empty-p generic function

A.2.2 size generic function

A.2.3 member generic function

A.2.4 do generic function

A.2.5 map generic function

A.2.6 reduce generic function

A.2.7 reducel generic function

A.2.8 £ill generic function

A.2.9 catenate

generic function

A.2.10 filter

generic function

A.3 Comparing Objects

The defined name of this module is compare. Four functions
for comparing objects are defined in EULISP of which = is
specifically for comparing numeric values and eq, eql and
equal are for all objects. The latter three are related in the
following way:

(eqab) = (eql ab) = (equal a b)
(eq a b) <+« (eql a b) <+« (equal a b)
A.3.1 eq function

A.3.1.1 Arguments
obji: an object.

obj2: an object.

A.3.1.2 Result

Compares objy; and obj: and returns t if they are the same
object, otherwise ().

A.3.1.3 Remarks

In the case of numbers and characters the behaviour of eq
might differ between processors because of implementation
choices about internal representations. Therefore, eq might
return t or () for numbers which are = and similarly for char-
acters which are equal, depending on the implementation.

A.3.2 = generic function

A.3.2.1 Arguments
number;: an instance of number

numbers: an instance of number

A.3.2.2 Result

One of the arguments, or ().

A.3.2.3 Remarks

Defined over all number types. If both numbers are of the
same class, they are compared according to the compari-
son function for numbers of that class. If the two instances
are numerically equal, the result is the first argument (a
non-() value). If not, the result is (). Methods are de-
fined for the following classes: single-precision-integer,
variable-precision-integer, ratio, float and complex.
In the case of complex, the result is determined by the con-
junction of the pairwise application of = to the real parts and
the imaginary parts.

If the numbers are not of the same class, then one of the num-
bers is converted to the class of the other number according
to the protocol given in section A.10.

A.3.2.4 See also: Class specific sections which define meth-
ods on copy—single precision integer and double float.

A.3.3 eql function

A.3.3.1 Arguments
obj:

obja:

A.3.3.2 Result

If the class of obj; and of o0bj: is the same and is a subclass
of number, the result is that of comparing them under =. If
the class of obji and of obj; is the same and is a subclass
of character, the result is that of comparing them under
equal. Otherwise the result is that of comparing them under

eq.

A.3.4 equal generic function

A.3.4.1 Arguments
obj:
obja:

A.3.4.2 Result

The result is determined by whichever of the methods defined
here is applicable. It is implementation-defined whether or
not equal will terminate on self-referential structures.

A.3.4.3 See also: Class specific sections which define meth-
ods on copy.

A.3.5 equal method

A.3.5.1 Arguments
object;: an object.
objectz: an object.

A.3.5.2 Result

If the class of each instance of object is the same, then the
result is the conjunction of the pairwise application of equal
to the contents of the slots of the arguments. If not the result

s ().

37

A.4 Conversion
The defined name of this module is convert.

It may seem that the natural way to define (convert objy
target-class) is as a generic function specializing on both pa-
rameters. However, because we want the behaviour to de-
pend on the target-class and not on the class of target-class,
we would have to use class prototypes (as in up to version
0.7) or eql methods in order to make it work. Neither is
desirable. Some classes that might be targets for conversion
(for instance pair, number) cannot easily have prototypes
because they cannot have direct instances. eql methods, if
they are desirable at all, are too great a complication for
level-0. This suggests that it may have been a mistake to
think in terms of multi-methods. Fortunately, if we forget
them and consider classical methods, a fairly reasonable so-
lution appears.

Advantages are that it is object-oriented in a natural way,
there is no need for class prototypes or eql methods and it
is asymmetric in the right direction (the converter of a class
converts to rather than from instance of the class).

Disadvantages are that methods are not inherited from more
general target classes—although this could be argued the
other way round too.

Conversion between classes is provided by the function
convert which accesses a set of converter functions using
the target class (the second argument to convert) as a key.
The resulting converter function is a generic function which
discriminates on the class of the object which is to be con-
verted.

A.4.1 convert function

A.4.1.1 Arguments

obj: An instance of some class to be converted to an in-
stance of class.

class: The class to which objis to be converted.

A.4.1.2 Result

Returns an instance of class which is equivalent in some class-
specific sense to obj, which may be an instance of any type.
Calls the converter function associated with the class class
to carry out the conversion operation. An error is signalled
(condition: no-converter) if there is no associated function.
An error is signalled (condition: no-applicable-method) if
there 1s no method to convert an instance of the class of objy
to an instance of class.

A.4.2 conversion-condition condition

This is the general condition class for all conditions arising
from conversion operations.

A.4.3 no-converter conversion-condition

A.4.3.1 Init-options

38

source object: The object to be converted.

class class: The class with which no converter function
is associated.

A.4.3.2 Remarks

Signalled by convert if there is no converter function for the
given target class.

A.4.4 converter function

A.4.4.1 Arguments

target-class: The class whose set of conversion methods
is required.

A.4.4.2 Result

The accessor returns the converter function for the class
target-class. The converter is a generic-function with meth-
ods specialized on the class of the object to be converted.
Note that all converters defined here whose target class is
string produce a string containing a representation of the
source object as if it had output by write.

A.4.5 (setter converter) setter

A.4.5.1 Arguments

target-class: The class whose converter function is to be
replaced.

generic-function: The new converter function.

A.4.5.2 Result

The new converter function. The setter function replaces
the converter function for the class target-class by generic-
function. The new converter function must be an instance
of generic-function.

A.4.5.3 See also: Converter methods from one class to an-
other are defined in the section pertaining to the source
class.

A.5 Copying Objects

The defined name of this module is copy.

A.5.1 copy generic function

A.5.1.1 Arguments

obj: An object to be copied.

A.5.1.2 Result

Constructs and returns a copy of the source which is the
same (under some class specific predicate) as the source. The
exact behaviour for each class of objis defined by the most
applicable method for obj.

A.5.1.3 See also: Class specific sections which define meth-
ods on copy.

A.5.2 copy method

A.5.2.1 Arguments

object: An object (the default method).

A.5.2.2 Result

Constructs and returns an instance of the same class as the
source, whose slot values are the same as those of the source
(under eql), so that the resulting object is the same (under
equal) as the source.

Table A.4 — Methods for double precision floats

binary-plus
binary-difference
negate
binary-times
binary-divide
binary-1t

abs

zerop

signum
positivep
negativep

A.6 Double Precision Floats

A.6.1 double-float syntax

A floating point number has six forms of external repre-
sentation depending on whether either or both the whole
and the fractional part are specified and on whether an ex-
ponent is specified. In addition, a positive floating point
number 1s optionally preceded by a plus sign and a neg-
ative floating point number is preceded by a minus sign.
For example: +123. (simple-float-1), -.456 (simple-float-2),
123.456 (simple-float-3); and with exponents: +123456.D3-,
1.23455D2, -.123456D3

The syntax for the external representation of double preci-
sion floating point literals is defined in Table A.3. The rep-
resentation used by write and prinis that based on simple-
float without an exponent, namely: [sign] simple-float-3.
Finer control over the format of the output of floating point
numbers is provided by some of the formatting specifications
of format (see section A.8).

The defined name of this module is double. Arithmetic op-
erations for double-float are defined by methods to be at-
tached to the generic functions listed in Table A.4.

A.6.2 <double-float> class

The class of all instances of double precision float.

A.6.3 double-float-p function

A.6.3.1 Arguments

obj: Object to examine.

A.6.3.2 Result
If objis an instance of float the result is obj, otherwise ().
The function float returns objif objis a subclass of float

and the double-float-p returns oby if it is an instance of
double-float. Otherwise both return ().

39

Table A.3 — Floating Point Syntax

float

sign

ufloat
semple-float
semple-float-1
semple-float-2
semple-float-3
float-separator

{+ 1 -}

Lsign] ufloat

semple-float [exponent]

simple-float-1 | simple-float-2 | simple-float-3
udecimal float-separator

float-separator udecimal

udecimal float-separator udecimal

dexpt-mark [sign] udecimal

exponent =

dexpt-mark = {d | D}
udecimal = digit(10)%
digit(10) = {o]...]9}

A.6.4 most-positive-double-float double-float

A.6.4.1 Remarks

The value of most-positive-double-float is that positive
double precision floating point number closest in value to
(but not equal to) positive infinity that the processor pro-
vides.

A.6.5 least-positive-double-float double-float

A.6.5.1 Remarks

The value of least-positive-double-float is that positive
double precision floating point number closest in value to
(but not equal to) zero that the processor provides. This
value is the same as the result of (succ 0.0).

A.6.6 least-negative-double-float double-float

A.6.6.1 Remarks

The value of least-negative-double-float is that negative
double precision floating point number closest in value to
(but not equal to) zero that the processor provides. Even if
the processor provide negative zero, this value must not be
negative zero. This value is the same as the result of (pred
0.0).

A.6.7 most-negative-double-float double-float

A.6.7.1 Remarks

The value of most-negative-double-float is that negative
double precision floating point number closest in value to
(but not equal to) negative infinity that the processor pro-
vides.

A.6.8 truncate generic function

A.6.8.1 Arguments
float: An instance of float.

[precision]: A single precision integer.

40

A.6.8.2 Result

Given one argument, returns the greatest integer value whose
magnitude is less than or equal to . Given two arguments
with an integer value as the second to specify precision, re-
turns a floating point number which is the result of zeroing
out the low (n — precision) digits, where n is the number of
digits of precision provided by the representation. It is an
error if precision 1s greater than n.

A.6.9 truncate method

A.6.9.1 Remarks

Implements truncate for double-float.

A.6.10 round generic function

A.6.10.1 Arguments
float: An instance of float.

[precision]: A single precision integer.

A.6.10.2 Result

Given one argument, returns the integer whose value is clos-
est to x, except in the case when z is exactly half-way be-
tween two integers, when it is rounded to the one that is
even. Given two arguments with an integer value as the
second to specify precision, returns a floating point number
which is the result of zeroing out the low (n — precision)
digits, where n is the number of digits of precision provided
by the representation. The number of digits of precision and
the radix of the precision are implementation-defined val-
ues. If the resulting value is exactly half-way between two
precision-digit floating point numbers the result is the one
with the even least significant digit. It is an error if precision
is greater than n.

A.6.11 round method

A.6.11.1 Remarks

Implements round for double-float.

A.6.12 floor generic function

A.6.12.1 Arguments

float: An instance of float.

A.6.12.2 Result

Computes the greatest integer value which is less than or
equal to float.

A.6.13 floor method

A.6.13.1 Remarks

Implements floor for double-float.

A.6.14 ceiling generic function

A.6.14.1 Arguments

float: An instance of float.

A.6.14.2 Result

Computes the least integer value that is greater than or equal
to float.

A.6.17.2 Result

Returns an instance of single-precision-integer whose
value is closest to that of the floating point source.
This is the same function as round without specifying
the second argument. An error is signaled (condition:
integer-conversion-overflow) if the floating point num-
ber cannot be represented as a single precision integer.

A.6.18 integer-conversion-overflow
converston-condition

A.6.18.1 [Init-options

source double: The double float to be converted.

A.6.18.2 Remarks

Signalled by the double method of (converter spint) if
the magnitude of the double float is greater than can be
reprented by a single precision integer.

A.6.19 copy method

A.6.19.1 Arguments
double-float: A double precision float.

A.6.19.2 Result

Constructs and returns an instance of double-float, whose
value is the same (under =) as the source.

o A.6.20 generic-prin method
A.6.15 ceiling method
A.6.15.1 Remarks A.6.21 generic-write method
Implements ceiling for double-float.
A.6.21.1 Arguments
z: The double float to be output on stream.
A.6.16 (converter string) method

A.6.16.1 Arguments

double-float: A double precision float.

A.6.16.2 Result

Constructs and returns a string, the characters of which cor-
respond to the external representation of the instance of
double-float.

A.6.17 (converter single-precision-integer) method

A.6.17.1 Arguments

double-float: A double precision float.

stream: The stream on which the representation is to be
output.

A.6.21.2 Result
The double float supplied as the first argument.

A.6.21.3 Remarks

Output the external representation of x on stream, as de-
scribed in the introduction to this section, namely: [sign]
semple-float-3. Finer control over the format of the output of
floating point numbers is provided by some of the formatting
specifications of format (see section A.8).

41

A.7 Elementary Functions

The defined name of this module is elementary-functions.
The contents of this module are defined as if all the num-
ber classes of EULISP exist (including complex. Depend-
ing on the level of conformance of a given implementation,
only the methods for the number classes defined at the level
of the processor need be supplied to provide a compliant
elementary-functions library module.

A.7.1 pi double-float

A.7.1.1 Remarks

The value of pi is the ratio the circumference of a circle to its
diameter stored to double precision floating point accuracy.

A.7.2 sin generic function
A.7.3 cos generic function
A.7.4 tan generic function

A.7.4.1 Arguments

z: A number.

A.7.4.2 Result

gin returns the sine of its argument, cos the cosine and tan
the tangent. The unit of the argument is radians. Methods
are defined for the appropriate subclasses of integer and
float and for ratio and complex. The methods for integer
and ratio coerce their argument to float and then compute
the result. The methods for float produce a float result,
the methods for complex produce a complex result.

A.7.5 acos generic function

A.7.6 asin generic function

A.7.6.1 Arguments

z: A number.

A.7.6.2 Result

acos returns the principal arc cosine and asin the princi-
pal arc sine of its argument. The unit of the result is radi-
ans. Methods are defined for the appropriate subclasses of
integer and float and for ratio and complex. The meth-
ods for integer and ratio coerce their argument to float
and then compute the result. The methods for float pro-
duce a float result when —1 < z < 1, otherwise a complex
result. The methods for complex produce a complex result.

42

A.7.7 atan generic function

A.7.7.1 Arguments

z: A number.

A.7.7.2 Result

atan returns the arc tangent of its argument. The unit of the
argument is radians. Methods are defined for the appropriate
subclasses of integer and float and for ratio and complex.
The methods for integer and ratio coerce their argument
to float and then compute the result. The method for float
produces a float result, the method for complex produces a
complex result.

A.7.8 atan?2 generic function

A.7.8.1 Arguments

z1 x2: Two numbers.

A.7.8.2 Result

atan2 returns the arc tangent of the quantity z1/z2, treating
the case 2 = 0 correctly. Methods are defined for (integer
integer), (float float) and (ratio ratio). If the argu-
ments are not of the same subclass of number but in the
set given above, the lower one is coerced to the class of the
higher according to the protocol for the level being used (see
figure A.1). The methods for integer and ratio coerce their
arguments to float and then compute the result. A float
result is returned.

The range of the real-part of the values returned by atan
and atan?2is (—pi, pi].

A.7.9 exp generic function

A.7.9.1 Arguments

z: A number.

A.7.9.2 Result

exp returns e raised to the power of z, where e is the base
of the natural logarithms. Methods are defined for the ap-
propriate subclasses of integer and float and for ratio
and complex. The methods for integer and ratio coerce
their argument to float and then compute the result. The
method for float produces a float result, the method for
complex produces a complex result.

A.7.10 log generic function

A.7.11 log2 generic function

A.7.12 loglo0 generic function

A.7.12.1 Arguments

z: A number.

A.7.12.2 Result

log returns the logarithm of z to the base of the natural log-
arithms. log2 returns the logarithm of z to base 2. log10
returns the logarithm of z to base 10. The result can be
either float or complex. Methods are defined for the ap-
propriate subclasses of integer and float and for ratio
and complex. The methods for integer and ratio coerce
their argument to float and then compute the result. The
methods for float produce a float result when z is real
and positive, otherwise a complex result. The methods for
complex produce a complex result.

A.7.13 sqrt generic function

A.7.13.1 Arguments

A.7.16.2 Result

expt returns the principal value that results from raising z;
to the power z3. The complexity in the definition of expt
stems from the different combinations of argument classes
and what might be a reasonable result class for a given pair of
argument classes. For the purpose of defining the behaviour
of this function, the number classes are considered to form a
tower as follows:

complex
complex(ratio)
complex(integer)
float
ratio
integer

where the classes correspond to and approximate the ab-
stract mathematical objects: C, Q[i], Z[i], R, Q, Z. For each
argument class combination, the entry in Table A.5 shows
the lowest class in which the result might be expressed. In
this sense, we define the lower bound class in which the result
can occur for a given pair of arguments. The result of expt
should be in the lowest class possible for a given argument
combination without loss of information.

A.7.17 sinh generic function

z: A number.
sqrt returns the principal square root of z. A.7.18 cosh generic function
A.7.14 sqrt method A.7.19 tanh generic function

A.7.14.1 Arguments

integer: An integer.

A.7.14.2 Result

The method for integer returns an integer if the argument is
a positive perfect square, a gaussian integer if the argument
is a negative perfect square, otherwise a float is returned
if the argument is positive, or a complex if the argument is
negative.

A.7.15 sqrt method

A.7.15.1 Arguments
double-float: A double float.

A.7.15.2 Result

The method for double-float returns a double-float if the
argument is non-negative and a complex if it is not.

A.7.16 expt generic function

A.7.16.1 Arguments

21 #2: T'wo numbers.

A.7.20 asinh generic function

A.7.21 acosh generic function

A.7.22 atanh generic function

A.7.22.1 Arguments

z: A number.

A.7.22.2 Result

These functions compute the hyperbolic sine, cosine, tan-
gent, arc sine, arc cosine and arc tangent functions. The
result can be float or complex. Methods are defined for the
appropriate subclasses of integer and float and for ration
and complex. The methods for integer and rational coerce
their argument to float and then compute the result. For
the sine, cosine, tangent and arc sine, the methods for float
produce a float result. For the arc cosine, the method for
float produces a float if z > 1, otherwise a complex. For
the arc tangent, the method for float produces a float if
—1 < z <1, otherwise a complex.

All methods produce a complex result for a complex argu-
ment.

NOTE—more detailed specification is required for this
library module, in particular with respect to the han-

43

44

Table A.5 — expt result classes

Base Exponent Class

Class integer | ratio [float [complex
integer integer | integer float complex
ratio integer | integer float complex
float float float float complex
complex(integer) || integer | integer | complex | complex
complex(ratio) integer | integer | complex | complex
complex complex | complex | complex | complex

dling of negative 0.0 and the stating of branches and

cuts.

A.8 Formatted-I10

The defined name of this module is formatted-io.

A.8.1 scan-mismatch stream-condition

A.8.1.1 Init-options

format-string string: The value of this option is the for-
mat string that was passed to scan.

input list: The value of this option is a list of the items
read by scan up to and including the object that caused
the condition to be signaled.

A.8.1.2 Remarks

This condition is signaled by scan if the format string does
not agree with the data received from stream.

A.8.2 scan function

A.8.2.1 Arguments
format-string: A string containing format directives.

[stream]: A stream from which input is to be taken.

A.8.2.2 Result

Returns a list of objects which have been read.

A.8.2.3 Remarks

This function provides support for formatted input. The
format-string specifies reading directives, and inputs are
matched according to these directives. An error is signaled
(condition: scan-mismatch) if the class of the object read
is not campatible with the specified directive. The second
(optional) argument specifies a stream from which to take in-
put. If stream is not supplied input is taken from the stream
which is the value of calling standard-input-stream. Scan
returns a list of the values read in.

