CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

SPICE PROJECT

Common Lisp Reference Manual

Guy L. Steele Jr.

29 July 1982

Colander Edltmn
Even More Holes Than Before ~ But They’re Smaller!

Spice Dncu_rnent S061
Keywords and index categerics: PE Lisp & DS External
Location of machine-rcadable file: clm.mss @ CMU

Copyright ©. 1982 Guy L. Steele Jr.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order, -
3597, monitored by the Air Force-Avionics:Laboratory under contract F33615-78-C:1551.: The views and
conclusions contained in this document are those of the authors and should not be interpreted-as representing
the official policics, cither cxprcsscd or implicd; of the Defense Advanced Research -Projects- Agency. or the -

. U.S. Government.

INDEX

‘Table of Contents

1. Introduction

1.1. Purpose
1.2. Notational Conventions

2. Scope and Extent
3. Data Types

3.1. Numbers
3.1.1. Integers
3.1.2. Ratios
3.1.3. Floating-point Numbers
3.1.4. Complex Numbers
3.2. Characters
3.3. Symbols
3.4. Lists and Conses
3.5. Arrays
3.6. Structures
3.7. Functions
3.8. Randoms

4. Type Specifiers

4.1. Type Specifier Symbols

4.2. Type Specifiers That Combine
4.3. Type Specifiers That Specialize -
4.4. Type Specifiers That Abbreviate
4.5. Defining New Type Speccifiers

5. Program Structure

5.1. Forms
5.1.1. Self-Evaluating Forms
5.1.2. Variables
5.1.3. Special Forms
5.1.4. Macros
5.1.5. Function Calls
5.2. Functions
5.2.1. Named Functions
5.2.2. Lambda-Expressions
5.2.3. Select-Expressions
5.3. Top-Level Forms
5.3.1. Defining Named Functions
5.3.2. Defining Macros

5.3.3. Declaring Global Variables and Named Constants '

6. Predicates

6.1. Logical Values
6.2. Data Type Predicates

O W= e

13

15
16
17
19
19
20

23
25
26
26

27

27
27
28
30
31

33

3
3
33

35
36
36
36
37

41
42
43
43

45
45

L 6.2.1. General Type Predicate
y~- 6.2.2. Specific Data Type Predicates

6.3, Equality Predicates
64 Logical Operators

7. Ceqltml Structure
”iﬁ Constants and Variables

f?r 7.1.1. Reference
#4712, Assignment
#Rk2. Generalized Variables
-7.3. Function Invocation
u‘l ia, Simple Sequencing
’75 Environment Manipulation
’[6 Conditionals
37’7 Blocks and Exits
8. Iteration
771 7.8.1. General iteration
yz¢ 7.8.2. Simple Iteration Constructs
s 1.8.3. Mapping
rai 1.8.4. The Program Feature
7 9 Mutltiple Values
7.9.1. Constructs for Handling Multiple Values
, 5! 7.9.2. Rules for Tail-Recursive Situations
§%.10. Dynamic Non-local Exits
=71 7.10.1. Catch Forms
£%1 7.10.2. Throw Forms

8.’@%&% ,

8.1. Defining Macros
9, Declarations

SEn

g.l. Declaration Syntax

£§2. Declaration Forms
<9.3. Type Declaration for Forms

10>Symbols

(3 1. The Property List
Q 2. The Print Name
\’JQ 3. Creating Symbols

112Packages

°41.1. Built-in Packages
- {#1.2. Package System Functions and Variables

12; Numbers

$ (12 1. Predicatcs on Numbers .
*Y2.2. Comparisons on Numbers
‘ﬁ 3. Arithmectic Operations

COMMON LISP REFERFNCE MANUAL

46
46
49
51

55

56
56
58
59
63
64
65
68
71
7
72

75
77
78
81
81
83
85
85
87

89
89
95

95
96
98

101
101
105
105
109
111
111
117

118
118
121

TABL £ OF CONTENTS

12.4. Irrational and Transcendental Functions
12.4.1. Exponential and Logarithmic Functions
- 12.4.2. Trigonometric and Related Functions

12.4.3. Branch Cuts, Principal Valucs, and Boundary Conditions in the Complex Plane .
12.5. Type Conversions and Component Extractions on Numbers

12.6. Logical Operations on Numbers
12.7. Byte Manipulation Functions
12.8. Random Numbers -

12.9. Implementation Parameters

13. Characters

13.1. Predicates on Characters

13.2. Character Construction and Selection
13.3. Character Conversions

13.4. Character Control-Bit Functions

14. Sequences

14.1. Simple Sequence Functions ‘
14.2. Converting, Catenating, and Mapping Sequences
14.3. Modifying Sequences

14.4. Searching Sequences for Items

15. Manipulating List Structure

15.1. Conses
15.2. Lists
15.3. Alteration of List Structure
15.4. Substitution of Expressions
15.5. Using Lists as Sets
15.6. Association Lists
15.7. Hash Tables
15.7.1. Hash Table Functions -
15.7.2. Primitive Hash Function

16. Arrays

16.1. Array Creation

16.2. Array Access

16.3. Array Information
16.4. Functions on Vectors

- 16.5. Functions on General Vectors (Vectors of LISP Ochcts)

16.6. Functions on Bit-vectors
16.7. Fill Pointers ,
16.8. Changing the Size of an Array

17. Strings

17.1. String Access and Modification
17.2. String Comparison

"17.3. String Construction and Mampulanon

17.4. Type Conversions on Strings

Vi »'vi. X1134} ol

ot e momoUYomp e R0 e o :
L3 A . e DR R PR S > N
SN o e P P - L S AR
N o . : . . N . .
& 0 S gl o
-0 - .y
o

! ‘:‘kf’ - %87 .

i

123
Co124
124
R V]
130
Lo 139
e 141
142

L0148

}36

eahA0d881s
1§9

o9l

GETT) NG .
o s 192
- (193

it C19s

v ‘ ‘ COMMON LISP REFERENCE MANUAL

-18.-Structures ‘ , 197
77:18.1. Introduction to Structures ' 197
.~ +18.2. How to Use Defstruct « _ : 199
17718.3. Using the Automatically Defined Macros 200
254+ 18.3.1. Constructor Functions 200
Tl 18.3.2. Alterant Macros 201
71184 defstruct Slot-Options 202
1+ 118.5. Options to defstruct : » 202
u\ 2,,,18.6. By-position Constructor Functions 207
‘19. The Evaluator : 209
19.1. Run-Time Evaluation of Forms ‘ . 209
19.2. The Top-Level Loop ' 209
-20. Streams - : 211
20.1. Standard Streams . 211
20.2. Creating New Streams ' 212
20.3. Operations on Streams ‘ 214

21. Input/Output : ' 215

- 21.1. Printed Representation of LISP Objects - 215
21.1.1. What the read Function Accepts) 216

21.1.2. Parsing of Numbers and Symbols 217

21.1.3. Macro Characters 220

21.1.4. Sharp-Sign Abbreviations - 224

21.1.5. The Readtable : 229

- 21.1.6. What the print Function Produces v 232
21.2. Input Functions - ; 235
21.2.1. Input from ASCII Streams 235

21.2.2. Input from Binary Streams : - 240

21.3. Output Functions ‘ , 241

- 21.3.1. Output to ASCII Streams o 241
21.3.2. Output to Binary Streams ‘ 242

21.4. Formatted Output : 243

- 21.5.Querying the User ' 252
:22. File System Interface ’ 257
22.1. File Names ' o 257
22.1.1. Pathnames } 258

22.1.2. Pathname Functions , ' 260

22.1.3. Dcfaults and Merging T 264
'22.1.4. Logical Pathnames 265
*22.2. Opening and Closing Files ‘ 267
- 22.3. Renaming, Deleting, and Other Operations ' 269
22.4. Loading Files : ' ' - 270

225, Acccssing Directories ; : 270

TABLE OF CONTENTS

23. Errors

23.1. Signalling Conditions
23.2. Establishing Handlers
- 23.3. Error Handlers
23.4. Signalling Errors
23.5. Break-points
© 23.6. Standard Condition Names

24. The Compiler
Index

o

N

2N

1272

o

275
277,

279
"299

ooatels t“"». 3
. . v

ivi) COMMON LISP REFERENCE MANUAL

TABLL OF CONTENTS

List of Tables

Table 1-1: Sample Function Description

Table 1-2: Sample Variable Description

Table 1-3: Sample Constant Description

Table 1-4: Sample Special Form Description

Table 1-5: Sample Macro Description

Table 3-1: Hicrarchy of Numeric Types

Table 3-2: Minimum Floating-Point Precision and Exponent Size Requirements
Table 4-1: Standard Type Specifier Symbols

Table 5-1: Names of All COMMON LISP Special Forms
Table 21-1: Standard Character Syntax Attributes

Table 21-2: Syntax of Numbers

Table 21-3: Standard Constituent Character Attributes
Table 21-4: Standard Sharp-Sign Macro Character Syntax

il

ACK NOWLEDGEMENTS : i

Acknowledgements

The many people who have contributed tovthc design of COMMON LISP arc hereby gratefully
acknowledged:

Alan Bawden? Richard P. Gabriel>® William L. Scherlis!
Rodney A. Brooks » Joseph Ginder! Richard M. Staliman?
Richard L. Bry.m ~ Richard Greenblatt’ Barbara K. Steele!

Glenn S. Burke® Martin L. Griss® Guy L. Steele Jr.}, editor
Howard L. Cannon? Charles L. Hedrick® " William vanMelle!?
- George J. Carrette’ ' Earl A. Killian® Walter van Roggen1
David Dilt! John L. Kulp? Allan C. Wechsler?
iy Scott E. Fahlmanl Larry M. Masinter'? Daniel L. Weinreh?
Richard J. Fatcman John McCarthy’ Jon L White!®
" Neal chberg " Don Morrison® Richard Zippel3
John Foderaro* David A. Moon? Leonard Zubkoff!

1. Computer Science Department, Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213
2. Symbolics, Inc., Cambridge, Massachusetts 02139
3, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Massachusetts (02139

4 Computer Science Division, Department of EECS, University of California, Berkeley, California 94720

s iComputer Science Department, Stanford University, Stanford, California 94305

i .6 ‘Umversxty of California, Lawrence Livermore National Laboratory, Livermore, California 94550

I Lispz Machines Incorporated (Lm1), Cambridge, Massachusetts 02139 ‘

, g.;»Deﬁanment of Computer Science, University of Utah, Salt Lake City, Utah 84112

-9, Laboratory for Computer Science Research, Rutgers University, New Brunswick, New Jersey 08903 .

£ ¢i:10-Xerox: Palo Alto Research Center, Palo Alto, California 94306 :

As can be seen from the list of affiliations, COMMON LISP was designed by a diverse group of people
rep?ggéntj'i;g'many institutions.

”[:llle, orgamzatmn typography, and content of this document were inspired in large part by the MacLISP
Reference Manual by David A. Moon and others [6], and by the LISP Machine Manual by Danicl Weinreb
and ‘Bavid Moon [11], which in turn acknowledges the efforts of Richard Stallman Mike McMahon, Alan
Bawiet, Glcnn Burke, and “many pcople too numerous to list™.

PIs T

: Tfns cdition is still in draft form. Pleasc scnd remarks, corrections, and criticisms to:

Guy L. Stecle Jr.

Computer Science Department
Carnegic-Mcllon University
Schenley Park

Pittsburgh, Pennsylvania 15213

Chapter 1

Introduction R

This manual documents a dialect of LiSP called “COMMON LISP”, which is a successor to M'ACLISP {61,
influenced strongly by Lisp Machine Lisp [11} and also to some extent by SCHEME [9] and INTERLISP 110].

1.1. Purpose

COMMON LIsP is intended to meet these goals:

Commonality.

» Portability.

Consistency.

- COMMON LISP originated in an attempt to focus the work of several unplementanon

groups each of which was constructing successor implementations of MACLISP for different
computers. These implementations had begun to diverge because of the dlfferences in the
implementation environments: microcoded personal computers (Lisp Machine LisP, SPICE
LisP), commercial timeshared computers (NIL), and supercomputers (S-1 LISP).- While the
differences among the several implementation environments will of necessity ‘force
incompatibilitics among the implementations, nevertheless COMMON LISP can:serve as a
common dialect of which each implementation can be an upward-compatible superset.

COMMON Lisp 1ntcnt10nally excludes features that cannot easily be 1mplemented, on a .
broad class of machines. On the one hand, fcatures that are difficult or expenswe to
implement on hardware without special microcode are avoided or provided in a more
abstract and cfficiently implementable form. (Examples of this arc the forwardmg
(invisible) pointers.and locatives of Lisp Machine Lisp. Some of the problems that they.” »
solve arc addressed in different ways in COMMON LIsp.) On the other hand, featuresithat sz
arc uscful only on ccrtain “ordinary” or “commercial” processors arc avoided or made:: -
optional. (An cxample of this is the type declaration facility, which is uscful in some -
implementations and complictely ignored in others; type declarations are comp]ctely
optional and for correct programs affect only efficiency, never semantics.) Motcover,
attention has been paid to making it casy to write programs in such a way as to depend as
little as possible on machinc-specific characteristics such as word length, whilc allowing
some varicty of implementation techniques.

Most LIS implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamically scoped, while the compiler
assumcs all variables to be local unless forced to assume otherwise. This has been done for
the sake of convenicence and cfficiency, but can lead to very subtle bugs. The definition of

2 COMMON LISP REFERENCT: MANUAL

CoMMON Lisp avoids such anomalies by explicitly requiring the interpreter and compiler
to impose identical semantics on correct programs.

Power. “CoMMON LISP is a descendant of MACLISP, which has always placed emphasis on

providing system-building tools. Such tools may in turn be used to build the user-level
packages such as INTERLISP provides; these packages are not. however, part of the
COMMON LISP core specification. It is expected such packages will be built on top of the
COMMON LIsPcore.

Expressiveness. COMMON LISP culls not only from MACLISP but from INTERLISP, other LISP dialects, and
' other programming languages what we believe from experience to be the most useful and
understandable constructs.. Constructs that have proved to be awkward or less useful are

being eliminated (an example is the store construct of MACLISP).

Compatibility. Unless there is a good reason to the contrary, COMMON LISP strives to be compatible with
B Lisp Machine LiSP, MACLISP, and INTERLISP, roughly in that order.

Efficiency. COMMON LIsP has a number of features designed to facilitate the production of high-

R quality compiled code in those implementations that care to invest effort in an optimizing
compiler. One implementation of COMMON LISP (namely S-1 LISP) already has a compiler
that produces code for numerical computations that is competitive in execution speed to
that produced by a FORTRAN compiler [1}. (This extends the work done in MACLISP to
produce extremely efficient numerical code [4].)

IS A

Stability. - It is intended that COMMON LISP, once defined and agreed upon, will change only slowly

S and with due deliberation. The various dialects that are supersets of COMMON LISP may
serve as laboratories within which to test language extensions, but such extensions will be
added to COMMON LISP only after careful examination and experimentation.

The COMMON LISP documentation is divided into four parts, known for now as the white pages, the yellow
pages, the red pages, and the blue pages. (This document is the white pages.)

o The white pages (this document) is a language specification rather than an implementation
? specification. It defines a sct of standard language concepts and constructs that may be used for
-3; communication of data structures and algorithms in the COMMON LISP dialect. This is somctimes
. eferred to as the “core COMMON LISP language”, because it contains conceptually necessary or
. important features.. It is not necessarily implementationally minimal. While some features could
be defined in terms of others by writing LISP code (and indeed may be implemented that way), it
was felt that these featurcs should be conceptually primitive so that there might be agreement
among all users as to their usage. (For example, bignums and rational numbers could be
~implemented as LISP code given opcerations on fixnums. However, it is important to the
conceptual integrity of the language that they be regarded by the user as primitive, and they are

.~ uscful cnough to warrant a standard definition.)

e The yellow pages is a program library document, containing documentation for assorted and
relatively independent packages of code. While the white pages are to be relatively stable, the

- yellow pages are extensible; new programs of sufficient uscfulness and quality will routinely be
added from time to time. The primary advantage of the division into white and -yellow pages is
this relative stability; a package written solcly in the white-pages language should not break if

INTRODUCTION ' 3

changes arc made to the yellow-pages library.

e The red pages is implementation-dependent documentation; there will be one set for each
implementation. Here are specified such implementation-dependent parameters as word size,
maximum array size, sizes of floating-point exponents and fractions, and so on, as well as
implementation-dependent functions such as input/output primitives.

o The blue pages constitutes an implementation guide in the spirit of the INTERLISP virtual machine
specification [7]. 1t specifies a subset of the white pages that an implementor must construct, and
indicates a quantity of LISP code written in that subsect that implements the remainder of the white
pages. In principle there could be more than one set of blue pages, each with a companion file of
LispP code. (For example, one might assume if to be primitive and dcfinec cond as a macro in
terms of if, while another might do it the other way around.)

1.2. Notational Conventions

In COMMON LISP, as in most LISP dialects, the symbol ni1 (page 45) is used to represent both the empty.. +

list and the “false” value for Boolean tests. An empty list may, of course, also be written *“()”; this normally
denotes the same object as “ni1”. (It is possible, by extremely perverse manipulation of the package system,
to cause the sequence of letters “n1i1” to be recognized not as the symbol that represents the empty list but as
another symbol with the same name. However, “()" always denotes the empty list. This obscure possibility
will be ignored in this document.) These two notations may be used interchangeably as far as the LISP system

is concerned. However, as a matter of style, this document will prefer the notation *()™ when it is desirable .-

to emphasize its use as an empty list, and will prefer the notation “ni1” when it is desirable to emphasize its
use as the Boolean “false” or as a symbol. Moreover, an explicit quote mark is used to emphasize its use as a
symbol rather than as Boolean “false”.

For example:
(append '() °'()) => () ; Emphasize use of empty lists.
(not nil) => t ; Emphasizc use as Boolcan “false”.
(get ’nil ’color) . ; Emphasize use as a symbol.

- Any data object other than ni1 is construed to be Boolean “not false™, that is, “true”. The symbol t is
conventionally used to mean “truc” when no other value is more appropriate. When a function is said to
“return false” or to “be false” in some circumstance, this means that it returns nil. However, when a
function is said to “return true” or to “be #rue” in some circumstance, this means that it returns some Value
other than ni 1, but not necessarily t. ‘ e

Y

All numbers in this docurhent are in decimal notation unless there is an explicit indication to the contrary.

Exccution of code in LiSP is called evaluation, because executing a picce of code normally results in a data
object called the value produced by the code. The symbol “=>" will be used in cxamples to indicate
cvaluation. For example: ’

(+ 4 5) => 9

- means “the result of cvaluating the code (+ 4 5) is (or would be, or would have been) 97,

4 ‘ COMMON LISP REFERENCE MANUAL

‘Fhe symbol “==>" will be used in examplcs to indicate macro cxpansion. For example:
(push x v) ==> (setf v (cons x v))
means “the result of cxpanding the macro-call form (push x v) is (setf v (cons x v))". This '

implics that the two picces of code do the same thing; the sccond piece of code is the definition of what the
ﬁrs& daes

The syrnbol “<=>" will be used in examples to indicate code equivalence. For example:
(- xy) <=> (+x(-vy)) ,
“means “the value and effects of (- x y) is always the same as the value and effects of (+ x (- y)) for

“any values of the variables x and y”. This implies that the two pieces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does.

When this document specifies that it “is an error” for some situation to occur, this means that:

"o No valid COMMON LiSP program should cause this situation to occur.

.. If this situation occurs, the effects and results are completely undeﬁned as far as adherence to the
. COMMON LisP specification is concerned.

« No COMMON Lisp implementation is required to detect such an error.

This is not to say that some particular implementation might not define the effects and results for such a
situation; it is merely that no program conforming to the COMMON LISP specification may correctly depend
on such effects or results.

On the other hand, if it is specified in this document that in some situation “an error is signalled”, this
means that:

“ ¢ If this situation occurs, an error (see error (page ERROR-FUN)) will be signalled. -

¢ Valid COMMON LISP programs may rely on the fact that an crror will be signalled.

¢ Every COMMON Lisp implementation is required to detect such an error.

Punctxons variables, named. constants, spccnal forms, and macros are described using a distinctive
» typographlcal format. Table 1-1 illustrates the manner in which COMMON LISP functions are documented.
, ‘Thc first line specifics the name of the function, the manner in which it accepts arguments, and the fact that it
o s a, funcuon Following indcnted paragraphs explain the definition and uses of the function and often
prcsent cxamples or rclated functions.

In gcncral actual code (including actual names of functions) appears in this typeface: (cons a b).
Namcs that stand for picces of code (meta-variables) arc written in ifalics. In a function description, the
, names of the parameters appear in italics for expository purposes. The word “&optional” in the list of
'paramctcrs indicates that all arguments past that point arc optional; the default values for the parameters are
“described in the text. Parameter lists may also contain “&rest”, indicating that an indcfinitc number of

INTRODUCTION

sample-function argl arg? &optional arg3 argd. [Function}
The function sample-function adds together argl/ and arg2, and then multiplics the result. by«
arg3. 1If arg3 is not provided or is ni1, the multiplication isn’t done. sample-function then ...

returns a list whose first element is this result and whose second clement is arg4 (which defaults to .
the symbol foo).

For example:

(function-name 3 4) => (7 foo)
(function-name 1 2 2 ’bar) => (6 bar)

Asarule, (sample-function x y) <=> (1ist (+ x y) ’foo).

Table 1-1: Sample Function Description

sample-variable [Variable]

The variable sample-variable specifies how many times the special form

sample-special-form should iterate. The value should aiways be a non-negative integer or
n1i1 (which means iterate indefinitely many times). The initial value is 0.

Table 1-2: Sample Variable Description

sample- -constant [Constant]
The named constant sample-constant has as its value the height of the terminal screen in

furlongs times the base-2 logarithm of the implementation’s total disk capacity in bytes, as. a
ﬂoatmg point number.

Table 1-3: Sample Constant Description

arguments ‘may appear, or “&key”, indicating that keyword arguments are accepted. (The

&optional/&rest/&key syntax is actually used in COMMON LiSP function definitions for these purposcév.)\i

Table 1-2 illustrates the manner in whlch a-global variable is documented. The first line specifics the name -
of the variable and the fact that it is a variable. B

Table 1-3 illustrates the manner in which a named constant is documented. The first line specifics thc

name of the constant and the fact that it is a constant. (A constant is just likc a global variable, cxcept that xt xs
an crror ever to alter its value or to bind it to a ncw valuc.) ‘ : o

6 - COMMON LISP REFERENCE MANUAL

sample-special-form [name] ({var}*) {form}+ [Special form]
This cvaluates cach form in scequence as an implicit progn, and does this as many times as
specified by the global variable sample-variable. Each variable varis bound and initialized to
43 before the first iteration, and unbound after the last iteration. The name name, if supplied, may
be used in a return-from (page 72) form to exit from the loop prematurely. If the loop ends
normally, sample-special=formreturns nil.

'For example:

(setq sample-variable 3)
(sample-special-form () forml form2)

This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1-4: Sample Special Form Description

samp'le macro var {lag | statement}* ‘ [Macro]
' This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro x (+ x x)) => 86 ;
(sample-macro var . body) ==> (prog ((var 43)) . body)

Table 1-5: Sample Macro Description

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are-closely related in
purpose). These are very different from functions. Functions. are called according to a single,specific,
consistent syntax; the &optional/&rest/&key syntax specifies how the function uses its arguments
intémally. but does not affect the syntax of a call. In contrast, each special form or macro can have its own
idi(;gy"ncratic syntax. It is by special forms and macros that the syntax of COMMON LISP is defined and
extended. '

T : : ' .

In the description of a special form or macro, an italicized word names a corresponding part of the form
that ini(()kcs the special form or macro. Parcnthescs (“(™ and *)”) stand for themsclves, and should be
“written as such when invoking the special form or macro. Square brackets (“[” and “1”) indicate that what

~ they enclosc is optional (may appear zero times or onc time in that place); the squarc brackets should not be

~ written in code. Curly braces (“{” and “}") simply parenthcsize what they enclose, but may be followed by a
star (“*”) or a plus sign (*+7); a star indicates that what the braces enclose may appear any number of times
(including zero, that is, not at all), while-a. plus sign indicates that what the braces enclose may appear any
non-/cro number of times (that is, must appcar at lcast once). Within braces or brackets, vertical bars ()
scpamlc mutually exclusive choices.

INTRODUCTION ’ ' ' 7

In the last example in Table 1-5, notice the usc of “dot notation”. The “.™ appcaring in the expressiom

(sample-macro var . bedy) means that the name body stands for a list of forms, not just a single form, at
the end of alist. This notation is often used in examples. '

The term “LISP reader” refers not to you, the rcader of this document, nor to some person reading LISP
code, but specifically to a LISP program (the function read (page 237)) that reads characters from an mput
stream and mtcrprcts them by parsing as representations of LISP objects.

Certain characters are used in special ways in the syntax of COMMON LISP. The complete syntax is
explained in detail in Chapter 21, but a quick summary here may be useful: -

* An accent acute (“single quote”) followed by an expression form is an abbreviation for (quote jform).
Thus ’'foo means (quote foo) and '(cons ’'a 'b) means (quote (cons (quote a)
(quote b))).

; - Semicolon is the comment character. It and all characters up to the end of the line are discarded.
" Double quotes surround character strings: "This is a thirty-nine character string.".

\ Backslash is an escape character. As a rule, it causes the next character to be treated as a letter rather ‘

than for its usual syntactic purpose. For example, A\ (B denotes a symbol whose name is “A(B”, and
"\"" denotes a character string containing one character, a double-quote.

The number sign begins a more complex syntax. The next character designates the precise syntax to
follow. For example, #0105 means 1054 (105 in octal notation); #\L denotes a character object for the
character “L”; and #(a b c) denotes a vector of three elements a, b, and c. A particularly important
case is that #° fn means (function fi), in a manner analogous to ’ form meaning (quote form).

| Vertical bars surround the name of a symbol that has special characters in it.

* Accent grave (“backquote’) signals that the next expression is a template that may contain commas. The

backquote syntax represents a program that will construct a data structure according to the template.
, Commas arc used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example, chaos:reset denotes the |
symbol named reset in the package named chaos. A leading colon 1nd1cates a keyword, a symbol that ,

always cvaluates to itself.

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which
code is written. Internally, names of symbols are ordinarily converted to and stored in upper-case form

There are ways to force case conversion on output if desired. In this document, whercver an interactive

exchange between a user and the LISP system is shown, the input is exhibited in lower case and the outputin

upper case.

11: until you read that, just make belicve that the colons arc part of the names of the symbols.

i

Some symbols are written with the colon (:) character apparently in their names. In particular, afl keywdrdff‘ .
symbols have names starting with a colon. The colon character is not actually part of the print name, butis a
package prefix indicating that the symbol belongs to the keyword package. 'This is all explained in Chapter

COMMON LISP REFERENCE MANUAL

- Chapter 2

Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are
frequently useful. These arise when some object or construct must be referred to from some distant part of a
program. Scope refers to the spatial or textual region of the program within which references may occur.
FExtent refers to the interval of time within which references may occur.

As a simple example, consider this program:
(defun copycell (x) (cons (car x) (cdr x)))

The scope of the parameter named x is the body of the defun form. There is no way to refer to this
parameter from any other place but within the body of the defun. Similarly, the extent of the parameter x
(for any particular call to copycel1) is the interval from the time the function is invoked to the time it is
exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that
cannot occur in this simple case.)

Within COMMON LISP, a referenceable entity is established by the execution of some language constnict,
and the scope and extent of the entity are described relative to the construct and the time (during execution of
the construct) at which the entity is established. There are a few kinds of scope and extent that are
particularly uscful in describing COMMON LISP:

o Lexical scope. Here references to the established entity can occur only within certain program
portions that arc Iexically (that is, textually) contained within the cstablishing construct. Typically
the construct will have a part designated the body, and the scope of all entitics cstablished will be
(or include) the body.

Example: the names of parameters to a function normally are lexically scoped.

e Local scope. Hcre references to the established entity can occur only within certain program
portions that arc lexically (that is, textually) contained within the establishing construct, but

" morcover may not occur nested within certain other constructs, namely function (page 56), the
definition portions of flet (page 67) and labels (pagc 67), and such function-defining
constructs as defun (page 42), deftype (page 31), defmacro (page 91), and defstruct
(page 199). ' ’

o Indefinite scope. References may occur anywhere, in any program.

10 COMMON LISP REFERENCE MANUAL

e Dynamic extent. References may occur at any time in the interval between cestablishment of the
cntity and the explicit discstablishment of the cntity. As'a rule, the entity is disestablished when
exccution of the ¢stablishing construct complctes or is otherwisce terminated. Thercfore entities
with dynamic cxtent obey a stack-like discipline, parallcling the ncsud exccutions of their
establishing constructs.

Example: the with-open-file (page 267) creates opens a connection to a file and creates a
stream object to represent the connection. The stream object has indefinite extent, but the
connection to the open file has dynamic extent: when control exits the with-open-file
construct, either normally or abnormally, the file is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

e Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An
implementation is free to destory the enmy if it can prove that reference to it is no longer
possible.) '

Example: most COMMON LISP data objects have indefinite extent. (By contrast, the list produced
for a &rest parameter in Lisp Machine LISP has dynamic extent [11].)

Example: the names of lexically scoped parameters to a function have indefinite extent. (By
contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent.) .
This function definition:
(defun compose (f g)
#'(1ambda (x) (f (g x))))

when given two arguments, immediately returns a function as its value. The parameter bindings
for f and g do not disappear, because the returned function, when called, could still refer to those
bindings. Therefore : .

(funcall (compose #’sqrt #'abs) -9.0)
produces the value 3.0. (An analogous procedure would not work correctly in typical
ALGOL implementations.)

In addition, to the above terms, it is convenient to define dynamic scope t0 mcan indefinite scope and
dynamic extent. Thus we speak of “special™ variables as having dynamic scope, or being dynamically scoped,
becausce they have indefinite scope and dynamic extent: a spcc1a1 variable can be referred to anywhere as long
as its binding is currently in effect.

‘The above definitions do not take into account the possibility of shadowing. Remote reference of entities is
accomplishcd by using names of onc kind or another. If two entitics have the same name, then the sccond
(say) may shadow the first, in which casc an occurrence of thc name will refer to the seccond and cannot refer
to the first.

In the casc of lexical or local scope, if two constructs that cstablish entitics with the same name are textually

nested, then references within the inner construct refer to the entity cstablished by the inncr onc; the inncr

- onc shadows the outer one. OQutside the inner onc but inside the outer one, references refer to the entity
~ cstablished by the outer construct. For example:

SCOPE AND EXTENT .) 11

(defun test (x z)
(Tet ((z (* x 2))) (print z))
z)
The binding of the variable z by the Tet (page 65) construct shadows the parameter binding for the function
test. The reference to the variable z in the print form refers to the 1et binding. The reference to z at
the end of the function refers to the parameter named z.

In the case of dynamic cxtent, if the time intervals of two cntities with the same name overlap, then one
interval will necessarily be nested within the other one (this is a property of the design of COMMON Lisp). A
reference will always refer to the entity that has been most recently established that has not yet been
disestablished. For example: '

(defun funl (x)
(catch ’trap (+ 3 (fun2 x))))

(defun fun2 (y)
(catch ’trap (* 5 (fun3 y))))

(defun fun3d (z)
(throw ’‘trap z))
Consider the call (fun1 7). The result will be 10. At the time the throw (page 87) is executed, there are
two outstanding catchers with the name trap: one established within procedure fun1, and the other within
procedure fun2. The latter is the more recent, and so the value 7 is returned from the catch form in fun2.
Viewed from within fun3, the catch in fun2 shadows the one'in fun1. (Had fun2 been defined as

(defun fun2 (y)
(catch ’snare (* 5 (fun3 y))))

' then the two catchers wbuld have different names, and therefore the one in fun1 would not be shadowed.

The result would then have been 7.)

As a rule this document will simply speak of the scobe or extent of an entity; the possibility is shadowing
will be left implicit.

A list of the important scope and cxtent rules in COMMON LISP:
e Variablc bindings normally have lexical scope and indefinite extent.

e Variable bindings that are declared to be special have dynamic scope (indefinitc scope and
dynamic extent).

o A catcher cstablished by a catch (pagce 85), catch-al1 (page 85), unwind-al1 (page 85),
orunwind-protect (page 86) special form has dynamic-scope.

" e An cxit point cstablished by'a block (page 71) construct has lexical scope and dynamic extent.
(Such exit points arc also cstablished by do (page 73), prog (page 78), and other itcration
constructs.)

e The tags cstablished by a prog (page 78) and referenced by go (page 80) have lexical scope and

12 ' COMMON LISP REFFRINCE MANUAL

dynamic extent.

Constructs that use lexical scope effectively gencrate a new name for cach established entity on each
exccution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular
importance when dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (= x 0)
(funcall f)
(block here
(+ 5 (contorted-example ¢
' #'(lambda () (return-from here 4))

(- x1))))))

Consider the call (contorted-example nil nil 2). This produces the result 4. At the time the
funcall is executed there are three block (page 71) exit points outstanding, each apparently named
here. However, the return-from (page 72) form executed refers to the outermost of the outstanding exit
points, not the innermost, as a consequence of the rules of lexical scoping: it refers to that exit point textually
visible at the point the function (page 56) construct (here abbreviated by the #° syntax) was executed.

Chapter 3
Data Types

COMMON Lisp provides a variety of types of data objects. It is importént to note that in LISP it is data
objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to
make an explicit declaration that a variable will in fact take on one of only a limited set of values. However, '
such a declaration may always be omitted, and the program will still run correctly. Such a declaration merely
consititutes advice from the user that may be usefil in gaining efficiency. See declare (page 95).)

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many LISP objects belong to more
than one such set, and so it doesn’t always make sense to ask what the type of an object is; instead, one usually
asks only whether an object belongs to a given type. The predicate typep (page 46) may be used to ask
either of these questions. '

. The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared
subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels
(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout
this document, the word symbol refers to atomic symbols, one kind of Lisp object). See Chapter 4 for a
complete description of type specifiers.

The root of the hicrarchy, which is the sct of all objects, is specified by the symbol t. The empty data type,
which contains no objects, is denoted by ni1.

COMMON Lisp objects may be roughly divided into the following categorics: numbers, characters,
symbols, lists, arrays, structures, functions, and “random” objects. Some of these categorics have many
subdivisions. There are also standard types that are the union of two or more of thesc categories. The
catcgories listcd above, while they are data types, are neither more nor less “rcal” than other data types; they

simply constitute a particularly useful slice across the type hicrarchy for expository purposes.

Each of thesc categories is described briefly below. Then one scction of this chapter is devoted to each,
going into more detail, and bricfly describing notations for objects of cach type. Dcscriptions.of Lisp

functions that opcrate on data objects are in later chapters.

e Numbers arc provided in various forms and representations. COMMON LISP provides a true
intcger data type: any integer, positive or negative, has in principle a representation as a COMMON

~-13 -

14 ' COMMON LISP REFERENCE MANUAL

LIsP data object, subject only to total memory limitations (rather than machine word width). A
truc rational data type is provided: the quotient of two integers, if not an integer, is a ratio. .
Floating-point numbers of various ranges and precisions are also provided. Some

implementations may choose to provide Cartesian complex numbers.

Characters rcpresent printed glyphs such as letters or text formatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

e Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects. LISP
provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
have property lists, which in cffect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object. :

e Lists are sequences represented in the form of linked cells called conses. There is a special object
(the symbol ni1) that is the empty list. All other lists are built recursively by adding a new
element to the front of an existing list. This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing list. (Conses may actually be used completely generally as
two-element record structures, but their most important use is to represent lists.)

e Arrays are dimensioned collections of objects. An array can have any non-negative number of
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as -
a component; others are specialized for efficiency, and can hold only certain types of LISP objects.

- It is possible for two arrays, possibly with differing dimension information, to share the same set
of elements (such that modifying one array modifies the other also). ‘

o Vectors are a special class of arrays. They have exactly one dimension, and two vectors cannot
have shared data. For critical applications in some implementations, vectors may be significantly
more efficient than arrays. Two important special cases are strings, which are one-dimensional
vectors of characters, and bit-vectors, which are vectors that can contain only the integers 0 and 1.

e Structures are user-defined record structures, objects that have named components. The

defstruct (page 199) facility is used to define new structure types. .Some COMMON Lisp
implementations may choose to implement certain system-supplicd data types as Structures; these
might includc bignums, readtables, streams, hashtables, and pathnames.

s Functions are objects that can be invoked as procedures; these may take arguments, and return

“vatues. (All LispP procedures can be construcd to return a value, and therefore treated as
functions. Those that have nothing better to return usually return nil.) Such objects include
closures (functions that have retained bindings from some environment) and subrs (compiled code
objects). Some functions arc represented as a list whose car is a particular symbol such as
Tambda. Symbols may also be used .as functions. :

s Random objects arc those that do not fit into any other ‘catcgo'ry. This is a catch-all data type that
primarily covers implémentation-dependent objects for internal use.

These catcgories arc not always mutually exclusive. As noted above, an implementation may choose to
implement certain kinds of objects (such as the more arcanc numerical types) as structures. Every vector is an .

DATA TYPES ' 15

array, though not every array is a vector.

3.1. Numbers

number
rational
integer
fixnum
bignum
ratio
float
short-float
single-float
double-float
long-float
complex

Table 3-1: Hierarchy of Numeric Types

There are several kinds of numbers defined in COMMON Lisp. Table 3-1 shows the hierarchy of number
types.

3.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming languages,
COMMON LIisP in principle imposes no limit on the magnitude of an integer; storage is automatically allocated
as necessary to represent large integers.

In every COMMON LISP implementation there is a range of integers that are represented more efficiently
than others; each such integer is called a fixnum, and an integer that is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the cfficiency of
representation is important; in particular, it is guarantced that the rank of an array, as well as any dimension
of an array (and therefore any index into an array), can be represented as a fixnum. Exactly which integers
arc fixnums is implementation-dependent; typically they will be those integers in the range —2" to 2"—1,
inclusive, for somc¢ n not Icss than 15. Scc most-positive-fixnum (page 142) and
most-negative-fixnum (page 142). |

Integers are ordinarily written in decimal notation, as a scquence of decimal digits, optionally prcccdcd by

~ asign and optionally followed by a decimal point.

" For cxample:

16 COMMON LISP REFERENCE MANUAL

0 ;Zcro.
-0 ;This always means the same as 0.
+6. ; The first perfcet number.
28 ;The scconid perizct number.
1024. ;Twoto the ienti: power.
~ -1 ;e -
15511210043330985984000000. ;25 factorial (25!). Probably a bignum.

Compatibility note: Maclusp and Lisp Machine Lisp normally assume that integers are written in ocral (radix-8) notation
unless a decimal point is present. ' INTERLISP assumes integers are written in decimal notation, and uses a trailing Q to
indicate octal radix: however, a decimal point, even in trailing position, a/ways indicates a floating-point number. This is of
course consistent with FORTRAN: ADA does not permit trailing decimal points, but instead requires them to be embedded. In
CoMMON LIsp, integers written as described above are always construed to be in decimal notation, whether or not the
decimal point is present; allowing the decimal point to be present permits compatibility with MACLISP.

Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRddddd

means the integer in radix-nn notation denoted by the digits ddddd. More precisely, one may write “#”, a
non-empty sequence of decimal digits representing an unsigned decimal integer n, “r” (or “R”), an optional

sign, and a sequence of radix-n digits, to indicate an integer written in radix n (which must be between 2 and

36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may
contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits
above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations “#b”
for “#2r”, “#0” for “#8r”, and “#x” for “#16r”,

For example:
#2r11010101 ; Another way of writing 213 decimal.
#b11010101 ;Ditto.
#b+11010101 ;Ditto. '
#0325 ;Ditto, in octal radix.
#xD5 ;Ditto, in hexadecimal radix.
#16r+D5 ;Ditto. ’ ‘
#0-300 ;Decimal -192, written in base 8.
#3r-12010 ;Same thing in base 3.
" #25R-7H ;Same thing in base 25.
3.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers and ratios are collectively
called rationals. The canonical printed representation of a rational number is as an integer if its value is
integral, and otherwisc as the ratio of two integers, the numerator and denominator, whose greatest common
divisor is one, and of which the denominator is positive (and in fact greater than 1, or clsc the value would be
integral), written with “/” as a scparator thus: “3/57. It is possible to notate ratios in non-canonical

(unreduccd) forms, such as 476", but the Lisp function prinl (page 242) always prints the canonical form -

for a ratio.

Implementation note: While cach implementation of COMMON Lise will probably choose to maintain all ratios in reduced
form, there is no requircment for this as long as its cffects are not visibic to the uscr. Note that while it may at first glance
appear lo save computation for the reader and various arithmetic operations not o have to produce reduced forms, this
savings is likely (o be counteracted by the increased cost of operating on larger numerators and denominators.

DATA TYPES 7 17

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty sequences of digits separated by a */”. The sccond scquence may not consist
entircly of zeros.

For example:
2/3 ; This is in canonical form.
4/6 ; A non-canonical form for the same number
-17/23
-30517578125/32768 ; This is (= 5/2).
10/5 ; The canonical form for this is 2.

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #nnR, #0,
 #B, or #X) as for integers.

For example:
#0-101/75 ; Octal notation for -65/61.
#3r120/21 ; Ternary notation for 15/7.
#Xbc/ad ; Hexadecimal notation for 188/173.

3.1.3. Floating-point Numbers

Generally speaking, a floating-point number is a (mathematical) rational number of the form (—1)™*f
*b¢~P where sis a bit (0 or 1), the sign; b is an integer greater than 1, the base or radix of the representation; p
is a positive integer, the precision (in base-b digits) of the floating-point number; fis a positive integer
between 5”1 and ¥”—1 (inclusive), thé fraction (properly speaking, the fraction is actually 75P); and e is an
integer, the exponent. In addition, there is a floating-point zero. (Depending on the implementation, there
may also be a “minus zero”.) The value of p and the range of e depends on the implementation and on the
type of floating-point number within that implementation.

Implementation note: The form of the above description should not be construed to require the internal representation to é
in sign-magnitude form. Two's-complement and other representations arc also acceptable. Note that the radix of the
internal represcntation may be other than 2, as on the 18BM 360 and 370, which use radix 16; see short-float-radix
(page 143) and friends.

Floating-point numbers may be provided in a varicty of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
modcratcly portable, however, certain definitions are made here:

e A short floating-point number is of the representation of smallest fi xcd prccmon prov1dcd by an
implementation. :

o A Jong floating-point number is of the representation of the largest fixed precision provided by an
implementation.

o Intermediatc between short and Iong formats arc two others, arbitrarily callcd single and double.

The precisc. definition of these categorics is implementation-dependent. However, the rough intent is that
short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at
least to about scven decimal places; and double floating-point numbers, at lcast to about fourteen decimal

18 k COMMON LISP REFERENCE MANUAL

places. Therefore the following minimum requirements are suggested for these formats: the precision
(measured in “bits”, computed as p*log,b) and the exponent size (also measured in “bits”, computed as the
base-2 logarithm of onc plus the maximum cxponent value) must be at least as great as the valucs in Table
3-2.

Format Minimum Precision Minimum Exponent Size
Short 20 bits 7 bits
Single 24 bits 8 bits
Double 50 bits 8 bits

Table 3-2: Minimum Floating-Point Precision and Exponent Size Requirements

In any given implementation the categories may overlap or coincide. For example, short might mean the
same as single, and long might mean the same as double. '

Implementation note: Where it is feasible, it is recommended that an implementation provide at least two types of
floating-point number, and preferably three. Ideally, short-format floating-point numbers should have an “immediate”
representation that does not require consing, single-format floating-point numbers should approximate 1EEE proposed
standard single-format floating-point numbers, and double-format floating-point numbers should approximate IEEE
proposed standard double-format floating-point numbers [5, 2, 3].

Floating point numbers arc written in either decimal fraction or “computerized scientific” notation: an
optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal
exponent specification. The decimal point is required, and there must be digits either before or after it;
moreover, digits are required after the decimal point if there is no exponent specifier. The exponent specifier
consists of an exponent marker, an optional sign, and a non-empty sequence of digits. For preciseness, here is
a modified-BNF decription of floating-point notation. The notation “{x}*” means zero or more occurrences
of “x”, the notation “{x}+ " means one or more occurrences of “x”, and the notation “[x]” means zero or one’
occurrences of “x”. ’

Sfloating-point-number . = [sign] {digit}* . {digit} + [exponeni] | [sign] {digit}+ . {digit}* exponent
signii=+| -

digit::=01]1]2]|3|4]|5|6]7]8]|9

exponent ::= exponent-marker [sign] {digit}+

exponent-marker ;= e|s|f|d|1|b]E|F|D|S|L|B

If no exponent specifier is present, or if the exponent marker “e” (or “E”) is used, then the precise format to-
be used is not specified. When such a - floating-point. numbecr representation is read and converted to, an

intcrnal floating-point data object, the format specificd by the variable read-default-float-format

(page 237) is uscd; the initial vaiuc of this variable is single.

The letters “s”, “f”, “d”,-and “1” (or their rcspcctiﬂ'c uppcr-case cquivalents) specify explicity the use of
" short, single, double, and long format, respectively. The letters “b™ and “B” are reserved for future definition.

