
Programming in *Lisp

In Parallel Software Bulletin No. 4 April 1989

6

Programming in *Lisp In Parallel

Place this subsection of the In Parallel bulletin at the front of the volume entitled Pro-
gramming in *Lisp, which was distributed with Version 5.0 of CM System Software.
Each month, place the new In Parallel subsection on top of the one for the previous
month.

Reports in This Issue

*Lisp Language Restrictions... 7
star-setf-pref-bug ... 7
star-locally-bug... 8
cond-bang-bang-bug 9
sideways-aref-bug... 10

*Lisp Simulator Restrictions... 10
nested-star-with-vp-set-sim-bug.. 10
setf-aref-sim -bug... 11
star-defvar-array-or-struct-sim-bug.. 13

7

Programming in *Lisp In Parallel

The following restrictions in *Lisp, Versions 5.0 and 5.0.1, were not reported in previ-
ous issues o f In Parallel.

Restrictions

The following restrictions in the *Lisp language, Version 5.0 and 5.0.1, were not previ
ously reported.

Environment

:. *Lisp, Versions 5.0 and 5.0.1, any front-end/CM configuration.

The form (*setf (pref foo (grid i j)) k) does not work outside of foo’s vp set.

> (*cold-boot)
4096
(64 64)
> (def-yp-set matrix (128 128)

: *defvars ((a (! ! 0.0) nil (float-pvar))))
MATRIX
> (ppp a :end 10)
0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 .0 0.0 0.0 0.0 0.0
> (grid 11)
#S(ADDRESS-0BJECT GEOMETRY-ID 2 CUBE-ADDRESS 5)
> (pref a (grid 1 1))
0.0

8 Programming in *Lisp In Parallel

> (*setf (pref a (grid 1 1)) 25)
NIL
> (pref a (grid 1 1))
0.0 ; ; ; ? ? ?
> (ppp a :end 10)
0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0
> (set-vp-set matrix) ;;; This fixes it
#<VP-SET Name: MATRIX, Allocation form: (CREATE-GEOMETRY
:DIMENSIONS (QUOTE (128 128))), Dimensions (128 128), Ge-
ometry-id: 5, Nesting-level: 0>
> (grid 1 1)
#S(ADDRESS-OBJECT GEOMETRY-ID 5 CUBE-ADDRESS 3)
> (ppp a :end 10)
0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0
> (pref a (grid 1 1))
0. 0
> (*setf (pref a (grid 1 1)) 23)
NIL
> (pref a (grid 1 1))
23.0
>

Workaround

Call set-vp-set before the form (*setf (p re f...)), as shown in the code exam
ple above. Or use (cube-from-vp-grid-address (pvar-vp-set foo) i j) in
stead of (grid i j).

ID star-locally-bug

Environment

*Lisp, Versions 5.0 and 5.0.1, any UNIX front end with any CM configuration.

Description

The *Lisp "locally macro occasionally generates code that encounters a re
striction in the Lisp compiler. This usually manifests itself as an error message
that “the object does not match its declared type.”

Software Bulletin No. 4, April 1989 9

Reproduce By

(defun foo ()
(let ((i 1))

(•locally
(declare (type fixnum i))
(M i))))

Workaround

Change the optimization levels speed and safety. This restriction occurs at
some levels and not at others.

Alternatively, set the *Lisp compiler option *verify-type-declarations* to nil.
Or get the same effect by setting the *Lisp compiler option 'safety* to 0.

ID cond-bang-bang-bug

Environment

*Lisp, Versions 5.0 and 5.0.1, any front-end/CM configuration.

Description

The *Lisp macro cond!! produces an incorrect expansion when there are no
value forms in an arm. For example, the following code does not work:

(cond!! ((zerop!! (!! 0))))

But the code below does work:

(cond!! ((zerop!! (!! 0)) t!!))

Workaround

Either provide an explicit value for the arm, or rewrite the cond!! expression as
an or!! expression.

10 Programming in * Lisp In Parallel

ID sideways-aref-bug

Environment

*Lisp, Versions 5.0 and 5.0.1, any front-end/CM configuration.

Description

The *Lisp function sideways-aref!! shares the aref32 restriction documented
in the Paris section of the January 1989 issue of In Parallel (page 42). The value
of the index parameter is checked in unselected processors.

*Lisp Simulator Restrictions

The following restrictions in the *Lisp simulator, Version F15, were not previously re
ported.

ID nested-star-with-vp-set-sim-bug

Environment

*Lisp simulator, Version F15; *Lisp, Versions 5.0 and 5.0.1.

Synopsis

Repeatedly executing code that uses nested *with-vp-set forms eventually
causes the *Lisp simulator to transfer control to the debugger.

