
The
Connection Machine
System

Supplement to the
*Lisp Reference Manual

Version 5.0
September 1988

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, September 1988

The information in this document is subject to change without notice and should not be
construed as a commitment by Thinking Machines Corporation. Thinking Machines Cor
poration reserves the right to make changes to any products described herein to improve
functioning or design. Although the information in this document has been reviewed and
is believed to be reliable, Thinking Machines Corporation does not assume responsibility
or liability for any errors that may appear in this document. Thinking Machines Corpora
tion does not assume any liability arising from the application or use of any information or
product described herein.

Connection Machine is a registered trademark of Thinking Machines Corporation.
CM -i, CM-2, CM, and Data Vault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, C*, and CM Fortran are trademarks of Thinking Machines Corporation.
VAX, ULTRIX, and VAXRI are trademarks of Digital Equipment Corporation.
Symbolics, Symbolics 3600, and Genera are trademarks of Symbolics, Inc.
Sun and Sun-4 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T Bell Laboratories.

Copyright © 1988 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1214
(617) 876-1111

Contents

Preface.. vii
Customer Support xi

Chapter 1 Complex Number P v a r s ... 1
1.1 Complex Pvar Type Definition, Predication, and Coercion........................ 1

1.1.1 Rules of Complex Contagion and Canonicalization................... 3

1.2 Mathematical Operations on Complex Pvars ... 3
1.2.1 Irrational and Transcendental Functions..................................... 4

Chapter 2 Character P v a r s .. 7
2.1 Character Pvar Type Definition ... 7
2.2 *Lisp Global Character Variables ... 8

2.2.1 Setting the Global Character Variables....................................... 9

2.3 Functions Operating on Character Pvars.. 10

2.3.1 Functions to Access Character Attributes.................................... 10
2.3.2 Functions to Construct and Convert Characters......................... 11
2.3.3 Character Predicate T e s ts .. 13

2.4 Character Control Bit Functions ... 17

Chapter 3 Array P v a r s ... 19
3.1 Array Pvar Type Definition... 19
3.2 Array Pvar Lim its........................... 20
3.3 Creating Array Pvars ... 21

3.3.1 Using make-array!! to Create Array Pvars 21
3.3.2 Using !! to Create Array Pvars.. 22
3.3.3 Using *let and *let* to Create Array Pvars 23
3.3.4 Using allocate!! to Create Array Pvars....................................... 24
3.3.5 Using *defvar and * proclaim to Create Array Pvars............... 25

iii

Contents

3.3.6 Array Pvars with Dynamically-Determined Dimensions 25

3.4 Creating Vector Pvars.. 27
3.5 Operations Returning Array Pvar Information... 28
3.6 Accessing Array Elements... 30

3.6.1 Indirect Addressing of Array Pvar Elements.............................. 31
3.6.2 Accessing Array Pvar Elements Directly: Aliasing.................... 32
3.6.3 Sideways Arrays: an Experimental Feature................................. 33

3.7 Logical Operations on Bit Array Pvars... 34
3.8 Mapping Functions Over Array Pvars.. 36
3.9 Notes on Using Array Pvars... 37

Chapter 4 Structure P v a r s .. 39
4.1 Defining Structure Pvars.. 40

4.1.1 What *defstruct Does ... 40
4.1.2 Formal *defstruct Definition................... 43

4.2 Structure Inheritance... 46
4.3 Referencing and Modifying Structure P vars... 47

4.3.1 Accessing Structure Pvar Contents Directly: A liasing.............. 48

4.4 Miscellaneous Operations on Structure Pvars... 49
4.5 Scanning Structures... 50
4.6 Detailed Documentation... 50

4.6.1 Options to *defstruct... 50
4.6.2 *defstruct Slot Options ... 53
4.6.3 *defstruct Options Exam ple.............................. 54

C hap ter 5 V irtual Processor Sets ... 55

5.1 Virtual Processor Sets in Release 5 .0 ... 55
5.2 How Virtual Processor Sets Work ... 56
5.3 Global Variables Related to VP S e ts ... 58
5.4 Operations to Create, Destroy, and Reinitialize Virtual Processor Sets .. 60
5.5 The Geometry of Virtual Processor S e ts .. 67
5.6 Selecting a VP Set ... 69
5.7 Pvars Associated with VP Sets ... 70
5.8 Getting Information About a VP S e t ... 73

mm

Chapter 6 N-D im ensional Interprocessor C om m u nication 77
6.1 Global Variables Related to N-Dimensional Communication 78
6.2 Enhanced *Lisp Communication Operations.. 78
6.3 New *Lisp Communication Operations... 83
6.4 Communication Across Virtual Processor S e ts ... 87

6.4.1 Addresses Translation Across VP Sets... 87
6.4.2 Address Translation Exam ples... 90
6.4.3 Inter-VP Set Communication Operations 91
6.4.4 Inter-VP Set Communication Examples 95

6.5 Address Objects—an Experimental Addressing Feature 97

6.5.1 What Address Objects D o ... 101

6.6 Obsolete *Lisp Communication Functions...101

Chapter 7 Assorted New *Lisp F ea tu res... 105
7.1 Generally Useful Forms ...105
7.2 Type Predication Functions.. 110
7.3 Type Coercion and Conversion Functions..I l l
7.4 Floating-Point Lim its...114
7.5 Logical Operations on Integer Pvars .. 116
7.6 Arithmetic Operations on Integer Pvars ..118
7.7 Byte Manipulation Function.. 119
7.8 Conversions between Integers and Gray C o d e..121
7.9 The Front-End Pvar T ype.. 122

7.10 *Lisp Error Checking...122
7.11 New Debugging Features.. 125

Chapter 8 Parallel Variable Types ... 129
8.1 Pvar Types... 130
8.2 Mutable Pvars...132
8.3 General Pvars...132
8.4 Mutable General Pvars ...133
8.5 Type Declaration and Coercion .. 135
8.6 If No Processors Are Active, No Type Coercion Happens141

Contents

v

Experim ental F e a tu r e s ... 143

A Warning About Experimental Features... 144

C hap ter 9 Experim ental Scanning w ith Segment S e ts 145

9.1 Operations for Segmented Scans... 145

C hap ter 10 Experim ental Paralle l Vector F u n c tio n s 149

10.1 Experimental Special-Purpose Single-Float Vector Operations151
10.2 Serial Equivalents of the Single-Float Vector Operations....................... 154

C hap ter 11 Experim ental P ara lle l Sequence O p e r a t io n s 155

11.1 Argument Conventions in Sequence Operations......................................156
11.2 Simple Operations on Sequence Pvars...156
11.3 Mapping Predicates Over Sequence Pvars... 158
11.4 Operations Modifying Sequence Pvar..159
11.5 Operations Searching Sequence Pvars ..162

Appendixes ... 167

Appendix A The R elationship between the
CM-2 A rchitecture, P aris , and *Lisp 169

A.1 Sprint Routing...169
A.2 Backward Routing... 170
A.3 Combining Routing... 170
A.4 Indirect Addressing... 170
A.5 Floating-Point Accelerator .. 171
A.6 Scans and Spreads... 171

Appendix B Exam ple Program 1: Text Processing 173

Appendix C Exam ple Program 2: D e te rm in an ts .. 179

Contents

vi

Preface

Objectives of This Manual Supplement

The Supplement to the *Lisp Reference Manual provides reference information about new fea
tures added to the *Lisp language for the release of Version 5.0. It does not replace the *Lisp
Reference Manual, Version 5.0.

intended Audience

The reader is assumed to have a working knowledge of Common Lisp, as described in Common
Lisp: The Language, and of *Lisp, as described in the *Lisp Reference Manual, Version 4.0. The
reader is further assumed to have a general understanding of the Connection Machine system.
The Connection Machine Front-End Subsystems manual provides the necessary background in
formation about the Connection Machine system.

Revision Information

This supplement is new with *Lisp, Version 5.0.

Organization of This Manual

Chapter 1 Complex Number Pvars
The first chapter describes the definition and use of complex number
pvars

Chapter 2 Character Pvars
The second chapter describes the definition and use of character pvars.

Chapter 3 Array Pvars
The third chapter describes the definition and use of array pvars.

Chapter 4 Structure Pvars
The fourth chapter describes the definition and use of structure pvars.

Preface

Chapter 5 Virtual Processor Sets
The fifth chapter explains the new virtual processor mechanism whereby
multiple virtual processor configurations may be employed during a single
session. Operations for defining and using virtual processor sets are de
scribed.

Chapter 6 N-Dimensional Interprocessor Communication
The sixth chapter explains how the new capability of defining rc-dimen-
sional virtual processor configurations affects communication within the
Connection Machine. New ^-dimensional communication facilities are
described.

Chapter 7 Miscellaneous New *Lisp Operations
The seventh chapter provides reference information about a variety of
new features introduced with version 5.0.

Chapter 8 .Parallel Variable Types
The eighth chapter describes all the valid pvar type specifiers supported by
*Lisp and explains the rules of type conversion and coercion for each type.

Chapter 9 Scanning with Segment Sets
The ninth chapter describes an experimental feature that supports non
contiguous segmented scan operations.

Chapter 10 Parallel Vector Operations
The tenth chapter describes experimental operations that provide opti
mized manipulation of parallel vectors. Serial equivalents of many of these
new operations are also described.

Chapter 11 Parallel Sequence Operations
The eleventh chapter describes experimental parallel equivalents of the
Common Lisp sequence operations.

Appendix A The Relationship between the CM-2 Architecture, Paris, and ♦Lisp
The first appendix describes the CM-2 hardware capabilities accessible
from *Lisp.

Appendix B Example Program 1: Text Processing
The second appendix is a sample program that demonstrates the use of
several *Lisp features new with Version 5.0.

Appendix C Example Program 2: Determinants
The third appendix is a sample program that demonstrates the use of sev
eral *Lisp features new with Version 5.0.

Preface

Associated Documents

The following documents should be read in the order listed before reading the Supplement to the
*Lisp Reference Manual.

• Connection Machine Front-End Subsystems

This volume explains how to configure the Connection Machine system and how to
access it from either a Symbolics Lisp Machine or a UNIX system. It includes:

• System Front Ends Release Notes, Version 5.0

• CM User's Guide: UNIX System Front End, Version 4.0

• CM Users Guide: Lisp System Front End, Version 4.0

Those working on a UNIX system front end should read both User's Guides; those
working on a Symbolics Lisp Machine front end need only read the second.

• Common Lisp: The Language by Guy L. Steele Jr. Burlington Mass.: Digital Press, 1984

This book defines the de facto industry standard Common Lisp.

• The *Lisp Reference Manual, Version 5.0

This manual provides a complete description of the *Lisp language through Version
4.0 and has been updated for Version 5.0. It covers the essential concepts of *Lisp and
is supplemented by the Supplement to the *Lisp Reference Manual, Version 5.0

The following related documents should be read along with the Supplement to the *Lisp Refer
ence Manual.

• The *Lisp Release Notes, Version 5.0

These release notes supersede all previous *Lisp release notes. They provide an over
view of all changes made to the language, to the interpreter, and to the compiler for the
release of version 5.0

• The *Lisp Compiler Guide, Version 5.0

This manual describes how to use the *Lisp compiler and provides helpful suggestions
for writing *Lisp code that will compile.

The following documents are recommended.

• Model CM-2 Technical Summary

This publication offers a succinct overview of the Connection Machine system.

• Connection Machine Parallel Instruction Set

This volume describes Paris, the Connection Machine system assembly level program
ming language.

ix

Preface

Notation Conventions

The notation and typograghical conventions used in this manual are reviewed below. These
conventions closely follow—but are not identical to—those used in Common Lisp: The Lan
guage.

The symbol => indicates evaluation. The symbol -> indicates macro expansion.

Symbol names within text appear in bold modem style typeface, as in *max.

Code examples are set in typewriter style typeface, as in:

(cons abra cadabra) => (abra cadabra)

Metavariables, names that stand for pieces of code, appear in italics. For example, the names of
arguments in function or macro descriptions appear in italics, as shown in the function descrip
tion format below.

Function descriptions are presented as show below:

function-name!! required-argl-integer-pvar required-arg2-integer-pvar [Function]
&optional optional-arg-float-pvar optional-arg-char-pvar
&rest rest-pvars
&key :key1 :key2 :keywest
&aux aux-arg-vars

In this example, the function f unction-name!! takes two required pvar arguments, required-
argl-integer-pvar and required-arg2-integer-pvar. Required arguments are always shown imme
diately after the function name in a function description. If present, optional arguments are
preceded by the appropriate lambda-list keywords: &optional, &rest, &key, and &aux.

The metavariable names used to represent arguments in function and macro descriptions indi
cate restrictions on argument type. Argument names with the suffix pvar must be parallel vari
ables. For example, the name integer-pvar restricts the argument to a parallel variable whose
fields in the currently selected set of processors must all contain integers.

Plural metavariable names are used to indicate multiple optional arguments of the same type.
The use of rest-pvars above demonstrates this. If restrictions on order and type exist for optional
arguments, these are reflected in the metavariable names. The metavariables optional-arg-
float-pvar and optional-arg-char-pvar above are examples.

Keyword argument names only are specified in function descriptions. Allowable keyword val
ues are enumerated and described in the text. Italicized metavariables are often used in the text
to refer to the values of keyword arguments. For example, the value of the keyword : keywest
would be referred to as keywest, and keywest might be restricted to symbols representing months
of the year. Calling function-name!! with :keywest ’February would put you on the beach
in winter.

x

Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection
Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1214

Internet
Electronic Mail: customer-support@think.com

Usenet
Electronic Mail: harvard!think!customer-support

Telephone: (617) 876-1111

For Symbolics users only:

The Symbolics Lisp machine, when connected to the Internet network, provides a special mail
facility for automatic reporting of Connection Machine system errors. When such an error oc
curs, simply press CTRL-M to create a report. In the mail window that appears, the To : field
should be addressed as follows:

To: bug-connection-m achine@ think.com

Please supplement the automatic report with any further pertinent information.

mailto:customer-support@think.com
mailto:bug-connection-machine@think.com

Chapter 1

Complex Number Pvars

*Lisp version 5.0 implements pvars containing complex numbers. Parallel equivalents
of most Common Lisp operations that accept complex numbers are now available in
*Lisp. *Lisp imposes greater restrictions on some of these operations than does Com
mon Lisp. These are fully described in the following discussion.

1.1 Complex Pvar Type Definition,
Predication, and Coercion

As in Common Lisp, the real and imaginary components of complex numbers in *Lisp
must each contain exactly the same data type. Unlike Common Lisp, complex pvars in
*Lisp are restricted to having floating-point values in their real and imaginary compo
nents. The type declaration for a complex pvar includes, either implicitly or explicitly, a
precision specification for these floating-point values.

The following shorthand type definitions are provided to allow the definition of com
plex pvars containing IEEE standard floating-point format components.

(pvar (complex single-float)) [Type]
(pvar (complex double-float)) [Type\

These forms specify single- and double-precision storage for both the real and imagi
nary components of complex number pvars.

A single-precision complex pvar uses 23 bits for the significand and 8 bits for the expo
nent of each component. A double-precision complex pvar uses 52 bits for the sig
nificand and 11 bits for the exponent of each component.

The complex pvar type is more explicitly specified as follows:

2 Supplement to *Lisp Reference Manual

(pvar (complex (defined-float significand exponent))) [Type]

The significand and exponent specifiers determine the number of bits used to store the
significand and exponent portions of the real floating-point numbers used for both the
real and imaginary portions of a complex pvar.

Example:

(*let* (cl c2)
(declare (type (pvar (complex single-float)) cl))
(declare (type (pvar (complex (defined-float 30 9))) c2))
(*set cl (sqrt!! (!! #C(-1.0 0.0))))
(*set c2 (log!! (!! #C(-1.0 0.0))))

)

PERFORMANCE NOTE

On a CM-2 with the special floating-point accelerator,
*Lisp code that uses complex pvars of type (pvar

(complex single-float)) in numeric calculations exe
cutes significantly faster than code that uses other
types of complex pvars.

complexp!! pvar [Function\

This predicate returns t in each processor whose value of numeric-pvar is a complex
number; it returns nil elsewhere. The argument pvar may be any pvar.

complex!! realpart-pvar &optional imagpart-pvar [Function]

This function returns a complex pvar that has, in each processor, the realpart-pvar
component as its real part and the imagpart-pvar component as its imaginary part.
Conversion according to the rule of floating-point contagion takes place as necessary.
That is, the bit field lengths of the exponent and significand components of floating
point numbers in all active processors are guaranteed to be as large as the largest rep
resentation of either component in any active processor.

The arguments realpart-pvar and imagpart-pvar must be non-complex numeric pvars.
If imagpart is not specified, then an imaginary part pvar of (!! 0) is provided.

(complex! ! realpart-pvar)
<=>
(coerce!! rea lpart-pvar '(pvar (complex float))

Chapter 1. Complex Number Pvars 3

1.1.1 Rules of Complex Contagion and Canonicalization

•Lisp does adhere to the rule of complex contagion as stated in Common Lisp: The
Language. When an operation is passed a pvar that contains a mixture of non-complex
and complex number components, the non-complex components are converted to
complex numbers by providing an imaginary part of 0.0.