— Ta any: accept any object
— “b binary: an integer in binary format.
— “c character: a single character

— “d decimal: an integer decimal format.

— “m.ne a fixed-format floating-point number in FOR-

TRAN “E” format.

— “m.nt an exponential-format floating-point number

in FORTRAN “F” format.

— “m.ng a generalized floating-point number in either
fixed or exponential format. either fixed-format or expo-
nential notation as appropriate.

— "o octal: an integer in octal format.

— “rradix: an integer in specified radix format.

— “x hexadecimal: an integer in hexadecimal format.

— 7% newline: matches a #\newline character in the
input.

A.8.3 format function

A.8.3.1 Arguments
stream: One of (), t or an instance of stream.

format-string: A string containing format directives.

Lobs*]1:

A.8.3.2 Result

Returns a list of unconsumed obys.

A.8.3.3 Remarks

Has side-effect of printing according to format-string. If
stream is t the output is to the current output stream. If
stream is (), a formatted string is returned as the result of
the call. Otherwise stream must be a valid output stream.
Characters are output as if the string were output by the
prin function with the exception of those prefixed by tilde—
graphic representation “—as follows:

— Ta any: use prin to output the object.

— “b binary: the integer argument is output in binary
format.

— "¢ character: the next argument is displayed as a
character.

— “d decimal: the integer argument is output in deci-
mal format.

— “m.ne fixed-format floating-point: the floating-point
argument is output in FORTRAN “E” format.

— “m.nt exponential floating-point: the floating-point
argument is output in FORTRAN “F” format.

— “m.ng generalized floating-point: output the
floating-point argument using either fixed-format or ex-
ponential notation as appropriate.

— 7o octal: the integer argument is output in octal
format.

— “nrradix: the integer argument is output in radix n.
— “g s-expression: uses write to output the object.

— 7t tab: output sufficient spaces to reach the next
tab-stop.

— “x hexadecimal: the integer argument is output in
hexadecimal format.

— “% newline: output a #\newline character.

— “& conditional newline: output a #\newline charac-
ter if it cannot be determined that the output stream is
at the beginning of a fresh line.

— 7| page separator: output a page separator.

— “7 tilde: output a tilde.

45

A.9 The empty list

The defined name of this module is null. The empty list is
disjoint from the class <pair>. The combination of <null>
and <pair> allows the creation of proper lists, since a proper
list is one whose last pair contains the empty list in its cdr

field.

A9.1 O syntax

A.9.1.1 Remarks

The empty list, which is the only instance of the class <null>,
has as its external representation an open parenthesis fol-
lowed by a close parenthesis. The empty list is also used to
denote the boolean value false.

A.9.2 <null> class

The class whose only instance is the empty list, denoted ().

A.9.3 null function

A.9.3.1 Arguments

obj: Object to examine.

A.9.3.2 Result
Returns tif objis the empty list, otherwise ().

A.9.4 length method

A.9.4.1 Arguments

null: The empty list.

A.9.4.2 Result

Returns zero.

A.9.5 generic-prin method

A.9.6 generic-write method

A.9.6.1 Arguments
null: The empty list.

stream: The stream on which the representation is to be
output.

A.9.6.2 Result
The empty list.

46

A.9.6.3 Remarks

Output the external representation of the empty list on
stream as described above.

A.10 Numbers

The defined name of this module is number. The naming
conventions described in section 6 are applied in the following
definitions.

Numbers can take on many forms with unusual properties,
specialized for different tasks, but two classes of number nor-
mally suffice for the majority of needs. Thus, at level-0, only
a himited set of number classes are defined.

In Figure A.11s an example of what the initial number class
hierarchy for level-0 might look like. The inheritance rela-
tionships by this diagram are part of this definition, but it
is not defined whether they are direct or not. For example,
integer and float are not necessarily direct subclasses of
number and the class of each number class might be a sub-
class of number-class. Since there are only two concrete
number classes at level-0, coercion is simple, as shown in fig-
ure A.1. Any level-0 version of a library module, for example,
elementary-functions, need only define methods for these
two classes.

A.10.1 <number> class

The abstract class which is the superclass of all number
classes.

A.10.2 numberp function

A.10.2.1 Arguments
obj: Object to examine.

A.10.2.2 Result

If the class of objis a subclass of number the result is objy,
otherwise ().

A.10.3 <integer> class

The abstract class which is the superclass of all integer num-
bers.

A.10.4 integerp function

A.10.4.1 Arguments
obj: Object to examine.

A.10.4.2 Result

If the class of objis a subclass of integer the result is oby,
otherwise ().

A.10.5 <float> class

The abstract class which is the superclass of all floating point
numbers.

A.10.6 floatp function

A.10.6.1 Arguments
obj: Object to examine.

A.10.6.2 Result

If the class of obj is a subclass of float the result is obj,
otherwise ().

A.10.7 arithmetic-condition condition

A.10.7.1 [Init-options

operator object: The operator which signalled the con-
dition.

operand-list list: The operands passed to the operator.

A.10.7.2 Remarks

This is the general condition class for conditions arising from
arithmetic operations.

A.10.8 equal method

A.10.8.1 Arguments
number;: an instance of number.
numbery: an instance of number.

A.10.8.2 Result

If the class of number; and numbers is the same subclass of
number, the result of equal is the result of =. If the instances
are not of the same subclass of number, the result is ().

A.10.9 + function

A.10.9.1 Arguments

[z1 22 ...]: A sequence of instances of number.

A.10.9.2 Result

Computes the sum of the arguments using the generic func-
tion binary-plus. Given zero arguments, + returns 0 of
class integer. One argument returns that argument. The
arguments are combined left-associatively.

A.10.10 - function

A.10.10.1 Arguments

z1 [z ...]1: A non-empty sequence of instances of number.

47

Figure A.1 — Level-0 number class hierarchy and coercion chart

<number> [<number-class>
<float> [<number-class>]

<double-float> [<number-class>]

<integer> [<number-class>]

single-precision-integer
— double-float

<single-precision-integer> [<number-class>]

A.10.10.2 Result

Computes the result of subtracting successive arguments—
from the second to the last—from the first using the generic
function binary-difference. Zero arguments is an error.
One argument returns the negation of the argument. The
arguments are combined left-associatively.

A.10.11 =* function

A.10.11.1 Arguments

[z1 2 ...]: A sequence of instances of number.

A.10.11.2 Result

Computes the product of the arguments using the generic
function binary-times. Given zero arguments, * returns 1
of class integer. One argument returns that argument. The
arguments are combined left-associatively.

A.10.12 / function

A.10.12.1 Arguments

z1 [z ...]1: A non-empty sequence of instances of number.

A.10.12.2 Result

Computes the result of dividing the first argument
by its succeeding arguments using the generic function
binary-divide. Zero arguments is an error. One argument
computes the reciprocal of the argument.

A.10.13 < function
A.10.13.1 Arguments
1 T2 A sequence of at least two instances of number.

A.10.13.2 Result

Determines whether the sequence of numbers z; up to
Ty 1s strictly increasing according to the generic function
binary-1t.

A.10.14 > function
A.10.14.1 Arguments
1 T2 A sequence of at least two instances of number.

48

A.10.14.2 Result

Determines whether the sequence of numbers z; up to
Ty 1s strictly decreasing, according to the generic function
binary-1t.

A.10.15 <= function
A.10.15.1 Arguments
1 T2 A sequence of at least two instances of number.

A.10.15.2 Result

Determines whether the sequence of numbers z; up to z, is
increasing, according to the generic function binary-le.

A.10.16 >= function
A.10.16.1 Arguments
1 T2 A sequence of at least two instances of number.

A.10.16.2 Result

Determines whether the sequence of numbers z; up to z, is
decreasing, according to the generic function binary-ge.

A.10.17 max function

A.10.17.1 Arguments

1 [x2 ...]: A non-empty sequence of instances of
number.

A.10.17.2 Result

Determines the maximal element of the numbers z; up to
Ty using the generic function binary-1t. Zero arguments is
an error. One argument returns xi.

A.10.18 min function

A.10.18.1 Arguments

1 [x2 ...]: A non-empty sequence of instances of
number.

A.10.18.2 Result

Determines the minimal element of the numbers z; up to z,
using the generic function binary-1t. Zero arguments is an
error. One argument returns .

A.10.19 gcd generic function

A.10.24 positivep generic function

A.10.19.1 Arguments

z1 [z ...]1: A non-empty sequence of instances of num-

ber.

A.10.19.2 Result

Computes the greatest common divisor of z1 up to z, using
the generic function binary-gcd. Zero arguments is an error.
One argument returns zi.

A.10.24.1 Arguments

z: An instance of number.

A.10.24.2 Result

Compares = against the zero element of the class of # using
the generic function binary-1t.

A.10.25 negativep generic function

A.10.20 1cm generic function

A.10.20.1 Arguments

¢ [q ...]: A non-empty sequence of instances of
number.

A.10.20.2 Result

Computes the least common multiple of ¢1 up to ¢, using
the generic function binary-1lcm. Zero arguments is an error.
One argument returns gqi.

A.10.21 abs generic function

A.10.21.1 Arguments

z: An instance of number.

A.10.21.2 Result

Compute the absolute value of z.

A.10.22 zerop generic function

A.10.22.1 Arguments
z: An instance of number.

A.10.22.2 Result

Compares z with the zero element of the class of z using the
generic function =.

A.10.23 signun generic function

A.10.23.1 Arguments
z: An instance of number.

A.10.23.2 Result

If zerop z then returns z. Otherwise returns the result of
converting +1 to the class of x with the sign of =.

A.10.25.1 Arguments
z: An instance of number.

A.10.25.2 Result

Compares = against the zero element of the class of # using
the generic function binary-1t.

A.10.26 binary-plus generic function

A.10.26.1 Arguments

21 #z: T'wo instances of number.

A.10.26.2 Result

Compute the sum of z; and z2.

A.10.27 binary-difference generic function

A.10.27.1 Arguments

21 #z: T'wo instances of number.

A.10.27.2 Result

Compute the difference of z; and z.

A.10.28 negate generic function

A.10.28.1 Arguments

z: An instance of number.

A.10.28.2 Result

Compute the additive inverse of x.

A.10.29 binary-times generic function

A.10.29.1 Arguments

21 #z: T'wo instances of number.

49

A.10.29.2 Result

Compute the product of z; and zs.

A.10.30 binary-divide generic function

A.10.30.1 Arguments

21 #z: T'wo instances of number.

A.10.30.2 Result

Compute the ratio of z; and z;. If the divisor is the
zero element of the class an error is signaled (condition:
division-by-zero).

A.10.31 binary-1t generic function

A.10.31.1 Arguments

71 x2: Two instances of number.

A.10.31.2 Result

Compare 1 with z» returning t if z1 precedes 2> according
to the ordering method of the class of higher class of #1 and
Tro.

A.10.32 binary-gcd generic function

A.10.32.1 Arguments

¢1 q2: Two instances of number.

A.10.32.2 Result

Compute the greatest common divisor of ¢1 and g¢».

A.10.33 binary-lcm generic function

A.10.33.1 Arguments

¢1 q2: Two instances of number.

A.10.33.2 Result

Compute the lowest common multiple of ¢ and ¢».

50

A.11 Pairs and Lists

The defined name of this module is pair.

A.11.1 pair syntax

A pair is written as (oby; . obj2), where obj; is the car and
obj> 1s the cdr. There are two special cases in the print
representation of pair. If obj: is the empty list, then the
pair is written as (obp). If obj, is an instance of pair,
then the pair is written as (obj1 objs . objs), where objs
is the car of obj, and objs is the cdr with the above rule
for the empty list applying. By induction, a list of length
n is written as (obj1 ... o0bjn—1 . 0bjn), with the above rule
for the empty list applying. The representations of obj and
obj> are determined by the external representations defined
in other sections of this definition (see <character>(A.1),
<double-float>(A.6), <null>(A.9), <spint>(A.12),
<string>(A.14), <symbol>(A.15) and <vector>(A.17), as
well as instances of <pair>itself. The syntax for the external
representation of pairs and lists is defined in Table A.6.

A.11.2 <pair> class

The class of all instances of <pair>. Instances of the class
<pair> (also known informally as a dotted pair) is a 2-tuple,
whose slots are called, for historical reasons, car and cdr.
Pairs are created by the function cons and the slots are ac-
cessed by the functions car and cdr. The major use of pairs
is in the construction of (proper) lists. A (proper) list is de-
fined as either the empty list (denoted by ()) or a pair whose
cdr is a proper list. An improper list is one containing a cdr
which is not a list (see Table A.6.

A.11.3 consp function

A.11.3.1 Arguments

obj: Object to examine.

A.11.3.2 Result

Returns objif objis a subclass of pair, otherwise ().

A.11.4 atom function

A.11.4.1 Arguments

obj: Object to examine.

A.11.4.2 Result

If objis not an instance pair, objis returned, otherwise ().

A.11.5 cons function

A.11.5.1 Arguments

Table A.6 — Pair and List Syntax

pair
pair-begin
pair-separator
pair-end

list

empty-list
list-head
list-tail;
tmproper-tail;

(

)

O

pair-begin obyp pair-separator obyp parr-end
whitespace . whitespace
empty-list | list-head

pair-begin oby list-taily

improper-tatl; | pair-end | obj; list-tail;iyq
pair-separator oby;

obji: An object to be stored in the car field of the result
pair.

obj>: An object to be stored in the cdr field of the result

pair.

A.11.5.2 Result

Allocates a new pair initialized to obj; and objz.

A.11.6 car function

A.11.7 cdr function

A.11.7.1 Arguments

pair: An instance of pair.

A.11.7.2 Result

Given an instance of pair, such as the result of (cons obj
obj2), the function car returns obj; and cdr returns obj.

A.11.7.3 Remarks

It is an error to apply car or cdr functions to anything other
than a pair. The empty list—written ()—is not a pair. (car
()) and (cdr ()) is an error.

A.11.8 (setter car) setter

A.11.9 (setter cdr) setter

A.11.9.1 Arguments
pair: An instance of pair.

obj: An object.

A.11.9.2 Result

Given an instance of pair, such as the result of (cons obj
obj2), the function (setter car) replaces obj; with obj and
(setter cdr) replaces objp with obj. The setter functions
return obj.

A.11.9.3 Remarks

Note that if 0objis not (), then the use of (setter cdr) will
make pair an improper list. It is an error to apply these
gsetter functions to anything other than a pair.

A.11.10 (converter string) method

A.11.10.1 Arguments

pair: A list of characters.

A.11.10.2 Result

Constructs and returns a string, the characters of which cor-
respond to the characters comprising the first elements of the
top-level pairs of the instance of pair. It is an error if the
source is not a proper list. An error is signaled (condition:
not-a-character) unless all of those elements are instances
of the class character.

A.11.11 not-a-character conversion-condition

A.11.11.1 Init-options

source list: The list of objects to be converted into a
string.

A.11.11.2 Remarks

Signalled by the pair method of (converter string) unless
the source list contains only characters.

A.11.12 (converter string) method

A.11.12.1 Arguments

pair: A list of characters.

A.11.12.2 Result

Constructs and returns a vector the elements of which corre-
spond to first elements of the top-level pairs in the instance
of pair. It is an error if the source is not a proper list.

A.11.13 equal method

A.11.13.1 Arguments

51

pairy: an instance of pair.

pairz: an instance of pair.

A.11.13.2 Result

The result is the conjunction of the pairwise application of
equal to the car fields and the cdr fields of the arguments.

A.11.14 copy method

A.11.14.1 Arguments

pair: A pair.

A.11.14.2 Result

Constructs and returns an instance of pair whose elements
are the same as those of the source (under eql), so that the
resulting pair is the same (under equal) as the source.

A.11.15 1list function

A.11.17 copy-alist function

A.11.17.1 Arguments

alist: A proper list of pairs.

A.11.17.2 Result

Constructs and returns a copy of the list alist copying both
the top-level pairs and the second level pairs (the associa-
tions).

A.11.18 copy-list function

A.11.18.1 Arguments
list: A list—proper or improper.

A.11.18.2 Result

Constructs and returns a copy of list by copying the top-level
pairs only.

A.11.15.1 Arguments

Lobji ... objnl: A sequence of objects.

A.11.15.2 Result

Allocates a set of pairs each of which has been initialized with
obj; in the car field and the pair whose car field contains
obji41 in the cdr field. Returns the pair whose car field
contains obj;.

A.11.16 length method

A.11.16.1 Arguments

pair: A pair.

A.11.16.2 Result

Returns the count of the number of top-level pairs in list.

A.11.16.3 Remarks
The list need not be a proper list.

A.11.16.4 Examples

(length) s sresult 1s 0
(length (cons 1 ())) ;sresult 1s 1
(length (cons 1 . 2)) ;sresult 1s 1
(length (cons 1 (cons 2 . 3))) ;s result 1s 2

52

A.11.19 copy-tree function

A.11.19.1 Arguments

list: A list—proper or improper.

A.11.19.2 Result

Constructs and returns a copy of list by copying the top-level
pairs and then operates recursively on each of those pairs,
thus copying every pair in list.

A.11.20 generic-prin method

A.11.21 generic-write method

A.11.21.1 Arguments
pair: The pair to be output on stream.

stream: The stream on which the representation is to be
output.

A.11.21.2 Result
The pair supplied as the first argument.

A.11.21.3 Remarks

Output the external representation of pair on stream as de-
scribed in the introduction to this section. Both methods
call the generic function again to produce the external rep-
resentation of the car and cdr slots of the pair.

Table A.8 — Methods for single precision integers

binary-plus
binary-difference
negate
binary-times
binary-1t
binary-gcd
binary-lcm
abs

zerop

signum
positivep
negativep

A.12 Single Precision Integers

The defined name of this module is spint.

A.12.1 single-precision-integer syntax

A positive integer is has its external representation as a se-
quence of digits optionally preceded by a plus sign. A nega-
tive integer is written as a sequence of digits preceded by a
minus sign. For example, 1234567890, -456, +1959.

Integer literals have an external representation in any base
up to base 36. For convenience, base 2, base 8 and base 16
have distinguished notations—itb, #o and #x, respectively.
For example: 1234, #510011010010, #02322 and #x4d2 all
denote the same value.

The general notation for an arbitrary base is #baser, where
base is an unsigned decimal number. Thus, the above ex-
amples may also be written: #10r1234, #2r10011010010,
#8r2322, #16r4d2 or #36rya. The syntax for the external
representation of integer literals is defined in Table A.7.

NOTE — At present this document does not define a class inte-
ger with variable precision. It is planned this should appear in a
future version at level-1 of the language. The class will be named
variable-precision-integer, with the shorter alias vpint. The
syntax given here is applicable to both single and variable preci-
sion integers.

The class is named <single-precision-integer>, but it is
also called by the shorter alias <spint>. Arithmetic opera-
tions for single-precision-integer are defined by methods
to be attached to the generic functions listed in Table A.8.

A.12.2 <single-precision-integer> class

The class of all instances of single precision integers. Also
named <spint>.

A.12.3 single-precision-integer-p function

A.12.3.1 Arguments

obj: Object to examine.

A.12.3.2 Result

Returns obj if objis an instance of <spint>.

