
The
Connection Machine
System

*Lisp Compiler Guide

Version 5.0
September 1988

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, August 1986
Revised, September 1987
Revised, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines Cor
poration reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and
is believed to be reliable, Thinking Machines Corporation does not assume responsibility
or liability for any errors that may appear in this document. Thinking Machines Corpora
tion does not assume any liability arising from the application or use of any information or
product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM-i, CM-2, CM, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXBI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1988 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

P reface.. v
Customer Support... ix

P a r t I: *Lisp Com piler F eatures ... 1

1 Introduction.. 3

2 Running the Compiler... 4
2.1 What Does (and Does Not) Get Compiled .. 4

2.1.1 Macros... 5
2.1.2 Type Declarations .. 5

2.2 Displaying Code that the Compiler G enerates.. 6

3 M axim izing P erfo rm an ce .. 8
3.1 Type Declarations... 8

3.1.1 Pvar Types... 12
3.2 How to Use Various Type Declarations.. 13
3.3 Safety Optimization and Error Detection.. 18

3.3.1 Functions Reporting Errors .. 21

4 Setting Com piler O ptions ... 22
4.1 Using the Compiler Options M enu.. 22
4.2 Setting *Lisp Compiler Variables Directly.. 24

5 C om piler O ptions R eference... 26

iii

P a r t II: *Lisp Com piler P ra c tic u m ... 45

6 Tricks of the Trade... 47

7 W hat M akes the *Lisp Com piler W ork? .. 48

8 How to Use Type In fo rm a tio n .. 53
8.1 What Declarations M ean .. 53
8.2 What Can Be Declared and H o w .. 56

Examples:... 57

9 How to W rite G eneral *Lisp Code th a t *C om piles 61
9.1 Generalizing Functions Based on Argument Types ... 62
9.2 Generalizing Functions Based on the Lengths of Arguments............................... 65
9.3 Generalizing Simple Functions by Making Them Macros 66

Contents

Preface

Objectives of This Manual

The *Lisp Compiler Guide explains how to use the *Lisp Compiler and its options to maximize
the performance of *Lisp programs.

Intended Audience

This guide is intended for programmers well versed in Common Lisp and comfortable using a
Lisp environment. Some familiarity with the Common Lisp compiler and some familiarity with
*Lisp are also assumed. The reader may be using either the Symbolics Lisp machine front end,
Lucid Common Lisp on a VAX system running ULTRIX, or Lucid Common Lisp on a Sun
workstation under UNIX.

Revision Information

The *Lisp Compiler Guide, Version 5.0 supercedes all previous descriptions of the *Lisp Com
piler. This is an updated and expanded version of the *Lisp Compiler Guide, Version 4.2A Field
Test.

Organization of This Manual

The *Lisp Compiler Guide is divided into two parts. Part I, “*Lisp Compiler Features,” de
scribes the facilities made available with the *Lisp compiler. Part II, “*Lisp Compiler Prac-
ticum,” provides a narrative tutorial detailing effective techniques writing *Lisp code that the
*Lisp compiler can compile.

Part I. *Lisp Compiler Features consists of the following five sections.

1 Introduction
The *Lisp compiler is described as an extension to the Common Lisp com
piler.

Preface to *Lisp Compiler Guide

2 Running the Compiler
This section describes how to invoke the *Lisp Compiler. It then explains
which *Lisp expressions the compiler will treat and how to display the code it
generates.

3 Maximizing Performance
This section details how to write *Lisp code that, when compiled, will yield
optimal perfomance. Emphasis is placed on how to write correct type declara
tions and on how to obtain performance gains by judicious use of a low safety
compiler option.

4 Setting Compiler Options
This section explains two ways to set the compiler options: by using the *Lisp
compiler options menu, and by setting the compiler variables directly.

5 Compiler Options Reference
This section lists each *Lisp compiler option with its possible values, default
value, and variable. The different effects obtained by each possible value are
explained.

Part II. *Lisp Compiler Practicum consists of the following 4 sections.

6 Tricks of the Trade
This section introduces the *Lisp compiler tutorial.

7 What Makes the *Lisp Compiler Work?
This section describes how the *Lisp compiler interacts with the Common
Lisp compiler and explains what is required to ensure that *Lisp code is com
piled. A simple uncompilable *Lisp function is changed to make it compilable.

8 How to Use Type Information
This section examines sample code and illustrates the proper use of declare,
* proclaim, the, and * locally expressions.

9 How to Write General *Lisp Code that *Compiles
This section presents several techniques for generalizing *Lisp code to proc
ess a variety of data types while ensuring that it can be compiled by the *Lisp
compiler.

Notation Conventions

Throughout this manual, we use the terms ^compile, ^compilation, and *compiled code when
referring to the process by which the *Lisp compiler translates *Lisp code into Lisp/Paris and

Preface to *Lisp Compiler Guide

the results of that process. This is done to make a clear distinction between normal Common
Lisp compilation and the *Lisp compilation.

Names of language elements within text appear in a sans serif, boldface type, as in *max. User
input appears in the same bold type.

Code examples are set in typewriter style typeface, as in:

(cons a b)

Metavariables, names that stand for pieces of code, appear in italics, as in:

(macroexpand-1 form)

Where appropriate, code examples use pvar names that indicate type. For example, an un
signed pvar 8 bits long might be named u8, and a second such pvar in the same code example
might be named u8-2. Similarly a signed pvar of length 16 might be named s l6 .

Related Materials

• The *Lisp Reference Manual, Version 5.0
This reference manual describes the essential elements of the *Lisp language.

• Supplement to the *Lisp Reference Manual, Version 5.0
This supplement expands and updates The *Lisp Reference Manual

• Connection Machine Front-End Subsystems
This volume describes the various front-end computers used with the Connection Ma
chine system.

• Paris Reference Manual, Version 5.0
Paris (for parallel instruction set) is the Connection Machine system's instruction set.
The *Lisp compiler generates a combination of Lisp and Paris instructions.

• Common Lisp: The Language, by Guy L. Steele Jr.
This book defines the de facto industry standard Common Lisp and describes the Com
mon Lisp compiler options.

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet
Electronic Mail: customer-support@think.com

Usenet
Electronic Mail: harvard! think! customer-support

Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc
curs, simply press CTRL-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-m achine@ think.com

Please supplement the automatic report with any further pertinent information.

ix

mailto:customer-support@think.com
mailto:bug-connection-machine@think.com

Part I
*Lisp Compiler Features

1

1 Introduction

Compiled *Lisp runs more efficiently than interpreted *Lisp. By compiling *Lisp code
that previously ran only interpreted, improvements in performance of 25% to 500%
have been observed. The *Lisp Compiler often generates better code than that written
by experienced, human Paris programmers.

An interpreted *Lisp program executes as a sequence of calls to a set of built-in *Lisp
functions, collectively called the *Lisp interpreter. These functions interpret their argu
ments and, depending on the arguments’ types, execute appropriate Lisp forms and
Paris instructions. The *Lisp compiler generates Lisp/Paris object code that in several
respects is more efficient than that produced by the interpreter. For instance, com
piled *Lisp code avoids the overhead of run-time type determination. Also, compiled
code almost always uses less stack space than interpreted code uses. In addition, un
like the interpreter, the *Lisp compiler can generate specialized Paris instructions that
combine more than one *Lisp operation into a single Paris call.

The *Lisp compiler is compatible with the Common Lisp compiler, which is described
in Common Lisp: The Language. When enabled, the *Lisp compiler executes as part of
the Common Lisp Compiler.

The compilation process effected by the *Lisp compiler is unlike that of most compil
ers. To avoid ambiguity, therefore, the terms *compile, *compilation, and *compiled
code are used when referring to the process by which *Lisp compiler translates *Lisp
code into Lisp/Paris and the results of that process. This is done to make a clear dis
tinction between normal Common Lisp compilation and *Lisp compilation.

3

4 *Lisp Compiler Guide, Part I: Features

2 Running the Compiler

The *Lisp compiler is enabled by default. Invoking the Common Lisp compiler on any
‘Lisp program automatically invokes the *Lisp compiler. To compile a *Lisp form,
use the Common Lisp compile function. To compile all definitions within a file con
taining *Lisp code, use the Common Lisp com pile-file function. These two functions
are defined in Common Lisp: The Language.

If the front-end machine provides additional commands for compiling Common Lisp
code, these may be used to compile *Lisp code. For instance, the Symbolics Lisp ma
chine editor commands Meta-x Compile Buffer, Meta-x Compile File, Meta-x Compile
Region, and Meta-x Compile Changed-Definitions automatically invoke both the Com
mon Lisp and the ‘Lisp compilers.

2.1 What Does (and Does Not) Get Compiled

The ‘Lisp compiler can ‘compile most *Lisp statements. It does not, however, *com-
pile all *Lisp expressions. The *Lisp compiler handles all the expressions it can and the
‘Lisp interpreter handles the rest.

There are two criteria that ‘Lisp expressions must meet to ensure that the *Lisp com
piler will attempt to ‘compile them.

1. Expressions must be visible to the *Lisp compiler.

The *Lisp compiler attends to ‘Lisp statements that appear textually within
certain macros and temporary variable assignments only.

2. Expressions must use only variables for which correct type declarations have
been made—and these declarations must be visible to the *Lisp compiler.

The *Lisp compiler cannot *compile expressions containing undeclared pvars.

If a *Lisp expression meets these criteria, it will likely be ‘compiled. However, some
‘Lisp forms are never ‘compiled. (For a current list of uncompilable ‘Lisp forms, see
the current ‘Lisp Release Notes.)

Version 5.0

2.1.1 Macros

The *Lisp compiler is invoked when the Common Lisp compiler expands a macro call.
Most *Lisp macros therefore compile.

The *Lisp compiler attempts to *compile the following *Lisp expressions in their en
tirety. Statements textually within the scope of these forms are considered visible to the
*Lisp compiler.

•set *pset *setf
pref 'sum *integer-length
*or *and *xor
*logior *logand *logxor
•max *min

Also, the predicates for ‘ when, * unless, *if, and *cond and the initial values for *let
and *le t* variables are compiled. The compiler does not compile the body of these
forms.

See Part II, “*Lisp Compiler Practicum,” for examples illustrating how to write code
that the *Lisp compiler can compile.

2.1.2 Type Declarations

The *Lisp compiler attends to type declarations for both pvars and front-end vari
ables. Expressions containing undeclared pvars or functions that return values of un
declared type are never compiled.

There are two types expressions that are never compiled, although they contain pvars
of declared type.

1. Expressions containing general pvars—pvars declared to be of type
(pvar t) — are not compiled unless they are type predicates.

2. Expressions containing general mutable pvars—pvars declared to be of type
(pvar •) or left undeclared—are are never compiled.

See section 3, “Maximizing Performance,” for discussions on how to use various type
declarations and on how to write flexible code with strict type adherence.

6 *Lisp Compiler Guide, Part I: Features

Example

Most but not all the expressions in the following code can be *compiled.

(•p rocla im ' (t y p e (pvar (u n sig n ed -b y te 8)) f i e l d))
(• l e t ((foo (*! ! f i e l d f i e l d)))

(d e c la r e (type (pvar (u n sig n ed -b y te 32)) f o o))
(• s e t foo (*! ! foo f oo))
(+!! foo f o o))

Here, both *!! pvar expressions are compiled. The first *!! expression is included in the
initial value form of a *let. The second *!! expression lies within a ‘ set form. Notice
however that the +!! pvar expression is interpreted rather than compiled; it is not
within any of the forms that the *Lisp compiler handles.

2.2 Displaying Code that the Compiler Generates

In the process of compilation, *Lisp forms are macro-expanded by the Common Lisp
compiler. The *Lisp compiler is invoked as a part of this macro-expansion. Therefore,
it is relatively easy to look at the code generated by the *Lisp compiler.

Make sure that the *Lisp compiler is enabled, as it is by default. If necessary, to enable
the *Lisp compiler, type (setq 'com pilep* t) or use the *Lisp compiler options menu
as described in section 4.1, below.

On the Symbolics Lisp machine front end, from within the editor, the commands
Macro Expand Expression (Control-Shift-m) and Macro Expand Expression All (Meta-
Shift-m) may be used to expand a *Lisp form and display the results.

On any front end the functions macroexpand and macroexpand-1 may be called di
rectly on forms. Thus,

(p p rin t (l e t ((*compi l ing* t))
(macroexpand-1 *Lisp-form)))

displays the Lisp/Paris code generated by the *Lisp compiler for * Lisp-form.

Notice that the *Lisp variable 'com piling* must be bound, as in the let form above,
otherwise the *Lisp compiler will not process *Lisp-form. When the macroexpand-1
form is executed, the *Lisp compiler checks the value of 'com pilep*. If 'com pilep* is
t, meaning the *Lisp compiler is enabled, the *Lisp compiler checks the variable
‘ compiling*. If 'com piling* is also t, meaning that compilation is in progress, the
expression is *compiled by the *Lisp compiler.

Version 5.0

The following code illustrates the results of compiling a few lines of *Lisp code.