Description

The state of the mechanism that keeps track of context within a vp set is not
reset properly when a vp set is exited. This can cause errors while executing
code that uses nested *with-vp-set forms and that restricts the currently se
lected set while inside a nested vp set.

Software Bulletin No. 4, April 1989 11

Reproduce By

;;; -♦- Mode: LISP; Syntax: Common-1isp; Package: ♦SIM-I;
;;; Base: 10 -♦-

(IN-PACKAGE "♦SIM-I")

(defun test-pref (count ^optional (collisions :no-collisions))
"Useless function for pref!! test.”
(♦cold-boot)
(♦all

(let ((vp-fine (create-vp-set '(8 8)))
(vp (create-vp-set '(4 4 4))))
(♦with-vp-set vp-fine

(*let (source!!)
(♦with-vp-set vp

(♦let (dest!!)
(dotimes (x count)

(print *sim-i::*css-current-level*)
(if (zerop (mod x 10)) (format t "~D " x) (princ #\.))
(♦set dest!! (pref!! source!! (self-address!!)

:collision-mode collisions))
))))))))

(test-pref 50)

Workaround

There is no complete workaround. In the above example, simply not using :no-
collisions allows the code to execute, because only :no-coIIisions traverses a
path that causes code with nested vp sets to be used.

ID setf-aref-sim -bug

Environment

*Lisp simulator, Version F15; *Lisp, Versions 5.0 and 5.0.1.

12 Programming in *Lisp In Parallel

Description

For one-dimensional arrays, the *Lisp simulator confuses array indices with
array values when it attempts to do indirect addressing by executing a state
ment of the following form:

(*setf (aref!! (...))

Reproduce By

;;; Create an array, set it to all zeros, and print it out. Next,
;;; try to setf-aref element 1 to value 7. This works in the
;;; *Lisp interpreter, but the simulator sets element 7 to value
;;; 1 instead.

(in-package '*1i sp)

(defun setf-bug ()
(♦let ((buff (make-array!! 8 :element-type '(unsigned-byte 8)))

(index (!! 1))
(value (!! 7)))
(dotimes (i 8)

(*setf (aref!! buff (!! i)) (!! 0)))
(format t ,!~%Buff should be all 0's~%,!)
(ppp buff :end 1)
(*setf (aref!! buff index) value)
(format t "~%Buff should have 7 in position 1 -%")
(ppp buff :end 1)))

Here is the output from the *Lisp interpreter:

> (setf-bug)

Buff should be all 0's

#(0 0 0 0 0 0 0 0)
Buff should have 7 in position 1

(0 7 0 0 0 0 0 0) <----- [This is correct.]
NIL
>

Here is the output from the *Lisp simulator:

Software Bulletin No. 4, April 1989 13

> (*cold-boot)
Thinking Machines *Lisp Simulator. Version 15.0
32
(8 4)
> (setf-bug)

Buff should be all 0's

#(0 0 0 0 0 0 0 0)
Buff should have 7 in position 1

(0 0 0 0 0 0 0 1) <----[Instead, it put a 1 in position 7/]
NIL
>

Workaround

Reverse the value and index arguments.

ID star-defvar-array-or-struct-sim-bug

Environment

*Lisp simulator, Version F15; *Lisp, Versions 5.0 and 5.0.1.

Description

If a proclaimed general pvar or an unproclaimed pvar is initialized to an array
pvar or to a structure pvar, the initializing *defvar form results in an error.

Reproduce By

Compile the following file within the *Lisp simulator environment:

;;; Mode: LISP; Syntax: Common-1isp; Package: *SIM-I;
;;; Base: 10 -*-

(IN-PACKAGE "*SIM-I")

14 Programming in *Lisp In Parallel

(*cold-boot)

(defconstant TERRA-WIDTH 10)
(defconstant TERRA-LENGTH 10)

;;; TERRA-LENGTH is simply the larger dimension of the TERRAIN,

(defconstant ARMY-GROUP-SIZE 10)

(def-vp-set TERRA v(,TERRA-WIDTH ,TERRA-LENGTH))

(*defstruct (M-Squared)
(Terrain-Type #\C :type string-char)
(Occupant 0 :type (unsigned-byte (logcount ARMY-GROUP-SIZE))))

(*defvar TERRAIN (Make-M-Squared!!)
"The land where all this happens"
TERRA)

At this point, the debugger reports an error in return-pvar-array-to-pool.

Workaround

Before initializing a *defvar to a structure or array pvar, first ^proclaim the
*defvar as a structure or array pvar. For example, insert

(♦proclaim ' (type (pvar M-Squared) TERRAIN))

before the (*defvar TERRAIN . . .) form in the example above.