For example:

DATA TYPES v 19

0.0 - ; Floating-point zero in default format.
-.0 ; Also a floating-point zcro.
0. ; The integer zero. not a floating-point number!
0.0s0 ; A floating-point zero in short format.
3.1415926535897932384d0 ; A double-format approximation to =.
6.02E+23 ' ; Avogadro’s number, in default format.
3.1010299957f-1 ;log10 2, in single format.
-0.000000001s9 ; €7 1n short format, the hard way.

'3.1.4. Complex Numbers

Complex numbers may or may not be supported by a COMMON LiSP implementation. They are
represented in Cartesian form, with a real part and an imaginary part each of which is a2 non-complex number
(integer, floating-point number, or ratio). It should be emphasized that the parts of a complex number are
not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differs from FORTRAN. In
general, these identities hold:

(eql (realpart (complex x y)) x)
(eql (imagpart (compiex X y)) y)

Complex numbers may be notated by writing the characters “#C” followed by a list of the real and
imaginary parts. (Indeed, “#C(a b)” is equivalent to “#, (compiex a b)”; see the description of the
function complex (page 134).)

For example: -
#C(3.0s1 2.0s-1)
#C(5 -3) ; A Gaussian integer.
#C(5/3 7.0) '
#C(0 1) ; The imaginary unit.

. 7?77 Query: This notation is truly bietcherous. What would people think of adopting the notation suggested for APL, namely
to write the real and imaginary parts separated by “J3” (or “j™)? The above examples would then be written as
“3.0s1j2.0s-1", “5j-3", “5/3J7.07, and “0J1". Note particularly that the latter is a concise (three-character)
notation for the imaginary unit 7, much easier to type than “#C(0 1)".

Some implementations furthermore provide specialized representations of complex numbers for cfficiency.

~ In such representations the real part and imaginary part are of the same specialized numeric type. The “#C”

construct will produce the most specialized representation that will correctly represent the two notated parts.
The type of a specialized complex number is indicated by a list of the word complex and the type of the

components; for cxample, a specialized representation for complex numbers with short floating-point parts

would be of type (complex short-float). The type complex encompasses all complex
representations; the particular representation that allows parts of any numeric type is referred to as type
{complex t). ' '

3.2. Characters

Every character object has three attributes: code, bits, and font. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters. The bits attribute allows cxtra
flags to be associated with a character. The font attribute permits a specification of the style of the glyphs

20 , . COMMON LISP REFERENCE MANUAL

(such as italics). Each of thesc attributes may be understood to be a non-negative integer.

A character object can be notated by writing “#\” followed by the character itself. For example, “#\g”
means the character objcct for a lower-casc “g”. This works well enough for “printing characters”. Non-
printing characters have names, and can be notated by writing “#\” and then the name; for example,
“#\return” (or “#\RETURN” or “#\Return”, for example) means the <return> character. The syntax for
character names after “#\” is the same as that for symbols.

The font attribute may be notated in unsigned decimal notation between the “#” and the “\”. For
example, #3\A means the letter “A” in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see char-font-1imit (page 145).

The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by
“\”. For example:

#\Control-Meta-Return
#\Hyper-Space
#\Control-A
#\Meta-\g
, #\C-M-Return , ‘
Note that not all COMMON LiSP implementations provide for non-zero ~ bits attributes; see

char-font-1imit (page 145).

Any character whose bits and font attributes are zero may be contained in strings. All such characters
together constitute a subtype of the characters; this subtype is called string-char.

3.3. Symbols

" Symbols are LISP data objects that serve scveral purposes and have several interesting characteristics.
Every symbol has a name, called its print name, or pname. Given a symbol, one can obtairi its name in the
form of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself.
(More preciscly, symbols are organized into packages, and all the symbols in a package arc uniquely identified
by name.)

. Symbols have a component called the property list, or plist. By convention this is always a list whose
even-numbered components (calling the initial onc component zero) are symbols, here functioning as
property names, and whose odd-numbered components arc associated propcrty values. Functions are
provided for manipulating this property list; in cffect, these allow a symbol to be treated as an extensible
record structure. . '

Symbols arc also uscd to represent certain kinds of variables in LlSP programs, and there arc functions for
dcaling with the valucs associated with symbols in this role.

DATA TYPES 21

A symbol can be notated simply by writing its name.. [f its namc is not emipty, and if the namc consists only
of upper-casc alphabetic, numeric, or certain “pscudo-alphabetic™ special characters (but not delimiter
characters such as parcnthescs or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name.

For example:
FROBBOZ ; The symbol whose name is “FROBB0OZ”.
frobboz ‘ ; Another way to notate the same symbol.
fRObBoz ; Yet another way to notate it.
unwind-protect ; A symbol with a “~” in its name.
+$ ' ; The symbol named “+$”.
1+ " ;The symbol named “1+”.
+1 ; This is the integer 1, not a symbol.
pascal_style ; This symbol has an underscore in its name.
b~2-4*a*c ; This is a single symbol!

; Ithas several special characters in its name.

file.rel.43 ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

Besides letters and numbers, the following characters are normally considered to be “alphabetic” for the
purposes of notating symbols: '

+-*/1@8$%~&_=<>?"

Some of these characters have conventional purposes for naming things; for example, symbols that name
functions having extremely implementation-dependent semantics generally have names beginning with “%”.
The last character, “.”, is considered alphabetic provided that it does not stand alone. By itself, it has a role in
the notation of conses. (It also scrves as the decimal point.)

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LISP
reader normally converts lower-case letters to the corresponding upper-case letters when reading symbols.
The net cffect is that most of the time casc makes no difference when notating symbols. However, case does
make a difference internally and when printing a symbol. Internally the symbols that name all standard
CoMMON LIsP functions, variables, and keywords have upper-case names; their names appear in lower case
in this document for readability. Typing such names in lower casc works because the function read will
convert them to upper case. .

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains
special characters or lower-case letters, then there are two “escape” conventions for notating them. Writing a
“\" character before any character causcs the character to be treated itsclf as an ordinary character for usc in a
symbol name. If any character in a notation is prcccdcd by \, then that notation can never be interpreted as a
number. ‘

For example:

») ’ ' ' COMMON LISP REFERENCE MANUAL

\(: The symbol whosc name is “(".
\+1 : The svmbol whose name is “+17.
+\1 ' ; Also the symbol whose name is “+17,
\frobboz ; The symbol whose name is “fROBBOZ™.
3.14159265\s0 ; The symbol whose name is “3. 14159265507,

~ 3.14159265\S0 ; The symbol whose name is“3.14159265S0".
3.14159265s0 ; A short-format floating-point approximation to =.
APL\\360 . ; The symbol whose name is “APL\360”.
ap1\\360 ; Also the symbol whosc name is “APL\360”.
\(b~2\)\ -\ 4*a*c ;The name is “(B~2) - 4*A*C”.

; It has parentheses and two spaces in it.

It may be tedious to insert a “\” before every delimiter character in the name of a symbol if there are many
of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol’s name, as if “\" had been written before each one,
excepting only | itself and \, which must nevertheless be preceded by \.

For example:
1" ; The same as writing \ "',
| (br2) - 4*a*c| ;The name is “(b~2) - 4*a*c”.
|frobboz] ; The name is “frobboz”, not “FROBB0Z”.
|APL\360 | ' ; The name is “APL360", because
: the “\” quotes the “3”.
|APL\\360| - ;The name is “APL\360".
|ap1\\360] ; The name is “ap1\360”.
ININEE , ;Same as \ |\ |: the nameis “| | .
3.4. Lists and Conses

A cons is a little record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists. »

" A list is recursively defined to be cither the empty list (which is represented by the symbol n1i1, but can
also be written as “()”) or a cons whose cdr component is a list. A list is therefore a chain of conses linked by
their cdr components and terminated by ni1. The car components of the conses are called the elements of
the list. For each element of the list there is a cons. The empty list has no elements at all.

A hst is notated by wnnng the elements of the list in order, separated by blank space (space, tab or return
characters) and surrounded by parentheses.

For cxample: »
(abc) - ; A list of thrce symbols.
(2.0s0 (a 1) #*) _ ; A list of three things: a short floating-point number,

;- another list, and a character object.

This is why the ecmpty list can be written as “() ”; it is a list with no clements.

A dotted list is onc whosc last cons does not have ni1 for its ¢dr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the list). - Such a list is called “dotted™

DATA TYPES ' 23

because of the special notation used for it: the clements of the list are written between parcntheses as before,
but after the last clement and before the right parenthesis are written a dot (surrounded by bliank spacce) and
then the cedr of the last cons. As a spccial case, a single cons is notated by writing the car and the cdr between
parcntheses and scparated by a space-surroundced dot.

For example:
(a . 4) ; A cons whose car is a symbol
; and whose cdris an integer.
(abc . d) ; A list with three elements whose last cons

; has the symbol d in its cdr.

Compatibility note: In MACLISP, the dot in dotted-list notation needed not be surrounded by white space or other delimiters.
The dot is required to be delimited in Lisp Machine Lisp.

It is legitimate to write something like (a b . (c d)); this means the same as (a b ¢ d). The
standard LISP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.

Often the term [ist is used to refer either to true lists or to dotted lists. The term “true list” will be used to
refer to a list terminated by ni1, when the distinction is important. Most functions advertised to operate on
lists will work on dotted lists and ignore the non-n1i1 cdr at the end.

Sometimes the term free is used to refer to some cons and all the other conses transitively accessible to it
through car and cdr links until non-conses are reached; these non-conses are called the Jeaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply useful points of view
about structures of conses. There are yet other terms, such as association list. None of these are true LISP data
types. Conses are a data type, and ni1 is the sole object of type nu11. The LISP data type 11ist is taken to
mean the union of the cons and nu11 data types, and therefore encompasses both true lists and dotted lists.

3.5. Arrays

An array is an object with components arranged according to a rectilincar coordinate system. In general,
these components may be any LISP data objects.

The number of dimensions of an array is called its rank (this terminology is borrowed from APL). Thisis a
non-ncgative intcger; for convenience, it is in fact required to be a fixnum (an integer of limited magnitude).
Likewise, cach dimension has a length that is a non-negative fixnum. The total number of clements in the
array is the product of all the dimensions.

It is permissible for a dimension to be zcro. In this case, the array has no clements, and any attempt to
access an clement in in crror. However, other propertics of the array (such as the dimensions thermselves)
may be used. If the rank is zcro, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zcro-rank array thercfore has a single clement.

24 , COMMON LISP REFERENCE MANUAL

An array element is specified by a sequence of indices. The length of the sequence must cqual the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension. .
Array indexing is therefore zero-origin, not onc-origin as in (the default case of) FORTRAN. '

As an example, supposc that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then second index may be 0, 1, 2, 3, or 4. One may refer to array elements using the function aref
(page 185):

(aref foo 2 1)

refers to element (2, I) of the array. Note that aref takes a variable number of arguments: an array, and as
many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

One-dimensional arrays and lists are collectively considered to be sequences. They differ in that any
component of a one-dimensional array can be accessed in constant time, while the average component access
time for a list is linear in the length of the list; on the other hand, adding a new element to the front of a list
takes constant time, while the same operation on an array takes time lincar in the length of the array.

In general, arrays can be multi-dimensional, can have fill pointers, can share their contents with other array
objects, and can have their size altered dynamically after creation. ‘ '

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional
array is stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last
index varying fastest. - This is important in two situations: (1) when arrays with diffcrent dimensions share
their contents, and (2) when accessing very large arrays in virtual-memory implementation. (The first
situation is semantic, the second pragmatic.)

If for some purpose an array is needed that is one-dimensional, unshared with any other array, and is not to
have its size increased later, one may request that a vector be created. A vector is a limited kind of array.
Some implementations can handle vectors in an especially efficient manner. Any operation that works for an
array works on a vector, but certain opcrations such as vref (page 187) opcrate only on vectors and may
therefore be made more efficient. Morcover, vectors may have a morc compact represcntation than typlcal
arrays.

A general vector (a one-dimensional array of S-cxpressions with no additional paraphernalia) can be
notated by notating the components in order, separated by whitespace and surrounded by “#(™" and *“) ™.

For cxample:

#(a b c) 3 A vector of length 3.
#(2 357 11 13 17 19 23 29 31 37 41 43 47) .

; A vector containing the primes below. 50.
#() ,An cmpty vector.

Rationale:- Numerous people have suggested that square brackets be used to notate vectors: “[a b c¢]" instcad of “#(a b
¢)”. 'This would be shorter, perhaps more rcadabie, and certainly in accord with cultural conventions in other parts of .

computer science and mathematics. However, to preserve the usclulness of the user-definable macro-character feature of

DATA TYPES _ 25

the function read (page 237), it is necessary to leave some characters to the user for this purpose. Ixperience in
MacLisp has shown that users, especially. implementors of A1 languages. ofien want to define special kinds of brackets.
Therefore ComMON Lisp avoids using these characters in its syntax so that the user may freely redefine their syntax:

LI

Implementations may provide certain specialized representations of arrays for efficiency in the case where
all the components are of the same specialized (typically numeric) type. All implementations provide
specialized arrays for the casecs when the components are characters or when the components are always 0 or
1; the one-dimensional instances of these specializations are respectively called strings and bit-vectors. Special
_notations are provided for the further restriction of these types to the vector case. A string vector can be
written as the sequence of characters contained in the string, preceded and followed by a “"” (double-quote)
character. Any “"” or “\” character in the sequence must additionally have a “\” character before it.

For example:
"Foo" ‘ : ; A string with three characters in it.
"o ; An empty string.
"\"APL\\360?\" he cried." ; A string with twenty characters.
"Ix] = |-x|" ; A ten-character string.

Notice that any vertical bar “|” in a string need not be preceded by a “\”. Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a “\””. The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name -is the contained sequence of
characters.

A bit-vector is written much like a string, using double-quotes; however, a “#” is written before it, and the
elements of the bit vector must be 0 or 1.

For ekample:
#"10110" . ; A bit vector with five bits. Bit0is 1.
#n" ; A null bit vector.

#"110101000101000101" ; Bit n of this bit vector is 1 iff n+2 is prime.

3.6. Structures

Different structurcs may print out in diffcrent ways; the definition of a structure type may spccify a print
procedure to use for objects of that type (sce the :printer (page DEFSTRUCT-PRINTER-KWD) option
todefstruct (page 199)). The default notation for structures is:

#S (structure-name

slot-name-1slot-value-1
slot-name-2 slot-value-2

.)
where “#S” indicates structure syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and cach corresponding slot-value is the representation
of the LISP object in that slot. ' ‘

26 ' ' . COMMON LISP REFFRENCE MANUAL

3.7. Functions

A function is anything that may be correctly given to the funcall (page 64) or apply (page
63) function, to be exccuted as code when arguments are supplied. ‘

1

A subr (pronounced “subber”) is a compiled code object. A closure is an object that represents an inner
function together with environmental information about variable bindings of indefinite extent to which the
-function may refer.

A list whose caris Tambda or se1ect may serve as a function; see Chapter 5.

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol’s function cell to be used. See fsymeval (page 57).

3.8. Randoms

Objects of type random tend to have implementation-dependent semantics, and so may print in
implementation-dependent ways. As a rule, such objects cannot reliably be reconstructed from a printed
representation, and so they are printed usually in a format informative to the user but not acceptable to the
read function: ')

#<useful information>
A hypothetical example might be:
#<stack-pointer si:rename-within-new-definition-maybe 311037552>

The LIsP reader will signal an error on encountering “#<”.

It is not neccssarily the case that all objects that are printed in the form “#<...>" are of type random;
however, any object of type random will be printed in that form. ’

Chapter 4

Type Specifiers

In CoMMON LISP, types are named by LISP objects, specifically symbdls and lists, called type specifiers.
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of
simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure
type is defined using defstruct (page 199), the name of the structure type becomes a valid type symbol.

‘ Ifa type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type information.
As a general convention, any subsidiary item may be replaced by *, or simply omitted if it is the last item of
the list; in any of these cases the item is said to be unspecified.

??? Query: Formerly ? was uséd to indicate an unspecified item, but that conflicted with the convention that the characters
*17[3{}” sheuld be reserved to the user for possible use as macro characters. Is this change satisfactory?

4.2. Type Specifiers That Combine

The following type specifier lists define a data type in terms of other types or objects.

null cons Tist . symbol
vector -string bit-string array
function sequence _ random - character
number stream float string-char
integer fixnum bignum : bit
_short-float single-float double-float =~ . long-float
complex ratio - readtable package
subr closure '

Table 4-1: Standard Type Specifier Symbols

. (oneof object] object? .. .)

—-27 —

28 o , COMMON LISP REFERINCE MANUAL

This denotes the set containing preciscly those objects named. An object is of this type if
and only if itis eq1 (page 49) to one of the specificd objects.

Compatibility note: This is approximately equivalent to what the INTerLISP DECL package calls
memq. What INTERLISP calls oneof, CoMMON Lisp calls or (see below).

(not type) This denotes the set of all those objects that are not of the specified type.

(or typel type2 ...)

This denotes the uniyon of the specified types. For example, the type 1ist by definition is

the same as (or null cons). Also, the value returned by the function position
(page 163) is always of type (or nul1 (integer 0 *)) (either nil or a non-negative
integer). .

Compatibility note: This is equivalent to what the INTERLisp DECL package calls oneof.

(and typel tpe? ...)
This denotes the intersection of the specified types.

Compatibility note: This is equivalent to what the INTERLIsp DECL package calls all1of.

4.3. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializations may
be reflected by more efficient representations in the underlying implementation. As an example, consider the
type (array short-float). Implementation A may choose to provide a specialized representation for
- arrays of short floating-point numbers, and implementation B may choose not to.

If you should want to create a array for the express purpose of holding only short-float objects, you may
‘optionally specify to make-array (page 183) the element type short-float. This does not reguire
make-array to create an object of type (array short-float); it merely permitsit. The request is
construed to mean “Produce the most specialized array representation capable of holding short-floats that the
implementation can provide.” Implementation A will then produce a spccialized short-float array (of type
(array short-float)), and implementation B will produce an ordinary array (one of type (array

t)). ' ‘

If Qné were then to ask whether the array were actually of type (array short-float), implementation
A would say “yes”, but implementation B would say “no”. This is a property of make-array and similar
functions: what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: —declaration and discrimination. Declaring to
make-array that clements will always be of type short-f1oat permits optimization. Similarly, declaring
that a variablc takes on values of type (array short-float) amounts to saying that the variable will take
on valucs that might be produced by specifying clement type short-float to make-array. On the other
hand, if the predicate typep is uscd to test whether an object is of type (array short-float), 'only
objects actually of that specialized type can Satisfy the test; in implementation B no object can pass that test.

TYPE SPECIFILRS ' : 29

The valid list-format names for data types are:

' (array type dimensions)

This denotes the set of specialized arrays whose elements are all members of the type type
and whosc dimensions match dimensions. For declaration purpescs, this type encompasses
those arrays that can result by specifying fype as the clement type to the function
make-array (page 183); this may be different from what the type means for
discrimination purposes. fype must be a valid type specifier or unspecified. dimensions
may be a non-negative integer, which is the number of dimensions, or it may be a list of
non-negative intcgers representing the length of each dimension (any dimension may be
unspecified instead), or it may be unspecified.

For example:
(array integer 3) ; Three-dimensional arrays of integers.
(array integer (* * *)) ;Three-dimensional arrays of integers.
(array * (4 5 6)) ; 4-by-5-by-6 arrays.

(array character (3 *)) ;Two-dimensional arrays of characters
; that have exactly three rows.
(array short-float ()) ; Zero-rank arrays of short floating-point numb

(vector type size)
This denotes the set of specialized vectors whose elements are all members of the type type
and whose lengths match size. For declaration purposes, this type cncompasses those -
vectors that can result by specifying fype as the element type to the function
make-vector (page 185); this may be different from "what the type means for
discrimination purposes. fype must be a valid type specifier or unspecified. size may be a

‘ non-ncgative integer or unspecified.
For example: _ .
(vector double-float) ; Vectors of double-format floating-point numb
(vector * 5) ~ ; Vectors of length 5.
(vector t 5) ; General vectors of length 5.
(vector (mod 32) *) ; Vectors of integers between 0 and 31. -

—
Note that (vector t 5) isasubsctof (vector * 5).

The specialized types (vector string-char) and (vector bit) are so useful that
thcy have the special names string and bit-string; cvery COMMON LISP
implementation must provide distinct representations for these as distinct specialized data
types. : '

Rationale: Nir. had been using the name bits for a bit vector. This tended to lead to awkward
prose: onc had to speak of “a bits™. Thesingular noun bit-vector is casier to discuss.

(complex riype itype)
Every clement of this type.is a complex number whose real part is of type riype and whose
imaginary part is of type ifype. For declaration purposcs, this typc encompasses those
complex numbers that can rcsult by giving numbers of the specified type to the function
complex (page 134); this may be diffcrent from what the type means for discrimination
pUrposcs.

‘ In a break with the usual convention on omitted items, if itype is omitted (but not if it is
cxplicitly unspecificd) then it is taken to be the same as riype. As cxamples, Gaussian

30

COMMON LISP REFERENCE MANUAL

integers mighf be described as (complex integer), and the result of the complex
logarithm function might be described as being of type (complex float (float

#.(- pi) #.pi)).

(function (argl-type arg2-iype ...) valuel-type valuel-type ...)

This type may be used only for declaration and not for discrimination; typep (page
46) will signal an error if it encounters a specifier of this form. Every element of this type is
a function that accepts arguments at /east of the types specificd by the argj-type forms, and
returns values that are members of the types specified by the valuej-type forms. The
&optional, &rest, and & ey keywords may appear in either list of types; in the list of
values, they indicate the parameter list of another function that, when given to mvcall

(page 82) along with the valucs, woiuld be suitable for recciving those values. As an
example, the function cons (page 168)is of type (functien (t t) cons), because
it can accept any two arguments and always returns a cons. It is also of type (function

(float string) 1ist), because it can certainly accept a floating-point number and a
string (among other things), and its result is always of type 11ist (in fact a cons and never
nu11, but that does not matter for this type declaration).

4.4. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far
too verbose to write out explicitly (using, for example, oneof).

(integer low high)

(mod n)

(signed-byte

This denotes the integers between low and high. The limits Jow and high must each be an
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively. The type fixnum is simply a name for
(integer smallest largest) for implementation-dependent values of smallest and
largest. The type (i nteger 0 1) is so useful that it has the special name bit.

The set of non- negauve integers less than n. This is equxvalent to (mteger 0 n—1) or
to(integer O (n))

5) :
The set of integers that can be represented in two ’s-complement form in a byte of 5 bits.
This is equivalent to (integer —2571 25=71-1),

(uns1gned byte s)

The set of non-negative integers that can be represented in a byte of s bits. This 1s
equivalent to- (mod.- 2°), that is, (1nteger 0..2°~1).

'(rat1ona1 low high)

This denotes the rationals between Jow and high. The limits Jow and high must cach be a
rational, a list of a rational, or unspecificd. A rational is an inclusive limit, a list of a -
rational is an cxclusive limit, and * mecans that a limit docs not cxist and so effectively
denotes minus or plus infinity, respectively. '

TYPL SPECIFIERS 31

(float low high)
The sct of floating-point numbers between Jow and high. The limits Jow and high must
cach be a floating-point number, a list of a floating-point number, or unspecified; a
floating-point number is an inclusive limit, a list of a floating-point number is an exclusive
limit, and * mcans that a limit does not exist and so cffectively denotes minus or plus
infinity, respectively.

In a similar manner one may usec:

(short-float low high)
(single-float low high)
(double-float low high)
(1ong-float low high)

In this case, if a limit is a floating-point number (or a list of one), it must be one of the
appropriate format.

(string size) This means the same as (vector string-char size): the set of strings of the
indicated size.

{(bit-vector size) .
This means the same as (vector bit size): the set of bit-vectors of the indicated size.

4.5. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new structure type with
defstruct (page 199) automatically causes the name of the structure to be a new type specifier symbol.
Second, the deftype special form can be used to declare new abbreviations.

deftype name varlist {form}* - ' [Special form]
This is very similar to a defmacro (page 91) form: name is the symbol that identifies the type
specifier being defined, varlist is similar in form to a lambda-list (and may contain &optional
and &rest tokens), and body is the body of the expander function. If we view a type specifier list
as a list containing the type specifier name and some argument forms, the argument forms
(unevaluated) are bound to the corresponding paramcters in varfist. Then the body forms are
evaluated as an implicit progn, and the value of the last form is intcrprcted as a new type specifier
for which the original specificr was an abbreviation.

deftype differs from defmacro in that if no initform is specified for an &optional parameter,
the default valueis *, not nil.

For cxample:

32

COMMON LISP REFERENCE MANUAL

{deftype mod (n) (integer 0 (,n)))

(deftype 1ist () ’(or null cons))

(deftype square-matrix (&optional type size)
(array ,type (,size ,size})) :

(square-matrix short-float 7) means (array short-float (7 7))

(square-matrix bit) means (array bit (* *))
If the type name defined by def type is used simply as a.type specifier symbol, it is interpreted as
a type specifier list with no argument forms. Thus, in the example above, square-matrix would
mean (array * (* *)), the set of two-dimensional arrays. This would unfortunately fail to
convey the constraint that the two dimensions be the same; (square-matrix bit) has the
same problem. This is an inherent limitation of the type definition system in COMMON LISP.

777 Query: Can this be fixed without too much hair? Should we have the INTERLISP satisfies clause?

Chépter 5

Program Structure

In the previous chapter the syntax was sketched for notating data objects in COMMON LiSP. The same
syntax is used for notating programs, because all COMMON LISP programs have a representation as COMMON
Lisp data objects. ‘ :

5.1. Forms

The standard unit of interaction with a COMMON LISP implementation is the form, which is simply an
S-expression meant to be evaluated as a program to produce one or more values (which are also data objects).
One may request evaluation of any data object, but only certain ones (such as symbols and lists) are
meaningful forms, while others (such as most arrays) are not. Examples of meaningful forms are 3, whose
value is 3, and (+ 3 4), whose value is 7. We write “3 => 3” and “(+ 3 4) => 7” to indicate these facts
- (“=>" means “evaluates t0”).

Meaningful forms may be divided into three categories: self-evaluating forms, such as numbers; symbols,
which stand for variables; and lists. The lists in turn may be divided into three categories: special forms,
macro calls, and function calls.

5.1.1. Self-Evaluating Forms

All numbers, strings, and bit-vectors are self~evaluating forms. When such an object is evaluated form, that
object itself (or possibly a copy in the case of numbers) is returned as the value of the form. The empty list
(), which is also the false value n1i1, is also a self-evaluating form: the value of ni1 is ni1. Keywords
(symbols written with a leading colon) also evaluate to themsclves: the value of :start is :start.

5.1.2. Variables

Symbols arc uscd as names of variables in COMMON LISp programs. When a symbol is evaluated as a form,
the value of the variable it names is produced. For example, after doing (setq items 3), which assigns
the value 3 to the variable namced items, then items => 3. Variables can be assigned to (as by setq (page
58)) or bound. Any program construct that binds a variable cffectively saves the old value of the variable and
causes it to have a new value, and on cxit from the construct the old valuc is rcinstated.

— 33 —

34 COMMON LISP REFERENCE MANUAL

There are actually two kinds of variables in COMMON LISP, called lexical (or static) variables and special (or
dynamic) variables. Atany given time either or both kinds of variable with the same name may have a current
value. Which of the two kinds of variable is referred to when a symbol is evaluated depends on the context of
the evaluation. The general rule is that if the symbol occurs textually within a program construct that creates
a binding for a variable of the same name, then the reference is to the kind of variable specified by the
binding; if no such program construct textually contains the reference, then it is taken to refer to the spemal
variable of that name.

The distinction between the two kinds of variable is one of scope and access. A lexically bound variable
can be referred to only by forms occurring at any place textually within the program construct that binds the
variable. A dynamically bound (special) variable can be referred to at any time from the time the binding is
made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding
imposes spatial limitations on occurrences of references, whereas dynamic binding imposes temporal
limitations.

The value a special variable has when there are currently no bindings of that variable is called the global
value of the variable. A global value can be given to a variable only by assignment, because a value given by
binding by definition is not global. :

The symbols t and ni1 are reserved. One may not assign a value to t or ni1, and one may not bind t or
nil. The global value of t is always t, and the global value of ni1 is always ni1. Constant symbols defined
by defconst (page 44) also become reserved and may not be further assigned to or bound.

Rationale: It would seem appropriate for the compiler to be justified in issuing a warning if one does a setq on a constant
deﬁned by defconst. If one cannot assign, one should not be able to bind, either.

5.1.3. Special Forms

If a list is to be evaluated as a. form, the first step is to examine the first element of the list. If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the
" word “special™ is unrelated to its use in the phrase “special variable™.)

Special forms are gencrally environment and control constructs. Every special form has its own
idiosyncratic syntax. An cxample is the if special form: “(if p (+ x 4) 5)"in COMMON LISP means
what “if p then x+4 else 5" would mean in ALGOL.

The evaluation of a special form normally produces a value (but it may instcad call for a non-local exit (see
throw (page 87)) or produce no valucs or morc than one value (scc values (page 82))).

The sct of special forms is fixed in COMMON LISP; no way is provided for the user to define more. The
user can creatc new syntactic constructs, however, by defining macros.

An implementation is free to implement as a macro any construct described herein as being a special form.
Converscly, an implementation is free to implement as a special form any construct described hercin as being

PROGRAM STRUCTURE

35

defun (page42)
defvar (pagc43)
defconst (page44)
and (page 52)

or (page 52)

quote (page 56)
function (page56)
setq (page 58)
psetq (page 58)
progn (page 64)
progl (page 65)
prog2 (page 65)
let* (page66)
progv (page 67)
cond (page 68)

if (page 69)

when (page 69)
unless (page 70)
case (page70)
typecase (page70)
do (page73)

do* (page75)
dolist (page76)
dotimes (page 76)
prog (page78)
prog* (page 80)

go (page80)

return (page72)

return-from (page72)
multiple-value-Tist (page 82)

mvcall (page 82)
mvprogl (page32)

multiple-value-bind (page 82)
multiple-value (page83)
catch (page 85)

catch-all (page85)

_unwind-all (page85)

unwind-protect (page86) .
throw (page 87)
declare (page95)

“locally (page 96)

the (page 99)

do-symbols (page 116)
do-external-symbols (page 116)
do-internal-symbols (page 116)
do-all-symbols (page 116)
with-open-file (page267)
condition-bind (page272)

(The page numbers indicate where the definitions of these special forms appear.)
“Table 5-1: Names of Al COMMON Lisp Special Forms

a macro, provided that an equivalent macro definition is also provided.

5.1.4. Macros

If a form is a list and the first clement is not the name of a special form, it may be the name of a macro;if so,
the form is said to be-a macro call. A macro is essentially a function from forms to forms that will, given a call
to that macro, compute a new form to be evaluated in place of the macro- call. (This computation is
somctimes referred to as macro expansion.) For example, the macro named push (page 172) will take a form
such as (push x stack) and from that form compute a new form (setf stack (cons x stack)).

“We say that the old form expands into the new form. The new form is then evaluated in place of the original

form; the value of the new form is returncd as the value of the original form.

There are a number of standard macros in COMMON LISP, and the user can definc more by using
defmacro (page 91).

Macros provided by a COMMON LIS implementation as described herein may expand into code that is not
portable among diffcring implementations. 'That is, a macro call may be implementation-independent by

36 ' COMMON LISP REIERENCE MANUAL

virtue of being so defined in this document, but the expansion need not be.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that names a special form or
macro, then the list is assumed to be a function call. The first elcment of the list is taken to name a function.
Any and all remaining elements of the list are forms to be evaluated: one value is obtained from each form,
and these values become the arguments to the function. The function is then applied to the arguments. The
functional computation normally produces a value (but it may instead call for a non-local exit (see throw
(page 87)) or produce n_b values or more than one value (see vatues (page 82))). If and when the function
returns, whatever value(s) it returns becomes the value(s) of the function-call form.

For examplé, consider the evaluation of the form (+ 3 (* 4. 5)). The symbol + names the addition
function, not a special form or macro. Therefore the two forms 3 and (* 4 5) are evaluated to produce
arguments. The form 3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are evaluated, producing arguments 4 and 5 for the multiplication.
The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as
arguments to the addition function, which calculates and returns the number 23. Theerfore we say (+ 3 (*
4 5)) => 23.

5.2. Functions

There are two ways to indicate a function to be used in a function call form. One is to use a symbol that
names the function. This use of symbols to name functions is completely independent of their use in naming’
special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is
the symbol 1ambda. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda-
_expressions and symbols as names of functions can appear only as the first element of a function-call form, or
as the second element of the function (page 56) special form.

5.2.1. Named Funcﬁons

A name can be given to a function in onc of two ways. A global name can be given to a function by using
the defun (page 42) special form. A local name can be given to a function by using the 1abels (page
67) special form. If a symbol appears as the first clement of a function-call form, then it refers to the
definition established by the inncrmost 1abels construct that textually contains the reference, or if to the
global definition (if any) if therc is no such containing 1abe1s construct. : '

When a function is named, a lambda-cxpression is associated with that name (in effect). See defun (page
42) and Tabels (page 67) for an cxplanation of these lambda-expressions.

PROGRAM STRUCTURE 37

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:
(lambda lambda-list . body)

The first clement must be the symbol 1Tambda. The second element must be a list. It is called the lambda-list,
and spccifies names for the parameters of the function. When the function denoted by the Jambda-expression
is applied to arguments, the arguments are matched with the parametcrs specificd by the lambda-list. The
body may then refer to the arguments by' using the parameter names. The body consists of any number of
forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are
returned as the value(s) of the application (the value ni1 is returned if there are zero forms in the body).

The complete syntax of a lambda-expression is:

(1ambda ({var}* ‘
{[&optional {var | (var [initform [svar]])}*] [&rest varl]
| [&key {var | ({var | (keyword var)} [initform [svar]])}*]}
[&aux {var | (var [initform])}*])
{(declare {declaration}*)}*
{form}*)
Each element of a lambda-list is either a parameter specifier or a separator token; separator tokens begin with
“&”. In all cases var must be a symbol, the name of a variable, and similarly for svar also; each keyword must
be a keyword symbol. An initform may be any form.

A lambda-list has three parts, any or all of which may be empty:

o Specifiers for the.required parameters. These are all the parameter specifiers up to the first
separator token; if there is no such token, then all the specifiers are for required parameters.

e Either optional and rest parameters or keyword parameters (but not both).

o If the token &optional is present, the optional parameter specifiers are those following the
token -&optional up to the next separator token or the end of the list. Following or
instead of the &optional token and its following specificrs may be the token &rest
followed by a single rest parameter specifier.

o If the token &k ey is present,.all specifiers up to the next scparator token (which in this case
must be &aux) or the end of the list are keyword parameter specifiers. '

o If the token &aux is present, all spcciﬁcrs after it are auxiliary variable spccifiers.

Compatibility note: What is provided here is a subset of the functionality currently provided in Lisp Machine Lisp. The
principal restrictions here are: | : '

o Keyword paramcters may not be mixed with (positional) optional and rest parameters. The rationale for not mixing
keyword paramecters and positional optionals is that it would be very awkward o define a function in such a way that
one could not specify any keyword parameters unicss all positional optionals were specified. If the positional ones
arc to be non-trivially optional, then all the keyword paramecters should also be optional, and as a matter of style it
would be better for all the optional paramcters to have keywords. (We know how to make interlcaved required and
optional positional paramcters work, 100, but as a matter of style we only allow optionals to follow required.) The
rationale for not mixing keyword and rest paramelers is less strong, and motivated primarily by a fecling of

38 . ‘ » COMMON LISP REFFRENCE MANUAL

awkwardness in lctting more than one parameter reccive the samie argument. If we allow that. then why not (&rest
x a b &optional c d)? There may be aliasing problems: can we guarantee, if a parameter is setq’d, that the
corresponding part of a &rest list will or will not be correspondingly changed?

e No keyword argument may be provided for which there is no matching keyword parameter. This is a logical
consequence of not mixing keyword and rest parameters, and also greatly improves program readability: the
lambda-list enumerates all relevant keywords. Is non-trivial use made of &allow-extra-keywords in Lisp
Machine Lisp?

How do people feel about this? Lisp Machine Lisp wﬂl run correct programs constructed according to the above
specifications; it is a superset.

When the function represented by the lambda-expression is applied to arguments, the arguments and
parameters are processed in order from left to right. In the simplest case, only required parameters are
present in the lambda-list; each is specified simply by a name var for the parameter variable. When the
function is applied, there must be exactly as many arguments as there are parameters, and each parameter is

bound to one argument. Here, and in general, the parameter is bound as a lexical variable unless a

declaration has been made that it should be a special binding (see declare (page 95)).

In the more general case, if there are n required parameters (# may be zero), there must be at least n
arguments, and the required parameters are bound to the first # arguments. The other parameters are then
processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments
remain, then the parameter variable var is bound to the next remaining argument, just as for a required
paramcter. If no arguments remain, however, the initform part of the parameter specifier is evaluated, and the
parameter variable is bound to the resulting value (or to nil if no initform appears in the parameter

_specifier). If another variable name svar appears in the specifier, it is bound to frue if an argument was

available, and to false if no argument remaincd (and therefore initform had to be evaluated). The variable
svaris called a supplied-p parameter; it is not bound to an argument, but to a value indicating whether or not
an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or may not be a rest parameter.
If there is nonc, then there should be no unprocessed arguments (it is an crror if there arc). If there is a rest
parametcr, it is bound to a list of all as-yet-unprocessed arguments. (If no unprocessed arguments remain, the
rest parameter is bound to the empty list.) '

Instead of optional and rest parametcrs, keyword parameters may be specified instead. In that casc, after all
requircd parameters (and an equal number of arguments) have been processed, there must remain an even
number of arguments; these are processcd in pairs, the first argument in cach pair being interpreted as a
keyword name and the sccond as the corrcspondmg valuc. No two argument pairs should have the same
keyword name.

In cach keyword parameter specificr must be a name var for the parameter variable. If an explicit keyword
is specified, that is the keyword name for the parameter. Otherwise the name var serves also as the keyword
name, not of itself, but in that a keyword with the same name (in the keyword package) is uscd as the

PROGRAM STRUCTURE ‘ 39

keyword. Thus
(defun foo (&key radix (type ’integer)) ...)
means exactly the same as
(defun foo (&key ((:radix radix)) ((:type type) ’integer)) ...)

For cach keyword parameter specificr, if there is an argument pair whose keyword name matches that
specifier’s. keyword name, then the parameter variable for that specifier is bound to the second item (the
value) of that argument pair. If no such-argument pair exists, then the initform for that specifier is evaluated
and the parameter variable is bound to that value (or to ni1 if no initform was specified). The variable svaris
treated as for ordiriary optional parameters: it is bound to frue if there was a matching argument pair, and to
false otherwise. It is an crror if an argument pair has a keyword namc not matched by any parameter
specifier. : ’

After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the
token &aux) are processed from left to right. For each one the initform is evaluated and the variable var
bound to that value (or to ni1 if no initform was specified). (Nothing can be done with &aux variables that
cannot be done with the special form Tet (page 65). Which to use is purely a matter of style.)

As a rule, whenever any initform is evaluated for any paramecter specifier, that form may refer to any
parameter variable to the left of the specifier in which the initform appears, including any supplied-p
variables, and may rely on no other parameter variable having yet been bound (including its own parameter
variable).

Compatibility note: At present, one cannot depend on this in Lisp Machine Lisp for keyWord parameters. It is the “obvious”
generalization of the current state of affairs for optional parameters and aux variables. Opinions? :

Once the lambda-list has been processed, the forms in the body of the lambda-expression are executed.
These forms may refer to the argumerits to the function by using the names of the parameters. On exit from
the function, cither by a normal return of the function’s value(s) or by a non-local exit, the parameter
* bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for
any such binding can later be reinstated only if a closure over that binding was crcated and saved before the
exit occurred). ‘

Examples of &optional and &rest parameters:

40

COMNMON LISP REFERENCE MANUAL

({(lambda (a b) (+ a (* b 3))) 4 5) => 19
((Tambda (a &optional (b 2)) (+ a (* b 3))) 4 5b) => 19
((tambda (a &optional (b 2)) (+ a (* b 3))) 4) => 10
((lambda (&optional (a 2 b) (¢ 3 d) &rest x) (list a b c d x)))
=> (2 nil 3 nil nil) :
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6)
=> (6 t 3 nil nil) .
((lambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3)
=> (6 t 3t nil) '
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (Tist a b c d x))
6 3 8) ' _
= (6 t3t (8)) _ v
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x))
6 389 10 11))
=> (6 t 3t (89 10 11))
Examples of &k ey parameters:
((lambda (a b &key c d) (list a b c d)) 1 2) => (1 2 nil nil)
((lambda (a b &key c d) (list a b c d)) 1 2 :c 6) => (1 2 6 nil)
((lambda (a b &key c d) (list a b c d)) 1 2 :d 8) => (1 2 nil 8)
((lambda (a b &key ¢ d) (list-ab cd)) 12 :c6 :d8) => (126 8)
((lambda (a b &key c d) (list a b cd)) 12 :d 8 :c 6) => (1 2 6 8)
((1lambda (a b &key c d) (list a b c d)) :a 1 :d 8 :c 6) => (:a 16 8)
((lambda (a b &key ¢ d) (list a b c d)) :a :b :c :d)
=> (:a :b :d nil) v

The &optional, &rest, and &key pvaraineter specifiers are permitted, but not terribly useful, in lambda-
expressions appearing explicitly as the first element of a function-call form. They are extremely useful,
however, in functions given global names by defun.

5.2.3. Select-Expressions

A select-expression is a list with the following syntax:
(select {(keys lambda-list {(declare {declaration}*)}* {form}*)}*)

This is a function computationally equivalent to a lafnbda-expression containing a case (page 70) form
(assuming the variables key and args to be names not used in any specified lambda-list, declaration, or
Sform):

(Tambda (key &rest args)
(case key

{(keys
(app]y #’(lambda Jambda-list
{(declare {declaration}*)}*

{form}*)
args))}*))

The function takes its first argument and dispatches on it to one of a set of sub- funcnons that can acccpt the
remaining arguments. '

Actually, there is another type of clausc that may appear (that would have made the above description too
complicated had it been included in the syntacical formula): if a select clause is simply (keys symbol),

PROGRAM STRUCTURE ‘ 41

then symbo1l is taken to be the name (that may be global, or lexically bound by a Tabels (page 67) or
flet (page 67) construct) for a function to be called. In this case the namead function is given all the
arguments given to the sclect-function, not merely the arguments after the first one.

‘What makes select so uscful is that the different sub-functions can accept the rest of the arguments in
different ways, and that a gopod COMMON LISP compiler can easily produce better code for a se1ect-defined
function than indicated by the usage of app1y above. ' i

Compatibility note: This use of select asa 1ambda-like keyword does not conflict with its use in Lisp Machine Lisp as the
name of a special form.

defselect (page42)is aconvenient way of defining a globally named select-function.

Select-functions are handy for defining message-passing protocols. For example, here is an “actor”
implementation of cons (page 168):

(defun gons (the-car the-cdr)
#'(select (:car () the-car)
:cdr () the-cdr)
:rplaca (newvalue) (setq the-car newvalue))
:rplacd (newvalue) (setq the-cdr newvalue))

:consp (). .t))) ’
The result of the call (qons ’a 5) is a functional object; call it x. Then

o~~~

(funcall x :cdr) => 5

(funcall x :rplacd "Hello") => "Hello"
‘ (funcall x :cdr) => "Hello"
One could then define

(defun gar (x) (funcall x :car))

(defun qdr (x) (funcall x :cdr))

(defun rplaga (x y) (funcall x :rplaca y))
(defun rplagd (x y) (funcall x :rplacd y))
(defun qonsp (x) (funcall x :consp))

to complete the “actor” simulation of the properties of a cons cell.

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implcmentation is via what is ‘called a
read-eval-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk
file), cvaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk
file). As a rule any form (cvaluable S-expression) is acceptable. However, ccrtain special forms are
specifically designed to be convenient for use as fop-level forms, as opposed to form embedded within other
forms, as (+ 3 4) is cmbedded within (if p (+ 3 4) 6). These top-level special forms may be used to
define globally named functions, to define macros, to make declarations, and to define global values for
special variables. ‘

42 » - COMMON LISP RETERENCE MANUAL

5.3.1. Delining Naméd Functions

defun name lambda-list {(declare {declaration}*)}* [doc-string] {ﬂmn}* [Special form] .
Evaluating this special form causes the symbol name to be a global name for the function specified
by the lambda-expression

(1ambda lambda-list {(declare {declaration}*)}* {form}*

defined in the lexical environment in which the defun form was executed (because defun forms
normally appear at top level, this is normally the null lexical environment).

If the optional documentation string doc-string is present (it may be present only if at least one form
is also specified, as it is otherwise taken to be a form), then it is put on the property list of the

“symbol name under the indicator documentation (see pu tpr). By convention, if the string
contains multiple lines then the first line should be a complete summarizing sentence on which the
remainder expands. '

The body of the defined function is implicitly enclosed in a block (page 71) construct whose
name is the same as the name of the function. Therefore return (page 72) and return-from
(page 72) may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well by defun. The name
is returned as the value of the defun form.