•Lisp does not adhere to the rule of complex canonicalization as stated in Common
Lisp: The Language. That is, if the result of an operation on a complex pvar is, in any
processor, a complex rational with a zero imaginary part that result is not converted to
a non-complex rational consisting only of the real part: the zero imaginary part is pre
served.

In Common Lisp

(complex 0) => #C(0 0) = > 0

Given a complex number with a zero imaginary, Common Lisp drops the imaginary
part. In contrast, in *Lisp

(complex!! (!! 0)) => (!! #C(0.0 0.0))

Notice that *Lisp coerces both parts of the resulting complex pvar into a floating-point
representation.

1.2 Mathematical Operations on Complex Pvars

•Lisp provides parallel equivalents to most mathematical Common Lisp functions de
fined to accept complex arguments.

4 Supplement to "Lisp Reference Manual

The following *Lisp functions accept complex arguments.

zerop!! numberp!!
abs!!
phase!!

signum!!
conjugate!!
realpart!!
imagpart!!
exp!!
expt!!
loo!!
sort!!

=!!
/=!!
+!!
-!!
*!!
/!!
1+!!
1-!!
‘ sum
abs!!

sin!!
cos!!
tan!!
c is !!

asin!!
acos!!
tanh!!

sinh!!
cosh!!
atan!!

asinh!!
acosh!!
atanh!!

Most of these behave, in each processor, exactly like their Common Lisp counterparts.
Those functions listed and underlined are not exact parallel equivalents of Common
Lisp functions. To find detailed documentation of any of these operations, consult the
Master Index.

1.2.1 Irrational and Transcendental Functions

*Lisp restricts the use of some irrational and transcendental functions with respect to
complex numbers more strictly than does Common Lisp.

Complex Results

In *Lisp, it is an error if one of the following functions would have to return a complex
number pvar when given floating-point pvar arguments:

acosh!! atanh!!

To get a complex result from sqrt!!, asin!!, acos!!, acosh!!, or atanh!!, it is necessary to
first coerce its single argument into a complex pvar. To get a complex result from expt!!

or log!!, it is necessary to first coerce only the first argument into a complex pvar. The

sqrt!!

expt!! log!!

asin!! acos!!

Chapter 1. Complex Number Pvars 5

required coercion may be achieved by using the function complex!! or the function
coerce!!.

For example:

(sqrt!! (!! -1)) => error
(sqrt!! (complex!! (!! -1))) => (complex!! (!! 0.0) (!! 1.0))

(expt!! (!! -1) (!! 0.5)) => error
(expt!! (complex!! (!! -1)) (!! 0.5))
=> (complex!! (!! 0.0) (!! 1.0))

Argument Restrictions

*Lisp restricts the values of arguments supplied to these functions as described below.

sqrt!! numeric-pvar [Function]

The non-negative square root of numeric-pvar is returned.

It is an error if the argument numeric-pvar is either a floating-point pvar that contains
negative numbers or an integer pvar that contains negative numbers. The function
sqrt!! will never return a complex pvar as its result unless numeric-pvar is complex.

expt!! base-pvar power-pvar [Function]

This function computes and returns a pvar containing base-pvar raised to the power
power-pvar in each processor.

It is an error if the argument base-pvar is a negative floating-point pvar and the argu
ment power-pvar is a floating-point pvar. It is also an error if the argument base-pvar is
an integer pvar and argument power-pvar contains negative integers.

log!! numeric-pvar &optiona! base [Function]

The logarithm of numeric-pvar in base base is returned. If base is not supplied, the
natural logarithm is returned.

The argument numeric-pvar must be either a non-negative floating-point pvar or a
non-negative integer pvar. The argument base must be a positive, non-complex num
ber pvar.

6 Supplement to *Lisp Reference Manual

asin!! numeric-pvar [Function]
acos!! numeric-pvar [Function]
atanh!! numeric-pvar [Function]

These functions compute and return the arc sine, arc cosine, and the hyperbolic arc
tangent of numeric-pvar, respectively.

It is an error if the argument numeric-pvar is a floating-point pvar or an integer pvar
containing numbers of magnitude greater than 1.0.

acosh!! numeric-pvar [Function]

These functions compute and return the hyperbolic arc cosine and the hyperbolic arc
tangent of numeric-pvar.

It is an error if the argument numeric-pvar is a floating-point pvar or an integer pvar
containing numbers less than 1.0.

Chapter 2

Character Pvars

*Lisp Version 5.0 implements pvars containing characters. Parallel equivalents of al
most all Common Lisp operations that accept character data are now available in
*Lisp.

While arrays of characters are allowed in *Lisp, the parallel equivalent of strings is not
provided by *Lisp. This follows from the restriction that array pvars of varying lengths
in different processors are not supported in *Lisp.

2.1 Character Pvar Type Definition

There are two *Lisp pvar types that store character data. These are parallel equiva
lents of the Common Lisp character and string-char types.

(pvar character) [Type]
(pvar string-char) [Type]

Example:

(*let (chi)
(declare (type (pvar string-char) chi))
(*if (evenp!! (self-address!!))

(*set chi (!! #\Q))
(*set chi (!! #\L))

)))

7

8 Supplement to *Lisp Reference Manual

2.2 *Lisp Global Character Variables

In *Lisp, as in Common Lisp, character pvars have three attributes represented by
three bit fields: the code, the bits, and the font fields. *Lisp provides variables that
define the lengths of these fields as well as variables that define the upper bounds on
the values these fields may contain.

*char-code-length [Variable]

This defines the length in bits of the code subfield of a pvar character. The default is 8
bits. Pvars of type (pvar string-char) have only a code field and are the same length as
*char-code-length.

*char-code-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character code at
tribute. The default is 256.

*char-bits-length \Variable]

This defines the length in bits of the bits subfield of a pvar character. The default is
4 bits.

*char-bits-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character bits attrib
ute. The default is 16.

*char-font-length [Variable]

This defines the length in bits of the font subfield of a pvar character. The default is
4 bits.

*char-font-limit [Variable]

This is the upper exclusive bound restricting the value of the pvar character font attrib
ute. The default is 16.

Chapter 2. Character Pvars 9

* character-length [Variable]

This defines the total length in bits of a pvar of type pvar character. The default is
16 bits.

2.2.1 Setting the Global Character Variables

This function sets the values of the *Lisp character attributes, which are stored in
global character variables. The initialize-character function should be called before
*cold-boot is invoked.

A successful call to initialize-character returns zero values.

It is not necessary to call initialize-character unless *Lisp application code requires
global character variable values that differ from the defaults. If this is necessary, initial

ize-character must be invoked before *cold-boot. Calling initialize-character during
a session will cause existing character data to be garbled or lost.

The keywords :code, :bits, and :font take integer values specifying how many bits will
be allocated for each attribute of any character pvar. The defaults are :code 8, :bits 4,
and :font 4.

The value for :code must be greater than or equal to 7.

The value for :bits must be greater than 0.

The value for .-font must be greater than or equal to 0.

The keyword :f ront-end-p takes either t or nil as a value and defaults to nil. Iffront-end
is t, the global character variables are set to match the character storage format of the
front end.

Symbolics front ends have their code, bits, and font lengths set to 16,4, and 0, respec
tively. Under Lucid Common Lisp, these values are are 8,4, and 0. Note: These front-
end character attribute lengths are independent of the character attribute lengths on
the Connection Machine system.

initialize-character &key :code :bits :font
:front-end-p :constantp

[Function]

If code, bits, or font attributes are specified that differ in storage size from those of
front-end scalar character data, then it is impossible for some characters created on
the front end to be represented on the Connection Machine system or for some ele

10 Supplement to * Lisp Reference Manual

ments of character pvars to be represented on the front end. For example, with a UNIX
front end running Lucid Common Lisp,

(initialize-character :code 9)
(♦defvar foo (code-char!! (!! 511)))
(pref foo 0)

is in error. Given 9 code bits, the Connection Machine *char-code-limit becomes 512.
Meanwhile, the front end has only 8 code bits and a char-code-lim it of 256. Thus, the
front end cannot represent the characters stored in foo because the character code
value is too large.

The keyword :constantp takes a boolean value. This is used to specify whether or not
the sizes of character attributes are consistent across sessions. The *Lisp compiler
uses this distinction to choose between producing compiled code that uses the global
character variables and producing compiled code that substitutes hard coded values
for these variables. Therefore, code compiled w ith: constantp t will run reliably only in
worlds where the character attributes are the size specified at compile-time. Code
compiled with :constantp nil, need not be recompiled to move between worlds with
different character attribute sizes.

*Lisp operations on character pvars are parallel equivalents of the Common Lisp
character operations specified in chapter 13 of Common Lisp: The Language.

2.3.1 Functions to Access Character Attributes

These functions each return a pvar that contains the code, bits, or font attributes of
each character element of character-pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

2.3 Functions Operating on Character Pvars

char-code!! character-pvar
c har-bits!! character-pvar
char-font!! character-pvar

[Function]
[Function]
[Function]

Chapter 2. Character Pvars 11

By definition, the font and bits attributes of a string-char pvar are zero. It is always the
case that:

(char-bits!! string-char-pvar) => (!! 0)
(char-font!! string-char-pvar) => (!! 0)

2.3.2 Functions to Construct and Convert Characters

code-char!! code-pvar &optional bits-pvar font-pvar [Function]

This function attempts to construct a character pvar with the specified attributes. In
processors where this can be done, the resulting character is returned. In processors
where this can not be done, nil is returned.

All three arguments must be non-negative integer pvars. The optional bits-pvar argu
ment and the optional font-pvar argument each default to (!! 0).

make-char!! character-pvar &optional bits-pvar font-pvar [Function]

This function attempts to construct a character pvar with the same code attribute as
character-pvar and with the optionally specified bits and font attributes. In processors
where this can be done, the resulting character is returned. In processors where this
can not be done, nil is returned.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

Both optional arguments must be non-negative integer pvars; each defaults to (!! 0).

character!! char-or-int-pvar [Function]

Type coercion is attempted on the argument char-or-int-pvar. In processors where
this is successful, the resulting character is returned. In processors where this is unsuc
cessful, character!! returns nil.

The argument char-or-int-pvar must be a pvar of type character, string-char, integer,
or a general pvar containing only elements of these types.

12 Supplement to *Lisp Reference Manual

(character!! char-or-int-pvar)
<=>
(coerce!! char-or-int-pvar '(pvar character))

char-upcase!! character-pvar
char-downcase!! character-pvar
char-flipcase!! character-pvar

[Function]
[Function]
[Function]

These functions attempt to convert the case of each character element of character-
pvar. The return value of either operation is a pvar containing converted characters
where possible and intact original character values elsewhere. During these case con
versions, the values of the bits and font attributes are not changed. Notice that only
alphabetic characters are susceptible to case conversion. Thus, characters with non
zero bit field values will not be changed.

The argument character-pvar must be a pvar of type character or string-char, or a gen
eral pvar containing only elements of these types.

digit-char!! weight-pvar &optional radix-pvar font-pvar [Function]

This function attempts to construct a character pvar containing, in each processor, a
character of font font-pvar such that, taken as a digit of radix radix-pvar, that character
has weight weight-pvar. In each processor where this is possible, the resulting charac
ter is returned. In each processor where this is not possible, nil is returned.

All arguments must be non-negative integer pvars.

The function digit-char!! will never return nil in a processor where the value of fon t-
pvar is 0, that of radix-pvar is between 2 and 36 inclusive, and that of weight-pvar is less
than radix-pvar.

If a character having both upper and lower case representations will satisfy digit-

char!!, upper case letters are preferred. For example,

(digit-char!! (!! 14) (!! 16)) => (!! #\E)

char-int!! character-pvar [Function]

This function translates a character pvar into an integer pvar.

Chapter 2. Character Pvars 13

The return value is a non-negative integer pvar that holds the implementation-depend
ent encoding of each character in character-pvar.

The argument character-pvar must be a pvar of type character or string-char, or a gen
eral pvar containing only elements of these types.

The char-int!! function relies on the Connection Machine system’s encoding of char
acters. Results obtained from this function should not be expected to conform to re
sults obtained from the Common Lisp function char-int run on front-end machines.

int-char.'J integer-pvar [Function]

This function is the converse of char-int!!. It converts an integer pvar into a character
pvar. The return value is a character pvar which, if given to char-int!!, will return inte
ger-pvar.

The argument integer-pvar must be a non-negative integer pvar.

The int-char!! function relies on the Connection Machine system’s encoding of char
acters. Results obtained from this function should not be expected to conform to re
sults obtained from the Common Lisp function int-char run on front-end machines.

2.3.3 Character Predicate Tests

Each of the following functions tests its argument and returns a boolean pvar.

characterp!! pvar [Function]

This function returns t in those processors where character-pvar contains character
data and nil elsewhere.

The argument pvar may be any pvar.

string-char-p!! character-pvar [Function]

This function returns t in those processors where character-pvar contains string-char
data and nil in processors where character-pvar contains character data. To pass this
string-char type test, an element of character-pvar must have bits and font attributes
that are each of zero value.

14 Supplement to "Lisp Reference Manual

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

standard-char-p!! character-pvar [Function]

This function returns t in those processors where character-pvar contains an element
of type standard-char; it returns nil elsewhere. The Common Lisp definition of stan-

dard-char is used. To pass this type test, the value of character-pvar's bits and font
attributes must both be zero.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

graphic-char-p!! character-pvar [Function]

This function returns t in those processors where character-pvar contains a printing
character and nil elsewhere. On the Connection Machine, only characters with ASCII
values ranging from 32 to 127, inclusive, are considered graphic, printing characters.
Any character pvar with a bits field of non-zero value is not a graphic character pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

alpha-char-p!! character-pvar [Function]

This function tests its argument for alphabetic elements. In those processors where
character-pvar contains an alphabetic element, t is returned. In those processors where
character-pvar does not contain an alphabetic element, nil is returned.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

upper-case-p!! character-pvar [Function]
lower-case-p!! character-pvar [Function]
both-case-p!! character-pvar [Function]

These predicates test the case of the character components of character-pvar.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only elements of type character or string-char.

Chapter 2. Character Pvars 15

Where character-pvar contains characters in the range A through Z , upper-case-p!!

returns t.

Where character-pvar contains characters in the range a through z, lower-case-p!!

returns t.

Where character-pvar contains characters which, regardless of current case, may be
represented in both upper and lower case, both-case-p!! returns t.

For each function, the return value is nil in those processors containing character data
that fails to pass the test criterion.

digit-char-p!! character-pvar &optional radix-pvar [Function]

This function tests character-pvar for digits of radix radix-pvar.

In each processor containing a character-pvar element that is a digit of the specified
radix, digit-char-p!! returns a non-negative integer indicating the weight of the digit.
In those processors where the elements of character-pvar are not digits of the specified
radix, digit-char-p!! returns nil.

Notice that digit character pvars are always also graphic character pvars.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

The argument radix-pvar must be a positive integer pvar and defaults to (!! 10).

alphanumericp!! character-pvar [Function]

This function tests character-pvar for alphanumeric elements.

In those processors where character-pvar is either a digit (of radix 10) or an alphabetic
character, alphanumericp!! returns t. It returns nil where this test fails.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

(alphanumericp!! character-pvar)
<=>
(or!! (alpha-char-p!! character-pvar)

(not!! (null!! (digit-char-p!! character-pvar))))

16 Supplement to *Lisp Reference Manual

char«!! character-pvar &rest more-character-pvars [Function]
char/*!! character-pvar &rest more-character-pvars [Function]
chard! character-pvar &rest more-character-pvars [Function]
char>!! character-pvar &rest more-character-pvars [Function]
chared! character-pvar &rest more-character-pvars [Function]
char>=!! character-pvar &rest more-character-pvars [Function]

These functions compare the character element of character-pvar in each processor
against the character elements of each &rest argument pvar in the same processor.

A boolean pvar is returned. It contains t in those processors where the test is true and
nil in those processors where the test is false.

The argument character-pvar and each optional &rest argument must be a character
pvar, a string-char pvar, or a general pvar containing only character or string-char
elements.

Examples:

(char<!! (!! #\A) (!! #\B) (!! #\Z)) => t !!
(char>!! (!! #\z) (!! #\j) (!! #\a)) => t !!
(char<=!! (!! #\5) (!! #\1) (!! #\5)) =>nil!!

The ordering of alphanumeric character pvars used by *Lisp is the ASCII ordering:

...0<1<2...<8<9...<A<B<C...<X<Y<Z..<a<b<C...<x<y<z...

This ordering is the same as the total ordering produced by applying the function
char-int!! to such pvars. Notice that this ordering might not be the same as that used
by the front-end machine for the scalar equivalents of these character comparison
functions. This implementation dependency should be taken into account when char
acter comparisons on front end scalar characters are mixed with the parallel character
comparisons described here.

For the purpose of these functions, if any two characters differ in any attribute, they
are considered different. Thus,

(char=!! (make-char!! (!! #\Q) (!! 0) (!! 0))
(make-char!! (!! #\Q) (!! 3) (!! 0))) =>nil!!

This strictness with respect to attributes is relaxed in the following set of functions.

char-equal!! character-pvar &rest more-character-pvars [Function]
char-not-equal!! character-pvar &rest more-character-pvars [Function]
char-lessp!! character-pvar &rest more-character-pvars [Function]
char-greaterp!! character-pvar &rest more-character-pvars [Function]
char-not-greaterp!! character-pvar &rest more-character-pvars [Function]
ehar-not-lessp!! character-pvar &rest more-character-pvars [Function]

Chapter 2. Character Pvars 17

These functions make case-insensitive comparisons between the character element of
character-pvar in each processor and the character elements of each &rest argument
pvar in the same processor. Differences in case, bit, and font attributes are ignored.