Programming in *Lisp

In Parallel Software Bulletin March 1989

Programming in *Lisp In Parallel

Place this subsection of the In Parallel bulletin at the front of the volume entitled Pro
gramming in *Lisp, which was distributed with Version 5.0 of CM System Software.
Each month, place the new In Parallel subsection on top of the one for the previous
month.

11

*Lisp Hints

The following are not restrictions, but hints for using Paris programming utilities from
*Lisp, Version 5.0.

ID timing-code-hint

Please note that future releases of CM System Software may include a better timing
facility, and the current CM:time may not continue to be supported.

Environment

*Lisp, Version 5.0, any front-end/CM configuration. CM:time is not available
when using the *Lisp simulator.

Description

Use the Paris macro CM:time to record the execution time of *Lisp code. For
example, the following code:

(*cold-boot :initial-dimensions '(256 256))
4096
(256 256)

(cm:time (scan!! (!! 1) '+!!))
produces a response like the following:

Evaluation of (SCAN!! (!! 1) '+!!) took 0.004006 seconds of
elapsed time, during which the CM was active for 0.002058 sec
onds or 51.38% of the total elapsed time.
As the example shows, the CM:time macro reports the following information:

• Total elapsed time (0.004 seconds)

• The amount of time the Connection Machine itself was running (0.002
seconds)

• The ratio of these two numbers (51.38%)

12 Programming in *Lisp In Parallel

This ratio is normally referred to as CM utilization. In general, CM utilization
increases as the number of virtual processors per physical processor (the vp
ratio) increases.

The CM:time macro cannot be nested. For example, the following code is in
correct:

(CM:TIME
(progn

(CM:TIME (subroutine-1))
(CM:TIME (subrout ine-2))
))

The best way to time code is, therefore, to do the timing layer by layer. For
example, to time a program like the following:

(defun main ()
(initialize)
(step-1)
(step-2)
(step-3)
(cleanup)
)

rewrite it as:

(defun main ()
(cm:time (initialize))
(cm:time (step-1))
(cm:time (step-2))
(cm:time (step-3))
(cm:time (cleanup))
)

Once you determine how much time each routine takes, remove the CM:time
calls from this outer layer and put CM:time calls around the subroutines that
constitute the body of initialize, step-1, step-2, step-3, and cleanup. For
instance:

(defun step-1 ()
(cm:time (substep-1))
(cm:time (substep-2))
(cm:time (*set the-answer (substep-3)))
)

In this way you can, layer by layer, determine which procedures and sub-
procedures are using the most Connection Machine time.

Software Bulletin No. 3, March 1989 13

ID determining-memory-use-hint

Please note that future releases of CM System Software may include a better memory-
space facility, and the current CMI::cm-room may not continue to be supported.

Environment

•Lisp, Version 5.0, any front-end/CM configuration. CMI::cm-room is not
available when using the *Lisp Simulator.

Description

Use the Paris macro CMI::cm-room to determine how much memoryyou have
left. For example, the following code produces the response shown:

(cmi::cm-room nil)

Total number of bits per processor: 65536
Number of bits used by connection machine system software:
1536
Number of bits allocated in heap: 3874
Number of bits free in the heap (fragmentation): 0
Number of bits allocated in the stack: 288
Number of free bits: 59837
NIL
As the example shows, CMI::cm-room reports the following information:

• The total number of bits of memory per physical processor (65536)

• The number of bits reserved for use by the CM System Software (1536)

• The number of bits allocated for use by permanent pvars (i.e., those
allocated using *defvar and allocate!!) (3874)

• A fragmentation statistic, which reports the number of bits used up by
“holes” in memory. As with any storage management system, memory
space can develop gaps between allocated memory areas. With *Lisp,
holes can be created when a user deallocates permanent pvars, using
•deallocate or *deallocate-*defvars. In the example shown, no holes
in memory space have been created yet.

• The number of bits allocated for use by temporary pvars (i.e., those
allocated using *let) (288)

The number of bits available (59837)

Programming in *Lisp

In Parallel Software Bulletin February 1989

Programming in *Lisp In Parallel

Place this subsection of the In Parallel bulletin at the front of the volume entitled Pro
gramming in *Lisp, which was distributed with Version 5.0 of CM System Software.
Each month, place the new In Parallel subsection on top of the one for the previous
month.

Contents

*Lisp Restrictions Corrected in Version 5.0.1 ... 11
array-to-pvar-grid-bug-1.. 11
array-to-pvar-grid-bug-2.. 12
self-bang-bang-bug... 12
var-len-pvar-bug.. 13
vpset-damaged-by-coldboot-detach.. 13

A *Lisp Interpreter Restriction .. 14
star-defstruct-bug.. 14

11

*Lisp Restrictions Corrected in Version 5.0.1

The following list of previously reported *Lisp restrictions have been corrected in CM
System Software Version 5.0.1. These restrictions were reported in In Parallel, Num
ber 1.

allocate-bang-bang-bug
array-to-pvar-bug-1
array-to-pvar-bug-2
heap-memory-not-reclaimed-when-vp-set-deallocated
lisp-too-big
setf-pref-with-address-object-bug
star-defun-bug
star-pset-with-add-bug
star-setf-pref-does-not-reclaim-stack
star-when-bug

Following are additional *Lisp restrictions corrected in CM System Software Version
5.0.1. These were not previously reported.