A.12.4 evenp generic function

A.12.4.1 Arguments

number: An instance of number.

A.12.4.2 Result

If number is an instance of a suitable subclass of number,
returns t if the remainder from dividing ¢ by two is zero,
otherwise ().

A.12.5 evenp method

A.12.5.1 Remarks

Implements evenp for single precision integers.

A.12.6 oddp generic function

A.12.6.1 Arguments

number: An instance of number.

A.12.6.2 Result

If number is an instance of a suitable subclass of number,
returns t if the remainder from dividing ¢ by two is non-
zero, otherwise ().

A.12.7 oddp method

Implements oddp for single precision integer.

A.12.8 division-by-zero arithmetic-condition

Signalled by any of quotient, remainder and modulo if their
second argument is zero.

A.12.9 quotient generic function

A.12.9.1 Arguments

integer, integerz: Two instances of integer.

A.12.9.2 Result

If number is an instance of a suitable subclass of number,
returns ¢ by solving the equation numbery = numbers x g+,
where r lies between zero (inclusive) and the numbers X
sign(numbery) (exclusive). Sign combination for quotient
is as follows:

53

Table A.7 — Integer Syntax

integer = L[sign] uinteger
sign == {+ | -}
uinteger = ubinary | uoctal | udecimal | uhezadecimal | uinteger-with-base
ubinary = extension {b | B} digit(2)*
woctal = eatension {o | 0} digst(8)T
udecimal = digit(10)T
uhexadecimal = estension {x | X} digit(16)*
uinteger-with-base = extension udecimal {r | R} digit(udecimal)*
digit(2) == {o | 1}
digit(10) == {o | ... | 9}
digit(11) == {0 | ... | 9| {a | A}}
digit(35) w= {0 .. |9 [{a | A} | | {y | T}
digit(96) = {0 .. 19 {alab .o | {y |V}] {= |23}
” integers | —integers | A.12.13.1 Arguments
ntegery q —q
—integery —q q i1 @©2: Two instances of integer.

A.12.10 quotient method

A.12.10.1 Remarks

Implements quotient for single precision integer. An error is
signalled (condition: division-by-zero)if integer; is zero.

A.12.13.2 Result

If ¢1s an instance of a suitable subclass of integer, returns
m by solving the equation integer: = wntegers X ¢ + r,
where r lies between zero (inclusive) and the integera x
sign(integery) (exclusive) and m is constrained by 0 < m <
l¢|. Sign combination for modulo is given in Table A.9.

A.12.11 remainder generic function

A.12.14 modulo method

1q 1ol

A.12.11.1 Arguments

integer, integerz: Two instances of integer.

A.12.11.2 Result

If integer is an instance of a suitable subclass of integer,
returns r by solving the equation integers = integers X q +
r, where r lies between zero (inclusive) and the integers x
sign(integer1) (exclusive). Sign combination for remainder
is as follows:

| || ntegers | —integers |

ntegery r —r
—integery —r r

A.12.12 remainder method

A.12.12.1 Remarks

Implements remainder for single precision integer. An er-
ror is signalled (condition: division-by-zero) if integers is
z€ero.

A.12.13 modulo generic function

1q 1ol

54

A.12.14.1 Remarks

Implements modulo for single precision integer. An error is
signalled (condition: division-by-zero)if integer; is zero.

A.12.15 most-positive-single-precision-integer
single-precision-integer

A.12.15.1 Remarks

This is an implementation-defined constant. A conform-
ing processor must support a value greater than or equal
to 32767 and greater than or equal to the value of
maximum-vector-index.

A.12.16 most-negative-single-precision-integer
single-precision-integer

A.12.16.1 Remarks

This 1s an implementation-defined constant. A conforming
processor must support a value less than or equal to —32768.

A.12.17 (converter character) method

A.12.17.1 Arguments

single-precision-integer: A single-precision-integer.

Table A.9 — Sign combination in modulo

|| ntegers | —integers |
ntegery r remainder (zotremainder(2y,22) ,12)
—integery remainder (zo+remainder(z1,12) ,12) r

A.12.17.2 Result

Returns an instance of character whose position in the
default character set corresponds to that specified by the
instance of integer. An error is signaled (condition:
cannot-convert-to-character) if the specified position
does not exist.

A.12.18 no-such-character conversion-condition

Signalled by the conversion method from <spint> to
<character> if there is no character in the defaul character
set corresponding to the position specified by the integer.

A.12.18.1 See also: (converter character).

A.12.19 (converter string) method

A.12.19.1 Arguments

single-precision-integer: A single-precision-integer.

A.12.19.2 Result

Constructs and returns a string, the characters of which cor-
respond to the external representation of the instance of
single-precision-integer in decimal.

A.12.20 (converter double-float) method

A.12.20.1 Arguments

single-precision-integer: A single precision integer.

A.12.20.2 Result

Returns an instance of double-float whose value is the
floating point approximation to the single precision integer
source.

A.12.21 copy method

A.12.21.1 Arguments

single-precision-integer: A single precision integer.

A.12.21.2 Result

Constructs and returns
an instance of single-precision-integer, whose value is
the same (under =) as the source.

A.12.22 generic-prin method

A.12.23 generic-write method

A.12.23.1 Arguments
iz The single precision integer to be output on stream.

stream: The stream on which the representation is to be
output.

A.12.23.2 Result

The single precision integer supplied as the first argument.

A.12.23.3 Remarks

Output external representation of ¢ on stream in decimal as
described in the introduction to this section.

55

Table A.10 — Initial stream class hiearchy

<stream> [<stream-class>]
<file-stream> [<stream>]
<stream-properties> [<stream-properties-class>]
<stream-direction> [<stream-properties>]
<input-stream>
<output-stream>
<io-stream>
<stream-unit> [<stream-properties>]

<stream-positionable-p> [<stream-properties>]

A.13 Streams

The defined name of this module is stream.

A.13.1 <stream> class

The abstract class of all instances of <stream>.

The initial class hiearchy of streams and stream properties
is shown in Table A.10.

A.13.6 file-streamp function

A.13.6.1 Arguments

obj. object to examine.

A.13.6.2 Result

The supplied argument if it is an instance of <file-stream>,
otherwise ().

A.13.7 stream-condition condition

This is the general condition class for conditions arising from
operations on streams.

A.13.8 syntax-error condition

This is the general condition class for conditions arising from
using the function read.

A.13.2 <file-stream> class

The class of all instances of <file-gtream>. This is the only
subclass of stream defined at level-0.

A.13.2.1 [Init-options

direction direction: An instance of

<stream-direction>.
transaction—unit unit: An instance of <gstream-unit>,
or <character>(indicating a character stream) or

<spint>(indicating a binary stream).

positionable boolean: Either () or non-().

A.13.3 input-stream stream-direction

Used to indicate stream direction when making instances of
<file-stream>.

A.13.4 io-stream stream-direction

Used to indicate stream direction when making instances of
<file-stream>.

A.13.5 ouput-stream stream-direction

Used to indicate stream direction when making instances of
<file-stream>.

56

A.13.9 input-stream-p function

A.13.9.1 Arguments

obj: Object to examine.

A.13.9.2 Result

The supplied argument if one of its stream direction is an
instance of <input-stream>, otherwise ().

A.13.10 output-stream-p function

A.13.10.1 Arguments

obj: Object to examine.

A.13.10.2 Result

The supplied argument if one of its stream direction is an
instance of <output-stream>, otherwise ().

A.13.11 io-stream-p function

A.13.11.1 Arguments

obj: Object to examine.

A.13.11.2 Result

The supplied argument if one of its stream direction is an
instance of <output-stream>, otherwise ().

A.13.12 character-stream-p function

A.13.12.1 Arguments

obj: Object to examine.

A.13.12.2 Result

The supplied argument if one of its properties is an instance
of <character-gtream>, otherwise ().

A.13.13 binary-stream-p function

A.13.13.1 Arguments

obj: Object to examine.

A.13.13.2 Result

The supplied argument if one of its properties is an instance
of <binary-stream>, otherwise ().

A.13.14 open generic function

A.13.14.1 Generic Arguments
(stream <stream>): The stream to be opened.

(handle <object>): The name of the object (internal or
external to the processor).

(initlist <list>): A list of initialization options.

A.13.14.2 Result

A stream.

A.13.15 open method

A.13.15.1 Specialized Arguments
(stream <file-stream>): The stream to be opened.
(handle <string>): The name of the file to be openend.

(inetlist <list>): A list of initialization options as fol-
lows:

direction direction: An instance of
<stream—-direction>.
transaction-unit unit: An instance of

<stream—-unit>.

positionable boolean: Either () or non-().

A.13.15.2 Result

A stream.

NOTE (version 0.95) — In a future version it is forseen that a
more general approach to file naming will be adopted, such as the
pathnames of Common Lisp. At that time it will be appropriate
to add another method to open, where the handle argument is
an instance of pathname. Thus, at present, no implementation
independent way of naming files is provided.

A.13.16 open-p generic function

A.13.16.1 Generic Arguments

(stream <stream>): A stream.

A.13.16.2 Result

A non- () value if stream is open, otherwise ().

A.13.17 open-p method

A.13.17.1 Specialized Arguments

(stream <file-stream>): A file stream.

A.13.17.2 Result

A non- () value if stream is open, otherwise ().

A.13.18 close generic function

A.13.18.1 Generic Arguments

(stream <stream>): A stream.

A.13.18.2 Result

If stream is open, it is closed. Returns ()).

A.13.19 close method

A.13.19.1 Specialized Arguments

(stream <file-stream>): A file stream.

A.13.19.2 Result

If stream is open, it is closed. Returns ()).

A.13.20 write-unit generic function

A.13.20.1 Generic Arguments
(stream <stream>): A stream.

(object <object>): An object.

57

A.13.20.2 Result

The objectis written to stream. Returns ().

A.13.21 write-unit method

A.13.21.1 Specialized Arguments
(stream <file-stream>): A file stream.

(character <character>): A character.

A.13.21.2 Result

If the transaction unit of stream is <character>, the char-
acteris written to stream. Returns ().

A.13.22 write-unit method

A.13.22.1 Specialized Arguments
(stream <file-stream>): A file stream.

(integer <spint>): A single precision integer.

A.13.22.2 Result

If the transaction unit of stream is <spint>, the integer is
written to stream. Returns ().

A.13.23 write function

A.13.23.1 Arguments
object:
[stream]:

A.13.23.2 Result

If stream is open, object is output on stream.

A.13.24 generic-write generic function

A.13.24.1 Generic Arguments

(stream <stream>): The stream on which objectis to be
output.

(object <object>): The object to be output on stream.

A.13.24.2 Result

If stream is open, object is output on stream.

A.13.24.3 See also: Sections on the different classes de-
fined at level-0 for methods oon this function.

58

A.13.25 prin function

A.13.25.1 Arguments
object:
[stream]:

A.13.25.2 Result

If stream is open, object is output on stream.

A.13.26 generic-prin generic function

A.13.26.1 Generic Arguments

(stream <stream>): The stream on which objectis to be
output.

(object <object>): The object to be output on stream.

A.13.26.2 Result

If stream is open, object is output on stream.

A.13.26.3 See also: Sections on the different classes de-
fined at level-0 for methods oon this function.

A.13.27 read-unit generic function

A.13.27.1 Generic Arguments
(stream <stream>): A stream.

A.13.27.2 Result

The next object input from stream. The class of the object
is restricted to that of the transaction unit of the stream.

A.13.28 read-unit method

A.13.28.1 Specialized Arguments

(stream <file-stream>): A file stream.

A.13.28.2 Result

An object representing the next transaction unit input from
stream. The class of this object is determined by the trans-
action unit property of stream.

A.13.29 read function

A.13.29.1 Arguments

[stream]: An instance of stream.

A.13.29.2 Result

An object corresponding to the next element processed by
read from stream.

A.13.29.3 Remarks

When a syntax error is detected an error is signaled (condi-
tion: syntax-error). The position of the stream being read
is undefined after such an error occurs.

A.13.30 generic-read generic function

A.13.30.1 Generic Arguments
(stream <stream>): A stream.
(prototype <object>): An object.

A.13.30.2 Result

The next object input from stream.

A.13.31 generic-read method

A.13.31.1 Specialized Arguments
(stream <file-stream>): A file stream.
(prototype <object>): An object.

A.13.31.2 Result
The next object input from stream. What is protptype for?

A.13.32 peek-unit generic function

A.13.32.1 Generic Arguments

(stream <stream>): A stream.

A.13.32.2 Result

The next object that could be input from stream. The class
of the object is restricted to that of the transaction unit of
the stream.

A.13.33 peek-unit method

A.13.33.1 Specialized Arguments

(stream <file-stream>): A file stream.

A.13.33.2 Result

An object representing the next transaction unit that oculd
be input from stream. The class of this object is determined
by the transaction unit property of stream.

A.13.34 flush generic function

A.13.34.1 Generic Arguments

(stream <stream>): A stream.

A.13.34.2 Result

Any remaining buffered output to stream is forced out.

A.13.35 flush method

A.13.35.1 Specialized Arguments

(stream <file-stream>): A file stream.

A.13.35.2 Result

Any remaining buffered output to stream is forced out.

A.13.36 wait method

A.13.36.1 Specialized Arguments

(stream <file-stream>): The file-stream> on which
to wait.

(timeout <object>): The timeout period.

A.13.36.2 Result

Returns stream if stream is an input-stream or an io-stream
and has input available.

A.13.36.3 See also: wait.

59

A.14 Strings

The defined name of this module is string.

A.14.1 string syntazx

String literals are delimited by the string-begin and string-
end glyphs, which are both defined as the glyph called quo-
tation mark ("'). For example, "abcd".

Sometimes it might be desirable to include string delimiter
characters in strings. The aim of escaping in strings is to ful-
fill this need. The string-escape glyph is defined as reverse
solidus (\). String escaping can also be used to include cer-
tain other characters that would otherwise be difficult to de-
note. The set of named special characters (see section A.1)
have a particular syntax to allow their appearance in strings.
To allow arbitrary characters to appear in strings, the argu-
ment to the hex-insertion digram is an integer denoting the
position of the character in the current character set. In the
case of hex insertion, each d denotes any hexadecimal digit.
A summary of string-escape digrams appears in Table A.11.
Some examples of string literals appear in Table A.12.

Table A.11 — String escape digrams

Digram Interpretation
\a alert

\b backspace

\d delete

\f formfeed

\1l linefeed

\n newline

\r return

\t tab

\v vertical-tab
\" string-begin
\" string-end
A\ string-escape
\xdddd hez-insertion

The syntax for the external representation of strings is de-

fined in Table A.13.

NOTE — At present this document refers to the “current char-
acter set” but defines no means of selecting alternative character
sets. This is to allow for future extensions and implementation-
defined extensions which support more than one character set.

The function write outputs a re-readable form of any es-
caped characters in the string. For example, "a\n\\b" (input
notation) is the string containing the characters #\newline,
#\a, #\\ and #\b. The function write produces "a\n\\b",
whilst prin produces

a

\b

Characters which do not have a glyph associated with their
position in the character set are output as a hex insertion
in which all four hex digits are specified, even if there are
leading zeros. The function prin outputs the interpretation
of the characters according to the definitions in section A.1
and omits the string-begin and string-end characters.

60

Table A.12 — Examples of string literals

Example Contents

"a\nb" #\a, #\newline and #\b
"c\\" #\c and #\\

"\x1 " #\x1 followed by #\space

"\xabcde" #\xabcd followed by #\e

"\x1\x2" #\x1 followed by #\x2
"\x12+" #\x12 followed by #\+
"\xabcg" #\xabc followed by #\g

"\x00abc" #\xab followed by #\c

A.14.2 <string> class

The class of all instances of <string>.

A.14.2.1 Init-options

gize spint: The number of characters in the string.
Strings are zero-based and thus the maximum index is
size-1. If not supplied the size is zero.

£i11 character: A character with which to initialize the
string. If not supplied the fill character is #\xO0.

A.14.3 stringp function

A.14.3.1 Arguments
obj: Object to examine.

A.14.3.2 Result

Returns objif objis an instance of a subclass string, other-
wise ().

A.14.4 string-ref function

A.14.5 (setter string-ref) setter

A.14.5.1 Arguments
string: Source string.
n: An instance of single-precision-integer.
character: An instance of character (for setter).

A.14.5.2 Result

Access and update elements of a string. It is an error if n
is outside the range zero to one less than the length of the
string.

A.14.6 (converter pair) method

A.14.6.1 Specialized Arguments

Table A.13 — String Syntax

string = string-begin string-char™ string-end
string-begin = "
string-char = normal-char | escape-diphthong
string-end = "
normal-char ::= any-character-begin-end-or-escape-excepted
escape-diphthong ::= string-escape string-insertion
string-escape =\
string-insertion = string-begin | string-end | string-escape | hez-insertion | string-newline
hez-insertion = string-hex digit(16) [digit(16) [digit(16) [digit(16)11]
string-newline = n | N
string-hex == x| X

(string <string>): A string to be converted to a list of
characters.

A.14.6.2 Result

Constructs and returns a proper list of characters, the ele-
ments of which correspond to the characters in the external
representation of the instance of string as would be gener-
ated by write.

A.14.7 equal method

A.14.7.1 Specialized Arguments
(stringy <string>): an instance of string.

(string> <string>): an instance of string.

A.14.7.2 Result

If the length of each instance of stringis the same, then the
result is the conjunction of the pairwise application of equal
to the elements of the arguments. If not the result is ().

A.14.8 copy method

A.14.8.1 Specialized Arguments

(string <string>): A string.

A.14.8.2 Result

Constructs and returns an instance of string, whose char-
acters are the same as the source and such that the resulting
string is the same (under equal) as the source.

A.14.9 length method

A.14.9.1 Specialized Arguments

(string <string>): An instance of string.

A.14.9.2 Result

Returns the number of characters in string.

A.14.10 string-1t function

A.14.10.1 Arguments

stringi strings: Two instances of string.

A.14.10.2 Result

If the sequence of characters in string; is alphabetically less
than that in string, returns t, else ().

A.14.11 string-slice function

A.14.11.1 Arguments
string: An instance of string.
start: An instance of single-precision-integer.
An instance of single-precision-integer.

A.14.11.2 Result

Returns a newly allocated string containing the characters
of string starting at start up to end.

A.14.12 string-append function

A.14.12.1 Arguments
stringi strings: Two instances of string.

A.14.12.2 Result

Returns a newly allocated string containing the characters
of string: followed by the characters of strings.

A.14.13 generic-prin method

A.14.13.1 Specialized Arguments
(string <string>): String to be ouptut on stream.

(stream <stream>): Stream on which stringis to be oup-
tut.

61

A.14.13.2 Result
The string string.

Output external representation of string on stream as de-
scribed in the introduction to this section, interpreting each
of the characters in the string. The opening and closing quo-
tation marks are not output.

A.14.14 generic-write method

A.14.14.1 Specialized Arguments
(string <string>): String to be ouptut on stream.

(stream <stream>): Stream on which stringis to be oup-
tut.

A.14.14.2 Result
The string string.

Output external representation of string on stream as de-
scribed in the introduction to this section, replacing single
characters with escape sequences if necessary. Opening and
closing quotation marks are output.