(♦proclaim '(type (signed-pvar 16) sl6 S16-2))
(♦proclaim '(type (signed-pvar 8) s8 s8-2))
(♦proclaim '(type boolean-pvar bl))
(♦set sl6 (+ !! (♦!! s8 s8-2) sl6-2))
(♦sum (if!! bl s8 s8-2))

The *set expression above generates the Lisp/Paris code below. Notice that no stack
space is used to compute the result of the *set expression; no operations manipulating
the stack are present.

(progn
(cm:multiply (pvar-location sl6)

(pvar-location s8)
(pvar-location s8-2) 16 8 8)

(cm:+ (pvar-location sl6) (pvar-location sl6-2) 16)
(cmi::error-if-location cm:overflow-flag 66575)
nil)

The *sum expression in the code example above generates the following Lisp/Paris
code.

(let^ ((sic::old-next-stack-field (cmi::next-stack-field))
(if!!-context-1 (+ sic::old-next-stack-field 8))
(if!!-index-2 (+ if!!-context-1 1)))

(progl
(progn

(cm:allocate-stack-field
(- if!!-index-2 sic::old-next-stack-field))

;; Save context - if!!
(cmi::store-context-always if!!-context-1)
;; Compute predicate and select processors
;; where the predicate is true - if!!.
(cmi::load-context (pvar-location bl))
;; Compute and move then clause in context of
;; processors where the predicate is true - if!!.
(cm:move sic::old-next-stack-field (pvar-location s8) 8)
;; Select processors where the predicate is false. - if!!,
(cm:logandcl-always cm:context-flag if!!-context-1 1)
;; Compute and move else clause in context of
;; processors where predicate is false - if!!.
(cm:move sic::old-next-stack-field (pvar-location s8-2) 8)
;; Restore context - if!!.
(cmi::load-context-always if!!-context-1)

8 *Lisp Compiler Guide, Part I: Features

(cm:global-add sic::old-next-stack-field 8))
(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

As the above example illustrates, the Lisp/Paris code generated by the *Lisp compiler
includes internal, undocumented Paris functions. This is done to make the code gener
ated by the compiler more efficient; it should not be construed as an invitation to use
undocumented Paris functions. Nonetheless, if questions about the code generated by
the *Lisp compiler arise, feel free to contact Thinking Machines Customer Support.

3 Maximizing Performance

3.1 Type Declarations

This section explains how to communicate type information to the *Lisp compiler so
that all expressions that can potentially be compiled are compiled. For a general dis
cussion of *Lisp pvar types, see the chapter entitled “Parallel Variable Types” in the
Supplement to the *Lisp Reference Manual.

Expressions containing undeclared pvars are not compiled. To take full advantage of
the performance gains possible with compiled code, it is essential to use type declara
tions. Here is a list of basic principles governing the interaction between type declara
tions and the *Lisp compiler.

1. A type declaration is a promise made by the programmer to the compiler. It
guarantees that only values of the specified type will be assigned to a variable
or form declared to be of that type.

2. Type declarations do not direct the compiler to produce type coercions.

3. Correct type declarations do not affect the semantics of a correct program.

4. It is an error for a program to violate a type declaration; the results of an incor
rect declaration are unpredictable.

5. If a type declaration is changed, all code depending on that declaration must
be recompiled.

6. Expressions containing undeclared pvars never compile. Undeclared pvars
default to the general mutable type (pvar *); these are ignored by the compiler.

Version 5 .0

7. Expression containing general pvars (pvar t) do not compilek. There is one
exception: type predicates. A general pvar used within a type predicate form is
recognized by the compiler.

Examples

The following examples illustrate the principles described above.

Principle 1. Declarations are promises.

The the form below advises the compiler that catamaran will always be a double-preci
sion floating-point value.

(•defun biggest-float (catamaran)
(•max (the (pvar double-float) catamaran)))

Principle 2. Declarations do not cause type coercion.

Given principle 1, it is the responsibility of the programmer, not of the compiler, to
ensure that type declarations are not violated. If a value needs to be coerced into a
variable’s declared type before being bound, the function coerce!! should be explicitly
called.

(•proclaim '(type (pvar single-float)) my-two-hull)
(•defvar my-two-hull)
(•set my-two-hull (!! 2.5))
(biggest-boat (coerce!! my-two-hull '(pvar double-float)))

Here, m y-two-hull begins as a single-float pvar and is coerced into a double-float pvar
and the result is passed to the biggest-boat function.

Principle 3. Correct declarations do not affect program semantics.

Adding a type declaration simply informs the compiler that a variable is guaranteed to
be of a specific type; it does not make code more correct. For example, if both func
tions defined below are always called with unsigned-byte pvar arguments, they will op
erate in exactly the same manner at run time, but the second will be faster.

(•defun in-range (foo bar)
(•and (>!! bar (self-address!!) foo)))

(•defun in-range2 (foo bar)
(declare (type (unsigned-byte-pvar •) foo bar))
(•and (>!! bar (self-address!!) foo)))

10 *Lisp Compiler Guide, Part I: Features

What distinguishes in-range2 from in-range is that in-range2 declares its argu
ments. As a result of this declaration, in -range-2 will compile into Lisp/Paris code.
However, in-range is clearly more general; it has no type declarations and may be
called with any numeric pvar.

Principle 4. Violating a type declaration leads to unpredictable results.

The function definition below declares its parameter, x , to be a 32-bit unsigned inte
ger pvar.

(defun ♦sum-u32 (x)

None of these three calls to *sum -u32 are valid. The first call takes a 32-bit floating
point representation in each processor and attempts to sum it as a 32-bit integer rep
resentation. The second call takes a bit containing the value 1 and 31 bits of random
data from each processor and sums these meaningless values. The third call sums the
low-order 32 bits of a double-precision representation of 1 and ignores the high-order
32 bits in each processor. These errors will not be signaled at a compiler Safety level of
0; they will be signaled at Safety level 3. (See section 3.3 for a discussion of safety lev
els.)

A valid call to *sum -u32 must provide a correctly typed argument. For instance,

(*sum-u32 (coerce!! (!! 1) '(field-pvar 32)))

can be correctly used with the definition of *sum -32 above. Also,

(♦proclaim '(type (field-pvar 32) u32))
(♦defvar u32)
(♦set u32 (!! 1))
(♦sum-u32 u32)

can be correctly used with the definition of *sum-32 above.

Principle 5. If a type declaration is changed, related code must be recompiled.

Below, inner-tube is proclaimed to be a pvar containing single-precision floating
point numbers. The function foo uses this variable.

(♦sum (the (field-pvar 32) x)))

(♦sum-u32 (!! 1.0))
(♦sum-u32 (!! 1))
(♦sum-u32 (!! 1.0D0))

;single-float, 32 bits
;unsigned 1 bit
;double-float, 64 bits

Version 5.0 11

(♦proclaim '(type (pvar single-float) inner-tube))
(♦set inner-tube (!! 2.0))
(defun foo ()

(♦sum inner-tube))

•.compile the above

(♦proclaim '(type (pvar double-float) innner-tube))
(♦defvar float-pvar)

(foo) ;This does not work until the definition of foo
;has been recompiled with the new inner-tube
;proclamation.

The initial proclamation and the definition of foo are compiled. Then, inner-tube is
proclaimed again, differently. The call to foo is therefore incorrect. Until foo is recom
piled with the second proclamation, any call to it is incorrect.

Principle 6. Expressions containing undeclared or general mutable pvars are
never compiled.

Below, mut-pvar is declared general mutable. The pvar undeclared is undeclared and
therefore defaults to the general mutable type.

(♦proclaim '(type (pvar ♦) mut-pvar))
(♦defvar mut-pvar)
(♦set mut-pvar (random!!))
(♦defvar undeclared)
(♦set undeclared (self-address!!))

Although *set forms are visible to by the compiler, the *set forms above can not be
compiled because they contain general mutable pvars.

Principle 7. Expressions containing general pvars never compile—with the
exception of type predicate forms.

(♦and (integerp!! (the (pvar t) my-general)))

(♦set (the (pvar t) general) (!! nil))

The first of the above forms can compile, the second cannot.

12 *Lisp Compiler Guide, Part I: Features

3.1.1 Pvar Types

The *Lisp compiler currently recognizes all *Lisp pvar types except general pvars
(pvar t) and general mutable pvars (pvar *). The compiler ignores general pvars ex
cept when used in type predicates. General mutable pvars are always ignored by the
compiler.

All other classes of *Lisp pvar types are recognized. Theses are;

For each pvar type there are pseudonyms and alternative type specifiers. For a com
plete list, check the chapter entitled “Parallel Variable Types” in Supplement to the
*Lisp Reference Manual

The *Lisp compiler also recognizes mutable pvars of definite type. A pvar is declared
mutable by specifying the length value or values as *. For instance, the following code
declares mutable float, mutable complex, mutable unsigned-byte, and mutable
signed-byte pvars. It will compile.

(*defun sum-float (float-mut)
(declare (type (pvar (defined-float * *))) float-mut)
(♦sum float-mut))

(♦defun sum-complex (complex-mut)
(declare (type (pvar (complex (defined-float ♦ ♦))))

complex-mut)
(♦sum complex-mut))

(♦de fun sum-un s i gned (uns i gned-mut)
(declare (type (pvar (unsigned-byte ♦))) unsigned-mut)
(♦sum signed-mut))

(♦defun sum-signed (signed-mut)
(declare (type (pvar (signed-byte ♦))) signed-mut)
(♦sum signed-mut))

In addition, types defined by the Common Lisp deftype macro are supported by the
compiler. For example,

front-end
character
unsigned-byte
defined-float
array

boolean
string-chars
signed-byte
complex
structure

(deftype my-complex-pvar ()
'(pvar (complex (defined-float 36 8))))

Version 5 .0 13

(♦defun frib-complex (foo)
(declare (type my-complex-pvar foo))
(♦and (and!! (<!! (realpart!! foo) (!! 2.0)))))

(♦proclaim '(type my-complex-pvar bar))
(♦defvar bar)
(frib-complex bar)

defines and uses a new type restricted to complex pvars with 36-bit significands and
8-bit exponents.

3.2 How to Use Various Type Declarations

To communicate type information to the *Lisp compiler, use the *Lisp 'proclaim or
'locally constructs or the Common Lisp declare or the constructs.

*Proclaim versus Proclaim

To make global pvar type declarations, 'proclaim should be used instead of proclaim.
The *Lisp function 'proclaim is equivalent to the Common Lisp function proclaim
with one crucial exception. *Lisp arranges to have 'proclaim forms evaluated at com
pile time. In contrast, the *Lisp compiler sees a proclaim form at compile time only if it
has been previously evaluated.

(proclaim '(type (pvar (complex single-float)) balloon!!))
(♦proclaim '(type (pvar (complex single-float)) wind-surfer!!))

The balloon!! type differs from the wind-surfer!! type in that the *Lisp compiler may
not receive the balloon!! type specification at compile time. 'Proclaim forms are guar
anteed to be seen by the *Lisp compiler.

NOTE

The use of proclaim forms in *Lisp is obsolete; neither
the *Lisp interpreter nor the *Lisp compiler will attend
to proclaim forms in future releases.

14 *Lisp Compiler Guide, Part I: Features

The following kind of proclamation forms can be used to globally declare variable and
function types:

(•proclaim '(type ...))
(•proclaim '(ftype ...))
(•proclaim '(function ...))

The Common Lisp type proclamation is used to globally specify the type of a variable
or pvar. The Common Lisp ftype and function proclamations are used to globally
specify the return type of user-defined functions. For example:

(•proclaim '(ftype (function (t) boolean) willow-tree))
(•set bl (!! (willow-tree 0.0)))

In the example above, a single type proclamation for the user-defined Lisp function
willow-tree replaces multiple occurrences of type declarations such as this one:

(•set bl (!! (the boolean (willow-tree 0.0))))

The Common Lisp ftype proclamation can be used both to declare that a user-defined
*Lisp function returns a pvar and to specify the type of that pvar. For example, the
following form declares that the function surface-areal! returns a single-float pvar:

(•proclaim '(ftype (function (t t) (pvar single-float))
surface-area!!))

The Common Lisp function proclamation may be used instead of ftype; the two forms
are interchangeable. Thus, the form above can be composed as:

(•proclaim
'(function surface-area!! (t t) (pvar single-float)))

Note that in the function and ftype examples above, t is given as the type specifier for
function arguments—meaning that any type is allowed. More exact type specifiers may
be used in the argument type list, but the *Lisp compiler does not use this information.
The examples therefore use the simplest form.

Declare

Declarations using the declare special form must include the type form as in:

(declare (type (float-pvar 23 8) sail-boat-pvar))

The following declaration is incorrect.

(declare ((float-pvar 23 8) incorrect-pvar))

The compiler issues a warning when a declare form appears without enclosing a type
form. In later releases, an error may be signaled at compile time if this kind of declara
tion is attempted.