ID array-to-pvar-grid-bug-1

Environment

*Lisp and Lisp/Paris, Version 5.0, any front-end/CM configuration.

Description

The Lisp/Paris functions that write array data to the CM (i.e., CM:write-news-
array, CM:write-array-by-cube-address, and CM:write-array-by-news-ad-
dress) overloaded the CM input first-in first-out (FIFO) queue in certain situ
ations. Overloading the FIFO had several possible consequences: the data
written might have been corrupted, the CM might have crashed, the CM might
not have executed following instructions correctly, and if the front end was a
VAX it might have crashed. The situation that usually caused the problem was
performing an operation that took a long time immediately before calling the
write data function. Such operations include communications instructions and
other array data-writing functions.

r

12 Programming in *Lisp In Parallel

This restriction has been corrected in CM System Software Version 5.0.1. It
was caused by the Paris restriction called bitblt-cross-seq, which has been
corrected in CM System Software Version 5.0.1.

ID array-to-pvar-grid-bug-2

Environment

•Lisp and Lisp/Paris, Version 5.0, VAX front end using any CM configuration.

Description

The Lisp/Paris functions that write array data (CM:write-news-array,
CM:write-array-by-cube-address, and CM:write-array-by-news-address)
may have caused VAX front ends to crash if there was an error while writing
the data. This restriction has been corrected in CM System Software Version
5.0.1. It was caused by the Paris restriction called bitblt-cross-seq, which has
been corrected in CM System Software Version 5.0.1.

ID self-bang-bang-bug

Environment

The *Lisp compiler, Version 5.0, any front-end/CM configuration.

Description

This restriction has been corrected in CM System Software Version 5.0.1. The
operation self!! returns a structure pvar containing two slots: one for the send
address and one for the geometry ID. Because of an oversight in the *Lisp
compiler implementation, only the send address slot was initialized.

Software Bulletin No. 2, February 1989 13

ID var-len-pvar-bug

Environment

*Lisp, Version 5.0, any front-end/CM configuration.

Description

If Met was called with a variable-length pvar and the pvar was given an initial
value, the pvar was allocated in heap memory instead of on the stack where it
belonged. Because *let was allocating variable-length pvars on the heap, this
memory was never de-allocated when the Met was exited, unnecessarily reduc
ing the available CM memory. A variable-length pvar is of any one of the fol
lowing types:

(unsigned-pvar *)
(signed-pvar *)
(float-pvar * *)
(complex-pvar * *)
This restriction has been corrected in CM System Software Version 5.0.1.

ID vpset-damaged-by-coldboot-detach

Environment

*Lisp, Version 5.0, any front-end/CM configuration.

Description

This restriction has been corrected in CM System Software Version 5.0.1. In
one particular circumstance, a defined and instantiated VP set was not re-in
stantiated after *cold-boot. The following series of actions resulted in a run
time error in the VP set initialization code: defining a VP set, cold-booting,
detaching, attaching to a CM portion of a different physical size, then cold-
booting again.

14 Programming in “Lisp In Parallel

A *Lisp Interpreter Restriction

The following restriction in Versions 5.0 and 5.0.1 has not been reported previously.

ID star-defstruct-bug

Environment

The *Lisp interpreter, Versions 5.0 and 5.0.1, any front-end/CM configuration.

Description

When a *def struct form is interpreted instead of compiled, attempting to use
one of the accessor functions results in an infinite recursion, causing a stack
overflow or core dump.

Reproduce By

Evaluate a *defstruct form from a Lisp Listener; then call one of its accessor
functions.

Workaround

Always compile *defstruct forms. It is best to place *defstruct forms in a sepa
rate file and always use only the binary version of that file.

*Lisp

III P n m l l d Software Bulletin January 1989

*Lisp In Parallel

Put this section of the In Parallel bulletin at the front of the volume entitled Program
ming in *Lisp, which was distributed with Version 5.0 of *Lisp. Each month, put the
new *Lisp In Parallel section on top of the one for the previous month. This way, the
most current notes on using *Lisp will always be available for reference.

*Lisp Language Restrictions

What follows are descriptions of previously undocumented restrictions on various
*Lisp language constructs.