For example:

(defun discriminant (a b c).
(declare (number a b c))
"Compute the discriminant for a quadratic equation.
Given a, b, and ¢, the value b~2-4*a*c is calculated.
The quadratic equation a*x~2+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."
(- (*bb) (*4ac)))
=> discriminant
- andnow (discriminant 1 2/3 -2) => 76/9
It is permissible to redefine a function (for example, to install a corrected version of an incorrect
definition!). It is not permissible to define as a function any symbol in use as the name of a special
form or macro. To redefinc a macro name as the name of a function, fmakunbound (page
59) must first be applied to the symbol. '

77?7 Query: What do people think of this safety fcature" The error handler could offer to do the
fmakunbound for you and retry.

defselect name [doc-string] {(keys lambda-list {(declare {declaration}*)}* {form}*)}*[Special
Evaluating this spccial form causcs the symbol name to be a global name for a function, as for

defun (page 42). The function is defined in the lexical cnvironmcnt in which thc defselect
form was cxccuted (because defselect forms normal]y appcar at top level, thls is normally the

null lexical cnvnronmcnt)

PROGRAM STRUCTURE ‘ 43

The function defined is the rcsult of evaluating a select form
. (select {(keys lumbda-list {(declare {declaration}*)}* {form}*)
See Section SELECT-FUNCTIONS. : :

Compatibility note: As dcfined here, this is incompatible with Lisp Machine Lisp. The reason is the desire to
define it in terms of case (page 70). This means that the default. fall-through case can always be specified by
using t or otherwise as the key, and that one can associate several keys with one sub-function by using a list
of keys. Also, I haven't allowed for an automatic :which-operations method. Finally, here a doc-string is
allowed. Is this all right, or should we revert to the Lisp Machine Lisp definition?

5.3.2. Defining Macros

Macros are usually defined by using the special form defmacro (page 91). " This facility is fairly
complicated, and is described in Chapter 8.

5.3.3. Declaring Global Variables and Named Constants

defvar name [initial-value [documentation]] [Special form]
defvar is the recommended way to declare the use of a specxal variable in a program. It is
normally used only as a top-level form.
(defvar variable)
: declares variable to be special (see declare (page 95)), and may perform other system-
. dependent bookkeeping actions. If a second “argument” is supplied:
(defvar variable initial-value)
then variab1e is initialized to the result of evaluating the form initial-value unless it already has a
value. - initial-value is not evaluated unless it is used; this is useful if it does something expensive
like creating a large data structure. The initialization is performed by assignment, and so assigns
the variable a global value unless there are currently special bindings of that variable.

defvar should be used only at top level, never in function definitions.

defvar also provides a good place to put a comment describing the mcaning of the variable
(whereas an ordinary special dcclaration offers the temptation to declare several variables at
once and not have room to describe them ail). This can be a simple LisP comment:

(defvar tv-height 768) ;Height of TV screen in pixels.
or, better yct, a third “argument” to def var,’in which case {/arious programs can access the
documentation: ‘
. (defvar tv-height 768 "Height of TV screen in pixels")
The documentation should be a string.

44 COMMON LISP REFERENCE MANUAL

defconst name initial-value [documentation] ' _ [Special form]
defconst is similar to defvar, but declares a global variable whose value is “constant”. An
initial value is always given to the variable. Itis an error if there are currently any special bindings
of the variable (but implementations may or may not check for this). '

If the variable is already has a value, an error occurs unless the existing value is equal (page

50) to the specified initial-value.

Implementation note: Actually, a specific interaction should occur in which the user is asked whether it is
permissible to alter the constant. Perhaps there should be some mechanism to discover who uses the constant.

Rationale: defconst declares a constant, whose value will “never” be changed. Other code may depend on
this fact. On the other hand,defvar declares a global variable, whose value is initialized to something but will
then be changed by the functions that use it to maintain some state.

Once a symbol has been declared by defconst to be constant, any further assignment to of
binding of that variable is an error. This is the case for such system-supplied constants as t (page
45)and most-positive-fixnum (page 142).

Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns nil if the
condition is false, or some non-ni1 value if the condition is true. One may think of a predicate as producing
a Boolean value, where ni1 stands for false and anything else stands for rrue. Conditional control structures
such as cond (page 68), if (page 69), when (page 69), and unless (page 70) test such Boolean values.
We say that a predicate is frue when it returns a non-ni1 value, and is false when it returns ni1; that is, it is
true or false according to whether the condition being tested is true or faise.

By convention, the names of predicates usually end in the letter “p” (which stands for “predicate”).

The control structures that test Boolean values only test for whether or not the value is ni1, which is
considered to be false. Any other value is considered to be true. A function that returns ni1 if it “fails” and
some useful value when it “succeeds” is called a pseudo-predicate, because it can be used not only as a test but

also for the useful value provided in case of success. An example of a pseudo-predicate is member (page
176). _ :

If no better non-n1i1 value is available for the purpose of indicating success, by convention the symbol t is
used as the “standard” non-false value.

6.1. Logical Values

nil ' - ' [Constani]
The value of ni1 is always ni1. This object represents the logical false value and also the empty
list. It can also be written “()”.

t A . : [Constani]
- The valuc of t is always t.

— 45 —

46 COMMON LISP REFERENCE MANUAL

6.2. Data Type Predicates

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data
object one can determine whether or not it belongs to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicate

typep object &optional type ' [Function]
(typep object type) is a predicate that is true if object is of type type, and is false otherwise.
Note that an object can be “of” more than one type, since one type can include another. The type
may be any of the type specifiers mentioned in Chapter 4 except that it may not be or contain a
type specifier list whose first element is function.

(typep object) returns an implementation-dependent result: some fype of which the object is a
member. Implementations are encouraged to return the most specific type that can be
conveniently computed and is likely to be useful to the user. It is required that if the argument is a
named- structure created by defstruct then typep will return the name of that structure and
not the symbol structure. Because the result is implementation-dependent, it is usually better
to use typep of one argument primarily for debugging purposes, and to use typep of two
arguments or the t ypecase (page 70) special form in programs.

777 Query: One-argument typep remains as a hangover from MACLIsP. Unfortunately, any use of it in
CommoN Lisp is unlikely to be portable because CoMMON Lisp has many more data types than MAcLisp.
Moreover, the results of one-argument typep must be somewhat implementation-dependent even among
CoMMON Lisp implementations. Finally, it is not really a predicate. Perhaps the one-argument case should be
split off and renamed to, say, type-of or %data-type?

subtypep typel iype2 ' ' , | [Fi ;;iction]
The two type specifiers are compared; this predicate is true iff fypel is a (not necessarily proper)
subtype of fype2. The arguments must be type specifiers that are acceptable to typep (page 46).

6.2.2. Specific Data Type Predicates

The folldwing predicates are for testing for individual data types.

null object - , - [Function)
nul1 is true if its argument is (), and otherwise is false. This is the same operation performed by
the function not (page 51); however, not is normally used to invert a Boolean value, while nu11
is normally uscd to test for an empty list. The programmer can thercfore. express intent by the
choice of function name. '

(null x) <=> (typep x 'null) <=> (eq x '())

PREDICATES ' 47

symbolp object ' [Function)
symbo1p is true if its argument is a symbol, and O[hCl'Wle is false.
(symbolp x) <=> (typep x ’symbol)

atom object [Function)
The predicate atom is true if its. argument is not a cons, and otherwise is false. It is the inverse of
consp. Notethat (atom ’()) is true, because () =nil.

(atom x) <=> (typep x ’atom) <=> (not (typep x ‘cons))

consp object ‘ [Function]
The predicate consp is true if its argument is a cons, and otherwise is false. It is the inverse of
atom. Note that (consp ’'()) <=> (consp 'nil)=>nil.
(consp x) <=> (typep x 'cons) <=> (not (typep x ’'atom))

Compatibility note: Some Lisp implementations call this function pairp or 1istp. The name pairp was
rejected for CoMMON Lisp because it emphasizes too strongly the dotted-pair notion rather than the usual
usage of conses in lists. On the other hand, 11istp too strongly implies that the cons is in fact part of a list,
which after ail it might not be: moreover, () is a list, though not a cons. The name consp seems to be the
appropriate compromise.

listp object - [Function}
Tistp is true if its argument is a cons or the empty list (), and otherwise is false. It does not check
for whether the list is a “true list” (one terminated by n1i1) or a “dotted list” (one terminated by a
non-null atom). 4
(Tistp x) <=> (typep x '1list) <=> (typep x ’(cons null))

Compatibility note: Lisp Machine Lisp defines 1istp to mean the same as pairp, but this is under review.
The definition.given here is that adopted by NIL. T R .

numberp object } [Function)
numberp is true if its argument is any kind of number, and otherwise is false.

(numberp x) <=> (typep x ’number)

integerp object ’ ‘ [Function]
integerp is true if its argument is an integer, and otherwise is false. '
(integerp x) <=> (typep x ’integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as to whether this meant
“integerp” or “fixnump”, and so these names have been adopted here.

rationalp object - ' [Function] -

rationalp is truc if its argument is a rational number (a ratio or an mtcgcr) and otherwise is
false.

(rationalp x) <=> (typep x ’'rational)

48 ‘ COMMON LISP REFERENCE MANUAL

floatp object [Function]
f1oatp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) <=> (typep x ’'float)

complexp object R ' [Function]
‘complexp is trye if its argument is a complex number, and otherwise is false.

(complexp x) <=> (typep x 'complex)

characterp object - : _ [Function]
characterp is true if its argument is a character, and otherwise is false.

(characterp Xx) <=> (typep x ‘character)

stringp object [Function]
stringp is true if its argument is a string, and otherwise is false.

(stringp x) <=> (typep X ’string)

vectorp object . [Function)
vectorp is true if its argument is a vector, and otherwise is false.

(vectorp x) <=> (typep x ‘'vector)

arrayp object | ' - [Function)
arrayp is true if its argument is an array, and otherwise is false.
(arrayp x) <=> (typep x ’array)

functionp object . . -~ [Function]
' functionp is true if its argument is suitable for applying to arguments, using for example the
funcall or app1y function. Otherwise functionp is false.

subrp object . : [Function]
subrp is true if its argument is any compiled code object, and otherwise is false.
(subrp x) <=> (typep x ’subr)

closurep object B ' N o _ [Function)
closurep is true if its argument is a closure, and otherwise is false. :

PREDICATES _ » 49

6.3. Equality Predicates

CoMMON Lisp provides a spectrum of predicates for testing for equality of two objects: eq (the most
specific), eq1, equal, and equalp (the most gencral). eq and equal have the mcanings traditional in
Lisp. eq1 was added because it is frequently needed, and equalp was added primarily to have a version of
equal that would ignore type differences when comparing numbers and case differences when comparing
characters. If two objects satisfy any one of these cquality predicates, then they also satisfy all those that are
more general.

eq x y . [Function]
(eq x y) istrueif and only if x and y are the same identical object. (Implementationally, x and y
are usually eq if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily eq to each other. Symbols
with the same print name usually are eq to each other, because of the use of the intern (page
112) function. However, numbers with the same value need not be eq, and two similar lists are

usually not eq.
For example:
(eq ’a ’'b) isfalse
(eq ’a ’a) istrue
(eq 3 3) might be true or false, depending on the implementation
(eq 3 3.0) isfalse
(eq (cons 'a 'b) (cons 'a ’'c)) isfalse
(eq (cons ’a 'b) (cons ’'a 'b)) isfalse
(setq x ’(a . b)) (eq x x) istrue
(eq #\A #\A) might be true or false, depending on the implementation
(eq "Foo" "Foo") is false '
(eq "FOO" "foo") is false

Implementation note: eq simply compares the two pointers given it, so any kind of object that is represented in
an “immediate” fashion will indeed have like-valued instances satisfy eq. On the PERQ, for example, fixnums
and characters happen to “work”. However, no program should depend on this, as other implementations of
CoMMON Lisp might not use an immediate representation for these data types.

eql x y ' ‘ [Function)
The eq1 predicate is true if its arguments are eq, or if they arc numbers of the same type with the
same value (that is, they arc =. (page 118)), or if they are character objects that represent the same
character (that is, they are char= (page 148)).

For example:

50

COMMON LISP !{{{i ERENCE MANUAL

(eql ’'a ’b) isfalse

(eql 'a ’a) istrue

(eql 3 3) istrue

(eql 3 3.0) isfalse

(eql (cons ’a 'b) (cons ’a ’c)) isfalse
(eql (cons ’a ’'b) (cons ’a 'b)) isfalse
(setqg x "(a . b)) (eql x x) istrue
(eql #\A #\A) istrue

(eql "Foo" "Foo") is false

(eql "FOO" "foo") is false

equal x y ' - [Function]

The equal predicate is true if its arguments are similar (isomorphic) objects. A rough rule of
thumb is that two objects are equa if and only if their printed representations are the same.

Numbers and characters are compared as for eq1. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this does not ordinarily occur.

Objects that have components are equal if they are of the same type and corresponding
components are equal. This test is implemented in a recursive manner, and will fail to terminate
for circular structures. For conses, equal is defined recursively as the two car's being equal and
the two cdr's being equal. i

Two arrays are equal if and only if they have the same number of dimensions, the dimensions
match, the element types match, and the corresponding components are equal.

Compatibility note: In Lisp Machine Lisp, equal ignores the difference between upper and lower case in
strings. This violates the rule of thumb about printed representations, however, which is very useful, especially
to novices. It is also inconsistent with the treatment of single characters, which are represerited as fixnums.

Two pathnames are equa? iff corresponding components (host, device, and so on) are equivalent.
Whether or not case is considered equivalent in strings depends on the file name conventions of the

_ file system. The intent is that pathnames that are equa? should be functionally equivalent.

For example:

(equal ’a ’'b) is false

(equal ’a ’a) istrue

(equal 3 3) istrue

(equal 3 3.0) is false

(equal (cons ’a 'b) (cons ’a ’'c)) isfalse
(equal (cons 'a 'b) (cons 'a 'b)) istrue
(setq x "(a . b)) (equal x x) istrue
~(equal #\A #\A) istrue

(equal "Foo" "Foo") istrue

(equal "FOO" "foo") is false

To récursivcly compare only conscs, and compare all atoms using eq, usc tree-equal (page
168). ‘ '

PREDICATES ' 51

equalp x y &optional fuzz : [Function]

Two objects arc equalp if they are eq1, if they are characters and differ only in alphabetic case
(that is, they are char-equal (page 148)). if they arc numbers and have the same numerical
value, even if they are of different types, or if they have components that arc all equalp. When
comparing floating-point numbers, or comparing a floating-point number to any other kind of
number, the optional argument firzz is used; in effect the function fuzzy= (page 120) is used to
perform such comparisons.

Objects that have components are equalp if they are of the same type and corresponding
components are equalp. This test is implemented in a recursive manner, and will fail to terminate
for circular structures. For conses, equalp is defined recursively as the two car's being equalp
and the two cdr's being equalp.

Two arrays are equalp if and only if they have the same number of dimensions, the dimensions
match, the element types match, and the corresponding components are equalp.

7?7 Query: How about eliminating the clause “the element types match” from the above specification? This
would allow a string and a general array that happens to contain characters to be equa‘p, for example.

For example:

(equalp ’a ’'b) isfalse

(equalp ’a ’a) istrue

(equalp 3 3) istrue

(equalp 3 3.0) istrue

(equalp (cons 'a 'b) (cons ’a ’c)) isfalse
(equalp (comns 'a ’'b) (cons 'a ’b)) istrue
(setqg x *(a . b)) (equalp x x) istrue
(equalp #\A #\A) istrue

(equalp "Foo" "Foo") istrue

(equalp "FOO" "foo") istrue

6.4. Logical Operators

CoOMMON LIsP provides three operators on Boolean values: and, or, and not. Of these, and and or are
also control structures, because their-arguments arc evaluated conditionally. not ncccessarily. cxaminces its
single argument, and so is a simple function.

not x

[Function)
not returns t if xis ni1, and otherwise returns ni 1. It therefore inverts its argument, interpreted
as a Boolean value.

null (pagc 46) is the samc as not; both functions arc included for the sake of clarity. As a matter
of style, it is customary to usc nu11 to check whether something is the empty list, and to usc not
to invert the sense of a logical value.

52 . ' COMMON LISP REFERENCE MANUAL

and {form}* [Special form]
(and forml form2 ...) evaluates cach form, one at a time, from left to right. If any form
cvaluates to nil, and immediately is false without cvaluating the remaining forms. 1If every form
but the last cvaluates to a non-ni1 valuc, and rcturns whetever the last form returns. Therefore in
general and can be used both for logical opcrations, where ni1 stands for fa/se and non-nil
values stand for true, and as a conditional expression.

For example: ;
(if (and (>=n 0)
{lessp n (length a- vector))
(eq (vref a-vector n) 'foo))
(princ "Foo!"}) '
The above expression prints “Foo!” if element n of a-vector is the symbol foo, provided also
that n is indeed a valid index for a-vector. Because and guarantees left-to-right testing of its
parts, vref is not performed if n is out of range. (In this example writing
(and (>= n 0)
(lessp n (length a-vector))
(eq (vref a-vector n) ’'foo)
(princ "Fool"))
would accomplish the same thing; the difference is purely stylistic.) - Because of the guaranteed
left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like

languages is called cand, rather than the and operator.

Sce also if (page 69) and when (page 69), which are sometimes stylistically more appropriate
than and for conditional purposes.

From the general dcﬁnmon one can deduce that (and x) <=> x. Also, (and) is true, Wthh is
an identity for this operation.

and can be defined in terms of cond (page 68) as follows:

(and x y z ... w) <=> “{cond ((not x) nil)
‘ ' ((not y) nil)
({(not z) nil)

(t w))

or {form}* ’ : : [Special form]
(or forml form2 ...) evaluatcs each form, one at a time, from left to right. If any form
cvaluates to somcthing other than ni1, or immecdiatcly returns it without evaluating the remaining
Jorms. 1f every form but the last evaluates to ni1, or rcturns whatever cvaluation of the last of the
Jforms returns. Therefore in general or can be used both for logical operations, where ni1 stands
for false and non-ni1 valucs stand for true, and as a conditional expression. Because of the
guaranteed left-to-right ordering, or is like the or else opcrator in ADA, or what in some
PASCAL-like languages is called cor, rather than the or operator.

Sce also if (page 69) and unless (page 70), which arc sometimes stylistically more appropriate

wn
(U8}

PREDICATES

than or for conditional purposcs. -

. From the general definition, one can deduce that (or x) <=> x. Also, (or) is false, which is the
identity for this operation.

or can be defined in terms of cond (page 68) as follows:

(or x yz ... w) <=> '(cond (x) (¥) (z) ... (t w))

54 COMMON LISP REFERENCLE MANUAL

Chapter 7

Control Structure

Lisp provides a variety of special structures for organizing programs. Some have to do with flow of control
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically eXpand into complex program
fragments involving special forms).

Function application is the primary method for construction of LiSP programs. Operations are written as
the application of a function to its arguments. Usually, LISP programs are written as a large collection of small
functions, each of which implements a simple operation. These functions operate by calling one another, and
so larger operations are defined in terms of smaller ones. LISP functions may call upon themselves
recursively, either directly or indirectly. .

Lisp, while more applicative in style than statement-oriented, nevertheless provides many operations which
produce side-cffects, and conscquently requires constructs for controlling the sequencing of side-effects. The
construct progn (page 64), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,
exccutes a number of forms sequentially, discarding the values of all but the last. Many LISP control
constructs include secquencing implicitly, in which case they are said to provide an “implicit progn”. Other
sequencing constructs include prog1 (page 65) and prog2 (page 65).

For looping, COMMON LISP provides the gerieral itcration facility do (page 73), as well as a variety of
special-purpose iteration facilitics for iterating or mapping over various data structures.

CoMMON Lisp provides the simple one-way conditionals when and unless, the simple two-way
conditional if, and the morc gencral multi-way conditionals such as cond and se1ectq The choice of

~ which form to use in any particular situation is a matter of tastc and style.

Constructs for performing non-local exits with various scoping disciplines arc provided: block (page 71),
return (pagc72), catch (page 85), and throw (page 87).

The multiple-value constructs provide an efficient way for a function to return more than onc value; see
values (pagc 82). '

—55 —

56 , COMMON LISP REFERENCE MANUAL
7.1. Constants and Variables
7.1.1. Reference

quote object : : [Special form]
(quote x) simply returns x. The argument is not evaluated, and may be any LISP object. This
construct allows any LISP object to be written as a constant value in a program.

For example:

(setqg a 43)

(1ist a (cons a 3)) => (43 (43 . 3))

(1ist (quote a) (quote (cons a 3)) => (a (cons a 3))
Since quote forms are so frcquent_ly uscful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a single quote (’) character is assumed to
have “(quote)” wrapped around it. '

For example:

(setq x ’(the magic quote hack))
is normally interpreted when read to mean
(setq x (quote (the magic quote hack)))

function fn , [Special form]
The value of function is always the functional interpretation of fir; fi is interpreted as if it had
appeared in the functional position of a function invocation. In particular, if fi is a symbol, the
functional value of the variable whose name is that symbol is returned. If f» is a lambda expression

or select expression, then a lexical closure is returned. ’

Since function forms are so frequently useful (for passing functions as arguments to other
function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any
form preceded by a sharp sign and then a single quote (#') is assumed to have “(function)”
wrapped around it.

For cxample:

(remove-if #’numberp ’(1 a b 3))
is normally interpreted when read to mean
(remove-if (function numberp) ’(1 a b 3))

closure varlist function [Function]
The function closure creates and rcturns a closure of the function over the special variables
mentioned in the varlist. '

The varlist must be a list of symbols. The finction may be any functional object. The current
bindings of the special (not lexical) variables named by the symbols arc collected into a closure
‘object along with the function. When the closurc is invoked as a function, the saved bindings are
re-cstablished, and thenfiunction is invoked. 'The saved binding of a special variable is “sharcd”

. CONTROL STRUCTURE 57

with the current binding and with any other closures over the same variable binding; by “shared” it

._ is mecant that an assignment to one (via setq (page 58) or set (page 38)) is reflected in the
’ others. '
symeval symbol [Function]

symeval returns the current value of the dynamic (special) variable named by symbol. An error
occurs if the symbol has no valuc: sec boundp (page 57) and makunbound (page 59).

symeval cannot access the value of a local (lexically bound) variable.

This function is particularly useful for implementing interpreters for languages'embedded in LISP.
- The corresponding assignment primitive is set (page 58).

fsymeval symbol [Function]
fsymeval returns the current global function deﬁnmon named by symbol. An error occurs if the
symbol has no function definition; see fboundp (page 57). Note that the definition may be a
function, or may be an object representing a special form or macro. See macro-p (page 57) and
special-form-p (page 57). :

fsymeval cannot access the value of a local function name (lexically bound as by flet (page
67)or 1abels (page 67)).

This function is particularly useful for implementing interpreters for languages embedded in LISP.

‘ The corresponding assignment primitive is fset (page 59).
boundp symbol ' : [Function]
fboundp symbol _ : [Function]

boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns
nil. fboundp is the analogous predicate for the global function definition named by symbol.

See also set (page 58), Tset (page 59), makunbound (page 59), and fmakunbound (page

59).
macro-p symbol [Function]
special-form-p symbol - [Function]

The functlon macro-p takes a symbol. If the symbol globally names a macro, then the expansion
function (a function of onc argument, a macro-call form) is returncd; otherwisc ni1 is returned.

The function special-form-p also takes a symbol. If the symbol globally names a special form
(éxample: quote (page 56)), then a non-nil value is returncd, typically a function of
implementation-dependent nature that can be used to interpret a special form; otherwise nil is
returncd. '

. It is possible for both macro-p and special-form-p to be truc of a symbol. This can arise
because an implementation. is free (o implement any macro also as a special form for speed. On the

58 COMMON LISP REFERENCE MANUAL

other hand, the macro definition must also be available for use by programs that understand only
the standard spcecial forms listed in Table 5-1..

7.1.2. Assignment
setq {var form}* [Special form]
The special form (setq var!/ forml var2 form2 ...) is the “simple variable assignment

statement” of Lisp. First form/ is cvaluated and the result is assigned to var/, then form2 is
evaluated and the result is assigned to var2, and so forth. The variables are represented as symbols,
of course, and arc interpreted as referring to static or dynamic instances according to the usual
rules. setq returns the last value assigned, that is, the result of the evaluation of its last argument.
As a boundary case, the form (setq) is legal and returns ni1. As a rule there must be an even
number of argument forms.

For example:
(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment was
performed before the second form was evaluated, allowing that form to use the new value of x.

See also the description of setf (page 60), which is the “general assignment statement”, capable of

assigning to variables, array elements, and other locations.

psetq {var form}* . [Special form]

" A psetq form is just like a setq form, except that the assignments happen in parallel; first all of

the forms are evaluated, and then the variables are sct to the resulting values. The value of the
psetqformisnil, ' ‘

~ For example:
(setg a 1)
(setq b 2)
(psetg a b b a)
a => 2
b => 1

In this éxamplé, the values of a and b are exchanged by using parallel assignment. (Note that the
do (page 73) iteration construct performs a very similar thing when stepping itcration variables.)

set symbol value S , _ [Function]
set allows altcration of the valuc of a dynamic (special) variable. set causes the dynamic variable
named by symbol to takc on value as its valuc. Only the value of the current dynamic binding is
altered; if there arc no bindings in effect, the most global value is altered.

For example:
(set (if (eq a b) 'c 'd) 'foo)

CONTROL STRUCTURFE . 59

will cither set ¢ to foo orsct d to foo, depending on the outcome of the test (eq a b).
Both functions return value as the result value.

set cannot alter the value of a local (Iexically bound) variable. The special form setq (page 58) is
usually used for altering the values of variables (Iexical or dynamic) in programs. set 18
particularly useful for implementing interpreters for languages embedded in LISP. Sce also progv
(page 67), a construct which performs binding rather than assignment of dynamic variables.

fset symbol value | [Function]
fset allows alteration of the global function definition named by symbol to be value. fset
returns value.

fSet cannot alter the value of a local (lexically bound) function definition, as made by f1et (page
67) or 1abels (page 67). fset is particularly useful for implementing interpreters for languages

embedded in LISP.
makunbound symbol ' [Function]
fmakunbound symbol [Function]

makunbound causes the dynamic (special) variable named by symbol to become unbound (have
no value). fmakunbound does the analogous thing for the global function definition named by
symbol.

For example:

“(setq a 1)

a =1

(makunbound ’a)

a => causes an error

(defun foo (x) (+ x 1))
(foo 4) => 5
(fmakunbound ’foo)

(foo 4) => causesan error

Both functions return symbol as the result value.

7.2. Generalized Variables

In LiSP, a variable can remember one picce of data, a 1.1SP object. The main operations on a variable are to
recover that picce of data, and to alter the variable to remember a new object; these opcerations are often
called access and update operations. The concept of variables named by symbols can be generalized to any
storage location that can remember onc picce of data, no matter how that location is named. Examples of
- such storage locations are the car and cdr of a cons, clements of an array, and components of a structure.

For cach kind of genceralized variable, there are typically two functions which implement the conceptual
access and update opcerations. For a variable, mercly mentioning the name of the variable accesses it, while
the setqg (page 58) special form can be used to update it. The function car (page 167) accesses the carof a

60 ‘ COMMON LISP REFFRENCE MANUAL

cons, and the function rplaca (page 174) updates it. The function aref (page 185) accesses an array
clement, and the function aset (page 185) updates it.

Rather than thinking about two distinct functions that respectively access and update a storage location
somehow deduced from their arguments, we can instead simply think of a call to the access function with
given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage
location (a variable), so (car x) is a name for the car of some cons (which is in turn named by x), and
(aref a 105) is a name for element 105 of the array named a. Now, rather than having to remember two
functions for each kind .of generalized variable (having to remember, for example, that aset corresponds to
aref), we adopt a uniform syntax for updating storage locations named in this way, using the setf special
form. This is analogous to the way we use the setq special form to convert the name of a variable (which is

“also a form which accesses it) into a form which updates it. The uniformity of this approach may be seen
from the following table:

Access function Update function Update using setf

X (setq x newvalue) (setf x newvalue)

(car x) (rplaca x newvalue) (setf (car x) newvalue)
(aref a 105) (aset newvalue a 105) (setf (aref a 105) newvalue)
(nth n x) (setnth n x newvalue) (setf (nth n x) newvalue)

setf is actually a macro that examines an access form and expands into the appropriate update function.

setf place newvalue - ‘ [Macro]

setf takes a form place that when evaluated accesses a data object in some location, and “inverts”

it to produce a corresponding form to update the location. A call to the setf macro therefore
expands into an update form that stores the result of evaluating the form newvalue into the place
referred to by the access-form.

For example:

(setf a 3) ==> (setq a 3)

(setf (plist ’a).’(foo bar)) ==> (setplist 'a '(foo bar))
(setf (aref q 2) 56) ==> (aset 56 q 2) '

(setf (cadr w) x) ==> (rplaca (cdr w) x)

The form place may be any one of the following:

o The name of a variable (cither lexical or dynamic).

e A function call form whose first element is the name of any one of the following

functions: . . | .
-car (page 167) caaaar (pagc167) cadddr (page 167)
cdr (page 167) - cdaaar (pagel67) - cddddr (page 167)
caar (page 167) cadaar (page 167) - elt (pagel157)
cdar (pagc 167) cddaar (pagc 167) nth (page 169)
~cadr (page 167) .- caadar (pagel67) ~vref (page 187)
cddr (page 167) ' cdadar (pagc 167) aref (pagc 185)
caaar (pagel167) caddar (page 167) symeval (page57)

cdaar (page 167) ~ cdddar (page167) fsymeval (page 57)

CONTROL STRUCTURE 61

cadar (pagc 167) A caaadr (pagc167) getpr (page 102)

cddar (page 167) cdaadr (page 167) gethash (page 182)
caadr (page 167) cadadr (page167) plist (page103)
cdadr (page 167) cddadr (page 167)

caddr (page 167) caaddr (pagc 167)

cdddr (page 167) cdaddr (page167)

e A function call form whose first element is the name of a selector function constructed
by defstruct (page 199).

e A function call form whose first element is the name of any one of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the spccified “location” (which is in each of these cases not really a truly
generalized variable):

Function name Required type Update function used
char (page191) string-char rplachar (page 192)
bit (page 187) (mod 2) rplacbit (page187)
subseq (page 157) sequence replace (page 160)

A function call form whose first element is the name of any one of the following

functions, provided that the specified argument to that function is in turn a place form;

in this case the new place has stored back into it the result of applying the specified
“update”™ function (which is in cach of these cases not a true update function):

Function name Argument that is a place Update function used
char-bit (pagel52) First set-char-bit (page 152)
1db (page 139) Second dpb (page 140)
mask-field (page 140) Second deposit-field (page 140)

e A call on getf (page 103), in which case (setf (getf x y) z) expands into
(putf x y z). '

A the (page 99) type declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,

(setf (the integer (cadr x)) (+ y 3))

is processed as if it were
(setf (cadr x) (the integer (+ y 3)))

e A macro call, in which case the macro call is 'cxpahdcd and setf then analyzes the
resulting form.

setf carcfully arranges to preserve the usual left-to-right order in which the various subforms are
evaluated. For example,
| (setf (aref (compute-an-array) 105) (compute-newvalue))
doces not cxpand precisely into ‘
(aset (compute-newvalue) (compute-an-array) 105)

lest side effects in the computations (Compute-ah-array') and (compute-newvalue) occur

62

COMMON LISP REFERENCE MANUAL

in the wrong order. Instead this cxample will expand into somcthing more like

(Tet ((Gl (compute-an-array}))
(G2 105)
(G3 (compute-newvalue)))
(aset G3 Gl G2))

The exact expansion for any particular form is not guarantced and may even be implementation-
dependent; all that is guaranteed is that the expansion of a set f-form will be an.update form that
works for that particular implementation, and that the lefi-to-right evaluation of subforms is
preserved.

Compatibility note: Lisp Machine Lisp, at least, officially does not preserve the order of evaluation, but also
seems to regard this as a bug to be fixed. What shall COMMON Lisp do?

The ultimate result of evaluating a setf form is the value of newvalue. (Therefore (setf (car
x) y) does not expand into precisely (rpiaca x y), butinto something more like

(Tet ((G1 x) (G2 y)) (rplaca x y) y)
the precise expansmn being implementation-dependent.)

The user can define new setf expansions by using defsetf (page DEFSETF-FUN).

swapf place newvalue ‘ [Macro]

The datum in place is replaced by newvalue, and then the old value of place.is returned. The form

Pplace may be any form acceptable as a generalized variable to setf (page 60).

For example:

(setq x '(a b c))
(swapf (cadr x) ’z) => b
andnow x => (a z ¢)

The effect of (swapf place newvalue) is roughly equivalent to
(progl place (setf place newvalue))

except that the latter would cvaluate any subforms. of place twice, while swapf takes care to
evaluate them only once. '

For example:
(setq n 0)
(setq x ’(a b c d))
(swapf (nth (setg n (+ n 1)) x) 'z) => b
andnow x => (a z ¢ d)
but T

(setq n 0) '
(setq x '(a b c d))
- (progl (nth (setq n (+ n 1)) x)
(setf (nth (setg n (+ n 1)) x) 'z)) => b
andnow x => (a b z d) '

Morecover, for certain place forms swapf may be significantly more cfficient than the prog1l
version. '

CONTROL STRUCTURE 63

exchf placel place2 ' ' [Macro]
“The data in placel and place2 is exchanged. and then the old value of place? (which has become the
new value of placel) is returned. The forms placel and place2 may be any forms acceptable as
generalized variables to setf (page 60). If placel and place? refer to the same generalized
variable, then the effect is to leave it unchanged and return its value.

For example:

(setgq x "(a b c))
(exchf (car x) (cadr x)) => b
andnow x => (b a c)

The effect of (exchf placef place?) is roughly equivalent to
(setf placel (progl place? (setf place? placel))

except that the latter would evaluate any subforms of placel and place2 twice, while exchf takes
care to evaluate them only once. Moreover, for certain place forms exchf may be significantly
more efficient than the prog1 version.

Other macros that manipulate generalized variables include getf (page 103), putf (page 103), remf
(page 104), incf (page 122), decf (page 122), push (page 172), and pop (page 173).’

7.3. Function Invocation

The most primitive form for function invocation in LISP of course has no name; any list which which has
no other interpretation as a macro call or spccial form is taken to be a function call. Other constructs are
provided for less common but nevertheless frequently useful situations.

apply function arglist [Function]
This applies function to the list of arguments arglist. arglist should be a list; function can be a |
compiled-code object, or it may be a “lambda expression”, that is, a list whose car is the symbol
Tambda, or it may a symbol, in which casc the dynamic functional value of that symbol is used
(but it is illegal in this casc for that symbol to be the name of a macro or special form). k

For example: ;
(setq f *+) (apply f *(1 2)) => 3
(setq f '-) (apply f ’(1 2)) => -1
(apply ’cons "((+ 2 3) 4)) =
((+ 2 3) . 4) not (5 . 4)
- Of course, arglist may be () (in which case the function is given no arguments.) Note that if the
function takes keyword arguments, the keywords as well as the corresponding values must appear
~ in the arglist:
(apply #’(lémbda (&key a b) (1list a b)) '(:b 3)) => (nil 3)
Compatibility note: 77?

Scceval. (page 209).

64 v COMMON LISP REFFKENCE MANUAL

funcall fu &rest arguments [Function]
(funcall fh al a2 ... an) applies the function fu to the arguments al, a2, ..., an. fir may
not be a special form nor a macro; this would not be meaningful.

For example:

(cons 1 2) => (1 . 2)

(setq cons (fsymeval ’'+))

(funcall cons 1 2) => 3
The difference between funcal?t and an ordinary function call is that the function is obtained by
ordinary LiSP evaluation rather than by the special interpretation of the function position that
normally occurs. -

Compatibility note: This corresponds roughly to the INTERLISP primitive apply*.

funcall* f &rest args ’ [Function]
funcall* is like a cross between apply and funcall. (funcall* al a2 ... an list)
applies the function fto the arguments a/ through an followed by the clements of list. Thus we
have: _
(funcall fal ... an) <=> (funcall* fal ... an '())
(apply f list) <=> (funcall* f list)
However, when apply or funcall fits the situation at hand, it may be stylistically clearer to use
that than to use funcal1*, whose use implies that something more complicated is going on.
(funcall* #°'+ 1 11 '(111)) => 6

(defun report-error (&rest args)
(funcall* (function format) error-output args))

Compatibility note: 777

7.4. Simple Sequencing

progn {form}* [Special form]
The progn construct takes a number of forms and evaluates them sequentially, in order, from left
to right. The valucs of all the forms but the last are discarded; whatever the last form returns is
returned by the progn form. One says that all the forms but the last arc evaluated for effect,
because their exccution is uscful only for the side effects caused, but the last form is executed for
value.

progn is the primitive control structure construct for “compound statcments”; it is analogous to

begin-end blocks in ALGOL-likc languages.- Many LISP constructs arc “implicit progn” forms,-in - -

that as part of their syntax each allows many forms to be written which are evaluated sequentially,
the results of only the last of which arc used for anything,.

If the last form of the progn rcturns multiple valucs, then those multiple values are returnced by
‘the progn form. [f there arc no forms for the progn, then the resultis ni1. ‘These rules generally

CONTROL SIRUCTURE ' 65

hold for implicit progn forms as well.

progl first {form}* : [Special form]
prog1 is similar to progn, but it returns thc value of its first form. All the argumcnt forms arc
exccuted sequentially; the value the first form produces is saved while all the others are exccuted,
and is then returned.

progl is most commonly used to evaluate an expression with side effects, and return a value which
must be computed before the side effects happen.
For example:
(progl (car x) (rplaca x 'foo))
alters the car of x to be foo and returns the old car of x.

progl always returns a single value, even if the first form tries to return multiple values. A
consequence of this is that (progl x) and (progn x) may behave differently if x can produce
multiple values. See mvprog1 (page 82).

prog2 first second {form}* ‘ : [Special form]
prog2 is similar to prog1, but it returns the value of its second form. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,

and is then returned.
‘ prog?2 is provided mostly for historical compatibility.
(prog2 a b ¢ ... z) <=> (progn a (progl bc ... z))

Occasionally it is desirable to perform one side effect, then a value-producing opcration, then
another side effect; in such a peculiar case prog?2 is fairly perspicuous.
For example:

(prog2 (open-a-file) (compute-on-file) (close-the-file))
;valuc is that of compute-on-file '

prog2, like prog1, always rcturns a single value, even if the second form tries to return multiple
valucs. A conscquence of this is that (prog2 x y) and (progn x y) may bchave differently if
y can produce multiple values.

7.5. Environment Manipulation

let ({var | (var value)}*) {form}* e : [Macro]‘
A et form can be uscd to cxccute a scries of forms with specificd variables bound to specified
values.
For example:

66

COMMON LISP REFERENCE MANUAL

(let ((varl valuel)
(var2 valuel)

i \::a.nn valuem))
bodyl
body2

bodyn)
first cvaluates the expressions valuel, value2, and so on, in that order, saving the resulting values.
Then all of the variables varj are bound to the corresponding values in parallel; each binding will
be a local binding unless there is a : special (page DECLARE-SPECIAL-KWD) declaration to
the contrary. The cxpressions bodyj are then evaluated in order; the values of all but the last are
discarded (that is, the body of a 1et form is an implicit progn). The 1et form returns what
evaluating bodyn produces (if the body is empty, which is fairly useless, Tet returns ni1 as its

value). The bindings of the variables disappear when the 1et form is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varjis initializedtonil. Asa '

matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 58)) before its first use. If it is important that the initial value is ni1l
rather than some undefined value, then it is clearer to write out (varj nil) (if the initial value is
intended to mean “false”) or (varj ' ()) (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of a Tet; they apply to the code in the body
and to the bindings made by 1et, but not to the code which produces values for the bindings.

The 1et form shown above is entirely equivalent to:

((1ambda (var! var2 ... varm)
bodyl body? ... bodyn)
valuel value? ... valuem)

bui let allows cach variable to be textually close to the expression which produces the
corresponding value, thercby improving program readability.

Tet* ({var | (var value)}*) {form}* - | [Special form]

Tet* is similar to Tet (page 65), but the bindings of yariables are performed sequentially rather
than in parallel. This allows the cxpression for the value of a variable to refer to variables
previously bound in the Tet* form.

More preciscly, the form:

(let* ((varl valuel)
(var2 valuel)

i ;’énrz valuem))
bodyl
body2 -
l;r;ciyn)

first cvaluates the expression valuel, then binds the variable var/ to that valuc; then its cvaluates

CONTROL STRUCTURE . 67

value?2 and binds var2; and so on. The expressions bodyj are then cvaluated in order; the values of
all but the last are discarded (that is, the body of a Tet* form is an implicit progn). The let*
form returns the results of evaluating bodyn (if the body is empty, which is fairly uscless, Tet*
returns ni1 as its valuc). The bindings of the variables disappear when the Tet* form is exited.

Instcad of a list (varj valuej) one may write simply varj. In this case varjis initialized toni1. Asa
matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 58)) before its first use. 1f it is important that the initial value is ni1
rather than some undefined value, then it is clearer to write out (var; ni1) (if the initial value is
intended to mean “false”) or (varj ’ ()) (if the initial value is intended to be an ecmpty list).

Declarations may appear at the beginning of the body of a Tet; they apply to the code in the body
and to the bindings made by Tet, but not to the code which produces values for the bindings.

progv symbols values {form}* ‘ [Special form]
progv is a special form which allows binding one or more dynamic variables whose names may be
determined at run time. The sequence of forms (an implicit progn) is evaluated with the dynamic
variables whose names are in the list symbols bound to corresponding values from the list values.
(If too few values are supplied., the remaining symbols are bound to ni1. If too many values are
supplied, the excess values are ignored.) The results of the progv form are those of the last form.
The bindings of the dynamic variables are undone on exit from the progv form. The lists of
symbols and values are computed quantities; this is what makes progv different from, for
example, Tet (page 65), where the variable names are stated explicitly in the program text.

progyv is particularly useful for writing interpreters for languages embedded in LISP; it provides a
handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list {declare-form}* [doc-string] {form}*)}*) {form}* o [Special form]
labels ({(name lambda-list {declare-form}* [doc-string] {form}*)}*) {form}* [Special form}
macrolet ({(name varlist {form}y*)}}*) {form}* ' [Special form]

f1et may be uscd to define locally named functions. Within the body of the f1et form, function
names matching those declared by the f1et refer to the locally defined functions rather than to the
global function dcfinitions of the same name.

Any numbcr of functions may be simultancously declared. Each dcclaration is similar in format to
a defun (page 42) form: first a name, then a paramecter list (which may contain &optional,
&rest, or & ey parameters), then optional declarations and documentation string, and finally a
body. '

The 1abe1s construct is identical in form to the f1et construct. It differs in that the scope of the
declared function names for f1et cncompasscs only the body, while for Tabe1s it encompasses
the function definitions themsclves. That is, Tabe1s can be used to define mutually recursive
functions, but flet cannot. ‘This distinction is uscful. Using flet onc can locillly redefine a
global function name, and the new definition can refer to the global definition; the same

68 . COMMON LISP REFERENCE MANUAL

construction using 1abe1s would not have that cffg':ct.

(defun 1integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine.
{(declare (type (integer 0 *) k))

(Tabels ((expt0 (x k a)

(declare (integer x a) {type (integer 0 *) k))

(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))

(exptl (x k a) _

(declare (integer x a) (type (integer 0 *) k))

(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))

(expt0 n k 1)))

macrolet is similar in form to f1et, but defines local macros, using the same format used by
defmacro (page91).

7.6. Conditionals

cond {(test {form}*)}* [Special form]
The cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each
clause consists of a test followed by zero or more conseguents.

For example:

(cond (test-1 conseguent-I1-1 conse_quent-l-? cel)
(test-2)
(test-3 consequent-3-1 ...)
) '

The first clause whose fest evaluates to non-ni1 is selected; all other.clauses are ignored, and the
conscquents of the sclected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right. For each clause; the fest is
cvaluated. If the resultis ni1, cond advances to the next clause. Otherwise, the cdr of the clause
is treated as a list of forms, or conscquents, which arc evaluated in order from left to right, as an
implicit progn. After evaluating the consequents, cond returns without inspecting any remaining
clauses. The cond spccial form returns the results of cvaluating the last of the sclected
conscqucnts; if there were no conscquents in the selected clause, then the single (and necessarily
non-null) value of the fest is returned. If cond runs out of clauses (every test produced ni1, and
therefore no clausc was selected), the value of the cond formisnil.

If'it is desired to sclect the last clause unconditionally if all others fail, the standard convention is to
usc t for the fest. As a matter of style, it is desirable to write a last clause “(t nil)”if the value
of the cond form is to be used for something. Similarly, it is in questionable taste to lct the last
clausc of a cond be a “singlcton clause™; an cexplicit t should be provided. (Notc morcover that
(cond ... (x)) may behave differently from (cond ... (t x)) if x might produce
multiplc values; the former always returns a single value, while the latter returns whatever values x

CONTROL STRUCTURE ' , 69

rewurns.)
For example:
(setgq z (cond (a ’foo) (b ’bar))) ; Possibly confusing.
(setq z (cond (a ’foo) (b 'bar) (t nil))) ;Beticr. ,
(cond (a b) (c d) (e)) ; Possibly confusing.
(cond (a b) (c d) (t e)) ; Better.
(cond (a b) (c d) (t (values e))) ; Better (if one value needed).
(cond (a b) (c)) ; Possibly confusing.
(cond (a b) (t c)) - ; Better.
(if a b c) ; Also better.