The placement of declare forms determines whether or not the *Lisp compiler will
attend to them. The compiler receives type information only from declare forms
placed within *defun, ‘ locally, ‘ let, and ‘ let* forms. The comments in the following
example indicate which declarations the compiler receives.

(•defun bax (f8)
;; This declaration is received by the *Lisp compiler
(declare (type (field-pvar 8) f8))
(let ((a 5.0))

;; This declaration is not received by the *Lisp compiler,
;; so the (!! a), in the following *let is not compiled.
;; This declaration is however received by the Common Lisp
;; Compiler.
(declare (type single-float a))
(•let ((b (+!! f8 (!! a))))

;; This declaration is received by the *Lisp compiler.
(declare (type (pvar single-float) b))
b)))

In addition to communicating pvar type information, the declare form may be used
within ‘ defun, ‘ locally, ‘ let, and ‘ let* forms to give function type information. For
example,

(•defun oof ()
(declare (ftype (function (t) single-float-pvar) my-fun!!))
(•sum (my-fun!! (!! 1.0))))

Here, m y-fun!! is declared to return a single-precision floating-point pvar.

The

The Common Lisp special form the may be used to declare that the value of an un
named form is a pvar type. For example,

(the (pvar boolean) (is-it-p!! some-pvar))

guarantees that the is -it-p !! form will evaluate to a boolean pvar.

Version 5.0 15

16 *Lisp Compiler Guide, Part I: Features

Always Declare the Argument Type in a Call to !!

The compiler must be supplied with the type of the argument to the !! function. For
this purpose, scalar Common Lisp types such as fixnum, single-float, double-float, in
teger, unsigned-byte, signed-byte, bit, and boolean may be used. For example,

(‘proclaim '(type float-pvar var))
(‘set var (+!! var (!! (the single-float some-expression))))

is guaranteed to compile. In contrast,

(‘proclaim '(type float-pvar var))
(‘set var (+!! var (!! some-expression)))

will not compile.

•Locally

The new *Lisp ‘ locally construct allows the specification of declarations that apply
only within the scope of the form. Using this form avoids the repetitious use of the
forms.

‘ locally declaration-1 declaration-2 ... declaration-n &body body [Macro]

This macro is used to provide declarations for the *Lisp compiler. The declarations
declaration-1 through declaration-n are used by the compiler within body. A ‘ locally
declaration must be a declare form. Any valid compositions of declare may be used
within a ‘ locally form, including optimize and ‘ optimize forms.

In previous releases, declarations would only be seen by the *Lisp compiler when used
within a ‘ defun, ‘ let, or ‘ let* form. With the use of ‘ locally, the user is now able to give
the *Lisp compiler type information and optimization directives anywhere in a pro
gram.

Examples:

(defun locally-test (j)
(‘locally

(declare (type fixnum j))
(‘let (temp)

(declare (type (unsigned-byte-pvar 32) temp))
(‘set temp (!! j)))))

(defun ‘locally-example (result)

Version 5.0 . 1 7

(♦locally
(declare (type single-float-pvar result))
(do-for-selected-processors (j)

(♦locally
(declare (type fixnum j))
(f let

((local-pvar-function (x)
(♦locally

(declare (type single-float-pvar x result))
(declare (♦optimize (safety 0)))
(♦set result (+ ! ! x (!! j))))))

(dotimes (i ♦current-cm-configuration^)
(♦locally

(declare (type fixnum i))
(♦ l e t ((temp (♦!! (+!! (f l o a t ! ! (! ! i)) (! ! j)) *

(sin!! (!! j)))))
(declare (type single-float-pvar temp))
(local-pvar-function temp)))))))))

Without * locally, the *Lisp compiler could handle the expressions in the examples
above that include (!! j) only if each use of (!! j) were rendered as (!! (the fixnum j)). In
most cases, using * locally once within each enclosing form is easier and less prone to
error.

Notice that * locally allows declaration of the arguments to local functions defined by
flet and labels. Previously there was no way to do this.

Using Length Expressions in Type Specifiers

Length expressions in *Lisp type specifiers are evaluated by the *Lisp compiler. The
more complicated the length expression within a pvar type declaration, the less effi
cient is the compiled code using that pvar. From most to least efficient, the following
hierarchy holds for length specification: constant, symbol evaluating to constant, ex
pression evaluating to constant, mutable.

(♦proclaim '(type (unsigned-byte 8) magenta))
(♦proclaim '(type (unsigned-byte bar) magenta))
(♦proclaim '(type (unsigned-byte (+ foo bar)) magenta))
(♦proclaim '(type (unsigned-byte ♦) magenta))

Alternate proclamations for the variable magenta are shown above in order of de-
creasingly efficient compiler output.

18 *Lisp Compiler Guide, Part I: Features

NOTE

When a length expression is used in a type specifier,
the compiler generates a reference to it. The length ex
pression should have no side effects because it may be
evaluated many times.

3.3 Safety Optimization and Error Detection

*Lisp attempts to catch and signal all detectable user errors. This is important for
rapid program development, but detecting errors increases program execution time.
The Safety compiler option controls the kind of code that is generated for error detec
tion and the way errors are reported. While debugging, the safety level should be set to
high. When running debugged code, lower the safety level to decrease the time spent
detecting errors and thereby reduce execution time.

In the following example, the +!! expression may produce a nine-bit result, which can
not fit in the eight-bit *set destination. If the result is too large, an integer overflow
error occurs.

(proclaim '(type (field-pvar 8) u8 u8-2))
(*set u8 (+!! u8 u8-2))

The code produced by the compiler is:

(progn (cm:u+ (pvar-location u8) (pvar-location u8-2) 8)
(error detection code)
nil)

The error detection code produced depends on the safety level at compilation time.

Available *Lisp compiler safety levels are listed below, along with the error-detection
code produced for the example above when each is in effect. (Note that the number
66575, which appears in some error detection code, is a tag encoding information such
as the *Lisp function causing the error. This number bears no particular significance;
it is used mearly for purposes of illustration.)

Safety 0

(No error detection code is produced.)

If an error occurs, it will not be detected. The result of the error-producing
operation is undefined.

Safety 1

(cmi::error-if-location cm:overflow-flag 66575)

This safety level checks for errors, but it does not report an error until the next
time a value is read from the CM by *Lisp functions such as pref, *max, and
'sum . Because the error is not reported immediately, normal debugging tools
cannot be used to find it. The only information that would be reported in the
example above is that an integer +!! expression produced a value that was too
large.

Safety 2

(sic::error-if-location cm:overflow-flag 66575 u8)

The behavior of this safety level depends on the value of the variable •im m edi
ate error if location*. This variable is set by the option Immediate Error If
Location. If it variable is t, Safety 2 behaves like Safety 3; if this variable is nil,
Safety 2 behaves like Safety 1. Safety 2 allows greater flexibility for debugging
by making a run-time check. For example, code expected to have few bugs can
be run with this variable set to nil, that is, at safety level 1. Then, if it produces
an error, the code can be run again with the variable set to t, that is, at safety
level 3. Reproducing the error using this method does not require recompila
tion.

Version 5.0 1 9

Safety 3

(if (plusp (cm:global-logior cm:overflow-flag 1))
(sic::pvar-error cm:overflow-flag 66575 u8))

This safety level checks for errors and reports any found error immediately. A
report includes enough information to describe the processors that have the
error and to display the values in those processors. For example, suppose the

*Lisp Compiler Guide, Part I: Features

code example given at the beginning of this section is modified to include the
first two *set assignments shown below.

(proclaim '(type (field-pvar 8) u8 u8-2)
(*set u8 (load-byte!! (self-address!!) (!! 0) (!! 8)))
(*set u8-2 (!! 3))
(*set u8 (+!! u8 u8-2))

The error detection code produces an error message similar to the one below.
(This example message is shown as it appears to users on a UNIX front end in
the Lucid Common Lisp environment. The message is the same on the Sym
bolics Lisp machine front end except that different key sequences are given to
invoke the proceed options.)

»Error: In +! ! .
The result of a (two argument) integer +!! is too big for
its destination. There are 512 selected processors, 6 proc
essors have an error. The object that caused the overflow
is a (UNSIGNED-BYTE 8) pvar named U8 .

: A Abort to Lisp Top Level
: C Ignore error.
:© 0 Ignore Error.

1 Display Processors With Error.
2 Display Value in Processors with Error
3 Display Selected Processors.
4 Display Value in Selected Processors.
5 Display Value in All Processors.

-> :@ 1
1 Display Processors With Error.

253 254 255 509 510 511
%

- > :@ 2
2 Display Value in Processors with Error.

253 = 0
254 = 1
255 = 2
509 = 0
510 * 1
511 = 2

-> :c
Ignore error.

NIL
>

Version 5.0 21

3.3.1 Functions Reporting Errors

For the *Lisp operations 'se t, *setf, and *pset, if the destination field is smaller than
the result of the source expression, an error is reported. The following functions are
representative of *Lisp functions that report errors unrelated to the size of the destina
tion field.

lognot!!
Within a *set, a lognotll expression can get an error when a negative result is
produced for an unsigned destination.

+!! *!!
-!! /!!

An error occurs for floating point overflow. For /!! an error also occurs for
division by zero.

ceiling!! mod!!
truncate!! rem!!
round!! floor!!

An error occurs for division by zero.

sqrt!!
isqrt!!

An error occurs for negative numbers. (Note that sqrt!! does not produce a
complex result when given a negative pvar; sqrt!! only returns a complex pvar if
given a complex input pvar.)

22 *Lisp Compiler Guide, Part I: Features

float!!
An error occurs when coercing an integer larger than the specified float for
mat, or when coercing a float to a smaller format.

pref!!
*pset

An error occurs when pref!! attempts to get a value from a processor or when
*pset attempts to write to a processor that is not on the grid.

4 Setting Compiler Options

The compiler options control the behavior of the *Lisp compiler, including the degree
of optimization it performs while generating code. There are two ways to set the com
piler options: using a menu and setting the *Lisp variables directly.

4.1 Using the Compiler Options Menu

The simplest method of setting *Lisp compiler options is to invoke the *Lisp compiler
options menu as detailed below.

The options menu must be invoked from within the *Lisp package. First, ensure that
the *Lisp package is the current package by the executing the form:

(in-package ’ *lisp)

Next, type the following to a Lisp Listener or at Lisp top level:

(compiler-options)

The default *Lisp compiler options menu is displayed.

Two alternate methods of invoking the *Lisp compiler options menu are available on a
Symbolics Lisp machine front end. With the *Lisp package loaded:

• To a Lisp Listener, type:

:Set Compiler Options

Version 5.0 23

• In the editor, press Meta-x and type:

Set Compiler Options

The *Lisp compiler options menu lists the following options. Default values are shown
in boldface type.

Starlisp Compiler Options

Compile Expressions (Yes, or No)
Warning Level (High, Normal, None)
Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None)
Safety (0, 1, 2, 3)
Print Length for Messages (an integer, or Nil) 4
Print Level for Messages (an integer, or Nil) 3
Pull Out Common Address Expressions (Yes, or No)
Use Always Instructions (Yes, or No)

On the Symbolics front end, changes are made by clicking the mouse cursor and by
entering values where appropriate. To change an option value, move the mouse cursor
over the desired value and click the left mouse button. The value selected is displayed
in bold. To exit the menu and save the selections made, click the left mouse button on
the small box marked Exit. To exit the menu without saving the new selections, click on
the small box marked Abort.

On a UNIX front end, options are listed one at a time—each with its current value. The
system waits for user input before listing the next option. To keep the current value and
go on to the next option, press the Return key. To change the value, type the desired
value and press the Return key. At the end of the options list, confirmation is re
quested:

Do the assignment? (Yes, or No)
>

To save any changes made, simply press the key or type Yes and press the Return key.
To cancel the changes made, type No and press the Return key.

Not all available options for controlling the behavior of the *Lisp compiler are listed by
default when the options menu is invoked. The options that are not in the default menu
provide capabilities that are not generally needed.

To invoke the options menu with all options listed, type the following at Lisp top level
or to a Lisp Listener:

(compiler-options :class :all)

24 Lisp Compiler Guide, Part I: Features

Alternately, to a Lisp Listener on a Symbolics Lisp machine front end, type:

:Set Compiler Options :class all

The full options menu lists the following compiler options. Default values are shown in
boldface type.