Restrictions on Vp Sets

Several restrictions on the creation and use of vp sets with *Lisp Version 5.0 have re
cently been discovered. These apply to both the *Lisp interpreter and the *compiler.

ID def-vp-set-bug-1

Synopsis

The construct (def-vp-set foo nil :*defvars ((bar))) can not be run twice
in a row.

Description

If this is attempted, the second call results in an error, complaining that bar
is unbound. This bug typically occurs during recompilation of a file con
taining a call to def-vp-set.

Reproduce by

(def-vp-set foo nil :*defvars ((bar)))
(def-vp-set foo nil :*defvars ((bar)))

Workaround

Either *cold-boot or deallocate the vp set before re-executing the code.

11

12 *Lisp In Parallel

ID def-vp-set-bug-2

Synopsis

A def-vp-set form can not be called twice in a row with intervening
*cold-boot and allocate-vp-set calls.

Description

If this is done, an error message complains of an attempt to use a vp set
which has not been instantiated.

Reproduce by

(def-vp-set foo nil :*defvars ((bar)))
(*cold-boot)
(allocate-processors-for-vp-set foo '(128 128))
(def-vp-set foo nil :*defvars ((bar)))

Workaround

•deallocate the :*defvar bar before the second call to def-vp-set.

ID vp-set-redefinition-bug

Synopsis

Trying to redefine a vp set that hasn’t had its processors allocated gener
ates an error if a :*defvar from the original vp set definition isn’t in the
redefinition of that vp set.

Reproduce by

(def-vp-set c-vp-set nil :*defvars ((c-varl t ! !)))
(def-vp-set c-vp-set nil :*defvars ((c-var2 t !!)))
results in this error message

Trap: The variable *LISP::C-VAR1 is unbound.
While in the function *LISP—I:RE-EVALUATE-STILL—EXISTING-
OLD—*DEFVARS SI:*EVAL EVAL

Software Bulletin No. 1, Jan. 1989 13

Workaround

Deallocate the vp set before redefining it.

ID heap-memory-not-reclaimed-when-vp-set-deallocated

Synopsis

A few bits of heap memory are not reclaimed when a vp set is deallocated.

Reproduce by

Allocate a vp set, then deallocate it. Use CMI::CM-ROOM before and af
ter. The heap usage will not be the same.

Workaround

Execute

(cm:deallocate-heap-field (*lisp-i::vp-set-border-bits my-vp-set))

immediately before deallocating my-vp-set.

ID setf-pref-with-address-object-bug

Synopsis

The pref operation, when composed with setf, does not properly reference
address objects.

Reproduce by

(*defvar sfl (self-address!!) nil big-2d-vp-set)

(defun foo (x)
(*with-vp-set 2d-vp-set

(setf (pref sfl x) 3.4)
(pref sfl x)))

14 *Lisp In Parallel

(foo (grid 1 1))
3 .0 « « « should be 3 . 4
(pref sfl 5)

3.4

Workaround

none.

Restrictions on Array Pvars

There are several newly-discovered restrictions on the use of array pvars with *Lisp
Version 5.0. These apply to both the *Lisp interpreter and the *compiler.

ID array-to-pvar-bug-1

Synopsis

The array-to-pvar operation can not write only a portion of a front end
array into the CM; the destination pvar must be large enough to receive all
front end array elements.

Description

The array-to-pvar operation signals an error if given :cube-address-start
and :cube-address-end arguments specifying a number of processors
that is less than the number of effective elements in the array—as dictated
by the array offset argument. This should be legal and should have the ef
fect of writing the first

(- :cube-address-end :cube-address-start)
array elements into the pvar processors.

Reproduce by

TEST
> (cm:attach)
;;; Loading source file "/usr/local/etc/cm_configuration.lisp"
8192
> (*cold-boot)

Software Bulletin No. 1, Jan. 1989 15

8192
(128 64)
> (array-to-pvar (make-array 100 :initial-element 1.0)

test :cube-address-end 50)
»Error: Starting at array-offset 0, the array provided has 100
elements. But you are attempting to write 50 elements
into the CM

In 4.3 this worked without complaint, putting 1.0 in the first 50 processors.

Workaround

Make a smaller front-end array and use it as the source-array argument to
• array-to-pvar.

ID array-to-pvar-bug-2

Synopsis

A call to array-to-pvar yields incorrect results if the dest-pvar is a mutable
integer pvar.

Description

The *Lisp array-to-pvar operation does not treat variable length destina
tion pvars correctly. It fails to grow the dest-pvar to accommodate the
source data.