A boolean pvar is returned. It contains t in those processors where the test is true and
nil in those processors where the test is false.

The argument character-pvar and each optional &rest argument must be a character
pvar, a string-char pvar, or a general pvar containing only character and string-char
elements.

2.4 Character Control Bit Functions

char-bit!! character-pvar bit-name-pvar [Function]

This function tests the bit-name-pvar bit setting of character-pvar.

In those processors where character-pvar contains a character element that has the
bit-name-pvar bit set, char-bit!! returns t. It returns nil where character-pvar contains
a character element that does not have the bit-name-pvar bit set.

The argument character-pvar must be a character pvar, a string-char pvar, or a general
pvar containing only character and string-char elements.

Unlike its Common Lisp analogue, the argument bit-name-pvar must be an integer
pvar (either an unsigned-byte or a signed-byte pvar). The following correspondence
holds between legal values for the bit-name-pvar argument and the recommended
Common Lisp control-bit constants:

18 Supplement to "Lisp Reference Manual

Com mon Lisp *Lisp

:control (!! 0)
:meta (!! 1)
:super (!! 2)
: hyper (!! 3)

For example:

(char-bit!! (!! #\control-x) (!! 0)) => t !!

set-char-bit!! character-pvar bit-name-pvar newvalue-pvar [Function]

This function constructs a copy of character-pvar with the bit-nam e-pvar bit set to
newvalue-pvar in each processor. It returns a pvar containing characters that resemble
those in character-pvar except that the bit-nam e-pvar bit is set on or off depending on
the value of the boolean pvar, newvalue-pvar.

The argument character-pvar may be a character pvar, a string-char pvar, or a general
pvar containing only character or string-char elements.

The argument bit-nam e-pvar must be an integer pvar in the range (!! 0) through (!! 3),
inclusive. The same correspondence holds between legal values for the bit-nam e-pvar
argument to set-char-bit!! and the Common Lisp control-bit constants as detailed
above for char-bit!!.

For example:

(set-char-bit!! (!! #\ x) (!! 0) t !!) => (!! #\control-x)
(set-char-bit!! (!! #\control-x) (!! 0) t !!) => (!! #\control-x)
(set-char-bit!! (!! #\control-x) (!! 0) nil!!) => (!! #\x)

Chapter 3

Array Pvars

*Lisp defines array pvars as the parallel equivalent of Common Lisp arrays with the
exception that more stringent restrictions on type and size apply to array pvars than to
Common Lisp arrays. *Lisp pvar arrays are pvars containing one array per processor.
As with Common lisp arrays, *Lisp array pvars are stored in row major order.

Whereas Common Lisp includes both general and specialized arrays, *Lisp supports
only specialized array pvars. Each element of an array pvar must be a pvar of a given
restricted type; array pvars may not contain general pvars. Also, general pvars may not
contain array pvars as elements.

Adjustable array pvars are currently not implemented in *Lisp. This means that it is
not possible to dynamically alter the dimensions of an array pvar.

Array pvars of variably sized elements are not currently implemented in *Lisp. This
means it is an error to attempt to create array pvars containing elements of non-uni
form size.

The allowable types for array pvar elements are currently restricted to valid Common
Lisp types of fixed size. Thus, array pvar elements may not be declared mutable.

3.1 Array Pvar Type Definition

(pvar (array element-type dimension-list)) [Type]

This form defines the array pvar type. The element-type specifier may be any valid pvar
type of fixed size, including the array pvar type itself. The dimension-list specifier must
be a list of one or more non-negative integers.

19

20 Supplement to * Lisp Reference Manual

Example:

(*let (al)
(declare (type (pvar (array (unsigned-byte 32) (10 10))) al))
al

)

(*let (a2)
(declare (type (pvar (array (array boolean (2 2)) (10))) a2))
a2

)
Notice how easy it would be to forget to enclose a2’s outer dimension specifier, 10,
within a list.

IMPORTANT

The dimension specification within an array type dec
laration must be a list. Be careful not to omit the paren
theses when declaring a one-dimensional array.

3.2 Array Pvar Limits

Three *Lisp constants constrain the allowable dimensions of *Lisp array pvars.

*array-rank-limit [Constant]

This is the upper exclusive bound on the number of dimensions a pvar array can have.
The number of dimensions specified for a *Lisp array pvar must be less than
•array-rank-limit. *array-rank-limit is guaranteed to be greater than or equal to 8.

22 Supplement to *Lisp Reference Manual

Unlike its Common Lisp counterpart, make-array!! does not support the following
keyword parameters: :initial-contents, adjustable, :fill—pointer, :displaced-to, and
:displaced-index-offset.

Example:

(setq new-array-pvar
(make-array!! '(2 2 2) :element-type '(complex single-float)

:initial-element 5.3)
)
(aref (pref new-array-pvar 0) 0 1 0)
=> #C(5.3 0.0)

A pvar consisting of a three-dimensional array containing single-precision complex
numbers in each processor is defined and bound to the symbol new-array-pvar. The
value (!! 5.3) is *set into new-array-pvar so that, in all active processors, each array
element is initialized. An arbitrary array reference in processor 0 verifies the presence
of an initial pvar array element value.

3.3.2 Using !! to Create Array Pvars

The function !! can be used to create an array pvar allocated on the ’Lisp stack.

!! common-lisp-array [Function]

A call to !! with a Common Lisp array as its argument creates and returns a *Lisp
array pvar. The resulting array pvar has a copy of all the elements of common-lisp-
array in each active processor.

If common-lisp-array has a fill pointer, it is ignored; all elements of the array are cop
ied into the CM. If common-lisp-array is adjustable, the resulting array pvar will none
theless be of a fixed size equal to that of common-lisp-array at the tim e!! was invoked.
Similarly, if common-lisp-array is displaced, the elements of the array it is displaced to
will be copied into the array pvar, but the array pvar will not itself be displaced.

The type of any array pvar created w ith!! is determined by the types of the elements in
common-lisp-array. If common-lisp-array contains elements of various types, the
*Lisp rules of type coercion apply. These rules closely follow the rules of Common Lisp
and are detailed in chapter 8. For example, if a Common Lisp array containing both

integer and floating-point elements is supplied as an argument to !!, the resulting array
pvar has elements of type floating-point.

It is an error to ca ll!! on a Common Lisp array containing elements that cannot, ac
cording to the *Lisp rules of type coercion, be coerced into a single, fixed-size type. For
example, an array containing both characters and integers is not a legal argument to !!.

Nested arrays of arbitrary depth are legal arguments to !!. For instance, an array of
arrays of structures is a permissible argument to !!—if that structure was defined us
ing *def struct. Be aware that calling !! with these kinds of nested arrays can be a very
slow operation.

Examples:

(*let ((parallel-array (!! #(1 2 3))))
(declare (type

(pvar (array (unsigned-byte 8) (3))) parallel-array))
(do-something-to array-pvar))

A one-dimensional Common Lisp array of three elements is duplicated in all active
processors and parallel-array is bound to the result.

(*let ((points (!! #(#(2 4)#(6 12)#(7 16)#(5 20)#(2 56)))))
(declare (type

(array-pvar (vector (unsigned-byte 8) 2) (5)) points))
(do-something-to points))

A five-element Common Lisp array of two-element vectors is duplicated in all active
processors and points is bound to the result.

3.3.3 Using *let and *let* to Create Array Pvars

Array pvars can be allocated on the *Lisp stack by declaring them appropriately from
within a *let or a *let* form. Be careful: when allocating an array using * let or ‘ let*,

don’t forget to declare the type of the pvar because undeclared pvars that have held
any other type of data cannot hold arrays.

Chapter 3. Array Pvars 23

24 Supplement to *Lisp Reference Manual

Examples:

(*let (foo)
(declare (type (pvar (array single-float (3 3))) foo))
(*setf (aref!! foo (!! 0) (!! 1)) (!! 2.3))
(aref (pref foo 0) 0 1)
)

= > 2 . 3

(*let ((bar (make-array!! ' (3 3 3) :element-type '(pvar boolean)
:initial-element t)

))
(declare (type (pvar (array boolean (3 3 3))) bar))
(ppp bar :end 1)
)

=>
#3A(((T T T) (T T T) (T T T)) ((T T T) (T T T) (T T T)) ((T T T) (T T T)
(T T T)))

3.3.4 Using allocate!! to Create Array Pvars

Array pvars may be allocated on the *Lisp heap by using allocate!!.

Example:

(setq baruch (allocate!! (!! #(1 2 3)) nil
'(pvar (array (unsigned-byte 8) (3)))))

(ppp baruch rend 2)

=> #(1 2 3) #(1 2 3)

3.3.5 Using *defvar and ‘ proclaim to Create Array Pvars

Array pvars may be allocated on the *Lisp heap by using 'defvar and 'proclaim .

Be careful: when allocating an array pvar using *defvar, be sure to first declare the type
of pvar using 'proclaim. Undeclared pvars cannot hold arrays.

Examples:

(♦proclaim '(type (pvar (array character (3 4 5))) fum))

(*de£var fum (make-array!! '(3 4 5)
:element-type '(pvar character)
:initial-element #\L))

(ppp (aref!! fum (!! 1) (!! 2) (!! 0)) :end 10)

=> #\L #\L #\L #\L #\L #\L #\L #\L #\L #\L

Chapter 3. Array Pvars 25

(♦proclaim '(type (pvar (array (unsigned-byte 8) (3))) fee))
(♦defvar fee)
(♦set fee (!! #(1 23)))
(ppp fee rend 3)

=> #(1 2,3) #(1 2 3) #(1 2 3)

3.3.6 Array Pvars with Dynamically-Determined Dimensions

It is possible to allocate array pvars whose dimensions are known only at run time. A
properly constructed array pvar type declaration within a 'let or a 'let* form is used.
The dimensions specification of the declaration may be given in one of two ways:

1. A list of dimension values, (xyz), may be given, such thatx.y, andz each evalu
ate to integers at run time.

2. A variable may be named. Its value at run time must be a list of integers.

Examples:

(defun make-2d-array-pvar (x y)
(*let (temp-array)

(declare (type (pvar (array single-float (x y))) temp-array))
temp-array))

26 Supplement to * Lisp Reference Manual

(♦proclaim '(type (pvar (array single-float (5 5))) 5-by-5))
(*defvan 5-by-5)
(♦set 5-by-5 (make-2d-array-pvar 5 5))

The formal parameters x and y are bound to specific values upon invocation of
make-2d-array. The dimensions of temp-array are then determined upon execution
of the form.

Example:

(defun good-make-array-pvar (input-scalar-array)
(let ((dims (array-dimensions input-scalar-array)))

(♦let (temp)
(declare (type (pvar (array single-float dims)) temp))

temp)))

(defun bad-make-array-pvar (input-scalar-array)
(♦let (temp)

(declare (type (pvar (array single-float
(array-dimensions input-scalar-array)))

temp))
temp))

Any array pvar declaration form expects a list of integers specifying array dimensions.

The bad-make-array-pvar function definition is in error because it places the form
(array-dimensions input-scalar-array) inside the declare form. The declaration
should instead contain a list of integer dimensions or a symbol bound to such a list.

The good-make-array-pvar function definition works properly because the symbol
dims is bound to a list of integers: the result of (array-dimensions input-scalar-array).

The symbol dims is then supplied to the declare form, which, when executed, finds
dims properly bound to a list of integers.

Chapter 3. Array Pvars 27

3.4 Creating Vector Pvars

Just as Common Lisp vectors are equivalent to one-dimensional Common Lisp arrays,
*Lisp vector pvars are equivalent to one-dimensional array pvars. Unlike Common
Lisp, which provides both typed and general vectors, *Lisp does not support vector
pvars that have elements of type t. *Lisp supports only typed vectors.

(pvar (vector element-type length)) [Pvar Type]
(vector-pvar element-type length) [Pvar Type]

These two forms may be used interchangeably in typed vector pvar declarations. The
element-type must be a Common Lisp scalar type. The length defines the number of
element-type elements contained in each active processor.

typed-vector!! component-type &rest pvars [Function]

The function typed-vector!! creates and returns a one-dimensional array pvar of type
component-type. Initial contents are copied from the supplied pvars. The nth pvar
argument is *set into the nth vector element.

The component-type argument describes the pvar type of the vector pvar’s compo
nents—not the type of the component vectors’ elements.

Notice that,

(typed-vector!! '(pvar single-float) (!! 1.0) (!! 2.0) (!! 3.0))

<=>
(*let (temp)

(declare (type (pvar (array single-float (3))) temp))
(dotimes (j 3)
(*setf (aref! ! temp (!! j)) (! ! float (1+ j)))
))

)

That is, a call to typed-vector!! is equivalent to a Met form that declares and then in
itializes a one-dimensional array pvar.

Chapter 10 of this supplement describes experimental *Lisp operations that manipu
late numeric vectors.

28 Supplement to * Lisp Reference Manual

3.5 Operations Returning Array Pvar Information

*array-element-type array-pvar [Function]

This function returns a scalar type specifier for the elements array-pvar. If no proces
sors are active, *array-element-type nonetheless returns the proper element type.

*array-rank array-pvar [*Defun]

This operation returns an unsigned integer equal to the number of dimensions in
array-pvar.

array-rank!! array-pvar [Function]

This function returns a pvar containing, in each processor, an unsigned integer equal
to the number of dimensions in array-pvar.

* array-dimension array-pvar axis-scalar [*Defun]

This operation returns an unsigned integer equal to the size of the array-pvar dimen
sion referenced by axis-scalar.

The argument axis-scalar must be an unsigned integer less than the rank of array-pvar.

array-dimension!! array-pvar axxs-scalar-pvar [Function]

This function returns a pvar containing, in each processor, an unsigned integer equal
to the size of the aris-scalar-pvar dimension of array-pvar.

The argument axis-scalar-pvar must be a pvar containing, in each processor, an un
signed integer less than the rank of array-pvar.

*array-dimensions array-pvar [*Defuri\

This operation returns a list enumerating the dimensions of array-pvar. This list is of
length (*array-rank array-pvar).

Chapter 3. Array Pvars 29

array-dimensions!! array-pvar [Function]

This function returns a vector pvar containing, in each processor, a vector such that
the value of the nth element of the vector is the extent of the nth dimension of array-
pvar in that processor.

This operation returns an unsigned integer equal to the total number of array-pvar
elements contained in each processor.

Notice that the result is not the total number of array elements in all processors.
Rather, it is the number of elements in a single processor and this count is the same for
all processors.

array-total-size!! array-pvar [Function]

This function returns, in each processor, an unsigned integer equal to the total number
of array-pvar elements contained in that processor.

array-in-bounds-p!! array-pvar &rest pvar-subscripts [Function]

This function returns a boolean pvar with t in every processor where pvar-subscripts
represents a valid reference to array-pvar and nil elsewhere.

array-row-major-index!! array-pvar &rest pvar-subscripts [Function]

This function returns an unsigned pvar identifying the row-major index represented
by pvar-subscripts in each processor.

The pvar-subscripts arguments must be valid array-pvar subscripts. Each of these
&rest arguments corresponds to a dimension of array-pvar, they must be given in or
der, starting with dimension 0. The number of pvar-subscripts arguments must equal
the rank of array-pvar.

array-total-size array-pvar [Defun]

30 Supplement to *Lisp Reference Manual

3.6 Accessing Array Elements

aref!! array-pvar &rest subscript-pvars [Function]

This function returns a pvar on the *Lisp stack. The result pvar contains, in each proc
essor, a copy of the array-pvar element specified by subscript-pvars. The type of the
returned pvar is the same as the element type of array-pvar.

The argument array-pvar must be a *Lisp array pvar.

One subscript-pvar argument must be given for each dimension of array-pvar. Each sub-
script-pvar must contain non-negative integers within the range of indices for that di
mension. The number of arguments given as subscript-pvars must equal the rank of
array-pvar.

Examples:

(aref!! 2by5-array-pvar (!! 1) (!! 4))

This returns a pvar containing, in each processor, a copy of the element (1,4) of
2by5-array-pvar found in that processor.

The function aref!! may be used in conjunction with *setf to selectively set the value of
individual array pvar elements. For example,

(*setf (aref!! 2by5-array-pvar (!! 1) (!! 4)) (!! 2))

sets element (1,4) of 2by5-array-pvar in each processor to 2.

(*let (foo)
(declare (type (pvar (array single-float (3 3))) foo))
(*setf (aref!! foo (!! 0) (!! 1)) (!! 2.3))
foo)

This form declares foo to be a two-dimensional single-float array pvar, sets the first
element of the second row in each processor to 2.3, and return foo.

Chapter 3. Array Pvars 31

IMPORTANT

To modify array pvar elements, use (*setf (aref!!

This is the only way to modify an individual array pvar
element. It is an error to use the construct
(*set (aref!!...). Using this erroneous construct only
results in modifying a copy of the array pvar element.
The original array pvar would not be changed.

3.6.1 Indirect Addressing of Array Pvar Elements

In *Lisp, the term indirect addressing is used to refer to pvar array referencing that uses
different index values in different processors.