Starlisp Compiler Options

Compile Expressions (Yes, or No)
Warning Level (High, Normal, None)
Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None)
Safety (0, 1, 2, 3)
Print Length for Messages (an integer, or Nil) 4
Print Level for Messages (an integer, or Nil) 3
Optimize Bindings (No, Cspeed<3, Yes)
Peephole Optimize Paris (No, Cspeed<3, Yes)
Pull Out Common Address Expressions (Yes, or No)
Use Always Instructions (Yes, or No)
Machine Type (Current, Compatible, Cm1, Cm2, Cm2-FPA, Simulator)
Add Declares (Everywhere, Yes, No)
Use Undocumented Paris (Yes, or No)
Verify Type Declarations (No, Current-Safety, Yes)
Constant Fold Pvar Expressions (Yes, or No)
Speed (0, 1, 2, 3)
Compilation Speed (0, 1, 2, 3)
Space (0, 1, 2, 3)
Strict THE Type (Yes, or No)
Immediate Error If Location (Yes, or No)
Optimize Check Stack Expression (Yes, or No)
Generate Comments With Paris Code (Yes, Macro, No)

4.2 Setting *Lisp Compiler Variables Directly

Instead of using the *Lisp compiler options menu as described in the preceding sec
tion, *Lisp compiler options may be changed by changing the associated *Lisp vari
ables, or, for certain options, by using a global declaration. The forms to use to set
compiler option variables directly are: compiler-let, optimize, ’ optimize, and declare.
These are described below. Section 5 describes each compiler option and gives the
name of the *Lisp variable associated with it.

Version 5.0 25

compiler-let

The Common Lisp special form com piler-let can be used to selectively change the
value of any *Lisp compiler option for a region of code. This is demonstrated by the
following code fragment.

(compiler-let ((‘compilep* t) (‘safety* 0)
(*use-always-instructions‘ t))

(code to com pile a t low s a f e t y))

The above form ensures that the *Lisp compiler is enabled and sets the *Lisp compiler
safety level to o and enables the use of Paris always instuctions for the region of code
enclosed by the com piler-let form.

optimize

The Common Lisp optimize declaration specifier may be used within either a ‘ pro
claim form or a declare form to change optimization levels for both the Common Lisp
compiler and *Lisp compiler. The following qualities may be set in this way:

safety speed
space compilation-speed

For example,

(‘proclaim '(optimize (safety v a l u e)))

globally sets the safety level to value for both compilers.

*optimize

The ‘ optimize declaration specifier, used within a ‘ proclaim or a declare form,
changes the optimization level for the *Lisp compiler only; it does not affect the Com
mon Lisp compiler. The following qualities may be set in this way:

safety speed
space compilation-speed

For example,

(‘proclaim '(‘optimize (safety v a l u e)))

globally sets the *Lisp safety level to value.

26 *Lisp Compiler Guide, Part I: Features

declare

The declare form may be used with either the optimize or the ‘ optimize declaration
specifier to change the *Lisp optimization levels. This should be done from within
either a ‘ defun, a ‘ let, a ‘ let*, or a ‘ locally form. For example,

(*let ((truth t!!))
(declare (optimize (safety 3)))
(foo (bar truth)))

sets both the Common Lisp and the *Lisp safety levels at 3 for the entire body of the
‘ let form.

5 Compiler Options Reference

A list of all the available *Lisp compiler options is given below. The default value for
each option is given in boldface type. A description of each option follows the list.

Starlisp Compiler Options

Compile Expressions (Yes, or No)
Warning Level (High, Normal, None)
Inconsistency Reporting Action (Abort, Error, Cerror, Warn, None)
Safety (0, 1, 2, 3)
Print Length for Messages (an integer, or Nil) 4
Print Level for Messages (an integer, or Nil) 3
Optimize Bindings (No, Cspeed<3, Yes)
Peephole Optimize Paris (No, Cspeed<3, Yes)
Pull Out Common Address Expressions (Yes, or No)
Use Always Instructions (Yes, or No)
Machine Type (Current, Compatible, Cm 1, Cm2, Cm2-FPA, Simulator)
Add Declares (Everywhere, Yes, No)
Use Undocumented Paris (Yes, or No)
Verify Type Declarations (No, Current-Safety, Yes)
Constant Fold Pvar Expressions (Yes, or No)
Speed (0, 1, 2, 3)
Compilation Speed (0, 1, 2, 3)
Space (0, 1, 2, 3)
Immediate Error If Location (Yes, or No)
Optimize Check Stack Expression (Yes, or No)
Generate Comments With Paris Code (Yes, Macro, No)

Compile Expressions

Values: Yes (t), No (nil)
Default: Yes (t)
Variable: 'compilep*

The Compile Expressions option enables or disables the *Lisp compiler. A
value of Yes (t) enables the compiler; a value of No (nil) disables it.

The *Lisp compiler is on by default.

Version 5 .0 ’ 27

Warning Level

Values: High (:high), Normal (:normaI), None (:none)
Default: Normal (:normal)
Variable: 'warning-level*

The Warning Level option controls the kind of warnings produced by the
*Lisp compiler.

A warning level value of High (:high) causes the compiler to generate a warn
ing whenever an expression is not compiled. The warning tries to explain why
the expression is not compiled. Usually the cause is lack of type information, as
shown in the following example:

(♦proclaim '(type (pvar (signed-byte 8)) s8))
(♦set s8 (+!! s8 variable))

Attempting to compile the above code with the warning level set to High
(:high), produces the following warning:

;;; Warning: Verbose: While compiling VARIABLE:
The expression (♦LISP-I::♦SET-1 S8 (+!! S8 VARIABLE)) is
not compiled because +!! does not understand undeclared ex
pressions .

In contrast, the following can be successfully compiled because the type of vari
able is supplied.

(♦proclaim '(type (pvar (signed-byte 8)) s8))
(♦set s8 (+!! s8 (the (pvar (signed-byte 8)) variable)))

A warning level value of Normal (: normal), the default, causes the compiler to
generate warnings only for invalid arguments and type mismatches.

28 *Lisp Compiler Guide, Part I: Features

If the first code example above is compiled with the warning level set to Normal
(:normal), the *set expression is not compiled, but no warning is given. On the
other hand, with warning level set to Normal (: norm al), an attempt to compile

(♦proclaim '(type (pvar (field-pvar 8) u8))
(♦proclaim '(type boolean-pvar bl))
(♦set u8 (-!! bl))

results in this warning:

Warning: While compiling Bl:
Function -!! expected a numeric pvar argument but got a
boolean pvar argument.

A warning level value of None (:none) prevents the compiler from generating
any warnings.

Inconsistency Reporting Action

Values: Abort (:abort), Error (:error), Cerror(:cerror),
Warn (:warn), None (:none)

Default: Warn (:warn)
Variable: *inconsistency-action*

The Inconsistency Reporting Action option controls the behavior of the com
piler when an inconsistency is discovered. An inconsistency usually indicates
an implementation error in the compiler.

An value of Abort (:abort) causes the compiler to report a discovered compiler
inconsistency and immediately abort the compilation.

A value of Error (:error) causes the compiler to report a discovered compiler
inconsistency using the Common Lisp function error. This signals a fatal error
from which it is impossible to continue and enters the debugger.

A value of Cerror (-.cerror) causes the compiler to report a discovered compil
er inconsistency using the Common Lisp function cerror. This signals a con-
tinuable error and enters the debugger. The program may be resumed after the
error is resolved.

A value of Warn (:warn) causes the compiler to report a discovered compiler
inconsistency using the Common Lisp function warn. This prints an error mes
sage but normally does not enter the debugger.

Version 5.0 29

A value of None (: none) prevents the compiler from taking any action when an
inconsistency in the compiler is discovered.

Safety

Values: 0, 1, 2, 3,
Default: 1
Variable: ‘ safety*

The Safety option controls what kind of code the compiler generates to detect
error conditions and how error conditions are reported.

A value of 0, termed low safety, prevents error conditions from being signaled.

A value of 1, causes error conditions to be signaled, but error notification does
not occur at the time of the error.

A value of 2 or 3, termed high safety, causes error conditions to be signaled by
error messages that attempt to be as helpful as possible.

In general, low safety produces the fastest and most dangerous code. For a
more detailed discussion recommending when to use each of the four safety
levels, see Section 3.3, entitled “Safety Optimization and Error Detection.”

Print Length for Messages
Print Level for Messages

Values: <an integer>, or nil
Length Default: 4
Level Default: 3
Variables: *slc-print-length* *slc-print-level*

These options control how much of an expression the compiler prints when
generating a warning about that expression. As in Common Lisp, the Print
Level indicates how many levels of data object nesting will be printed, counting
from 0. The Print Length indicates how many elements at each level will be
printed, counting from 1. For both variables, if the value nil is specified, all
elements at all levels are printed. The Common Lisp variables ‘ print-length*
and ‘ print-level* are bound to these variables when messages are printed.

30 *Lisp Compiler Guide, Part I: Features

Optimize Bindings

Values: No (nil), Cspeed<3 (cspeed<3), Yes (t)
Default: Cspeed<3 (cspeed<3)
Variable: ‘ optimize-bindings*

The Optimize Bindings option provides control over compilation speed by al
tering the number of temporary bindings generated by the *Lisp compiler.

A value of Yes (t) enables this option and causes extra bindings to be removed.
When binding optimization is enabled, some temporary variables are elimi
nated and others are used repeatedly.

A value of No (nil) disables binding optimization. When the binding optimiza
tion option is disabled, the code produced by the compiler is more readable
because it uses unique temporary address variables to represent each value
represented.

A value of Cspeed<3 varies binding optimization based on the value of the
compilation speed variable *com pilation-speed*. If compilation speed is 3
(the highest possible value), then *optimize-bindings* is set to nil. If compila
tion speed is less than 3, then *optim ize-bindings* is set to t.

Peephole Optimize Paris

Values: No (nil), Cspeed<3 (3), Yes (t)
Default: Cspeed<3 (3)
Variable: *optim ize-peephole*

The Peephole Optimize Paris option controls the *Lisp compiler’s peephole
optimization of generated Lisp/Paris code.

A value of Yes (t) causes the *Lisp compiler to optimize the Lisp/Paris code it
generates. A value of No (nil) prevents this optimization.

A value of Cspeed<3 varies peephole optimization based on the value of the
compilation speed variable 'com pilation-speed*. If compilation speed is 3
(the highest possible value), then *optim ize-peephole* is set to nil. If compila
tion speed is less than 3, then *optim ize-peephole* is set to t.

Version 5 .0 3 1

Pull Out Common Address Expressions

Values: Yes (t), No (nil)
Default: No (t)
Variable: *pull-out-subexpressions*

The Pull Out Common Address Expressions option determines whether the
compiler performs common subexpression elimination on address expres
sions such as calls to pvar-location. Enabling this option can, in certain cir
cumstances, increase performance significantly.

A value of Yes (t) enables this optimization; a value of No (nil) disables it.

When enabled, this option trims the code executed on the front end; it does not
affect the code executed on the Connection Machine. If a program already has
a high Connection Machine utilization, this option will do little to improve the
execution time. Conversely, if a program has a low Connection Machine utili
zation, enabling Pull Out Common Address Expressions can reduce execution
time. The potential benefit is usually greater for larger expressions, where
there are more opportunities for common addressing expressions.

For example, consider the following *set expression:

(*set sl6 (+!! (*!! s8 s8-2) S16-2))

Here is the code produced by the compiler with this option enabled'.

(let* ((pvar-location-sl6-l (pvar-location sl6))
(pvar-location-s8-2 (pvar-location s8))
(pvar-location-s8-2-3 (pvar-location s8-2))
(pvar-location-sl6-2-4 (pvar-location S16-2)))

(cm:multiply pvar-location-sl6-l pvar-location-s8-2
pvar-location-s8-2-3 16 8 8)

(cm:+ pvar-location-sl6-l pvar-location-sl6-2-4 16)
(cmi::error-if-location cm:overflow-flag 66575)
nil)

Here is the code produced with this option disabled:

(progn
(cm:multiply (pvar-location sl6)

(pvar-location s8)
(pvar-location s8-2) 16 8 8)

(cm:+ (pvar-location sl6) (pvar-location sl6-2) 16)
(cmi::error-if-location cm:overflow-flag 66575)
nil)

32 *Lisp Compiler Guide, Part I: Features

Notice that pvar-location is executed four times when Pull Out Common Ad
dress Expressions is enabled and five times when it is disabled.

Use Always Instructions

Values: Yes (t), No (nil)
Default: No (nil)
Variable: *use-always-instructions*

The Use Always Instructions option determines whether or not the *Lisp com
piler generates unconditional Always Paris instructions for stack operations.

A value of Yes (t) enables the use of the Paris Always instructions; a value of No
(nil) disables their use.

This option is not fully implemented and may generate undocumented Paris
instructions. It is more useful to users of a CM-2 with the floating-point accel
erator than to other users.

For an example of code generated when this option is set to Yes, see the last
example under the Machine Type option description.

Machine Type

Values: Current (cu rren t), Compatible (com patib le),
CM1 (:cm 1), CM2 (:cm 2), CM2-FPA (:cm 2-fpa),
Simulator (sim ulator)

Default: Current (curren t)
Variable: *m achine-type*

The Machine Type option directs the *Lisp compiler to generate code that is
either specific to one of the Connection Machine models or compatible across
models.

A value of Current (cu rren t) allows the compiler to generate code specific to
the current machine type.

A value of Compatible (com patib le) allows the compiler to generate code
compatible across machine types.

A value of CM1 (:cm 1) allows the compiler to generate code specific to Con
nection Machine model CM-1.

Version 5 .0 3 3

A value of CM2 (:cm2) allows the compiler to generate code specific to the
CM-2.