Reproduce by

(*defvar integer-pvar (!! 0))
(ppp (array-to-pvar (make-array 10 :initial-element 33)

integer-pvar :cube-address-end 10) :end 10)
This yields:

1 1 1 1 1 1 1 1 1 1

instead of:

33 33 33 33 33 33 33 33 33 33
whereas

16 *Lisp In Parallel

(ppp (array-to-pvar (make-array 10 :initial-element 33)
nil :cube-address-end 10) :end 10)

prints ten 33’s, as it should.

Workaround

Don’t provide a dest-pvar argument within the array-to-pvar form. The
code above can be made to work thus:

(*when (<!! (self-address!!) (!! 10))
(*set integer-pvar (array-to-pvar

(make-array 10 :initial-element 33)
nil :cube-address-end 10))

(ppp integer-pvar :end 10))
Alternatively, provide a dest-pvar with a definite length (e.g.,
(field-pvar 8)), or initialize the dest-pvar with a value that ensures it is
large enough to hold all of the data in the source array.

ID nested-array-declare-within-star-let-bug

Synopsis

A nested pvar array declaration does not work properly if variables are
used to specify inner dimension lists.

Reproduce by

(setq x '(5))
(setq y ' (4))
This doesn’t work:

(*let (temp)
(declare (type (pvar (array (array single-float x) y))

temp))
nil

Software Bulletin No. 1, Jan. 1989 17

Workaround

This does work:

(•let (temp)
(declare (type (pvar (array single-float x)) temp))
nil
)

And so does this:

(•let (temp)
(declare (type (pvar (array (array single-float (10)) y))

temp))
nil
)

ID allocate-bang-bang-bug

Synopsis

Using allocate!! to allocate array pvars whose element type length must be
evaluated at run time causes a lisp run time error.

Reproduce by

(allocate!! nil nil
'(pvar (array (unsigned-byte

•current-send-address-length*) (3))))

Workaround

There is no general workaround. Use backquote if possible:

'(pvar (array (unsigned-byte
,*current-send-address-length*) (3)))

18 * Lisp In Parallel

Restriction on *defun Declarations in Lucid Lisp

ID star-defun-bug

Synopsis

In some cases *defun does not work in *Lisp running under Lucid Lisp.

Description

The operation * defun is a macro. Unless the first forms are declare forms,
*Lisp will macroexpand them, looking for declare forms. If the first forms
within a * defun need to be macroexpanded and if they implicitly reference
the Common Lisp *safety* compiler variable, then the *defun will not be
correctly interpreted or compiled.

The reason for this is that the Lucid compiler erroneously binds ‘ safety*
to nil.

Reproduce by

(*defun foo (x y)
(•locally (declare (type float-pvar x y))

(BODY)))

Workaround

Only use declare forms as the first forms in a *defun.

Software Bulletin No. 1, Jan. 1989 19

Problems with Memory Use

Three problems with memory usage in ’Lisp Version 5.0 have recently been discov
ered.

ID pref-bang-bang-runs-out-of-memory

Synopsis The message

Foward sprint-send-with-trace has exceeded its allowed space for
saving out trace data.
CM Microcode Function: CMI::SAVE-OUT-PETIT-CYCLE-TRACE

is indicative of running out of memory using pref!! without a
.•collision-mode argument (i.e., using backwards routing).

Description

Repeated calls to pref!! will cause *Lisp code to run out of heap space.
This is true of both ’compiled and ’ interpreted code.

Workaround

Use a :collision-mode argument of icollisions-allowed or :no-collisions.

ID star-setf-pref-does-not-reclaim-stack

Synopsis

Under certain circumstances, using (*setf (pref ... does not reclaim the
’Lisp stack after it finishes execution. This is true of both ’compiled and
’interpreted code.

Description

This occurs when the destination of a (*setf (pref ... is not a symbol, but
rather an expression. If used in a tight loop, this can result in stack over
flow.

20 *Lisp In Parallel

Reproduce by

(*setf
(pref (discrete-attribute-value!!

(aref! (record-discrete-attribute-array! ! "“record! !*)
(!! (the fixnum i))))

processor)
pos))
(print (list 'after (length *lisp-i::*temp-pvar-list*)))

)

Workaround

(•let () (*setf (pref ...
That is. wrap a (*let () ...) around the offending form..

ID lisp-too-big

Synopsis

The VAX *Lisp image uses more virtual memory than it should on a V A X
front end.

Description

As distributed, the V A X Lisp bands have many more dynamic free seg
ments allocated than are strictly necessary. This causes the Lisp to con
sume up to 26 megabytes more V M than they need on startup.

Workaround
V A X Customers can reduce Lisp memory usage greatly by reducing the
number of free segments in their disksaved Lisp bands.

To reduce this memory usage, do the following:

% starlisp
;;; Lucid and TMC copyright messages

> (room t) ;;; display amount of memory being used
;;; 42142 words [168568 bytes] of dynamic storage in use.