If the subscript arguments to aref!! are textually of the form (!! integer), aref!! extracts
the values of array elements from uniform coordinates in all processors. If the sub
script arguments to aref!! contain different values in different processors, indirect ad
dressing is said to take place. Indirect addressing references array elements indirectly
by deriving element positions (addresses) from pvars that hold various values in differ
ent processors.

A s an illustration, suppose three pvars exist, X, Y, and C:

(ppp X :end 4) = > 0 1 1 0

(ppp Y :end 4) = > 0 4 1 2

(ppp C :end 4) => #\A #\B #\C #\D

(•let (letters)
(declare (type (pvar (array character (2 5))) letters))
(*setf (aref!! letters X Y) C)

)

In processor 0, the letters array element (0,0) is set to A. In processor 1, the letters

array element (1,4) is set to B, and so on.

32 Supplement to * Lisp Reference Manual

3.6.2 Accessing Array Pvar Elements Directly: Aliasing

The result of calling aref!! is always a copy of the contents of an array element pvar and
is always allocated on the *Lisp stack. To create a pvar referring to the same bits in
Connection Machine memory as the bits of an array element pvar, use the macro
alias!! in conjunction with aref!!.

alias'.! array-reference [Macro]

This operation accesses the pvar object referenced by array-reference. The alias!! opera
tion should be used when passing a pvar array element to a function that alters the array.

The array-reference argument to alias!! should be an aref!! call; it may not be an array
reference that uses indirect addressing. An error is signaled if an attempt is made to
use indirect addressing within an alias!! form.

Examples:

(defun modify-foo-element (pvar value) (*set pvar value))

(defun in-error ()
(*let (foo)

(declare (type (pvar (array (unsigned-byte 8) (3))) foo))
(modify-foo-element (aref!! foo (!! 0)) (!! 3))
))

(defun correct ()
(*let (foo)

(declare (type (pvar (array (unsigned-byte 8) (3))) foo))
(modify-foo-element (alias!! (aref!! foo (!! 0))) (!! 3))
))

The in-error function is in error because it tries to *set a temporary pvar on the *Lisp
stack. The form (aref!! foo (!! 0)) returns a pvar allocated on the *Lisp stack and
containing a copy of the data from the Oth element of foo in each processor. The func
tion modify-foo-element then tries to *set this temporary pvar. If this were allowed,
the intended result would not be obtained: *set would change the data on the *Lisp
stack, not the data in the foo array pvar.

Chapter 3. Array Pvars 33

The correct function works because the alias!! macro returns a pvar which can be
modified: it points to the Connection Machine memory locations that contain element
(0,3) of array pvar foo in each processor.

3.6.3 Sideways Arrays: an Experimental Feature

Indirect addressing of array pvar elements is slower than array referencing that uses
index pvars containing the same values in each processor. To speed up indirect ad
dressing, a new, experimental *Lisp function named *sideways-array is provided.

*sideways-array array-pvar [Function]

The function *sideways-array forces array-pvar to be addressed in a sideways order
ing. Calling *sidewavs-array on an array that is already sideways returns it to a proces-
sorwise ordering. This function is executed for side effect; no useful value is returned.

Turning an array sideways allows special Connection Machine hardware to read array
pvar elements that are not uniformly positioned across processors. Indirect address
ing works significantly more quickly on sideways arrays than on normal arrays.

/ The array-pvar argument must be an array pvar that contains elements whose lengths
are powers of 2. This restriction may be lifted in the future. The *sideways-array func-

) tion is most efficient when using array elements that are 32 bits long.

Elements of a sideways array may be accessed with sideways-aref!!. Data may be
stored into a sideways array using (*setf (sideways-aref!!...))

• A sideways array may not be *set.

• A sideways array may not be used as the pvar-expression source argument to
pref!!.

• A sideways array may be used as neither the value-pvar source nor as the dest-
pvar destination argument to *pset.

• A sideways array may not be read out to the front end.

Before performing any of the above operations on a sideways array, the array
must be returned to its normal state by executing a second call to *sideways-
array.

• Using *sideways-array on an array that is defined as a slot of a *defstruct is
not supported.

The following restrictions apply to sideways arrays

34 Supplement to *Lisp Reference Manual

sideways-aref!! array-pvar &rest subscript-pvars [Function]

This function works just like aref!!, but it is a special accessor defined to operate on
sideways arrays only. Requiring this distinction allows the *Lisp compiler to generate
efficient code to reference sideways arrays without requiring declarations that identify
arrays as sideways.

The argument array-pvar must be a sideways array.

One subscript-pvar argument must be given for each dimension of array-pvar. Each sub-
script-pvar must contain non-negative integers within the range of indices for that di
mension. The number of arguments given as subscript-pvars must equal the rank of
array-pvar. Unless one or more subscript-pvar arguments contain non-uniform values
across processors, there is no benefit to using this function.

To obtain maximum performance when addressing an array indirectly, turn the array
sideways by using the function *sideways-array. Then, instead of using aref!! to read
from that array and (*setf (aref!!...))to write to it, use (sideways-aref!!) and
(*setf (sideways-aref!! ...)).

3.7 Logical Operations on Bit Array Pvars

Parallel equivalents of the Common Lisp bit-wise logical operations are provided in
*Lisp to operate on bit-array pvars. An array pvar is considered a bit-array pvar if and
only if its element type is (pvar (unsigned-byte 1)).

bit-and!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

uii—urruy—y v u j—i uu—uiruy—p v iu —̂
&optional bit-array-result-pvar

bit-xor!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optiona! bit-array-result-pvar

bit-eqv!! bit-array-pvar-1 bit-array-pvar-2
&optional bit-array-result-pvar

[Function]

Chapter 3 . Array Pvars 35

bit-nand!! bit-array-pvar-1 bit-array-pvar-2 [Function]
^optional bit-array-result-pvar

bit—nor!! bit-array-pvar-1 bit-array-pvar-2 [Function]
8l o p t i o n a I bit-array-result-pvar

bit-andc1!! bit-array-pvar-1 bit-array-pvar-2 [Function]
^optional bit-array-result-pvar

u i i —u / / u y —j j v u r — 1 u t i —l u f u y —j ; v l u — x

&optional bit-array-result-pvar

bit—o r c l!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

bit-orc2!! bit-array-pvar-1 bit-array-pvar-2 [Function]
&optional bit-array-result-pvar

A helpful chart detailing the meaning and effect of each of these functions may be
found in chapter 17 of Common Lisp: The Language.

Each of these functions perform a logical bit-wise operation on the contents of thb first
two arguments. The result is a bit-array pvar of the same rank and dimensions as
bit-array-pvar-1 and bit-array-pvar-2.

It is an error if both required arguments are not bit-array pvars of identical rank and
dimensionality.

If supplied, the optional argument may be given as t, as nil, or as a bit-array pvar with
the same rank and dimensions as the required arguments. It defaults to nil. If nil or no
value is supplied for the optional argument, the operation returns a bit-array pvar on
the *Lisp stack. If a bit-array pvar is supplied as the value of the optional argument,
the result of the operation is destructively stored in it. If t is supplied as the value of the
optional argument, results are destructively stored in the first argument,
bit-array-pvar-1.

36 Supplement to * Lisp Reference Manual

bit—not!! bit-array-pvar [Function]
^opt ional bit-array-result-pvar

This function inverts all the bits in bit-array-pvar. The result is a bit-array pvar of the
same rank and dimensions as bit-array-pvar.

The optional argument bit-result-array-pvar may be used to specify where the result of
bit—not!! should be placed. If supplied, bit-result-array-pvar may be given as t, as nil,

or as a bit-array pvar with the same rank and dimensions as bit-array-pvar. It defaults
to nil, indicating that bit-not!! returns a bit-array pvar on the *Lisp stack. If a
bit-array pvar is supplied as the value of bit-result-array-pvar, the bit-not!! result is
destructively stored in it. If t is supplied as the value of bit-result-array-pvar, results
are destructively stored in the required argument, bit-array-pvar.

3.8 Mapping Functions Over Array Pvars

*map function &rest array-pvars [Function]

*map applies function repeatedly to a list composed of array element pvars, with one
element from each array-pvar supplied. The supplied function, function, is applied as
many times as there are elements in the smallest of the supplied array-pvars. Each
&rest argument is processed in row-major order. Thus, the nth call to function gets
passed an alias to the nth element of each array-pvar, where n is taken to be the row-
major ordering.

•map returns nil; it is executed for side effect.

Example:

Suppose we have two matrices and we wish to add the two matrices together element
by element, multiplying the result of the addition by a constant, and storing the overall
result back in the first matrix. The following code illustrates this:

(’proclaim '(type (pvar (array single-float (3 3)))
matrixl matrix2))

(‘defvar matrixl)
(‘defvar matrix2)

(defun ‘map-example (single-float-constant)
(‘locally

(declare (type single-float single-float-constant))

Chapter 3. Array Pvars 37

(*map
' (lambda (elementl element2)
(♦locally

(declare (type single-float-pvar elementl element2))
(♦set elementl (*!! (+! ! elementl element2)

(!! single-float-constant)))
))

matrixl
matrix2
)))

3.9 Notes on Using Array Pvars

(1) The pref operation works on array pvars.

The constructs pref and (*setf (pref...)) work on array-pvars in the expected manner.
For example,

(*setf (pref (aref!! a-vector-pvar (!! 0)) 0) 5)

sets the Oth element of a-vector-pvar in the Oth processor to 5.

(2) Nested arrays and sthictures are allowed.

It is possible to nest array and structure references to any level by using *setf. Thus,

(*setf (pref (aref!! (aref!! (structure-slot-A!! x) (!! 2))
(! ! 3) (!! 4))

10) 5)

stores 5 in slot A of the structure x found in the second element of the vector stored in
the array element indexed by (3,4) in processor 10. (Information about structure pvars
may be found in chapter 4.)

(3) Remember !! makes copies.

It is true that

(*all (equalp common-1isp-array (pref (!! commori-1isp-array) 0)))

but it is never true that

38 Supplement to *Lisp Reference Manual

(*all (eq common-1isp-array (pref (!! common-1isp-array) 0)))

In other words, putting a front-end array into Connection Machine processors using!!
and then reading out an instance of it using pref, will not result in the original array
(eq) but in a copy (equal) of that array.

(4) The function equalp!! can be used on array pvars to test for element-by-element
equivalence. See section 7.1 for a complete definition of equalp!!.

(5) ‘ map gets around the restrictions on scan!! for array pvars.

The only scan operation allowed to be performed on array pvars is copy!!. In order to
apply other scan operators to array pvars, use *map in conjunction with scan!! as illus
trated below.

(•map
#'(lambda (dest source) (*set dest (scan!! source '+!!)))
array2
arrayl
)

This performs an element-wise plus scan on arrayl and puts the results, element-wise,
into array2.

Chapter 4

Structure Pvars

•Lisp implements parallel equivalents of the Common Lisp structure definition capa
bilities described in chapter 19 of Common Lisp: The Language. While Common Lisp
provides the function defstruct to create user-defined data structures, *Lisp provides
‘ defstruct to create user-defined structure pvars. There are a few differences between
*Lisp and Common Lisp with respect to structures. These are noted in this chapter.

As with Common Lisp structures, a structure pvar definition creates a new, named,
aggregate data type. Constructor, accessor, and assignment operations are automati
cally defined when a structure pvar data type is defined.

*Lisp structure pvars are consistent with Common Lisp structures with respect to
nesting and layering. Structure pvars may be nested to any depth. That is, one struc
ture pvar may contain other structures pvars, which may contain other structure pvars,
and so forth. Structure pvar definitions may also be layered: one structure definition
may include all of another structure definition. Layered definitions are restricted to
one inclusion per structure pvar. Nonetheless, there is no limit on the depth of a struc
ture type hierarchy created with layered inclusions.

Like a Common Lisp structure definition, a *Lisp structure pvar definition automati
cally defines slot accessor functions. Unlike Common Lisp structures, structure pvar
accessor functions do not return pointers to structure pvar contents. Instead, a copy of
the structure pvar slot contents is always returned by an accessor function. The *Lisp
function alias!! is provided to access the Connection Machine data bits representing
structure pvar contents.

•Lisp does not support ‘ defstruct options analogous to the Common Lisp defstruct

options :type, :named, and :initial-offset.

•Lisp extends the slot options by adding the Connection Machine-specific ‘ defstruct

slot options :cm-initial-value and :cm-uninitialized-p.

39

40 *Lisp Reference Manual Supplement

4.1 Defining Structure Pvars

The macro ‘ defstruct defines structure pvars types in *Lisp. Using a 'defstruct form
has the interesting effect of defining both a Common Lisp scalar structure data type
and a Connection Machine parallel structure data type. Further, 'defstruct defines
both scalar and parallel constructor, accessor, and assignment operations for the new
data types it creates. Thus, whereas most *Lisp operations behave like parallel ver
sions of Common Lisp operations, *defstruct performs the Common Lisp defstruct

operation as well as a parallel version of that operation.

The double functionality of 'defstruct allows structures to be passed back and forth
between the Connection Machine system and the front-end computer. Once a struc
ture pvar has been defined with *defstruct, a structure pvar of that type may be allo
cated on the Connection Machine. Given a structure pvar, an individual structure may
be extracted from a single processor using pref!! and copied to the front end. Simi
larly, an instance of the structure may be created on the front end and broadcast to the
Connection Machine processors.

4.1.1 What * defstruct Does

A 'defstruct form does the following:
• defines a new pvar type, which may be used in pvar type declarations
• defines a parallel constructor function
• defines pvar accessors to access the slots of the structure pvar
• defines 'setf methods to set the slots of the structure pvar
• defines a *Lisp predicate to test whether or not a pvar contains structures of

the newly defined type
• defines a front-end defstruct object corresponding to the 'defstruct

• allows !!, 'setf of pref, array-to-pvar, pvar-to-array, array-to-pvar-grid, and
pvar-to-array-grid to take a front-end defstruct object as the value stored in a
structure pvar of the corresponding type

Consider the following example.

(‘defstruct asteroid
(diameter 1 :type (unsigned-byte 16))
(mappedp nil :type boolean)
)

This automatically defines the following defstruct.

Chapter 4. Structure Pvars 41

(defstruct asteroid
(diameter 1 :type (unsigned-byte 16))
(mappedp nil :type boolean)
)

The data types asteroid and (pvar asteroid) are defined by these forms. (Note: *Lisp
defines boolean as equivalent to (member t nil).)

The following functions are automatically defined by the above *defstruct form:

Parallel Scalar

make-asteroid!! &key make-asteroid &key
(:diameter (!! 1) (.•diameter 1)

(:mappedp nil!!) (: mappedp nil)
asteroid-diameter!! asteroid-pvar asteroid-diameter asteroid
asteroid-mappedp!! asteroid-pvar asteroid-mappedp asteroid
asteroid-pl! pvar asteroid-p symbol

copy-asteroid some-asteroid

The scalar functions are the familiar Common Lisp constructor, accessor, and predi
cate functions produced by defstruct. The parallel versions are described below.

The constructor function make-asteroid!! makes an asteroid structure pvar of type
(pvar asteroid). Calling this function creates, in each processor, an asteroid instance
composed of slots diameter and mappedp. The slot pvars diameter and mappedp are
initialized to the default values (!! 1) and nil!!, unless alternative values are supplied to
the keywords :diameter and :mappedp. For example,

(•proclaim '(type (pvar asteroid) cm-wally))
(•defvar cm-wally (make-asteroid!!))

creates an asteroid structure pvar named cm-wally. The new asteroid, cm-wally, con
sists of an asteroid structure in all processor. An equivalent method of making cm -

wally is:

(•proclaim '(type (pvar asteroid) cm-wally))
(•defvar cm-wally (!! (make-asteroid)))

42 * Lisp Reference Manual Supplement

The accessor function asteroid-diameter!! returns a pvar of type (pvar (unsigned-
byte 16)). Similarly, asteroid-mappedp!! returns a pvar of type (pvar boolean). These
return values are copies of the slot pvars they access and are allocated on the *Lisp
stack.

(*let (a-random-asteroid)
(declare (type (pvar asteroid) a-random-asteroid))
(*setf (asteroid-diameter!! a-random-asteroid) (!! 7))
a-random-asteroid)

To set the value of a structure pvar slot in a particular processor, the function *setf is
composed with pref. Be careful: when allocating a structure using *let or *le t*, don’t
forget to declare the type of the pvar, because an undeclared pvar that has held any
other type of data cannot hold a structure pvar.

Given an asteroid structure pvar, cm-wally,

(♦setf (pref (asteroid-diameter!! cm-wally) 25) 15)

stores the integer 15 in cm -wally’s slot, diameter, in processor 25 only.

It is also possible to create a scalar asteroid.

(setq wally (make-asteroid :diameter 66 :mappedp t))

Given wally, *setf can be used to make the cm-wally asteroid structure contained in
one processor be a copy of wally:

(♦setf (pref cm-wally 5) wally)

Here are some other examples of code using asteroids:

(♦proclaim '(type (pvar asteroid) another-asteroid))
(♦defvar another-asteroid (make-asteroid!! :diameter (!! 5)))

(setq asteroid-in-heap
(allocate!! (make-asteroid!! :mappedp (!! t)) nil
'(pvar asteroid)))

(♦when (not!! (zerop!! (self-address!!)))
(♦setf (pref!! cm-wally (1-!! (self-address!!))) cm-wally)

Chapter 4. Structure Pvars 43

When allocating a structure pvar using *defvar, be sure to first declare the type of pvar
using * proclaim. Undeclared pvars that have held any other type of value cannot hold
structures.