A LIiSP cond form may be compared to a continued if-then-elseif as found in many algebraic
programming languages:

(cond (p ...) if pthen ...
(g ...) roughly else if g then ...
(r ...) corresponds else if r then ..
e to e
(t ...)) else .
if pred then [else] : - [Special form]

The if special form corresponds to the if-then-else construct found in most algebraic programming
languages. First the form predis evaluated. If the result is not n1i1, then the form then is (selected;
otherwisc the form else is selected. Whichever form is selected is then evaluated, and if returns
whatever evaluation of the selected form returns.

(if pred then else) <=> (cond (pred then) (t else))

but 1if is considered more readable in some situations.

"The else form may be omitted, in which case if the value of pred is ni1 then nothing is done and

the value of the if form is ni1. If the value of the if form is important in this situation, then the
and (page 52) construct may be stylistically preferable, depending on the context. If the value is
not important, but only the cffect, then the when (page 69) construct may be stylistically
preferable. '

when pred {form}* . ‘ [Special form]

(when pred forml form2 ...) first evaluates pred. If the result is ni1, then no form is
evaluated, and nil is returned. Otherwise the forms constitute an implicit progn, and so are
cvaluated scquentially from Ieft to right, and the value of the last onc is returned.

A
v

(when p a b ¢)
(when p a b ¢)
(when p a b ¢)
(when p a b ¢)

(and p (progn a b c))
(cond (p a b c))

(if p (progn a b ¢) ’'nil)
(unless (not p) a b ¢c)

A A
UBUEBUIL
v Vv

A
v

"As a matter of style, when is normally used to conditionally producc some sidc effects, and the

value of the when-form is normally not used. If the value is relevant, then and (page 52) or if
(pagc 69) may be stylistically more appropriate.

70

COMMON LISP REFERENCE MANUAL

unless pred {form}* [Special form] .

(unless pred fornnl form2 ...) first evaluates pred. If the result is not ni1, then the forms
are not evaluated, and n1i1 is returned. Otherwise the forms constitute an implicit progn, and so
arc cvaluated sequentially from left to right, and the value of the last onc is returned.

(unless pa b c¢) <=> (cond ((not p) a b ¢))

(unless pa b c) <=> (if p nil (progn a b ¢))

(unless pa b c) <=> (when (not p) a b c)
As a matter of style, unless is normaliy used to conditionally produce some side effects, and the
value of the unless-form is normally not used. If the value is relevant, then or (page 52) or if
(page 69) may be stylistically more appropriate.

case keyform {(({key}*) {form}*)}* [Special form]

case is a conditional that chooses one of its clauses to execute by comparing a value to various
constants, which are typically keyword symbols; integers, or characters (but may be any objects).
Its form is as follows:
(case keyform

(keylist-1 consequent-1-1 consequent-1-2 .. .)

(keylist-2 consequent-2-1 ...)

(keylist-3 consequent-3-1 ...)

ced) : ,
Structurally case is much like cond (page 68), and it behaves like cond in selecting one clause
and then executing all consequents of that clause. It differs in the mechanism of clause selection.

The first thing case does is to evaluate the form keyform to produce an object called the key
object. Then case considers each of the clauses in turn. If key is in the keylist (that is, is eq1 to
any item in the keylist) of a clause, the consequents of that clause are evaluated as an implicit
progn, and case returns what was returned by the last consequent (or ni1 if there are no
consequents in that clause).- If no clause is satisfied, case returns ni1.

"It is an error for the same key to appear in more than one clause.

Instead of a keylist, onec may write one of thc symbols t and otherwise. A clause with such a
symbol always succeeds, and must be the last clause.

Compatibility note: Lisp Machine Lisp uses eq for the comparison. In Lisp Machine Lisp case therefore
works for fixnums but not bignums. In the interest of hiding the fixnum-bignum distinction, case uses eq1l
- in COMMON LisP.

If there is only onc key for a clause, then that key may be written in place of a list of that key, -
provided - that no ambiguity results (the key should not be a cons or one of nil (which is
confusable with (), alist of no keys), t,orotherwise). ‘

typecase kéyform {(type {form}*)}* ‘ [Special form]

typecase is a conditional which chooscs one of its clauscs by cxamining the type of an object. Its

form is as follows:

CONTROL STRUCTURE | , 71

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 . ..)
(type-2 consequent-2-1 ...)

" (type-3 consequent-3-1 ...)
sl

Structurally typecase is much likc cond (page 68) or case (page 70), and it behaves like them
in seclecting one clause and then exccuting all consequents of that clause. It differs in the
mechanism of clause sclection.

The first thing typecase does is to evaluate the form keyform to produce an object called the key
object. Then typecase considers each of the clauses in turn. The first clause for which the key is
of that clause’s specified type is selected, the consequents of this clause are evaluated as an implicit
progn, and typecaseq returns what was returned by the last consequent (or ni1 if there are no
consequents in that clause). If no clause is satisfied, typecase returns nil.

As for case, the symbol t or otherwise may be written for fype to indicate that the clause
should always be selected. '

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of
‘another; the earliest applicable clause is chosen.

For example:
(typecase an-object -

(string ...) ; This clause handles strings.
((array t) ...) ; This clause handles general arrays.
((array bit) ...) ; This clause handles bit arrays.
(array ...) ; This handlcs all other arrays.
((or list number) ...) ; This handles lists and numbers.
(t ...})) ; This handles all other objects.

A CoMMON LISP compiler may choose to issue a warning if a clause cannot be selccted because it is
completely shadowed by earlier clauses.

7.7. Blocks and Exits

block name {form}* [Special form]
The block construct cxecutes each form from left to right, returning whatever is rcturned by the
last form. If, however, a return or return-from form is exccuted during the cxecution of some
form, then the results specified by the return or return-from arc immediately returned as the
value of the block construct, and execution proceeds as if the block had terminated normally.
In this b1ock differs from progn (page 64); the latter has nothing to do with return.

The scope of the name is lexical; only a return or return-from textually contained in some
Jorm can exit from the block. The extent of the name is dynamic. Therefore it is only possible to
exit from a given run-time incarnation of a block once, cither normally or by explicit return.

The defun (pagc 42) form implicitly puts a block around the body of the function defined; the
b1ock has the same name as the function. Thercfore onc may use return or return-from to

72 _ ' ' ’ COMMON LISP REFERENCE MANUAL

return prematurely from a function defined by defun.

return result [Special form] '
return is used to return from a block, prog, do, or similar construct. Whatever the cvaluation

of result produces is returncd by

the construct being cxited by return.

(defun member (item 1ist)
(do ((x Tist (cdr x)))
((null x) nil)
(when (equal item (car x))
(return x)))) ‘
return is, like go, a special form that does not return a value. Instead, it causes a containing
construct to return a value. If the evaluation of result produces multiple values, those multiple

values are returned by the construct exited.

return always exits from the innermost applicable construct that textually contains it. However,

~ if the symbol t is used as the name of a block, then that block will be made “invisible” to return
forms; any return inside that block will return to the next outermost level whose name is not t.
(return-from t ...) will return from a block named t. This featurc is not intended to be
used by user-written code; it is for macros to expand into.

return-from blockname result : [Special form]
This is just like return, except that before the result form is written a symbol (not evaluated),
which is the name of the construct from which to return.

777 Query: Fahlman suggests a restart form that specifies a block and send control to the top of that block. Some kinds
of loop can be done this way, especially error retries. Opinions?

7.8. Iteration

COMMON LISP provides a number of iteration constructs. The.do (page 73) and do* (page 75) constructs
provides a general iteration facility. For simple itcrations over lists or # consccutive integers, dolist (page
76) and related constructs are provided. The prog (page 78) construct is the most general, permitting’
arbitrary go (page 80) statements within it. All of the itcration constructs permit statically defined non-local
cxits in the form of the return (page 72) statement and its variants.

7.8.1. General iteration

CONTROL STRUCTURE : 73

do ({(var [init [step]])}*) (end-test {form}*) {iag | siatemens}* [Special form)
. The do special form provides a generalized iteration facility, with an arbitrary number of “index
variables”. These variables are bound within the iteration and stepped in parallel in specified ways.
They may be uscd both to gencerate successive valucs of interest (such as successive integers) or to
accumulate results. When an end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

(do ((varl initl stepl)
(var2 init2 step2)

(varn initn stepn))
(end-test . result)
. progbody)

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var, an initial value init (which defaults to ni1 if it is
omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct
between repetitions (though code within the do is free to alter the value of the variable by using

setq (page 58)).

An index-variable specifier can also be just the name of a variable. In this case, the variable has an
initial value of n1i1, and is not changed between repetitions.

Before the first iteration, all the inif forms are evaluated, and then each var is bound to the value of

. its respective init. This is a binding, not an assignment; when the loop terminates the old values of
those variables will be restored. Note that all of the init forms are evaluated before any var is
bound; hence'init forms may refer to old values of the variables.

The second element of the do-form is a list of an end-testing predicate form end-test, and zero or
more forms, called the resul/t forms. This resembles a cond clause. At the beginning of each
iteration, after processing-the variables, the end-test is evaluated. If the result is n+i1, execution
procecds with the body of the do. If the result is not ni1, the result forms arc evaluated in order as
an implicit progn (page 64), and then do returns. do rcturns the results of cvaluating the last
result form. If there are no result forms, the value of do is nil; note that this is not quite
analogous to the treatment of clauses in a cond (pagc 68) special form.

At the beginning of cach iteration other than the first, the index variables arc updated as follows.
First every step form is evaluated, from left to right. Then the resulting values arc assigned (as with
psetq (pagc 58)) to the respective index variables. Any variable which has no associated step
form is not affccted. Because all of the step forms are evaluated before any of the variables are
altered, when a step form is cvaluated it always has access to the old values of the index variables,
even if other step forms precede it. After this process, the end-test is cvaluated as described above.

If the end-test of a do form is ni 1, the test will never succeed. Therefore this provides an idiom
for “do forever”. The body of the do is exccuted repeatedly, stepping variables as usual, of course.

. : The infinite loop can be terminated by the use of return (page 72), return-from (page 72),k
go (page 80) to an outer level, or throw (page 87). '

74

COMMON LISP REFERENCE MANUAL

For example:
(do ((J 0 (+] 1)))
(nil) : Do forever.
(format t "~%Input “D:" j)
(let ((item (read)))
(if (null ditem) (return) ; Process items until ni1 seen.
(format t "~&0utput "D: ~S8" j (process item)))))

The remainder of the do form constitutes a prog body. The function return (page 72) and its
variants may be used within a do form to terminate it immediately, returning a specified result.
Tags may appear within the body of a do loop for use by go (page 80) statements. When the end
of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms)
occurs. .

declare (page 95) forms may appear at the beginning of a do body. They apply to code in the
do body, to the bindings of the do variables, to the step forms (but not the init forms), to the
end-test, and to the result forms.

Compatibility note: “Old-style” MAcLisP do loops, of the form (do- var init step end-test . body), are not
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not
have a legal format anyway

For example:

(do ((i 0 (+ i 1)) ; Sets every element of an-array to empty
(n (array-length an-array)))
((= 1 n))

(aset 'empty an-array 1i))

The construction

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

exploits parallel assignment to index variables. On the first iteration, the value of 01dx is whatever
value x had before the do was entered. On succeeding iterations, 01dx contains the value that x
had on the previous iteration. '

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do,

,and the body is empty.

For example:

(do ((x foo (cdr x))
(y bar (cdr y)) :
(z () (cons (f (car x) (car y)) z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #°'f foo bar). Note that the step computation for z exploits

the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use

of nreverse (page 158) to put an accumulated do loop result into the correct order is a standard
idiom. .

CONTROL STRUCTURE : | o : 735

Other examples:
‘(defun length (list)
(do ((x list (cdr x))
(30 (+3] 1)))
((atom x) j)))

(defun reverse (1ist)
(do ((x 1ist (cdr x))

(y "() (cons (car x) y)))
((atom x) y)))

Note the use of atom rather than nu11 to test for the end of a list in the above two examples. This
results in more robust code; it will not attempt to cdr the end of a dotted list.

As an example of nested loops, suppose that env holds a list of conses. The car of cach cons is a
list of symbols, and the cdr of each cons is a list of cqual length containing corresponding values.
Such a data structure is similar to an association list, but is divided into “frames™; the overall
structure resembles a rib-cage. A lookup function on such a data structure might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((null r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage- 1ookup (car v))))))

(Nouce the use of indentation in the above example to set off the bodies of the do loops.)

do* bindspecs endlest {form}* [Special form]
do* is exactly like do except that the bmdmgs and steppings of the variables are performed
sequentially rather than in parallel. At the beginning cach variable is bound to the value of its init
form before the init form for the next variable is cvaluated. Similarly, between iterations each
variable is given the new value computed by its step form before the step form of the next variable
is evaluated.

7.8.2. Simple Iteration Constructs

The constructs dolist and dotimes perform a body of statements repeatedly. On cach iteration a
specified variable is bound to an clement of intcrest “which the body may cxamine. dolist examines
successive clements of a list, and dot imes examines integers from 0 to »n-/ for some specified positive intcger
n. ' :

The valuce of any of these constructs may be specified by an optional result form, which if omitted defaults
to the value ni1.

The return (page 72) statcment may be used to return immediately from a dolist or dotimes form,
discarding any following iterations which might have been performed; in effect, a b1ock with an inaccessible

76 . - COMMON I,ISP. REFERENCE MANUAL

name surrounds the construct. The body of the loop is in fact a prog (page 78) body; it may contain tags to
serve as the targets of go (page 80) statements, and may have declare (page 95) forms at the beginning.

dolist (var listform [resultform]) {tag | statement}* [Special form]
dolist provides straightforward iteration over the elements of a list. The cxpression (dolist
(var listform resultform) . progbody) evaluates the form listform, which should produce a list.
It then performs progbody once for cach clement in the list, in order, with the variable var bound to
the element. Then resultform (a single form, not an implicit progn) is evaluated, and the result is
the value of the do11ist form. If resultform is omitted, the resultis ni 1. '

For example: _)
{(dolist (x "(a b ¢ d)) (prinl x) (princ " ")) => nil
after printing“a b ¢ d ”
An explicit return statement may be used to terminate the loop and return a specified value.

Compatibility note: The resultform part of a do11st is not currently supported in Lisp Machine Lisp. It seems
to improve the utility of the construct markedly.

dotimes (var countform [resultform]) {iwag | statement}* [Special form)
dotimes provides straightforward iteration over a scquence of integers. The expression
(dotimes (var countform resultform) progbody) evaluatcs the form countform, which should
produce an integer. It then performs progbody once for each integer from zero (inclusive) to count
(exclusive), in order, with the variable var bound to the integer; if the integer is zero or negative,
then the progbody is performed zero times. Finally, resultform (a single form, not an implicit
progn) is evaluated, and the result is the value of the dot imes form. If resultform is omitted, the
resultis nil.

Altering the value of var in the body of the loop (by using setq (page 58), for example) will have
unpredictable, possibly implementation-dependent results. A COMMON LiIsP compiler may choose
to issue a warning if such a variable appears in a setq.

For example:

(defun string-posq (char string &optional
(start 0)
(end (string-length string)))
(dot1mes (k (- end start) nil)
(when (char= char (char string (+ start k)))
(return k))))

An explicit return statcment may be used to terminate the loop and return a specificd value.

See also do-symbo1s (page 116) and related constructs.

CONTROL STRUCTURE 77

7.8.3. Mapping

Mapping is a type of iteration in which a function is succcssively applied to picces of one or more
scquences. The result of the itcration is a seqdcncc containing the respective results of the function
applications. There arc sceveral options for the way in which the pieces of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map (page 159) may be used to map over any kind of sequence. The following functions
operate only on lists. '

mapcar function list &rest more-lists [Function]
maplist function list &rest more-lists [Function]
mapc function list &rest more-lists ' [Function]
mapl function list &rest more-lists [Function]
mapcan function list &rest more-lists ‘ [Function]
mapcon function list &rest more-lists ' : [Function]

For each these mapping functions, the first argument is a function and the rest must be lists. The
function must take as many arguments as there are lists.

mapcar operates on successive elements of the lists. First the function is applied to the car of each
list, then to the cadr of each list, and so on. (Idcally all the lists are the same length; if not, the
iteration terminates when the shortest list runs out, and excess elements in other lists are ignored.)
The value returned by mapcar is a list of the results of the successive calls to the function.

For example:

(mapcar #'abs (3 -4 2 -5 -6)) => (3 4 2 5 6) :
(mapcar #’'cons '(a b c) (12 3)) => ((a . 1) (b . 2) (c . 3))

maplist is like mapcar except that the function is applied to the list and successive cdr’s of that
list rather than to successive clements of the list.

For example:

(maplist #’(lambda (x) (cons 'foo x))
(a b.c d))
=> ((foo a b c d) (foo b ¢ d) (foo c d) (foo d))
(maplist #’(lambda (x) (if (member (car x) (cdr x)) 0 1)))
'(abacdbc))
=> (00 10111)
; An centry is 1 iff the corresponding clement of the input
; list was the last instance of that clement in the input list.

map1 and mapc arc like map1ist and mapcar respectively, except that they do not accumulate
the results of calling the function.

Compatibility note: In all Lisp systems since Lisp 1.5, map1 has been called map. In the chapter on sequences
it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence
mapper, in closer accordance to the computer science litcrature, especially the growing body of papers on
functional programming. ’

These functions are uscd when the function is being called merely for its side-cffects, rather than its
rcturned values. The value rcturned by map1 or mapc is the sccond argument, that is, the first

78 ' COMMOXN LISP REFLERENCE MANUAL

scquence argument.

mapcan and mapcon are like mapcar and map1ist respectively, except that they combine the
results of the function using nconc (page 171) instead of 1ist. That s,
(mapcon fxI ... xn)
<=> (apply #’'nconc (maplist fx/ ... xn))
and similarly for the rclationship between mapcan and mapcar. Conceptually, these functions
allow the mapped function to return a variable number of items to be put into the output list. This
is pamcularly useful for effectively returning zero or one item:

(mapcan #'(lambda (x) (and (numberp x) (11st x)))
'(albc34db5s))
=> (1 3 45)
In this case the function serves as a filter; this is a standard LISP idiom using mapcan. (The
function remove-if-not (page 160) might have been useful in this particular context,
however.) Remember that nconc is a destructive operation, and therefore so are mapcan and
mapcon; the lists returned by the function are altered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code. '

The functional argument to a mapping function must be acceptable to app1y; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions which have
&optional and &rest parameters. '

7.8.4. The Program Feature

Lisp implcmentations since LISP 1.5 have had what was originally called “the program feature”, as if it were
impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog.
Modern LISP programming style tends to use prog rather infrequently. The various iteration constructs, such
asdo (page 73), have bodics with the characteristics of a prog.

~prog ({var | (var [ini])}*) {tag | statemeni}* [Special form)
prog isa special fotm that provides bound temporary variables, sequential evaluation of forms,
and a “goto/return” facility. It is this latter characteristic that distinguishes prog from other LiSP
constructs; Tambda and Tet (pagc 65) also provide local variablc bindings, and progn (page
64) also cvaluates forms scquentially.

A typical prog looks like:

CONTROIL STRUCTURE ‘ ; 79

(prog (varl var2 (var3 init3) vard (varS init5))
statementl

tagl
Statement2
statement3
statement4
lag?
statements
)

The list after the keyword prog is a set of specifications for binding varl, var2, etc., which are
temporary variables, bound locally to the prog. This list is processed exactly as the list in a 1et
(page 65) statement: first all the init forms are evaluated from left to right (where ni1 is used for
any omitted /nit form), and then the variables are all bound in parallel to the respective results.
(prog* (page 80) is the same as prog except that this initialization is sequential rather than
parallel.)

The part of a prog after the variable list is called the body. An item in the body may be a symbol
or a number, in which case it is called a tag, or any other COMMON LISP form, in which case it is
called a statement.

After prog binds the temporary variables, it processes each form in‘its body sequentially. fags are
ignored; statements are evaluated, and their returned values discarded. If the end of the body is
reached, the prog returns ni1. However, two special forms may be used in prog bodies to alter
the flow of control. If (return x) is evaluated, prog stops processing its body, evaluates x, and
returns the result. If (go 1ag) is evaluated, prog jumps to the part of the body labelled with the
tag (that is, with an atom eq1 (page 49) to tag). fag is not evaluated.

Compatibility note: The “computed go” feature of MACLISP is not supported. The syntax of a computed go is
idiosyncratic, and the feature is not supported by Lisp Machine Lisp, NiL, or INTERLISP.

go and return forms must be Jexically within the scope of the prog; it is not possible for one
function to return to a prog that is in progress in its caller. Thus, a program that contains a go
not contained within the body of a prog (or other constructs such as do, which have prog bodies)
is in error. A dynamically scoped non-local exit mechanism is provided by catch (page 85) and
throw (page 87) and other related operations. v

Here is a fine example of what can be done with prog:

80

prog*

go lag

COMMION LISP REFERENCE MANUAL

(defun king-of-confusion (w)

(prog (x y z) ; Initialize x,y, ztonil
(setq y (car w) z (cdr w))

Toop
(cond ((null y) (return x))

((null z) (go err)))

rejoin
(setg x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr z))

{(go Toop)
err

(error "Mismatch - gleep!")
(setq z y) '
{go rejoin))
which is accomplished somewhat more perspicuously by:
(defun prince-of-clarity (w)

(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))

(x '() (cons (cons (car y) (car z)) x)))

((null y) x)
(when (null z)

(error "Mismatch - gleep!")
(setq z y))))

Declarations may appear at the beginning of a prog body; see declare (page 95).

‘ . [Special form]
The prog* special form is almost the same as prog. The only difference is that the binding and
initialization of the temporary variables is done sequentially, so that the init form for each one can
use the values of previous ones. Therefore prog* is to prog as Tet* (page 66) isto 1et (page
65).
For example:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

: , [Special form]
The (go tag) special form is used to do a “go to” within a a prog body. The tag must be a
symbol or a number; ag is not cvaluated. go transfers control to the point in the body labelled by
atag equal to the onc given. If there is no such tag in the body, the bodics of lexically containing
prog bodies (if any) arc examined as well. Itis an crror if there is no matching tag.

The go form does not ever return a value. A go form may not appear as an argument to an
ordinary function, but only at the top level of a prog body or within certain special forms such as
conditionals which arc within a prog body. ’

For example:

CONTROL STRUCTURE - \ 81

(prog ((n (string-length a-string)) (j 0j)
loop (when (= j n) (return a-string))

(when (char= #\Space (char j a-string))

(return (substring a-string 0 j)}))

(increment j)

(go loop)) - -
returns the first “word” in a-string, where words are separated by spaces. This could of course
have been expressed more succinctly as:

(dotimes (j (string-length a-string) a-string)
(when (char= #\Space (char j a-string))
(return (substring a-string 0 j))))

“As a matter of style, it is recommended that the user think twice before using a go. Most purposes
of go can be accomplished with one of the iteration primitives, nested conditional forms, or
return-from (page 72). If the use of go seems to be unavoidable, perhaps the control structure
implemented by go should be packaged up as a macro definition. (If the use of go is avoidable,
and return also is not needed, then prog probably is not needed either; 1et can be used to bind
variables and then execute some statements.)

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a singlc LISP object. Sometimes, however, it is convenient
for a function to compute several quantities and return them. COMMON LISP provides a mechanism for
handling multiple values directly. This mechanism is cleaner and more efficient than the usual tricks
involving returning a list of results or stashing results in global variables. ‘

7.9.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to produce multiple values and to
receive them. If the caller of a function does not request multiple values, but the called function produces.
multiple values, then the first value is given to the caller and all others are discarded (and if the called
function produccs zero valucs then the caller gets ni1 as a value).

The primary primitive for producing multipic values is values (page 82), which takes any number of
arguments and rcturns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three valucs. Other special forms also produce multiple
values, but they can be described in terms of values. Some built-in COMMON LiSP functions (such as
floor (page 131)) rcturn multiple valucs; those which do are so documented.

The spccial forms for receiving multiple values are multiple-value-bind (page 82),
multiple-value (pagc83),and multiple-value-Tlist (page 82), Thesc specify a form to evaluate
and an indication of wherc to-put the valucs returned by that form.

82 _ COMMON LISP REFERENCE MANUAL

values &rest args ' * [Function]
Returns all of its arguments, in order, as values.
For example:

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y X)))
(multiple-value-let (r theta) (polar 3.0 4.0)

(Tist r theta))
=> (5.0 0.9272952)

The expression (values) returns zero values.

values-1ist list’ : ‘ : [Function]
Returns as multiple values all the elements of list.
For example:
- (values-1ist (1ist a b c)) <=> (values a b c)

multiple-value-list form © [Special form]
multiple-value-11ist evaluates form, and returns a list of the multiple values it returned.
For example: .
(multiple-value-list (floor -3 4)) => (-1 1)

mvcall ﬁmctzon {form}* : [Special form)
mvcall first evaluates function to obtam a function, and then evaluates all of the forms. All the
the values of the forms are gathered together (not just one value from each), and given as
arguments to the function. The result of mvcal1l is whatever is returned by the function.

!

For example:

(mvcall #'+ (floor 5 3) (f1oor 7 3)) <=> (+ 12 2 1) => 6
(multiple-value-Tist form) <=> (mvcall #’1list form)

mvprogl form {form}* [Special form]
mvprog1 evaluates the first form and saves all the values produced by that form. It then evaluates
the other forms from left to right, discarding their values. The values produced by the first form are
returned by mvprogl. See progl (page 65), which always returns a single value.

multiple-value-bind ({var}*) values-form {form}* [Special form]
The values-form is evaluated, and cach of the variables varis bound to the respective value returned
" by that form. If there are more variables than valucs returned, extra values of ni 1 arc given to the
remaining variables. [f there are more values than variables, the cxcess values are simply discarded.
The variables arc bound to the values over the exccution of the forms, which make up an implicit
progn. ‘ '
:Compalibilily note: This is compatible with Lisp Machine 1isp.

CONTROL STRUCTURE S

o

For example:

(multiple-value-bind (x) (floor 5 3) (Tist x)) => (1)
(multipie-value-bind (x y) (floor 5 3) (list x y)) => (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y 2))

=> (1 2 nil)
In general,
(multiple-value-bind (x y z ...) form . body)
<=> ’
. (mvlet (&optional (x nil) (y nil) (z nil) ... &rest dummy)
(declare (ignored dummy))
form . body)
multiple-value variables form [Special form]

The variables must be a list of variables. The form is evaluated, and the variables are ser (not
bound) to the values returned by that form. If there are more variables than values returned, extra
values of ni1 are assigned to the remaining variables. If there are more values than i/ariables, the
excess values are simply discarded. - 4

Compatibility note: This is compatible with Lisp Machine Lisp.
multiple-value always returns a single value, which is the first value returned by form, or ni1
if form produces zero values.

7.9.2. Rules for Tail-Recursive Situations

It is often the case that the value of a special form is defined to be the value of one of its sub-forms. For
example, the value of a cond is the value of the last form in the selected clause. In most such cases, if the
sub-form produces multiple values, the original form will also produce all of those values. This passing-back
of multiple values of course has no effect unless eventually one of the special forms for receiving multiple
values is reached.

To be explicit, multiple values can result from a special form under precisely these circumstances:

e eval (page 209) returns multiple values if the form given it to evaluate produces multiple values.

e apply (page 63), funcall (page 64), funcall* (page 64), mvcall (page 82), subrcall
(page SUBRCALL-FUN), and subrcall* (page SUBRCALL*-FUN) pass back muitiple
values from the function applied or called.

e When a tambda (page LAMBDA-FUN)-cxpression is invoked, the function passes back
multiple values from the last form of the 1ambda body (which is an implicit progn).

e Indeed, progn (page 64) itself passcs back multiple values from its last form, as does any
construct some part of which is defined to be an “implicit progn™; these include progv (page
67), 1et (pagc 65), 1et* (pagc 66),when (pagc 69), unless (pagc 70), case (page 70),
typecase (page 70), multiple-value-bind (page 82), multiple-value (page 83),
catch (page 85),and catch-all (page 85). '

34

COMMON LISP REFERENCE MANU: \1

e mvprogl (pagc 82) passcs back muliiple values from its first form. However, progl (page
65) always rcturns a single value.

e unwind-protect (page 86) returns multiple values if the form it protects does.

e catch (page 85) rcturns multiple valucs if the result form i ina throw (page 87) exiting from
such a catch produces multiple values.

e cond (page 68) passes back multiple values from the last form of the implicit progn of the
selected clause. If, however, the clause selected is a singleton clause, then only a single value (the
non-ni1 predicate value) is returned. This is true even if the singleton clause is the last clause of
the cond. It is not permitted to treat a final clause “(x)™ as being the same as “(t x)” for this
reason; the latter passes back multiple values from the form x.

e if (page 69) passes back rriultiple values from whichever form is selected (the tien form or the

else form).

o and (page 52) and or (page 52) pass back multiple values from the last form, but not from
forms other than the last.

e do (page 73), prog (page 78), prog* (page 80), and other constructs from which return
(page 72) can return, each pass back the multiple values of the form appearing in In addition, do

passes back multiple values from the last form of the ex1t clausc exactly as if the exit clause werea

. cond clause.

Among special forms which never pass back multiple values are setq (page 58), multiple-value
(page 83), and prog1 (page 65). A good way to force only one value to be returned from a form x is to write

(values x).

For example, if you write (cons (foo x)), then cons will receive exactly one argument (which is of
course an crror), cven if foo rcturns two values. To pass both valucs from foo to cons, one must use a
special form, such as (mvcall #’cons (foo x)). In an ordinary function call, each argument form
~ produccs exactly one argument; if such a form rcturns zcro values, ni1 is used for the argument, and if more
than one value, all but the first arc discarded. Similarly, conditional constructs which test the value of a form
will use exactly one value (the first) from that form and discard the rest, or use nil if zero values are

The most important rule about multiple values, however, is:

No matter how many valucs a form produces,
if the form is an argument form in a function call,
then exactly ONE value (the first one) is used.

returned.

CO.\”I‘ROL‘S'I'R UCTURE -85

7.10. Dynamic Non-local Exits |

CoMMON LisP provides a facility for exiting from a complex process in a nen-local, dynamically scoped
manner. There are two classes of special forms for this purpose, called catch forms and throw forms, or simply
catches and throws. A catch form evatuates some subforms in such a way that, if a throw form is executed
during such evaluation, the evaluation is aborted at that point and the catch form immediatcly returns a value
specified by the throw. Unlike block (page 71) and return (page 72), which allow for so cxiting a block
form from any point lexically within the body of the block, the catch/throw mechanism works even if the
throw form is not textually within the body of the catch form. The throw need only occur within the extent
(time span) of the cvaluation of the body of the catch. This is analogous to the distinction between
dynamically bound (special) variables and lexically bound (local) variables. ’

7.10.1. Catch Forms

catch tag {form}* o [Special form]
The catch special form is the simplest catcher. The fag is evaluated first to produce an object that
names the catch; it may be any LISP object. The forms are evaluated as an implicit progn, and the
results of the last form are returned, except that if during the evaluation of the forms a throw
should be executed, such that the tag of the throw matches (is eq to) the tag of the catch, then the
evaluation of the forms is aborted and the results specified by the throw are immediately returned
from the catch expression. '

The tag is used to match up throws with catches (using eq, not eq1; therefore numbers should not
be used as catch tags). (catch 'foo form) will catch a (throw *foo form) but not a
(throw ’bar form). Itis an error if throw is done when there is no suitable catch (or one of
its variants) ready to catch it. '

Compatibility note: This syntax for catch is not compatible with MacLisp. Lisp Machine Lisp defines catch
to be compatible with that of MACLIsP, but discourages its use. The definition here is compatible with NIL.

catch-all caich-function {form}* ' [Special form]

unwind-all carch-function {form}* : [Special form]
catchal1 behaves roughly like catch, except that instcad of a tag, a catch-function is provided.
If no throw occurs during the evaluation of the forms, then this behaves just as for catch: the
catchall form returns what is returned from evaluation of the last of the forms. catch-all
will catch any throw not caught by some inner catcher, however; if such a throw occurs, then the
function is called, and whatever it returns is returned by catch-al1. The catch-function will get
onc or more arguments; the first argument is always the throw tag, and the other arguments are the
thrown results (there may be more than one if the result form for the throw produccs multiple .

- values). -

“The catch-all is not in force during cxecution of the catch-function. 1f a throw occurs within
the catch-function, it will throw to some catch exterior to the catch-a11. This is uscful because
the cateh-function can cxaminc the tag, and if it is not of intcrest can relay the throw.

36

COMMON LISP REFERENCE MANUAL

(catch-all #'(lambda (tag &rest results)

(caseq tag ; Check tag.
(win (values-1list results)) ;Ifwin, rcturn results.
{(lose (cleanup) ; If lose. clean up
(ferror "Lose lose!")) ; andsignalan error.
(otherwise ; Otherwise relay throw.

(throw tag (values-list results)))))
(determine-win-or-lose))
unwind-al1 is just like catch-al11 except that the catch-function is always called, even if no
throw occurs; in that case the first argument (the “tag”) to the catch-function is ni1, and the other
arguments are the results from the last of the forms. Often unwind-protect is more suitable for
a given task than unwind-al1l, however; the choice should be weighed for any particular
application.

277 Query: Ooooaps, there’s a problem with these. What tag is supplied if what is causing the exitis a go or

return from within the body to some tag or block outside the catcher? In MACLIsp, a go from within a

catchall quietly breaks up the catchall frame without invoking the catchall function, which means
 that it catches all throws but not all exits!

unwind-protect protected-form {cleanup-form}* [Special form]

Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after
the form is evaluated; a typical example is: :
(progn (start-motor) ‘ _ -
(drill-hole)
(stop-motor))
The non-local exit facility of Lisp creates a situation in which the above code won’t work, however:
if dri11-ho1le should do a throw to a catch which is outside of the progn form (perhaps because
the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably
be left running). This is particularly likely if dri11-hole causes a LISP error and the user tells
the error-handler to give up and abort the computation. (A possibly more practical example might
be:
{prog2 (open-a-file)
(process-fTile)
(close-the-file))

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the above program to work, it can be rewritten using unwind-protect, as
follows: ’

(unwind-protect
" (progn (start-motor)
(drill-hole))

(stop-motor))

If dri11-hole docs a throw which- attempts to quit out of the unwind-protect, then
(stop-motor) will be exccuted. ‘

As a general rule, unwind-protect guarantecs to exccute all the cleanup-forms before cXiting,
whether it terminates normally or is aborted by a throw of some kind. unwind-protect returns

CONTROL STRUCTURE 87

whatever results from cvaluamon of the pmlected -form, and discards all the results from the

. cleanup-forms.

7.10.2. Throw Forms

throw tag result : v ‘ ~ [Special form)
The throw special form is the only explicit thrower in COMMON Lisp. (However, errors may cause
throws to occur also.) The fag is evaluated first to produce an object called the throw tag. The
most recent outstanding catch whose tag matches the throw tag is exited. Some catches, suchas a
catch-al1, will match any throw tag; a catch matches only if the catch tag is eq to the throw
tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any
intervening unwind-protect cleanup code is executed. The result form is evaluated before the
unwinding process commences, and whatever results it produces are returned from the catch (or
given to the catch-function, if appropriate).

If there is no outstanding catch whose tag matches the throw tag, no unwinding of the stack is
performed, and an error is signalled. When the error is signalled, the outstanding catches and the
dynamic variable bindings are those in force at the point of the throw.

Implementation note: Thesc requxrcments imply that throwing must be done by two passés over the control
stack. In the first pass one simply scarches for a matching catch. In this search every catch, catch-all,

‘ and unwind-al1 must be considered, but every unwind-protect should be ignored. On the second pass
the stack is actually unwound, one frame at a time, undoing dynamic bindings and outstanding
unwind-protect in reverse order of creation until the matching catch is reached.

88

COMMON LISP REFERENCE MANUAL

Chapter 8

Macros

The CoMMON LISP macro facility allows the user to define arbitrary functions that convert certain LISP
forms into different forms before evaluating or compiling them. This is done at the S-expression level, not at
the character-string level as in most other languages. Macros are important in the writing of good code: they
make it possible to write code that is clear and elegant at the user level, but that is converted to a more
complex or more efficient internal form for execution. '

When eval (page 209) is given a list whose car is a symbol, it looks in the definition cell of that symbol.
If the definition is itself an object that satisfies the pseudo-predicate macro-p (page 57), then the original
list is said to be a macro call. The non-ni1 result of macro-p will be a function-of one argument, called the
expansion function. This function is called with the entire macro call as its one argument; it must return some
new LisP form, called the expansion of the macro call. This expansion is then evaluated in place of the
original form.

When a function is being compiled, any macros it contains are expanded at compilation time. This means
that a macro definition must be seen by the compiler before the first use of the macro. Macros cannot be used
as ﬁmctional'argumcnts to such things as apply (page 63), funcall (page 64), ormap (page 159); in such
situations, the list representing the “original macro call” does not exist, so the expansion function would not

know what to work on.

8.1. Defining Macros

macro name (var) {form}* [Macro]
The primitive spccial form for defining a macro is macro. Note, however, that the usc of macro is
often very awkward, and it is preferable to use defmacro in almost all circumstances. A call to
macro has the following form:

(macro name (var) . body)

This is very similar in form to a defun form: name is the symbol whose macro-definition we are
creating, var is a single required parameter name that is bound to the entire calling form, and body
is the body of the cxpansion function, which is cxecuted as an implicit progn. The last form in
body produccs, as its value, the form that will be passed back to eval as the macro expansion; the

— 89 —~

90 ‘ COMAMON LISP REFERENCE MANUAL

expansion is then cvaluated in place of the macro call. (Note that the expansion could itself be a
macro call, and the cycle would repeat.y

The if (page 69) construct could be defined in terms of cond (page 68) as a macro:

(macro if (call-form)
*(cond (,(cadr call-form) ,(caddr cali-form))
(t ,(cadddr call-form))))

If the above form is exccuted by the interpreter, it will set the definition of the symbol if to an object such ‘

that macro-p of that object returns a one-argument function equivalent to:

(1ambda (ca]]ing—form)
(1ist ’'cond
(1ist (cadr calling-form) (caddr ca111ng form))
(1ist 't (cadddr calling-form))))

(The lambda-expression is produced by the macro construct. The calls to Tist are the (hypothetical) result
of the backquote () macro character and its associated commas.)

Now, if eval encounters
(if (null foo) bar (plus bar 3))
this will be expanded into ‘

(cond ((null foo) bar)
(t (plus bar 3)))

and eval tries again on this new form.

As you can se¢ in the above example, the main disadvantage of using macro to define macros is that the
user must decompose the argument into its constituents using car and cdr. In a complex macro, this process
is confusing and error-pronc. Thc use of defmacro (page 91) alleviates this problem. It should also be
clear that the backquote facility (77?) is very uscful in writing macros, since the form to be returned is
normally a complex list structure, mostly- constant but with a few cvaluated forms scattcred through the
structure.

Note that when macro is encountered by the compiler, the normal action is to add the definition to the
compilation environment and also to place a compiled version of the cxpander-function into the load file, so
that the macro will be defined at runtime as well as during the current compilation. If the macro is to be used
only during the current compilation and not at runtime, ths can be achicved by using the eva1 when (page
EVAL-WHEN-FUN) construct:

(eval-when (compile)
- (macro name (var)
body))

MACROS 91

defmacro name varlist {form}* [Macro]
. defmacro is a macro-defining macro that, unlike macro, decomposcs the calling form in a more
' elegant and uscful way. A call to defmacro has the following form:

(defmacro name varlist . body)

This is very similar to a defun (page 42) form: name is the symbol whose macro-definition we are
creating, varlist is similar in form to a lambda-list, and body is the body of the expander function. If
we view the macro call as a list containing a function name and some argument forms, the
argument forms (unevaluated) are bound to the corresponding parameters in varlist. Then the
body forms are evaluated as an implicit progn, and the value of the last form is returned as the
expansion of the macro call.

Like the lambda-list in a defun, a defmacro varlist may contain variable symbols and the
&optional, &rest, and &aux tokens (but not &k ey).
?77 Query: Should &key be allowed?

For &optional parameters, initialization forms and “supplied-p” parameters may be specified,
just as for defun. Two additional tokens are allowed in definacro variable lists only:

&body This is identical in function to &rest, but it informs certain pretty-printing and
editing functions that the remainder of the form is a body rather than
arguments, and should be indented accordingly. {Only one of &body or &rest
may be used.)

&whole This is followed by a single variable that is bound to the entire macro call form;
‘ this is the same value that the single parameter in a macro definition form
would receive.

Compatibility note: Some Lisp implementations, notably Lisp Machine Lisp; allow a “destructuring” pattern to
be used instead of, or mixed with, the defun-like arglist specified here. Prior to the appearance of
&optional, the pattern may contain not only top-level symbols, but an arbitrary list structure built from cons
cells and symbols; this is matched against the macro call cell by cell, producing a binding wherever the
defmacro pattern contains a symbol. This is not supported by CoMMON Lisp; it docs not support
destructuring'in defun, and defmacro nceds to parallel defun as closely as possible to minimize confusion
in what is alrcady a difficuit arca for ncw users.. Some CoMMON Lisp implementations may choose to provide
destructuring defmacro as an extension.

Using defstruct, the definition for three-argument if would look like this:

(defmacro if (pred result else-result)
‘(cond (,pred ,result)
(t ,else-result)))
This would produce the same macro-definition for if as the definition using macro above. If if
is to accept two or three arguments, with the e1se-result defaulting to ni1, as in fact it does in
COMMON LIsp, the definition might look like this: ' '

(defmacro if (pred result &optional (else-result ’'nil))
*(cond (,pred ,result)
(t ,else-result)))
If the compiler encounters a defmacro, the normal cffect is that same as for a macro form: the
‘ new macro is added to the compilation environment, and a compiled form of the expansion
function is also addced to the output file so that the new macro will be operative at runtime. If this

92 : COMMON LISP REFERENCTE MANUAL
is not the desired effect, the defmacro form can be wrapped in an eval-when.
Scveral global variables affect the code that defmacro produces.

defmacro-check-args [Variable]
If defmacro-check-args is true (which it initially is) when a defmacro (page 91) form is
. executed or compiled, the resulting macro defined by defmacro will contain code that signals an
error if it is called with the wrong number of “argument” forms, that is, if the number of items
following the function name in the calling form is inconsistent with the number of required and
optional arguments specified in the defmacro form.

defmacro-maybe-displace [Variable]
If defmacro-maybe-displace is true (which it initially is) when a defmacro (page 91) form
is executed or compiled, the resulting macro defined by defmacro will contain code that checks
the variable macro-displacement-hook at expansion time. If
macro-displacement-hook is null, the expansion is used ndrmally. Otherwise, the value of
this variable must be a function of two arguments: the original macro-call form and the expansion.
Whatever this function returns is passed back to eval as the macro expansion to use this time
around. : .

macro-expansion-hook [Variable]
The value of this variable is initially ni1. The purpose of this variable is described above under
defmacro-maybe-displace (page 92). If the user wants to speed up interpreted code that
makes Heavy use of macros, this variable can be set to (the name of) the function displace (page
92): | |

(setq macro-expansion-hook ’'displace)

This will destructively replace the macro call with its expansion. Alternatively, some more complex
function may be used.

displace macro-call expansion [Function]
displace destructivcly replaces the macro-call thh its expansion, returning the expansion. It is
the simplest possible “memoizing” function, whose purpose is to speed up interpreted code by
doing cach macro cxpansion only once. Its disadvantages are that the original form of the macro is
not available to printing and dcbugging packages, and that if the macro definition is altered, the
displaced calls will retain their old cxpansions. (M()rc complex memoizing packages, which
climinate these disadvantages, will be available in the COMMON Lisp library. These are not
included in the base language because their use must be coordinated with the use of particular
printing, loading, and dcbuggingv facilities.)

MACROS ' 93

macroexpand form [Function]

. macroexpand-1 form [Function)

If form is a macro call (with respect to globai macro definitions, ignoring any established by
macrolet (page 67)), then macroexpand-1 will expand the macro call once and return the
expansion. [f form is not a macro call, it is simply returned. macroexpand is similar, but
repeatedly expands form until it is no longer a macro call.

94

COMMON LISP REFERENCLE MANUAL

Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All
declarations are completely optional and do not affect the meaning of a correct program, with one exception:
special declarations do affect the interpretation of variable bindings and references, and so must be
specified where appropriate. All other declarations are of an advisory nature, and may be used by the Lisp
system to aid you by performing extra error checking or producing more efficient compiled code.
Declarations are also a good way to add documentation to a program.

9.1. Declaration Syntax |

declare {declaration}* [Special form]

This form may occur only at top level, or at the beginning of the bodies of certain special forms;
that is, a declare form not at top level may occur only as a statement of such a form, and all
statements preceding it (if any) must also be declare forms. If a declaration is found anywhere
- else an error will be signalled.

Each declaration form is a list whose car is a keyword specifying the kind of declaration it is.
Declarations may be divided into two classes: those that concern the bindings of variables, and
those that do not. Those which concern. variable bindings apply only to the bindings made by the
special form at the head of whose body they appear. For example, in

(defun foo (x)
(declare (type float x)) ...

(1e1)‘. ((x *a)) ...)

the type declaration apblics only to the outer binding of x, and not to the binding madc in the 1et.