Software Bulletin No. 1, Jan. 1989 21

2987872 words [11951488 bytes] of free storage available
before a GC.
6017886 words [24071544 bytes] of free storage available
if GC is disabled.
Semi-space Size: 11840K bytes [185 segments]
Current Dynamic Area: Dynamic-l-Area
GC Status: Enabled
Reserved Free Space: OK bytes [0 segments]
Memory Growth Limit: 49152K bytes [768 segments], total
Memory Growth Rate: 2048K bytes [32 segments]
Reclamation Ratio: 25% desired free after garbage collection
Area Information:
Name Size [used/allocated]

21K/64K bytes,
0K/11836K bytes,

Foreign-Area
Dynamic-O-Area
Lots of free segments
Dynamic-l-Area
Static-Area
Read-Write-Area
Readonly-Pointer-Area
Readonly-Non-Pointer-Area

NIL
> (sys:disksave "/usr/local/starlisp-new" :full-gc

:dynamic-free-segments 32 :reserved-free-

165K/11836K bytes,
8799K/8832K bytes,
837K/896K bytes,
1546K/1600K bytes,
12392K/12416K byte

1/1 segment
0/185 segments

3/185 segments
138/138 segments
14/14 segments
25/25 segments

s,194/194 segments

t .-verbose t
segments 16)

;;;lots of messages from disksave
> (sys:quit)
%

Miscellaneous *Lisp Language Restrictions

Two problems to avoid are described below: one bug and one common user error.

22 * Lisp In Parallel

ID star-pset-with-add-bug

Synopsis

A bug in the CM:send-with-f-add-1L Paris operation results in errors
when the *Lisp *pset operation is called using the :add combiner with
floating point or complex data.

Reproduce by

The results obtained follow the code below. Note that the results printed
show the answers when the combiner is specified as : default, : no-colli
sions, and :add.The first two combiner values (-.default and: no-collisions)
produce the results expected. The third combiner value (:add) gets the
wrong numbers.

Software Bulletin No. 1, Jan. 1989 23

;;; -♦- Package:*lisp; Syntax:Common-1isp; Mode:lisp -♦-

(in-package '♦lisp)
(defmacro !!tf (x) '(Hp (the fixnum ,x)))

(defun buggy ()
(♦locally

(♦let (v test-vp-set m)
(declare (type (pvar single-float) v))
(declare (type (pvar (unsigned-byte

cm:*cube-address-length*)) m))
(setq test-vp-set (create-vp-set '(4096)))
(♦set v (!! 1.0))
(♦with-vp-set test-vp-set

(♦let ((rO (!! 0.0)) (rl (!! 0.0)) (r2 (!! 0.0)))
(declare (type (pvar single-float) rO rl r2))

; assembly into a residual vector.

(♦with-vp-set #default-vp-set#
(♦set m (self-address-grid!! (!! 0)))
(♦when (<!! (self-address-grid!! (!! 0)) (!! 10))

(♦pset :no-collisions v rO m :vp-set test-vp-set)
(♦pset .-default v rl m :vp-set test-vp-set)
(♦pset :add v r2 m :vp-set test-vp-set)

) ; end #when.
) ; end ♦with-vp-set.

(print 11 final residual vector after assembly ")
(dotimes (i 10)

(format t fl~% i=~d; r (no-collisions) = ~d;
r (default) =~d; r (add) =~d"

i (pref rO (grid i))
(pref rl (grid i)) (pref r2 (grid i))))

) ; end ♦let.
) ; end ♦with-vp-set.

) ; end ♦let.
) ; end ♦locally.

) ; end defun.

24 *Lisp In Parallel

(buggy)
final residual vector after assembly.... !t

i=0; r (no-collisions) =1.0; r (default) =1.0; r (add) =1.0
i=l; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=2; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=3; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=4; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=5; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=6; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=7; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0
i=8; r (no-collisions) =1.0; r (default) =1.0; r (add) =1.0
i=9; r (no-collisions) =1.0; r (default) =1.0; r (add) =0.0

NIL

Workaround

There is no obvious workaround for the *pset with :add bug.

ID copy-bang-bang

Synopsis

The copy!! operation may only be used in conjunction with a segment pvar.
This is a documented *Lisp restriction but users stumble over it all the
time. The *Lisp documentation notes that ’copy!! may only be used in con
junction with a segment pvar. (See pages 46-47 of the *Lisp Reference Man
ual, Version 5.0.)

Reproduce by

Here is a non-inclusive copy scan and its result.

(ppp (scan!! (!! 10) 'copy!! :include-self nil) :end 20)

0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Instead, we would expect the non-inclusive copy scan to return:

0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

In contrast, an inclusive copy scan correctly returns all 10’s:

Software Bulletin No. 1, Jan. 1989 25

(ppp (scan!! (!! 10) 'co p y !! :include-self t) :end 20)
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Workaround
Always use a segment pvar when using scan!! with copy!!. For example:

(scan!! (!! 10) 'copy!! :include-self nil
:segment-pvar (zerop!! (self-address!!)))