4.1.2 Formal *defstruct Definition

* defstruct (struct-name {options}') {slot-descriptor} + [Macro]

This macro defines an aggregate pvar data type as well as an aggregate scalar data
type. Components of the structure, called slots, are also defined. A general call to
•defstruct has the following format.

(•defstruct (struct-name option-1 option-2 ... option-n)
documentation
slot-description-1
slot-description-2

slot-description-n)

The first argument to * defstruct is a list composed of struct-name followed by a series
of associative lists specifying * defstruct options.

The argument struct-name must be a symbol. It becomes the name of a new data type
with both scalar and parallel versions:

(pvar struct-name) [Pvar Type]
struct-name [Scalar Type]

The new parallel *Lisp type specifier generated by * defstruct can be used in declare
forms after *let, *le t*, and *defun, in the forms, in •proclaim statements, and in
allocate!! function calls.

If a call to 'defstruct does not supply any options, the first argument to 'defstruct is
simply the symbol struct-name and need not be enclosed in a list.

If supplied, the option-1 ... option-n arguments must be chosen from among the key-
word-value pairs described below in section 4.6.1, under the heading “Options to
•Defstruct.” Each option has the form:

(keyword &rest values)

Most of the Common Lisp defstruct options have 'defstruct equivalents.

44 *Lisp Reference Manual Supplement

The documentation argument is optional. If supplied, it must be a string.

Any call to *defstruct is required to include at least one slot-description. Each slot-de-
scription is of the form:

(slot-name default-init
slot-option-name-1 slot-option-value-1
slot-option-name-2 slot-option-value-2

)

Here, slot-name is a symbol used to identify one component of the structure struct-
name. It is an error for two slots to have the same name.

The value of default-init must be a form that returns a valid scalar value conforming to
the type of the slot, as specified by the :type slot option.

The slot-option-names and slot-option-values are keyword-value pairs. (See section
4.6.2 for a complete list of slot options.) The only * def struct slot options of general
interest are :cm-initial-value, :cm-uninitialized-p, and :type. Be aware that it is an
error to provide both a :cm -initial-value form and to specify :cm -uninitialized-p as t.
Also note that the :type slot option is mandatory: it must be given one argument, a
valid Common Lisp type specifier which, when turned into a pvar specifier by forming
(pvar valid-lisp-type), must be a valid *Lisp type specifier. The :type slot option specifier
defines the type of the pvar contained in slot slot-name.

The m ake-struct-nam e!! function takes one argument for each slot in the ‘ def struct.
Each of these arguments are keyword arguments called by the same name as their slot.
The make-struct-nam e!! function will initialize each slot of the created structure in
the following manner:

• If the keyword argument is provided, its value is copied into the slot.

• If no keyword argument is provided and there is a :cm -initial-value slot op
tion, that slot option is evaluated and the result is copied into the slot.

• If no keyword argument is provided, and no :cm -initial-value option is pro
vided, and no :cm-unitialiazed-p option is provided, then the slot value de
faults to the value of default-init. To accomplish this slot pvar initialization,
* def struct replicates the value returned by the default-init form using the func
tion !!.

• If no keyword argument is provided and the slot option :cm -uninitialized-p is
provided, then the slot remains uninitialized.

Chapter 4. Structure Pvars 45

For instance,

(*defstruct baz
(only-slot 0 :type (unsigned-byte 8))
)

(make-baz!!)

creates an instance of a baz pvar with its only-slot initialized to (!! 0).

Any type specifier given as a :type slot option must specify data of fixed, known size. It
is an error to specify a slot as a general or as a mutable pvar. Thus,

(*defstruct quidly
(fee (make-array 10 :initial-value 0)

-.type {array (unsigned-byte 16) (10))))

contains a valid type specifier of fixed, known size: 160 bits. On the other hand,

(*defstruct queezy
(bad 0 :type (unsigned-byte *)))

is in error because it attempts to specify a structure slot of type mutable
unsigned-byte, which is by definition of unknown size. It is interesting to note that

(*defstruct ok
(fine 0 :type (unsigned-byte 32)

:cm-type (pvar (unsigned-byte some-expression))))

contains a legal type specifier, provided that some-expression evaluates to an integer
constant at run time.

The slot option :cm-initial-value takes one argument: an expression that returns a
pvar.

For instance,

(*defstruct xyz
(a 0 :type (unsigned-byte 32)

:cm-initial-value (self-address!!))
)

46 *Lisp Reference Manual Supplement

(‘proclaim '(type (pvar (structure xyz)) cm-xyz))
(‘defvar cm-xyz (make-xyz!!))
(setq fe-xyz (make-xyz))

initializes slot a of cm-xyz in each processor to its processor number and initializes
slot a of fe-xyz to 0.

The slot option :cm-uninitialized-p takes one argument, either t or nil and defaults to
nil. If the value is t, then, when pvars of type struct-name are created using
make-struct-name, the slot is not initialized. This means the slot value is indetermi
nate and it is an error to access the value without first setting it. Using this option for
some or all slots in a ‘ defstruct call makes allocation of any structure pvars of the given
type faster.

For example,

(‘defstruct fos
(only-slot 0 :type (unsigned-byte 32) :cm-uninitialized-p t))

(‘let ((no-vals (make-fos!!))
(vals (make-fos!! :only-slot (!! 5))))

(declare (type (pvar fos) no-vals vals))
• . .)

defines no-vals as a structure pvar of type fos that does not store (!! 0) in its only-slot
pvar and vals as a fos structure pvar that stores (!! 5) in its only-slot pvar.

4.2 Structure Inheritance

The ‘ defstruct option generally considered most interesting is the :include option.
This option allows a structure definition to subsume one other structure definition.

The ‘ defstruct: include option takes one argument, a symbol, which must be the name
of a structure pvar definition created by a previous call to ‘ defstruct. The specified
structure pvar definition is included at the beginning of the structure pvar being de
fined by the current ‘ defstruct. The resulting structure pvar definition behaves as
though all of the slots of the included structure pvar definition were specified textually
before the slots of the new structure pvar. The accessors of the included structure pvar
correctly access the slots of the new structure pvar.

NOTE: At most one :include option can be provided per ‘ defstruct definition.

Chapter 4. Structure Pvars 47

For example:

(‘defstruct auto
(doors 4 :type (unsigned-byte 3))
(color #\R :type character))

(‘defstruct (sports-car (:include auto))
(number-of-speeding-tickets 6 :type (unsigned-byte 4)))

Defines the *Lisp parallel structure accessors auto-doors!!, auto-color!!, and sports-
car-doors!!, sports-car-color!!, and sports-car-num ber-of-speeding-tickets!!. The
accessors auto-doors!! and sports-car-doors!! perform identically on a structure
pvar of type sports-car. However, a program is in error if it calls the function sports-
car-doors! ! on a structure pvar of type auto. This is intuitively true: all sports-cars are
autos but not all autos are sports-cars. In other words, a child-type structure satisfies
the predicate of its parent-type and can be accessed with its parent’s accessors. How
ever, a parent-type structure does not satisfy the predicates of its child-types, nor can
it be accessed with its children’s accessors.

4.3 Referencing and Modifying Structure Pvars

The constructs pref and *setf work on structure pvars and may be composed as:
(*setf (pref . . .)) .

Here is an example using nested parallel structures. Consider a parallel structure, f oo,
which has a slot, a. Slot a is a parallel structure, bar. If bar has a slot, b, and b is a
one-dimensional array, then

(‘setf (pref (aref!! (bar-b!! (foo-a!! x)) (!! 0)) 0) 5)

sets the array element at index 0 within slot b of structure bar within slot a of structure
foo in processor 0 to the value 5.

48 *Lisp Reference Manual Supplement

IMPORTANT

To modify structure pvar elements, use *setf on the re
sult of a *defstruct accessor function. This is the only
way to modify an individual structure slot. It is an error
to use the construct (*set (slot-a!! slot-pvar)...), where
slot is the name of a 'defstruct. Using this erroneous
construct only results in modifying a copy of the struc
ture slot. The original structure pvar would not be
changed.

4.3.1 Accessing Structure Pvar Contents Directly: Aliasing

The result of calling a structure pvar accessor function is always a copy of the contents
of the slot accessed. To create a pvar that refers to the same bits in Connection Ma
chine memory as the bits of the slot, the macro alias!! must be used. This is useful if it
is desirable to pass a structure slot pvar to a function that alters a structure slot pvar.

alias!! slot-accessor \Macro\

This operation accesses the pvar object referenced by slot-accessor.

The slot-accessor argument to alias!! should be a call to a slot accessor function cre
ated by ‘ defstruct.

The following code illustrates how to use alias!! with structure pvars.

(*defstruct patient
(id-no 0 :type (unsigned-byte 8))
(doctor 0 :type (unsigned-byte 8))
(sick-p t : type boolean))

(defun in-error ()
(*let (ellen)

(declare (type (pvar patient) ellen))
(modify-patient-slot (patient-sick-p!! ellen) nil!!)
))

Chapter 4. Structure Pvars 49

(defun correct ()
(*let (ellen)

(declare (type (pvar patient) ellen))
(modify-patient-slot

(alias!! (patient-sick-p!! ellen)) nil!!)
))

(defun modify-patient-slot (pvar value) (*set pvar value))

The in-error function is in error because foo-a!! returns a pvar containing a copy of
the data in foo’s slot, a. This pvar is allocated on the stack. The function m odify-foo-
slot then tries to ‘ set this temporary pvar. Since the *set affects bits on the *Lisp stack,
not bits in the foo pvar, the intended result is not obtained. Slot a of foo is never modi
fied.

The correct function is correct because alias!! returns a pvar that points to the same
bits in the Connection Machine as foo’s slot a. This aliased pvar can be meaningfully
modified.

4.4 Miscellaneous Operations on Structure Pvars

The function equalp!! can be used on structure pvars to test for slot-by-slot equiva
lence. See section 7.1 for a complete definition of equalp!!.

structurep!! any-pvar [Function\

This function returns a boolean pvar with the value t!! if any-pvar is a structure pvar
and nil!! if not.

!! foo-object [Function]

Pvars of some structure type, foo-object-pvar, may be constructed using the function!!
on an object that is of Common Lisp structure type, foo-object. When this is done,
every active processor receives an equalp copy of foo-objecfs slot structure.

It is true that

(*all (equalp foo-object (pref (!! foo-object) 0)))

50 *Lisp Reference Manual Supplement

but it is never true that

(*all (eq foo-object (pref (!! foo-object) 0)))

That is, replicating a front-end structure in all active processors using!! and then ref
erencing the resultant structure pvar in any single processor, does not return the struc
ture initially used (eq) but rather a copy (equalp) of that structure.

4.5 Scanning Structures

The only scan operation that can be used when scanning with a structure pvar is
copy!!. (For a complete description of the function scan!!, see the *Lisp Reference
Manual, chapter 6.)

4.6 Detailed Documentation

The preceding descriptions of structure pvars is all the typical user of * def struct will
ever need to know. In what follows, further * def struct options and slot options are
explained. These options make it possible to change the names of the *defstruct acces
sor functions and the properties of the front-end defstruct. The options detailed here
are equivalent to those provided in Common Lisp.

4.6.1 Options to "defstruct

:conc-nam e

The * defstruct option :conc-nam e takes one optional argument, conc-name, a sym
bol. The Connection Machine slot accessor function names are constructed by prefix
ing each slot name with the conc-name symbol and suffixing it with ‘I!’. The conc-
name defaults to the name of the structure pvar suffixed with If :conc-nam e is
specified as nil, then no conc-name is prepended to form the symbol name.

The :conc-nam e argument is also passed to the front-end defstruct as the option
:conc-nam e.

Chapter 4. Structure Pvars 51

Examples :

(*defstruct (foo) (slot 0.0 :type single-float))

defines the Connection Machine accessor foo-slot!!

(♦defstruct (foo (:conc-name bar-))
(slot 0.0 :type single-float))

defines the Connection Machine accessor bar-slot!!

(♦defstruct (foo (:conc-name nil))
(slot 0.0 .-type single-f loat))

defines the Connection Machine accessor slot!!

(♦defstruct (foo (:conc-name))
(slot 0.0 :type single-float))

defines the Connection Machine accessor foo-slot!!

:cm-constructor

If specified, :cm-constructor takes one argument, cm-constructor, a symbol. The cm-
constructor symbol specifies the name of a function that creates Connection Machine
parallel structures of type (pvar struct-name). If not specified, the Connection Ma
chine constructor is formed by prepending ‘make-’ and appending M V to the structure
pvar name.

Examples :

(♦defstruct (foo)
(slot 0.0 :type single-float))

defines the make-foo!! constructor

(♦defstruct (foo (:cm-constructor make-boa!!))
(slot 0.0 -.type single-float))

defines the make-boa!! constructor

52 *Lisp Reference Manual Supplement

(♦defstruct (foo (:cm-constructor))
(slot 0.0 :type single-float))

defines the constructor make-foo!!

(♦defstruct (foo (:cm-constructor nil))
(slot 0.0 :type single-float))

does not define a constructor.

: constructor

If specified, :constructor takes one argument, constructor, a symbol. The constructor
symbol specifies the name of a function that creates front-end instances of the struc
ture struct-name. It is passed to the front-end defstruct as the :constructor option.

:copier

If specified,: copier is passed to the front-end defstruct as the : copier option. It takes
one argument, a symbol.

: parallel-cm -predicate
:predicate

If specified, each of these takes one argument, a symbol.

The : parallel-cm -predicate option specifies the name of the predicate function de
fined by ’ defstruct for the structure pvar type. If no : parallel-cm -predicate option is
specified, ’ defstruct defines a predicate with a default name, formed by appending
“—p !! ” to the name of the structure pvar type.

The : predicate option, if specified, is passed to defstruct as the Common Lisp
: predicate option. It takes one argument, a symbol. If n o : predicate option is specified,
defstruct defines a predicate with the default name, formed by appending “-p ” to the
name of the front-end structure.

:include

If specified, the : include option takes one argument, a symbol. This symbol must be
the name of a structure pvar type definition created by a previous invocation of
’ defstruct. The specified structure pvar type definition is included at the beginning of

the structure pvar type being defined by the current *def struct. The resulting structure
pvar type definition behaves as though all the slots of the included structure pvar type
definition were specified textually before the slots of the new structure pvar. The acces
sors of the included structure pvar type correctly access the slots of structure pvars of
the the new type. (See the more detailed description of this option is section 4.2, above.)

:print-f unction

This option is passed to defstruct as the :print-function option. The argument to
:print-function, which must be a function name, is used to print the front-end struc
tures.

:cm-uninitialized-p

This option is equivalent to providing the slot option :cm -uninitialized-p to every slot
of the structure pvar type being defined.

4.6.2 *defstruct Slot Options

:type

This option is not optional. See the more detailed discussion in section 4.1.2, above for
further information.

Chapter 4. Structure Pvars 53

:cm -type

This option takes one argument, a valid *Lisp type specifier. It is an error if the *Lisp
type specifier provided is not compatible with the :type option Lisp specifier. For in
stance, (pvar boolean) and (unsigned-byte 16) are not compatible, whereas (pvar
(unsigned-byte 16)) and (member 0 1 2 3) are.

:cm -initial-value

See the description of this option, in section 4.1.2, above.

:cm-uninitialized-p

See the description of this option, in section 4.1.2, above.

54 * Lisp Reference Manual Supplement

4.6.3 ‘ defstruct Options Example

The code below defines two parallel structure types and illustrates the proper syntax to
use for ’ defstruct options and slot options.

(♦defstruct (foo)
(a 3 :type (unsigned-byte 8))
(b 0.0 :type single-float)
)

This defines a structure pvar type foo with two slots, a and b, which may hold data of
type (unsigned-byte 8) and single-float, respectively. Here is an example using the
foo structure pvar type:

(♦let ((my-foo (make-fool! :a (I! 8) :b (I! 5.0))))
(declare (type (pvar foo) my-foo))
(frob my-foo))

A foo structure named m y-foo is created and its slot values are initialized to values
other than the the default initialization values.

The code below creates a pvar structure definition for xyzzy, illustrating the use of most
of the * defstruct options and slot options.

(♦defstruct (xyzzy
(:conc-name plugh-)
(:copier duplicate-xyzzy)
(:cm-constructor create-xyzzy!!)
(:constructor create-xyzzy)
(:parallel-cm-predicate is-it-an-xyzzy?!!)
(:predicate is-it-an-xyzzy?)
(:print-function print-the-magic-word)
(:include foo)
)

(c 3 :type (member 3 5) :cm-type (pvar (unsigned-byte 12))
:cm-initial-value (random!! 10))

(d nil .-type boolean :cm-uninitialized-p t)
)

Chapter 5

Virtual Processor Sets

The notion of virtual processors is unrelated to any construct or concept in Common
Lisp. All operations and variables documented in this chapter are extensions to Com
mon Lisp, designed to add power and flexibility to programs run on the Connection
Machine system (CM).