A value of CM2-FPA (:cm 2-fpa) allows generation of code specific to the
CM-2 with the floating-point accelerator. When machine type CM2-FPA is
specified, the *Lisp compiler generates Paris instructions that take advantage
of the floating point accelerator hardware. This is the most useful value of the
machine type option.

A value of Simulators allow the compiler to generate code specific to the simu
lator. This value is currently equivalent to the Compatible setting.

The example below demonstrates how the Machine Type option interacts with
other compiler options. Code generated by compiling a *sum expression using
three different combinations of the Machine Type and Use Always Instruc
tions option settings is shown. Each successive combination produces more
efficient code than the last. In each, the safety option is set to 0 to eliminate
error detection code and to make the examples more readable.

Consider the following *Lisp code:

(*proclaim '(type (pvar single-float) sfl sf2))
(*sum (*!! (+!! sfl (!! 128.0)) sf2))

When the Machine Type option is set to Compatible (:compatible) and the
Use Always Instructions option is set to No (nil), the compiler generates the
following code:

(let* ((sic::old-next-stack-field (cm:allocate-stack-field 32))
(*!!-index-2 (+ sic::old-next-stack-field 32)))

(declare (ignore *!!-index-2))
(progl

(progn
;; Move constant - !!.

(cm:move-constant sic::old-next-stack-field 1124073472 32)
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-2-ll sic::old-next-stack-field

(pvar-location sfl) 23 8)
;; The result of a (two argument) float +!! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-11 sic::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.

34 *Lisp Compiler Guide, Part I: Features

(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add sic::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

However, when Machine Type is set to CM2-FPA (:cm 2-fpa) and Use Always
Instructions is set to No (nil), the compiler generates the following, more effi
cient, code:

(let* ((sic::old-next-stack-field (cm:allocate-stack-field 32))
(*!!-index-2 (+ sic::old-next-stack-field 32)))

(declare (ignore *!!-index-2))
(progl

(progn
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-constant-3-11 sic::old-next-stack-field

(pvar-location sfl) 128.0 23 8)
;; The result of a (two argument) float + !! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-2-ll sic::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)
(cmi::global-float-add sic::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

The most efficient code is generated when Machine Type is set to CM2-FPA
(:cm 2-fpa) and Use Always Instructions is set to Yes (t):

(let* ((sic::old-next-stack-field (cm:allocate-stack-field 32))
(*!!-index-2 (+ sic::old-next-stack-field 32)))

(declare (ignore *!!-index-2))
(progl

(progn
(cmi::clear-mem cm:overflow-flag)
(cm:f-add-const-always-3-ll sic::old-next-stack-field

(pvar-location sfl) 128.0 23 8)
;; The result of a (two argument) float + !! overflowed.
(cmi::error-if-location cm:overflow-flag 394259 nil)
(cm:f-multiply-always-2-ll sic::old-next-stack-field

(pvar-location sf2) 23 8)
;; The result of a (two argument) float *!! overflowed.
(cmi::error-if-location cm:overflow-flag 394003)

Version 5 .0 3 5

(cmi::global-float-add sic::old-next-stack-field 23 8))
(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

Add Declares

Values: Everywhere (:everywhere), Yes (t), No (nil)
Default: No (nil) on symbolics, Yes (t) on other front ends
Variable: *add-declares*

The Add Declares compiler option determines if and how the *Lisp compiler
will generate code that includes type declarations for stack address computa
tions.

A value of Everywhere (:everywhere) causes the compiler to generate type
declarations using both declare and the forms. A the form is used wherever a
declare form is not legal.

A value of Yes (t) causes the compiler to generate type declarations wherever a
declare form is appropriate.

A value of No (nil) prevents the compiler from generating any type declara
tions. The Add Declares option default value on Symbolics Lisp machines is nil
because Symbolics’ implementation generally ignores type declarations.

Consider the following code.

(*sum (if!! bl s8 s8-2))

With the Add Declares option set to Yes (t), this generates the following Lisp/
Paris code.

(let* ((sic::old-next-stack-field (cmi::next-stack-field))
(if!!-context-1 (+ sic::old-next-stack-field 8))
(if!!-index-2 (+ if!!-context-1 1)))

(declare
(type sic::cm-address sic::old-next-stack-field
if!!-context-1 if!!-index-2))

(progl
(progn

(cm:allocate-stack-field
(- if!!-index-2 sic::old-next-stack-field))

(cmi::store-context-always if!!-context-1)
(cmi::load-context (pvar-location bl))
(cm:move sic::old-next-stack-field (pvar-location s8) 8)
(cm:logandcl-always cm:context-flag if!!-context-1 1)

36 *Lisp Compiler Guide, Part I: Features

(cm:move sic::old-next-stack-field (pvar-location s8-2) 8)
(cmi::load-context-always if!!-context-1)
(cm:global-add sic::old-next-stack-field 8))

(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

Notice that there is one declare form in the compiler output above.

Use Undocumented Paris

Values: Yes (t), No (nil)
Default: Yes (t)
Variable: *use-undocum ented-paris*

The Use Undocumented Paris compiler option determines whether or not the
code generated by the *Lisp compiler uses undocumented Paris instructions.

A value of Yes (t) allows the use of undocumented Paris instructions. In many
cases, enabling this option significantly increases the execution speed of com
piled *Lisp code.

A value of No (nil) disallows the use of most undocumented Paris instructions.

For example, with Use Undocumented Paris set to Yes (t), compiling

(*sum (if!! bl s8 s8-2))

results in code that includes three internal, undocumented Paris functions in
the CMI package. When the same *sum statement is compiled with this option
set to No (nil), the following code is generated. It includes only documented
functions in the CM package.

(let* ((sic::old-next-stack-field (cmi::next-stack-field))
(if!!-context-1 (+ sic::old-next-stack-field 8))
(if!!-index-2 (+ if!!-context-1 1)))

(progl
(progn

(cm:allocate-stack-field
(- if!!-index-2 sic::old-next-stack-field))

(cm:move-always if!!-context-1 cm:context-flag 1)
(cm:move cm:context-flag (pvar-location bl) 1)
(cm:move sic::old-next-stack-field (pvar-location s8) 8)
(cm:logandcl-always cm:context-flag if!!-context-1 1)
(cm:move sic::old-next-stack-field (pvar-location s8-2) 8)
(cm:move-always cm:context-flag if!!-context-1 1)

(cm:global-add sic::old-next-stack-field 8))
(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

If the Use Undocumented Paris option is disabled, it still allows the *Lisp
compiler to generate undocumented Paris routines in cases where no appro
priate documented Paris instructions exists. However, if a documented in
struction exists, it will be used—even if the undocumented instruction is faster.

Version 5 .0

Verify Type Declarations

Values: No (nil), Current-Safety (:current-safety), Yes (t) or an integer
between 0 and 3

Default: Current-Safety (:current-safety)
Variable: *verify-type-declarations*

The Verify Type Declaration compiler option determines whether or not the
*Lisp compiler generates type verification code for arguments to *defun func
tions that have been given either the or declare type declarations.

This option is primarily used while debugging *Lisp programs. The most com
mon user errors are declaring pvar arguments incorrectly and violating type
declarations. These errors are often hard to track down because the results of
violating a type declaration can be unpredictable. With the safety option set at
3, and the Verify Type Declarations option enabled, the compiler generates
code to catch erroneous and violated type declarations immediately.

An integer value sets verification to a nonexistent, low, high, or intermediate
level. At a setting of 0, no error checking is done. At a setting of 1, a minimal
amount of error checking is done. At a setting of 2, a moderate amount of error
checking is done. The highest setting is 3, which causes the *Lisp compiler to
generate code for maximal type verification error checking.

A value of Yes (t) causes to the compiler to generate a maximum amount of
error checking and is equivalent to a value of 3.

A value of No (nil) prevents the compiler from generating any type verification
code and is equivalent to a value of o.

A value of Current-Safety (:current-safety) sets the verification level based
on the safety level. If the Safety option is set to o, and Verify Type Declarations
is set to Current-Safety, no verification code is generated. With safety at 3,
verification becomes likewise set to 3, and so on.

37

*Lisp Compiler Guide, Part I: Features

As an example, consider the following 511 sum expression.

(♦sum (the (field-pvar 32) quux)))

A verification value of 0 causes the compiler to generate the least amount of
type checking code: none. At verification level 0, this *sum expression com
piles into the following:

(cm:global-unsigned-add (pvar-location quux) 32)

A value of 1 causes the compiler to generate a little bit of error checking:

(progn (if (not (*lisp-i:internal-pvarp quux))
(sic::error-doesnt-match-declaration
quux '(pvar (unsigned-byte 32))))

(cm:global-unsigned-add (pvar-location quux) 32))

Above, a check is done to make sure that the variable quux is a pvar.

A value of 2 causes the compiler to generate more error checking:

(progn (if (not (and (*lisp-i:internal-pvarp quux)
(eq (pvar-type quux) :field)))

(sic::error-doesnt-match-declaration
quux '(pvar (unsigned-byte 32))))

(cm:global-unsigned-add (pvar-location quux) 32))

Here, verification code ensures that the variable quux is a field pvar.

A value of 3 causes the compiler to generate maximum error checking code:

(progn (if (not (and (*lisp-i:internal-pvarp quux)
(eq (pvar-type quux) :field)
(eql (pvar-length quux) 32)))

(sic::error-doesnt-match-declaration
quux '(pvar (unsigned-byte 32))))

(cm:global-unsigned-add (pvar-location quux) 32))

The code above checks to make sure that the variable quux is a field pvar of
length 32.

Version 5 .0 3 9

Constant Fold Pvar Expressions

Values: Yes (t), No (nil)
Default: Yes (t)
Variable: ‘ constant-fold*

The Constant Fold Pvar Expressions compiler option determines whether or
not the *Lisp compiler will constant fold certain pvar expressions.

A value of Yes(t) allows the compiler to constant fold pvar expressions in
which all arguments to certain *Lisp functions contain identical values in all
active processors. Examples of the arguments threated are: nil!!, t !!, and calls
to the function !!.

A value of No (nil) prevents the compiler from constant folding.

For example, with constant folding enabled,

(♦sum (-!! (!! 1.0))))

compiles into:

(progn
;; Constant global sum - *sum.
(* -1.0 (cm:global-count-always cm:context-flag)))

In contrast, without constant folding, the same ‘ sum expression compiles into:

(let* ((sic::old-next-stack-field (cmi::next-stack-field))
(-!!-index-2 (+ sic::old-next-stack-field 32)))

(progl
(progn

(cm:allocate-stack-field
(- -!!-index-2 sic::old-next-stack-field))

;; Move constant - !!.

(cm:move-constant sic::old-next-stack-field 1065353216 32)
(cm:lognot (+ sic::old-next-stack-field 31)

(+ sic::old-next-stack-field 31) 1)
(cmi::global-float-add sic::old-next-stack-field 23 8))

(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

Clearly, constant folding allows the compiler to generate more efficient code.

40 *Lisp Compiler Guide, Part I: Features

Speed

Values: 0, 1, 2, 3
Default: 1
Variable: *speed*

The Speed compiler option advises both the Common Lisp and the *Lisp
compilers of the relative importance of the quality speed.

A value of 0, known as low speed, means speed of execution is totally unimpor
tant.

A value of 1, the default, means speed of execution is of little importance.

A value of 2 means speed of execution is of moderate importance.

A value of 3 means speed of execution is extremely important.

Compilation Speed

Values: 0, 1, 2, 3
Default: 1
Variable: *compilation-speed*

The Compilation Speed compiler option advises both the Common Lisp and
the *Lisp compilers of the relative importance of the quality compilation-
speed.

A value of 0, known as low compilation speed, means speed of compilation is
totally unimportant.

A value of 1, the default, means speed of compilation is of little importance.

A value of 2 means speed of compilation is of moderate importance.

A value of 3 means speed of compilation is extremely important. If this value is
set, both the Optimize Peephole and Optimize Bindings options are disabled.

Version 5 .0 4 1

Space

Values: 0, 1, 2, 3
Default: 1
Variable: ‘ space*

The Space compiler option advises both the Common Lisp and the *Lisp com
pilers of the relative importance of the quality space . The space quality gov
erns both code size and run-time space utilization.

A value of 0, means code bulk and instruction space utilization are totally un
important.

A value of 1, the default, means code bulk and instruction space utilization are
of little importance.

A value of 2 means code bulk and instruction space utilization are of moderate
importance.

A value of 3 means code bulk and instruction space utilization are extremely
important.

Immediate Error If Location

Values: Yes (t), No (nil)
Default: Yes (t)
Variable: *im m ediate-error-if-location*

The Immediate Error If Location compiler option determines how a Safety
option setting of 2 behaves.

A value of Yes (t) makes Safety 2 behave like Safety 3.

A value of No (nil) makes Safety 2 behave like Safety 1.

See section 3.3 for a discussion of safety levels.