Compiler Restrictions

What follows are descriptions of previously undocumented restrictions on the *Lisp
compiler.

ID off-grid-border-p-not-compiling

Synopsis

The off-grid-border-p!! operations can not be ““compiled by Version 5.0
of the *Lisp compiler. This fact should have been included in the*Lisp Re
lease Notes, Version 5.0 on page 22.

ID star-pset-not-compiled-properly

Synopsis

The ‘compilation of *pset is invalid in some circumstances.

Description

A ‘Lisp *pset form does not compile properly when the address-pvar pa
rameter is an experimental function that doesn’t compile (such as
address-plus-nth!!) and that contains some other ‘Lisp expression (such
as !!) that would have compiled had it not been inside an experimental
function form.

26 * Lisp In Parallel

Reproduce by

(*pset :no-collisions (the (field-pvar length) pvar)
(the (field-pvar length) dest)

(address-plus-nth!! start-address-object rank
(!! (the fixnum dimension-constant))))

Workaround

* * Put a *nocompile around *pset forms.

Alternately, don’t declare the parameters to the inner form that would
have compiled. For the example above, this would yield:

(*pset :no-collisions (the (field-pvar length) pvar)
(the (field-pvar length) dest)

(address-plus-nth!! start-address-object rank
(!! dimension-constant)))

ID star-set-fun-dest-mashes-stack

Synopsis

Using a function as the destination argument to *set causes the compiler
to generate code that incorrectly overwrites a portion of the stack.

Reproduce by

(♦proclaim '(ftype (function () (pvar bit)) bug-fcn))
(♦proclaim '(type (pvar bit) bug-var))
(♦defvar bug-var)
(defun bug-fcn () bug-var)

(defun demo-bug ()
(♦let (x!)

(declare (type (pvar (unsigned-byte 16)) x !))
nil
(format t 11 ~% Stack before #SET = -D"
cmi::♦next-available-stack-maddr#)

(♦set (bug-fcn) (!! 0))
(format t "~% Stack after ♦SET = ~D"
cmi::♦next-available-stack-maddr#)

Software Bulletin No. 1, Jan. 1989 27

))
» > DEMO-BUG

(demo-bug)
>
> Stack before *SET = 19
> Stack after *SET = 4
» > NIL
Obviously, the stack has been bashed.

Workaround

None.

ID star-when-bug

Synopsis

The *Lisp operation ‘ when may have trouble ^compiling if *cold-boot has
not yet been called for the first time.

Description

The problems, when they occur, can manifest in several different ways. Es
sentially, the compiler does not know that it is doing an operation that af
fects which processors are active.

Reproduce by

•Compile either of the following ‘ when expressions in a *Lisp that has not
ever executed *cold-boot. The first expression causes an internal inconsis
tency message.

(*when
(and!!

(not!! (off-grid-border-relative-p!! (!! 1) (!! 1)))
(news!! (the boolean-pvar new-edge!!) 1 1))

nil)

(*when
(and!!
(not!! (contour-point-head-p!! contour-points))

28 * Lisp In Parallel

(local-point-real-point-p!! hull-points))
nil)

Workaround

Call *cold-boot, or do the following:

(*lisp-i::setup-context-flag)
(*lisp-i::setup-test-flag)

ID star-proclaim-star-defun-bug

Synopsis

The *Lisp construct ('proclaim ’ (‘ defun... fails to allow the *Lisp com
piler to use proclaimed type information for forward references.

Description

If an operation is 'proclaimed as a 'defun, or if the return value of a func
tion is 'proclaimed, or both, then code containing forward references to
the 'proclaimed operation will nonetheless not be *compiled.

Reproduce By

(♦proclaim '(♦defun foo))
(♦proclaim '(ftype (function () (pvar (unsigned-byte 10))) foo))

(♦defun function-using-foo ()
(♦let ((some-pvar (foo nil)))

(declare (type (pvar (unsigned-byte 10)) some-pvar))
some-pvar))

The some-pvar initialization expression in this code can not be *compiled.
There is no error message.

Software Bulletin No. 1, Jan. 1989 29

Workaround

Avoid forward references or use the to give type information for the for
ward references. For example:

(*let
((some-pvar (the (pvar (unsigned-byte 10))(foo nil))))

• . .)

Simulator News

The *Lisp simulator, Version 5.0, is now available. All customer sites should have re
ceived a copy of the simulator. Call TMC Customer Support if your site does not yet
have the 5.0 *Lisp simulator.