The term virtual processors is used to indicate how many processors the CM logically
operates, regardless of how many physical processors are contained in the machine.
The number of virtual processors (VP’s) in use at any given time is expressed in terms
of dimensions, analogous to the dimensions of an array. The product of a series of
virtual processor dimensions indicates how many virtual processors are operating
when those dimensions are in effect. For instance, dimensions of (128 16 4) specify a
machine configuration of 8192 VP’s.

5.1 Virtual Processor Sets in Release 5.0

Version 5.0 provides a more efficient and flexible implementation of virtual processors
than did previous releases. A new abstraction, termed virtual processor sets, allows the
use of multiple sets virtual processor dimensions during a single session. At any given
time after *cold-boot has been invoked, there is exactly one VP set active. The cur
rently active VP set is known as the current VP set.

Prior to Version 5.0, it was possible to employ only one set of VP dimensions during
any session. The dimensions argument to the *cold-boot function determined the
number of virtual processors simulated by the CM until the next *cold-boot. This
scheme proved inefficient when the processor requirements of program data varied.
Users were forced to use the maximum number of virtual processors required by any
data set a program used and to leave portions of the CM idle when smaller data sets
were processed.

55

56 *Lisp Reference Manual Supplement

With Version 5.0, it is possible to specify a number of different virtual processor sets
(VP sets), each defined by separate VP dimensions. Further, each VP set may have
distinct pvars associated with it. Thus, data may be assigned to VP sets that are appro
priately dimensioned. Previous to Version 5.0, only two-dimensional virtual processor
grids were allowed. This restriction has been lifted: n-dimensional VP sets have been
implemented.

Memory management of virtual processors has been improved with the introduction
of virtual processor sets. Previously, the memory of each CM processor was divided
into as many fixed-size segments as there were virtual processors. This scheme se
verely limited the amount of memory available, especially when large VP dimensions
were used. The new scheme allows memory in both the *Lisp heap and the *Lisp stack
to be allocated on an as-needed basis. (See the Paris documentation for a more de
tailed discussion of the changes to Connection Machine memory management intro
duced with Version 5.0.)

5.2 How Virtual Processor Sets Work

The default virtual processor set is defined at *cold-boot time. An argument to *co ld -
boot, called initial-dimensioiis, is a list of integers that define the number of virtual
processors initially simulated by the CM.The product of the initial-dimensions integers
is the number of virtual processors operated during the session by the Connection Ma
chine system whenever no other virtual processor set is selected. For example,

(*cold-boot :initial-dimensions '(128 64 2))

configures the Connection Machine system to operate 16K virtual processors ar
ranged in a cube.

In addition to the default VP set defined by *cold-boot, VP sets may be defined with
the *Lisp def-vp-set and the create-vp-set operations. All that is fundamentally re
quired to define a VP set is a choice of dimensions. This is illustrated by the following
code.

(def-vp-set snap '(32 64))
(setq cake (create-vp-set '(128 256 1024))

Two VP sets are defined. The VP set snap has two dimensions; cake has three. Snap
will persist after a *cold-boot while cake will disappear.

Chapter 5. Virtual Processor Sets 57

(•defvar snap-dragon (!! 120) "A flowering plant" snap)
(•defvar snapshot (!! 220) "A casual photograph" snap)
(•defvar cake-walk (!! 10) "An easy contest" cake)

Three pvars are created and associated with VP sets. Belonging to snap are the pvars
snap-dragon and snapshot. Belonging to cake is the pvar cake-walk.

As the preceding example demonstrates, creating VP sets is often a simple process.
Nonetheless, it can involve making subtle distinctions and using operations that have
some complex features.

Virtual processor sets are created by being defined and instantiated. When a VP set is
defined, *Lisp records the definition of that VP set. When pvars are associated with a
VP set using 'defvar, their definitions are stored with the VP set definition. When a VP
set is instantiated, Connection Machine memory is allocated to store the pvars associ
ated with that VP set. Definition and instantiation are not always concurrent. Prior to
the first *cold-boot, it is legal to define a VP set but not to instantiate it.

Two *Lisp operations are provided specifically for creating VP sets: the def-vp-set
macro and the create-vp-set function. The primary distinction between VP sets cre
ated by these operations is their longevity. VP sets created with def-vp-set, along with
the pvars belonging to such VP sets, are generally reallocated every time *cold-boot is
invoked. VP sets created with create-vp-set, along with the pvars belonging to such VP
sets, are always destroyed every time *cold-boot is invoked.

Calls to def-vp-set may be made either before or after the first *cold-boot time. A call
to def-vp-set defines a VP set, either completely or partially. If a call to def-vp-set is
made after loading *Lisp and before calling *cold~boot, and if the definition is com
plete, then the defined VP set is allocated at the next *cold-boot. If a call to def-vp-set
is made after calling *cold-boot and if that call completely specifies a VP set, then that
VP set is defined and allocated all at once: when the def-vp-set form is evaluated.

If a VP set is not completely specified by def-vp-set, then the function allocate-proc-
essors-for-vp-set must be called sometime after calling *cold-boot. In this case, allo-
cate-processors-for-vp-set completes the VP set definition and instantiates the VP
set.

Calls to create-vp-set are always made after *cold-boot. VP sets created with this
form are immediately defined and allocated.

While a VP set may have any number of pvars associated with it, a pvar may only be
long to a single VP set. A pvar may be associated with a particular VP set by one of
three methods. First, invocations of the def-vp-set form can include pvar definitions.
Second, the function ‘ defvar takes an optional vp-set argument. Third, from within a

58 *Lisp Reference Manual Supplement

*w ith-vp-set form, the functions allocate!!, *let, and Met* may be used to allocate
pvars belonging to the current VP set.

A VP set is said to have a geometry. Generally, a list of dimensions sufficiently specifies
the geometry of a VP set. However, the function create-geom etry is provided to allow
more complex control over the mapping of virtual processors onto physical proces
sors. Such control is can significantly speed interprocessor communications.

There is always a current VP set. A *Lisp program may use multiple VP sets on the CM
by switching between VP sets. Two *Lisp constructs change the current VP set: set-vp -
set and *w jth-vp-set.

Without changing the current VP set, processors in the current VP set may send or
fetch data from processors in another VP set. In general, however, most *Lisp opera
tions require their pvar arguments to belong to the current VP set.

All the VP set functionality described above is detailed in this chapter, with the excep
tion of communication between VP sets. Inter-VP-set communication is discussed in
this manual supplement in chapter 6, entitled ‘W-Dimensional Interprocessor Com
munication in *Lisp.”

5.3 Global Variables Related to VP Sets

default-vp-set \Variable\

This defines the current VP set when no other VP set is current. This variable is bound
at *cold-boot time and always has as many virtual processors as were specified by the
:initial-dimensions argument to the function *cold-boot.

For example, given a 16K CM, if *cold-boot is called w ith: initial-dimensions (256 256),
then the dimensions of *default-vp-set* would be (256 256) and each physical proces
sor would simulate four virtual processors; there would be 64K virtual processors.

If no initial dimensions are specified the first time *cold-boot is called, *defau lt-vp-
set* defaults to a two-dimensional VP set with virtual processors equal to physical
processors. Thus, on a 16K CM, calling *cold-boot with no :initial-dimensions argu
ment binds *default-vp-set* to a VP set with dimensions (128 128) and 16K virtual
processors. If :initial-dimensions is not specified for subsequent calls to *cold-boot,
the previous value o f :initial-dimensions is used.

Chapter 5. Virtual Processor Sets 59

m in im um -size-for-vp-set [Variable]

This defines the smallest number of virtual processors with which a VP set may be
dimensioned. The product of the dimensions for any VP set must be greater than or
equal to the value of this variable. Currently, this variable is equal to the physical size
of the machine.

Before the first *cold-boot, it is an error to access this parameter.

current-vp-set [Variable]

This defines ‘Lisp’s currently active VP set and defaults to *default-vp-set*.

current-cm -configu ration [Variable]

This variable is bound to a list of integers that define the dimensions of the current VP
set.

Before the first *cold-boot it is an error to access this parameter.

num ber-of-dim ensions [Variable]

This defines the number of dimensions in the current VP set. It is the rank of the cur
rent machine configuration. Before the first *cold-boot it is an error to access this
parameter.

num ber-of-processors-lim it [Variable]

This defines the number of virtual processors in the current VP set. Before the first
*cold-boot it is an error to access this parameter.

current-send-address-length [Variable]

This defines the number of bits needed to hold the send address of a single processor
within the current VP set. This parameter has the value (integer-length (1 - *num-
ber-of-processors-lim it *)) .

Before the first *cold-boot, it is an error to access this parameter.

60 *Lisp Reference Manual Supplement

current-grid-address-lengths [Variable]

This variable is bound to a list of integers such that the y'th element of the list defines
the number of bits necessary to hold a grid address component for the yth dimension of
the current VP set.

Before the first *cold-boot, it is an error to access this parameter.

The address length of a single grid dimension may be obtained by calling the function
dimension-address-length.

dimension-address-length dimension [Function]

This function returns the number of bits necessary to represent a grid address coordi
nate for the specified dimension. This is simply the nth element of the list ’ current-
grid-address-lengths*.

The argument dimension must be between 0 and one less than the rank of the current
VP set.

5.4 Operations to Create, Destroy, and
Reinitialize Virtual Processor Sets

The *Lisp operations that create VP sets are: *cold-boot, def-vp-set, create-vp-set,
allocate-processors-for-vp-set, and let-vp-set.

The *Lisp operations that destroy VP sets are deallocate-vp-set and *cold-boot.

The *Lisp operations that reinitialize VP sets are *warm -boot and *cold-boot.

This section contains definitions for each of these operations.

*cold-boot &key :safety [Macro]
:initial-dimensions
: initial-geom etry-def inition

This operation should be called after loading in the *Lisp software and before at
tempting to execute *Lisp code. It resets the internal state of the *Lisp system and of
the Connection Machine hardware.

Chapter 5. Virtual Processor Sets 61

The : safety keyword argument specifies a value for the *Lisp variable *interpreter-
safety*. For a detailed discussion of interpreter safety see section 7.10.

The keyword arguments : initial-dimensions and rinitial-geometry-definition specify
the geometry of the initial VP set bound to *default-vp-set*. One or the other but not
both of these keyword arguments may be provided.

If supplied, initial-dimensions must be a list of integers, each of which is a power of 2.
These are the dimensions of *default-vp-set*. The product of the dimensions may be
equal to the physical machine size. If not, the product of the dimensions must be a
power of two multiple of the physical machine size. If unsupplied, initial-dimensions
defaults to a list of two integers whose product is the physical machine size.

If supplied, initial-geometry-definition must be a geometry object. See the definition of
create-geometry, below, for more details.

A successful *cold-boot returns two values: the number of physical processors and
current-cm -configuration.

A *cold-boot invocation performs the following operations:

• evaluates forms defined on the *before-*cold-boot-initializations* list

• destroys any pvars produced by allocate!! in a previous program execution

• destroys any VP sets produced by create-vp-set in a previous program execu
tion

• attempts to attach the Connection Machine hardware if it not already attached
and, if successful, calls the Paris function cm :cold-boot

• sets the value of the variable 'interpreter-safety*

• instantiates the VP set bound to *default-vp-set*

If initial-dimensions or initial-geometry-definition are provided, this informa
tion is the geometry information used to define *default-vp-set*.

If a previous *cold-boot has been done, and if no geometry information is pro
vided, the previous geometry information from the previous *cold-boot is
used.

If a no *cold-boot has been done since the last cm:attach, and if no geometry
information is provided, a suitable two-dimensional grid, based on the size of
the physical machine, is chosen as the geometry for *default-vp-set*.

62 *Lisp Reference Manual Supplement

• instantiates, using def-vp-set and in some arbitrary order, all defined VP sets
that have geometry information

• allocates and initializes, using *defvar and in some arbitrary order, all pvars
defined to belong to VP sets with geometries

• selects the VP set *default-vp-set*, making it the *current-vp-set*

• evaluates the forms defined on the *after-*cold-boot-initializations* list

def-vp-set vp-set-name vp-set-dimensions &key [Macro]
:geometry-definition-form
:*defvars

This defines a VP set named vp-set-name and returns the symbol, set-nam e. The d ef-
vp-set macro should only be used at top-level.

The argument vp-set-name must be a symbol; it is bound globally to the VP set de
fined.

The vp-set-dimensions argument must be a quoted list of positive integers, a form that
evaluates to a list of positive integers, or nil. If an argument is supplied to the keyword
:geometry-definition-form, the vp-set-dimensions argument must be nil. If not nil,
vp-set-dimensions specifies an n-dimensional array of virtual processors.

Each dimension must be a power of two. The product of all dimensions must be a
power-of-two multiple of the physical machine size or equal to the physical machine
size. The total size specified by vp-set-dimensions must be at least as large as *mini-
m um -size-fo r-vp -set*.

The argument to :geometry-definition-form must be a form which, when evaluated,
produces a geometry object. Eval is applied to this form. If geometry-definition-form is
provided, it incorporates information about the dimensions of the VP set being de
fined. Examples of appropriate forms are: a call to create-geometry, a symbol bound
to the result of a call to create-geometry, and a user-defined form that evaluates to a
geometry object. (See section 5.5, below, for a discussion of geometry objects.)

If either vp-set-dimensions or geometry-definition-form is supplied, the VP set vp-set-
name is initialized and allocated at *cold-boot time. If either vp-set-dimensions or
geometry-definition-form is supplied and a *cold-boot has already been executed, the
VP set vp-set-name is initialized and allocated immediately.

If vp-set-dimensions is nil and the geometry-definition-form parameter is unsupplied
or nil, then the VP set is defined but it is not allocated. Instead, the VP set may be

Chapter 5. Virtual Processor Sets 63

allocated on demand by calling the function allocate-processors-for-vp-set any time
after calling *cold-boot. (See the definition of allocate-processors-for-vp-set, be
low.)

The keyword : ‘ defvars takes a list of lists, each of which specifies a pvar belonging to
the VP set set-name. Each sublist must have the format:

(symbol &optional initial-value-form documentation pvar-type)

Here, symbol is bound to a pvar with initial value initial-value-form, documentation
documentation, and type pvar-type.

For each such sublist, if pvar-type is not nil, a form with the following construction is
evaluated.

‘(‘ proclaim ’(type ,pvar-type ,symbol))

Whether or not pvar-type is nil, the following form is evaluated.

‘(‘ defvar „symbol ,initial-value-form documentation vp-set)

where vp-set is the symbol vp-set-name given as the first argument to def-vp-set.

The :*defvars keyword provides the ability to textually associate pvars with their VP
sets. Note that pvars thus specified are allocated and initialized when the VP set set-
name is allocated. Such pvars are allocated and reinitialized upon *cold-boot invoca
tion.

Examples:

(def-vp-set fred '(1024 32 128))

(def-vp-set george (list *number-of-processors-limit* 32))

(def-vp-set anne '(512 512) :*defvars ((x (!! 1) nil
(field-pvar 2))

(y (self-address!!))))

64 *Lisp Reference Manual Supplement

create-vp-set dimensions &key : geometry [Function]

This function is used to define a VP set during program execution. It is an error to
invoke create-vp-set prior to the first *cold-boot. Any VP set allocated using create-
vp-set will be destroyed with the next *cold-boot.

The return value of create-vp-set is a front-end VP set structure.

The dimensions argument must be a list of positive integers or nil. If a list is supplied,
each integer in the list must be an integer power of two and the product of all the inte
gers in the list must be at least as large as *m in im um -size-for-vp-set*. If larger than
the physical machine size, the product of all dimensions must be a power-of-two mul
tiple of the physical machine size. The dimensions argument must be nil if an argument
is supplied to the keyword: geometry. If not nil, dimensions logically specifies an n-di-
mensional array of virtual processors.

The argument t o :geometry must be a geometry object obtained by calling create-ge-
ometry. If geometry is provided, it incorporates information about the dimensions of
the VP set being defined. (See the definition of create-geometry, below, for more de
tails.)

Examples:

(setq y (create-vp-set '(512 8 32))
(setq x (create-vp-set (append (vp-set-dimensions y) '(22))))

Two VP sets are created, a 3-dimensional configuration and a 5-dimensional configu
ration.

allocate-processors-for-vp-set vp-set dimensions [Function]
&key : geometry

This function is used during program execution to instantiate a VP set which has been
previously partially defined by def-vp-set without supplying a geometry. By omitting
the geometry from a def-vp-set call and later calling allocate-processors-for-vp-set,
it is possible to create VP sets with dimensions and geometries determined at run time.
For instance, VP set geometries might depend on characteristics of data that are read
off disk during program execution.

It is an error to invoke allocate-processors-for-vp-set before *cold-boot has been
invoked.

Chapter S. Virtual Processor Sets 65

The argument vp-set must be a VP set defined by a call to the def-vp-set macro in
which the set-dimensions argument was nil and the :geom etry-definition-form key
word argument was either nil or unsupplied.

The dimensions argument must be a list of integers or nil. If a list of integers is supplied,
each integer must be a power of 2. The product of the dimensions must be at least as
large as *m in im um -size-for-vp-set* and, if larger than the physical machine size, a
power-of-two multiple of the physical machine size. Such a list specifies the dimen
sions of a virtual array of processors named vp-set. The dimensions argument must be
nil if an argument is supplied to the keyword :geometry.