42 Lisp Compiler Guide, Part I: Features

Optimize Check Stack Expression

Values: Yes (t), No (nil)
Default: Yes (yes)
Variable: *optim ize-check-stack*

The Optimize Check Stack Expression compiler option determines how the
*Lisp compiler manages the temporary stack space used by the Lisp/Paris
code it generates.

A value of Yes (t) makes the compiler try to remove the length expression in a
call to cnrallocate-stack-field generated when the ‘compiled code uses stack
space.

A value of No (nil) disables this optimization.

Generate Comments With Paris Code

Values: Yes (t), Macro (:macro), No (nil)
Default: Yes (t)
Variable: ‘ generate-com m ents*

The Generate Comments With Paris Code compiler option controls whether
or not the ‘Lisp compiler inserts comments into the Lisp/Paris code it gener
ates.

A value of Yes (t) causes the compiler to generate comments

A value of Macro (:macro) causes the compiler to generate comments when
forms are being macroexpanded using the Symbolics editor command Macro
Expand Expression.

A value of No (nil) prevents the compiler from generating annotated Lisp/
Paris code.

With the Generate Comments With Paris Code option set to Yes (t), compil
ing

(‘ sum (if!! b l s8 s8-2))

generates the following:

(let* ((sic::old-next-stack-field (cmi::next-stack-field))
(if!!-context-1 (+ sic::old-next-stack-field 8))

(if!!-index-2 (+ if!!-context-1 1)))
(progl

(progn
(cm:allocate-stack-field

(- if!!-index-2 sic::old-next-stack-field))
;; Save context - if!!.

(cmi::store-context-always if!!-context-1)
;; Compute predicate, and select processors
;; where the predicate is true. - if!!.
(cmi::load-context (pvar-location bl))
;; Compute and move then clause in context of processors
;; where the predicate is true. - if!!.
(cm:move sic::old-next-stack-field (pvar-location s8) 8)
;; Select processors where the predicate is false. - if!!.

(cm:logandcl-always cm:context-flag if!!-context-1 1)
;; Compute and move else clause in context of processors
;; where the predicate is false. - if!!.
(cm:move sic::old-next-stack-field (pvar-location s8-2) 8)
;; Restore context - if!!.

(cmi::load-context-always if!!-context-1)
(cm:global-add sic::old-next-stack-field 8))

(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

With the Generate Comments With Paris Code option set to No (nil), compil
ing

(*sum (if!! b l s8 s8-2))

generates the following:

(let* ((sic::old-next-stack-field (cmi::next-stack-field))
(if!!-context-1 (+ sic::old-next-stack-field 8))
(if!!-index-2 (+ if!!-context-1 1)))

(progl
(progn

(cm:allocate-stack-field
(- if!!-index-2 sic::old-next-stack-field))

(cmi::store-context-always if!!-context-1)
(cmi::load-context (pvar-location bl))
(cm:move sic::old-next-stack-field (pvar-location s8) 8)
(cm:logandcl-always cm:context-flag if!!-context-1 1)

Version 5 .0 4 3

44 *Lisp Compiler Guide, Part I: Features

(cm:move sic::old-next-stack-field (pvar-location s8-2) 8)
(cmi::load-context-always if!!-context-1)
(cm:global-add sic::old-next-stack-field 8))

(cm:deallocate-upto-stack-field sic::old-next-stack-field)))

Part II
*Lisp Compiler Practicum

45

6 Tricks of the Trade

This part of the ‘Lisp Compiler Guide is a narrative tutorial that explains how to use
the *Lisp compiler. This tutorial is not a substitute for the first part of the Guide to the
*Lisp Compiler. Part I, “*Lisp Compiler Features,” should be read first and referred
to as necessary during this tutorial. Here we address the following issues:

1. How the *Lisp compiler works

2. How to use declare, ‘ proclaim, the, and ‘ locally forms.

3. How to write general ‘Lisp code that compiles.

This tutorial will not teach you how to write efficient ‘Lisp code. Also, it does not pro
vide instruction in analyzing the Lisp/Paris output produced by the ‘Lisp compiler to
determine whether it makes efficient use of the Connection Machine system.

With a little practice you will be able to solve the problems presented by these two
commonly asked questions:

Q uestion: How can I write a *Lisp program so that the *Lisp compiler will not report
that it cannot compile certain statements, but will instead compile the entire program?

Q uestion: Given a ‘Lisp program written by someone who couldn’t answer the first
question, how can I quickly turn it into an equivalent ‘Lisp program that will compile?

To accomplish this task, the reader is strongly advised to try all the examples given
here.

The compilation process effected by the *Lisp compiler is unlike that of most compil
ers. The *Lisp compiler executes as part of the Common Lisp compiler, and it does not
attend to every statement in a *Lisp program. To avoid ambiguity, therefore, the terms
* compiler, * compiling, *compilation, and * compiled code are used when referring to
the ‘Lisp compiler, the process by which it translates ‘Lisp code into Lisp/Paris, and
the results of that process, respectively. This is done to make a clear distinction be
tween normal Common Lisp compilation and ‘Lisp compilation.

47

48 *Lisp Compiler Guide, Part II: Practicum

7 What Makes the *Lisp Compiler Work?

To demonstrate what makes the *Lisp compiler work, we walk through the process of
taking a small, uncompilable piece of *Lisp code and changing it so the *Lisp compiler
can handle it.

Unlike other compilers, which translate entire programs into internal representations
or lower level languages, the *Lisp compiler does not translate any and all legal *Lisp
code into Lisp/Paris. The *Lisp compiler can only translate a subset of all *Lisp forms.
Two conditions must be met before those *Lisp forms that can be ^compiled are
^compiled:

1. Forms that can be compiled must be made visible to the *Lisp compiler.

2. Forms that can be compiled must include complete type declarations.

What do we mean by making code visible to the *Lisp compiler? Consider the follow
ing piece of *Lisp code.

(defun foo (x y)
(sin!! (+!! (*!! x (+!! y (!! 2))))))

If the *Lisp compiler is enabled (as it is by default), it is invoked by calling the Com
mon Lisp compiler on a form or file containing *Lisp code. If the Common Lisp com
piler is called on the definition of foo, the *Lisp compiler will not compile foo. Why
not?

Basically, the *Lisp compiler is a very fancy macro expander. This means that the
*Lisp compiler is only triggered when the Common Lisp compiler expands a *Lisp
macro call. Note that sin!!, +!!, *!!, and !! are not *Lisp macros—they are defined as
*Lisp functions. In the above code there is nothing to trigger the *Lisp compiler and
hence this code is not visible to it.

The obvious question at this point is: “Which *Lisp macros trigger the *Lisp com
piler?” Almost all of them, in one manner or another. (Refer to part I, section 2.1.1 for
a complete list.) A good general rule is that any *Lisp macro or *defun whose name
begins with * will cause its arguments to be compiled by the *Lisp compiler. For exam
ple, the statement

(*sum (*!! (+!! x y) (!! 2.3)))

will be processed by the *Lisp compiler, because the ‘ sum triggers the *Lisp compiler.

Version 5 .0 49

Since *defun itself is a *Lisp macro, one might think that taking the too function and
making it a ‘ defun would cause it be ‘compiled:

(♦defun foo (x y)
(Sin!! (+!! (♦!! x (+!! y (!! 2))))))

Unfortunately, this is not the case; ‘ defun is an exception to our general rule. The
*Lisp compiler does not ‘compile the body of a ‘ defun. A particular form in the body
of a *def un may or may not be ‘compiled, depending on whether it is visible as defined
above. Consider the following *defun.

(♦defun bar (x y)
(♦set x (+ !! x (! ! 2)))
(sin!! (+!! (♦!! x (+!! y (!! 2)))))
)

The first form of the body of the ‘ defun is visible to the ‘Lisp compiler because ‘ set is
a ‘Lisp macro that triggers the ‘Lisp compiler. The second form is not visible to the
‘Lisp compiler because sin!! is not a ‘Lisp macro.

Two more exceptions to our general rule about which forms are visible to the ‘Lisp
compiler are ‘ let and ‘ let*. The body of a ‘ let or a ‘ let* is not necessarily visible to the
‘Lisp compiler. The initial value forms in these constructs are, however, visible to the
‘Lisp compiler. For example, given

(♦let ((temp (!! 3)))
(+!! temp (♦!! temp (!! 2))))

the ‘Lisp compiler will attempt to ‘compile the binding of the temp variable to (!! 3).
This is the case because the ‘ let macro is semantically equivalent to

(♦let (temp)
(♦set temp (!! 3))
(+! ! temp (♦!! temp (!! 2)))
)

and ‘ set triggers the ‘Lisp compiler. These exceptions are simply current limitations
of the ‘Lisp compiler and may be removed in a future release.

50 *Lisp Compiler Guide, Part II: Practicum

How then do we make the body of foo visible to the *Lisp compiler? Here is a trick.
Rewrite foo as

(defun foo (x y)
(♦let ((temp (sin!! (+!! (♦!! x (+!! y (!! 2)))))))
temp
))

Or as

(defun foo (x y)
(♦let (temp)

(♦set temp (sin!! (+!! (♦!! x (+!! y (!! 2)))))).
temp
))

In either case, *set triggers the *Lisp compiler. It then attends to all the forms within
the ‘ set.

The first condition for ‘compilation has been met. At this point, we know foo is vis
ible to the ‘ Lisp compiler; all computation is done inside a macro to which the ‘Lisp
compiler attends. It is possible to make code visible to the ‘Lisp compiler and still not
have it ‘compile. Notice that there is no tool to report whether a piece of ‘Lisp code is
visible.

Next, we consider how to get the ‘Lisp compiler to translate visible ‘Lisp code into
Lisp/Paris.

Any code that is visible to the ‘Lisp compiler but that the ‘Lisp compiler cannot trans
late into Lisp/Paris is simply left untranslated. By default, the ‘Lisp compiler does not
report that it has failed to ‘compile code made visible to it. To receive such reports, set
the ‘Lisp compiler Warning Level to High. From within the Common Lisp interpreter,
with ‘Lisp loaded, call the function (compiler-options). Alternatively, on a Symbolics
Lisp machine, type M eta-x Set Compiler Options. (See section 4 in part I for complete
instructions.)

Now, set the ‘ Lisp compiler Warning Level to High and call the Common Lisp com
piler on our revised definition of foo. The following warning message is displayed:

For Function foo
Verbose: While compiling y:

The expression (♦set-1 temp (sin!! (+!! #))) is not compiled
because +!! does not understand undeclared expressions.

Version 5 .0 51

Verbose: While compiling X:
The expression (*SET-1 TEMP (SIN!! (+!! #))) is not compiled

because *!! does not understand undeclared expressions.
Verbose: While compiling TEMP:
The expression (*SET-1 TEMP (SIN!! (+!! #))) is not compiled

because *SET does not understand undeclared expressions.

This is not too surprising. We have not satisfied the second condition for *compilation:
we have not provided type declarations for the pvars x, y, and temp. Paris is a typed
language, which operates on unsigned integers, signed integers and floats. If the *Lisp
compiler is not informed of expression types, there is very little translation it can per
form.

Let’s declare x, y and temp.

(defun foo (x y)
(declare (type (pvar single-float) x y))
(*let (temp)

(declare (type (pvar single-float) temp))
(*set temp (sin!! (+!! (*!! x (+!! y (!! 2))))))
temp
))

Attempting to compile, we again receive warning messages. These message indicate
that the *Lisp compiler still does not know the types of x and y— it appears satisfied
with the declaration provided for temp.

For Function FOO
Verbose: While compiling Y:

The expression (*SET-1 TEMP (SIN!! (+!! #))) is not compiled
because +!! does not understand undeclared expressions.
Verbose: While compiling X:

The expression (*SET-1 TEMP (SIN!! (+!! #))) is not compiled
because *!! does not understand undeclared expressions.

Why did this happen? The first declare statement is never seen by *Lisp, let alone by
the *Lisp compiler. The declare form is processed by the Common Lisp compiler
because it is part of the defun special form and defuns are permitted to include de
clare. There is currently no mechanism to force the Common Lisp compiler to pass on
to the *Lisp compiler declarations containing pvar information. So, the declare form
simply gets thrown away. (For more information about the syntax and semantics of
defun and declare, refer to chapters 5 and 9 of Common Lisp: the Language.)

52 *Lisp Compiler Guide, Part II: Practicum

How do we inform *Lisp of the types of x and y? There are three solutions.

In the first solution, we change the d efun to a *defun. The *Lisp *defun construct
checks for declarations and, if a declaration is a pvar type declaration, it passes that
information to the *Lisp compiler.

(*defun foo (x y)
(declare (type (pvar single-float) x y))
(*let (temp)

(declare (type (pvar single-float) temp))
(♦set temp (sin!! (+! ! (*!! x (+!! y (!! 2))))))
temp
))

In the second solution, we use the Common Lisp special form the to make type infor
mation available to the *Lisp compiler. The *Lisp compiler processes the special
forms.