62

A.15 Symbols

The defined name of this module is symbol.

A.15.1 symbol syntax

The syntax of symbols also serves as the syntax for identi-
fiers. Identifiers in EULISP are very similar lexically to iden-
tifiers in other Lisps and in other programming languages.
Informally, an identifier is a sequence of alphabetic, digit and
other characters starting with a character that is not a digit.
Characters which are special (see section A.1) must be es-
caped if they are to be used in the names of identifiers.
However, because the common notations for arithmetic oper-
ations are the glyphs for plus (+) and minus (-) have another
use to indicate the sign of a number, these glyphs are classi-
fied as identifiers in their own right as well as being part of
the syntax of a number.

Sometimes, it might be desirable to incorporate characters
in an identifier that are normally not legal constituents. The
aim of escaping in identifiers is to change the meaning of
particular characters so that they can appear where they are
otherwise illegal. Identifiers containing characters that are
not ordinarily legal constituents can be written by delimiting
the sequence of characters by multiple-escape, the glyph for
which is called vertical bar (1). The multiple-escape denotes
the beginning of an escaped part of an identifier and the
next multiple-escape denotes the end of an escaped part of
an identifier. A single character that would otherwise not
be a legal constituent can be written by preceding it with
single-escape, the glyph for which is called reverse solidus
(\). Therefore, single-escape can be used to incorporate the
multiple-escape or the single-escape character in an identifier,
delimited (or not) by multiple-escapes. For example, |). (]
is the identifier whose name contains the three characters
#\), #\. and #\(, and alb]| is the identifier whose name
contains the characters #\a and #\b. The sequence || is
the identifier with no name, and sois |||, but [\|] is the
identifier whose name contains the single character |, which
can also be written \ |, without delimiting multiple-escapes.

Any identifier can be used as a literal, in which cases it de-
notes a symbol. Because there are two escaping mechanisms
and because the first character of a token affects the inter-
pretation of the remainder, there are many ways in which to
input the same identifier. If this identifier is used as a literal
the results of processing each token denoting the identifier
will be eq to one another. For example, the following tokens
all denote the same symbol:

[1231,\123, 11123, 1123, ||][123

which will be output by the function write as 1123|. If out-
put by write, the representation of the symbol will permit
reconstruction by read—escape characters are preserved—
so that equivalence is maintained between read and write
for symbols. For example: |a(b| and abc.def are two sym-
bols as output by write such that read can read them as
two symbols. If output by prin, the escapes necessary to
re-read the symbol will not be included. Thus, taking the
same examples, prin outputs a(b and abc.def, which read
interprets as the symbol a followed by the start of a list, the
symbol b and the symbol abc.def.

The syntax of the external representation of identifiers and

Table A.14 — Identifier/Symbol Syntax

symbol = dentifier
tdentifier =
normal-tdentifier 1=
peculiar-identifier 1=
sign-identifier =
point-identifier =

multiple-escaped 1=

single-escaped ::=

non-escape =

multiple-escape = |

single-escape =\
point =

normal-identifier | peculiar-identifier

non-digit constituent™

sign-identifier | point-identifier

{sign | sign {non-digit | sign | point}} constituent”
point {non-digit | sign | point} constituent”
non-digit | digit | sign | point

constituent =
alphanumeric ::= alphabetic | digit
non-digit ::= alphabetic | other | escaped
escaped =

single-escaped | multiple-escaped

multiple-escape {single-escaped | non-escape}™ multiple-escape
single-escape {any-character}

not(single-escape, multiple-escape)

symbols is defined in Table A.14.

A.15.2 <symbol> class

The class of all instances of <symbol>.

A.15.2.1 [Init-options

string string: The string containing the characters to be
used to name the symbol.

A.15.3 symbolp function

A.15.3.1 Arguments

obj: Object to examine.

A.15.3.2 Result

Returns objif objis an instance of a subclass of symbol.

A.15.4 gensyn function

A.15.4.1 Arguments

[string]: A string contain characters to be prepended to
the name of the new symbol.

A.15.4.2 Result

Makes a new symbol with a name generated by a processor-
defined mechanism. Optionally, a prefix string for this name
may be specified.

A.15.5 symbol-name function

A.15.5.1 Arguments

symbol: An instance of symbol.

A.15.5.2 Result

Returns a string which is equal to that given as the argument
to the call to make-symbol which created symbol.

A.15.6 symbol-exists-p function

A.15.6.1 Arguments

string: A string containing the characters to be used to
determine the existence of a symbol with that name.

A.15.6.2 Result

Returns the symbol whose name is string if that symbol has
already been constructed by make-symbol. Otherwise, re-
turns ().

A.15.7 generic-prin method

A.15.8 generic-write method

A.15.8.1 Specialized Arguments

(symbol <symbol>): The symbol to be output on stream.

(stream <stream>): The stream on which the represen-

tation is to be output.

A.15.8.2 Result
The symbol supplied as the first argument.

A.15.8.3 Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section, interpreting
each of the characters in the name.

A.15.9 generic-write method

A.15.9.1 Specialized Arguments

63

(symbol <symbol>): The symbol to be output on stream.

(stream <stream>): The stream on which the represen-
tation is to be output.

A.15.9.2 Result
The symbol supplied as the first argument.

A.15.9.3 Remarks

Outputs the external representation of symbol on stream as
described in the introduction to this section. If any charac-
ters in the name would not normally be legal constituents of
an identifier or symbol, the output is preceded and succeeded
by multiple-escape characters.

64

A.16 Tables

The defined name of this module is table. Tables provide a
general key to value association mechanism.

A.16.1 <table> class

The class of all instances of <table>.

A.16.1.1 Init-options

comparator function: The function to be used to com-
pare keys.

A.16.2 tablep function

A.16.2.1 Arguments

obj: Object to examine.

A.16.2.2 Result

Returns objis objis an instance of table.

A.16.3 table-ref function

A.16.3.1 Arguments
table: An instance of table.

key: An object to be used to identify an entry in the
table.

[no-entry-valuel: An object to be returned in the case
that key is not found.

A.16.3.2 Result

If keyis in table, matched by the comparator function, then
the associated value is returned. If keyis not in table, the
value () is returned. However, if the optional parameter
no-entry-value is provided and key is not in table, the value
no-entry-value is returned.

A.16.4 (setter table-ref) setter

A.16.4.1 Arguments
table: An instance of table.

key: An object to be used to identify an entry (new or
existing) in the table.

value: An object to be associated with keyin table.

A.16.4.2 Result

If key does not occur in table a new entry is made associating
key and wvalue. If key does occur, then the association is
changed to value. value-objis returned.

A.16.5 table-delete function

A.16.5.1 Arguments
table: An instance of table.

key: An object to be used to identify an entry (new or
existing) in the table.

A.16.5.2 Result

If key occurs in table, both the key and its associated value
are deleted from the table. If key does not occur in table, no
action is taken.

A.16.6 generic-prin method

A.16.7 generic-write method

A.16.7.1 Arguments
table: The table to be output on stream.

stream: The stream on which the representation is to be
output.

A.16.7.2 Result
The table supplied as the first argument.

A.16.7.3 Remarks

Output the external representation of table on stream.
The external representation of instances of table is
implementation-defined.

Table A.15 — Vector Syntax

vector 1= extension vector-begin oby* vector-end
extension = %
vector-begin = (
vector-end =)

A.17 Vectors

The defined name of this module is vector.

A.17.1 vector syntax

A vector is written as #(objy; ...o0bj,). For example:
#(1 2 3) is a vector of three elements, the integers 1, 2
and 3. The representations of oby; are determined by the
external representations defined in other sections of this
definition (see <character>(A.l), <double-float>(A.6),
<null>(A.9), <pair>(A.11),<spint>(A.12), <string>(A.14)
and <symbol>(A.15), as well as instances of <vector> itself.
The syntax for the external representation of vectors is de-

fined in Table A.15.

A.17.2 <vector> class

The class of all instances of <vector>.

A.17.2.1 [Init-options

size spint: The number of elements in the vector. Vec-
tors are zero-based and thus the maximum index is size-1.
If not supplied the sizeis zero.

£i11 object: An object with which to initialize the string.
If not supplied the fill object is ().

A.17.3 vectorp function

A.17.3.1 Arguments

obj: Object to examine.

A.17.3.2 Result

Returns objif objis an instance of vector.

A.17.4 length method

A.17.4.1 Arguments

vector: A vector.

A.17.4.2 Result

Returns the length of vector, which is the maximum index
plus one.

65

A.17.5 vector-ref function

A.17.6 (setter vector-ref) setter

A.17.6.1 Arguments
vector: A vector.

n: An integer to specify the index of an element in the
vector.

obj: An object to be stored as element n of vector.

A.17.6.2 Result

The accessor returns and the updator changes the contents
of the nth index of vector. The value stored in index position
n is obj, which is returned.

A.17.7 make-initialized-vector function

A.17.7.1 Arguments

obji obyz ... objn: A sequence of objects.

A.17.7.2 Result

Allocate a vector of size n and store objy; in (vector-ref
v 0), obj in position (vector-ref v 1), up to obj, in
(vector-ref v n-1). Returns the initialized vector.

A.17.8 maximum-vector-index integer

A.17.8.1 Remarks

This 1s an implementation-defined constant. A conforming

processor must support a maximum vector index of at least
32767.

A.17.9 (converter pair) method

A.17.9.1 Arguments
vector: A vector.

A.17.9.2 Result

Constructs and returns a proper list, the elements of which
correspond to the elements stored in the instance of vector.

A.17.10 equal method

A.17.10.1 Arguments
vector;: an instance of vector.

vectors: an Instance of vector.

66

A.17.10.2 Result

If the maximum index of each instance of vectoris the same
(under =), then the result is the conjunction of the pairwise
application of equal to the elements of the arguments. If
not the result is ().

A.17.11 copy method

A.17.11.1 Arguments

vector: A vector.

A.17.11.2 Result

Constructs and returns an instance of vector, whose ele-
ments are the same as those of the source (under eql), so
that the resulting vector is the same (under equal) as the
source.

A.17.12 generic-prin method

A.17.13 generic-write method

A.17.13.1 Arguments
vector: the vector to be ouptut on stream

stream: the stream on which the representation is to be
output.

A.17.13.2 Result

The vector supplied as the first argument.

A.17.13.3 Remarks

Output the external representation of pair on stream as de-
scribed in the introduction to this section. Both methods
call the generic function again to produce the external rep-
resentation of the elements stored in the vector.

Annex B
(normative)
Programming Language EuLisp, Level-1

B.1 Classes and Objects

B.1.1 defclass defining form

B.1.1.1 Syntax

(defclass class-name (superclass®) (slot-description™)
class-option™)

B.1.1.2 Arguments

class-name: A symbol naming a binding to be initialised
with the new class.

(superclass™): A list of symbols naming bindings of

classes to be used as the superclasses of the new class.
This is different from defcalss at level-0, where only one
superclass may be specified.

(slot-description™: A list of slot specifications (see be-

low), comprising either a slot-name or a list of a slot-name

followed by some slot-options. An additional class option
at level-1 allows for the specification of the class of the slot
description.

class-option™ A sequence of keys and values (see below).
An additional class options at level-1 allows for the speci-
fication of the metaclass of the class.

B.1.1.3 Remarks

This defining form defines a new class. The resulting class

will be bound to class-name. The second argument is a list of
superclasses. If this list is empty, the superclass is <object>.
The third argument is a list of slot-descriptions. The remain-
ing arguments are class options. The syntax of defclass is
given in Table B.1.

Table B.1 — defclass syntax (level-1)

class-name = identifier
superclass = {<class> or one of its subclasses}
slot-description ::= slot-name |
(slot-name slot-option™)
slot-name ::= identifier

slot-class slot-description-class |
tdentifier expression
level-0-slot-option

class-option ::= metaclass class-name |

tdentifier expression
level-0-class-option

slot-option

The additional slot-options are:

glot-class class: The corresponding value is a sub-
class of <slot-description>. An implementation
conforming at level-1 provides the slot description
class <local-slot-description>, for slots particu-
lar to instances. Extension modules can define

<shared-slot-description>, for slots whose values are
shared by all the instances of the class. New slot descrip-
tion classes can be defined and used here. This option can
only be specified once for a particular slot. Within a class
different slots can have different slot description classes.

tdentifier expression: The symbol named by identifier
and the value of expression are passed to make of the slot
description class along with other slot options. The values
are evaluated in the lexical and dynamic environment of
the defclass. For the language defined slot description
classes, no slot initargs are defined which are not specified
by particular defclass slot options.

The additional class-options are:

metaclass class: The value of this option is the class of
the new class. By default, this is <class>. This option
must only be specified once for the new class.

tdentifier expression: The symbol named by identifier
and the value of expression are passed to make on the class
of the new class. This list is appended to the end of the
list that defclass constructs. The values are evaluated
in the lexical and dynamic environment of the defclass.
This option is used for metaclasses which need extra in-
formation not provided by the standard options.

67

B.2 Generic Functions

B.2.1 defgeneric defining form

B.2.1.1 Syntax

(defgeneric gf-name gen-lambda-list level-1-init-option™)

B.2.1.2 Arguments
gf-name: As level-0. See section 12.1.1.
lambda-list: As level-0. See section 12.1.1.

init-option™: Format as level-0, but with additional op-
tions, which are defined below.

B.2.1.3 Remarks

This defining form defines a new generic function. The re-
sulting generic function will be bound to gf-name. The sec-
ond argument is the formal parameter list. An error is sig-
naled (condition: non-congruent-lambda-lists) if any of
the methods defined on this generic function do not have
lambda lists congruent to that of the generic function. This
applies both to methods defined at the same time as the
generic function and to any methods added subsequently by
defmethod or add-method. An init-optionis a identifier fol-
lowed by its initial value. The syntax of defgenericis an
extension of the level-0 syntax—see Table B.2.

The additional ¢net-options are interpreted as follows:

class gf-class: The class of the new generic function.
This must be a subclass of <generic-function>. The de-
fault is <generic-function>.

method-class method-class: The class of all methods to
be defined on this generic function. All methods of a
generic function must be instances of this class or of one
of its subclasses. The method class must be a subclass of
<method> and is, by default, <method>.

tdentifier expression: The symbol named by identifier
and the value of expression are passed to make on the in-
stance of the new generic function and each new method.
The values are evaluated in the lexical and dynamic envi-
ronment of the defgeneric. This option is used for classes
which need extra information not provided by the stan-
dard options.

B.2.1.4 Examples

In the following example of the use of defgeneric a generic
function named gf-1is defined. The differences between this
function and gf-0 (see 12.1.1) are

a) The class of the generic function is specified
(<another-gf-class>) along with some init-options re-
lated to the creation of an instance of that class.

b) The class of the methods to be attached to the
generic function is specified (<another-method-class>)
along with an init-option related to the creation of an in-
stance of that class.

68

(defgeneric gf-1 (argl (arg2 <class-a>))

class <another-gf-class>
class-key-a class-value-a
class-key-b class-value-b

method (method-class <another-method-class-a>
method-class-a-key-a method-class-a-value-a
((mi-argl <class-b>) (ml-arg2 <class-c>))
o)

method (method-class <another-method-class-b>
method-class-b-key-a method-class-b-value-a
((m2-argl <class-d>) (m2-arg2 <class-e>))
o)

method (method-class <another-method-class-c>
method-class-c-key-a method-class-c-value-a
((m3-argl <class-f>) (m3-arg2 <class-g>))
o)

B.2.2 defmethod macro

B.2.2.1 Syntax

(defmethod method-init-option* gf-name spec-lambda-list
form™)

or

(defmethod method-init-option™ (setter identifier) spec-
lambda-list form™)

or

(defmethod method-init-option* (converter identifier)
spec-lambda-list form™)

B.2.2.2 Remarks

The syntax of defmethod is extended to accept init-options
for the method-class of the generic function to which the
method is to be attached. Otherwise, the behaviour is as
that defined in level-0.

B.2.3 generic-lambda macro

B.2.3.1 Syntax

(generic-lambda lambda-list level-1-init-option™)

B.2.3.2 Remarks

generic-lambda creates and returns an anonymous generic
function that can be applied immediately, much like the nor-
mal lambda. The first argument is a lambda list, while
the init-options are interpreted exactly as for the level-1
definition of defgeneric. An error is signaled (condition:
no-applicable-method) if an attempt is made to apply a
generic function which has no applicable methods for the
classes of the arguments supplied.

B.2.3.3 Examples

In the following example an anonymous version of gf-1 (see
defgeneric above) is defined. In all other respects the re-
sulting object is the same as gf-1.

(generic-lambda (argl (arg2 <class-a>))

class <another-gf-class>
class-key-a class-value-a

Table B.2 — defgeneric syntax (level-1)

level-1-inat-option 1=

gf-class

method-class
level-1-method-description
gf-init-option
method-init-option

level-0-init-option |

class gf-class |

method-class method-class |

method (level-1-method-description) |
gf-init-option

a subclass of <generic-function>

a subclass of <method>

(method-init-option™ spec-lambda-list form™)
tdentifier expression

tdentifier expression

class-key-b class-value-b

method (method-class <another-method-class-a>
method-class—-a-key-a method-class-a-value-a
((mi-argl <class-b>) (ml-arg2 <class-c>))
o)

method (method-class <another-method-class-b>
method-class-b-key-a method-class-b-value-a
((m2-argl <class-d>) (m2-arg2 <class-e>))
o)

method (method-class <another-method-class-c>
method-class-c-key-a method-class-c-value-a
((m3-argl <class-f>) (m3-arg2 <class-g>))

»

B.2.3.4 See also: defgeneric.

B.2.4 generic-labels macro

B.2.4.1 Syntax

(generic-labels (lambda-list level-1-init-option™) form™)

B.2.4.2 Remarks

This form is analogous to the normal labels. The first ar-
gument is a binding list, of the same form as that specified
for the level-1 definition of defgeneric. The lexical environ-
ment of each defined generic function includes the others,
just like labels.

B.2.4.3 Examples

In the following example, two generic functions (gf-1a and
gf-1b) are defined. In addition the same init-options,
namely class and method-class can be specified.

(generic-labels (
(gf-1a (argl (arg2 <class-a>))
method (method-class <another-method-class-a>
method-class-a-key-a method-class-a-value-a
((mi-argl <class-b>) (ml-arg2 <class-c>))
o)
method (method-class <another-method-class-b>
method-class-b-key-a method-class-b-value-a
((m2-argl <class-d>) (m2-arg2 <class-e>))
o)
method (method-class <another-method-class-c>
method-class-c-key-a method-class-c-value-a
((m3-argl <class-f>) (m3-arg2 <class-g>))
)]
(gf-1b ((argl <class-b>) (arg2 <class-c>))
method (((ml-argl <class-b>) (ml-arg2 <class-c>))

LoD

method (((m2-argl <class-d>) (m2-arg2 <class-e>))
o))

)

69

B.3 Reflection on Objects

The only reflective capability of any object is the access to
its class, that is, introspection.

B.3.1 class-of function

B.3.1.1 Arguments

object: An object.

B.3.1.2 Result
The class of the object.