If the keyword : geometry is supplied an argument, it must be a geometry object. If
geometry is provided, it incorporates information about the dimensions of the VP set
being defined. (A geometry object may be obtained by calling the function create-ge-
ometry. See the definition of create-geometry, below, for more details.)

Example:

(def-vp-set disk-data
nil
:*defvars
((disk-data-pvar nil nil '(pvar single-float)))

(defun top-level-function (diskfile)
(*cold-boot)
(let ((number-of-elements

(read-number-of-elements-from-disk diskfile)))
(allocate-processors-for-vp-set disk-data

(list (next-power-of-two->= number-of-elements)))
(let ((array-of-data (read-data-from-disk diskfile)))

(array-to-pvar array-of-data disk-data-pvar

This macro creates a temporary VP set which may be used only within the body of the
form. The VP set vp-set-name is bound to the value of vp-set-creation-form. The body
forms are then executed. Finally—within an unwind-protect—deallocate-vp-set is
called on the value of vp-set-name and the form is exited.

:send-address-end number-of-elements)
(process-disk-data-in-cm disk-data)

)))

let-vp-set (vp-set-name vp-set-creation-form) &body body [Function]

66 *Lisp Reference Manual Supplement

The argument vp-set-name must be a symbol. The argument vp-set-creation-form
must be an executable form that includes a call to create-vp-set.

The forms of body may be any legal, executable forms.

The return value of let-vp-set is the value of the last form in the body.

Example:

(progn
(let-vp—set (temp-cube (create-vp-set '(16 32 1024)))

(*with-vp-set temp-cube
(•let ((thoughts (!! 5))

(random (random!! (!! 10)))
)

(declare (type (pvar integer) thoughts random))
(do-something-with-temp-cube-vp-set random thoughts)
)))

(format t "Now the temp-cube vp-set no longer exists")
)

Notice that the temporary VP set created by a let-vp-set form must be explicitly se
lected with a *w ith-vp-set form before it is used. Notice also that the tem p-cube VP
set is deallocated upon exit of the let-vp-set.

deallocate-vp-set vp-set [Function]

This function destroys the VP set vp-set regardless of whether it was created by a call to
def-vp-set or to create-vp-set. All pvars belonging to vp-set are deallocated and de
stroyed. If vp-set was created with def-vp-set, then the symbol that names the VP set is
made unbound.

*warm -boot [Macro]

This macro resets some but not all internal *Lisp and Connection Machine states.

A call to *warm -boot must be made whenever a *Lisp program terminates abnor
mally. It is wise to call *warm -boot at the beginning of major entry points of *Lisp
software applications.

No parameters are given to *warm-boot. The return value of a successful *warm -boot
is nil.

Chapter 5. Virtual Processor Sets 67

Executing *warm -boot has the following effects:

• All allocated VP sets are restored to a state such that all their processors are
active

• The *current-vp-set* is made to be the *default-vp-set*

• All pvars allocated on the stack (i.e., any not created by allocate!! or *defvar)
are removed from the stack and the stack pointer is reset.

5.5 The Geometry of Virtual Processor Sets

Every virtual processor set must have a geometry. A VP set has geometry in the sense
that every VP set is defined by a front-end structure that includes a geometry object. A
geometry object is itself a front-end structure. Often a geometry object consists of lit
tle more than a set of dimensions. A geometry object is automatically created by *Lisp
when a call to *cold-boot, def-vp-set, create-vp-set, or allocate-processors-for-vp-
set supplies an optional dimensions argument. Alternatively, a geometry object may
be explicitly created by calling the function create-geometry. Such a geometry object
may optionally be supplied to one of the operations that create VP sets.

create-geom etry &key :dimensions :weights :orderings [Function]
:on-chip-bits :on-chip-pos
:off-chip-bits :off-chip-pos

This function returns a structure known as a geometry object. (See the definitions of
*cold-boot, def-vp-set, create-vp-set, and allocate-processors-for-vp-set for dis
cussions on how to use geometry objects.)

Specifying a : dimensions keyword argument is mandatory. The value of the :dimen
sions keyword must be a list of integers, each of which must be a power of 2. These
dimensions define an n-torus that describes the shape of a virtual processor set. The
product of the dimensions must be a power of two multiple of the physical machine
size.

The remaining keyword arguments default to reasonable values if not specified. These
arguments impact only the run-time performance of near neighbor communication
and of certain non-local communication patterns. They do not affect functionality in
any way.

68 *Lisp Reference Manual Supplement

If supplied, the value of weights must be a list of integers, one for each dimension.
This argument specifies the relative frequency of use for near neighbor communica
tion in each dimension with respect to the other dimensions. Given the specified
weighting, the Connection Machine system distributes data for optimal performance.

For example, specify weights as ’(1 2 1) if, within a three-dimensional VP set, near
neighbor communication is estimated to be twice as frequent in dimension 1 as in
either dimension 0 or 2.

If a weights value is supplied, none of the “chip-bits” values should be supplied. If a
weights value is not supplied, all of the “chip-bits” values should be supplied.

If supplied, the value o f : orderings must be a list of symbols, one for each dimension.
Only the symbols :news-order and :send-order may appear in the orderings list. If not
supplied, orderings defaults to a list in which each member is the symbol :news-order.
For those dimensions corresponding to :news-order ordering values, send addresses
are gray-coded and mapped into NEWS addresses. For those dimensions correspond
ing to :send-order orderings values, no special address translation is done. Thus, it is
possible to optimize a VP set geometry for near neighbor communication along certain
dimensions and for general router communication along other dimensions. For more
information on the effects of each type of ordering, see the Paris Reference Manual,
Version 5.0.

The majority of *Lisp users will never need to use the “chip-bits” arguments; the
weights argument is usually sufficient.

The :on-chip-bits, :on-chip-pos, :off-chip-bits, and :off-chip-pos arguments to
gether specify a series of bitmasks that map send addresses into NEWS addresses.
This can be useful if maximum control over interprocessor communication patterns at
the hardware level is desired. These arguments are provided in *Lisp as a direct hook
into Paris. For more information on how to design bitmasks for these arguments, see
the Paris Reference Manual, Version 5.0.

The create-geometry function is designed to provide *Lisp users with a great deal of
control over internal interprocessor communication speed within the context of a par
ticular VP set. This can be useful, for instance, when it is critical to optimize the per
formance of scan operations.

Chapter 5. Virtual Processor Sets 69

5.6 Selecting a VP Set

When *cold-boot is called, *default-vp-set* becomes the currently selected VP set.
Thereafter, provided that further VP sets are defined and allocated, it is possible to
select alternate VP sets. The currently selected VP set is dynamically scoped. Two
*Lisp forms are provided to change the currently selected VP set during a session: set-
vp-set, and *w ith-vp-set.

set-vp-set vp-set [Function]

This function changes the currently selected VP set to vp-set.

The argument vp-set must be a VP set that is both defined and allocated.

The return value of a call to set-vp-set is vp-set.

*w ith-vp-set vp-set &body body [Macro]

This macro encloses code which is executed in the context of the VP set vp-set.

The argument vp-set must be a VP set that is both defined and allocated.

The forms of body may be any legal, executable forms.

The currently selected VP set is dynamically scoped. The *w ith-vp-set form changes
the currently selected VP set to vp-set. Thus, while a *w ith-vp-set form is executing,
the global variables related to VP sets are dynamically bound to reflect the VP set con
text. The following global variables are affected when the current VP set is changed:

current-cm -configuration
current-vp-set
num ber-of-processors-lim it
current-send-address-length
* ppp-d efa ult-end *
t!!

num ber-of-dim ensions
log-num ber-of-processors-lim it
"current-grid-address-lengths*
ppp-default-start

nil!!

The currently selected set (CSS) of processors active for a VP set is dynamically scoped.
If execution passes from within a *w ith-vp-set form that reduces a VP set’s CSS into
code that selects another VP set, the CSS of the originally selected VP set is not auto
matically restored to include all processors. Thus, as execution moves between VP sets,
each set maintains the state established for it immediately prior to selection of another
VP set. This is illustrated by the example shown below.

70 ‘Lisp Reference Manual Supplement

Example:

(def-vp-set fred '(1024 32) :*defvars ((p nil nil (field-pvar 32))))
(def-vp-set anne '(512 512) :*defvars ((x (!! 1) nil(field-pvar 16))

(y (self-address!!))))

(*with-vp-set fred ;32,768 VP's
(•when (evenp!! self—address!!)) ;16,384 VP's

(*with-vp-set anne ;262,144 VP's
(*set x (-!! y x))
(*with-vp-set fred ;16,384 VP's

(•when (not!! (zerop!! (self-address!!)))
(•set p (!! 1)) ;16,383 VP's
)
(•set p (!! 1))
)))

(•sum (!! 1)))

;16,384 VP's

;=> 32,768

When a VP set is created, it is defined to have all processors selected. The initial invo
cation to *w ith-vp-set fred activates all virtual processors defined by fred. Next, a
•when statement reduces the number of fred’s active V P ’s by half. Notice that, even
after a visit with VP set anne, the second invocation of *w ith-vp-set fred enters the
fred VP set context as it was last encountered: with only processors of even-numbered
addresses active. The ’ when form that follows further reduces fred’s context by deacti
vating processor 0. Inside this ‘ when statement, (*sum (!! l)) returns 16,383 — the
number of active VP’s now in fred’s css. Finally, the nested *w ith-vp-set fred form is
closed and execution passes back into the *w ith-vp-set form that originally selected
fred. Now all of fred’s processors are again active and (*sum (!! l)) returns their
count, 32,768.

5.7 Pvars Associated with VP Sets

A VP set may have several pvars associated with it. However, a pvar may be associated
with only one VP set. The relationship between a VP set and its associated pvars is
discussed in terms of ownership. Thus, a pvar is said to “belong to a VP set” and that
VP set is said to “own the pvar.”

Pvars may be associated with VP sets in several ways. The easiest method is to define
pvars using def-vp-set, as described above. A pvar may also be defined and associ
ated with a VP set by using the macro *defvar and providing the optional VP set pa

Chapter 5. Virtual Processor Sets 71

rameter. Finally, from within a 'w ith -vp -set form, pvars created by either allocate!!,
* let, or Met* belong to the current VP set. The function pvar-vp-set is useful for verify
ing to which VP set a pvar belongs.

* defvar symbol &optional initial-value \Macro\
documentation vp-set

This macro defines a pvar named symbol and symbol is proclaimed special. The return
value of a successful call to 'defvar is symbol. The macro 'defvar may be invoked
either before or after *cold-boot.

Pvars created with 'defvar are reallocated and reinitialized with every subsequent
*cold-boot.

If a 'co ld -boot has been done, symbol is bound to Connection Machine memory allo
cated for the pvar. The pvar so allocated belongs to the VP set vp-set and has initial
value initial-value.

If a 'co ld -boot has not been done, the definition of symbol as a pvar is stored on the
front end and, at 'co ld-boot time, the pvar is allocated and initialized on the Connec
tion Machine system.

If the VP set vp-set is explicitly deallocated by a call to deallocate-vp-set, the pvar to
which symbol is bound is deallocated and symbol becomes unbound.

The optional argument initial-value must be a form that evaluates to a pvar. The in
itial-value form is evaluated in the context of vp-set. If initial-value is nil or is unsup
plied, the initial value of symbol is indeterminate.

The optional documentation argument defaults to nil. If supplied, documentation must
be a string enclosed in a pair of double quotes. Documentation of type variable is thus
defined for Symbol.

The optional argument vp-set defaults to *default-vp-set*. If supplied, this must be
the name of an existing vp-set.

Note that a pvar associated with a VP set is allocated when that VP set is allocated.

72 *Lisp Reference Manual Supplement

Example:

(def-vp-set census '(128 128))
(*defvar new-england-census nil nil census)
(*defvar mid-west-census nil nil census)
(*defvar southern-census nil nil census)
(*defvar west-coast-census nil nil census)

(*cold-boot)

Memory is allocated for the four regional census pvars.

(*with-vp-set census
(setq cambridge-census (allocate!!))
(setq berkeley-census (allocate!!)))

Memory is allocated for the two college town census pvars.

(*cold-boot)

The regional census pvars exist but the college town pvars no longer exist (i.e., there is
no longer any college town data in the CM). Referring to the value of either
cambridge-census or berkeley-census is now an error.

Six pvars are associated with the VP set census. The four pvars named after regions of
the United States are reallocated and reinitialized after every invocation of *co ld -
boot. The two pvars named after college towns disappear when *cold-boot is subse
quently called. Note that it is an error to call allocate!! prior to the initial *cold-boot.

Note: To get rid of pvars created with *defvar, use the function *deallocate-*defvars.

allocate!! &optional initial-value name type-declaration [Function\
• le t({symbol &optional pvar}*) &body body [Macro]
• le t *{{symbol &optionalpvar}*) &body body [Macro]

These forms may be used from within a *w ith-vp-set form to allocate pvars belonging
to the current VP set. For detailed descriptions of these operations, see the *Lisp Refer
ence Manual, Version 4.0, chapter 3.

Chapter 5. Virtual Processor Sets 73

Example:

(def-vp-set seafaring '(256 256))
(*with-vp-set seafaring

(allocate!! (!!0) tug (pvar unsigned-byte 16))
(*let ((schooner (!! 10)) (brigit (!! 5)))

(*if (>!! (self-address!!) schooner)
(*set tug schooner)
(*set tug brigit)

)
tug))

pvar-vp-set pvar [Function]

This function returns the VP set to which pvar belongs.

The argument pvar may be any pvar.

5.8 Getting information About a VP Set

vp-set-dimensions vp-set [Function]

This function returns a list of integers specifying the dimensions of VP set vp-set.

The vp-set argument must be a defined, allocated VP set.

describe-vp-set vp-set :*defvars :verbose [Function]

This function prints information about vp-set. The information displayed by de-
scribe-vp-set is derived from the front-end VP set structure created when vp-set was
defined.

Executed for side effect, describe-vp-set returns nil.

The argument vp-set must be a VP set that has been defined. If vp-set has not been
allocated, describe-vp-set will show most slot values as nil.

74 *Lisp Reference Manual Supplement

The keyword argument t o : *defvars must be a boolean. It defaults to t. If the default is
used, pvars belonging to vp-set are described. Otherwise, pvars belonging to vp-set are
not described.

The keyword argument to :verbose must be a boolean. It defaults to nil. If the default is
used, only the most generally useful information is printed when describe-vp-set is
invoked. If :verbose is t, additional information, such as the length of the grid address
for each dimension, is printed.

A sample call to describe-vp-set are shown below.

(describe-vp-set *current-vp-set*)

vp set name: *default-vp-set*
geometry allocation form: nil
dimensions: (32 32)
geometry-id: 1
nesting-level: 1
*defvars belonging to *default-vp-set*
name: a-foo, initial-value-form: (*lisp-i:make-foo!!),
type: (pvar (structure foo))
name: cube-temp, initial-value-form: (!! 0),
type: (pvar (unsigned-byte *current-send-address-length*))

nil

In this example, *current-vp-set* is examined and discovered to be *default-vp-set*,
a two-dimensional VP set with two associated pvars, a-foo and cube-tem p. The
geometry-id is a unique number identifying the geometry of this VP set. The nesting-
level is the number of nested *w ith-vp-set forms currently in effect for this VP set.

Chapter 5. Virtual Processor Sets 75

(describe-vp-set *default-vp-set* :verbose t)

vp set name: *default-vp-set*
geometry allocation form: nil
dimensions: (32 32)
geometry-id: 1
nesting-level: 1
paris vp id: 1
geometry rank: 2
grid-address-lengths: (5 5)
♦defvars belonging to *default-vp-set*
name: foo, initial-value-form: (!! 2),
type: nil
name: cube-temp, initial-value-form: (!! 0),
type: (pvar (unsigned-byte *current-send-address-length*))

nil

Here, *default-vp-set* is described in more depth by supplying a :verbose value of t.
The grid-address-lengths list is the value to which *current-grid-address-lengths* is
bound when this VP set is the currently selected VP set.

Chapter 6

V-Dimensional
Interprocessor Communication

This chapter describes new *Lisp functionality for interprocessor communication. In
previous releases, *I.isp only worked with two-dimensional grids of virtual processors.
Version 5.0 introduces *Lisp support for ^-dimensional grids of virtual processors,
where n is any positive integer less than or equal to 31.

The introduction of n-dimensional processor configurations affects the functionality
of interproccessor communication operations and is concomitant with the newly intro
duced virtual processor set (VP set) abstraction. Most *Lisp communication opera
tions have been enhanced to use n dimensions. Also, many new operations have been
added to support communication between VP sets in n dimensions.

The *Lisp operations supporting interprocessor communication allow processor ad
dressing between virtual processors and across virtual processor sets. It is not neces
sary to deliberately use VP sets in order to use n-dimensional interprocessor communi
cation. This is true because the n-dimensional grid specified at *cold-boot time may
be sufficient throughout the session.

Operation definitions and descriptions in this chapter use the terms processor and
virtual processor interchangeably. The term machine configuration is used to mean
the geometry of the current virtual processor set. (For a discussion of virtual proces
sors and virtual processor sets in *Lisp, see chapter 5 of this supplement.)