(defun foo (x y)
(♦let (temp)

(declare (type (pvar single-float) temp))
(♦set temp

(sin!! (+!! (♦!! (the (pvar single-float) x)
(+!! (the (pvar single-float) y)

(!! 2))))))
temp
))

In the third solution, we use the *Lisp macro *loca!ly (new with Release 5.0) to declare
the types of x and y.

(defun foo (x y)
(♦locally

(declare (type (pvar single-float) x y))
(♦let (temp)

(declare (type (pvar single-float) temp))
(♦set temp (sin!! (+!! (♦!! x (+! ! y (!! 2))))))
temp
)))

With the *Lisp compiler Warning Level still set to High, call the Common Lisp com
piler on each of the versions of foo to verify that they each do ^compile.

We have now successfully transformed a simple,‘Lisp program that cannot be *com-
piled into a *Lisp program that can be ‘compiled. It has become more complicated,
and it has become less general (it will now work only for floating-point arguments), but
it will run many times faster than our first version.

If we fully macroexpand the above function and then strip out all but the code pertain
ing directly to the 'se t statement, the result is the following Lisp/Paris code:

(progn (cm:f-add-constant-3-11 (aref temp 1)
(aref y 1) 2.0 23 8)

(cm:f-multiply-2-ll (aref temp 1) (aref x 1) 23 8)
;; compile to preferred - sin!!.
(cm:f-sin-2-ll (aref temp 1)

(aref temp 1) 23 8)
nil)

Notice that, although there are six ‘Lisp operations in the ‘ set form, the ‘Lisp com
piler reduces these to three Paris instructions.

Version 5 .0 53

8 How to UseType Information

The most important concepts related to type specification turn on an understanding of
what declaration forms do and do not do. In this section, we will review exactly what
declare, 'proclaim , 'locally, and the forms add to a program.

8.1 What Declarations Mean

A declaration, proclamation, or a the statement, is a promise to either the ‘Lisp com
piler or the Common Lisp compiler. It is not a directive. Type declarations do not per
suade a compiler to perform additional type coercion; if promises are broken, errors
result.

Consider our old foo example:

(*defun foo (x y)
(declare (type (pvar single-float) x y))
(*let (temp)

54 *Lisp Compiler Guide, Part II: Practicum

(declare (type (pvar single-float) temp))
(*set temp (sin!! (+!! (*!! x (+!! y (!! 2))))))
temp
))

Suppose we make the call:

(foo (!! 2) (! ! 3))

This call violates our promise to pass foo only pvars of type single-float-pvar. Our
declarations allowed the *Lisp compiler to translate our foo definition into Paris in
structions that deal exclusively with floating-point numbers. Passing in integer data
has predictable results: the floating-point operators process the integer data, expect
ing it to be floating-point data, and produce garbage!

At this point, it is appropriate to point out that declare forms used with *let forms
serve two purposes:

1. They make it possible to promise the *Lisp compiler that certain variables al
ways take particular types of data.

2. They make it possible to inform the * let macro what type of pvar to allocate for
each temporary variable at run time and how much CM memory to reserve for
each.

This sort of dual purpose is also served by * proclaim forms that precede *defvar
forms. These serve both to inform the compiler and to inform the run-time state.

This is not a contradiction. While declarations within a Met are promises to the *Lisp
compiler and nothing more, they are also used as directives to the Met macro itself,
even though this use is unrelated to ‘compilation. Declarations are promises to com
pilers, and they may have additional meanings.

With Release 5.0, the *Lisp compiler is able to generate code that verifies type declara
tion promises. This capability is enabled by setting the *Lisp compiler Safety Level to
3 (for maximum safety).

Using maximum safety, a call to (foo (!! 2) (!! 3)) results in the following error:

Error: #<FIELD-Pvar 52-2 *DEFAULT-VP-SET* (32 16)> was de
clared to be a (PVAR SINGLE-FLOAT), but isn't.

Arg 0 (SLC::WHAT): #<FIELD-Pvar 52-2 *DEFAULT-VP-SET* (32
16)>

Arg 1 (TYPE): (PVAR (DEFINED-FLOAT 23 8))

Version 5 .0 55

s-A, : Ignore error.
s-B, : Return to Breakpoint ZMACS in Editor Typeout Window 1
s-C: Editor Top Level
s-D: Restart process Zmacs Windows

In contrast, at Safety Level 0 (safety disabled), an unintelligible error message is dis
played as shown below.

Error: Trying to access off of the end of field 1376256.
The passed field has a length of 2, and the length passed
to this instruction is 32.
CMI::WTL3132-ADD—CONSTANT-3 2

Arg 0 (CMI::DESTINATION): 1638400
Arg 1 (CMI::SOURCE): 1376256
Arg 2 (CMI::CONSTANT-UPPER): 16384
Arg 3 (CMI::CONSTANT-LOWER): 0

s-A, : Return to Breakpoint ZMACS in Editor Typeout Window 1
s-B: Editor Top Level
s-C: Restart process Zmacs Windows

With safety disabled, no error is even signaled in most cases. Setting the ’Lisp com
piler Safety Level to 3 has many debugging benefits beyond yielding decipherable er
ror messages. Until code is fully debugged, it is prudent to always enable maximum
’compiler safety. (See part I of the *Lisp Compiler Guide for a more complete discus
sion of safety level.)

As another example, if we ’compile the expression

(*set (the (pvar single-float) x) (!! (the single-float y)))

and it turns out that the value of y is not a Common Lisp single-float but a Common
Lisp double-float, then we have violated our promise and the code does not work prop
erly. Similarly, if x is not a single-float pvar but a double-float pvar (or an
(unsigned-byte 16) pvar, or anything else), then the code does not work.

Further, code that has successfully run without declarations can fail to run or produce
incorrect results once declarations are inserted if those declarations are not true! For
instance,

(»set x (!! j))

will work just fine if x is not declared (it defaults to a general mutable pvar) and if j is
256.

56 *Lisp Compiler Guide, Part II: Practicum

But if x is declared to be of type (pvar (unsigned-byte 8)) and j is 256, then, depending
on safety level, the code either errors out or puts the wrong answer into x because 256
cannot be represented in eight bits.

If we write

(*set (the (pvar (unsigned-byte 32)) x)
(the (pvar (unsigned-byte 32)) y))

when instead x is only 31 bits long, then we cause some random bit of memory not
belonging to x to be overwritten with the most significant bit of y. This is the danger of
type declarations: they allow ’compilation and they increase performance, but they
shift the burden of “doing the right thing” from ’Lisp to the programmer.

8.2 What Can Be Declared and How

There are seven basic categories of declarations used to provide the ’Lisp compiler
with type information.

1. A 'proclaim form globally declares the type of a pvar and must precede the
'defvar form that defines that pvar.

2. A temporary pvar may be declared within a ’ let or *let* form using a declare
form.

3. The arguments to ’Lisp functions are declared using declare forms inside
'defun forms.

4. The type of pvar returned by a function is globally declared using function or
ftype forms within 'proclaim forms.

5. The types of scalar variables can be globally declared using 'proclaim.

6. Scalar variables defined by let or do may be declared using 'locally.

7. The arguments of functions not defined with 'defun may be declared using
’ locally.

Examples of each method of communicating type information to the ’Lisp compiler
are given below.

Version 5 .0 57

Examples:

To create pvars of defined type, use the ’"proclaim macro followed the *defvar macro.

(♦proclaim '(type (pvar single-float) x))
(♦proclaim '(type (pvar boolean) bool))
(♦proclaim '(type (pvar (unsigned-byte 32)) j))
(♦proclaim '(type (pvar (complex single-float)) c))
(♦defvar x (!! 2.0))
(♦defvar bool nil!!)
(♦defvar j (!! 0))
(♦defvar c (!! #c(1.0 1.0)))

To declare the types of pvars defined by *let and to declare the types of arguments to
*defun functions, use declare.

(♦let ((x (!! 2.0)) (bool nil!!) (j (!! 0)) (c (!! #c(1.0
1.0))))

(declare (type (pvar single-float) x))
(declare (type (pvar boolean) bool))
(declare (type (pvar (unsigned-byte 32)) j))
(declare (type (pvar (complex single-float)) c))
<this is the body of the ^let>
)

(♦defun (x bool j c)
(declare (type (pvar single-float) x))
(declare (type (pvar boolean) bool))
(declare (type (pvar (unsigned-byte 32)) j))
(declare (type (pvar (complex single-float)) c))
cthis is the body of the #defun>
)

To declare the type of a pvar returned by a function, use ftype within a ’"proclaim mac
ro. For instance, the foo function defined at the beginning of this tutorial returns a
single-float pvar. This can be declared as follows:

(♦proclaim '(ftype (function (t t) (pvar single-float)) foo))

The above form informs the *Lisp compiler that foo is a function that accepts two
arguments whose type we don’t care about and returns a pvar of type single-float.

58 Lisp Compiler Guide, Part II: Practicum

These function declarations are extremely useful. For example,

(♦set (the (pvar single-float) x)
(+!! (foo (!! 1.2) (!! 1.3)) (!! 1.0)))

Could not be ‘compiled if the return value of foo had not been declared.

If we attempt to compile the above * set expression without first proclaiming the return
value of foo, the warning message shown below is issued.

Warning: Verbose: While compiling (FOO (!! 1.2) (!! 1.3)):
The expression (♦SET-1 (THE (PVAR SINGLE-FLOAT) X)
(+!! (FOO # #) (!! 1.0))) is not compiled because +!! does
not understand undeclared expressions.

It is possible to tell the ‘Lisp compiler about the types of Common Lisp variables by
using the * proclaim macro. For instance the proclamation

(♦proclaim '(type single-float scalar-x))

is visible to the ‘ Lisp compiler and informs it of the type of scalar-x. Given this proc
lamation, the expression

(*set (the (pvar single-float) x) (!! scalar-x))

can be ‘compiled. If the type of scalar-x is not proclaimed, the following warning is
issued.

Warning: Verbose: While compiling scalar-x: The expression
(♦set-1 (the (pvar single-float) x) (!! scalar-x)) is not com
piled because !! doesn't understand undeclared expressions.

The ‘Lisp compiler does not know what type of value to expect to be passed t o !! in the
(!! scalar-x) form within the ‘ set.

As another example consider

(dotimes (j 10)
(♦set (the (pvar (unsigned-byte 32)) x) (!! j)))

This does not ^compile properly. Remember that the *Lisp compiler is not triggered
until the *set is invoked. The dotimes is not visible to the *Lisp compiler, which there
fore is never informed that j must be an integer. This statement must be rendered as

(dotimes (j 10)
(♦set (the (pvar (unsigned-byte 32)) x) (!! (the fixnum j))))

Often the trick to making *Lisp code ^compile, is putting the forms in to !! expressions
as in,

(!! (the fixnum j))

and

(!! (the single-float x))

This can be a chore. The simple macros below can help speed this process.

(defmacro !!tf (x) '(!! (the fixnum ,x)))

(defmacro Mtsf (x) '(!! (the single-float ,x)))

(defmacro Mtdf (x) '(!! (the double-float ,x)))

(defmacro !!tscf (x) '(!! (the (complex single-float) ,x)))

(defmacro !!tdcf (x) '(M (the (complex double-float) ,x)))

(defmacro !!tsch (x) '(!! (the string-char ,x)))

(defmacro Ntch (x) '(!! (the character , x)))

Using these macros can greatly decrease the amount of typing one needs to do. For
instance:

(!! (the fixnum scalar)) => (!!tf scalar)

(!! (the (complex single-float) z)) => (Mtscf z)

Feel free to copy and use these macros.

Version 5 .0 59

60 *Lisp Compiler Guide, Part II: Practicum

Another way to avoid having to repeatedly type the forms is to add ’ locally forms in
stead of the forms to code that uses variables more than once inside forms visible to
the *Lisp compiler. For instance,

(defun xyzzy (foo bar)
(dotimes (j 100)

(•set (the single-float-pvar foo) (!! (the fixnum j)))
(•set (the single-float-pvar bar)

(*!! (the single-float-pvar foo) (!! (the fixnum j))))
))

could be rendered more succinctly using ’ locally as shown below.

(defun xyzzsy (foo bar)
(dotimes (j 100)

(♦locally
(declare (type fixnum j))
(declare (type single-float-pvar foo bar))
(*set foo (! ! j))
(•set bar (*!! foo (!! j)))
)))

A final example illustrates the effective use of the to get a complicated expression to
‘compile. The ’ set statement below,

(defun hard-to-*compile (y)
(•set (the (pvar (unsigned-byte 32)) x)

(cond
((eq y 5) (! ! 3))
((eq y 1000) (!! 2500))
(t (!! 0))
)))

if processed by the ‘Lisp compiler, yields this warning message:

Warning: IF special form
(IF (EQ Y 5) (PROGN (!! 3)) (IF (EQ Y 1000) (PROGN #) (IF T # NIL)))
not yet implemented.