Compatibility note: This is differcnt from MACLISP, in which type declarations are pervasive.

If a declaration that applics only to variable bindings appears at top level, it applies to the dynamic
value of the variable. For example, the top-level declaration
(declare (type float tolerance))

specifics that the dynamic value of tolerance should always be a floating-point number.

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code

- 95 — e

96 ' | COMMON LISP REFERENCE MANUAL

in the body of the special form (but not code in any initialization forms used (o compute initial
values for bound variables).

For example:
(defun foo (x y) (declare (notinline floor)) ...)

advises that everywhere within the body of foo the function ‘floor should not be open-coded,
but called as an out-of-line subroutine. Any pervasive declaration made at top level constitutes a
universal declaration, always in force unless locally shadowed. '

For example:
(declare (inline floor))

- advises that f1oor should normally be open-coded in-line by the compiler (but within foo it will
be compiled out-of-line anyway, because of the shadowing local declaration to that effect).

For example:

(defun nonsense (k x)
(declare (type integer k))
(let ((j (foo k x))

(x (* k k)))

(declare (inline foo) (spec1a1 X))

(foo x j))) ,
In this rather nonsensical example, k is declared to be of type integer. The in1ine declaration
applies to the inner call to foo, but not to the one to whose value j is bound, because that is code
in the binding part of the Tet. The special declaration of x causes the 1et form to make a
special binding for x, and causes the reference to x in the body of the 1et to be a special reference.
However, the reference to x in the first call to foo is a local reference, not a special one.

Compatibility note: In MacLisp, dec1are does nothing in interpreted code, and is defined to simply evaluate
all the argument forms in the compilation environment. In CoMMON Lisp, declare does useful things for
both interpreted code and compiled code, and therefore arbitrary forms are not permitted within it. The tricks
played in MACLisp with dec1are are better done using eval-when (page EVAL-WHEN-FUN).

locally {declare-form}* {form}* ' ' [Special form]
This special form may be used to make local pervasive declarations where desired. It does not bind
any variables, and so cannot be used meaningfully for declarations of variable bindings.
For example:

(1oca11y (declare (inline floor))
(declare (notinline car cdr))
(floor (car x) (cdr' ¥y)»))

9.2. Declaration Forms

Here is a list of valid declaration forms for usc in declare. A construct is said to be “aff‘cctcd" by a
declaration if it occurs within the scope of a declaration.

special (special varl var2 '...) dcclarcs that all of the variables named are to be considered

special. ‘This declaration affects variable bindings, but also pervasively affects references. »

DECLARATIONS

type

lype

ftype

function

intine

97

All variable bindings affected arc madc to be dynamic bindings, and affccted variable
references refer to the current dynamic binding rather than the current local binding. This
declaration does not pervasively affect bindings unless it occurs at top level (this latter
exception arising from convenicence and compatibility with MACLISP). Inner bindings of a
variable implicitly shadow a special declaration, and must be explicitly re-declared to be
special.

For example:

(declare (special x)) ; X is always special.
(defun example (x y)
(declare (special y))

(Tet ((y 3))
(print (+ y (locally (declare (special y)) y)))

(et ((y 4)) (declare (special y)) (foo x))))

In the contorted code above, the outermost and innermost bindings of y are special, and
therefore dynamically scoped, but the middle binding is lexically scoped. The two
arguments to + are different, one being the value (which is 3) of the lexically bound
variable y, and the other being the value of the special variable named y (a binding of
which happens, coincidentally, to lexically surround it at an outer level).

(type typé varl var? ...) affects only variable bindings, and declares that the
specified variables will take on values only of the specified type.

(type varl var2 ...) is an abbreviation for (type type varl var? ...) provided
that type is one of the symbols appearing in Table 4-1 (page 27).

_ (ftype type function-name-1 function-name-2 ...) declares that the named functions

will be of the functional type type.
For example:

(declare (ftype (function (integer 1ist) t) nth)
(ftype (function (number) float) sin cos))

. (function name arglist result-typel result-type2 . ..) is entirely equivalent to

(ftype (function name arglist result-typel resuli-type2 ...) name)
but may be more convenient for some purposes.

For example:
) (declare (functmn nth (integer list) t)

(function sin (number) float)
(function cos (number) float))

The syntax mildly resembles that of defun (page 42): a function name, then an argument
list, then a specification of results.

(inline functionl function? ...) declares that it is desirable for the compiler to
open-code calls to the specified functions; that is, the code for a specified function should
be integrated into the calling routine, appearing “in line”, rather than a procedure call
appearing there. This may achicve extra speed at the expense of debuggability (calls to
functions compiled in-linc cannot be traced, for exampie). This declaration is pervasive.
Remember that a compiler is free to ignore this declaration.

9% COMMON 115P REFERENCE MANUAL

notinline (notinline function! function2 ...) declares that it is undesirable to compile the
specified functions in-line. This declaration is pervasive. Remember that a compiler is free
to ignore this declaration,

ignore (ignore varl var2 ... varn) affects only variable bindings, and declares that the
bindings of the specified variables are never used. It is desirable for a compiler to issue a
 warning if a variable so declarcd is ever referred to or is also declared special, or if a
variable is lexical, never referred to, and not declared to be ignored.
777 Query: This is a new idea: what do people think? This is more mnemonic than writing ignore
or nil for an ignored parameter because you can give a meaningful (and possibly conventional)
name. It is more explicit and robust than simply mentioning the variable at the front of the
lambda-body; the latter convention prevents the compiler from issuing a warning about a possibly
malformed program.

optimize (optimize qualityl quality?2 ...) advises the compiler that quality! should be given
greatest attention in producing compiled code, then qualiry2, and so on. The qualities may
include speed (of the compiled code), space (both code size and run-time space), and
safety (run-time error checking); any qualities not mentioned are assumed to be of
lower priority than those mentioned. The default situation is implementation-dependent,
but implementors are encouraged to consider (optimize safety speed space) for
the default. This declaration is pervasive.

For example:

(defun often-used-subroutine (x y)
{error-check x y)
(hairy-setup x)
(locally
;3 This inner loop really needs to burn.
(declare (optimize speed))
(do ((i 0 (+ i 1))
(z x (cdr 2)))
((null z))
(dectare (fixnum i)))))

777 Query: This is a new idea: what do people think? Actually, one needs finer control over this,
such as whether type declarations should be assumed by the compiler or cause explicit checking code
to be emitted. '

An implementation is free to support other (implementation-dependent) declarations as well. On the other
hand, a COMMON LisP compiler is free to ignore entire classes of declarations (for example, implementation-
dependent declarations not supported by that compiler’s implementation!). © Compiler implementors are
encouraged, however, to program ‘the compiler by default to issue a warning if the compiler finds a
declaration of a kind it never uses (as a hedge against spelling crrors).

9.3. Type Declaraﬁon for Forms

- Frequently it is uscful to declare that the value produced by the cvaluation of some form will be of a
particular type. Using declare onc can declare the type of the value held by a bound variable, but there is
no casy way to declare the type of the value of an unnamed form. One could write something like .

DECLARATIONS ' 99

((lambda (x) (declare (type type x)) x) form)

but that would be rather clumsy. For this purpose the the special form is defined: (the gpe form) means
essentially the same as the larger expression above. '

the type form 4 [Special form]
The form is evaluated; whatever it produces is returned by the the form. In addition, it is an error

if what is produced by the form docs not conform to the data type specificd by fype (which is not
evaluated). (A given implementation may or may not actually check for this error.
Implementations are encouraged to make an explicit error check when running interpretively.) In

effect, this declares that the user undertakes to guarantee that the values of the form will always be

of the specified type.

For example:
(the string (concat x y)) ; The result of concat will be a string.
(the integer (+ x 3)) ; The result of + will be an integer.

(+ (the integer x) 3) ; The value of x will be an integer.
(the (complex rational) (* z 3)) :
(the (unsigned-byte 8) (logand x mask))

Compatibility note: This construct is borrowed from the INTERLISP DECL package: INTERLISP, however, allows
an implicit progn after the type specifier rather than just a single form. The MACLISP f ixnum-1i dentity
and flonum-identity constructs can be expressed as. (the fixnum x) and (the single-float
x).

COMMON LISP REFERENCE MANUAL

Chapter 10
~Symbols

A Lisp symbol is a data object which has three user-visible components:

e The property list is a list which effectively provides each symbol with many modifiable named
components.

e The print name must be a string, which is the sequence of characters used to identify the symbol.
Symbols are of great use because a symbol can be located given its name (typed, say, on a
keyboard). It is ordinarily not permitted to alter a symbol’s print name.

o The package cell must refer to a package object. A package is a data structure used to locate a
symbol given its name. A symbol is uniquely identified by its name only when considered relative
to a package. A symbol may be in many packages, but it can be owned by at most one package.
The package cell points to the owner, if any. '

A symbol may actually have other components as well for use by the implementation. One of the more
important uscs of symbols is as names for program variables; it is frequently desirable for the implementor to
use certain components of a symbol to implement the semantics of variables. However, there are several
possible implementation strategics, and so such possible components are not described here.

The three components named above and the functions related to them are described more individually and
in more dctail in the following sections.

10.1. The Pfoperty List

Since its inccptioﬁ, Lisp has associated with cach symbol a kind of tabular data structure called a property
“list (plist for short). A property list contains zero or more entrics; cach cntry associates from a keyword
symbol (called the indicator) to a Lisp object (called the value or, sometimes, the property). There are no
duplications among the indicators; a property-list may only havc onc property at a time with a given name. In
this way, given a symbol and an indicator (another symbol), an associated valuc can be retricved.

A property list is very similar in purpose to an association list. The difference is that a property list is an

object with a unique identity; the operations for adding and removing property-list entrics arc destructive
 operations that alter the property-list rather than making a new onc. Association lists, on the other hand, arc

- 101 —

102 ' COMMON LISP REFERENCE MANUAL

normally augmented non-destructively (without side effects), by adding new entrics to the front (sce acons.
(page 179) and pair1is (page 179)).

A property list is implemented as a memory cell containing a list with an even number (possibly zero) of
elements. (Usually this memory cell is the property-list cell of a symbol, but any memory cell acceptable to
setf (page 60) can be used if certain special forms are used.) Each pair of clements in the list constitutes an
entry; the first item is the indicator and the sccond is the value. Because property-list functions are given the
symbol and not the list itself, modifications to the property list can be recorded by storing back into the -
property-list cell of the symbol.

When a symbol is created, its propei‘ty list is »initially empty. Properties are created by putpr (page
102) and related functions.

COMMON LISP does not use a symbol’s property list as extensively as earlier LISP implementations did.
Less-used data, such as compiler, debugging, and documentation information, is kept on property lists in

COMMON LisP.

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on
its property list. The value cell was introduced into MACLISP and INTERLISP to speed up access to variables; similarly for the
print-name cell and function cell (MACLISP does not use a function cell). Recent Lisp implementations such as SPICE Lisp,
Lisp Machine Lisp, and NIL have introduced all of these cells plus the package cell. None of the MACLISP system property
names (expr, fexpr, macro, array, subr, 1subr, fsubr, and in former times value and pname) exist in COMMON -
Lisp.

Compatibility note: In CoMMON LisP, the notion of “disembodied property list” introduced in MACLISP is eliminated. It
tended to be used for rather kludgy things, and in Lisp Machine Lisp is often associated with the use of locatives (to make it
“off by one” for searching alternating keyword lists). In CoMMON Lisp special setf-like property list functions are
introduced: getf (page 103), putf (page 103), and remf (page 104).

getpr symbol indicator &optional default A : [Function]
getpr searches the property list of symbol for an indicator eq to indicator. If one is found, then the
corresponding value is returned; otherwise default is returned. If default is not specified, then nil
is used for default. Note that there is no way to distinguish an absent property from one whose
value is default.
(getpr x y) <=> (getf (plist x) y)
Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for cxample:

(getpr ’foo 'baz)
(getpr ’foo ’hunoz) => "Huh?"
(getpr 'foo: 'zoo) => nil

putpr symbol indicator newvalue ‘ [Function]
This causcs symbol to have a property whose indicator is mdzcator and whosc valuc is newvalue. 1f
the property list alrcady alrcady had a property with an indicator eq to indicator, then the value
previously associated with that indicator is removed from the property list and replaced by
newvalue. 'The property list is destructively altered by using side effects. After a putpr is done,
(getpr symbol indicator) will return value. putpr returns the new value. '

SYMBOLS . ’ 103

" (putpr x y z)‘<=> (putf (plist x) y z)
For example:

{(putpr ’Nixon ’crook 'no) => no
(getpr ’Nixon ’crook) => no

7?7 Query: Should there be an analogue for defprop, say defpr?

rempr symbol indicator : [Function]
~This removes from symbol the property with an indicator eq to indicator, by splicing it out of the
property list. It returns n1i1 if no such property was found, or non-ni1 if a property was found.
(rempr x y) <=> (remf (plist x) y)
For example:

If the property list of foo was
(color blue height 6.3 near-to bar)
then
(rempr 'foo 'height) => t
and foo’s property list would have been altered to be
(color blue near-to bar)

plist symbol : [Function]
This returns the list which contains the property pairs of symbol; the contents of the property list
cell are extracted and returned.

Note that using get on the result of p1ist does not work. One must give the symbol itself to
get.

getf place indicator &optional default : [Function]
getf'searches the property list stored in place for an indicator eq to indicator. If onc is found, then
the corresponding valuc is returned; otherwise default is returned. If default is not specificd, then
n1il is used for defaulr. Note that there is no way to distinguish an absent property from one whose
value is default. Normally place is computed from a generalized variable acceptable to setf
(page 60). Sce getpr (pagce102). '

putf place indicator newvalue ' [{Macro]
This causcs the property list stored in place to have a property whosc indicator is indicator and.
whosc value is newvalue. If the property list alrcady alrcady had a property with an indicator eq to
indicator, then the value previously associated with that indicator is removed from the property list
and replaced by newvalue. The property list is destructively altered by using side cffects. After a
putf is donc, (getf place indicator) will return value. putf rcturns the new value. The form
place may be any gencralized variable acceptable to setf (page 60). Sce putpr (page 102).

104 ‘ COMMON LISP REFERENCE MANUAL

remf place indicator , ' [Macro]
This removes from the property list stored in place the property with an indicator eq to indicator,
by splicing it out of the property list. It returns ni1 if no such property was found, or t if a
property was found. The form place may be any generalized variable acceptable to setf (page
60). Sce rempr (page 103).

get-properties place indicator-list ' [Function)
get-properties islike getf (page 103), except that the second argument is a list of indicators.
get-properties searches the property list stored in place for any of the indicators in
indicator-list, until it finds a property whose indicator is one of the elements of indicator-list.
Normally place is computed from a generalized variable acceptable to setf (page 60).

get-properties returns three values. The third value is t if any property was found, in which
case the first two values are the indicator and value for some property whose indicator was in
indicator-list; if no property was found, all three values are ni1.

When more than one of the indicators in indicator-list is present in the property list, which one
get-properties returns depends on the implementation. All that is guaranteed is that if there
are one or more properties whose indicators are in indicator-list, some one such property will be
chosen and returned.

272 Query: Should there be a do~proper ties in addition to, or instead of, map-properties?

map-properties function place : [Function]
The property list stored in place is accessed, and function is called once for each property in the
property list. The function should accept two arguments: the-indicator and the value for a
property. map-properties returns nil; the function is useful only for its side effects.

The order -in which properties are given to ﬁlnctidn is implementation-dependent. Also, if side
effects modify the property list during the map-pi‘opertibes computation, the effects are
unpredictable. All that is guarantced is that if no side cffects occur on the property list, then
Jfunction is applied once to each property in the property list.

For example:

Assume array clement (aref a 105) containsnil.

(putf (aref a 105) ’color ’'yellow)

(putf (aref a 105) ’height 105)

(putf (aref a 105) ’shape ’pyramid) ' .

(map-properties #'(lambda (i v) (format t "7S <-=-> 7"S" i v}))
(aref a 105))

might print: - or it might print:

color <-=-> yellow height <-=-> 105
height <-=-> 105 -+ shape <-=-> pyramid
shape <-=-> pyramid color <-=-> yellow

or it might print any of the other four possible permutations.

SYMBOLS , 105

10.2. The Print Name

Every symbol has an associated string called the print-name. or prame for short. This string is used asthe
external representation of the symbol: if the characters in the string are typed in to read (with suitable
escape conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and
if the symbol is printed, print types out the print-name. For more information, see the section on the reader
(scc page READERY) and printer (scc page PRINTER).

get-pname sym’ [Function]
This returns the print-name of the symbol sym.

For example:

(get-pname ’'XYZ) => "XYZ"
It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a
modification may confuse the function read (page 237) and the package system tremendously.

samepnamep syml sym2 ' [Function]
This predicate is true if the two symbols sym/ and sym2 have equal print-names; that is, if their
printed representation is the same. Upper and lower case letters are considered to be different.

Compatibility note: In Lisp Machine Lisp, samepnamep normally considers upper and lower case to be the
same. However, in MAcLisp, which originated this function, the cases are distinguished; Lisp Machine
Lisr introduced the incompatibility. CoMMON Lisp is compauble wnh MacLisp here.

If either or both of the arguments is a string instead of a symbol, then that string is used in place of
the print-name. samepnamep is useful for determining if two symbols would be the same except
that they are not in the same package.

For example:

(samepnamep ’'xyz (maknam '(x y z)) istrue
(samepnamep ’xyz (maknam ’'(w x y)) isfalsc

10.3. Creating Symbols

Symbols can be used in two rather diffcrent ways. An inferned symbol is onc which is indexed by its
print-name in a catalog called a package. Every time anyone asks for a symbol with that print-name, he gets
the same (eq) symbol. Every time input is rcad with the function read (page 237), and that print-name
appcars, it is rcad as the same symbol. This property of symbols makes them appropriate to use as names for
things and as hooks on which to hang permanent data objects (using the property list, for cxampile; it is no
accident that symbols arc both the only LISP objects which are cataloged and the only LiSp objccts which have
property lists).

Interned symbols are normally crcated automatically; the first time someone (such as the function read)
asks the package system for a symbol with a given print-name, that symbol is automatically created. The
function to usc to ask for an interned symbol is intern (page 112), or onc of the functions related to

COMMON LISP REFERENCE MANUAL

Although interned symbols are the most commonly used, they will not be discussed further here. For more

information, turn to the chapter on packages.

An uninterned symbol is a symbol used simply as a data object, with no special cataloging (it belongs te no
particular package). An uninterned symbol prints in the same way as an interned symbol with the same
print-name, but cannot be rcad back in. The following are some functions for creating uninterned symbols.

make-symbol pname [Function]

(make-symbo1 pname) creates a new uninterned symbol, whose print-name is the string pnarne.
The value and function bindings will be unbound and the property list will be empty.

- The string actually installed in the symbol’s print-name component may be the given string pname ‘
or may be a copy of it, at the implementation’s discretion. The user should not assume that
(get-pname (make-symbol x))is eq to'x, but also should not alter a string once it has been
given as an argument to make-symbol. '

Implementation note: An implementation might choose, for example, to copy the string to some read-only area,
in the expectation that it will never be altered.

Compatibility note: Lisp Machine Lisp uses the second argument for an odd flag related to areas. It is unclear
what NiL does about this.

copysymbol sym &optional copy-props [Function]

This returns a new uninterned symbol with the same print-name as sym. If copy-propsis non-ni1,
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym's. If copy-propsis ni1 (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.

gensym &optional x | [Function]

gensym invents a print-name, and creates a. new symbol with that print-name. It returns the new,
uninterned symbol.

The invented print-name consists of a prefix (which defaults to "G"), followed by the decimal
representation of a number. The number is increased by one every time gensym is called.

If the argument x is present and is an integer, then x must be non-ncgative, and the internal
counter is set to x for future usc; otherwise the internal counter is incremented. If x is a string,
then that string is made the default prefix for this and future calls to geh's ym. After handling the
argument, gensym creatcs a symbol as it would with no argument.

“ For example:

SYMBOLS

107

(gensym) => G7

{(gensym "F00-") => F00-8

(gensym 32) => F00-32

(gensym) => F00-33

(gensym "GARBAGE-") => GARBAGE-34
gensym is usually used to create a symbol which should not normally be seen by the user, and
whose print-name is unimportant, except to allow easy distinction by eye between two such
symbols. The optional argument is rarcly supplied. The name comcs from “generate symbol”, and

the symbols produced by it are often called “gensyms”.

If it is crucial that no two generated symbols have the same print name (rather than merely being
distinct data structures), or if it is desirable for the generated symbols to be interned, then the
function gentemp (page 107) may be more appropriate to use.

gentemp prefix &optional package : [Function]

gentemp, like gensym (page 106), creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern (page 112)) in the package (which defaults to
the current package; see package (page 112)). gentemp guarantees the symbol will be a new
one not already existing in the package; it does this by using a counter as gensym does, but if the
generated symbol is not really new then the process is repeated until a new one is created. There is
no provision for resetting the gentemp counter. Also, the prefix for gentemp is not remembered
from one call to the next; if prefix is omitted, the default prefix T is used.

symbol-package sym - : [Function}

Given a symbol sym, symbol-package returns the contents of the package cell of that symbol.
This will be a package objector nil.

COMMON LIS REFERENCE MANUAL

Chapter 11

Packages

One problem with most LISP systems is the use of a single name space for all symbols. In large LIiSP
systems, with modules written by many different programmers, accidental name collisions become a serious
problem. In the past, this problem has been addressed by the use of a prefix on each symbol name in a
module or by some sort of clumsy “obarray” switching to keep the names separated.

CoMMON LIsp addresses this problem through the package system, derived from an earlier package system
developed for Lisp Machine LispP [11]. The COMMON LISP package system provides an export mechanism for
easily dividing the symbols in a package into external symbols, which are part of the package’s public interface
to other packages, and internal symbols, which are for internal use only and are normally hidden from other
packages. '

A package is a data structure that establishes a mapping from print names (strings) to symbols. (The
package thus replaces the “oblist” or “obarray” of earlier LISP systems.) A symbol may appear in many
packages, but will always have the same name. On the other hand, the same name may refer to different
symbols in different packages. No two symbols in the same package may have the same name.

Some of the symbols in a package may be marked as being exported by that package; these are the external
symbols. Those symbols not exported are said to be internal to that package. Any symbol can be added to the
sct of external symbols by using the function export (page 113).

The value of the special variable package (page 112) must always be a package object or the name of a
package object; this-is referred to as the current package. Each package is named by a symbol.

When the LISP reader has, by parsing, determined a string of characters thought to name a symbol, that
name looked up in the current package. If the name is found, the corresponding symbol is returned. If the
name is not found there. a new symbol is created for it and is placed in the current package as an internal’
symbol; if the name is scen again while this same package is current, the same symbol will then be returned.
When a new symbol is ercated, a pointer to the package in which it is initially placed is stored in the package
cell of that symbol; the package is said to be the symbol’s home package.

Often it is desirable, when typing an expression to be read by the LISP reader, to refer to a symbol in some
package other than the current one. This is done through theuse of a qualified naine, which consists of the

- 109 —

110 ' COMMON LISP REFERENCE MANUAL

package name. followed by a colon, followed by the print name of the symbol. This causes the symbol's name
to be looked up in the specified package. For example, “editor:buffer” refers to the symbol named
“pbuffer” in the package named “editor”. regardless of whether there is a symbol named “buffer” in

~ the current package. If “buffer”™ docs not cxist in package “editor™, it is crcated there as a new internal

symbol. (If, on the other hand, there is no package named “editor”™, an error is signalled.)

The package name, if it is not itself qualified, is looked up in the special package named “packages”™, but
this default may be overridden by recursive use of the colon convention. Thus the qualified name
“editor:display:buffer”is deciphered by first finding the symbol “editor:display” in the usual
way, then using this symbol (which must be the name of a package) as the package in which to look up the
symbol named “buffer”. (Because the first name is always looked up in the package packages, which is
itself in the packages package, adding “packages:” to the front of an already qualified name does not
change the meaning of the name. So, for example, “editor:display:foo” and
“packages:editor:display:foo” both denote the same symbol.)

If a symbol names a package, then the package is stored on the property list of the symbol under the
property name :package. Suppose the variable x has a symbol as its value; then (get s :package)
will return the associated package. Given a package, the function package-name (page 112) will return the
symbol that names the package. '

Symbols from another package may be added to the current packag‘e in two ways. First, an individual
symbol may be added by use of the import function. The form (import ’editor:buffer) takes the
symbol buffer in the package ed1itor (this symbol was located when the form was rcad by the LISP reader)
and adds it to the current package as an internal symbol. The imported symbol is not automatically exported
from the current package, but if it is already present and external, that is not changed. After the call to
import, it is possible to refer to buffer in the current package without any qualifier. The status of the
symbol buffer in the package named editor is unchanged, and editor remains the home package of
this symbol. If the imported symbol already exists in the current package, the import opcration effectively
docs nothing. If a distinct symbol with the name buffer alrcady exists in the current package, a correctable
error is signalled. The value returned from this error is the symbol that should rcmain in the package, the
other being discarded.

The second mechanism, the use function, imports into the current package all of the external symbols of
another package. These symbols can then be referred to from the current package without QUaliﬁcation. The
internal symbols of the used package arc not imported, and thercfore cannot conflict with symbols in the
current package. The status of thc imported symbols in their original package is unchanged. Conflicts
between symbols already in the current package and those imported by use are handled as in import: a
correctable error occurs. However, use provides a mechanism for suppressing this error in casc a féw of the
symbols are known in advance to be in conflict. The use function imports only those symbols that are
exported by the used package at the time use is called; it is not a genceral inheritance mechanism and does not
arrange for futurc changes in the used package to be imported. '

Each symbol contains a package slot which is used to record the home package of the symbol. When the

PACKAGES ' | 111

symbol is printed, if it is present in the current package (either as an internal or an external symbol), it is
printed without any qualification; otherwise, it is printed with the recorded package as the qualifier.

11.1. Built-in Packages

The following packages are built into the system and are treated as special in some way:

Tisp The package named 11isp contains the primitives of the COMMON LISP system. Its
- external symbols include all of the user-visible functions and global variables that are
present in the basic: LISP system, such as car, cdr, package, etc. Almost all other
packages will want to “use” this one so that these symbols will be available without
qualification. '

user The user package is, by default, the current package at the time a COMMON LISP system
starts up. It includes the external symbols from the LISP package at startup time.

keyword This package contains, as external symbols, all of the keywords used by built-in or user-
defined LISP functions. It is not recommended that these keywords be loaded into other
packages via the use function, as conflicts may result. Instead, a special syntax is provided
to make it easy to access symbols in the keyword package: a null leading package name is
trecated as being identical to keyword. Thus :foo is the same as keyword:foo. By
special arrangement, symbols in the keyword package always evaluate to themselves, so
the user can type : foo instead of * : foo.

packages This is the package that contains the symbols that name the other packages. If the LiSP
reader sces “editor:buffer”, for example, it first looks up the name “editor” in the
package named packages. This must produce a symbol that names a package, which is
then used in looking up the name “buffer” to find the desired symbol.

si This package name is reserved to the implementation. (The name is an abbreviation for
“system internals™.)

11.2. Package System Functions and Variables

make-package package-name &optional copy-from [Function]
Creates and returns a new package with the specified package name. If the package name is a
symbol, that symbol is uscd directly; a string is interned in the packages package to produce a
symbol.

If a package of this name alrcady cxists, a correctable error is signalled. Copy-from may specify

another package of which the ncw one will initially be a copy: if copy-from is t, the new package

initially contains only the cxternal symbols of the 11 sp package; if copy-from is ni1 (the default),
- the new package is empty.

112 _) COMMON LISP REFERENCE MANUAL

package [Variable]
The value of this variable must be either a package or a symbol that namcs a package; this package
is said to be the current package. The initial value of package is the user package.

package package [Function]
This converts its argument to be a package object. If the argument is already a package, it is a
returned. If it is a symbol, the package it names is returned (it is an error if it docs not name a
package).

package-name package ‘ , . [Function]
This returns a symbol that names a package. If the argument is a package, its name is returned. If
the argument is a symbol, it is returned if it names a package, but an error is signalled if it does not.

begin-package package-name [Function]
end-package package-name [Function]
The package-name must be the name of a package, in the form of a string or a symbol.

For begin-package, if no package currently exists with this name, one is created that imports all
external symbols of the 1isp package. begin-package rebinds the package variable to the
specified package, saving the old value for restoration when the matching end-package is
encountered. A call to begin-package is normally placed at the beginning of a file that is to be
loaded into some package other than user.

For end-package, the package specified must be the current package or else an error is signalled.
The package current before the matching call to begin-package was encountered is made
current once again. ' ' '

If a pair of begin-package and end-package are nested within another pair, there is no
hicrarchical relationship between the inner and outer pair. The inner pair merely temporarily
shadows the outer pair.

Rationale: This is so that one package can be loaded during the loading of another one, as by a MAcLisp-like
autoload facility. :

7?7 Query: Should 1oad (page 270) arrange to bind things so that mismatched begin-package and
end-package constructs don’t screw things up outside the loaded file?

intern string-or-symbol &optional package ' [Function]
' The package may be a package or a symbol that names a package, and defaults to the current
package. It is scarched for a symbol with the name specificd by the first argument. If onc is found,
it is returned; note particularly that if the argument was symbol, and a different symbol with the

same name is found in already in the package, the latter is returned and the argument is discarded.

If one is not found, then if the first argument is a string a symbol with that name is created: then
the given or crcated symbol is installed in the package as an intcrnal symbol and returned.
Morcover, if the symbol has no home package, then package becomes its home package. '

PACKAGES o 113

remob swtring-or-symbol &optional package ' [Function)

If the first argument is a string, the package is scarched for a symbol of that name; if the first
argument is a symbol, that symbol is used directly. If the symbol given or found is in fact in the
package, it is removed from the package. Morcover, if package is the home package for the
symbol, the symbol is made to have no home package. The package defaults to the current
package. remob returns t if it actually removed a symbol, and ni1 otherwise.

?7? Query: This name is traditional, but wouldn’t unintern or remove-symbo?1 be better?

internedp string-or-symbol &optional package v [Function]

This is a predicate. If the first argument is a string, then internedp is true if the package contains
a symbol whose name is the string. If the first argument is a symbol, then internedp is true if the
package contains that very symbol. Otherwise internedp is false. The package may be a
package or a symbol that names one, and defaults to the current package.

externalp string-or-symbol &optional package | : [Function]

This is a predicate. If the first argument is a string, then externalp is true if the package contains
an external symbol whose name is the string. If the first argument is a symbol, then externalp is
true if the package contains that very symbol as an external symbol. Otherwise externalp is
false. The package may be a package or a symbol that names one, and defaults to the current
package.

export symbols &optional package ' [Function)

The argument should be a list of symbols, or possibly a single symbol. The specified symbols
become external symbols of the specified package. The package may be a package or a symbol that
names one, and defaults to the current package. Any symbol not alrcady in the package is first
imported (see import (page 114)). If a specified symbol is already an external symbol of the
package, it is unaffected. export returns t.

By convention, a call to export listing all exported symbols is placed near the start of a file, aftera
call to begin-package to advertisc which of the symbols used in the file arc intended to be
external. '

unexport symbols &optional package ‘ [Function]

The argument should be a list of symbols, or possibly a single symbol. The spc_ciﬁcd symbols are
madc to be no longer external symbols Qf the specificd package. 'The package may be a package or

‘a symbol that names onc, and defaults to the current package. Any specified symbol that is an
cexternal symbol of the package is made an internal symbol of the package. Any specified symbol

internal to the package or not alrcady in the package not affected (sce import (page 114)).
unexport returns t.

114) COMMON LISP REFIEF ENCE MANUAL

import symbols &optional to-package [Function]
The argument should be a list of symbols, or possibly a single symbol. The specified symbols
become internal symbols of the specified to-package. The to-package may be a package or a -
symbol that names one, and defaults to the current package. - If, for some specified symbol, the
package alrcady contains another symbol of the same name, a correctable error is signalled. If a

specified symboi is already in the package, it is unaffected, and in particular remains an external
symbol of the package if it already was one. import returns t.

shadow symbols &optional to-package : [Function]
The argument should be a list of symbols, or possibly a single symbol. For each spccified symbol,
if the package of that symbol is not the fo-package, then a new symbol with the same name and no
properties, value, or function definition is created and interned in the 70-package. The net effect is
that the 10-package ends up with symbols of its own for all the specified names.

The to-package may be a package or a symbol that names one, and defaults to the current package.
If, for some specified symbol not owned by the package, the package already contains another
symbol of the same name, nothing happens; it is not an error.

The purpose of shadow is to provide a means for declaring that a particular symbol is to be used
“locally” in the package, even though it might have been imported from some other package. For
example, suppose one were writing an INTERLISP compatibility package for COMMON LiIsP. One
difference between the two is the definition of the function nth (page 169). One might write:

(begin-package interlisp)

(provide ’interlisp)

(export ’'(masterscope helpsys dw1m1fy ..f))

(shadow (nth cel))
(require ’odd- ut111t1es)

(defun nth (x n) ;InterLISP NTH function.
shadow returns t.

use from-package &optional (to-package tgnore-lzst Jorce-list [Function]
Each of the external symbols from the from-package is imported into the to-package, which
defaults to the current package. The rules are the same as for import (page 114), except that if an
" imported symbol conflicts with one already present, there arc. three possible actions. If the
imported symbol is on the ignore-list, it is not imported. If the imported symbol is on the force-list,
it is added to the current package after removing the conflicting symbol from the package (see
‘remob (page 113)). If the imported symbol is on neither list, a correctable error is signalled, as
described for import. (If the symbol is on both the ignore-list and the force-list, the ignore-list

-takes precedence.) use returns t. ‘

PACKAGES ; 115

provide package ' [Function]

require package &optional pathname [Function)
Calling provide notes the fact that a program module associated with the named package has
been loaded or otherwise instantiated. This is used in conjunction with require.

Calling require does nothing if the indicated package has alrcady been “provided”. Ifit has not,
then the pathnameiis given to Toad (page 270) in an attempt to obtain the necessary module from
the file system. Afier the loading process is done, if the package still has not been provided, then
an error is signalled. Once the package has been provided, then use is applied to it to obtain its
exported symbols for the current package. The pathnarhe defaults in an implementation-
' dependent way that may depend on the name of the package. (Typically, the name of the package
might be used as a file name to access a directory where the yellow-pages modules are stored.)

Here is an example of what a yellow-pages module might look like. The timestamp module exports
three functions: timestamp, moonprinc, and sunprinc. (The purpose of the module is to print
timestamps to a stream; a timestamp includes the time, date, day of week, phase of the moon, and position of
the sun. This is a whimsical module.) The timestamp module requires two other modules for its operation,
moonphase and suncalc; one is a standard library module, and the other is private, For reasons best
ignored here, the timestamp module has its own function named sqrt that differs from the standard sqrt
(page 124). '

(begin-package 'timestamp)

(provide ’timestamp)

(export ’(timestamp moonprinc sunprinc))
(require ’'moonphase)

(require ’suncalc "/usr/gls/chutzpah/suncalc")
(shadow ’sqrt) :

(defconst latitude 48.503) ;Location of the University of
(defconst longitude 97.61) ; Southern North Dakota at Hoople
(defun timestamp ...)

(defun moonprinc ...)
(defun sunprinc ...)
(defun siamp-uti1ity S

(end-package ’timestamp)

It is important that the calls to provide and export precede the calls to require. For suppose that the
moonphase module rcquircs timestamp! When timestamp is loaded, if moonphase is loaded as a
result, it had better find by that point that t imestamp has alrcady been provided (or will be very soon!), lest
timestamp be recursively and redundantly loaded, causing an infinite loop. Similarly, by the time that the
moonphase package trics to use the timestamp package, the exported symbols of the timestamp
package must alrcady have been declared, or else the moonphase package will not get them.

116 ' ’ COMMON LISP REFERENCE MANUAL

package-use-conflicts from-package &optional (o-package [function)
Returns a list of all external symbols in from-package that conflict with symbols in fo-package
(which defaults to the current package), or ni1 if there arc none. Two symbols conflict if they are
different but have the same print name.

do-symbols (var [package] [result-form]) {tag | statement}* [Special form]
do-external-symbols (var [package] [result-form]) {tag | statemeni}* [Special form]
do-internal-symbols (var [package] [result-form}) {tag | statement}* [Special form]

do11st provides straightforward iteration over the symbols of a package. The body is performed

once for cach symbol in the package, in no particular order, with the variable var bound to the
symbol. Then resultform (a single form, not an implicit progn) is evaluated, and the result is the
valuc of the dolist form. If resultform is omitted, the result is ni1. If exccution of the body

- affects which symbols are contained in the package, other than possibly to remove the symbol
currently the value of var, the effects are unpredictable.

do-external-symbols is similar, but provides only the external symbols of the package.
do-internal-symbols is similar, but provides only the internal symbols of the package.

do-al1-symbols (var [result-form]) {tag | statemeni}* ' [Special form]
This executes the body once for every symbol contained in every package whose name is in the
packages package. (This doesn’t actually get all symbols whatsoever.) It is not in general the

case that each symbol is processed only once, since a symbol may appear in many packages.

Chapter 12

Numbers

CoMMON LIsP provides several different representations for numbers.. These rcpresentations may be
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Those functions which accept only certain kinds
of numbers are so documented below.

A COMMON LIsp implementation is permitted not to support complex numbers, If it does not, then all the
functions defined here (such as con jugate) must be defined nevertheless, but whenever a function would
have to construct and return a complex number, an error is signalled instead.

7?7 Query: Say! This is a glitch. Can everyone agree just to go ahead and support complex numbers? Or is that really too
hard, even given sharing of Lisp-level code?

In general, numbers in COMMON LISP are not true objects; eq cannot be counted upon to operate on them
reliably. In particular, it is possible that the expression

(et ((x z) (y z)) (eq x y))
may be false rather than true, if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers ailows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MACLisp requires this freedom, for example, in order
to producc compiled numcrical code equal in speed to FORTRAN. If not for this frcedom, then at least for the sake of
compatibility, COMMON Lisp makes this same restriction.

If two objects are to be compared for “identity”, but cithcr might be a number, then the predicatc eq1 (page
49) is probably appropriate; if both Ob_]CCI.S arc known to be numbers, then = (page 118) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precision of a floating-
point number is not necessarily corrclated at all with the accuracy-of that number. The precision refers to the
number of bits retained in the representation. When an opcration combincs a short floating-point number
with a long one, the result will be a long floating-point number. This rule is made to ensure that as much
accuracy as possible is prescrved; however, it is by no means a guarantcc. COMMON L.ISP numcrical routines
do assume, however, that the accuracy of an argument docs not exceed its precision. Therefore when two
small floating-point numbers arc combined, the result will always be a small floating-point number. This -

assumption can be overridden by first explicitly converting a small floating-point number to a larger
representation. (COMMON LISP never convcrts automatically from a larger size to a smaller one in an cﬁ‘ort to
save spacc.)

- 117 =

118 COMMON LISP REFERENCLE MANUAL

Rational computations cannot overflow in the usual sense (though of course there may not be cnough
storage to represent one), as integers and ratios may in principie be of any magnitude. Floating-point
computations may get exponent overflow or underflow, in which case an error is signalled.

12.1. Predicates on Numbers

zerop number ' [Function]
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex
zero), and is false otherwise. It is an error if the argument number is not a number.

plusp number [Function]
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if
the argument number is not a non-complex number.

minusp number ' . [Function]
This predicate is true if number is strictly less than zero; otherwise ni1 is returned. Itis an error if
the argument number is not a non-complex number.

oddp integer . . [Function]
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It
is an error if the argument is not an integer.

evenp integer ’ [Function]
This predicate is true if the argument integer is even (divisible by two), and otherwise is false. It is
an-error if the argument is not an integer.

Sece also the data-type predicates integerp (page 47), rationalp (page 47) floatp (page 48),
complexp (page48), and numberp (page47).

12.2. Comparisons on Numbers

All of the functions in this scction require that their arguments be numbers, and signal an crror if given a
non-number. They work on all types of numbers, automatically performing any required coercions.

= number &rest more-numbers » : _ : [Function]

= number &rest more-numbers ' [Function]
< number &rest more-numbers v ' [Function]
> number &rest more-numbers v o [Function]

= number &rest more-numbers ' [Function]

NUMBLRS 119

>= number &rest more-numbers 4 . [Function]
. These functions cach take one or more arguments. If the sequence of arguments satisfics a certain
condition:

= all the same

/= all different

< monotonically increasing

> monotonically decreasing

<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and
/=, but the others require non-complex arguments.

For example:

' (= 3 3) istrue (/= 3 3) isfalse
(= 3 5) isfalse (/= 3 5) istrue
(= 3 3 3 3) istrue (/=3 3 3 3) is false -
(= 3 35 3) isfalse (/7= 3 3 5 3) isfalse
(= 3 6 5 2) isfalse (/= 3 6 5 2) istrue
(< 3 5) istrue (<= 3 5) istrue
(< 3 -5) isfalse (<= 3 -5) is false
(< 3 3) isfalse (<= 3 3) istrue
(<0 346 7) istrue (<= 0 3 46 7) istrue
(<0 3 44 86) isfalse (<= 0 3 4 4 6) istrue
(> 4 3) istrue (>= 4 3) istrue

‘ (>4 321 0) istrue (>= 4 321 0) istrue

(> 4 3 32 0) isfalse (>= 4 3 32 0) istrue
(> 4312 0) isfalse (>= 4 3 12 0) isfalse

With two arguments, these functions perform the usual arithmetic comparison tests. With three or
more arguments, they are useful for range checks.

For example:
(<= 0 x 9) : struc iff x is between 0 and 9, inclusive
(< 0.0 x 1.0) ;true iff x is between 0.0 and 1.0, exclusive
(< -1 j (length s)) ; true iff j is a valid index for s
(<=0 j k (- (length s) 1)) ;truc iff j and k are cach valid

; indices for s and also j<k

For two non-complex arguments x and y, the law of trichotomy holds. Exactly one of (= x y),
(< x y),and (> x y) will be true. Also: . ‘

(/= x y) <=> (not (= x y)) <=> (or (< x y) (> x ¥))
(<= xy) <=> (not (> x y)) <=> (or (< xy) (= xy))
(>= x y) <=> (not (< x y)) <=> (or (< x y) (= x y))
Thesc relationships do nof gencralize to more or fewer than two arguments.

Rationale: The “unequality” relation is called “/="rather than “<>" (thc namec used in PASCAL) for two -
rcasons. First, /= of more than two arguments is not the same as the or of < and > of those same arguments.
Sccond, uncquality is meaningful for complex numbers cven though < and > are not. For both rcasons it
would be misleading to associate uncquality with the names of < and >. ’

: Compatibility note: In CommON 11sp, the comparison operations perform “mixed-modc” comparisons: (= 3
' 3.0) is truc. In MAclusp, there must be exactly two arguments, and they must be either both fixnums or both

120 » , COMMON LISP REFERENCE MANUAL

floating-point numbers. To covnpan_ two numbers for numerical equality and type cquahty use eql (page
49),

max rumber &rest more-numbers [Function]
The arguments may be any non-complex numbers max returns the argument which is greatest
(closest to positive infinity).

For example:
 (max 132 -7) => 3
(max -2 30 7) =>7

(max 3) =»> 3
‘ (max 3.0 7 1) => 7 or 7.0
If the arguments are a mixture of integers and floating-point numbers, and the largest is a rational,
then the implementation is free to produce either that rational or its floating-point approximation.

min number &rest more-numbers ' [Function)
The arguments may be any non-complex numbers. min returns the argument which is least
(closest to negative infinity).

For example:

(max 1 3 2 -7) => -7

(max -2 30 7) => -2

(min 3) => 3

(min 3.0 7 1) => 1 or 1.0 A _
If the arguments are a mixture of rationals and floating-point numbers, and the smallest is a
rational, then the implementation is free to produce either that rational or its floating-point
approximation.

fuzzy= numberl number? &optional fuzz [Function]
This predicate is true if number! and number2 are “roughly equal”. The optional argument fizz
allows nearly-equal numbers to be considered equal: two numbers x and y are considered to be
equal if the absolute value of their difference is no greater than fizz times the absolute value of the
one with the larger absolute value that is, if abs(x— y) < ﬁlZZ max(abs(x) abs(y)). If no third
argument is supplied, then fizz defaults to

(max (fuzziness x) (fuzziness y))
For example: .
(fuzzy= 2/3 0.6666 0.001) istrue

fuzziness nuinber . [Function]
The accuracy of a number, in the abscnce of any context, is not rcally a- mathematically well- .
defined concept, because it depends on how the number was calculated and on the accuracy of the
givens. Nevertheless the following arbitrary definition of “fuzziness” is offered in its place, for usc
by fuzzy=.

NUMBIERS ‘ 121

The fuzziness of a rational number is zero. ‘The fuzziness of a floating-point number is 2773

where f'is the number of bits in the {raction of the floating-point number. The fuzziness of a
complex number zis '

(max (fuzziness (realpart z)) (fuzziness (imagpart z)))

12.3. Arithmetic Operations

All of the functions in this section require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required coercions.

+ &rest numbers [Function]
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity
for this operation. '

Compatibility note; While + is compatible with its use in Lisp Machine Lisp, it is incompatible with MACLIsP,
which uses + for fixnum-only addition.