B.3.1.3 Remarks

class-of is a total function capable of taking any entity in
the system and returning an object representing the class of
that entity. The composition of this function with itself is a
function that returns the metaclass of an object. class-of
is a reflective operation.

B.3.1.4 Examples

In the following examples we explore the class hierarchy
starting from the single precision integer 1.

(class-of 1)
— #<single-precision-integer>
(class-of (class—of 1))
— #<class>
(class-of (class-of (class-of 1)))
— #<metaclass>
(class-of (class—of (class-of (class-of 1))))
— #<metaclass>

70

Table B.3 — Slot Description Metaobject Classes

<object> [<abstract-class>]
<class> [<metaclass>]
<metaclass> [<metaclass>]
<abstract-class> [<metaclass>]
<slot-description> [<class>]

B.4 Reflection on Classes and Slot Descriptions

Standard classes are not redefinable and support single in-
heritance only. General multiple inheritance or mixin in-
heritance can be provided by extensions. Nor is it possi-
ble to use a class as a superclass which is not defined at
the time of class definition. Again, such forward reference
facilities can be provided by extensions. The distinction
between metaclasses and non-metaclasses is made explicit
by a special class, named <metaclass>, which is the class
of all metaclasses. This is different from ObjVlisp, where
whether a class is a metaclass depends on the superclass list
of the class in question. It is implementation-defined whether
<metaclass> itself is specializable or not. This implies that
implementations are free to restrict the instantiation tree
(excluding the selfinstantiation loop of <metaclass>) to a
depth of three levels.

The minimal information associated with a class metaobject
is:

a) The name, which has no semantic effect.

b) The class precedence list, ordered most specific first,
beginning with the class itself.

c) The list of (effective) slot descriptions.

d) The list of (effective) initargs.
Standard classes support local slots only. Shared slots can be
provided by extensions. The minimal information associated

with a slot description metaobject is:

a) The name, which is required to perform inheritance
computations.

b) The initfunction, called by default to compute the
initial slot value when creating a new instance.

¢) The reader, which is a function to read the correspond-
ing slot value of an instance.

d) The writer, which is a function to write the corre-
sponding slot of an instance.

The metaobject classes defined for slot descriptions at level-1
are shown in Table B.3.

B.4.1 <slot-description> class

The abstract class of all slot descriptions.

B.4.2 <local-slot-description> class

The class of all local slot descriptions.

B.4.2.1 Init-options

name string: The name of the slot; useful for debugging
only.

reader function: The function to access the slot.
writer function: The function to update the slot.

initfunction function: The function to compute the
initial value in the absence of supplied value.

B.4.3 class-name function

B.4.3.1 Arguments

class: A class.

B.4.3.2 Result

The symbol which was given as the first argument to
defstruct or defclass when the class was defined.

B.4.3.3 Remarks

The class name has no significance other than for debugging.

B.4.4 class-precedence-list function

B.4.4.1 Arguments

class: A class.

B.4.4.2 Result

A list of classes, which are the superclasses of classin order
of increasing generality.

B.4.4.3 Remarks

The class precedence list controls the inheritance of slots and
methods.

B.4.5 class-slot-descriptions function

B.4.5.1 Arguments

class: A class.

B.4.5.2 Result

A list of slot-descriptions, one for each of the slots of an
instance of class.

B.4.5.3 Remarks

The slot-descriptions determine the instance size (number of
slots) and the slot access.

B.4.6 class-initargs function

B.4.6.1 Arguments

class: A class.

B.4.6.2 Result

A list of symbols; corresponding to the slot names specified
when the class was defined and any additional keywords for
slot-options or class-options.

B.4.6.3 Remarks

The initargs contain the legal keywords which can be used
to initialize instances of the class.

B.4.7 slot-description-name function

B.4.7.1 Arguments

slot-description: A slot description.

B.4.7.2 Result

The symbol which was used to name the slot when the class,
of which the slot-description is part, was defined.

B.4.7.3 Remarks

The slot description name is used to identify a slot descrip-
tion in a class. It has no effect on bindings.

B.4.8 slot-description-initfunction function
B.4.8.1 Arguments
slot-description: A slot description.
B.4.8.2 Result
A function.
B.4.9 slot-description-slot-reader function
B.4.9.1 Arguments
slot-description: A slot description.
B.4.9.2 Result
A function.
B.4.10 slot-description-slot-writer function

B.4.10.1 Arguments

slot-description: A slot description.

71

B.4.10.2 Result

A function.

B.5 Defining Metaclasses

B.5.1 defmetaclass defining form

B.5.1.1 Syntax

(defmetaclass class-name superclass (slot-description™)
class-option™)
B.5.1.2 Arguments

class-name: A symbol naming a binding to be initialised
with the new class.

superclass: A symbol naming a binding of a class to be
used as the superclass of the new class.

(slot-description™): A list of slot specifications (see be-
low).

class-option™ A sequence of symbols (see below).

B.5.1.3 Remarks

This defining form defines a new metaclass. The resulting
metaclass will be bound to class-name. The second argu-
ment is a superclass. A valid class-optionis predicate.

B.6 Initializing Classes

B.6.1 initialize method

B.6.1.1 Specialized Arguments
(class <class>): A class.

(initlist <list>): A list of initialization options as fol-
lows:

name symbol: Name of the class being initialized.
direct-superclasses list: List of direct superclasses.

direct-slot-descriptions list: List of slot specifica-
tions.

direct-initargs list: List of direct initargs.

B.6.1.2 Result

The initialized class.
B.6.1.3 Remarks
The initialization of a class takes place as follows:
a) Check compatibility of direct superclasses
b) Perform the logical inheritance computations of:

1) class precedence list

72

2) initargs

3) slot descriptions
¢) Compute new slot accessors and ensure all (new and
inherited) accessors to work correctly on instances of the
new class.

d) Make the results accessible by class readers.

The basic call structure is laid out in Figure B.1

B.7 [Initializing Slot Descriptions

B.7.1 initialize method

B.7.1.1 Specialized Arguments

(slot-description <slot-description>): A slot descrip-
tion.

(initlist <list>): A list of initialization options as fol-
lows:

name symbol: The name of the slot.

initfunction function: A function.

B.7.1.2 Result

The initialized slot description.

B.8 Inheritance Protocol

B.8.1 compatible-superclasses-p generic function

B.8.1.1 Generic Arguments
(class <class>): Class being defined.
(direct-superclasses <list>): List of potential direct su-

perclasses.

B.8.1.2 Result

True or false.

B.8.1.3 Remarks

Checks compatibility between class and the list of direct su-
perclasses.

B.8.2 compatible-superclasses-p method

B.8.2.1 Specialized Arguments
(class <class>): Class being defined.

(direct-superclasses <list>): List of potential direct su-
perclasses.

Figure B.1 — Initialization Call Structure

COMPATIBLE-SUPERCLASSES-P cl direct-superclasses —-> boolean

COMPATIBLE-SUPERCLASS-P cl superclass -> boolean

COMPUTE-CLASS-PRECEDENCE-LIST ¢l direct-superclasses -> list(class)
COMPUTE-INHERITED-INITARGS cl direct-superclasses —> list(list(initarg))
COMPUTE-INITARGS cl direct-initargs <inherited-initargs> -> list(initarg)
COMPUTE-INHERITED-SLOT-DESCRIPTIONS cl direct-superclasses -> list(list(slotd))
COMPUTE-SLOT-DESCRIPTIONS cl direct-slotds <inherited-slotds> -> list(slotd)

either

COMPUTE-DEFINED-SLOT-DESCRIPTION cl slotd-init-list -> slotd
COMPUTE-DEFINED-SLOT-DESCRIPTION-CLASS cl slotd-init-list -> slotd-class

or

COMPUTE-SPECIALIZED-SLOT-DESCRIPTION cl inherited-slotds slotd-init-list -> slotd

COMPUTE-SPECIALIZED-SLOT-DESCRIPTION-CLASS ¢l inherited-slotds slotd-init-list -> slotd-class
COMPUTE-AND-ENSURE-SLOT-ACCESSORS cl <effective-slotds> <inherited-slotds> -> list(slotd)

COMPUTE-SLOT-READER c1 slotd <effective-slotds> —-> function

COMPUTE-SLOT-WRITER cl slotd <effective-slotds> —-> function

ENSURE-SLOT-READER cl slotd <effective-slotds> reader -> function
COMPUTE-PRIMITIVE-READER-USING-SLOT-DESCRIPTION slotd cl <effective-slotds> -> function

COMPUTE-PRIMITIVE-READER-USING-CLASS cl slotd <effective-slotds> -> function

ENSURE-SLOT-WRITER cl slotd writer -> function

COMPUTE-PRIMITIVE-WRITER-USING-SLOT-DESCRIPTION slotd cl <effective-slotds> -> function
COMPUTE-PRIMITIVE-WRITER-USING-CLASS cl slotd <effective-slotds> -> function

B.8.2.2 Result

True or false.

B.8.2.3 Remarks

The default method calls compatible-superclass-pon class
and the first element of the direct-superclasses (single inher-
itance assumption).

B.8.3 compatible-superclass-p generic function

B.8.3.1 Generic Arguments
(subclass <classg>): Class being defined.
(superclass <class>): Potential direct superclass.

B.8.3.2 Result

True or false.

B.8.3.3 Remarks

Checks compatibility between a subclass being defined (first
argument) and a potential superclass (second argument).

B.8.4 compatible-superclass-p method

B.8.4.1 Specialized Arguments
(subclass <classg>): Class being defined.
(superclass <class>): Potential direct superclass.

B.8.4.2 Result

True or false.

B.8.4.3 Remarks

This method returns true, if the class of the first argument
is a subclass of the class of the second argument, false oth-
erwise.

B.8.5 compatible-superclass-p method

B.8.5.1 Specialized Arguments
(subclass <classg>): Class being defined.

(superclass <abstract-class>): Potential direct super-
class.

B.8.5.2 Result

True.

B.8.5.3 Remarks

This method always returns true.

B.8.6 compatible-superclass-p method

B.8.6.1 Specialized Arguments
(subclass <abstract-class>): Class being defined.

(superclass <class>): Potential direct superclass.

B.8.6.2 Result
False.

B.8.6.3 Remarks

This method always returns false.

73

B.8.7 compute-class-precedence-list generic function

B.8.10 compute-slot-descriptions method

B.8.7.1 Generic Arguments
(class <class>): Class being defined.

(direct-superclasses <list>): List of direct superclasses.

B.8.7.2 Result

List of classes.

B.8.7.3 Remarks

Computes and returns a list of classes which represents the
linearized inheritance hierarchy of class and the given list
of direct superclasses, beginning with class and ending with
<object>.

B.8.8 compute-class-precedence-list method

B.8.8.1 Specialized Arguments
(class <class>): Class being defined.

(direct-superclasses <list>): List of direct superclasses.

B.8.8.2 Result

List of classes.

B.8.8.3 Remarks

This method can be considered to return a cons of its first
argument and the class precedence list of the first element
of list (single inheritance assumption).

B.8.9 compute-slot-descriptions generic function

B.8.9.1 Generic Arguments
(class <class>): Class being defined.

(direct-slot-descriptions <1ist>): A list of direct slot de-
scriptions.

(inherited-slot-descriptions <1ist>): A list of lists of in-

herited slot descriptions.

B.8.9.2 Result

List of effective slot descriptions.

B.8.9.3 Remarks

Computes and returns the list of effective slot descriptions
of class.

B.8.9.4
See also: compute-inherited-slot-descriptions.

74

B.8.10.1 Specialized Arguments
(class <class>): Class being defined.
(slot-specs <1list>): List of (direct) slot specifications.

(inherited-slot-description-lists <list>): A list of lists
(in fact one list) of inherited slot descriptions.

B.8.10.2 Result

List of effective slot descriptions.

B.8.10.3 Remarks
The default method computes two sublists:

a) Specialized slot descriptions by calling
compute-specialized-slot-description on class, each
inherited-slot-description wrapped by a list and the corre-
sponding (same name) slot-specification if there exits one
or () otherwise.

b) New slot descriptions by
calling compute-defined-slot-description on class and
each slot-specification which has no corresponding (same
name) inherited-slot-description.

The method returns the concatenation of these two lists as
its result. The order of elements in the list is significant.
All specialized slot descriptions have the same position as
in the effective slot descriptions list of the direct superclass
(due to the single inheritance). The slot accessors (computed
later) may rely on this assumption minimizing the number of
methods to one for all subclasses and minimizing the access
time to an indexed reference.

B.8.10.4

See also: compute-specialized-slot-description,
compute-defined-slot—description,
compute-and-ensure-slot-accessors.

B.8.11 compute-initargs generic function

B.8.11.1 Generic Arguments
(class <class>): Class being defined.
(inetargs <1ist>): list of direct initargs.
(inherited-initarg-lists <1ist>): A list of lists of inher-

ited initargs.

B.8.11.2 Result
List of symbols.

B.8.11.3 Remarks

Computes and returns all legal initargs for class.

B.8.11.4 See also: compute-inherited-initargs.

B.8.12 compute-initargs method

B.8.12.1 Specialized Arguments
(class <class>): Class being defined.
(inetargs <1ist>): list of direct initargs.
(inherited-initarg-lists <1ist>): A list of lists of inher-

ited initargs.

B.8.12.2 Result
List of symbols.

B.8.12.3 Remarks

This method appends the second argument with the first ele-
ment of the third argument (single inheritance assumption),
removes duplicates and returns the result.

B.8.13 compute-inherited-slot-descriptions
generic function

B.8.13.1 Generic Arguments
(class <class>): Class being defined.

(direct-superclasses <list>): List of direct superclasses.

B.8.13.2 Result

List of lists of inherited slot descriptions.

B.8.13.3 Remarks

Computes and returns a list of effective slot description lists.

B.8.13.4 See also: compute-slot-descriptions.

B.8.14 compute-inherited-slot-descriptions method

B.8.14.1 Specialized Arguments
(class <class>): Class being defined.

(direct-superclasses <list>): List of direct superclasses.

B.8.14.2 Result

List of lists of inherited slot descriptions.

B.8.14.3 Remarks

The result of the default method is a list of one element: a list
of effective slot descriptions of the first element of the second
argument (single inheritance assumption). Its result is used
by compute-slot-descriptions as an argument value.

B.8.15 compute-inherited-initargs generic function

B.8.15.1 Generic Arguments
(class <class>): Class being defined.
(direct-superclasses <list>): List of direct superclasses.

B.8.15.2 Result
List of lists of symbols.

B.8.15.3 Remarks

Computes and returns a list of initarg-lists. Its result is used
by compute-initargs as an argument value.

B.8.15.4 See also: compute-initargs.

B.8.16 compute-inherited-initargs method

B.8.16.1 Specialized Arguments
(class <class>): Class being defined.
(direct-superclasses <list>): List of direct superclasses.

B.8.16.2 Result
List of lists of symbols.

B.8.16.3 Remarks

The result of the default method contains one list of legal
initargs of the first element of the second argument (single
inheritance assumption).

B.8.17 compute-defined-slot-description
generic function

B.8.17.1 Generic Arguments
(class <class>): Class being defined.
(slot-spec <1list>): Canonicalized slot specification.

B.8.17.2 Result
Slot description.

B.8.17.3 Remarks

Computes and returns a new effective slot description. It
is called by compute-glot-descriptions on each slot spec-
ification which has no corresponding inherited slot descrip-
tions.

B.8.17.4
See also: compute-defined-slot-description-class.

75

B.8.18 compute-defined-slot-description method

B.8.18.1 Specialized Arguments
(class <class>): Class being defined.

(slot-spec <1ist>): Canonicalized slot specification.

B.8.18.2 Result
Slot description.

B.8.18.3 Remarks

Computes and returns a new ef-
fective slot description. Its class is determined by calling
compute-defined-slot—description-class.

B.8.18.4
See also: compute-defined-slot-description-class.

B.8.19 compute-defined-slot-description-class
generic function

B.8.19.1 Generic Arguments
(class <class>): Class being defined.

(slot-spec <1ist>): Canonicalized slot specification.

B.8.19.2 Result

Slot description class.

B.8.19.3 Remarks

Determines and returns the slot description class correspond-
ing to class and list .

B.8.19.4 See also: compute-defined-slot-description.

B.8.20 compute-defined-slot-description-class
method

B.8.20.1 Specialized Arguments
(class <class>): Class being defined.

(slot-spec <1ist>): Canonicalized slot specification.

B.8.20.2 Result

The class <slot-description>.

B.8.20.3 Remarks

This method just returns the class <slot-description>.

76

B.8.21 compute-specialized-slot-description
generic function

B.8.21.1 Generic Arguments
(class <class>): Class being defined.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

(slot-spec <1list>): Canonicalized slot specification or

O.

B.8.21.2 Result
Slot description.

B.8.21.3 Remarks

Computes and returns a new effective slot description. It is
called by compute-slot-descriptions on the class, each list
of inherited slots with the same name and with the special-
ising slot specification list or () if no one is specified with
the same name.

B.8.21.4
See also: compute-specialized-slot-description-class.

B.8.22 compute-specialized-slot-description method

B.8.22.1 Specialized Arguments
(class <class>): Class being defined.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

(slot-spec <1list>): Canonicalized slot specification or

O.

B.8.22.2 Result
Slot description.

B.8.22.3 Remarks

Computes and returns a new ef-
fective slot description. Its class is determined by calling
compute-specialized-slot-description-class.

B.8.22.4
See also: compute-specialized-slot-description-class.

B.8.23 compute-specialized-slot-description-class
generic function

B.8.23.1 Generic Arguments

(class <class>): Class being defined.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

(slot-spec <1list>): Canonicalized slot specification or

O.

B.8.23.2 Result

Slot description class.

B.8.23.3 Remarks

Determines and returns the slot description class correspond-
ing to (i) the class being defined, (ii) the inherited slot de-
scriptions being specialized (iii) the specializing information
in slot-spec.

B.8.23.4
See also: compute-specialized-slot-description.

B.8.24 compute-specialized-slot-description-class
method

B.8.24.1 Specialized Arguments
(class <class>): Class being defined.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

(slot-spec <1list>): Canonicalized slot specification or

O.

B.8.24.2 Result
The class <slot-description>.

B.8.24.3 Remarks

This method just returns the class <slot-description>.

B.9 Slot Access Protocol

The slot access protocol is defined via accessors (readers and
writers) only. There is no primitive like CLOS’s slot-value.
The accessors are generic for standard classes, since they
have to work on subclasses and should do the applicability
check anyway. The key idea i1s that the discrimination on
slot-descriptions and classes is performed once at class defi-
nition time rather than again and again at slot access time.

Each slot-description has exactly one reader and one writer
as anonymous objects. If a reader/writer slot-option is speci-
fied in a class definition, the anonymous reader/writer of that
slot-description is bound to the specified identifier. Thus, if
a reader/writer option is specified more than once, the same
object is bound to all the identifiers. If the accessor slot-
option is specified the anonymous writer will be installed as
the setter of the reader. Specialized slot-descriptions refer
to the same objects as those in the superclasses (single in-
heritance makes that possible). Since the readers/writers are
generic, it is possible for a subclass (at the meta-level) to add
new methods for inherited slot-descriptions in order to make
the readers/writers applicable on instances of the subclass.