Version 5 .0 61

A version that will pass the *Lisp compiler without warnings is written as:

(defun was-hard-to-*compile (y)
(*set (the (pvar (unsigned-byte 32)) x)

(the (pvar (unsigned-byte *))
(cond

((eq y 5) (!! 3))
((eq y 1000) (!! 2500))
(t (!! 0))

))
))

Why is this the case? Given the first version, the *Lisp compiler tries to ‘compile the
source for the *set, which is the cond form. The *Lisp compiler does have information
about cond, per se, but notices that it is a Common Lisp macro. Macroexpanding the
cond produces an if form, which is mentioned in the error message. The ‘Lisp com
piler cannot currently handle Common Lisp special forms or Common Lisp functions.
If it encounters any of these in the middle of ‘compilation, it will abandon its attempt
to ‘compile the enclosing form.

In the second version, we explicitly inform the ‘Lisp compiler that the cond form re
turns a mutable unsigned-byte pvar. Given this information, the ‘Lisp compiler can
generate code that copies the pvar returned by the cond statement into the destination
pvar x.

Using mutable pvar declarations (type declarations that use * as length specifiers)
adds flexibility to ‘ compiled code. This is covered in some detail in the next section.

9 How to Write General *Lisp Code that
*CompiIes

Operations that accept a variety of inputs contribute generality and modularity to pro
grams. Given the ‘Lisp compiler’s requirement for type information, how can we write
functions that ‘compile without sacrificing the flexibility inherent in a functional lan
guage? In this section, we explore three techniques for writing semi-generic operations
that will, nonetheless, ‘compile.

62 *Lisp Compiler Guide, Part II: Practicum

9.1 Generalizing Functions Based on Argument Types

Let us consider again the function foo:

(*defun foo (x y)
(declare (type (pvar single-float) x y))
(*let (temp)

(declare (type (pvar single-float) temp))
(♦set temp (sin!! (+!! (♦!! x (+!! y (!! 2))))))
temp
))

Remember that in order to get foo to “compile, we had to restrict its inputs to single
float pvars. The problem with this solution is that, were it not for the input type restric
tions, this function definition might be usefully employed with other types of numeric
data, such as floating-point, complex, or integer pvars. How can we make foo accept
these other types of input arguments?

To answer this question, we try relaxing our assumptions about foo’s arguments in a
variety of ways and test alternative assumptions one at a time.

First, suppose we want foo to work with any kind of floating-point inputs rather than
simply with single-precision floating-point pvars. We can write:

(♦defun foo (x y)
(declare (type (pvar (defined-float * ♦)) x y))
(♦let (temp)

(declare (type (pvar single-float) temp))
(*set temp (coerce!! (sin!! (+!! (♦!! x (+!! y (!! 2)))))

'(pvar single-float)))
temp
))

The declaration (pvar (def ined-f loat * *)) informs the “Lisp compiler that x and y can
be of any (legal) floating-point size. In the *set form, x and y are processed in whatever
floating-point format they initially bear and the result is coerced—with a possible loss
of precision—into a single-float pvar.

Next suppose we want foo to work with either single-float arguments or integer argu
ments. To test the type of a pvar we can use the Common Lisp function typep.

(typep (!! 3.0) '(pvar single-float)) => t
(typep (!! 3.0) '(pvar (unsigned-byte *))) => nil

Version 5.0 63

Using typep, we can conditionalize foo based on input type.

(*defun foo (x y)
(*let (temp xtemp ytemp)

(declare (type (pvar single-float) temp xtemp ytemp))
(cond

((typep x '(pvar single-float))
(♦set xtemp (the single-float-pvar x)))

((typep x '(pvar (unsigned-byte *)))
(♦set xtemp (the (pvar (unsigned-byte *)) x)))

((typep x '(pvar (signed-byte *)))
(♦set xtemp (the (pvar (signed-byte ♦)) x)))

)
(cond

((typep y '(pvar single-float))
(♦set ytemp (the single-float-pvar y)))

((typep y '(pvar (unsigned-byte ♦)))
(♦set ytemp (the (pvar (unsigned-byte ♦)) y)))

((typep y '(pvar (signed-byte ♦)))
(♦set ytemp (the (pvar (signed-byte ♦)) y)))

)
(♦set temp (sin!! (+! ! (♦!! xtemp (+! ! ytemp (!! 2))))))
temp
))

This rendering has the effect of converting the input arguments into single-float pvars
and then performing the body of the function.

Now, suppose we want a version of foo that works with single-floats, double-floats,
complex single-floats, or complex double-floats and suppose we want the result of foo
to be of the same type as its inputs. For simplicity, we assume that x and y are always of
the same type.

(♦defun foo (x y)
(macrolet

((foo-body (type x y)
v(*let (temp)

(declare (type .type temp))
(♦set temp

(sin!! (+! ! (♦!! (the .type ,x)
(+ !! (the ,type ,y) (!! 2)))))

temp
)))

(cond

64 *Lisp Compiler Guide, Part II: Practicum

((typep x '(pvar single-float))
(foo-body (pvar single-float) x y))

((typep x '(pvar double-float))
(foo-body (pvar double-float) x y))

((typep x '(pvar (complex single-float)))
(foo-body (pvar (complex single-float)) x y))

((typep x '(pvar (complex double-float)))
(foo-body (pvar (complex double-float)) x y))

)))

Often what we really want, especially when using a CM-2 system with single-precision
floating-point hardware, is a very fast version for single-float arguments, and simply
something that works otherwise. If this is the case, we can redefine foo as follows.

(*defun foo (x y)
(if (and (typep x '(pvar single-float))

(typep y '(pvar single-float)))
(*let (temp)

(declare (type (pvar single-float) temp))
(*set temp

(sin!! (+!! (*!! (the (pvar single-float) x)
(+!! (the (pvar single-float) y)

(! ! 2))))))
temp
)

(compiler-let ((*compilep* nil))
(sin! ! (+.! ! (*! ! x (+! ! y (! ! 2)))))
)))

This rendition makes the *Lisp compiler generate a very fast version of the code for
single-float inputs while letting the *Lisp interpreter handle all other cases. The
(com piler-let (('com pilep* nil)) form turns off the *Lisp compiler for the body ofthe
com piler-let. A useful macro more expressive of this concept is:

(defmacro *nocompile (&body body)
'(compiler-let ((*compilep* nil)) ,@body))

Using this 'nocom pile macro, the com piler-let expression may be rendered:

(♦nocompile (sin!! (+!! (*!! x (+! ! y (!! 2))))))

Similarly, it is trivial to define a 'com pile macro to turn on the *Lisp compiler.

(defmacro ‘compile
((&key (safety 1) (warning-level :high)) &body body)
'(compiler-let ((*compilep‘ t) (‘safety* .safety)

(‘warning-level* .warning-level))
..body))

With these two macros, we can write operations that switch between code intended for
optimization by the ‘Lisp compiler and normal evaluation by the *Lisp interpreter.
Once code is debugged, we may want to ‘compile it without error checking; this will
speed up the execution of ‘compiled code. Here is a macro to turn on the ‘Lisp com
piler with no safety.

(defmacro ‘compile-blindly (&body body)
'(compiler-let

((‘compilep* t) (‘safety* 0) (‘warning-level* :high))
,.body))

Version 5 .0 65

9.2 Generalizing Functions Based on the
Lengths of Arguments

As a slightly different example of generalizing ‘Lisp code, let’s try to define a function
that takes a signed pvar of unspecified size and adds 17 to it. Here is the basic function:

(defun bar (x) (‘set x (+!! x (!! 17))))

To ‘compile it, we might write

(‘defun bar (x)
(declare (type (pvar (signed-byte *)) x))
(‘set x (+!! x (!! 17)))
)

Unfortunately, the form (declare (type (pvar (signed-byte *)) x)) declares x as a
mutable signed-byte pvar. This promises not only that is x is of unspecified size but
that the size of x can actually change. (For more information on mutable pvars, see
chapter 8 of the Supplement to the *Lisp Reference Manual.) As long as x is not modi
fied (i.e, as long as it is used only as an rvalue) this does not matter. If we modify x, as in

66 "Lisp Compiler Guide, Part II: Practicum

the *set in the above code, the semantics of the declaration dictate that the size of x
may change. While the *Lisp Compiler can generate code that allows pvars to change
size as required, this is not necessarily efficient.

Assuming we know that the result of adding 17 to x will not overflow, it is not necessary
to direct the *Lisp compiler to allow x to change size. In this case, the proper way to
define the bar function is:

(*defun bar (x)
(declare (type (pvar (signed-byte (pvar-length x))) x))
(*set x (mod!! x (!! 10)))
)

Here an expression is substituted for the length argument in the pvar type declaration.
This arcane declaration informs the *Lisp compiler that x is a signed-byte pvar that is
“as long as it is.”

Unlike Common Lisp declarations, virtually any arbitrary expression may be used for
the length arguments to pvar type declarations. The baz definition below illustrates.

(defun baz (y)
(*let (temp)

(declare (type (pvar
(unsigned-byte (min (* (pvar-length y) 2) 32)))

temp))
))

This sort of parameterization is another powerful tool in generalizing function defini
tions.

9.3 Generalizing Simple Functions
by Making Them Macros

A final technique for generalizing a simple function to simply turn it into a macro.
Let’s go back to our original definition of foo:

(defun foo (x y) (sin!! (+!! (*!! x (+!! y (!! 2))))))

Version 5 .0 67

As a macro, we can write foo as:

(defmacro foo (x y) '(sin!! (+!! (♦!! ,x (+!! ,y (!! 2))))))

As long as the types of x and y are known to the *Lisp compiler inside of the functions
that call the foo macro, we win.

(♦defun fl (x y)
(declare (type (pvar single-float) x))
(declare (type (pvar (unsigned-byte 8)) y))
(♦set x (foo x y))
x)

(♦defun f2 (x y)
(declare (type (pvar (complex single-float)) x))
(declare (type (pvar double-float) y))
(♦set x (foo x y))
x)

Here, we let the *Lisp compiler determine how to ^compile the (sin!! (+!! (*!! x (+!! y
(!! 2))))) expression efficiently each time the foo macro is called in a program. While
this kind of trick can waste code space, the benefits of code flexibility and reduced
programming time often outweigh this cost.

In summary, with a little care, it is possible to write *Lisp code that is both flexible and
efficient. Conditionalizing with the typep function, forcing type-restricted return val
ues with the coerce!! function, using pvar declarations with indefinite length
specifiers, and using macros are all viable means to this end.

Index

Index

Symbols
!!, 16, 59
+ !!, 21
-!!, 21
*!!, 21
/!!, 21

A
add-declares, 35
*and, 5
array pvars, 12

B
boolean pvars, 12

c
CM-2, 64
ceiling!!, 21
character pvars, 12
‘ compilation-speed*, 40
‘ compilep*, 6, 27
compiler options, 27, 28, 29, 30,

35, 36, 37, 39, 40, 41, 42
menu, 22
safety, 18—24, 55
setting values of, 22—26

compiler-let, 25, 64
‘ compiling*, 6
complex pvars, 12
*cond, 5
‘constant-fold*, 39

D

declare, 14, 16, 26. 51, 53, 56, 57
defined-float pvars, 12

deftype, 12
‘defun, 15, 26, 49, 52, 56, 57
defun, 51, 52
‘defvar, 56
do, 56

F
flet, 17
float!!, 22
floor!!, 21
front-end pvars, 12
ftype, 14, 56, 57
function, 14, 56

G
general mutable pvars, 5, 12
general pvars, 5, 12
‘ generate-comments*, 42

I
‘ if, 5
‘ immediate error if location*, 19
*immediate-error-if-location‘ , 41
‘ inconsistency-action*, 28
‘ integer-length, 5
isqrt!!, 21

L
labels, 17
‘ let, 5, 6, 15, 26, 49, 56, 57
let, 56
‘ let*, 5, 15, 26, 49, 56
‘ locally, 15, 16, 26, 52, 53, 56, 60
‘ logand, 5
‘ logior, 5
lognot!!, 21

71

72 Index

*logxor, 5

M

machine-type, 32
*max, 5
*min, 5
mod!!, 21
mutable pvars, 12, 61

0
^optimize, 16, 25
optimize, 16, 25
optimize-bindings, 30
optimize-check-stack, 42
optimize-peephole, 30
*or, 5

P
pref, 5
pref!!, 22
^proclaim, 13, 53, 56, 57
proclaim, 13
*pset, 5, 21, 22
pull-out-subexpressions, 31
pvar *, 12
(pvar *), 5
pvar t, 12
(pvar t), 5

R
rem!!, 21
round!!, 21

s
* safety*, 29

•set, 5, 6, 21, 49, 50
*setf, 5, 21
* sic-print-length *, 29
sic-print-level, 29
signed-byte pvars, 12
•space*, 41
•speed*, 40
sqrt!!, 21
string-char pvars, 12
structure pvars, 12
*sum, 5

T
the, 15, 53, 59, 60
truncate!!, 21
type, 14
type declarations, 8
typep, 62

u
‘ unless, 5
unsigned-byte pvars, 12
use-alwavs-instructions, 32
use-undocumented-paris, 36

V

verify-type-declarations, 37

W

•warning-level*, 27
•when, 5

X
*xor, 5

I