- number &rest more-numbers [Function]
The function -, when given one argument, returns the negative of that argument. '

The function -, when given more than one argument, subtracts from the first argument all the
others, and returns the result.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible with Macl.isp,
which uses - for fixnum-only subtraction. Also, - differs from difference as used in most Lisp systems in
the case of one argument.

* &rest numbers ' . » [Function]
Returns the product of the arguments. If there are no arguments, the result is 1, which is an
identity for this operation. '

Compatibility note: Whilc * is compatible with its use in Lisp Machine Lisp, it is incompatible with MACLIsp,
" which uses * for fixnum-only multiplication.

/ number &rest more-numbers [Function]
' The function /, when given more than one argument, divides the first argument by all the others,
and returns the result.

With one argument, / reciprocates the argument.

/ will produce a ratio if the mathcmatical quotient of two integers is not an exact integer.

For example:

(/ 12 4) => 3
(/ 13 4) => 13/4
(/ -8) => -1/8

To divide onc intcger by another producing an integer result, use onc of the functions floor,

122 _ COMMON LISP REFERENCE MANUAL

ceil, trunc,or round (page 131).

If any argument is a floating-point number, then the rules of floating-point contagion apply.

Compatibility note: What / docs is totally unlike what the usual // or quotient operator does. In most Lisp
systems, quot ient behaves like / except when dividing integers, in which case it behaves like trunc (page
131) of two arguments; this behavior is mathematically intractable, leading to such anomalies as

(quotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0

In practice quotient is used only when one is sure that both argument are integers, or when one is sure that
at least one argument is a floating-point number. / is tractable for its purpose, and “works” for any numbers.
For “integer division”, trunc (page 131), f1oor (page 131), ceil (page 131), and round (page 131) are
available in CoMMON Lisp.

1+ number [Function]
1~ number : [Function]
(1+ x)isthesameas (+ x 1).

(1- x)isthesameas (- x 1). Note that the short name may be confusing: (1- x) does not
mean 1-— x; rather, it means x—1. :

Rationale: These are included primarily for compatibility with MAcLisP and Lisp Machine Lisp. Programmers
may wish to avoid the possible confusion in new code.

Implementation note: Compiler writers are very strongly encouraged to ensure that (1+ x) and (+ x 1)
compile into identical code, and similarly for (1- x) and (- x 1), to avoid pressure on a LiSP programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language

transformation.
incf place [della . [Macro}
decf place [delia) ' - [Macro]

The number produccd by the form deltais added to (incf) or subtracted from (de cf) the number
in the generalized variable named by place , and the sum is stored back into placé and returned.
The form place may be any form acceptable as a generalized variable to setf (page 60). If deltais
“not supplied, then the number in place is changed by 1.

For.example:
(setq n 0)
(incf n) => 1 andnow n => 1
(decf n 3) => -2 andnow n => -2
(decf n -5) => 3 .andnow n => 3
(decf n) => 2 * andnow n => 2

The cffect of (incf place delta) is roughly equivalent to

(setf place (+ place della))

except that the latter would cvaluate any subforms of place twice, while incf takes carc to cvaluate
them only once. Morcover, for certain place forms incf may be significantly more cfficient than
the setf version.

NUMBERS 123

conjugate number _ [Function)
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z, '
(conjugate z) <=> (complex (realpart z) (- (imagpart z)))

gcd &rest rationals ‘ [Function]
Returns the greatest common divisor of all the arguments, which must be rationals or complex
rationats (complex numbers whose components are rational),

If the arguments are all integers, the result is always a non-negative integer.
7?7 Query: I, GLs, hereby recant all this complex rational nonsense. Shail we revert to gcd just supporting
plain old integers?)

If the arguments are all rationals, the result is always a non-negative rational.

If the arguments are all Gaussian integers (complex numbers with integer components), the result
is always a first-quadrant Gaussian integer.

In the general case, the result is that complex rational of greatest possible magnitude that is in the
first quadrant (including the positive real axis and zero, and excluding the positive imaginary axis)
and that when divided into each argument produces a Gaussian integer. :

If no arguments are given, gcd returns 0, which is an identity for this operation. -

7?7 Query: Is gcd of more than two arguments ever really used? If not, is the overhead of the
multiple-argument implementation worth the elegance? (Similarly for 1cm.)

1cm rational &rest more-rationals [Function]
This returns the least common multiple of its arguments, which must be rationals or complex
rationals. For two arguments,

(Tem a b) <=>.(/ (* a b) (gcd a b))

For one argument, 1cm returns that argument. For three or more arguments,
(lem a b c ... z) <=> (lem (lem a b) ¢ ... 2)

For example: -

(lcm 14 35) => 70
(lcm 3/4 2/5) => 6

12.4. Irrational and Transcendental Functions

CoMMON LISP provides no data type that can accurately represent irrational values. The functions in this :

section arc described as if the results were mathematically accurate, but they actually all produce floating-

point approximations to thc truc mathcematical result. In some places mathematical identitics arc set forth.

that are intended to clucidate the meanings of the functions; however, two mathematically identical
expressions may be computationally different because of errors inherent in the floating-point approximation
process.

24 | COMMON LISP REFERENCE MANUAL
12.4.1. Exponential and Logarithmic Functions

exp number , [Function]
Returns eraised to the power number, where e is the base of the natural logarithms.

!’

expt base-number power-number [Function]
Returns base-number raised to the power power-number. If the base-number is rational and the
power-number is an integer, the calculation will be exact and the result will be rational; otherwise a
floating-point approximation may result. '

Implementation note: If the exponent is an integer a repeated-squaring algorithm may be-used, while if the
exponent is a floating-point number or complex the result may be calculated as:

(exp (* power-number (1og base-number)))

or in any other reasonable manner.

log number &optional base [Function)
Returns the logarithm of number in the base base, which defaults to e, the base of the natural
logarithms.
For example:

(log 8.0 2) => 3.0
(Tog 0.01 10) => -2.0

sqrt number - [Function]
Returns the principal square root of number.

isqrt integer . [Function]
Integer square-root: the argument must be a non-negative integer, and the result is the greatest
integer less than or equal to the exact positive square root of the argument.

12.4.2. Trigonometric and Related Functions

abs number T : ' , -~ [Function]
Returns the absolute value of the argument. For a non-complex number,
(abs x) <=> (if (minusp x) (- x) x)
For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (realpart z 2)) (expt (ima‘gpart-z 2))))

For non-complcx numbers, abs is a rational function, but it may be irrational for complex
arguments.

NUMBERS : 125

phase rnumber ') , [Function)
. The phasc of a number is the angle part of its poldr representation as a complex number. That is,

{phase x) <=> (atan (realpart x) (imagpart x))

The result is in radians, in the range — (exclusive) to = (inclusive). The phase of zcro is defined
to be zero. -

signum number : [Function]
By definition, ‘
(signum x) <=> (if (zerop x) x (/ x (abs x)))
For a rational number, signum will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result will be a floating-point number
of the same format with one of the mentioned three values. For a complex number z, (signum
z) is a complex number of the same phase but with unit magnitude.

For non-complex numbers, signum is a rational function, but it may be irrational for complex -

arguments.
sin radians ' [Function]
cos radians . [Function]
tan radians [Function]
sin returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in
. radians. The argument may be complex.
cis radians _ ' ’ [Function]

This computes " %@ The name “cis” means “cos + i sin”, because ¢ = cos 8 + isin 4.
The argument is in radians, and may be any non-complex number. The result is a complex number
whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another
way, the result is a complex number whose phase is the argument and whose magnitude is unity.

Implementation note: Often it is cheaper to calculate the sine and cosine of a single angie together than to
perform two disjoint calculations.

asin number {Function]
acos number [Function]

asin rcturns the arcsmc of the argumcnt, and cos the arccosine. The result is in radians. The
argument may be complex.

atan y &optional x : [Function]
An arctangent is calculated and the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the arctangent of the
A quantity y/x. The signs of y and x arc used to derive quadrant information; morcover, x may be
. zcro provided y is not zero. The value of atan is always between —# (exclusive) and « (inclusive).

COMMONLISP REFERENCE MANUAL

The following table details various special cases.

Condition Cartesian locus Range of result
y=0 x>0 Positive x-axis 0

y>0 x>0 Quadrantl 0<result< #/2
y>0 x=0 Positive y-axis w/2

y>0 x<0 Quadrant I1 n/2 <result < w
y=0 x<0 Negative x-axis b

y<0 x<0 Quadrant 111 —x <result < —#/2
y<0 x=0 Negative y-axis —a/2

y<0 x>0 Quadrant IV —a/2 <result <0
y=0 x=0 Origin . error

Actually, the < signs in the above table ought to be < signs, because of rounding effects; if y is
greater than zero but nevertheless very small, then the floating-point approximation to =/2 might
be a more accurate result than any other floating-point number. (For that matter, when y = 0 the
exact value #/2 cannot be produced anyway, but instead only an approximation.)

With only one argument y, the argument may be complex. The result is the arctangent of y. For
non-complex arguments the result lies between —#/2 and #/2 (both exclusive).

Compatibility note: MAcLisp has a function called atan which range from 0 to 27. Every other language in
the world (ANSI FOrRTRAN, IBM PL/I, InterLISP) has an arctangent function with range —a« to #. Lisp
Machine Lisp provides two functions, atan (compatible with MACLISP) and aran2 (compatible with everyone
else). :

COMMON LisP makes atan the standard one with range — to #. Observe that this makes the one-argument
and two-argument versions of atan compatible in the sense that the branch cuts do not fall in different places,
which is probably why most languages use this definition. (An aside: the INTERLISP one-argument function
arctan has a range from 0 to =, while every other language in the world provides the range —#/2 to #/2!
Nevertheless, since INTERLISP uscs the standard two-argument version, its branch cuts are inconsistent
anyway.) :

pi [Variable]
‘ This global variable has as its value the best possible approximation to # in the largest floating-
point format provided by the implementation. ' ‘
For example:
(defun sind (x) ; The argument is in degrees.
~(sin (* x (/ (float pi x) 180))))
An approximation to # in some other precision can be obtained by writing (f1oat pi x), where
x is a floating-point number of the desired precision; sce f1oat (page 130).

‘sinh number : [Function]
cosh number . [Function]
tanh number 7 o ' [FFunction)
asinh number , : ' . [Function}
acosh number k . e imclian]

atanh number ’ [Function]

NUMBERS

127

These functions compute the hyperbolic sine, cosine, tangent, arcsine, arccosine, and arctangent
functions, which are mathematically defined as follows:

Hyperbolic sine : (e“—e " ¥)2

Hyperbolic cosine (e“+e %72

Hyperbolic tangent (f—e N/ +e)

Hyperbolic arcsine log (x+V1+2)

Hyperbolic arccosine log (x+(x+ DV (x=1)/(x+1))
Hyperbolic arctangent log (L+X)V1=1/x) '

Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on
numerical analysis. The formulas given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways for the complex case.

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

Many of the irrational and transcendental functions are multiply-defined in the complex domain; for
example, there are in general an infinite number of complex values for the logarithm function. In each such
case a principal value must be chosen for the function to return. In general, such values cannot be chosen so
as to make the range continuous; lines of discontinuity called branch cuts must be defined. .

COMMON LiIsP defines the branch cuts, principal values, and boundary conditions for the complex
functions following a proposal for complex functions in APL[8]. The contents of this section are borrowed
largely from that proposal.

sqrt

phase

Tog

exp

expt

The branch cut for square root lies along the negative real axis, continuous with quadrant
II. The range consists of the right half-plane, including the non-negative imaginary axis
and excluding the ncgative imaginary axis.

The branch cut for the phase function lies along the negative rcal axis, continuous with
“quadrant II. The range consists of that portion of the real axis between — 7 (cxclusive) and
« (inclusive).

The branch cut for the logarithm function of onc argument (natural logarithm) lics along
the ncgative real axis, continuous with quadrant I1. The domain excludes the origin. For a
complex number z=x+y i, log z is defined to be (log |z|)+ i phase(z). Thercfore the range
of the one-argument logarithm function is that strip of the complex planc containing
numbers with imaginary parts between —« (exclusive) and = (inclusive).

The two-argument l.ogarithm function is defined as log, z=(log z)/ (log b). This dcfines the
principal valucs preciscly. The range of the two-argument logarithm function is the cntire

complex plane. Itis an crror if z is zero. If zis nonzero and b is zero, the logarithm is taken
to be zero. ' o

“The simple exponential function has no branch cut.

The two-argument cxponential function is defined as 5*=¢* '8 © This defincs the

COMMON LISP REFERENCE MANUAL

principal values precisely. The range of the two-argument exponential function is the
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut.
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the
negative real axis, continuous with quadrant H, and the domain excludes the origin. By
definition. 0°=1. If 5=0 and the real part of x is strictly positive, then b*=0. For all other
valucs of x, 0% is an error. '

The following dcfinition for arcsine dctcrfnines the range and branch cuts:
arcsin z= —ilog (i z+V1— Z)

The branch cut for the arcsine function is in two pieces: one along the negative real axis to
the left of —1 (inclusive), continuous with quadrant II, and one along the positive real axis
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the
complex plane containing numbers whose real part is between —#/2 and #/2. A number
with real part cqual to —#/2 is in the range iff its imaginary part is non-negative; a number
with real part equal to /2 is in the range iff its imaginary part is non-positive.

The following definition for arccosine determines the range and branch cuts:

arccos z=—ilog (z+i V1—2)
or, which is equivalent,
arccos z={(=/2)— arcsin z

The branch cut for the arccosine function is in two picces: one along the ncgative real axis
to the left of —1 (inclusive), continuous with quadrant I, and onc along the positive real
axis to the right of 1 (inclusive), continuous with quadrant IV, This is the same branch cut
as for arcsine. The range is that strip of the complex planc containing numbers whose real
part is between 0 and #. A number with real part ecqual to 0 is in the range iff its imaginary
part is non-negative; a number with real part cqual to « is in the range iff its imaginary part
is non-positive.

The following definition for (one-argument) arctangent determines the range and branch
cuts:

arctan z= —ilog (L +i2) VI/(1+2))

Beware of simplifying this formula; “obvious™ simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent
function is in two. picces: one along the positive imaginary axis above { (cxclusive),
continuous with quadrant II, and onc along thc negative imaginary axis below —i
(cxclusive), continuous with quadrant IV. The: points i and —i are excluded. from the.
domain. 'The range is that strip of the complex plane containing numbers whose real part
is between —«/2 and #/2. A number with real part cqual to —#/2 is in the range iff its
imaginary part is strictly positive; a number with rcal part cqual to #/2 is in the range iff its
imaginary part is strictly ncgative. Thus the range of arctangent is identical to that of
arcsine with the points —#/2 and #/2 cxcluded.

NUMBERS

asinh

acosh

atanh

S

129

The following definition for the inverse hyperbolic sine determines the range and branch
cuts:)

arcsinh z=log (x+V1+x~)

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the
positive imaginary axis above 7 (inclusive), continuous with quadrant I, and one along the
negative imaginary axis below — i (inclusive), continuous with quadrant I1I. The range is
that strip of the complex plane containing numbers whosc imaginary part is between —=z/2
and #/2. A number with imaginary part equal to —n/2 is in the range iff its real part is

" non-positive; a number with imaginary part equal to #/2 is in the range iff its imaginary

part is non-negative.

The following definition for the inverse hyperbolic cosine determines the range and branch
cuts:

arccosh z=log (x+(x+ 1)V (x=1)/(x+1))

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with
quadrant II and (between 0 and 1) with quadrant I The range is that half-strip of the
complex plane containing numbers whose real part is non-negative and whose imaginary
part is between —« (exclusive) and = (inclusive). A number with real part zero is in the
range iff its imaginary part is between zero (inclusive) and # (inclusive). -

The following definition for the inverse hyperbolic tangent determines the range and
branch cuts:

arctanh z=log (1+ x)V1-—- 172)

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic
tangent function is in two pieces: one along the ncgative real axis to the left of —1
(inclusive), continuous with quadrant 111, and onc along the positive real axis to the right of
1 (inclusive), continuous with quadrant 1. The range is that strip of the complex plane
containing numbers whose imaginary part is between —#/2 and #/2. A number with
imaginary part cqual to —#/2 is in the range iff its real part is strictly negative; a number
with imaginary part cqual to #/2 is in the range iff its imaginary part is strictly positive.
Thus the range of arctangent is identical to that of arcsinc with the points —#i/2 and #i/2
excluded. :

With these definitions, the following useful identitics are obcyéd throughout the applicable portion of the

complex domain, cven on the branch cuts:

siniz = isinh z sinhiz = isinz arctan i z = farctanh z
cos iz = cosh z ‘ coshiz=cosz arcsinh i z = { arcsin z
tan iz = itanh z arcsin [z = jarcsinh z arctanh i z = farctan z

130 COMMON LISP REFERENCE MANUAL

12.5. Type Conversions and Component Extractions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types if necessary, the
following functions are provided to allow specific conversions of data types to be forced, when desired.

float number &optional other ‘ [Function]
Converts any non-complex number to a floating-point number. With no second argument, then if
a given format of floating-point number is sufficiently precise to represent the result, then the
result may be of that format or of any larger format, depending on the implementation; but if no
fixed format is sufficiently precise, then the format of greatest precision provided by the
implementation is used.

If the argument other is provided, then it must be a floating-point number, and number is
converted to the same format as other.

rational number v [Function]
rationalize number &optional tolerance ' [Function]
Each of these functions converts any non-complex number to be a rational number. If the
- argument is already rational, that argument is returned. The two functions differ in their treatment

of floating-point numbers.

rational assumes that the ﬂoaﬁng-point number is completely accurate, and returns a rational
number mathematically equal to the precise value of the floating-point number. This is (probably)
much faster than rationalize.

rationalize assumes that the floating-point number is accurate only to the precision of the -
floating-point representation, and may return any rational number for which the floating-point
number is the best available approximation of its format; in doing this it attempts to keep both
numerator and denominator small. It is always the case that

_ (ed1 (float (rationalize x) x) x)
That is, rationalizing a floating-point number and then converting it back to a floating-point
number of the same format produces the original number. '

The optional argument tolerance may be used to alter the assumption concerning precision. If
tolerance is a positive intcger, then number is assumed to be accurate to only that many bits. Ifit is
a negative integer, then number is assumed to be accurate only to within that many bits of the low
end of the fraction. Ifit is a positive floating-point numbecr, then it is a relative tolerance; number is
assumed to be precisc only to an amount cqual to number times tolerance.

272 Query: (1) Shouid tolerance be applicd cven if the argument is not a {loating-point number? For example, -
(rationalize 1137355 0.01) might produce 22/7.
(2) Should the third argument to fuzzy= be like the sccond argument to rationalize? Then perhaps we
could make the claim that

(fuzzy= (float (rationalize x tol) x) x tol)

forall x and tol.

NUMBERS , 131

numerator rational ' [Function}

denominator rational [Function]
These functions take a rational number (an integer or ratio) and return as an integer the numerator
or denominator of the canonical reduced form of the rational. The numerator of an integer is that
integer, and the denominator of an integer is 1. Note that

{(gcd (numerator x) (denominator x)) => 1
The denominator will always be a strictly positive integer; the numerator may be any integer.

For example:

(numerator (/ 8 -6)) => -4
{denominator (/ 8 -6)) => 3

There is no fix function in COMMON LISP, because there are several interesting ways to convert non-
integral values to integers. These are provided by the functions below, which perform not only type-
conversion but also some non-trivial calculations. '

floor number &optional divisor , [Function]
ceil number &optional divisor o [Function]
trunc number &optional divisor ; [Function]
round number &optional divisor - [Function]

27?7 Query: Should we.rename ceiland trunc tobeceiling and truncate?

In the simple, one-argument case, each of these functions converts its argument number (which
may not be complex) to be an integer. If the argument is already an integer, it is returned directly.
If the argument is a ratio or floating-point number, the functions use different algorithms for the
conversion.

floor converts its argument by truncating towards negative infinity; that is, the result is the
largest integer which is not larger than the argument.

‘ce i1 converts its argument by truncating towards positive infinity; that is, the result is the smallest
intcger which is not smaller than the argument. '

trunc converts its argument by truncating towards zero; that is, the resuit is the integer of the
same sign as the argument and which has the greatest integral magnitude not greater than that of
the argument. o

round converts its argument by rounding to the ncarest integer; if number is cxactly halfway
between two integers (that is, of the form integer+0.5) then it is rounded to the one which is cven
(divisible by two).

Here is a table showing what the four functions produce when given various arguments.

132

COMMON LISI' REFERENCE MANUAL

Argument floor ceiling trunc round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 - -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 -2 -2 -2
-2.5 -3 -2 ' -2 -2
-2.6 -3 -2 -2 - -3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or

truncation applied to the result of dividing the number by the divisor. For example, (f1oor -5
2) = (floor (/ 5 2)),butis potentially more efficient. The divisor may be any non-complex
number. The one-argument case is exactly like the two-argument case where the second argument
is 1.

Each of the functions actually returns two values; the second result is the remainder, and may be
obtained using multiple-value-bind (page 82) and related constructs. If any of these
functions is given two arguments x and y and produces results g and r, then g*y+r=x. The
remainder r is an integer if both arguments are integers, is rational if both arguments are rational,

‘and is floating-point if either argument is floating-point. (In the one-argument case the remainder

is a number of the same type as the argument.) The first result is always an integer.

Compatibility note: The names of the functions floor, ceil, trunc, and round are more accurate than
names like f ix which have heretofore been used in various Lisp systems. The names used here are compatible
with standard mathematical terminology (and with PL/I, as it happens). In FORTRAN ifix means trunc.
ALGOL 68 provides round, and uses entier to mean f1oor. In MACLISP, fix and if1x both mean floor
(one is generic, the other flonum-in/fixnum-out). In INTERLISP, fix means trunc. In Lisp Machine Lisp,
f1ix means f Toor and fixr means round. STANDARD LisP provides a f ix function, but does not accurately
specify what it does exactly. The existing usage of the name fix is so confused that it seems best to avoid it
altogether.

The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MacLisp and
NiL seem likely to follow suit.

mod number &optional divisor lolerance - cemee . [Function]

rem number &optional divisor tolerance : ' ~ [Function]

If the optional argument lolerance is omitted, mod performs the operation f1oor (page 131) on its
arguments, and rcturns the second result of f1oor as its only result. Similarly, rem performs the
operation trunc (page 131) on its arguments, and rcturns the second result of trunc as its only
result. '

mod and rem are thercfore the usual modulus and remainder functions when applied to two

integer arguments. In gencral, howcever, the arguments may be integers or floating-point numbers.

With onc argumcnt, these functions perform the “mod 17 or “fractional part” operation, differing
in the direction of rounding; the result of mod of onc argument is always non-negative, while the
result of rem of one argument always has the same sign as the argument.

NUMBIERS

(mod 13 4) => 1 {rem 13 4) => 1
(mod -13 4) => 3 {rem -13 4) => -1
(mod 13 -4) => -3 (rem 13 -4) => 1
(mod -13 -4) => -1 (rem -13 -4) => -1
(mod 13.4) => 0.4 (rem 13.4) => 0.4
(mod -13.4) => 0.6 (rem -13.4) => -0.4

If the optional argument tolerance is given, then it is handled in the following manner. Like the
optional argument folerance to rationalize, it may be a positive or negative integer or a
positive floating-point number. For expository purposes define (delta x), for a floating-point
number x, to be one-half the value of the smallest floating-point number y of the same format as x
such that '

(> (+ ¥y (float 1 x)) x)
Then define the function compute-tolerance as follows:

(defun compute-tolerance (x tol)
(cond ((floatp tol) tol)
((minusp tol) (* (delta x) (expt 2 (- tol))))

(t (expt 2 (- tol)))))
Now when mod or rem performs its computation, it is as if it called f1oor or trunc and returned
the second result. Let the first result from f1oor or trunc be called ¢; this will be an integer. If
mod or rem is given the optional argument tolerance, it will signal an error, rather than delivering a
result, if number is a floating-point number and

(> (* g (delta -number)) (compute-tolerance number lolerance))

The interpretation is that folerance is a measure of the accuracy required of the computed
remainder. If the quotient g is very large, then the original number must have been so large relative
to the divisor that the remainder cannot be very accurate.

ffloor number &optional divisor [Function]
fceil number &optional divisor [Function]
ftrunc number &optional divisor [Function]
fround number &optional divisor [Function]

These functions are just like floor, ceil, trunc, and round, except that the result (the first
result of two) is always a floating-point number rather than an integer. It is roughly as if ffloor
gavc its arguments to f1cor, and then applied float to the first result before passing them both
back. In practice, however, ffloor may be implemented much more efficiently. Similar remarks
apply to the other three functions. If the first argument is a floating-point number, and the second
agrument is not a floating-point number of shorter format, then the first result will be a floating-
point number of the same type as the first argument. '

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5d0) => 3.0d0 and 0.5d0

134 » COMMON LISP REFIERENCE MANUAL

float-fraction float ’ [Function]
float-exponent float — » [F'unction]
scale-float float integer . [Function)

The function float-fraction takes a floating-point number and returns a new floating-point
number of the same format. Let b be the radix for the floating-point representation (see
short-float-radix (page 143) and friends); then float-fraction divides the argument by an
integral power of b 50 as to bring its value between 1/5 (inclusive) and 1 (inclusive), and returns the
quotient.

The function float-exponent performs a similar operation, but then returns the integer
exponent to which & must be raised to produce the appropriate power for the division.

The function scale-float takes a floating-point number fand an integer k, and returns (* f
(expt (float b f) k)). (Theuseof scale-float may be much more efficient than using
exponentiation and multiplication.)

Note that (scale-float (float-fraction f) (float-exponent f)) <=>f

Rationale: These functions allow the writing of machine-independent, or at least machine-parameterized,
floating-point software of reasonable efficiency.

complex realpart &optional imagpart o [Function]
The arguments must be non-complex numbers; a complex number is returned that has realpart as
its real part and imagpart as its imaginary part. If imagpart is not specified then (* realpart 0) is
effectively used (this definition has the effect that in this case the two parts will be both rational or
both floating-point numbers of the same format).

realpart number ' ' _ : [Function]

imagpart number - [Function]
These return the real and imaginary parts of a complex number. If number is a non-complex
number, then realpart returns its argument number and imagpart returns (* number 0)
(this has the cffect that the imaginary part of a rational is 0 and that of a ﬂoatingopoiht number is a
floating-point zero of the same format). ’ : '

777 Query: What would be the pros and cons of requiring the two parts of a complex number to be either both rational or
both {loating-point numbers of the same format?

12.6. Logical Operations on Numbers

The- logical operations in this scction treat integers as if they were represented in two’s-complement

notation.
Implementation note: Internally, of course, an implementation of COMMON Lisp may or may not usc a two's-complcment
representation. Al that is necessary is that the logical operations perform caleulations so as to give this appcarance to the
user. :

NUMBERS ’ 135

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a
conceptual vector be indexed by the non-negative integers. Then bit jis assigned a “weight” V. Assume that
only a finite number of bits arc ones. or that mﬂy a finite number of bits are zeros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that
some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers.
Then a sct can be represented as a bit vector: an element is in the set if the bit whose index corresponds to
that element is a one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets
whose complements are finite (by negative integers). The functions 1ogior. Togand, and 1ogxor defined
below then compute the union, intersection, and symmetric difference operations on sets represented in this
way.

logior &rest integers : [Function]
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

logxor &rest integers ‘ ' K [Function]
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation. '

logand &rest integers ' [Function]
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,
which is an identity for this operation. ‘

logeqv &rest integers ' [Function]
Returns the bit-wisc logical equivalence (also known as exclusive nor) of its arguments. If no
argument is given, then the result is -1, which is an identity for this operation.

lognand integerl integer2 ' [Function}
lognor integerl integer? - . 4 [FFunction]
logandc1 integerl integer2 [Function]
logandc2 integerl integer2 [Function]
lTogorcl integerl integer? A : [Function}
logorc2 integerl integer? : : [Function]

These are the other six non-trivial bit-wisc logical operations on two arguments. Because they are
not commutative or associative, they take exactly two arguments rather than any non-negative
number of arguments. '

136 ; ' COMMON LISP RENERENCE MANUAL

A
v

(Tognand n/ n2)
(Yognor nl n2)
{(Yogandcl nl n2)
(Togandc2 nl n2)
(logorcl nl n2)
(logorc2 ni n2)

(tognot (logand nl n2))
(lognot (logor nl n?))
{1ogand (lognot nl) n2)
(logand n/ (lognot n2))
(logor (lognot wn/) n2)
(logor n/ (lognot n2))

A

A
i n o o on ou
A\

v

\

A
v

A
v

A

The ten bit-wise logical operations on two integers are summarized in this table:

Argumentl 0 0 1 1
Argument 20 1 0 1 Operation name

logand 0 0 0 1 and

logior 0 1 1 1 inclusive or

Tagxor 0 1 1 0 exclusive or

logeqv 1 0 0 1 equivalence (exclusive nor)

Tognand 1 1 1 0 not-and

lognor 1 0 0 0 not-or

lTogandc1l 0 1 0 0 ‘and complement of argl with arg2

lTogandc2 0 0 1 0 and argl with complement of arg2

lTogorcl 1 1 0 1 or complement of argl with arg2

Jogorc2 1 0 1 1 or argl with complement of arg2
boole op integerl integer2) ' . [Function]
boole-clir [Variable]
boole-set [Variable]
boole-1 : _ ‘ ' [Variable]
boole-2 [Variable]
boole-c1 , , [Variable]
boole-c2 ‘ . , : [Variable]
boole-and ' ‘ [Variable]
boole-ior : - [Variable]
"boole-xor : [Variable]
boole-eqv : ' [Variable]
boole-nand : , [Variable]
boole-nor - _ o : -~ [Variable]
boole-andc1 : , [Variable]
boole-andc2 [Variable]
boole-orcl ‘ ' [Variable]
boole-orc2 [Variable]

The function boo1e takes an -’opc‘ration op and two integers, and returns an integer produced by
performing the logical operation specified by op on the two integers. The precise values of the
sixtcen variables arc implementation-dependent, but they arc suitable for usc as the first argument
to boole: " ‘

NUMBLERS

137

boole-andcl
boole-andc2
boole-orcl

and complement of integer! with integer?
and integer] with complement of integer2
or complement of integerl with integer2

integerl 0 0 1 1
integer2 0 1 0 1 Operation performed
boole-clr -0 0 0 0 alwaysO
boole-set 1 1 1 1 alwaysl
boole-1 0 0 1 1 integerl
boole-2 0 1 0 1 integer2
boole-c1 1 1 0 0 complementof integer!
boole-c2 1 0 1 0 complementofinteger?
boole-and 0 0 0 1 and
boole-ior 0 1 1 1 inclusiveor
boole-xor 0 1 1 0 exclusiveor
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 notand
boole-nor 1 0 0 0 onotor
0 1 0 O
0 0 1 0
1 1 0 1
1 0 1 1

boole-orc2

or integer! with complement of integer2

boole can therc_afore compute all sixteen logical functions on two arguments. In general,

and the latter is more perspicuous. However, boo1e is useful when it is necessary to parameterize

(boole boole-and x y) <=> (logand x y)

a procedure so that it can use one of several logical operations.

Tognot integer

Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the

corresponding bit in the argument.

- [Function]

(logbitp j (Tognot x)) <=> (not (logbitp j x))

logtest integerl integer2

integer?2.

[Function]
logtest is a predicate which is true if any of the bits designated by the 1's in integer! are 1’s in

(lTogtest x y) <=> (not (zerop (logand x y)))

logbitp index integer
logbitp is true if the bit in integer whose index is index (that is, its weight is 27"%%) is a one-bit;
otherwise it is false.

For example: v
(logbitp 2 6) istrue

(logbitp 0 6) isfalse

[Function)

(logbitp k& n) <=> (1db-test (byte 1 k) n)

COMMON LISP REFERENCE MANUAL

ash integer count : [Function)
Shifts integer arithmetically left by count bit positions if count is positive, or right -count bit
positions if count is negative. The sign of the result is always the same as the sign of integer.

Arithmetically, this operation performs the computation floor(integer*2“°"™),

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves
them to the right, discarding bits. (In this context the question of what gets shifted in on the left is
irrelevant; integers, viewed as strings of bits, are “half-infinite”, that is, conceptually extend
infinitely far to the left.)

For example:

(logbitp j (ash n k)) -
<=> (and (>= j k) (logbitp (- j k) n))

logcount integer [Function]
The number of bits in integer is determined and returned. If integer is positive, then 1 bits in its
binary representation are counted. If integer is negative, then the 0 bits in its two’s-complement
binary representation are counted. The result is always a non-negative integer.

For example:
(logcount 13) => 3 ; Binary representationis ...0001101
(Togcount -13) => 2 : ; Binary representationis ...1110011
(Togcount 30) => 4 ; Binary representationis ...0011110
(logcount -30) => 4 ; Binary representationis ...1100010
As arule,

(logcount x) <=> (logcount (- (+ x 1)))

haulong integer » [Function]
This returns the number of significant bits in the absolute value of integer. The precise
computation performed is ceiling(log2(abs(integer)+1)).
For example: ’

(haulong 0)
(haulong 3)
(haulong 4)
(haulong -7)

A\

non n
vV v
wNO

haipart integer count ' [Function]
Returns the high count bits of the binary representation of the absolute value of integer, or the low
-count bits if count is ncgative. A possible definition of haipart:

(defun haipart (integer count)
(let ((x (abs integer)))
(if (minusp count)
(1db (byte (- count) 0) x)
(1db (byte count (max (- (haulong x) n) 0))
x))))

NUMBLERS ; 139

12.7. Byte Manipulation F unctions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing
anywhere in an integer. Such a contiguous set of bits is called a byte. Here the term byte docs not imply some
fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know
that the function byte will construct one, and that the byte-manipulation functions will accept them. The
function byte accepts two integers representing the position and size of the byte, and returns a byte specifier.

Such a specifier designates a byte whose width is size, and whose right-hand bit has weight 27°50% in the
terminology of integers used as logical bit vectors. '

byte size position ’ [Function]
byte takes two integers representing the size and position of a byte, and returns a byte specifier
suitable for use as an argument to byte-manipulation functions.

byte-size bytespec o [Function]

byte-position bytespec ’ [Function)
Given a byte specifier, byte-size returns the size specified as an integer; byte-position
simiiarly returns the position.'

For example:
(byte-size (byte j k)) <=> J
(byte-position (byte j k)) <=> &k
1db bytespec integer ' . [Function]

bytespec specifies a byte of integer to be extracted. The result is returned as a positive integer.
For example: '

{(logbitp 7 (1db (byte s p) n)
<=> (and (< j s) (Togbitp (+ j p) n))

The name of the function *“1db” means “load byte”.

1db-test bytespec integer ‘ [Function)
1db-test is a predicate which is truc if any of the bits designated by the byte specifier bytespec
are 1’sin integer; that is, it is true if the designated field is non-zero.

(1db-test bytespec n) <=> (not (zerop (1db bytespec n)))

140 ’ ' COMMON LISP REFERENCE MANUAL

-mask-field byrespec integer ‘ _ [Function]
This is similar to 1db; howcver, the result contains the specified byte of integer in the position
specified by bytespec, rather than in position 0 as with 1db. The result therefore agrees with infeger
in the byte specified, but has zero bits everywhere else.
For example: ‘

(1db bs (mask-field bs n)) <=> (1db bs n)

(logbitp j (mask-field (byte s p) n))

<=> (and (>= j p) (< js) (logbitp j n))
(mask-field bs n) <=> (logand n (1db bs -1))

dpb newbyte bytespec integer [Function)
Returns a number which is the same as infeger except in the bits specified by bytespec. Let s be the
size specified by bytespec, then the low s bits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore mnerpreted as being right-justified, as if it were the result
of 1db.
For example:
(logbitp j (dpb m (byte s p) n))
<=> (if (and (>=jp) (<j (+ ps)))

(Togbitp (- j p) m)

(Togbitp j n)) .
The name of the function “dpb” means “deposit byte”.

deposit-field newbyte bytespec integer o ' [Function]
This function is to mask-field as dpb is to 1 db. The result is an integer which contains the bits
of newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer.

For example:

~ (logbitp j (dpb m (byte s p) n)) -
<=> (if (and (>=jp) (<J (+ ps)))
(logbitp j m)
(logbitp j n))
Implementation note: If the byrespec is a constant, one may of course construct, at compile time, an equivalent
mask m, for example by computing (deposit-field -1 bytespec 0). Given this mask m, one may then
compute
(deposit- f ield newbyte bytespec integer)]
by computing ;
(logor - (logand - neﬂ’byte m) (logand integer (lognot m)))
where the result of (1ognot m) can of course also be computed at compile time. IHowever, the following
expression (which | got indircctly from Knuth) may also be used, and may require fewer temporary registers in
some situations: _
(logxor integer (Yogand m (logxor infeger newbyle)))
A related, though possibly less useful, trick is that

(let ((z (logand (logxor x y) m)))
(setg x (Togxor z x))
(setq y (Togxor z y)))

interchanges those bits of x and y for which thc mask m is 1, and lcaves alone those bits of x and y for whichm -

NUMBERS ' 141

. is 0.
12.8. Random Numbers

random numberl &optional number? ' [Function]
(random n) accepts a positive number #n and returns a number of the same kind between zero
(inclusive) and 7 (exclusive). The number n may be an integer or a floating-point number. An
approximately uniform choice distribution is used; If n is an integer, each of the possible results
occurs with (approximate) probability 1/n.

(random Jlow high) is equivalentto (+ Jow (random (- high low))); it provides a choice
from the range Jow (inclusive) to Aigh (exclusive).

Compatibility note: In INTERLISP, the range limits are both inclusive. Would this be more intuitive? Itis easy
to implement for integers, but much harder for floating-point numbers.

Compatibility note: random of zero arguments has been omitted because its value is too implementation-
dependent (limited by fixnum range).

Implementation note: In general, it is not adequate to define (random n) for integral n to be simply (mod
(random) n); this fails to be uniformly distributed if » is larger than the largest number produced by
random, or even if n merely approaches this number. Assuming that the underlying mechanism produces
* “random bits” (possibly in chunks such as fixnums), the best approach is to produce enough random bits to
construct an integer k some number d of bits larger than (haulong n) (see haulong (page 138)), and then
compute (mod k n). The quantity dshould be at least 7, and preferably 10 or more. '

look through the Collected Algorithms from the ACM, particularly algorithms 133, 266, 294, and 370) is to
compute X*(B— 4)+ 4, where X is a floating-point number uniformly distributed over {0.0, 1.0)-and computed
by calculating a random integer N in the range [0, M) (typically by a multiplicative-congruential or
linear-congruential method mod M) and then setting X=N/M. If one takes M = 2, where fis the length of
the fraction of a floating-point number (and it is in fact common to choose M to be a power of two), then this
method is equivalent to the following assembly-language-level procedure. Assume the representation has no
hidden bit. Take a floating-point 0.5, and clobber its entire fraction with random bits. Normalize the result if

‘ To produce random floating-point numbers in the range [4, B), accepted practice (as determined by a quick

necessary. _
For example, on the PDP:10, assume that accumulator T is completely random (all 36 bits are random). Then
the code sequence _ -
LSH T,-9 ; Clear high 9 bits; low 27 are random.
FSC T,128. . ; Install cxponent and normalize.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). (Instead of the LSH,

one could do “TLZ T,777000; but if the 36 random bits came from a congruential random-number

generator, the high-order bits tend to be “more random™ than the low-order ones, and so the LSH would be a
~ bit better for uniform distribution. Ideally all the bits would be the result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the hidden bit is. The

-method can be adaptced as foilows. Take a floating-point 1.0 and clobber the explicit fraction bits with random
bits: this produces a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0. In effect,
we let the hidden bit creep in and then subtract it away again.

For example, on the vax, assume that register T is completely random (but a litle less random than on the
PDP-10, as it has only 32 random bits). Then the code sequence

INSV #~X81,#7.#9,T : Install correct sign bit and exponent.
SUBF #~F1.0,T ; Subtract 1.0.

. will produce in T a random floating-point number uniformly distributed over {0.0, 1.0). Again, if the low-order
‘ bits arc not random cnough. then “ROTL. #7, T" should be performed first.

142 v COMMON LISP REFERENCE MANUAL -

random-state [Variable]
This variable holds a data structurc which encodes the internal state of the random-number
generator uscd by random. The nature of this data structure is implementation-dependent. It may
be printed out and successfully read back in, but may or may not function correctly as a random-
number state object in another implementation. A call to random will perform a side effect on this
data structure. Lambda-binding this variable to a different random-number state object will
correctly save and restore the old state object, of course.

random-state &optional suate [Function]
This function returns a new random-number state object, suitable for use as the value of the
variable random-state. If siate is nil or omitted, random-state returns a copy of the
current random-number state object (the value of the variable random-state). If swte is a state
object, a copy of that state object is returned. If stateis t, then a new state object is returned which
has been “randomly” initialized by some means (such as by a time-of-day clock).

12.9. Implementation Parameters

The values of the named constants defined in this section are implementation-dependent. They may be
useful for parameterizing code in some situations.

most-positive-fixnum - [Constani]

most-negative-fixnum - : [Constani]
The value of most-positive-fixnum is that fixnum closest in value to positive infinity
provided by the implementation.

The value of most-negative-fixnum is that ﬁxnum closest in value to negative infinity
provided by the implementation.

most-positiVe-short-ﬂoat » [Constani]
least-positive-short-float ‘ [Constani]
least-negative-short-float ' [Constani]
most-negative-short-float : : [Constani]

The value of most-positive-short-float is that short-format floating-point number closest

in value to positive infinity provided by the implementation.

The value of least-positive-short-float is that positive short-format floating-point
number closest in value to zero provided by the implcmcntation

The value of least-negative-short-float is that negative shm‘t—format ﬂoatmg-pomt
number closest in value to zero prov1ded by the implementation. ~

The valuc of most-negative- sho rt-float is that short-format floating-point number closest
~ in valuc to ncgative infinity provided by the implementation.

_ NUMBERS ' 143

most-positive-single-float ' o ' [Constani]
least-positive-single-float , ~ [Constani)
least-negative-singlie-float [Constani]
most-negative-single-float ‘ [Constani)
most-positive-double-float ‘ [Constani]
least-positive-double-float [Constani]
least-negative-doublie-float ' k [Constani]
most-negative-double-float : [Constani]
most-positive-long-float , [Constani)
least-positive-long-float [Constand]
least-negative-long-float ' : [Constani]
most-negative-long-float [Constani]

These are analogous to the constants defined above for short-format floating-point numbers.

short-float-radix ' ‘ : - [Constanq]
single-float-radix : [Constani]
double-float-radix. ' [Constand]
long-float-radix ’ [Constani]

These constants indicate, for each floating-point format, the radix used in the floating-point
representation. (For most contemporary computers this is 2, but for the 1BM 370 it is 16, for
example.) See float=fraction (page134).

short-float-epsilon : . » - [Constani]
single-float-epsilon [Constani]
double-float-epsilon [Constani]
Tong-float-epsilon [Constani)

These constants indicate, for each floating-point format, the smallest positive number ¢ of that
format such that '

(not (= (float 1 e)‘ (+ e (float 1 ¢))))

short-float-negative-epsilon : [Constani)

single-float-negative-epsilon -~ [Constani]

double-float-negative-epsilon [Constani]

long-float-negative-epsilon [Constani]
These constants indicate, for cach floating-point format, the smallest positive number e of that
format such that

(not (= (float 1 e) (- e (float 1 ¢e))))

144 A : COMMON LISP REFEKENCE MANUAL

Chapter 13

Characters

COMMON LIsp provides a character data type; objects of this type represent printed symbols such as letters.

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish
among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as
italics).

char-code-1limit o , [Constani]
The value of char-code~-11imit is a non-negative integer which is the upper exclusive bound on
values produced by the function char-code (page 149), which returns the code component of a
given character; that is, the values returned by char-code are non-negative and strictly less than
the value of char-code-11imit.
lmplemel.ltalion note: For the PERQ, the value will be 256; for the S-1, 512.

char-font-1imit . [Constani]
The value of char-font-11imit is a non-negative integer which is the upper exclusive bound on
values produced by the function char-font (page 150), which returns the font component of a
given character; that is, the values returned by char-font are non-negative and strictly less than
the value of char-font-1imit.

Implementation note: No CoMMON Lisp implementation is required to support non-zero font attributes; if it
does not, then char-font-11imit should be 1. For the PERQ, the value will be 256 for the §-1, 512.

char-bits-Tlimit ' [Constani)
The value of char-bits-11imit is a non-negative integer which is the upper exclusive bound on
values produced by the function char-bits (page 149), which returns the bits component of a
given character; that is, the valucs returned by char-bits arc non-ncgative and strictly less than
the value of char-bits-1imit. Note that the value of char-bits-11imit will be a power of
two.

Implementation note: No CoMMON LisP implementation is required to support non-zero bits attributes; if it
. -docs not, then char-bits=11imit should be 1. For the PERQ, the value will be 256 for the S-1, 512.

— 145 —

146 o ' COMMON LISP REFERENCE MANUAL

13.1. Predicates on Characters

The prediCatc characterp (page 43) may be used to determine whether any LISP object is a character
object.

standard-charp char : [Function]
The argument char must be a character object. standard-charp is true if the argument is a
“standard character”, that is, one of the ninety-five ASCII printing characters or <return>. If the
argument is-a non-standard character, then standard-charp is false.