A new method might be necessary if the subclasses have a
different instance allocation or if the slot positions cannot
be kept the same as in the superclass (in multiple inheri-
tance extensions). This can be done during the initialization
computations.

B.9.1 compute-and-ensure-slot-accessors
generic function

B.9.1.1 Generic Arguments
(class <class>): Class being defined.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

B.9.1.2 Result

List of effective slot descriptions.

B.9.1.3 Remarks

Computes new accessors or ensures that inherited accessors
work correctly for each effective slot description.

B.9.2 compute-and-ensure-slot-accessors method

B.9.2.1 Specialized Arguments
(class <class>): Class being defined.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(inherited-slot-descriptions <1ist>): List of inherited
slot descriptions.

B.9.2.2 Result

List of effective slot descriptions.

B.9.2.3 Remarks

The default method checks if it is a new slot description (not
an inherited one). If yes,

a) calls compute-slot-reader to compute a new slot
reader and stores the result;

b) calls compute-slot-writer to compute a new slot
writer and stores the result;

If not, assumes that the inherited values remain valid. Last,
it ensures the reader and writer to work correctly calling
ensure-glot-reader and ensure-slot-writer.

B.9.3 compute-slot-reader generic function

B.9.3.1 Generic Arguments

77

(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

B.9.3.2 Result

Function.

B.9.3.3 Remarks

Computes and returns a new slot reader applicable to in-
stances of class returning the slot value corresponding to
slot-description. The third argument can be used in order to
compute the logical slot position.

B.9.4 compute-slot-reader method

B.9.4.1 Specialized Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

B.9.4.2 Result

Generic function.

B.9.4.3 Remarks

The default method returns a new generic function of one
argument without any methods. Its domain is class.

B.9.5 compute-slot-writer generic function

B.9.5.1 Generic Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

B.9.5.2 Result

Function.

B.9.5.3 Remarks

Computes and returns a new slot writer applicable to in-
stances of class and any value to be stored as the new slot
value corresponding to slot-description. The third argument
can be used in order to compute the logical slot position.

78

B.9.6 compute-slot-writer method

B.9.6.1 Specialized Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

B.9.6.2 Result

Generic function.

B.9.6.3 Remarks

The default method returns a new generic function of two
arguments without any methods. Its domain is the product
of class and <object>.

B.9.7 ensure-slot-reader generic function

B.9.7.1 Generic Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(reader <function>): The slot reader.

B.9.7.2 Result

Function.

B.9.7.3 Remarks

Ensures function works correctly on instances of class.

B.9.8 ensure-slot-reader method

B.9.8.1 Specialized Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(reader <generic-function>): The slot reader.

B.9.8.2 Result

Generic function.

B.9.8.3 Remarks

The default method checks if there is a method in the
generic-function. If not, it creates and adds a new one. The
new method has

domain: — (class)

{wedthod-£function-lanbda ((object class))
(primitive-reader object))

compute-primitive-reader-using-slot-description
is called by the method function to compute the primitive
reader.

B.9.9 ensure-slot-writer generic function

B.9.9.1 Generic Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(writer <function>): The slot writer.

B.9.9.2 Result

Function.

B.9.9.3 Remarks
Ensures function to work correctly on instances of class.

B.9.10 ensure-slot-writer method

B.9.10.1 Specialized Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

(writer <generic-function>): The slot writer.

B.9.10.2 Result

Generic function.

B.9.10.3 Remarks

The default method checks if there is a method in the
generic-function. If not, creates and adds a new one. The
new method has

domain: — (class <object>)
{medthod-function-lambda ((obj class)

(new-value <object>))
(primitive-writer obj new-value))

compute-primitive-writer-using-slot-description
is called by the method function to compute the primitive
writer.

B.9.11 compute-primitive-reader-using-slot-description

generic function

B.9.11.1 Generic Arguments

(slot-description <slot-description>): Slot
description.

(class <class>): Class.
(slot-descriptions <1ist>): List of effective slot descrip-

tions.

B.9.11.2 Result

Function.

B.9.11.3 Remarks

Computes and returns a function which returns a slot value
when applied on an instance of class.

B.9.12 compute-primitive-reader-using-slot-description

method

B.9.12.1 Specialized Arguments

(slot-description <slot-description>): Slot
description.

(class <class>): Class.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

B.9.12.2 Result

Function.

B.9.12.3 Remarks

Calls compute-primitive-reader-using-class. This is the
default method.

B.9.13 compute-primitive-reader-using-class
generic function

B.9.13.1 Generic Arguments
(class <class>): Class.

(slot-description <slot-description>): Slot
description.

(slot-descriptions <1ist>): List of effective slot descrip-
tions.

79

B.9.13.2 Result

Function.

B.9.13.3 Remarks

Computes and returns a function which returns the slot value
when applied on an instance of class.

B.9.16.2 Result

Function.

B.9.16.3 Remarks

Calls compute-primitive-writer-using-class. This is the
default method.

B.9.14 compute-primitive-reader-using-class method

B.9.14.1 Specialized Arguments

(class <class>): Class.

(slot-description <slot-description>): Slot

description.

(slot-descriptions <1ist>): List of effective slot descrip-

tions.

B.9.14.2 Result

Function.

B.9.14.3 Remarks

The default method returns a function of one argument.

B.9.15 compute-primitive-writer-using-slot-description
generic function

B.9.15.1 Generic Arguments

(slot-description <slot-description>): Slot

description.

(class <class>): Class.

(slot-descriptions <1ist>): List of effective slot descrip-

tions.

B.9.15.2 Result

Function.

B.9.15.3 Remarks

Computes and returns a function which stores a new slot
value when applied on an instance of class and a new value.

B.9.16 compute-primitive-writer-using-slot-description
method

B.9.16.1 Specialized Arguments

(slot-description <slot-description>): Slot

description.
Class.

(class <class>):

(slot-descriptions <1ist>): List of effective slot descrip-

tions.

80

B.9.17 compute-primitive-writer-using-class
generic function

B.9.17.1 Generic Arguments

(class <class>): Class.

(slot-description <slot-description>): Slot

description.

(slot-descriptions <1ist>): List of effective slot descrip-

tions.

B.9.17.2 Result

Function.

B.9.17.3 Remarks

Computes and returns a function which stores the new slot
value when applied on an instance of class and new value.

B.9.18 compute-primitive-reader-using-class method

B.9.18.1 Specialized Arguments

(class <class>): Class.

(slot-description <slot-description>): Slot

description.

(slot-descriptions <1ist>): List of effective slot descrip-

tions.

B.9.18.2 Result

Function.

B.9.18.3 Remarks

The default method returns a function of two arguments.

B.10 Predicates and Constructors

B.10.1 compute-predicate generic function

B.10.1.1 Generic Arguments

(class <class>): Class.

B.10.1.2 Result

Function.

B.10.1.3 Remarks

Computes and returns a predicate function of one argument.

B.10.2 compute-predicate method

B.10.2.1 Specialized Arguments

(class <class>): Class.

B.10.2.2 Result

Function.

B.10.2.3 Remarks

Computes and returns a predicate function of one argument,
which returns true when applied on direct or indirect in-
stances of class and false otherwise.

B.10.3 compute-constructor generic function

B.10.3.1 Generic Arguments
(class <class>): Class.

(parameters <list>): Argument list of the function be-
ing created.

B.10.3.2 Result

Function.

B.10.3.3 Remarks

Computes and returns a constructor function.

B.10.4 compute-constructor method

B.10.4.1 Specialized Arguments
(class <class>): Class.

(parameters <list>): Argument list of the function be-
ing created.

B.10.4.2 Result

Function.

B.10.4.3 Remarks

Computes and returns a constructor function, which returns
a new instance of class when applied.

B.11 Instance Allocation

B.11.1 allocate generic function

B.11.1.1 Generic Arguments

(class <class>): A class.

(enetlist <1ist>): A list of initialization arguments.

B.11.1.2 Result

An instance of the first argument.

B.11.1.3 Remarks

Creates an instance of the first argument. Users may define
new methods for new metaclasses.

B.11.2 allocate method

B.11.2.1 Specialized Arguments
(class <class>): A class.

(enetlist <1ist>): A list of initialization arguments.

B.11.2.2 Result

An instance of the first argument.

B.11.2.3 Remarks

The default method creates a new uninitialized instance of
the first argument. The initlist is not used by this allocate
method.

B.12 Low Level Allocation Primitives

This module provides primitives which are necessary to im-
plement new allocation methods portably. However, they
should be defined in such a way that objects cannot be de-
stroyed unintentionally. In consequence it is an error to use
primitive-class-of, primitive-ref and their setters on
objects not created by primitive-allocate.

B.12.1 primitive-allocate function

B.12.1.1 Arguments
class: A class.

size: An integer.

B.12.1.2 Result

An instance of the first argument.

B.12.1.3 Remarks

This function returns a new instance of the first argument
which has a vector like structure of length size. The com-
ponents of the new instance can be accessed by means
of primitive-ref and (setter primitive-ref). It is in-
tended to be used in new allocate methods defined for new
metaclasses.

81

B.12.2 primitive-class-of function

B.12.5 (setter primitive-ref) function

B.12.2.1 Arguments

object: An object created by primitive-allocate.

B.12.2.2 Result
A class.

B.12.2.3 Remarks

This function returns the class of an object. It is similar to
class-of, which has a defined behaviour on any object. It is
an error to use primitive-class-of on objects which were
not created by primitive-allocate.

B.12.3 (setter primitive-class-of) setter

B.12.3.1 Arguments
object: An object created by primitive-allocate.

class: A class.

B.12.3.2 Result
The class.

B.12.3.3 Remarks

This function supports portable implementations of
a) dynamic classification like change-class in CLOS.

b) automatic instance updating of redefined classes.

B.12.4 primitive-ref function

B.12.4.1 Arguments
object: An object created by primitive-allocate.

index: The index of a component.

B.12.4.2 Result
An object.

B.12.4.3 Remarks

Returns the value of the objects component corresponding
to the supplied index. It is an error if the index is out of
range. This function is intended to be used when defining
new kinds of accessors for new metaclasses.

82

B.12.5.1 Arguments
object: An object created by primitive-allocate.
index: The index of a component.
value: The new value, which can be any object.

B.12.5.2 Result

The new value.

B.12.5.3 Remarks

Stores and returns the new value as the objects component
corresponding to the supplied index. It is an error if the
index is out of range. This function is intended to be used
when defining new kinds of accessors for new metaclasses.

Table B.4 — Metaobject Classes
Table B.5 — Generic Function Metaobject Classes

<object> [<abstract-class>]
<class> [<metaclass>]
<metaclass> [<metaclass>]
<abstract-class> [<metaclass>]
<function-class> [<metaclass>]
<generic-function> [<function-class>]
<method> [<class>]

B.13 Reflection on Generic Functions and

Methods

The generic dispatch is class based, i.e. methods are class
specific. Instance specific methods can be provided (even
portably) in an extension module by defining a new generic
function class. We think it is confusing to have generic func-
tions with both, class specific and instance specific meth-
ods. Combining different discrimination strategies in a single
generic function is rather a shortcoming than an advantage.
The argument precedence order is always left-to-right.

The minimal information associated with a generic function
metaobject is:

a) The name, which has no semantic effect.

b) The domain, restricting the domain of each added
method to a subdomain.

c) The range, restricting the range of each added method
to a subrange.

d) The method class, restricting each added method to
be an instance (direct or indirect) of that class.

e) The list of all added methods.

f) The method look-up function to collect and sort the
applicable methods.

g) The discriminating function to perform the generic
dispatch.

The minimal information associated with a method metaob-
ject is:

a) The domain, which is a list of classes.
b) The range, which is a class.
c) The function comprising the code of the method.

d) The generic function, if the method has been added
to one (at the most).

The metaobject classes for generic functions defined at level-
1 are shown in Table B.5.

B.14 Introspection

B.14.1 generic-function-name function
B.14.1.1 Arguments
generic-function: A generic function.
B.14.1.2 Result
A symbol.
B.14.1.3 Remarks
The name has only debugging purposes.
B.14.1.4 See also: class-name.
B.14.2 generic-function-domain function

B.14.2.1 Arguments

generic-function: A generic function.

B.14.2.2 Result

List of classes.

B.14.2.3 Remarks

Returns the domain of a generic function. All methods at-
tached to a generic function have subdomains of it.

B.14.3 generic-function-range function

B.14.3.1 Arguments

generic-function: A generic function.

B.14.3.2 Result
A class.

B.14.3.3 Remarks

Returns the range of a generic function. Each method at-
tached to a generic function must have a subrange of it.

B.14.4 generic-function-method-class function

B.14.4.1 Arguments

generic-function: A generic function.

B.14.4.2 Result
A class.

83

B.14.4.3 Remarks

Returns the method class of a generic function. Each method
attached to a generic function must be an instance of that
class. When a method is defined using defmethod it will be
an instance of that class by default.

B.14.5 generic-function-methods function

B.14.5.1 Arguments

generic-function: A generic function.

B.14.5.2 Result
A list of methods.

B.14.5.3 Remarks

Returns a list of methods attached to the generic function.

B.14.6 generic-function-method-lookup-function
function

B.14.6.1 Arguments

generic-function: A generic function.

B.14.6.2 Result

A function.

B.14.6.3 Remarks

Returns a function applicable on same arguments as the
generic function which returns a sorted list of applicable
methods when applied.

B.14.7 generic-function-discriminating-function
function

B.14.7.1 Arguments

generic-function: A generic function.

B.14.7.2 Result

A function.

B.14.7.3 Remarks

Returns a function applicable on same arguments as the
generic function which is called everytime when the generic
function is called. It performs the generic dispatch and calls
the applicable methods.

B.14.8 method-domain function

B.14.8.1 Arguments

method: A method.

84

B.14.8.2 Result

List of classes.

B.14.8.3 Remarks

Returns the domain of a method.

B.14.9 method-range function
B.14.9.1 Arguments
method: A method.
B.14.9.2 Result
A class.
B.14.9.3 Remarks
Returns the range of a method.
B.14.10 method-function function

B.14.10.1 Arguments

method: A method.

B.14.10.2 Result

A function.

B.14.10.3 Remarks

Returns the function which is called when a method is called.
The method itself can not be applied or called as a function.

B.14.11 method-generic-function function

B.14.11.1 Arguments

method, jmethods;: A method.

B.14.11.2 Result

A generic function or false.

B.14.11.3 Remarks

Returns the generic function to which the method is at-
tached, false otherwise.

B.15 Special forms (or macros)

The followin macros hide the implementation details of call-
ing methods, arranging the next methods so that they are
accessible by call-next-method, etc.

B.15.1 method-function-lambda macro
B.15.2 call-method macro
B.15.3 apply-method macro

B.16 Initializing Generic Functions and Meth-

ods
B.16.1 initialize method
B.16.1.1 Specialized Arguments
(generic-function <generic-function>): A generic

function.

(inetlist <list>): A list of initialization options as fol-
lows:

name symbol: The name of the generic function.
domain list: List of argument classes.

range class: The class of the result.
method-class class: Class of attached method.
methods list: List of methods to be attached.

B.16.1.2 Result

The initialized generic function.

B.16.1.3 Remarks

Initializes and returns the generic-function.
compute-method-lookup-function,
compute-discriminating-function and stores their results
as well as the direct information passed as arguments.

It calls

The basic call structure is:

COMPUTE-METHOD-LOOKUP-FUNCTION
generic-function domain -> function
COMPUTE-DISCRIMINATING-FUNCTION

generic-function domain lookup-fn methods -> function

B.16.2 initialize method

B.16.2.1 Specialized Arguments
(method <method>): A method.

(inetlist <list>): A list of initialization options as fol-
lows:

domain list: List of argument classes.
range class: The class of the result.

function function: A function.

generic-function generic-function: A generic func-
tion.

B.16.2.2 Result
The initialized method.

B.16.2.3 Remarks

Initializes and returns the method. There is nothing special
to specify for this method.

B.17 Method Lookup and Generic Dispatch

B.17.1 compute-method-lookup-function
generic function

B.17.1.1 Generic Arguments
(generic-function <generic-function>): A generic
function.

(domain <1ist>): A list of classes which span the do-
main.

B.17.1.2 Result

A function.

B.17.1.3 Remarks

Computes and returns a function which is called at least ones
for a particular domain in order to select and sort the appli-
cable methods by the system provided dispatch mechanism.
Users may define new methods for it in order to implement
different method lookup strategies. Althought, there is just
one lookup strategie provided by the system, each generic
function may have its own (more efficient) lookup function.

B.17.2 compute-method-lookup-function method
B.17.2.1 Specialized Arguments
(generic-function <generic-function>): A generic

function.

(domain <1ist>): A list of classes which span the do-
main.

B.17.2.2 Result

A function.

B.17.2.3 Remarks

Computes and returns a function which is called at least ones
for a particular domain in order to select and sort the appli-
cable methods by the system provided dispatch mechanism.
It 1s not specified, whether or not each generic function gets
its own lookup function.

85

B.17.3 compute-discriminating-function
generic function

B.17.3.1 Generic Arguments

(generic-function <generic-function>): A generic
function.

(domain <1ist>): A list of classes which span the do-
main.

(lookup-function <function>): The method lookup
function.

(methods <1list>): A list of methods attached to the
generic-function.

B.17.3.2 Result

A function.

B.17.3.3 Remarks

Computes and returns a function which is called whenever
the generic function is called. It is the controller of the
generic dispatch. Users may define new methods for new
generic function classes in order to implement other dispatch
strategies, e.g. eql-discrimination as in CLOS.

B.17.4 compute-discriminating-function method
B.17.4.1 Specialized Arguments
(generic-function <generic-function>): A generic

function.

(domain <1ist>): A list of classes which span the do-
main.

(lookup-function <function>): The method lookup
function.

(methods <1list>): A list of methods attached to the
generic-function.

B.17.4.2 Result

A function.

B.17.4.3 Remarks

Computes and returns a function which is called whenever
the generic function is called. It is unspecified which opti-
mizations are provided by this function.

B.18 Extending Generic Functions by New
Methods

These operations provide means to add and remove meth-
ods dynamically to/from generic functions. They are in-
tended to support portable programming environment im-
plementations. In contrast to CLOS, add-method does not

86

remove a method with the same domain as the method be-
ing added. Instead, remove-method must be used explicitly
before adding the new one.

B.18.1 add-method generic function

B.18.1.1 Generic Arguments

(generic-function <generic-function>): A generic
function.

(method <method>): A method to be attached.

B.18.1.2 Result

The generic function.

B.18.1.3 Remarks

Adds a method to a generic function. User may define new
methods to it for new generic function and method classes.

B.18.2 add-method method
B.18.2.1 Specialized Arguments
(generic-function <generic-function>): A generic

function.

(method <method>): A method to be attached.

B.18.2.2 Result

The generic function.

B.18.2.3 Remarks

Checks if the domain, the range as well as the class of the
method are more special than those of the generic function.
If not, signals an error. Checks if there is a method with the
same domain attached to the generic function already. If
yes, signals an error. If no error occures, adds the method to
the generic function. Depending on particular optimizations
of the generic dispatch, adding a method may cause some
updating computations.

B.18.3 remove-method generic function

B.18.3.1 Generic Arguments

(generic-function <generic-function>): A generic
function.