Note in particular that any character with a non-zero bits or font attribute is non-standard.

graphicp char - [Function}
The argument char must be a character object. graphicp is true if the argument is a “graphic”
(printing) character, and false if it is a “non-graphic™ (formatting or control) character. Graphic
characters have a standard textual representation as a single glyph, such as “A” or “*” or “=”. By
convention, the space character is considered to be graphic. Of the standard characters (as defined
by standard-charp), all but <return> are graphic. If an implementation provides any of the
semi-standard characters <backspace>, <tab>, <rubout>, <linefeed>, and <{form>, they are not
graphic. -

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs
may depend on this for purposes of columnar formatting. Non-graphic characters and characters
of other fonts may be of varying widths.

Any character with a non-zero bits attribute is non-graphic.

string-charp char : [Function]
The argument char must be a character object. string-charp is true if char can be stored into a
- string (see the functions char (page 191) and rplachar (page 192)), and otherwise is false.
Any character which satisfics standard-charp and graphicp also satisfies string-charp;
others may also.

a1phap char ‘ ’ [Function]
The argument char must be a character object.. alphap is true 1f the argument is an alphabetic
character, and othcrwnc is false.

Of the standard »charactcr‘; (as defincd by standard charp) the. Ictters “A” through . and
*a” through “z” arc alphabetic.

CHARACTTRS 147

uppercasep char [Function]
‘ lowercasep char : [Function]
bothcasep char [Function]

The argument char must be a character object. uppercasep is true if the argument is an upper-
case (majuscule) character, and otherwise is false. lowercasep is true if the argument is an
lower-case (minuscule) character, and otherwise is false.

bothcasep is true if the argument is upper-case and there is a corresponding lower-case character
(which can be obtained using char-downcase (page 150)), or if the argument is lower-case and
there is a corresponding upper-case character (which can be obtained using char-upcase (page
150)).

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is
permissible in theory for an alphabetic character to be neither uppercase nor lowercase.

Of the standard characters (as defined by standard-charp), the letters “A” through “Z” are
upper-case and “a” through “z” are lower-case.

digitp char &optional (radix 10.) ‘ ' [Function]
The argument char must be a character object, and radix must be a non-negative integer. digitp
is a pseudo-predicate: if char is not a digit of the radix specified by radix, then it is false; otherwise
it returns a non-negative integer which is the “weight” of char in that radix.

‘ Digits are necessarily graphic characters.

Of the standard characters (as defined by standard-charp), the characters “0” through “9”,
“A” through “Z”, and “a” through “z” are digits. The weights of “0” through “9” are the integers 0
through 9, and of “A” through “Z” (and also “a” through “z”) are 10 through 35. digitp returns
the weight for one of these digits if and only if its weight is strictly less than radix. Thus, for
example, the digits for radix 16 are “0123456789ABCDEF”.

(defun convert-string-to-integer (str &optional (radix 10))
"Given a digit string and optional radix, return an integer."
(do ((3 0 ¢+ j 1))

(n 0 (+ (* n radix)
(or (digitp (char str j) radix)
(ferror "Bad radix-"D digit: “C"
radix ,
" . (char str 1))))))
((= j (string-length str)) n)))

alphanumericp char | [Function]
~ The argument char must be a character object. alphanumericp is truc if char is cither
alphabetic or numeric. By definition, ‘
(alphanumericp x) <=> (or (alphap x) (digitp x))
. , Alphanumecric characters arc therefore are necessarily graphic (as defined by graphicp (page
146)). ' » '

148 - COMMON LISP REFERENCE MANUAL

Of the standard characters (as defined by standard-charp), the characters “0” through “9”,
“A” through “Z”, and “a” through “z” are alphanumeric.

char=charl char? ' [Function]
The arguments charl and char2 must be character objects. char= is true if char! and char2 are
equivalent character objects, having equivalent attributes, and otherwise is false.

‘The function CHAR= is the finest discriminator of characters available to the programmer. If
(char= c1 c2) is true, then any function professing to operate on a character must behave the

same whether given c1 or c2.

For non-"“funny” characters (those not satisfying funny-charp (page FUNNY-CHARP—FUN)),

(CHAR= C1 C2) <=>
(AND (= (CHAR-CODE C1) (CHAR-CODE C2))
(= (CHAR-BITS C1) (CHAR-BITS C2))
(= (CHAR-FONT C1) (CHAR-FONT C2)))

There is no requirement that (eq c1 c2) be true merely because (char= c1 c2) is true.
While eq may distinguish two character objects that char= does not, it is distinguishing them not
as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of

course, if (eq c1 c2) istrue then one may expect (char= c¢1 c2) to be true.) However, eq1
(page 49) and equal (page 50) compare character objects in the samne way that char= does.

char-equal charl char2 ' ; . [Function]
The arguments char! and char2 must be character objects. ~

The predicate char-equal is like char=, except that it ignores differences of font and bits
attributes and case. By definition,
(char-equal c1 c2) <=>
(char= (char-upcase (character cl))
(char-upcase (character c2)))
For example: '

(char-equal #\A #\a) is true
(char= #\A #\a) isfalse
(char-equal #\A (control #\A)) istrue

char< charl char2 [Function]

char> charl char? . v [Function]
The arguments charl abd char? must be character objects. The predicate char< is true if char/

precedes char? in the (implementation-dependent) total ordering on characters. The predicate
char> is true if charl follows char2? in the (implementation-dependent) total ordering on
characters. Neither is true if the arguments satisfy char= (page 148). '

"The total ordering on characters is guaranteed to have the following properties: '

CHARACTLRS : 149

e The alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<Q<P<Q<R<S<T<U<V<W<X<¥<Z
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<qg<r<s<t<u<v<w<x<y<z
0<1<2<3<4<5<6<7<8<«9

either 9<A or 7<0

either 9<a or z<0

This implics that alphabetic ordering holds, and that the digits as a group are not
interlicaved with Ictters, but that the possible interlcaving of upper-case letters and
lower-case letters is unspecified.

o If two characters have the same bits and font attributes, then their ordering by char< is
consistent with the numerical ordering by the predlcate < (page 118) on their code

attributes.
char-lessp charl char ; [Function]
char-greaterp charl char2? : [Function]

The arguments char! and char? must be character objects. The predicate char-lessp is like
char<, except that it ignores differences of font and bits attributes and case; similarly
char-greaterp is like char>. By definition,

(char-lessp cl1 ¢c2) <=>

(char< (char-upcase (character c1))
(char-upcase (character c2)))

13.2. Character Construction and Selection

character object [Function]
The function character coerces its argument to be a character if possible. If the argument is a
character, the argument is simply returned. If the argument is a string of length 1, then the sole
element of the string is returned. If the argument is a symbol whose print name is of length 1, then
the sole element of the print name is returned. If the argument is an integer n, then (int-char
n) is returned. '

?77? Query: This definition is more restrictive than the Lisp Machine Lisp version. Should it be looscned?

char-code char : [Function]
The argument char must be a character object. char-code returns the code attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-code-limit. (pagc 145).

char-bits char ’ - [Funclir)n]
The argument char must be a character object. char-bits rcturns the bits attribute of the
character object; this will be a non-negative integer less than the (normal) valuc of the variable
‘char-bits-Timit (pagc 145). '

150 » COMMON LISP REFERENCE MANUAL

char-font char [Function]
The argument char must be a character object. char-font rcturns the foat attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-font-1imit (pagc 145).

code-char code &optional (bits 0) (font 0) _ [Function]
All three arguments must be non-ncgative integers. If it is possible in the implementation to
construct a character object whose code attribute is code, whose bits attribute is bits, and whose font
attribute is font, then such an object is returned; otherwise ni1 is returned.

For any integers ¢, b, and f, if (code-char ¢ b f) isnotnil then

(char-code (code-char ¢ b f)) => ¢
(char-bits (code-char ¢ b f)) => b
(char-font (code-char ¢ b f)) => f

If the font and bits attributes of a character object x are zero, then it is the case that

(char= (code-char (char-code c)) c) istrue

make-char char &optional (bits 0) (font 0) [Function]
The argument char must be a character, and bits and font must be non-negative integers. If it is
‘possible in the implementation to construct a character object whose code attribute is that of char,
whose bits attribute is bits, and whose font attribute is font, then such an object is returned;
otherwise ni1 is returned.

If bits and font are zero, then make-char cannot fail. This implies that for every character object
one can “turn off” its bits and font attributes.

13.3. Character Conversions

char-upcase char ‘ ' ‘ ' - [Function}

char-downcase char " [Function]
The argument char must be a character object. char-upcase attempts to convert its argument to
an upper-case equivalent; char-downcase attempts to convert to lower case.

char-upcase rcturns a character object with the same font and bits attributes as char, but with
possibly a different code attribute. If the code is different from char's, then the predicate
Towercasep (page 147) is true of char, and uppercasep (page 147) is truc of the result
character. Morcover, if (char= (char-upcase x) x) is nottruc, then it is true that

(char= (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits attributes as
char, but with possibly a different code attribute. If the code is different from char's, then the
predicate uppercasep (page 147) is truc of char, and Towercasep (page 147) is truc of the
result character. Morcover, if (char= (char-downcase x) x) is nof true, then it is true that

CIIARACTERS ' 151

(char= (char—upcase (char-downcase x)) x)

digit-charp weight &optional (radix 10.) (bits 0) (font 0) =~ - [Function]
digit-weight weight &optional (radix 10.) (bits 0) (font 0) [Function]

All arguments must be intcgers. digit-charp determines whether or not it is possible to
construct a character object whose bits attribute is bits, whose font attribute is font, and whose code
is such that the result character has the weight weight when considered as a digit of the radix radix
(see the predicate digitp (page 147)). Itreturns t if that is possible, and otherwise returns ni1l.

digit-charp cannot return ni1 if bits and font arc zero, radix is between 2 and 36 inclusive, and
weight is non-negative and less than radix.

digit-weight assumes that its arguments satisfy digit-charp, and constructs such a
character. If more than one character object can encode such a weight in the given radix, one shall
be chosen consistently by any given implementation; moreover, among the standard characters
upper-case letters are preferred to lower-case letters).

For example:

(digit-char 7) => #\7

(digit-char 12) => nil

(digit-char 12 16) => #\C ;not #\c
(digit-char 6 2) => nil

(digit-char 1 2) => #\1

char-int char ' [Function]

The argument char must be a character object. char-int returns a non-negative integer encoding
the character object. ,

If the font and bits attributes of char are zero, then char-int returns the same integer
char-code would. Also, '
(char= cl1 ¢2) <=> (= (char-int c1) (char-int c2))

for characters c1 and ¢2.

This function is provided primarily for the purpose of hashing characters. Also, the function t yi
(page 239) is defined in terms of char-int.

int-char integer : ' [Function]

The argument must be a non-negative integer. int-char rcturns a character object ¢ such that
(char-1int c) is cqual to integer, if possible; otherwise int-char is false.

char-name char . [Function]

The argument char must be a character object. If the character has a name, then that name (a
symbol) is returncd; othcrwise nil is returned. All characters which- have zero font and bits
attributes and which are non-graphic (do not satisfy the predicate graphicp (page 146)) have
namcs. Graphic characters may or may not have names.

152 o ; . CONMMONLISP REFERENCE MANUAL

The standard characters <rcturn> and <spacc> have the respective names return and space. The
optional characters <tab>, <form>, <rubout>, <lincfeed>. and <backspace> have the respective
names tab, form, rubout. Tinefeed, and backspace.

Characters which have names can be notated as “#\" followed by the name: #\Space.

name-char sym ' _ [Function]
The argument sym must be a symbol. If the symbol is the name of a character object, that object is
returned; otherwise nil is returned. -

13.4. Character Control-Bit Functions

COMMON LISP provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super.
The following definitions are provided for manipulating these. Each COMMON LISP implementation provides
these functions for compatibility, even if it does not support any or all of the bits named below.

char-control-bit : : o [Constani]
char-meta-bit A [Constani]
char-super-bit [Constani]
char-hyper-bit - [Constani)

The values of these named constants are the “weights” (as integers) for the four named control bits.
The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of COMMON LISP does not support a particular bit, then the
corresponding variable is zero instead.

char-bit char name v - [Function]
char-bit takes a character object char and the name of a bit, and returns non-ni1 if the bit of
that name is set in char, or ni1 if the bit is not set in char. Valid values for name are
implementation-dependent, but typically are :control, :meta, :hyper, and :super.

For example:

(char-bit #\Control-X :control) => frue

set-char-bit char name newvalue . [Function)
char-bit takes a character object char, the name of a bit, and a flag. A character is returned
which is just like char except that the named-bit is sct or reset according to whether newvalue is
non-nil or nil. Valid values for name are implementation-dependent, but typically are
:control, :meta, :hyper,and :super.

For. example:

CHARACTERS ‘ - 153

(setrchar-bitA#\X :control t) => #\Control-X
(set-char-bit #\Control-X :control t) => #\Control-X
. (set-char-bit #\Control-X :control nil) => #\X

154 ’ ' COMMON LISP REFERENCE MANUAL

Chapter 14

Sequences

The type sequence encompasses both lists and one-dimensional arrays, including vectors, strings, and
bit-vectors. While these are different data structures with different structural properties leading to different
algorithmic uses, they do have a common property: each contains contain an ordered set of elements.

There are some operations which are useful on both lists and arrays because they deal with ordered sets of
elements. One may ask the number of elements, reverse the ordering, extract a subsequence, and so on. For
such purposes COMMON LISP provides a set of generic functions on sequences:

elt reverse map remove remove-duplicates
setelt nreverse some delete delete-duplicates
subseq concat every position find :
copyseq Tength notany mismatch substitute

i1l sort notevery maxprefix search

replace merge maxsuffix count

Some of these operations come-in more than one version. Such versions are indicated by adding a suffix to
the basic name of the operation. In addition, many operations acccpt one or more optional keyword
arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion, then the critcrion may be
specified in one of two ways. The basic operation accepts an item, and clements are tested for being eql to
that item. (A test other than eq1 can be specified by the : test or : test-not keyword.)

777 Query: Should the default test be equal or eq1? If eq1, what about member, delet, and assoc?

'The variants formed by adding “-if" and “-if-not” to the basic operation name do not take an item, but
instcad a onc-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an
cxample,

(remove item sequénce)

returns a copy of sequence from which all elements eq1 to item have been removed;
(remove item sequence :test #'equal)

rcturns a copy of sequence from which all clements equal to item have been removed;
(remove-if #’numberp sequence)

returns a copy of sequence from which all numbers have been removed; and

(remove-if #'(lambda (x) (fuzzy= x number tolerance)) Séquénce)

- 155 -

156 COMMON LISP REFERENCE MANUAL

returns a copy of sequence from which all clements fuzzily equal to number to with tolerance have been
removed.

If an operation tests clements of a scquence in any manncr, the keyword argument :key, if not nil,
should be a function of one argument that will extract from an element the part to be tested in place of the
whole clement. For example, the effect of the MACLISP expression (assq item seq) could be obtained
by »

(find item sequence :test #'eq :key #'car)

This searches for the first element of sequence whose caris eq to item.

For some operations it can be useful to specify the direction in which the sequence is processed. In this

case the basic operation normally processes the sequence in the forward direction, and processing in the
reverse direction is indicated by a non-ni7 value for the keyword argument : from-end.

Many operations allow the specification of a subsequence to be operated upon. Such operations have
keyword arguments called :start and :end. These arguments should be integer indices into the sequence,
with siart<end; they indicate the subsequence starting with and including element siarz and up to but
excluding element end. The length of the subsequence is therefore end— start. If start is omitted it defaults to
zero, and if end is omitted or ni1 it defaults to the length of the sequence; therefore if both are omitted the
entire sequence is procéssed by default. For the most part this is permitted purely for the sake of efficiency;
one can simply call subseq instead to extract the subsequence before operating on it. However, operations
which produce indices return indices into the original sequence, not into the subsequence.

(position #/b "foobar" :start 2 :end 5) => 3
(position #/b (subseq "foobar" 2 5)) => 1

If two sequences are involved, then the :start and :end values affect both sequences. Alternatively, the
keyword arguments :starti, :end1, :start2, and : end2 may be used to specify separate subscquences
for each scquence.

For some functions, notably remove and delete, the keyword argument : count is used to specify how
many occurrences of the item should be affected. If this is ni1 or is not supplicd, all matching items are
affected. '

In the following function descriptions, an element x of a sequence “satisfies the test” if either of the
following holds:

e A basic function was called, festfi was specificd by the keyword :test, and (funcall festfn
item (keyfn x)) is true.

e A basic function was called, testfn was specificd by the kcyword :test-not, and (funcall
testfn item (keyfin x)) is false. '

e An “-if” function was called, and (funcall predicate (keyfn x)) is truc.

e An “-if-not” function was called, and (funcall predicate {keyfn x)) is falsc.

SIQUIENCES 157

In cach case keyfh is the valuc of the :key keyword argument (the default being the identity function). See,

for example. remove (page 160).

777 Query: Again, should the default reszfir be eql or equal?

In the following function descriptions, two clements x and y taken from sequences “match” if either of the
following holds:

e lestfn was specificd by the keyword :test, and (funcall festfn (keyfn x) (keyfn y)) is
true.

e lestfn was spcecified by the keyword :test-not, and (funcall testfn (keyfn x) (keyfn
y)) is false. :

See, for example, search (page 164).

14.1. Simple Sequence Functions

elt sequence index) [Function)
This returns the element of sequence specified by index, which must be a non-negative integer less
than the length of the sequence. The first element of a sequence has index 0.

setelt sequence index newvalue v . [Function]
The object newvalue is stored into the component of the sequence specified by index, which must be
a non-negative integer less than the length of the sequence. The first element of any sequence has
index 0. If sequence is a specialized array, then the newvalue must be an object which that array can
contain. setelt returns newvalue.

subseq sequence start &optional end ‘ [Function]
’ This returns the subsequence of sequence specified by start and end. subseq always allocates a
new sequence for a result; it never shares storage with an old sequence. - The result subsequence is

always of the same typc as the argument sequence.

copyseq sequence : | : | ‘ [Function]
A copy is made of the argument sequence; the result is equal to the argument but not eq to it.
(copyseq x) <=> (subseq x 0) '

but the name copyseq is more perspicuous when applicable.

length sequence : [Function]
The number of clements in sequence is returned as a non-negative integer. If the sequence has a fill
pointer, the “active length” is returnced; that is, array-active-len gth (pagc 186) is used
rather than array-length (page ARRAY-LENGTH-FUN).

158 ' COMMON LISP REFERENCE MANUAL

reverse sequence [unction]
The result is a new sequence of the same kind as sequence, containing the same clements but in
reverse order. The argument is not modified. ‘

nreverse sequence - ‘ [Function)
~The result is a sequence containing the same clements as sequence but in reverse order. The
argument may be destroyed and re-used to produce the result. "The result may or may not be eq to
the argument, so it is usually wise to say something likc (setq x (nreverse x)) because

simply (nreverse x) is not guaranteed to-leave a reversed value in x.

14.2. Converting, Catenating, and Mapping Sequences

to result-type sequence _ [Function]
The sequence is converted to be a sequence of type result-type and returned. The result-type must
be a subtype of type sequence. Ifitis specified as simply array, for example, then (array t)
is assumed. If one specifies sequence, then 1ist is assumed. A specialized type such as
string or (vector (complex short-float)) may be specified; of course, the result may
be of either that type or some more general type, as determined by the implementation (see
Chapter 4).

It is an error if the elements of the sequence cannot be put into a sequence of type result-type. If the
sequence is already of the specified type, it may be returned without copying it; in this (to fype
sequence) differs from (catenate 1ype sequence), for the latter is required to copy the
argument sequence. '

catenate result-type &rest sequences [Function)
- The result is a new scquence which contains all the elements of all the sequences in order. All of
the sequences are copicd from; the result does not share any structure with any of the argument
sequences (in this catenate differs from append). The type of the result is specified by
resull-type, which must be a subEype of sequence, as for the function to (page 158). It must be
possible for every element of the argument scquences to be an clement of a scquence of type
result-type.

The implementation must be such that catenate is associative, in the sensc that the elements of
the result sequence are not affected by reassociation (but the type of the result sequence may be
affcctcd) If no arguments are provided, catenate rcturns a ncw empty sequcnce of type
result-type. ‘ ’

SHQUENCES : - 159

map resull-type function sequence &rest more-sequences [Function)

The finction must take as many arguments as there are sequences provided; at least one scquence
must be provided. The result of map is a sequence such that element j is the result of applying
Sfunction to clement j of each of the argument scquences. The result sequence is as long as the
shortest of the input sequences.

If the function has side-effects, it can count on béing called first on all the elements numbered 0,
then on all those numbered 1, and so on. ’

The type of the result sequence is specified by the argument result-type, as for the function to

(page 158). ' ‘

i Compatibility note: In MACLisp, Lisp Machine Lisp, INTERLisP, and indeed even Lisp 1.5, the function map has
always meant a non-value-returning version. In my opinion they blew it. I suggest that for CoMMoN LiSP this
should be corrected, as the names map and reduce have become quite common in the literature, map always
meaning what in the past Lisp people have called mapcar. It would simplify things in the future to make the
standard (according to the rest of the world) name map do the standard thing. Therefore the old map function
is here renamed map1 (page 77).

For example:
(map 'Tist #° - ’(1 2 3 4)) = (-1 -2 -3 _4)
(map 'bit-vector #’(lambda (x) (if (oddp x) 1 0)) (1 2 3 4))
=> #"1010"

some predicate sequence &rest more-sequences [Function]
every predicale sequence &rest more-sequences ' [Function]
notany predicate sequence &rest more-sequences [Function]
notevery predicate sequence &rest more-sequences [Function]

These are all predicates. The predicate must take as many arguments as there are sequences
provided. The predicate is first applied to the elements with index 0 in each of the sequences, and
possibly then to the clements with index 1, and so on, until a termination criterion is met or the end
of the shortest of the sequences is reached.

some returns as soon as any invocation of predicate returns a non-nil value; some returns that
value. If the end of a sequence is rcached, some returns ni1. Thus as a predicate it is true if some
invocation of predicate is true.

every returns nil as soon as any invocation of predicate returns nil. If the end of a scquence is
reached, every returns a non-ni1 value. Thus as a predicate it is truc if every invocation of
predicale is true. ' ‘

notany rcturns ni1 assoon as any invocation of predicate returns a non-ni1 value. If the end of
a scquence is rcached, notany rcturns a non-nil value.. Thus as a predicate it is true if no
invocation of predicate is true.

notevery rcturns a non-ni1 valuc as soon as any invocation of predicate returns ni1. If the end
of a sequence is rcached, notevery rcturns nil. Thus as a predicate it is truc if not every
invocation of predicate is true. '

Compatibility note: The order of the arguments here is not compatible with INTirLisp and Lisp Machinge 1.isp.

160 ’ COMMON LISP REFERENCE MANUAL

This is to stress the similarity of these functions to map. The functions are thercfore extended here to functions
of more than one argument, and multiple sequences. .

/

14.3. Modifying Sequences

fi11 sequence item &key :start :end [Function]
- The sequence is destructively modified by replacing the elements of the subsequence specified by
the :start and :end parameters with the item. The item may be any LISP object, but must be a
suitable element for the sequence. The item is stored into all specified components of the sequence,
beginning at the one specified by the :start index (which defaults to zero), and up to but not
including the one specified by the :end index (which defaults to the length of the sequence).
111 returns the modified sequence.

For example:

(setq x (vector ’a 'b 'c 'd 'e)) => #(a b c d e)
(fi11 x 'z :start 1 :end 3) => #(a z -z d e)
andnow x => #(a z z d e)

(fi11 x "p) => #(p p p P P)
andnow x => #(p p p p P)

replace sequencel sequence? &key :start :end :startl :endl :start2 :end2 [Function]
- The sequence sequencel is destructively modified by copying successive eclements into it from
sequence2. The elements of sequence2 must be of a type that may be stored into sequencel. The
subsequence of sequence2 specified by :start2 and :end2 is copied into the subsequence of
sequencel specified by :startl and :end1. (The arguments : startl and :start2 default to
:start, which defaults to zero. The arguments :end1 and :end2 default to :end, which
defaults to n1i1, meaning the end of the appropriate sequence.) If these subsequences are not of
the same length, then the shorter length determines how many clements are copied; the extra
clements ncar the end of the longer subsequence arc not involved in the operation. The number of

elcments copicd may be expressed as:

(min (- endl startl) (- end? start2))

The value returned by rep1ace is the modified sequencel.

If sequencel and sequence2 arc the same object and the region being modified overlaps with the
region being copied from, then it is as if the entire source region were copied to another place and
only then copied back into the target region.

remove item sequence &key :from-end :test :test-not :start :end - [Function]
:count :key '

remove-if fest sequence &key :from-end :start :end :count :key : [Function]

remove-if-not lest sequence &key :from-end :start :end :count :key [Function]

The result is a sequence of the same kind as the argument sequence, which has the same clements
except that those in the subsequence delimited by :start and :end and satisfying the test (sce

SEQUENCES 161

above) have been removed. This is a nondestructive operation; the result is a copy of the input
. sequence, save that some clements are not copied.

The : count argument, if supplied, limits the number of clements removed: if more than : count
elements satisfy the test, only the lefumost : count such are removed.

A non-nil :from-end specification matters only when the : count argument is provided; in
that case only the rightmost : count clements satisfying the test are removed.

For example:
(remove 4 (12 413 45)) => (1213 5)
(remove 4 '(1 2 413 45) :count 1) => (12 13 4 5)
(remove 4 '(1 2 41 3 4 5) :count 1 :from-end t)
=> (12 413 5) '
(remove 3 (1 2 413 45) :test #>) => (4 3 4 5)

(remove-if #'oddp '(1 2 4 1 3 4 5)) => (2 4 4)
(remove-if #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)
=> (12 413 5)
The result of remove and related functions may share with the argument sequence; a list result
may share a tail with an input list, and the result may be eq to the input sequence if no elements
need to be removed. '

delete item sequence &ey :from-end :test :test-not :start :end ' [Function)
:count :key
delete-if test sequence &key :from-end :start :end :count :key [Function]
‘ delete-if-not test sequence &key :from-end :start :end :count :key [Function]

This is the destructive counterpart to remove. The result is a sequence of the same kind as the
argument sequence, which has the same elements except that those in the subsequence delimited by

start and :end and satisfying the test (see above) have been deleted. This is a destructive
operation. The argument sequence may be destroyed and used to construct the result; however, the
result may or may not be eq to sequence.

The : count argument, if supplied, limits the number of elements deleted; if more than : count
clements satisfy the test, only the leftmost : count such are dcleted.

A non-nil :from-end specification matters only when the : count argument is provided; in
that case only the rightmost : count clements satisfying the tcst arc deleted.

For example: .
(delete 4 ’(1 241345)) =>(121325)
(delete 4 "(1 2 41 3 45) :count 1) => (12 13 4 5)
(delete 4 (1 2 41 3 4 5) :count 1 :from-end t) :
=> (12413 5)
(delete 3 (1 2 41 3 45) :test #'>) => (4 3 4 5)

(delete-if #'0ddp '(1 2 4 1 3 4 5)) => (2 4 4)
(delete-if #’evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)
=> (124135)

162 v COMMON LISP REFERENCE MANUAL

substitute newitem olditem sequence &key :from-end :test :test-not [Function)
:start :end :count :key

substitute-if newitem test sequence &key :from-end :start :end [Function)
:count :key -

substitute-if-not newitem iest sequence &key :from-end :start :end [Function)

:count :key
The result is a sequence of the same kind as the argument sequence, which has the same elements
except that those in the subsequence delimited by :start and :end and satisfying the test (see
above) have been replaced by newitem. This is a nondestructive operation; the result is a copy of
the input sequence, save that some elements are changed.

The :count argument, if supplied, limits the number of elements altered; if more than :count
elements satisfy the test, only the leftmost : count such are replaced.

A non-nil :from-end specification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are removed.

For example: _
(substitute 9 4 (12 41345)) =>(129138935)
(substitute 9 4 '(1 2 413 4 5) :count 1) => (12 9 13 4 5)
(substitute 94 (12 413 4 5) :count 1 :from-end t)

=> (1241389 35) ’

(substitute 9 3 (12 413 4 5) :test #>)-=> (9 9 4 9 3 4 5)
(substitute-if 9 #'oddp '(1 2 41 3 4 5)) => (92 49 9 4 9)
(substitute-if 9 #'evenp °{(

12 41345) :count 1 :from-end t)
=> (12413 95)
The result of substitute and related functions may share with the argument sequence; a list
result may share a tail with an input list, and the result may be eq to the input seguence if no
elements need to be cﬁanged.

nsubstitute newitem olditemi sequence &ey :from-end :test :test-not [Function]
1 :start :end :count :key
nsubstitute-if newitem fest sequence &key :from-end :start :end [Function]
- :count :key ”
nsubstitute-if-not newitem test sequence &key :from-end :start :end [Function]

v :count :key v
This is the destructive counterpart to substitute. The result is a scquence of the same kind as
the argument sequence, which has the same clements except that thosc in the subsequence
dclimited by :start and :end and satisfying the test (sce above) have been replaced by newitem.
This is a destructive operation. The argument sequence may be destroyed and used to construct the
result; however, the result may or may not be eq to sequence.

SEQUINCES ~ 163

14.4. Searching Sequences for Items

find item sequence &key :from-end :test :test-not :start :end :key [Function]
find-if test sequence &key :from-end :start :end :key [Function]
find-if-not rest sequence & ey :from-end :start :end :key [Function]

If the sequence contains an element satisfying the test, then the leftmost such element is returned;
otherwise ni1 is returned.

If :start and : end keyword arguments are given, only the specified subsequeﬁce of sequence is
searched. '

* 1fanon-nil :from-end keyword argument is specified, then the result is the rightmost element
satisfying the test.

position item sequence &key :from-end :test :test-not :start :end :key [Function]

position-if test sequence &key :from-end :start :end :key : [Function]

position-if-not flest sequence &key :from-end :start :end : key [Function}
If the sequence contains an element satisfying the test, then the index within the sequence of the
leftmost such element is returned as a non-negative integer; otherwise n1i1 is returned.

If :start and : end keyword arguments are given, only the specified subsequence of sequence is
searched. However, the index returned is relative to the entire sequence, not to the subsequence.

If a non-ni1 :from-end keyword argument is specified, then the result is the index of the
rightmost clement satisfying the test. (The index returned, however, is an index from the left-hand

end, as usual.)
count item sequence &key :from-end :test :test-not :start :end :key [Function]
count-if ftest sequence &key :from-end :start :end :key - [Function]
count-if-not (lest sequence &key :from-end :start :end :key [Function]

The result is always a non-negative intcger, the number of elements in the specified subsequence of
sequence satisfying the test (sce above).

mismatch sequencel sequence? &key :from-end :test :test-not [Function]
’ :start :end :startl :start2 :endl :end2
The spccified subsequences of sequencel and sequence? are compared clement-wise. If they are of
-cqual length and match in cvery clement, the result is ni1. Otherwise, the result is a non-ncgative
integer, the index within sequencel of the leftmost-position at which they fail to match; or, if one is
shorter than and a matching prefix of the other, the index within sequencel beyond the last position
tested is returncd.

Ifanon-nil1 :from-end keyword argument is given, then the index of the rightmost position in
which the scquences differ is returned. The (sub)scquences arc aligned at their right-hand cnds;
the last clements arc compared, the penuitimate clements, and so on. ‘The index returned is again -

164 , , CONMMON LISP REFERENCE MANUAL

an index into sequencel.

maxprefix sequencel sequence? &key :from-end :test :test-not [Function] .
:start :end :startl :start2 :endl :end2
maxsuffix sequencel sequence? &key :from-end :test :test-not [Function] -

:start :end :startl :start2 :endl :end2
The arguments sequencel and sequence2 are compared clement-wise. ‘The result is a non-negative
integer, which for maxpref ix is the index of the leftmost position at which they fail to match; or,
if one is shorter than and a matching prefix of the other, the length of the shorter sequence is
returned. If they arc of equal length and match in every element, the result is the length of each.

The keyword arguments : start1 and :end1 delimit a subsequence of sequencel to be matched,
and :start2 and :end2 delimit a subsequence of sequence2. The comparison proceeds by first
aligning the left-hand ends of the two subsequences; the index returned is an index into sequencel.
maxpref ix is therefore not commutative if : start1and :start2 are not equal.

The suffix versions differ in that 1 plus the index of the rightmost position in which the
sequences differ is returned. The (sub)sequences are aligned at their right-hand ends; the last
elements are compared, the penultimate elements, and so on. The index returned is again an index
into sequencel. ’

The implementation may choose to match the sequences in any order; there is no gudrantee on the

number of times the test is made. For example, maxsuffix might match lists from left-to-right

instcad of from right-to-left. Therefore it is a good idea for a user-supplied predicate to be free of .
side-effects.

search sequencel sequence? &key :from-end :test :test-not [Function]
:start :end :startl :start2 :endl :end2
A scarch is conducted for a subscquence of sequence? that clement-wise matches sequencel. If
there is no such subsequence, the result is ni 1; if there is, the result is the index into sequence2 of
the leftmost clement of the lcftmpst such matching subscquence.

If a non-ni1 :from-end keyword argument is given, the index of the leftmost clement of the
rightmost matching subscquence is returned.

The implementation may choose to scarch the scquence in any order; there is no guarantee on the
number of times the test is made. For cxamplc,' search-from-end might scarch a list from
left-to-right instcad of from right-to-left. Therefore it is a good idea for a user-supplied predicate
be free of side-effects.. '

sort sequence predicate & ey :key - [Function]
stable-sort sequence predicate &key :key : [Function]
The sequence is destructively sorted according to an ordering determined by the predicate. The
predicate should take two arguments, and return non-n1i1 if and only if the first argument is strictly

SLQUENCES ' 165

less than the second (in some appropriate sense). 1f the first argument is greater than or equal to
the second (in the appropriate sense), then the predicate should return ni 1.

The sort function determines the relationship between two elements by giving keys extracted
from the elements to the predicate. The function &, when applied to an element, should return the
key for that clement; k& defaults to the identity function, thcreby making the element itself be the
key. ‘ ’

The selector function should not have any side effects. A useful example of a selector function
would be a component selector function for a defstruct (page 199) structure, for sorting a
sequence of structures. '
(sort a p :key s)
<=> (sort a #'(lambda (x y) (p (s x) (s5Y¥))))

While the above two expression are equivalent, the first may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply & to each item just once, putting the resulting keys into a separate table, and then sort the
parallel tables, as opposed to applying & to an item every time just before applying the predicate.

If the k and predicate functions always return, then the sorting operation will always terminate,
producing a sequence containing the same clements as the original sequence (that is, the result is a
permutation of sequence). This is guaranteed even if the predicate does not really consistently
represent a total order. If the k consistently returns meaningful keys, and the predicate does reflect
some total ordering criterion on those keys, then the elements of the result sequence will conform
to that ordering.

The sorting operation performed by sort is not guaranteed stable, however; elements considered
equal by the predicate may or may not stay in their original order. The function stable-sort
guarantees stability, but may be somewhat slower.

The sorting operation may be destructive in ail cases. In the case of an array or vector argument,
this is accomplished by permuting the elements. In the case of a list, the list is destructively
rcordered in the same manncer as for nreverse (page 158). Thus if the argument should not be
destroyed, the uscr must sort a copy of the argument.

Should execution of k or predicate causc an crror, the state of the list or array being sorted is
undefined. However, if the error is corrected the sort will, of course, proceed correctly.

Notc that since sorting requires many comparisons, and thus many calls to. the predicate, sorting
will be much faster if the predicate is a compiled function rather than interpreted. ‘

For example:

(defun mostcar (x) ‘
(if (symbolp x) x (mostcar (car x))))

(sort fooarray #’string-lessp :key #'mostcar)

If fooarray contained thesc items before the sort:

166 ' _ COMMON LISP REFERENCE MANUAL

(Tokens (The Tlion sleeps tonight))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))

then after the sort fooarray would contain: -

((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters {(Close to you))
((Ro11ling Stones) (Brown sugar))
(Tokens (The T1ion sleeps tonight))

merge sequencel sequencel predicate &key :key : ' ' [Function]
The sequences sequence! and sequence? are destructively merged according to an ordering
determined by the predicate. The predicate should take two arguments, and return non-n1i1 if and
only if the first argument is strictly less than the second (in some appropriate sense). If the first
argument is greater than or equal to the second (in the appropriate sense), then the predicate should
returnnil.

The merge function determines the relationship between two elements by giving keys extracted
from the elements to the predicate. The function &, when applied to an element, should return the
key for that element; the & function defaults to the identity function, thereby making the element
itself be the key.

The :key function should not have any side effects. A useful example of a :key function would
be a component selector function for a defstruct (page 199) structure, for merging a sequence
of structures.

If the k and predicate functions always rcturn, then the merging operation will always terminate.
The result of merging two sequences x and y is a new sequence z such that the length of z is the
sum of the lengths of x and y, and z contains the all the elements of x and y. If x/ and x2 are two
elements of x, and x/ precedes x2 in x, then x/ precedes x2 in z; similarly for eclements of y. In
other words, z is an inferleaving of x and y.

Morcover, if x and y were correctly sorted according to the predicate, then z will also be correctly
sorted. If x or yis not so sorted, then z will not be sorted, but will nevertheless be an interleaving of
xand y. '
The merging operation is guaranteed stable; if two or more clements are considered equal by the
predicate, then the clements from sequencel will precede those from sequence?2 in the result.

For cxample: :
(merge '(1 3 46 7) (25 8) #'<)=>(12345©678)

Chapter 15

Manipulating List Structure

A cons, or dotted pair, is a compound data object having two componehts, called the car and cdr. Each
component may be any LISP object. A [ist is a chain of conses linked by cdr fields; the chain is terminated by
some atom (a non-cons object). An ordinary list is terminated by n1i1, the empty list (also written “()”). A
list whose cdr-chain is terminated by some non-n1i1 atom is called a dotted list. '

The recommended predicate for testing for the efid of a listis endp (page 168).

15.1. Conses

car x | : [Function]
Returns the car of x, which must be a cons or () ; that is, x must satisfy the predicate Tistp (page
47). By dcfinition, the carof () is (). If the cons is regarded as the first cons of a list, then car
returns the first clement of the list.

For example:
(car '(a b c)) => a

cdr x : [Function]
Returns the cdr of x, which-must be a cons or {) ; that is, x must satisfy the predicate Tistp (page
47). By definition, the cdrof () is (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all elements but the first of the original list.

For example:
(cdr '(a b c)) => (b c)

: [Function)
All of the compositions of up to four car's and cdr's are defined as functions in their own right. The

names of these functions begin with “c” and end with “r”, and in betwcen is a sequence of “a”
and “d” letters corresponding to the composition performed by the function.

c..." x

For ecxample:

(cddadr x) isthesamcas (cdr (cdr (car (cdr x))))

- 167 —

168 ‘ : COMMON LISP REFERENCE MANUAL

If the argument is regarded as a list, then cadr returns the sccond element of the list, caddr the
third, and cadddr the fourth. If the first clement of alist is a list, then caar is the first element of
the sublist, cdar is the rest of that sublist, and cadar is the seccond element of the sublist; and so
on.

As a matter of style, it is ofien preferable to define a function or macro to access part of a
complicated data structure, rather than to use a long car/cdr string: ’

(defmacro ‘lambda-vars (lambda-exp) ‘(cadr ,lambda-exp))
; then use Tambda-vars everywhere instead of cadr
See also defstruct (page 199), which will automatically declare new record data types and
access functions for instances of them. :

cons x y) _ [Function)
cons is the primitive function to create a new cons, whose caris x and whose cdris y.

For examplé: :

(cons ’a 'b) => (a . b) '
(cons 'a (cons 'b (cons ’'c '()))) => (a b ¢)
(cons 'a '(b c d)) => (a b c d)

cons may be thought of as creating a cons, or as adding a new element to.the front of a list.

tree-equal x y- B : ,' [Funetion)
This is a predicate which is true if x and y are isomorphic trees with identical leaves; that is, if x and
y are eql, or if they are both conses and their cars are tree-equal and their cdrs are
tree-equal. Thus tree-equal recursively compares conses (but not any other objects which
have components). See equal (page 50), which does recursively compare other structured

objects.
15.2. Lists
endp object ' [Function]

The predicate endp- is the recommended way to test for the end of a list. It is true of conses, false
of ni1, and an crror for all other arguments. :

Implementation note: Implementations are encouraged to signal an error, cspecially in the interpreter, for a
non-list argument. ‘The endp function is defined so as to allow compiled codc to perform simply an atom
check or a null check if speed is more important than safety.

lTist-length list &optional limit [Function]
Tist-length rcturns, as an integer, the length of /ise. ‘The length of a list is the number of
top-level conscs in it. If the argument /imit is supplicd, it should be an integer; if the Iength of the
list is greater than limit (possibly becausc the /ist is circular!), then /imit is returned.

For example:

MANIPULATING LIST STRUCTURE ' 169

{list-Tength "()) => 0
(1ist-length '(a b c d)) => 4
(1ist-length ’(a (b c) d)) =>
(list-length "(a b c d e T g)) 4
Tist-length could be implemented by:
(defun list-length (x &optional (Timit nil Timitp))
(declare (integer 1imit))
(do ((n 0 (+ n 1))
(y x (cdr y)))

((endp y) n)
(when (and Timitp (>= n limit))
(return limit))))

See 1ength (page 157), which will return the length of any sequence.

nth n list | [Function]
(nth n list) returns the n'th element of [isz, where the zeroth element is the car of the list. n
must be a non-negative integer. If the length of the list-is not greater than n, then the result is OR
thatis, ni1. (This is consistent with the idea that the carand cdrof () are each ().)

For example:
(nth 0 ’(foo bar gack)) => foo
(nth 1 ’(foo bar gack)) => bar
(nth 3 *(foo bar gack)}) => ()
Compatibility note: This is not the same as the INTERLISP function called nth, which is similar to but not
cxactly the same as the CoMMON LisP function nthcdr. This definition of nth is compatible with Lisp

Machine Lisp and NiL. Also, some pcople have used macros and functions called nth of their own in their old
MACLIsP programs, which may not work the same way; be careful.

nthcdr n list [Function]
(nthcdr n list) performs the cdr operation n times on /isz, and returns the result.

For example:
(nthcdr 0 '(a b c)) => (a b c)
(nthcdr 2 '(a b c)) => (c)
(nthcdr 4 "(a b c)) => ()

momﬂwmdskmwmsmcﬁmaﬁdﬂwﬁﬁ

Compaubnlny note: This is similar to the INTERLISP function nth, exccpt that the INTERLISP function xs
onc-based instead of zero-based.

(car (nthcdr n x)) <=> (nth n x)

last list o } ' [Function)
' last returns the last cons (nof the last clement!) of list. If listis (), it returns ().

For eXamplc:

170 ' , COMMON LISP REVERENCE MANUAL

(setq x "(a b c d))

(last x) => (d)

(rplacd (last x) ’(e f))

x => '(abcdef)

(last (a b c . d)) => (c . d)

list &rest drgs _ . [Function]
1ist constructs and returns a list of its arguments. '
For exampk::
(1ist 3 4 'a (car (b . c)) (+ 6 -2)) => (3 4 a b 4)

lTist* arg &rest others . [Function]
Tist* is like 1ist except that the last cons of the constructed list is “dotted”. The last argument
to Tist* is used as the cdr of the last cons constructed; this need not be an atom. If it is not an
atom, then the effect is to add several new elements to the front of a list.

For example:
(list* ’a ’'b 'c 'd) => (a b ¢ . d)
This is like
(cons 'a {(cons 'b (cons 'c 'd)))
Also: '

(list* ’a 'b ’c "(d e f)) => (ab cde f)
(Tist* x) <=> x

make-1ist size &optional value ' [Function]
This creates and returns a'list containing size elements, each of which is value (which defaults to
ni1). sizeshould be a non-negative integer.

For example: _
(make-1ist 5) => (nil nil nil nil nil)
(make-1list 3 ’rah) => (rah rah rah)

Compatibility note: The Lisp Machine Lisp function make-11st takes arguments area and size. Areas are not
relevant to CoMMoON Lisp. The argument order used here is compatible with NiL,

append. &rest lists ' ’ [Function)
The arguments to append are lists. The result is a list which is the concatenation of the arguments.
The arguments arc not destroyed. ’

For example: : . :
(append *(a b c) *(d e f) *() '(g)) => (abcdef g)

Notc that append copies the top-level list structure of cach of its arguments except the last. The
* function catenate_‘ (page 158) can perform a sirhilar operation, but always copies all its

arguments. Sce also nconc (page 171), which is like append but destroys all arguments but the
last. ‘

(app‘end x ’()) is an idiom once frequently used to copy'fhc list x, but the copylist

MANIPULATING LIST STRUCTURE 171
function is more appropriate to this task.

copylist list [Function]
Returns a list which is equal to /ist, but not eq. Only the top level of list-structure is copied; that
is, copylist copics in the cdr direction but not in the car direction. If the list is “dotted™, that is,
(cdr (last [/ist)) is a non-nil atom, this will be true of the returncd list also. See also
copyseq (pagel57). '

copyalist list | [Function]
copyalist is for copying association lists. The top level of list structure.of /ist is copied, just as
copylist does. In addition, each clement of /ist which is a cons is replaced in the copy by a new
cons with the same car and cdr.

copytree object ’ [Function]
copytree is for copying trees of conses. The argument object may be any LISP object. If it is not
a cons, it is returned; otherwise the result is a new cons of the results of calling copytree on the
car and cdr of the argument. In other words, all conses in the tree are copied recursively, stopping
only when non-conses are encountered. Circularities and the sharing of substructure are not
preserved.

revappend x y [Function]
(revappend x y) is exactly the same as (append (reverse x) y) except that it is more
efficient. Both x and y should be lists. The argument x is copied, not destroyed. Compare this
with nreconc (page 172), which destroys its first argument.

nconc &rest [ists ’ [Function]
nconc.takes lists as arguments. It returns a list which is the arguments concatenated together. The
arguments arc changed, rather than copicd. (Compare this with a’p pend (page 170), which copies
arguments rather than destroying them.) '
For example:
fsetq x '(a b c))
(setqy '(d e f))
(nconc x y) => (abcdef)
x =>(abcdef)
Note, in the cxample,that the value of x is now different, since its last cons has been rplacd’d to
the value of y. If onc were then to- evaluate (nconc x y) again, it would yicld a picce of -
“circular™ list structure, whosc printed representation wouldbe(a b c d e f d e f d e T
. ..), rcpeating forever.

- O

172 COMMON LISP REFERENCE MANUAL

nreconc x y ' [Function]
(nreconc x y) is cxactly the same as (nconc (nreverse x) y) cxcept that it is more
efficient. " Both x and y should be lists. The argument x is destroyed. Compare this with
revappend (page 171). '

push item place [Macro]
The form place should be the name of a generalized variable containing a list; item may refer to any
LISP object. The item is consed onto the front of the list, and the augmented list is stored back into
place and returned. The form place may be any form acceptable as a generalized variable to setf
(page 60). If the list held in place is viewed as a push-down stack, then push pushes an clement
onto the top of the stack. '

For example:

(setq x '(a (b c) d))

(push 5 (cadr x)) => (5 b ¢c) andnow x => (a (5 b c) d)
The effect of (push item place) ié roughly equivalent to

(setf place (cons item pldce))

except that the latter would evaluate any subforms of place twice, while push takes care to evaluate
them only once. Moreover, for certain place forms push may be significantly more efficient than
the setf version.

pushnew item place ' [Macro]
The form place should be the name of a generalized variable containing a list; ifem may refer to any
Lisp object. If the item is already a member of the list (as determined by eq1 comparisons), then
the item is consed onto the front of the list, and the augmented list is stored back into place and
returned; otherwise ni1 is returned. (Thus a pushnew form returns a truth value saying whether
item was new to the list or not.) The form place may be any form acceptable as a generalized
variable to setf (pagce 60). If the list held in place is viewed as a sct, then pushnew adjoins an
element to the sct; scc adjoin (page 177).

For example:

(setg x *(a (b c) d))
(pushnew 5 (cadr x)) => (5 b ¢) andnow x => (a (5 b c) d)
(pushnew b (cadr x)) => nil and x is unchanged

The cffect of (pushnew item place) is roughly cquivalent to

(and (not (member item place))
(setf place (cons item place))) _

cxcept that the latter would evaluate itent twice and any subforms of place thrice, whilc pushnew
takes carc to evaluate them only once each. Morcover, for certain place forms pushnew may be
significantly more cfficient than the setf version. :

777 Query: 'The other way to define pushnew isas

(setf place (adjoin item place))
but that doesn’t act as a uscful pscudo-predicate. Towever, it may compile into shorter code. What de people .

MANIPULATING LIST STRUCTURE 173

think?

pop place [AMacro]

The form place should be the name of a generalized variable containing a list. 'The result of pop is
the car of the contents of place, and as a side-effect the cdr of the contents is stored back into
place. The form place may be any form acceptable as a generalized variable to setf (page 60). If
the list held in place is viewed as a push-down stack, then pop pops an element from the top of the
stack and returns it.

For example:

(setq stack ’(é b c))
(pop stack) => a andnow stack => (b c¢).

The effect of (pop place) is roughly equivalent to
(progl (car place) (setf place (cdr place)))

except that the latter would evaluate any subforms of place thrice, while pop takes care to evaluate
them only once. Moreover, for certain place forms pop may be significantly more efficient than
the setf version. '

butlast list &optional n : ' [Function)

This creates and returns a list with the same elements as /ist, excepting the last n elements. n
defaults to 1. The argument is not destroyed. If the /ist has fewer than n elements, then () is
returned.

For example:

(butlast "(a b c d)) => (a b ¢)
(butlast ’((a b) (c d)) => ((a b))
(butlast '(a)) => ()

(butlast nil) => ()

The name is from the phrase “all elements but the last”.

nbutlast list &optional n [Function]

This is the destructive version of buttast; it changes the cdr of the cons n+1 from the end of the
listto ni1. ndcfaults to 1. If the Jist has fewer than n elements, then nbutlast returns (), and
the argument is not modified. (Thercfore one normally writes (setq a (nbutlast a))
rather than simply (nbutlast a).)

For cxample:

(setq foo "(a b c d))

(nbutlast foo) => (a b c)
foo => (a b c) ,
(nbutlast ’(a)) => ()
(nbutlast ’nil) ()

>

174 . , COMMON LISP REFERENCE MANUAL

buttail list sublist | [Function]
list should be a list, and sublist should be a sublist of list, i.c., onc of the conses that make up list.
buttail (meaning “all but the tail””) will return a new list, whose clements are those clements of
list that appcar before sublist. 1f sublist is not a tail of Iist, then a copy of list is returncd. The
argument /ist is not destroyed.

For example:

(setg x (a b cde))

(setq y (cdddr x)) => (d e)

(buttail x y) => (a b c)

but

(buttail "(a b c d) *(c d)) => (a b c d)
since the sublist was not eq to any part of the list.

777 Query: I rcalize we voted to change the name from 1diff to buttail, but it scems senseless to be
different from existing INTERLISP and Lisp Machine Lisp usage. Can we reconsider?

15.3. Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in alrcady-existing list structure; that is,
to change the cars and cdrs of existing conses. -

The structure is not copied but is physically altered; hence caution should be exercised when using these
functions, as strange side-cffects can occur if portions of list structure become shared unbeknownst to the
programmer. The nconc (page 171), nreverse (page158), nreconc (page 172), and nbutlast (page
173) functions already described, and the deTete (page 161) family described later, have the same property.
However, they are normally not used for this side-effect; rather, the list-structure modification is purely for
efficiency and compatible non-modifying functions are provided. ' :

rplaca x y : [Function]
(rplaca x y) changes the car of x to y and returns (the modified) x. x should be a cons, but y
“may be any Lisp object.

For cxample:

(setq g ’(a b c))
(rplaca (cdr g) ’'d) => (d c)
Now g => (a d c)

rplacd x y « [Function]
(rplacd x y) changes the cdr of x to y and returns (the modified) x. -x should be a cons, but y
" may be any Lisp object. ' ’
For example:

(setg x '(a b c))
{rplacd x 'd) => (a . d)
Now x => (a . d)

Compatibility note: In CoMMON [Isp, as in MacLise and Lisp Machine Lise, rplacd can not be uscd to set

MANIPULATING LIST STRUCTURE ' - 175
the property list of a symbol. The setplist (page SETPLIST-FUN) fusction is provided for this purpose.

setnth #n list newvalue [Function]
Alters the #'th element of /list to be newvalue, where the zeroth element is the car of the list. n must

be a non-negative number less than the length of the list. setnth returns newvalue. Sce nth (page
169).

15.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a tree. All take a tree and a
description of old sub-expressions to be replaced by new ones. The functions form a semi-regular collection,
according to these properties:

o Whether comparison of items is by eq or equal.
e Whether substitution is specified by two.arguments or by an association list.
o Whether the tree is copied or modified.

These properties may be summarized as follows:

Accepts two arguments, old and new - Accepts an association list

Uses equal Uscs eq : Uses eg
Copies subst substq sublis
Modifies nsubst nsubstq nsublis
subst new old tree ' [Function]

(subst new old tree) substitutes new for all occurrences of old in tree, and returns the modified
copy of tree. The original tree is unchanged, as subst recursively copies all of tree replacing
clements equal to ol/d as it goes.

For example:

(subst 'Tempest ’Hurricane _
'(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

This function is not “destructive™; that is, it docs not change the car or cdr of any alrcady;existing
list structure. '

(subst nil nil x) is an idiom once frequently used to copy all the conscs in a tree, but the |
copytree (page 171) function is more appropriate to the task.’

nsubst new old tree S [Function)
' " nsubst is a destructive version of subst. The list structure of tree is altered by replacing each
occurrence of old with new. equal is used to decide whether a part of tree is the same as old.

176 CONIMON LISP REFERENCE MANUAL

)

substq new old tree [Function]
substq is just like subst, cxcept that eq, rather than equal, is used to decide whether a part of
tree is the same as old.

nsubstq new old tree [Function]
nsubstq is a destructive version of substq. nsubstqg is just like nsubst, except that eq,
rather than equal, is used to decide whether a part of tree is the same as old.

sublis alist ree : [Function]
sub1is makes substitutions for symbols in a tree (a structure of conses). The first argument to
sub11is is an association list. The car of each a-list entry should be a symbol. The second
argument is the tree in which substitutions are to be made. sub1is looks at all symbols in the
tree; if a symbol appears as a key in the association list occurrences of it are replaced by the object
it is associated with. The argument is not modified; new conses are created where necessary and
only where necessary, so the newly created structure shares as much of its substructure as possible
with the old. For example, if no substitutions are made, the result is eq to the old tree.

For example:

(sublis *((x . 100) (z . zprime))
*(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

nsublis alist tree [Function)
nsublis islike sublis but changes the original list structure mstead of copying.

15.5. Using Lists as Sets

COMMON LisP includes functions which allow a list of items to be treated as a ser. Some of the functions
usefully allow the sct to be ordered; others specifically support unordered sets. There are functions to add,
remove, and scarch for itcms in a list, bascd on various criteria. There are also set union, intcrscction, and
difference functions. '

The naming conventions for these functions and for their keyword arguments gencrally follow the
conventions for the generic scquence functions. Sce Chapter 14.

member item list &ey :test :test-not :key ; [Function]
member-if predicate list &key :key [Function]
“member-if-not predicate list, Keys = {[key] _ [Function}

(member item list) returns nil if item is not eql to any clement in the /ist. Otherwise, it
returns the tail of /ist beginning with the first occurrence of item. list is scarched on the top level
only. Because member returns nil if it docsn't find anything, and somcthing non-ni1 if it finds
‘somcthing, it is oflten uscd as a predicate.

MANIPULATING LIST STRUCTURE 177

For example:

(member ’'snerd ’(a b c d)) => nil
(member 'a ‘(g (a y) cade af)) =>(adeaf)

Note that the value returned by member is eq to the portion of the list beginning with a. Thus
rplaca on the result of member may be used, if you first check to make sure member did not
return nil, to alter the found list element.

mem-1f is like member, except that predicate, a function of one argument, is used to test elements
of list.

mem-if-not is like mem-1if, except that the sense of predicate is inverted; that is, a test succeeds
ifpredicate returns nil. ’

Seealso find (page 163)and position (page 163).

tailp sublist list - ‘ [Function)

This predicate is true if sublist is a sublist of /ist (i.e. one of the conses that makes up /isi).
Otherwise it is false. Another way to look at this is that tailp is true if (nthcdr n list) is
sublist, for some value of n. See buttail (page 174).

adjoin item list &ey :test :test-not [Function]

adjoin is used to add an element to a set, provided that it is not already a member. The equality
test defaults to eq1.

(adjoin item list) <=> (if (member item list) list (cons item list))
See pushnew (page 172). '

777 Query: To make the tests consistent with the keyword proposal, I had to make union and intersection take only
two list, not n. Is this acceptable?

union list lis2 &ey :test :test-not ‘ [Function]
nunion [istl list2 &key :test :test-not [Function]

union takes two lists and rcturns a new list containing everything that is an clement of cither of
the Jists. .If there is a duplication between two lists, only one of the duplicate instances will be in
the result. If either of the arguments has duplicate entries within it, the redundant cntries may or
may not appear in the result. '

For cxample:
(union *(a b c) "(f ad)) = (abc fd)
There is no guarantee that the order of clements in the result will reflect the ordering of the

arguments in any particular way. The implementation is therefore free to use any of a varicty of
strategics. ' ‘

nunion is the destructive version of union. It pcfforms the same operation, but may destroy the

~argument lists, using their cells to construct the result.

178 ' COMMON LISP REFERENCE MANUAL

intersection [list! list2 &ey :test :test-not o [Function)
nintersection list/ list2 &ey :test :test-not . [Function)
intersection takes two lists and returns a new list containing cverything that is an clement of
both argument lists. If cither list has duplicate entries, the redundant entrics may or may not
appear in the result.
For example: ,
(intersection "(a b ¢) '(f a d)) => (a)
There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

nintersection is the destructive version of intersection. It performs the same operation,
but may destroy list/ using its cells to construct the result. (The argument /isz2 is not destroyed.)

setdifference list/ list2 &ey :test :test-not . [Function]

nsetdifference list] lisi2 &key :test :test-not [Function]
setdifference returns a list of elements of /ist/ which do not appear in /isz2. This operation is
not destructive.

nsetdifference is the destructive version of setdifference. This operation may destroy

listl.
set-exclusive-or [istl list2 &ey :test :test-not ' [Function]
nset-exclusive-or Ilist] list2 &ey :test :test-not [Function)

set-exclusive-or returns a list of elements which appear in exactly one of /is¢t/ and lisz2. This
operation is not destructive.

nset-exclusive-or is the destructive version of set-exclusive-or. Both lists may be
destroyed in producing the result.

subsetp lisul lisi2 &ey :test :test-not : , . [Function]
subsetp is a predicate that is true iff every element of Jist/ appears in list2.

15.6. Association Lists

" An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs
(conscs); each pair is an association. ‘The car of a pair is called the key, and the cdris called the datum.

An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding
~_ new-cntries to the front. Morcover, because the scarching function assoc (page 179) scarches the a-list in
order, new cntrics can “shadow™ old cntrics. If an a-list is vicwed as.a mapping from keys to data, then the
mapping can be not only augmented but also altered in a non-destructive manner by adding new cntrics to

MANTPULATING LIST STRUCTURE 179

the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. For
this purposc the “reverse” searching function rassoc (page 180) is provided. Other variants of a-list
searches can be constructed using the function find (page 163) or member (page 176).

It is permissiblec to let ni1 be an element of an a-list in place of a pair.

acons key datum a-list ’ [Function]
acons constructs a new association list by adding the pair (key . datum) to the old a-list.

(acons x y a) <=> (cons (cons x y) a)

pairlis keys data &optional a-list [Function]
pairlis takes two lists and makes an association list which associates elements of the first list to
corresponding elements of the second list. It is an error if the two lists keys and data are not of the
same length. If the optional argument a-list is provided, then the new pairs are added to the front

of it.
- For example:
(pairlis ’(beef clams kitty) ’(roast fried yu-shiang))
=> ((beef . roast) {(clams . fried) (kitty . yu-shiang))
(pairlis '(one two) '(1 2) ’'((three . 3) (four . 19)))
=> ({one . 1) (two . 2) (three . 3) (four . 19))
assoc item alist &ey :test :test-not [Function]

(assoc item alist) looks up item in the association list a-list. The value is the first pair in the
a-list such that item and the car of the pair satisfy the test, or n1i1 if there is none such. (The test
defaultsto eql.)

For example:

(assoc ’'r ’((a . b) (c . d) (r . x) (s . y) (r . 2)))
= (r . x)
(assoc ’'goo ’((foo . bar) (zoo . goo))) => nil
(assoc 2 '((1 abc) (2bcd) (-7 xy z))) = (2hbcd)
It is possible to rplacd the result of assoc provided that it is not ni1, if your intention is to
“update™ the “table™ that was assoc’s second argument. (However, it is often better to update an

a-list by adding new pairs to the front, rather than altcring old pairs.)

For example:

(setg values ’"((x . 100) (y . 200) (z . 50)))

(assoc 'y values) => (y . 200)

(rplacd (assoc 'y values) 201)

(assoc 'y values) => (y . 201) now
A typical trick is to say (cdr (assoc x y)). Becausc the cdrof ni1 is guaranteed to be nil,
this yiclds ni1 if no pair is found or if a pair is found whose cdris ni1. This is uscful if ni 1 serves

180 - - ' COMMON LISP REFLRENCE MANUAL

its usual role as a “default value”.

Compatibility note: This is of course not wmpmblc with Maclisp, which uses equal, not eql. as the default
comparison test.

(assoc item list :test fn)
<=> (find item list :test fn :key #’car)

rassoc item a-list & ey :test :test-not [Function]
rassoc is the reverse form of assoc; it compares item to the cdr of each successive pair in a-/ist,
rather than to the car.

For example: ; _
‘(rassoc 'a '((a . b) (b . c) (c . a) (z . a))) = (c . a)

(rassoc ifem list :test fh)
<=> (find item list :test fi key #’cdr)

15.7. Hash Tables

A hash table is a LISP object that works something like a property list and something like an association list.
Each hash table has a set of entries, each of which associates a particular key with a particular value. The basic
functions that deal with hash tables can create entries, delete entrics, and find the value that is associated with
a given key. Finding the value is very fast even if there are many entries, because hashing is used; this is an
important advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try to add a second value it will
replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By
contrast, association lists can be augmented non-destructively. :

- Hash tables come in three kinds, the difference being whether the keys are comparced with egq, eql, or
~ equal. In other words, there arc hash tables that hash on Lisp objects (using eq or eq1) and there are hash
‘tables whnch hash on abstract S-expressions (using equal).

Hash tables of the first kind arc created with the function make-hash-table, which takes various
options. New entries are added to hash tables with the puthash function. To look up a key and find the
associated value, use gethash; to remove an entry, use remhash. Here is a simple cxample.

(setq a (make-hash-table)) ’
(puthash ’color ’brown a)
(puthash. 'name ’fred a) .
(gethash 'color a) => brown

‘(gethash ’'name a) => fred
(gethash ’pointy a) => nil

In this cxample, the symbols color and name arc being uscd as keys, and the symbols brown and fred
arc being used as the associated values. The hash table has two items in it, onc of which associates from
color to brown, and the other of which associates from name to fred.

MANIPULATING LIST STRUCTURE - 181

Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object.
Hash tables are property interfaced to the relocating garbage coliector so that garbage collection will have no
pereeptible effect on the functionality of hash tables.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.
Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With
the maximum possible bad luck, the capacity could be very much less, but this rarcly happens. If so many
entries are added that the capacity is exceeded, the hash table will automatically grow, and the cntrics will be
rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup
still works). This is transparent to the caller; it all happens automatically. .

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp. It is similar to the hasharray facility of
INTERLISP, and some of the function names are the same. However, it is nor compatible with INTERLiSP. The exact details
and the order of arguments are designed to be consistent with the rest of MACLISP rather than with INTERLISP. For instance,
the order of arguments to maphash is different, there is no “system hash table”, and there is not the INTERLISP restriction
that keys and values may not be ni1. Note, however, that the order of arguments to gethash, puthash, and remhash is
not consistent with get, putprop, and remprop, either. This is an unfortunate result of the haphazard historical
development of Lisp. :

15.7.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as keys and associate other objects
with them.

make-eq-hash-table &key :size :rehash-size :rehash-threshold [Function]

make-eql-hash-table &key :size :rehash-size :rehash-threshold [Function}
make-equal-hash-table &key :size :rehash-size :rehash-threshold [Function]

Calling any of these creates a new hash table; depending on which one is used, the resulting table
treats keys as cqual if they are eq, eq1, or equaT, respectively.

The :size argument sets the initial size of the hash table, in entries, as a fixnum. The default is
64. (The actual size may be rounded up from the size you specify to the next “good” size, for
example to make it a prime number.) You won'’t necessarily be able to store this many cntries into
the table before it overflows and becomes bigger; but except in the case of extreme bad luck you
will be able to store almost this many.

The :rehash-size argument specifies how much to increase the size of the hash table. when it
becomes full. This can be an integer greater than zero, which is the number of entries to add, or it
can be a floating-point number greater than one, which is the ratio of the new size to the old size.
The default is 1. 3, which causcs the table to be made 30% bigger cach time it has to grow.

The :rehash-threshold argument specifics how full the hash table can get before it must
grow. This can be an integer greater than zero and less than the rehash-size (in which casc it will be
scaled whenever the table is grown), or it can be a floating-point number between zero and one.
The default is 0. 8, which means the table is enlarged when it becomes over 80% full.

For example:

182 k COMMON LISP REFERENCE MANUAL

(make-hash-table :rehash-size 1.5
:size (* number-of-widgets 43))

gethash key hash-table &optional default -~ [Function]
Find the entry in Aash-1able whose key is key, and return the associated value. If there is no such
entry, return default, which is ni1 if not specified.

gethash actually returns two valucs, the second being a predicate value that is true if an entry was
found, and false if no entry was found.

puthash key value hash-table [Function]
Create an entry in hash-table associating key to value; if there is already an entry for key, then
replace the value of that entry with value. Returns value.
777 Query: Should value be the last argument? Wouldn’t be compatible with Lisp Machine Lisp.

remhash key hash-table ' ‘ [Function]
Remove any entry for key in hash-iable. This is a predicate that is true if there was an entry or false

if there was not.

maphash function hash-table . [Function]
For each entry in hash-table, call function on two arguments: the key of the entry and the value of
the entry. If entries are added to or deleted from the hash table while a maphash is in progress,
the results are unpredictable. maphash returns nil.

clrhash hash-table . [Function]
Remove all the entries from hash-1able. Returns the hash table itseif.

15.7.2. Primitive Hash Function

sxhash S-expression : " [Function)

sxhash computes a hash code of an S-expression, and returns it as a non-negative fixnum. A
property of sxhash is that (equal x y) implies (= (sxhash x) (sxhash y)).

The manner in which the hash code is computed i$ implementation-dependent, but is independent
of the particular “incarnation™ or “core image”. Hash values may be written out to files, for
cxample, and read in again into an instance of the same implementation.

Chapter 16

Arrays

16.1. Array Creation

make-array dimensions &ey :type :initial-value :initial-contents [Function]
:fil1-pointer :displaced-to :displaced-index-offset
This is the primitive function for making arrays. dimensions should be a list of non-negative
. integers (in fact, fixnums) that are to be the dimensions of the array; the length of the list will be
the dimensionality of the array. For convenience when making a one-dimensional array, the single
dimension may be provided as an integer rather than a list of one integer.

The : type argument should be the name of the type of the elements of the array; an array is
constructed of the most specialized type which can nevertheless accommodate elemments of the
given type. The type t specifies a general array, one whose elements may be any LISP object; this is
the default type.

The :initial-value argument may be used to initialize each element of the array. The value

must be of the type specified by the : type option. If the :initial-value option is omitted,

the initial values of the array elements are undefined (unless the :initial-contents or

+displaced-to option is used). The :initial-value option may not be used with the
~:initial-contents or :displaced-to option.

The :initial-contents argument may be used to initialize the contents of the array. The
value is a nested structure of sequences. If the array is zero-dimensional, then the value specifies
the single clement. Otherwise, the value must be a sequence whose Iength is equal to the first
dimension; cach element must be a nested structure for an array whose dimensions are the
remaining dimensions, and so on.

For example:
(make-array: (4. 2 3) :initial-contents
‘ "(((abc) (***))
((d e f) (***))
((g h i) (***))
(3 k1) (***))))

The numbers of levels in the structure must equal the tank of the array. Each lcaf of the nested
structure must be of the type specified by the : type option. Ifthe ;initial-contents option

- 183 —

184

COMMON LISP REFERENCE MANUAL

is omitted, the initial vatues of the array clements are undefined (unless the :initial-value or
:displaced-to option is used). The :initial-contents option may not bc used with the
:initial-value or :displaced-to option.

The :fi11-pointer argument specifics that the array should have a fill pointer. If this option is
specified, the array must be one-dimensional. The value is used to initialize the fill pointer for the

array. if the value ni1 is specified, the length of the array is used; otherwise the value must be an

integer between 0 (inclusive) and the length of the array (inclusive).

The :displaced-to argument, if not ni1, specifies that the array will be a displaced array. The
argument must then be an array or vector; make-array will create an indirect or shared array
which shares its contents with the specified array. In this case the :displaced-index-offset
option may be useful. The :displaced-to option may not be used with the
:initial-valueor:initial-contents option.

777 Query: A long, extended discussion of displaced arrays is clearly needed here.

The :displaced-index-offset argument may be used only in conjunction with the
displaced-to option. This argument should be a non-negative fixnum (it defaults to zero); it is
made to be the index-offset of the created shared array.

For example:

; ; Create a one-dimensional array of five elements.
{(make-array 5)

; ; Create a two-dimensional array, 3 by 4, with four-bit elements. |
(make-array (3 4) ’:type ’'(mod 16))

; ; Create an array of single-floats.
(make-array 5 ’:type ':single-float)).

; ;» Making a shared array.

(setq a (make-array °'{(4 3)))

(setq b (make-array 8 ’':displaced-to a.
':displaced-index-offset 2))

; + Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b 2) <=> (aref a 1 1)
(aref b 3) <=> (aref a 1 2)
(aref b 4) <=> (aref a 2 0)
_ (aref b 5) <=> (aref a 2 1)
~(aref b 6) <=> (aref a 2°2)
(aref b 7) <=> (aref a 3 0)

The last example dcpcﬁds- on-the fact that arrays . are, in cffect, stored in row-major order for

purposes of sharing. Put another way, the scquences of indices for the clements of an array are
ordered lexicographically. ‘

Compatibility note: Both Lisp Machinc LISP and FORTRAN store arrays in column-major order.

ARRAYS : _ . ‘ 185

make-vector Jength &ey :type :initial-value :initial-contents [Function]
:fil11-pointer _
maké—vectpr is like make-array (page 183), but guarantees to return a vector. Depending on
the implementation, use of a vector (and declaration of such use to the compiler) may result in
significantly more efficient code. One may not specify a list of dimensions, but only a single
integer, the length. The :type, :initial-value, :initial-contents, and
:fi11-pointer keyword arguments are as for make-array.

16.2. Array Access

aref array &rest subscripts ' [Function)
This accesses and returns the element of array spec1ﬁed by the subscripts. The number of
subscripts must equal the rank of the array, and each subscript must be a non-negative integer less
than the corresponding array dimension.

aset new-value array &rest subscripts _ [Function]
This stores new-value into the element of array specified by the subscri‘pts. The number of
subscripts must equal the rank of the array, and each subscript must be a non-negative integer less
than the corresponding array dimension. The result of aset is the value new-value.

The argument new-value must be of a type suitable for storing into array if the array is of a
specialized type.

777 Query: The more I think about it, the more atractive seems the suggestion from RMS simply to flush all
these updator functions and use setf.

16.3. Array Information

array-type array [Function)

This rcturns the type of clcmcnts of the array. For a general array, this is t; for an array of

cight-bit integers, (mod 256) might be rcturned.. What is returned is the actual type of the array

~ clements, which may be the same as that specified to make=-array, or may be more general if the
implementatation doesn’t support arrays of that specific type.

array-allocated-length array [Function]
array may be any array. This returns the total number of clements allocated in array. For a
one-dimensional array, this is equal to the length-of the single axis. (If a fill pointer is in use for the
array, however, the function array-active-length (page 186) may be morc uscful.)

186 , : COMMON LISP REFERENCE MANUAL

array-active-length array [Function]
array-active-length returns the fill pointer for the array. This is normally the same as the
length of the array unless array-reset-fill-pointer (page 189) has becen used.

array-rank array [Function]
Returns the number of dimensions (axes) of array. This will be a non-negative integer.

Compatibility note: In Lisp Machine Lisp this is called array-#-dims. This name causes problems in
MacLisp because of the # character. The problem is better avoided.

array-dimension axis-number array . ' [Function]
The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array.

Compatibility note: This is similar to the Lisp Machine Lisp function array-dimension-n, but is
zero-origin for consistency instead of one-origin. Also, in Lisp Machine Lisp (array-dimension-n 0)
returns the length of the array leader.

array-dimensions array [Function]
array-dimensions returns a list whose elements are the dimensions of array. :

array-in-bounds-p array &rest subscripts ' ' [Function]
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are;
otherwise it is false. The subscripts must be integers.

16 .4. Funétions on Vectors

The functions in this section are equivalent in operation to the corresponding more general functions, but
require arguments to be vectors (of general or specialized type). These functions are provided primarily for
reasons of cfficiency and convenience.

velt vector index ’ ' [Function]
The clement of the vector specified by the integer index is returned. The index must be non-
negative and less than the length of the vector. See e1t (page 157), aref (page 185), and vref
(page 187).

vsetelt vector index newvalue ' ' -~ [Function]
The LISP object newvalueis stored into the component of the vector specificd by the integer index: -
The index must be non-negative and less than the length of the vector. Scc setel t (page 157),
aset (pagc 185),and vset (page 187).

" ARRAYS 187

16.5. Functions on General Vectors (Vectors of Lisp Objecfs)

The functions in this scction are cquivalent'in operation to the corresponding more gencral functions, but
require arguments to be vectors of type (vector t). These functions are provided primarily for reasons of
efficiency and convenience.

vref vector index . [Function]
The element of the vector specified by the integer index is returned. The index must be non-
negative and less than the length of the vector. See e1t (page 157), aref (page 185), and velt
(page 186). '

vset vector index newvalue v [Function]
The LISP object newvalue is stored into the component of the vector specified by the integer index.
The index must be non-negative and less than the length of the vector. See setelt (page 157),
aset (page 185),and vsetelt (page 186).

16.6. Functions on Bit-vectors

bit bit-vector index [Function]
The element of the bit-vector specified by the integer index is returned. The index must be
non-negative and less than the length of the vector. The result will always be 0 or 1. Seeelt
(page 157). :

rplacbit bit-vector index newbit [Function]
The newbit is stored into the component of the bit-vector specified by the integer index. The index
must be non-negative and less than the length of the vector. The newvalue must be 0 or 1. See
setelt (page 157). '

bit-and &rest bit-vectors ' : [Function)
bit-ior &rest bit-vectors [Function]
bit-xor &rest bit-vectors : [Function]
bit-eqv &rest bit-vectors [Function]
bit-nand bit-vectorl bit-vector? [Function]
bit-nor bit-vectorl bit-vector2 [Function]
bit-andc1 bit~vectorl - bit-vector2 — -- - ' . : [Function] - ..
bit-andc2 bit-vectorl bit-vector2 ' [Function]
bit-orc1 bit-vector! bit-vector2 [Function]
bit-orc2 bir-vectorl bit-vector? : [Function]

These functions perform bit-wisc logical operations on bit-vectors. All of the arguments to any of
these functions must be bit-vectors or one-dimensional arrays of bits, all of the same length. The

188

COMMON LISP REFERENCE MANUAL

result is a bit-vector matching the argument(s) in length, such that bit j of the result is produced by
operating on bit j of each of the arguments. Indeed, if the arguments are in fact bit-vectors of the
same length, then

(bit-xxx . argumenits) <=> (map ’bit-vector #'logxxx . arguments)
That is, each b1 t- function described here is simply a mapping over bit-vectors of a Tog function
which applies to integers (and therefore to the bit values 0 and 1). Sce Togand (page 135) and
friends.

The following table indicates what the result bit is for each operation when two arguments are
given. . (Those operations which accept an indefinite number of arguments are commutative and
associative, and require at least one argument.)

argument/i 0 0 1 1
argument2 0 1 0 1 Operation name
bit-and 0 0 0 1 and
bit-dior 0 1 1 1 inclusiveor
bit-xor 0 1 1 0 exclusiveor
bit-eqv 1 0 0 1 equivalence (exclusive nor)
bit-nand 1 1 1 0 notand
bit-nor 1 0 0 0 notor
bit-andcl 0 1 0 0 andcomplement of argumentl with argument?2 -
bit-andc2 0 0 1 0 andargument! with complement of argument2
bit-orci 1 1 0 1. orcomplement of argumentl with argument2
bit-orc2 1 0 1 1 orargument! with complement of argument2
bit-not bit-vector ' [Function]

The argument must be a one-dimensional array of bits. - A bit-vector containing a copy of the
argument with all the bits inverted is returned. That is, bit j of the result is 1 iff bit j of the
argument is zero. -

(bit-not bitvec) <=> (map ’bit-vector #’lognot bitvec)

- See lognot (page 137).

16.7. Fill Pointers

To make it casy to incrementally fill in the contents of an array, a sct of functions for manipulating a fil
pointer arc defined. The fill pointer is a non-negative integer no larger than the total number of elements in
the array (as returned by array-length (page ARRAY-LENGTH-FUN)); it is the number of “active™ or

“filled-in” ‘clements in the array. 'When an array is credted, its fili pointer is initialized to the number of-
elements in the array; the fill pointer should be reser before use. The fill pointer constitutes the “active
length” of the array. Somce functions will ignore clements beyond the fill-pointer index; those that do are so
documented. ‘ '

Multidimensional arrays may have fill pointers; clements are filled in row-major order (last index varics

ARRAYS 189

fastest).

array-reset-fill-pointer array &optional index [Function]
The fill pointer of array is reset to index, which defaults to zero. The index must be a non-negative
integer not greater than the old value of the fill pointer.

array-push array new-element [Function]
array must be a one-dimensional array that has a fill pointer, and new-element may be any object.
array-push attempts to store new-element in the element of the array designated by the fill
pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the
array (specifically, when it gets too big), it is unaffected and array-push returns nil.
Otherwise, the store and increment take place and array-push returns the former value of the fill
pointer (one less than the one it leaves in the array) thus the value of array-push is the index of
the new element pushed.

array-push-extend array x &optional extension [Function]
array-push-extend is just like array-push except that if the fill pointer gets too-large, the
array is extended (using ad just-array-size (page 189))so that it can contain more elements;
it never “fails” the way array-push does, and so never returns nil. The optional argument
extension, which must be a positive integer, is the minimum number of elements to be added to the
array if it must be extended.

array-pop array ' [Function]
array must be a one-dimensional array that has a fill pointer. The fill pointer is decreased by one,
and the array element designated by the new value of the fill pointer is returned. If the new value
does not designate any element of the array (épeciﬁcally, if it has reached zero), an error occurs.

16.8. Changing the Size of an Array

adjust-array-size array new-size &optional new-element [Function}
The array is adjusted so that it contains (at least) new-size clements. The argument new-size must
be a non-negative integer.

If array is a onc-dimensional array, its size is simply changed to be new-size, by altering its single
dimension. If array has morc than one dimension, then its first dimension -is adjusted to the
smallest possible valuc which allows the array to have no fewcr than new-size elements. There are
two degenerate cascs, however:

1. If any dimension other than the first is zero, then the array is not changed, and an error
occurs if new-sizeis not 0.

2. If the array has zcro dimensions, then the array is not changed, and an crror occurs if

190

COMMON LISP REFERENCIE MANUAL

new-sizeisnot 0 or 1,

If array is made smaller, the extra elements are lost. If array is made bigger, the new clements are
initialized to new-element; if this argument is not provided, then the values of the new clements are
undefined. ‘ '

adjust-array-size may, depending on the implementation and the arguments, simply alter
the given array or create and return a necw one. In the latter case the given array will be altered so
as to be displaced to the new array and have the given new dimensions.

If adjust-array-size is applied to an array created with the :displaced-to (page
MAKE-ARRAY-DISPLACED-TO-KWD) option, or to an array used as the argument for the
:displaced-to option in the creation of another array, then the operation will be performed
correctly with respect to the given array, but the effects on the other array will be unpredictable.

Compatibility note: In Lisp Machine Lisp, the argument new-element is not provided; it would seem useful,
however. .

Also the Lisp Machine Lisp manual is unclear on the precise method of extension for multidimensional arrays.
The above definition ties this down.

array-grow array new-element &rest dimensions ' [Function]

array-grow returns an array of the same type as array, with the specxﬁed dimensions. The
number of dimensions given must equal the rank of array.

Those elements of array that are still in bounds appear in the new array. The elements of the new
array that are not in the bounds of array are initialized to new-element; if this argument is not
provided, then the initial contents of any new elements are undefined. '

array-grow may, depending on the implementation and the arguments, simply alter the given
array or create and return a new one.. In the latter case the given array will be altered so as to be
displaced to the new array and have the given new dimensions.

If array-grow is applied to an array created with the :displaced-to (page

 MAKE-ARRAY-DISPLACED-TO-KWD) option, or to an array used as the argument for the
:displaced-to option in the creation of another array, then the operation will be performed -

correctly with respect to the given array, but the effects on the other array will be unpredictable.

array-grow differs from adjust-array-size in that it keeps the elements of a
multidimensional array in the same logical positions while allowing extension of any or all
dimensions, not just the first.

Chapter 17
Strings

A string is a specialized kind of vector whose elements are characters. While, strictly speaking, only vectors
of characters are called strings (as opposed to all arrays of characters), the string operations described here will -
operate properly on any one-dimensional array of characters.

Compatibility note: Lisp Machine Lisp allows a fixnum to be coerced into a one-character string whose element is a
character whose Asclt value is the fixnum. The net effect is that a single character can be automatically coerced to be 2
one-character string. It would be inconsistent with adherence to the character standard, and possibly also affect efﬁcxency
adversely in some implementations, to remain compatible with this.

As a rule, any string operation will accept a symbol instead of a string as an argument if the operation never
modifies that argument; the print-name of the symbol is used. In this respect the string-specific sequence
_operations are not simply specializations of the generic versions; the generic sequence operétions never accept
symbols as sequences. This slight inelegance is permitted in COMMON LISP in the name of pragmatic utility.
Also, there is a slight non-parallclism in the names of string functions. Where the suffixes equalp and éq]
would be more appropriate, for historical compatibility the suffixes equal and = are used instead to indicate
case-insensitive and case-sensitive character comparison, respectively.

Any LiSP object may be tested for being a string by the predicate stringp (page43).

Note that strings, like all vectors, may- have fill pointers. Strihg operations generally operate only on the
actlve portion of the string (below the fill pointer). See array reset-fill-pointer (page 189) and
rclated functions.

17.1. String Access and Modification

char string index : , [Function]

The given index must be a non-negative intcger less than the length of string. 'I‘hc‘charactc'r at

position index of the string is rcturned as a character object. (This character will necessarily satisfy -

. the predicate string-charp (page 146).) As with all scquences in COMMON LISP, indexing is
zero-origin.

For exampic:

- 191 -

192 COMMON LISP REFERENCE MANUAL

(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F
(char "Floob-Boober-Bab-Boober-Bubs" 1) => #\1

See e1t (page 157).

rplachar string index newchar [Function)
The argument string must be a string. The given index must be a non-negative integer less than the
length of the string. The character at position index is altered to be newchar, which must be a
character object which satisfies the predicate string-charp (page 146). rplachar returns
newchar as its value. See setelt (page 157).

17.2. String Comparison

string= stringl string? &key :start :end :startl :endl :start2 :end2 . [Function]
string= compares two strings, and is true if they are the same (corresponding characters are
identical) but is false if they are not. The function equal (page 50) calls string= if applied to
two strings. -

The keyword arguments :startl and :start2 are the places in the strings. to start the

comparison. The arguments :endl and : end2 are the places in the strings to stop comparing;

comparison stops just before the position specified by a limit. The start arguments default to zero

(beginning of string), and the end arguments (if either omitted or ni 1) default to the lengths of the

strings (end of string), so that by default the entirety of each string is examined. These arguments
. are provided so that substrings can be compared efficiently.

~string= is necessarily false if the (sub)strings being compared are of unequal length; that is, if
(not (= (- endl startl) (- end2 start2)))

is true then string= is false.
For example:

(string= "foo" "foo") istrue

(string= "foo" "Foo") isfalse

(string= "foo" "bar") isfalse

(string= "together” "frogs" :startl 1 :endl 2 :start2 3 :end2 4
istrue

string-equal stringl string2 &key :start :end :startl :endl :start2 cend?2 [Function]
string-equal is just like string= cxcept that differences in casc arc ignored; two characters
are considercd to be the same if char-equal (page 148) is true of them. '

For example:

(string-equal "foo" "Foo") istrue

STRINGS

193

string< stringl string2 &key :start :end :startl :endl :start2 :end2 [Function]
string> stringl siring? &key :start :end :startl :endl :start2 :end2 [Function}
string<= stringl string? &ey :start :end :startl :endl :start2 :end2 [Function]
string>= stringl string? &key :start :end :startl :endl :start2 :end2 [Function]
string/= swringl string? &key :start :end :startl :endl :start2 :end2 [Function]

The two string arguments arc comparcd lexicographically, and the result is ni1 unless stringl is
(less than, greater than, Icss than or équal to, greater than or equal to, not equal to) string2,
respectively. If the condition is satisfied, however, then the result is the index within the strings of
the first character position at which the strings fail to match; put another way, the result is the
length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the character of a is less
than the corresponding character of b according to the function char< (page 148), or if string a is
a proper prefix of string b (of shorter length and matching in all the characters of a).

The optional arguments szart! and start2 are the places in the strings to start the comparison. The
optional arguments end/ and end? places in the strings to stop comparing; comparison stops just
before the positi_onspeciﬁed'by a limit. The start arguments default to zero (beginning of string),
and the end arguments (if either omitted or n1i 1) default to the lengths of the strings (end of string),
so that by default the entirety of each string is examined. These arguments are provided so that
substrings can be compared efficiently. The index returned in case of a mismatch is an index into
stringl.

string-lessp stringl string? &key :start :end . [Function]

:startl :endl :start2 :end2

string-greaterp stringl string? &ey :start :end : [Function]

:startl :endl :start2 :end2

string-not-lessp stringl string? &key :start :end [Function]

:startl :endl :start2 :end2

string-not-greaterp stringl string? &key :start :end [Function]

:startl :endl1 :start2 :end2

string-not-equal stringl string? &key :start :end [Function]

:startl :endl :start2 :end2
These are exactly like string<, string>, string<=, string>=, and string<>, respectively,
~except that distinctions between upper-case and lower-case letters are ignored. It is if
char-lessp (page 149) were used instead of char < (page 148) for comparing characters.

- 17.3. String Construction and Manipulation

194 COMMON LISP REFERENCE MANUAL

make-string count &optional fill-character [Function)]-
This returns a string of length count, cach of whose characters has been initialized to the
fill-character. If fill-character is not spccified, then the string will be initialized in an -
implementation-dependent way.

Implementation note: It may be convenient to initialize the string to null characters, or to spaces, or to garbage
(“whatever was there”).

string-trim character-bag string ' [Function]
string-left-trim .character-bag string . [Function]
string-right-trim character-bag string A [Function]

string-trim returns a substring (in the sense of the function substring (page
SUBSTRING-FUN)) of string, with all characters in character-bag stripped off of the beginning
and end. The function string-left-trim is similar, but strips characters off only the

beginning; string-right-trim strips off only the end. The argument character-bag may be a
list of characters or a string.

For example:

“(string-trim ’(#\Space #\Tab #\Return) " garbanzo beans
")} => "garbanzo beans"” .

(string-trim " (*)" " (*three (silly) words*) ")
=> "three (silly) words"

(string-Teft-trim " (*)" " (*three (silly) words*) ")
=> "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) words*) ")
=> " (*three (silly) words"

string-upcase string &ey :start :end [Function]-

string-downcase string &key :start :end » [Function]
string-capitalize siring &ey :start :end ' : [Function]

string-upcase returns a string just like string with all lower-case alphabetic characters replaced
by the corrcsponding upper-case characters. More precisely, each character of the result string is

produced by applying the function char-upcase (page 150) to the corresponding character of
 string. '

string-downcase is similar, except that upper-case characters are converted to lower-case
characters (using char-downcase (page 150)). '

The keyword arguments : start and : end dclimit the portion of the String to be affected.

The-argument is not destroyed.. However, if no characters in the argument require conversion, the
result may be cither the argument or a copy of it, at the implementation’s discretion.

For cxample:

{string-upcase "Dr. Livingston, I presume?")
=> "DR. LIVINGSTON, I PRESUME?"

{string-downcase "Dr. Livingston, I presume?")
=> "dr. livingston, i presume?"

STRINGS 195

string-capitalize produces a copy of string such that every word (subscquence of case-
modifiable characters delimited by non-case-modifiable characters) has its first character in upper-

case and any other letters in lower-case.

For example:
(string-capitalize " hello ") => " Hello
(string-capitalize
"occlUDeD cASEmenTs FOreSTA11 iNADVertent DEFenestraTION")
=> "Occluded Casements Forestall Inadvertent Defenestration”
(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search"”
(string-capitalize "DON'T!") => "Don’T!" ;not "Don’t!"

”"

17.4. Type Conversions on Strings

string x [Function]
string coerces x into a string. Most of the string functions apply this to such of their arguments
as are supposed to be strings. If x is a string, it is returned. If x is a symbol, its print-name is

returned. If x cannot be coerced to be a string, an error occurs.

To get the string representation of a number or any other LISP object, use prinis tring (page
242),princstring (page242), or format (page 244).

196 . © COMMON 1ISP REFERENCE MANUAL

Chapter 18

Structures

CoMMON LIsP provides a facility for creating named record structures with named components. In effect,
the user can declare a new data type; every data structure of that type has components with specified names.
Constructor, access, and assignment constructs are automatically defined when the data type is declared.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is
very simple and allows the user to take advantage of the type-checking, modularity, and convenience of
user-defined record data types. The second part discusses a number of specialized features of the facility
which have advanced applications. These features are completely optional, and you needn’t even- know they
exist in orde