(method <method>): A method to be removed.

B.18.3.2 Result

The generic function.

B.18.3.3 Remarks

Removes a method from a generic function. User may define
new methods for new generic function and method classes.

B.18.4 remove-method method
B.18.4.1 Specialized Arguments
(generic-function <generic-function>): A generic

function.

(method <method>): A method to be removed.

B.18.4.2 Result

The generic function.

B.18.4.3 Remarks

If the method is attached to the generic function it will be
removed as well as the backpointer from the method to the
generic function. Depending on particular optimizations of
the generic dispatch, removing a method may cause some
updating computations.

B.19 Dynamic Binding

B.19.1 dynamic special form

B.19.1.1 Syntax
(dynamic identifier)

B.19.1.2 Arguments
tdentifier: A symbol naming a dynamic binding.

B.19.1.3 Result

The value of closest dynamic binding of symbol named by
identifier is returned. If no such binding exists, an error is
signaled (condition: unbound-dynamic-variable).

B.19.2 dynamic-setq special form

B.19.2.1 Syntax
(dynamic-setq identifier form)

B.19.2.2 Arguments

tdentifier: A symbol naming a dynamic binding to be
updated.

form: An expression whose value will be stored in the
dynamic binding of identifier.

B.19.2.3 Result

The value of form.

B.19.2.4 Remarks

The form is evaluated and the result is stored in the closest
dynamic binding of symbol named by identifier. An error
is signaled (condition: unbound-dynamic-variable) if sym-
bol is not dynamically apparent and has no dynamic global
value.

B.19.3 unbound-dynamic-variable execution-condition

B.19.3.1 Init-options

symbol symbol: A symbol naming the (unbound) dy-
namic variable.

B.19.3.2 Remarks

Signalled by dynamic or dynamic-setq if the given dynamic
variable has no visible dynamic binding.

B.19.4 dynamic-let special form

B.19.4.1 Syntax
(dynamic-let binding™ form™)

87

B.19.4.2 Arguments

binding™: A list of binding specificiers.

body:

A sequence of forms.

B.19.4.3 Result

The sequence of forms is evaluated in order, returning the
value of the last one as the result of the dynamic-let form.

B.19.4.4 Remarks

A binding specifier is either an identifier or a two element
list of an identifier and an initializing form. All the initial-
izing forms are evaluated from left to right in the current
environment and the new bindings for the symbols named
by the identifiers are created in the dynamic environment to
hold the results. These bindings have dynamic scope and
dynamic extent. Each form in body is evaluated in order in
the environment extended by the above bindings. The result
of evaluating the last form in body is returned as the result
of dynamic-let.

B.19.5 defvar defining form

B.19.5.1 Syntax

(defvar name expression)

B.19.5.2 Arguments

tdentifier: A symbol naming a top dynamic binding con-
taining the value of form.

form: The form whose value will be stored in the top
dynamic binding of identifier.

B.19.5.3 Remarks

The value of form is stored as the top dynamic value
of the symbol named by identifier. The binding created
by defvar is mutable. An error is signaled (condition:
dynamic-multiply-defined), on evaluating this form more
than once for the same identifier.

B.19.6 dynamic-multiply-defined ezxecution-condition

B.19.6.1 Init-options

symbol symbol: A symbol naming the dynamic variable
which has already been defined.

B.19.6.2 Remarks

Signalled by defvar if the named dynamic variable already
exists.

B.20 Conditional Extensions

B.20.1 when macro

B.20.1.1 Syntax

88

(when antecedent form™)

B.20.1.2 Remarks

The when operator evaluates antecedent and if the result is
not (), the forms are evaluated from left to right. It is
equivalent to if with a null alternative. If the evaluation of
antecedent is not (), the result of the when form is that of
the evaluation of the last form, otherwise the result is ().
The rewrite rule for when is:

(when) = Is an error
(when antecedent) = QO
(when formy formy ...) = (if form; (progn formo

B.20.2 unless macro

B.20.2.1 Syntax

(unless antecedent form™)

B.20.2.2 Remarks

The unless operator evaluates the first form and if the result
is (), the remaining forms are evaluated from left to right. It
is equivalent to if with a null consequence. If the evaluation
of the first form is (), the result of the unless form is the
result of the evaluation of the last form, otherwise the result
is (). The rewrite rule for unless is:

LM

(unless) = Is an error
(unless antecedent) = QO
(unless formi formp ...) = (if form; () (progn forms ...

B.21 Exit Extensions

B.21.1 block macro

B.21.1.1 Syntax
(block identifier form™)

B.21.1.2 Remarks

The block expression is used to establish a statically scoped
binding of an escape function. The block variable is bound
to the continuation of the block. The continuation can be
invoked anywhere within the block by using return-from.
The forms are evaluated in sequence and the value of the
last one is returned as the value of the block form. See also
let/cc. The rewrite rules for block are:

Is an error

O
(let/cc identifier form™)

(block)
(block identifier)
(block identifier form™)

Exiting from a block, by whatever means, causes the restora-
tion of the lexical environment and dynamic environment
that existed before block entry. The above rewrite for block,
does not prevent the block being exited from anywhere in its
dynamic extent, since the block-exit function is a first-class
item and can be passed as an argument like other values.

))

B.21.1.3 See also: return-from.

B.21.2 return-from macro

B.21.2.1 Syntax

(return-from identifier [form])

B.21.2.2 Remarks

In return-from, the identifier names the continuation of the
(lexical) block from which to return. return-from is the
invocation of the continuation of the block named by ident:-
fier. The form is evaluated and the value is returned as the
value of the block named by identifier. The rewrite rules for
return-from are:

Is an error
(identifier ()
(identifier form)

(return-from)
(return-from ¢dentifier)
(return-from :dentifier form)

B.21.2.3 See also: block.

B.21.3 catch macro

B.21.3.1 Syntax
(catch tag form™)

B.21.3.2 Remarks

The catch operator is similar to block, except that the scope
of the name (tag) of the exit function is dynamic. The catch
tag must be a symbol because it is used as a dynamic variable
to create a dynamically scoped binding of tag to the contin-
uation of the catch form. The continuation can be invoked
anywhere within the dynamic extent of the catch form by
using throw. The forms are evaluated in sequence and the
value of the last one is returned as the value of the catch
form. The rewrite rules for catch are:

Is an error
(progn tag O)
(let/cc tmp
(dynamic-let ((tag tmp))
form™))

(catch)
(catch tag)
(catch tag form™)

Exiting from a catch, by whatever means, causes the restora-
tion of the lexical environment and dynamic environment
that existed before the catch was entered. The above rewrite
for catch, causes the variable tmp to be shadowed. This is
an artifact of the above presentation only and a conforming
processor must not shadow any variables that could occur in
the body of catch in this way.

B.21.3.3 See also: throw.

B.21.4 throw macro

B.21.4.1 Syntax
(throw tag form)

B.21.4.2 Remarks

In throw, the tag names the continuation of the catch from
which to return. throw is the invocation of the continuation
of the catch named tag. The form is evaluated and the value
are returned as the value of the catch named by variable. The
tagia a symbol because it used to access the current dynamic
binding of the symbol, which is where the continuation is
bound. The rewrite rules for throw are:

Is an error
((dynanic tag))
((dynanmic tag) form)

(throw)
(throw tag)
(throw tag form)

B.21.4.3 See also: catch.

B.22 Summary of Level-1 Expressions and Def-
initions

The syntax of all level-1 expressions and definitions is given
in Table B.6. Any productions undefined here appear else-
where in the definition, specifically: the syntax of most ex-
pressions and definitions is completed in the section defining
level-0.

89

Table B.6 — Expressions and Definitions (level-1)

module-expression
definition
level-1-definition

defclass
class-name
superclass
slot-description

slot-name
slot-option

class-option

defgeneric
level-1-wnit-option

gf-class

method-class
level-1-method-description
gf-init-option
method-init-option

defvar

level-1-expression
dyn-ref
dyn-assign
dynamic-let

expori-spec | level-1-expression | level-0-expression | definition | (progn expression)
level-1-definition | level-O-deﬁnition{defmodule}

defclass | defcondition | defgeneric| defvar |
level-0-definition

(defclass class-name (superclass™) (slot-description™) class-option™)
tdentifier

{<class> or one of its subclasses}

slot-name |

(slot-name slot-option™)

tdentifier

slot-class slot-description-class |

tdentifier expression

level-0-slot-option

metaclass class-name |

tdentifier expression

level-0-class-option

(defgeneric gf-name gen-lambda-list level-1-init-option™)
level-0-init-option |

class gf-class |

method-class method-class |

method (level-1-method-description) |

gf-init-option

a subclass of <generic-function>

a subclass of <method>

(method-init-option® spec-lambda-list form™)

tdentifier expression

tdentifier expression

(defvar name expression)

dynamic-let | dyn-ref | dyn-assign | level-0-expression
(dynamic identifier)

(dynamic-setq identifier form)

(dynamic-let binding™ form™)

90

References

[Alberga et al, 1986] Alberga, C.N.; Bosman-Clark, C.,
Mikelsons, M., Van Deusen, M., & Padget, J.A.,
Ezxperience with an Uncommon LISP, Proceedings
of 1986 ACM Symposium on LISP and Functional
Programming, ACM, New York, 1986 (also available
as IBM Research Report RC-11888).

[Bobrow et al., 1988] Bobrow D.G., DiMichiel L.G.,
Gabriel R.P., Keene S.E, Kiczales G. & Moon D.A,
Common Lisp Object System Specification, SIG-
PLAN Notices, Vol. 23, September 1988.

[Chailloux et al, 1984] Chailloux J., Devin M. & Hul-
lot J-M., LELISP: A Portable and Efficient Lisp
System, Proceedings of 1984 ACM Symposium on
Lisp and Functional Programming, Austin, Texas,
ppl113-122, published by ACM Press, New York.

[Chailloux et al, 1987] Chailloux J.;, Devin M., Dupont
F., Hullot J-M., Serpette B., & Vuillemin J., le-lisp
de UINRIA, Version 15.2, Manuel de référence, IN-
RIA, Rocquencourt, May 1987.

[Clinger & Rees, 1986] Clinger W. & Rees J.A. (eds.),
The Revised® Report on Scheme, SIGPLAN Notices,
Vol. 21, No. 12, 1986.

[Cointe, 1987] Cointe P., Mateclasses are First Class: the
ObyVlisp model, Proceedings of OOPSLA ’87, pub-
lished as SIGPLAN Notices, Vol 22, No 12 ppl56-
167.

[Fitch & Norman, 1977] Fitch J.P. & Norman A.C., Im-
plementing Lisp in a High-Level Language, Software
Practice and Experience, Vol 7, pp713-725.

[Friedman & Haynes, 1985] Friedman D. & Haynes C.,
Constraining Control, Proceedings of 11th Annual
ACM Symposium on Principles of Programming
Languages, pp245-254, published by ACM Press,
New York, 1985.

[Hudak, Wadler et al., 1988] Hudak P. & Wadler P.,
(eds.) Report on the Functional Programming Lan-
guage Haskell, Yale University, Department of Com-
puter Science, Research Report YALEU/DCS/RR-
666, December 1988.

[Landin, 1966] Landin P.J.; The Next 700 Programming
Languages, Communications of the ACM, Vol 9, No
3., 1966, ppl156-166.

[Lang & Pearlmutter, 1988] TLang K.J. & Pearlmutter
B.A., Oaklisp: An Object-Oriented Dialect of
Scheme, Lisp and Symbolic Computation, Vol. 1,
No. 1, June 1988, pp39-51, published by Kluwer
Academic Publishers, Boston.

[MacQueen, 1984] MacQueen D., et al, Modules for
Standard ML, Proceedings of 1984 ACM Sympo-
sium on Lisp and Functional Programming, Austin,
Texas, ppl198-207, published by ACM Press, New
York.

[Milner et al, 1986] Milner R., et al, Standard ML, Lab-
oratory for the Foundations of Computer Science,
University of Edinburgh, Technical Report.

[Padget et al, 1986] Padget J.A., et al, Desiderata for the
Standardisation of Lisp, Proceedings of 1986 ACM
Conference on Lisp and Functional Programming,
pp54-66, published by ACM Press, New York, 1986.

[Padget, 1989] Padget J.A., A Simple Light-weight Pro-
cess Mechanism in Lisp, in preparation.

[Pitman, 1988] Pitman K.M.,; An Error System for Com-
mon Lisp, ISO///WG16 paper N24.

[Rees et al, 1986] Rees J.A., The T Manual, YALEU
Technical Report, 1986.

[Slade, 1987] Slade S., The T Programming Language, a
Dialect of Lisp, Prentice-Hall 1987.

[Shalit, 1992] Shalit A., Dylan, an object-oriented dy-
namic language, Apple Computer Inc., 1992.

[Steele, 1984/90] Steele G.L. Jr., Common Lisp the Lan-
guage, Digital Press, 1984, and Common Lisp the
Language (second edition), Digital Press, 1990.

[Stoyan et al, 1986] Stoyan H. et al, Towards a Lisp
Standard, published in the Proceedings of the 1986
European Conference on Artificial Intelligence.

[Teitelman, 1978] Teitelman W., The Interlisp Reference
Manual, Xerox Palo Alto Research Center, 1978.

91

Function Index

* (number) , 48

+ (number), 47

(number) , 47

(number), 48

= (number), 48

(number), 48

>= (number), 48

> (number), 48

apply (level-0), 29

atom (pair), 50

binary-stream-p (stream), 57
car (pair), 51

cdr (pair), 51

cerror (condition), 26
characterp (character), 35
character-stream-p (stream), 56
class-initargs (level-1), 71
class-name (level-1), 71
class-of (level-1), 70
class-precedence-list (level-1), 71
class-slot-descriptions (level-1), 71
close-semaphore (semaphore), 23
condition-message (condition), 26
conditionp (condition), 26

cons (pair), 50

consp (pair), 50

convert (convert), 38
converter(convert), 38
copy-alist (pair), 52

copy-list (pair), 52

copy-tree (pair), 52
current-thread (thread), 21
double-float-p (double), 39

eq (compare), 37

eql (compare), 37

error (condition), 26
file-streamp (stream), 56
floatp (number), 47

format (formatted-io), 45

/
<
<

generic-function-discriminating-function (level-1),

84
generic-function-domain (level-1), 83

generic-function-method-class (level-1), 83
generic-function-method-lookup-function (level-1),

84
generic-function-methods (level-1), 84
generic-function-name (level-1), 83
generic-function-range (level-1), 83
gensyn (symbol), 63
input-stream-p (stream), 56
integerp (number), 47
io-stream-p (stream), 56
list (pair), 52
make (level-0), 17
make—initialized—vector(vector), 66
max (number), 48
method-domain (level-1), 84
method-function (level-1), 84
method-generic-function (level-1), 84
method-range (level-1), 84
min (number), 48
null (null), 46
numberp (number), 47
open-semaphore (semaphore), 23
output-stream-p (stream), 56

92

primitive-allocate (level-1), 81
primitive-class-of (level-1), 81
primitive-ref (level-1), 82
prin (stream), 58

read (stream), 58

scan (formatted-io), 44
semaphorep (semaphore), 23
setter (level-0), 30

(setter car) (pair), 51

(setter cdr) (pair), 51

(setter converter) (convert), 38

(setter primitive-class-of) (level-1), 82

(setter primitive-ref) (level-1), 82
(setter string-ref) (string), 60
(setter table-ref) (table), 64

(setter vector-ref) (vector), 66
signal (condition), 24
single-precision-integer-p (spint), 53

slot-description-initfunction (level-1), 71

slot-description-name (level-1), 71

slot-description-slot-reader (level-1), 71
slot-description-slot-writer (level-1), 71

string-append (string), 61
string-1t (string), 61
stringp (string), 60
string-ref (string), 60
string-slice (string), 61
symbol-exists-p (symbol), 63
symbol-name (symbol), 63
symbolp (symbol), 63
table-delete (table), 64
tablep (table), 64

table-ref (table), 64
threadp (thread), 21
thread—reschedule(thread), 21
thread-start (thread), 22
thread-value (thread), 22
vectorp (vector), 65
vector-ref (vector), 65
write (stream), 58

Macro Index

and (level-0), 30
apply-method (level-1), 85
block (level-1), 88
call-method (level-1), 85
catch (level-1), 89

cond (level-0), 30

defmethod (level-0), 19
defmethod (level-1), 68
generic-labels (level-1), 69
generic-lambda (level-1), 68
let* (level-0), 31

let (level-0), 31
method-function-lambda (level—l) , 84
or (level-0), 31

quasiquote (level-0), 33
return-from (level-1), 89
throw (level-1), 89

unless (level-1), 88

when (level-1), 88

93

Generic Function Index

= (compare), 37

abs (number), 49

acos (elementary-functions), 42

acosh (elementary-functions), 43

add-method (level-1), 86

allocate (level-1), 81

asin (elementary-functions), 42

asinh (elementary-functions), 43

atan (elementary-functions), 42

atan2 (elementary-functions), 42

atanh (elementary-functions), 43

binary-difference (number), 49

binary-divide (number), 50

binary-gecd (number), 50

binary-lcm (number), 50

binary-1t (number), 50

binary-plus (number), 49

binary-times (number), 49

catenate(character), 36

ceiling (double), 41

close (stream), 57

compatible-superclasses-p (level-1), 72

compatible-superclass-p (level-1), 73

compute-and-ensure-slot-accessors (level-1), 77

compute-class-precedence-list (level-1), 73

compute-constructor (level-1), 81

compute-defined-slot-description (level-1), 75

compute-defined-slot-description-class (level-1),
76

compute-discriminating-function (level-1), 85

compute-inherited-initargs (level-1), 75

compute-inherited-slot-descriptions (level-1), 75

compute-initargs (level-1), 74

compute-method-lookup-function (level-1), 85

compute-predicate (level-1), 80

compute-primitive-reader-using-class (level-1), 79

compute-primitive-reader-using-slot-description
(level-1), 79

compute-primitive-writer-using-class (level-1), 80

compute-primitive-writer-using-slot-description
(level-1), 80

compute-slot-descriptions (level-1), 74

compute-slot-reader (level-1), 77

compute-slot-writer (level-1), 78

compute-specialized-slot-description (level-1), 76

compute-specialized-slot-description-class
(level-1), 76

copy (copy), 39

cos (elementary-functions), 42

cosh (elementary-functions), 43

do (character), 36

empty-p (character), 36

ensure—slot—reader(level—l), 78

ensure—slot—writer(level—l), 79

equal (compare), 37

evenp (spint), 53

exp (elementary-functions), 42

expt (elementary-functions), 43

£ill (character), 36

filter (character), 36

floor (double), 40

flush (stream), 59

gcd (number), 48

generic-prin (level-0), 14

generic-prin (stream), 58

94

generic-read (stream), 59
generic-write (level-0), 14
generic-write (stream), 58
initialize (level-0), 13

lcm (number), 49

log (elementary-functions), 42
logl0 (elementary-functions), 42
log2 (elementary-functions), 42
map (character), 36

member (character), 36

modulo (spint), 54

negate (number), 49

negativep (number), 49

oddp (spint), 53

open (stream), 57

open-p (stream), 57

peek-unit (stream), 59
positivep (number), 49

quotient (spint), 53

read-unit (stream), 58

reduce (character), 36

reducel (character), 36
remainder (spint), 54
remove-method (level-1), 86
round (double), 40

signum (number), 49

sin (elementary-functions), 42
sinh (elementary-functions), 43
size (character), 36

sqrt (elementary-functions), 43
tan (elementary-functions), 42
tanh (elementary-functions), 43
truncate (double), 40

wait (level-0), 32

write-unit (stream), 57

zerop (number), 49

Method Index

add-method (level-1), 86

allocate (level-1), 81

ceiling (double), 41

close (stream), 57

compatible-superclasses-p (level-1), 72

compatible-superclass-p (level-1), 73

compatible-superclass-p (level-1), 73

compatible-superclass-p (level-1), 73

compute-and-ensure-slot-accessors (level-1), 77

compute-class-precedence-list (level-1), 74

compute-constructor (level-1), 81

compute-defined-slot-description (level-1), 75

compute-defined-slot-description-class (level-1),
76

compute-discriminating-function (level-1), 86

compute-inherited-initargs (level-1), 75

compute-inherited-slot-descriptions (level-1), 75

compute-initargs (level-1), 75

compute-method-lookup-function (level-1), 85

compute-predicate (level-1), 81

compute-primitive-reader-using-class (level-1), 80

compute-primitive-reader-using-class (level-1), 80

compute-primitive-reader-using-slot-description
(level-1), 79

compute-primitive-writer-using-slot-description
(level-1), 80

compute-slot-descriptions (level-1), 74

compute-slot-reader (level-1), 78

compute-slot-writer (level-1), 78

compute-specialized-slot-description (level-1), 76

compute-specialized-slot-description-class
(level-1), 77

(converter character) (spint), 54

(converter double-float) (spint), 55

(converter integer) (character), 35

(converter pair) (string), 60

(converter pair) (vector), 66

(converter single-precision-integer) (double), 41

(converter string) (double), 41

(converter string) (pair), 51

(converter string) (pair), 51

(converter string) (spint), 55

copy (character), 35

copy (copy), 39

copy (double), 41

copy (pair), 52

copy (spint), 55

copy (string), 61

copy (vector), 66

ensure—slot—reader(level—l), 78

ensure—slot—writer(level—l), 79

equal (character), 35

equal (compare), 37

equal (number), 47

equal (pair), 51

equal (string), 61

equal (vector), 66

evenp (spint), 53

floor (double), 41

flush (stream), 59

generic-prin (character), 35

generic-prin (double), 41

generic-prin (null), 46

generic-prin (pair), 52

generic-prin (semaphore), 23

e e e =,

generic-prin (spint), 55
generic-prin (string), 61
generic-prin (symbol), 63
generic-prin (table), 65
generic-prin (thread), 22
generic-prin (vector), 66
generic-read (stream), 59
generic-write (character), 35
generic-write (character), 36
generic-write (double), 41
generic-write (null), 46
generic-write (pair), 52
generic-write (semaphore), 23
generic-write (spint), 55
generic-write (string), 62
generic-write (symbol), 63
generic-write (symbol), 63
generic-write (table), 65
generic-write (thread), 22
generic-write (vector), 66
initialize (level-0), 14
initialize (level-1), 72
initialize (level-1), 72
initialize (level-1), 85
initialize (level-1), 85

initialize—instance(condition), 26

length (null), 46

length (pair), 52

length (string), 61

length (vector), 65

modulo (spint), 54

oddp (spint), 53

open (stream), 57

open-p (stream), 57
peek-unit (stream), 59
quotient (spint), 54
read-unit (stream), 58
remainder (spint), 54
remove-method (level-1), 86
round (double), 40

sqrt (elementary-functions), 43
sqrt (elementary-functions), 43
truncate (double), 40

wait (stream), 59

wait (thread), 22
write-unit (stream), 58
write-unit (stream), 58

95

Condition Index

arithmetic-condition (number) , 47
bad-apply-argument (level-0), 29, 29
cannot-convert-to-character (spint), 55
cannot-update-setter (level-0), 30, 30
conversion-condition (convert) , 38
division-by-zero (spint), 53, 50, 54, 54, 54
dynamic-multiply-defined (level-1), 88, 88
environment-condition (condition) , 24
execution-condition (condition) , 24
improper-unquote-splice (level-0), 33, 33
incompatible-method-signature (level-0), 19, 18, 19
integer-conversion-overflow (double), 41, 41
invalid-operator (level-0), 28, 28 29
no-applicable-method (level-0), 19, 38, 68
no-converter (convert), 38, 38
non-congruent-lambda-lists (level-0), 19, 18,19, 68
no-next-method (level-0), 19, 19

no-setter (level-0), 30, 30
no-such-character (spint), 55
not-a-character (pair), 51

nt-character (pair), 51

old-thread (thread), 22, 22

scan-mismatch (formatted-io), 44, 44
stream-condition (stream) , b6

syntax-error (stream), 56, 59
telos-condition (level-0), 17
thread-condition (thread), 22
unbound-dynamic-variable (level-1), 87, 87, 87
wrong-condition-class (condition), 25, 25
wrong-thread (thread), 22, 21

96

Constant Index

input-stream (stream), 56

io-stream (stream), 56
least-negative-double-float (double), 40
least-positive-double-float (double), 40
maximum—vector—index(vector), 66
most-negative-double-float (double), 40
most-negative-single-precision-integer (spint), 54
most-positive-double-float (double), 39
most-positive-single-precision-integer (spint), 54
nil (), 27

ouput-stream (stream), 56

pi (elementary-functions), 42

£ (), 27

ticks-per-second (level-0), 32

General Index
21
= 37
0, 46
+, 47
-, 47
*, 48
/, 48
<, 48
<=, 48
>, 48
>= 48
abs, 49
accessor, 6
acos, 42
acosh, 43
add-method, 86
allocate, 81
and, 30
applicable method, 6
applicable method list, 6
applicable object, 6
apply, 29
apply-method, 85
asin, 42
asinh, 43
assignment, 29
atan, 42
atan?2, 42
atanh, 43
atom, 50
backquoting, 33
base, 53
arbitrary base literals, 53
limitation on input, 53
binary literals, 53
binary-difference, 49
binary-divide, 50
binary-gcd, 50
binary-lcm, 50
binary-1t, 50
binary-plus, 49
binary-stream-p, 57
binary-times, 49
binding, 6
dynamically scoped, 2
module, 27, 28, 29
of module names, 10, 13
top dynamic, 88
binding form, 6
block, 88
see also let/cc, 88
boolean, 5
definition of, 5
bound variable, 6
call-method, 85
call-next-method, 19
Cambridge LISP, 2
car, 51
case sensitivity, 10
catch, 89
catenate, 36
cdr, 51
ceiling, 41
cerror, 26
character, 35

98

<character>, 35
character, 35

character-extension glyph, 35
characterp, 35
character-stream-p, 56
Common Lisp, 1, 2
class, 2, 6

constructor, 6

null, 27

primitive, 2

self-instantiated, 8
class option, 6
class precedence list, 6
class-initargs, 71
class-name, 71
class-of, 2, 70
class-precedence-list, 71
class-slot-descriptions, 71
CLOS, 2
close, 57
close-semaphore, 23
closure, 6
collection, 36
comment, 10

comment-begin glyph, 10
Common Lisp Error System, 24
compatible-superclasses-p, 72
compatible-superclass-p, 73
compliance, 4
compute-and-ensure-slot-accessors, 77
compute-class-precedence-list, 73, 74
compute-constructor, 81
compute-defined-slot-description, 75
compute-defined-slot-description-class, 76
compute-discriminating-function, 85, 86
compute-inherited-initargs, 75
compute-inherited-slot-descriptions, 75
compute-initargs, 74, 75
compute-method-lookup—function, 85
compute-predicate, 80, 81
compute-primitive-reader-using-class, 79, 80

compute-primitive-reader-using-slot-description, 79

compute-primitive-writer-using-class, 80

compute-primitive-writer-using-slot-description, 80

compute-slot-descriptions, 74
compute-glot-reader, 77, 78
compute-glot-writer, 78
compute-specialized-slot-description, 76

compute-specialized-slot-description-class, 76, 77

cond, 30
condition, 24
<condition>, 24
continuable, 24
non-continuable, 24
condition-message, 26
conditionp, 26
configuration, 3
conformance, 3, 42
level-0, 4
level-1, 4
level-2, 4
conforming processor, 4
conforming program, 4
conformity clause, 3
least negative double precision float, 40

least positive double precision float, 40
maximum vector index, 66
most negative double precision float, 40
most negative single precision integer, 54
most positive double precision float, 40
most positive single precision integer, 54
congruent, 6
cons, 50
consp, 50
constant, 27
defined, 27
literal, 27
constructor, 6
continuation, 2, 6, 88, 89
conventions, 5
convert, 38
converter, 38
(converter character), 54
(converter double-float), 55
converter function, 6
(converter integer), 35
(converter pair), 60, 66
(converter single-precision-integer), 41
(converter string), 41, 51, 55
copy, 35, 39, 41, 52, 55, 61, 66
copy-alist, 52
copy-list, 52
copy-tree, 52
cos, 42
cosh, 43
current-thread, 21
defclass, 17, 67, 90
defcondition, 26, 34
defconstant, 27, 34
defgeneric, 18, 34, 68, 90
defining form, 6
defclass, 17, 67
defcondition, 26
defconstant, 27
defgeneric, 18, 68
deflocal, 27
defmacro, 29
defmetaclass, 72
defgtruct, 16
defun, 29
defvar, 88
deflocal, 27, 34
defmacro, 29, 34
defmetaclass, 72
defmethod, 19, 68
defmodule, 12, 34
defstruct, 16, 34
defun, 29, 34
defvar, 88, 90
direct instance, 6
direct slot description, 6
direct subclass, 6
direct superclass, 6
discrimination, 6
do, 36
double float, 39
<double-float>, 39
double-float, 39
double-float-p, 39
dynamic, 87, 90
dynamic environment, 7
dynamic error, 4
dynamic extent, 7

dynamic scope, 7
dynamically closer, 7
dynamic-let, 87, 90
dynamic-setq, 87, 90
elementary functions, 42
empty list, 27

empty-p, 36
ensure-slot-reader, 78
ensure-slot-writer, 79
environmental error, 4

eq, 37
implementation-defined behaviour, 37
eql, 37
equal, 35, 37, 47, 51, 61, 66
error, 4
error, 26

can be signaled, 4
dynamic, 4
environmental, 4
handler, 24
signaled, 4
static, 4
level-0, 2
level-1, 2
level-2, 3
libraries, 3
evenp, 53
except, 13, 34
exp, 42
export, 13, 34
export-syntax, 13, 34
expose, 13, 34
expt, 43
extension, 4
extent, 7
empty list, 27
floating point, 39
integer, 53
list, 50
null (empty list), 46
pair, 50
string, 60
vector, 65

external representation (see also prin and write), 28

write, 14
<file-stream>, 56
file-streamp, 56
£i11, 36
filter, 36
<float>, 47
floatp, 47
floor, 40, 41
flush, 59
form, 7
format, 45
formatted-io, 44
free variable, 7
function, 7

accessor function, 30

calling, 28

standard function, 5

updator function, 30
gcd, 48
generic arithmetic, 47
generic function, 7

discrimination, 6

lambda-list, 19

generic-function-discriminating-function, 84

generic-function-domain, 83
generic-function-method-class, 83
generic-function-method-lookup-function, 84
generic-function-methods, 84
generic-function-range, 83
generic-labels, 69
generic-lambda, 18, 68
generic-prin, 14, 22, 23, 35, 41, 46, 52, 55, 58, 61,
63, 65, 66
generic-read, 59
generic-write, 14, 22, 23, 35, 36, 41, 46, 52, 55, 38,
62, 63, 65, 66
gensym, 63
Haskell, 1, 10
hexadecimal, 60
notation in strings, 60
hexadecimal literals, 53
identifier, 7, 62
definition of, 62
peculiar identifiers, 62
syntax, 10
if, 30, 34
implementation-defined, 4
behaviour of eq, 37
behaviour of equal, 37
floating-point precision, 40
least negative double precision float, 40
least positive double precision float, 40
maximum vector index, 66
module binding environment, 10
most negative double precision float, 40
most negative single precision integer, 54
most positive double precision float, 40
most positive single precision integer, 54
representation of tables, 65
time units per second, 32
unhandled conditions, 25
improper list, 7
indefinite extent, 7
indefinite scope, 7
indirect instance, 7
indirect slot description, 7
indirect subclass, 7
single, 15
inheritance graph, 7
inherited slot description, 7
initarg, 7
initform, 7
initfunction, 7
initialization, 13
initialize, 13, 14, 72, 85
initialize-instance, 26
init-list, 7
inner dynamic, 7
inner lexical, 7
input-stream-p, 56
instance, 8
direct, 6
indirect, 7
instantiation graph, 8
<integer>, 47
integerp, 47
InterLISP, 1, 2
io-stream-p, 56
labels, 31
lambda, 28, 34
lambda-list, 28
lcm, 49

100

LE-LISP, 1, 2

Lelasp, 10

length, 46, 52, 61, 65

let, 31

let*, 31

let/cc, 31, 34
see also block and return-from, 31

level-0, 27

level-0 classes, 3
<character>, 35
<double-float>, 39
<float>, 47
<integer>, 47
<null>, 46
<pair>, 50
<semaphore>, 23
<spint>, 53
<stream>, 56
<string>, 60
<symbol>, 63
<table>, 64
<thread>, 21
<vector>, 65

level-0 modules, 3
character, 35
collection, 36
compare, 37
condition, 24
convert, 38
copy, 39
double, 39
elementary-functions, 42
formatted-io, 44
level-0-eulisp, 3
null, 46
number, 47
pair, 50
semaphore, 20
spint, 53
stream, 56
string, 60
symbol, 62
table, 64
thread, 20
vector, 65

lexical environment, 8

lexical scope, 8

lexically closer, 8

Lisp/VM, 1, 2

list, 50

list, 52
empty, 27

literal, 8, 28

arbitrary base, 53

binary, 53

character, 35

hexadecimal, 53

modification of, 28

octal, 53

quotation, 28
<local-slot-description>, 70
log, 42
log10, 42
log2, 42
macro, 8, 29

definition by defmacro, 29
macro expansion—see also syntax, 12
macro expression, 8

macros—see also syntax, 12
make, 17
make-initialized-vector, 66
nap, 36
max, 48
member, 36
metaclass, 8
method, 8
applicable, 6
bindings, 19
list of applicable, 6
lookup, 6
specificity, 8
method combination, 8
method function, 8
method lookup, 8
method specificity, 8
method-domain, 84
method-function, 84
method-function-lambda, 84

proper list, 8
function call, 28
quasiquotation, 33
quasiquote, 33
abbreviation with ¢, 33
quotation, 34
quote, 28
abbreviation with ’, 28
quotient, 53, 54
read, 58
reader, 8
read-unit, 58
reduce, 36
reducel, 36
reflective, 8
remainder, 54
remove-method, 86
rename, 13, 34
return-from, §9
see also let/cc, 89

method-generic-function, 84 round, 40

method-range, 84 scan, 44

MicroCeyx, 2 scope, 3, 8

min, 48 in labels expressions, 31

module, 2, 10 of dynamic-let bindings, 88
environments, 2 of lambda bindings, 28
imports, 10 of let/cc binding, 31

name bindings, 10, 13
modulo, 54
multi-method, 8
negate, 49
negativep, 49
new instance, 8
next-method-p, 20

self-instantiated class, 8
semaphore, 20, 23
<semaphore>, 23
semaphorep, 23
setq, 29

setter, 30

(setter car), 51

null, 46 (setter cdr), 51
<null>, 46 (setter converter), 38
null, 46 setter function, 8
<number>, 47 (setter primitive-class-of), 82
numberp, 47 (setter primitive-ref), 82
Oaklisp, 2 (setter string-ref), 60
object, 8, 13 (setter table-ref), 64
ObjVLisp, 2 (setter vector-ref), 66
octal literals, 53 shadow, 8
oddp, 53 signal, 24
only, 13, 34 signature, 8
open, 57 signum, 49
open-p, 57 sin, 42
open-semaphore, 23 single inheritance, 15
or, 31 single precision integer, 53
output-stream-p, 56 <single-precision-integer>, 53
pair, 50 single-precision-integer, 53
<pair>, 50 single-precision-integer-p, 53
pair, 50 sinh, 43
peek-unit, 59 size, 36
positivep, 49 slot, 8
primitive-allocate, 81 accessor, 6
primitive-class-of, 81 reader, 8
primitive-ref, 82 writer, 9
prin, 58 slot description, 9
constants, 27 direct, 6
operand, 2 indirect, 7
operator, 2 slot description list, 9
symbols, 27 slot option, 9
processor, 4 <glot-description>, 17, 70
representation of semaphore, 23 glot-description-initfunction, 71
representation of threads, 23 glot-description-name, 71
gensym names, 63 slot-description-slot-reader, 71
progn, 32 slot-description-slot-writer, 71

101

special form, 2, 9 table, 64

call-next-method, 19 <table>, 64
dynamic, 87 table-delete, 64
dynamic-let, 87 tablep, 64
dynamic-setq, 87 table-ref, 64
if, 30 tan, 42
labels, 31 tanh, 43
lambda, 28 inheritance, 15
let/cc, 31 thread, 20, 21
next-method-p, 20 <thread>, 21
progn, 32 threadp, 21
function call, 28 thread-reschedule, 21
quote, 28 thread-start, 22
setq, 29 thread-value, 22
unwind-protect, 32 throw, 89
with-handler, 25 top dynamic, 9
specialize, 9 top lexical, 9
specialize on, 9 truncate, 40
sqrt, 43 unless, 88
Standard ML, 1, 10, 24 unquote, 33
standard module, 3 abbreviation with ,, 33
static error, 4 unquote-splicing, 33
stream, 56 abbreviation to ,0, 33
<stream>, 56 unwind-protect, 32
string, 60 variable, 9
<string>, 60 vector, 65
string, 60 <vector>, 65
hex-insertion character, 60 vector, 65
string-begin glyph, 60 vectorp, 65
string-end glyph, 60 vector-ref, 65
escaping in, 60 wait, 22, 32, 59
hexadecimal notation in, 60 when, 88
string-escape glyph, 60 definition of, 10
string-append, 61 with-handler, 25
string-1t, 61 write, 58
stringp, 60 writer, 9
string-ref, 60 write-unit, 57, 58
string-slice, 61 zerop, 49
subclass, 9
direct, 6
indirect, 7
superclass, 9
direct, 6
symbol, 9

symbol, 27, 62, 62
<symbol>, 63
symbol-exists-p, 63
symbol-name, 63
symbolp, 63
syntax, 10, 12
external representations, 14
generic function lambda-list, 19
identifier, 10
lambda-list, 28
O, 46
character, 35
constant, 27
defmodule, 12
double-float, 39
pair, 50
single-precision-integer, 53
string, 60
symbol, 27, 62
unquote, 33
unquote-splicing, 33
vector, 65
syntax expansion, 12
T,1, 2

102