77

78 Supplement to *Lisp Reference Manual

6.1 Global Variables Related to
A/-Dimensional Communication

The following global variables are often used with n-dimensional communication op
erations in *Lisp:

current-cm -configuration
num ber-of-dim ensions
num ber-of-processors-lim it
current-send-address-length
current-grid-address-lengths

For definitions of each of these, see section 5.3, “Global Variables Related to VP Sets,”
in the chapter 5 of this supplement.

6.2 Enhanced *Lisp Communication Operations

The following functions have been enhanced to work with n dimensions:

*cold-boot
dimension-size
array-to-pvar-grid
cube-from -grid-address
grid-from -cube-address
o ff-g rid -border-p !!

scan!!
self-address-grid!!
pvar-to-array-grid
cube-from -grid-address!!
grid-from -cube-address!!
off-grid -border-relative-p!!

Unless otherwise noted, this section includes a full definition for each of these opera
tions. These definitions supersede the definitions in previous manuals. (See section 6.4
,entitled “Communication Across Virtual Processor Sets,” for information about new
communication operations.)

*cold-boot &key :safety [Macro]
:initial-dimensions
: initial-geom etry-def inition

This operation must be called after loading in *Lisp and before attempting to execute
*Lisp code. It resets the internal state of the *Lisp system and of the Connection Ma
chine hardware.

Chapter 6. N-Dimensional Interprocessor Communication 79

The : safety keyword argument specifies a value for the *Lisp variable *interpreter-
safety*. For a detailed discussion of interpreter safety see section 7.10.

Either the : initial-dimensions or the :initial-geometry-definition keyword argu
ment—but not both—may be used to specify the geometry of the initial Connection
Machine configuration in n dimensions. Whichever of these keyword argument is sup
plied to *cold-boot, defines the *default-vp-set* and its geometry. For example:

(*cold-boot :initial-dimensions '(64 64))
(*cold-boot :initial-dimensions '(64 64 32))
(*cold-boot :initial-dimensions ' (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2))
(*cold-boot :initial-geometry-definition

'(create-geometry :dimensions (5 36 2) :weights (2 1 3)))

For a complete definition of *cold-boot, see chapter 5 of this supplement, section 5.4.

scan!! pvar Junction &key :direction :segment-pvar [Function]
:include-self idimension

A detailed definition of the scan!! operation appears in the *Lisp Reference Manual,
revised for Version 5.0, chapter 6. The :dimension keyword argument is new with
*Lisp Version 5.0, as is the ability to scan pvars defined in n dimensions.

The :dimension keyword value defaults to nil, indicating that the scan is performed in
send address order. Alternatively, dimension may be given as an integer between 0 and
one less than the rank of the current VP set. If dimension is an integer value, the scan
operation is performed along that dimension. If desired, dimension may be specified
as :x, :y, or :z; these are equivalent to dimensions 0, 1, and 2.

For example,

(scan!! pvar 'copy!! :dimension :z)

copies the value of each point in the x,y plane a tz= 0 into the corresponding point in the
x ,y plane atz= 1, and thence tox,y atz=2, and so on to z=n, where n is the extent of z.

Note: The new :dimension keyword argument allows scan!! to replace scan-grid!!.
Therefore, scan-grid!! is now obsolete.

80 Supplement to *Lisp Reference Manual

dimension-size dimension [Function\

This function returns the size of the specified dimension in the context of the current
machine configuration. The return value is the maximum allowable grid address for
the dimension, plus one.

The dimension argument can be any non-negative integer less than the rank of the cur
rent machine configuration.

self-address-grid!! dimension-pvar [Function]

For each processor in the currently selected set, this function calculates the grid ad
dress of that processor along the specified dimension.

The dimension-pvar argument must be a pvar containing a non-negative integer in
each processor. Each of these integers must be less than the rank of the current ma
chine configuration.

The return value of self-address-grid!! is a pvar containing a non-negative integer in
each processor. In each processor, the return value is the component of that proces
sor’s grid address that corresponds to the local value of dimension-pvar.

cube-from -grid-address integer &rest integers [Function]

This function translates a series of integers specifying the grid address of a single proc
essor into a single integer specifying the send address of that processor.

Each argument specifies a coordinate point along one axis in an n-dimensional grid.
At least one argument is required and the number of integer values supplied must
equal the rank of the current machine configuration.

The argument integer must be a non-negative integer. The integers arguments are a
series of non-negative integers.

The return value of cube-from -grid-address is an integer. This is a front-end scalar
value.

For example, assuming a three-dimensional configuration is in effect:

(cube-from-grid-address 10 20 30) => 1036

Here, the processor located at coordinates (10, 20, 30) is discovered to have a send
address of 1036. Note that this value is not predictable from the information given in

Chapter 6. N-Dimensional Interprocessor Communication 81

the example; in addition to the grid address values, it depends on the geometry of the
current VP set, on the number of physical processors, and on the system software ver
sion in use.

cube-from -grid-address!! integer-pvar [F u n c tio n]
&rest integer-pvars

This function translates a series of pvars, specifying the grid addresses of some num
ber of processors, into a single pvar that specifies the send addresses of those proces
sors. This is the parallel equivalent of cube-from -grid-address.

The argument integer-pvar must be a pvar containing a non-negative integer in each
processor. The integer-pvars arguments are a series of pvars, each containing non
negative integers.

Each integer pvar argument contains, in each processor, a coordinate point along one
axis in the current n-dimensional geometry. At least one argument pvar is required
and the number of integer pvars supplied must equal the rank of the current machine
configuration.

The return value of cube-from -grid-address is an integer pvar.

For example, assuming a cube configuration is in effect:

(cube-from-grid-address!! (!! 10) (!! 20) (!! 30))
=> (!! 1036)

Here, the send address of the processor located at coordinates (10, 20, 30), 1036, is
stored in all active processors. Notice that this is a somewhat simplified example in
that each argument specifies an identical value in each processor. Also be aware that
(!! 1036) is not a predictable value, given the information presented in the example; in
addition to the grid address values, it depends on the geometry of the current VP set,
on the physical size of the machine, and on the version of system software in use.

grid-from -cube-address cube-address dimension [F u n c tio n]

This function translates a single integer representing the send address of a single proc
essor into a single integer representing the grid address of that processor along the
specified dimension.

82 Supplement to *Lisp Reference Manual

The cu b e -a d d ress argument must be a non-negative integer within the current machine
configuration’s range of send addresses. This range extends from zero through
(1 - *num ber-of-processors-lim it*), inclusive.

The d im e n s io n argument must be a non-negative integer between zero and one less
than the rank of the current machine configuration.

The return value of grid-from -cube-address is a non-negative integer: one of the inte
gers in the series of integers that constitute the complete grid address of the specified
processor. This is a front-end scalar value.

For example, assume a four-dimensional machine configuration and assume that the
processor referenced by send address 6534 has a grid address of (6 52 75 259).

(grid-from-cube-address 6534 2) =>75

Here, the grid address component corresponding to dimension 2 is returned. To ob
tain all the grid address components, call grid-from -cube-address repeatedly, speci
fying a different dimension each time.

grid-from -cube-address!! cube-address-pvar dimension-pvar [Function\

In each processor, this function translates the cube address specified that processor’s
value of cu b e -a d d re ss -p v a r into a corresponding grid address along the dimension
specified by the local value of d im e n s io n -p v a r . This is the parallel equivalent of grid-
from -cube-address.

The c u b e -a d d re ss -p v a r argument must be pvar containing a non-negative integer in
each processor. Each of these integers must be within the range zero through
(1 - *num ber-of-processors-lim it*), inclusive.

The d im e n s io n -p v a r argument must be a pvar containing, in each processor, a non
negative integer between zero and the rank of the current machine configuration mi
nus one.

The return value of grid-from -cube-address!! is an integer pvar containing non-nega
tive integers. In each processor the integer returned is the d im e n s io n -p v a r grid address
component of the processor referenced by cu b e -a d d ress-p va r .

Notice that each argument pvar may contain different values in each processor, as may
the pvar returned by the operation.

Chapter 6. N-Dimensional Interprocessor Communication 83

off-grid-border-p!! integer-pvar &rest integer-pvars [Function]

This function tests grid addresses for validity. In each processor, the grid address
tested is the integer series constituted by that processor’s values of the argument pvars.
This function determines whether or not these grid addresses point within the bounds
defined by the current VP set.

All arguments must be integer pvars. The number of arguments must be equal to the
rank of the current machine configuration.

The return value of off-g rid -border-p !! is a boolean pvar. It contains t in each proces
sor in which integer-pvar(s) specify an invalid grid address. In all other processors, nil
is returned.

off-grid-border-relative-p!! integer-pvar [Function]
&rest integer-pvars

This function tests relative grid addresses for validity. In each processor, a relative
address is formed by the integer series defined by that processor’s values of the pvar
arguments. Within this series, the y'th integer specifies the distance, along the y'th di
mension, between the current processor and the processor referenced. This function
determines whether or not the relative grid address in each processor, when added to
the self addresses, points within the bounds of the current machine configuration.

All arguments must be integer pvars. The number of arguments must be equal to the
rank of the current machine configuration.

The return value of off-grid -border-p !! is a boolean pvar. It contains t in each proces
sor in which the integer-pvar(s) specify an invalid relative grid address. In all other
processors, nil is returned.

6.3 New *Lisp Communication Operations

Three new operations, news!!, news-border!!, and *news have been added to *Lisp to
support general n-dimensional NEWS communication. Also, the new communication
functions spread!!, and reduce-and-spread!! are provided to extend the scan!! class
of functions.

84 Supplement to *Lisp Reference Manual

news!! pvar &rest integers [Function]

This function does near neighbor fetch communication. Each processor in the cur
rently selected set reads the value ofpvar from the processor that is integers processors
away in the n-dimensional grid of the current VP set.

The return value of a call to news!! is a pvar of the same type as pvar containing, in each
active processor, the value fetched by that processor.

The argument pvar may be any pvar or expression that evaluates to a pvar. The pvar
argument is evaluated in the context of the processors specified by integers. This is
especially important if pvar is an expression. A pvar expression is evaluated in the
context of the processors that send data back to the processors in the currently se
lected set.

Each &rest argument must be a non-negative integer and the number of integers sup
plied must equal the rank of the current VP set. If the value of theyth &rest argument in
active processor A is n, then n specifies the grid address of processor B relative to A. B
is n processors away from that A along the y'th dimension.

There is no upper bound on the integers arguments. If the relative addressing specified
by integers results in addresses that would otherwise read off the edge of the current
machine configuration, those addresses wrap around to the other side.

The function news!! is in some respects a replacement for the obsolete function pref-
grid-relative!!. Notice, however, that news!! wraps addresses and that it only allows
relative grid addressing in which a consistent distance is spanned between all active
processors and the processors from which they read.

For example, given a two-dimensional grid configuration,

(*set dest-pvar (news!! source-pvar 1 0))

causes each selected processor to read the value of source-pvar from the processor 1
step away in grid address space. Notice that source-pvar need not be in the CSS. Simi
larly, given a three-dimensional configuration,

(*set dest-pvar (news!! source-pvar 1 8 2))

causes each selected processor to read the value of source-pvar from the processor
that is (1, 8, 2) steps away in grid address space.

Chapter 6. N-Dimensional Interprocessor Communication 85

news-border!! pvar border-pvar &rest integers [Function]

This function replaces the obsolete function pref-grid-relative!! in cases where pref-
grid-relative!! was given a :border-pvar argument.

(news-border!! pvar border-pvar 1 1)
<=>
(pref-grid-relative!! pvar (!! 1) (!! 1) :border-pvar border-pvar)

•news source-pvar dest-pvar &rest relative-coordinate-integers [Macro]

This function does near neighbor store communication. Each processor in the CSS of
the current VP set takes the value of source-pvar and stores it in dest-pvar, in the proc
essor that is relative-coordinate-integers away along each dimension.

The return value of a *news form is nil; *news is executed for side effect.

The argument source-pvar may be any pvar or expression that evaluates to a pvar. The
source-pvar argument is evaluated in the context of the CSS.

The argument dest-pvar may be any pvar or expression that evaluates to a pvar. The
dest-pvar argument is evaluated in the context of the processors specified by relative-
coordinate-integers. This is especially important if dest-pvar is an expression. A dest-
pvar expression is evaluated in the context of the processors that receive data from
processors in the currently selected set.

Each &rest argument must be a non-negative integer. The number of
relative-coordinate-integer arguments must equal the rank of the current VP set. If the
value of the ;th &rest argument in active processor A is n, then n specifies the grid
address of processor B relative to A. B is n processors away from that A along thejth
dimension.

There is no upper bound on the values of the relative-coordinate-integer arguments. If
the relative addressing specified results in addresses that would otherwise read off the
edge of the current machine configuration, those addresses wrap around to the other
side.

Example:

(*news (!! 3) foo 1 1)

This puts the value 3 into every processor which is 1 processor east and 1 processor
south of each active processor. The value is stored into the pvar foo.

86 Supplement to *Lisp Reference Manual

Notice that ‘ news is to news!! as *pset is to pref!!. Thus, while news!! retrieves infor
mation from nearby processors, *news sends information to nearby processors. Like
news!!, 'news wraps around the grid. As with *pset, the processors receiving data
during a *news operation need not be active.

spread!! any-pvar dimension coordinate [Function]

This function spreads data across the Connection Machine processors along dimen
sion d im e n s io n . The data to be spread is taken from the coord in a te processor along the
dimension d im e n s io n . The data is spread to all the active processors. Thus, operating
on a 2-dimensional pvar, for instance, it is possible to spread the data in any given
column or row across the rows or columns.

The first argument, a n y-p va r, may be any pvar. The argument d im e n s io n must be a
non-negative integer scalar within the range of *num ber-of-dim ensions*, or nil. If d i
m en s io n is nil, the spread is done using send addressing and coo rd in a te specifies a send
address.

The argument coord in a te must be a non-negative integer scalar. It is an error if co o rd i
n a te specifies any processors outside the currently selected set.

The return value of a call to spread!! is a pvar of the same type as an y-p va r.

reduce-and-spread!! any-pvar scan-operator &key :dimension [Function]

Conceptually, this function first performs a

(scan!! any-pvar scan-operator :dimension dimension)

It then takes the scan!! result from the last active processor along the scanning dimen
sion and performs a backwards copy!! scan. A pvar containing the result of this copy
scan is returned. Thus, the scan!! results are spread to all the processors which partici
pated in the reduce-and-spread!!.

The first argument, a n y-p va r , may be any pvar. The second argument, sc a n -o p era to r ,
may be any binary operator.

The :dimension keyword argument, d im en sio n -sca la r , must be a non-negative integer
scalar within the range of a n y -p v a r 's dimensions, or nil. If d im e n s io n is nil, cube scan
ning is done.

Chapter 6. N-Dimensional Interprocessor Communication 87

This function is provided because it may be significantly faster to use it than to do a
scan!! followed by a reverse copy scan.

6.4 Communication Across Virtual Processor Sets

From within the context of one VP set, it is possible to write data to and read data from
pvars belonging to another VP set. This section details the *Lisp operations used to
effect such inter-vp-set communications. (For a detailed discussion of VP sets and the
operations used to create them, see chapter 5 of this manual supplement.)

6.4.1 Addresses Translation Across VP Sets

When operating in a single VP set, it is often necessary to convert grid addresses to
send addresses. The following functions do such translations:

cube-from -grid-address cube-from -grid-address!!
grid-f rom-cube-address grid-f rom -cube-address!!

These functions are documented in section 6.2, above. They compute addresses cor
rectly only for the current VP set.

To compute an address in another VP-set the following functions are used:

cube-f rom -vp-grid-address cube-from -vp-grid-address!!
grid-from -vp-cube-address grid-from -vp-cube-addrass!!

These functions are different from other address translation functions in one signifi
cant regard: they take a VP set argument specifying the VP set of the source address, in
which the translation is to be done.

It is important to remember that only these ’-v p -’ functions can be used across VP sets.
The address translation function that do not include ’-vp -’ in their names may not be
used across VP sets. The reason for this is that different VP sets may have different
geometries, even if they have the same dimensions.

cube-from -vp-grid-address vp-set integer &rest integers [Function]

This function translates a series of integers specifying the grid address of a single proc
essor in vp-set into a single integer specifying the send address of that processor in the
context of the VP set vp-set.

88 Supplement to *Lisp Reference Manual

The argument v p -se t must previously have been both defined and instantiated.

The in teger argument must be a non-negative integer. It specifies a coordinate point
along the Oth dimension in v p -s e t’s geometry.

The &rest integers arguments must be non-negative integers. Each &rest argument
specifies a coordinate point along one axis in the n-dimensional grid of v p -s e t’s geome
try. The number of integer arguments supplied, including the second required pa
rameter and the &rest arguments, must equal the number of dimensions in v p -se t.

The return value of cube-f rom -vp-grid-address is an integer: the send address corre
sponding to the specified v p -se t grid address.

Consider the following example, assuming m y-vp has a three-dimensional geometry.

number-of-dimensions => 2
current-vp-set => your-vp
(cube-from-vp-grid-address my-vp 10 20 30) => 1036

Although the current VP set is your-vp, the processor located at coordinates (10, 20,
30) in m y-vp may be referenced, without changing the VP set context, by the send ad
dress 1036, using, for example, the function pref. (Note that the value 1036 is used here
solely for the purpose of illustration; actual send addresses vary depending on the cur
rent VP set geometry, on the number of physical processors, and on the system soft
ware version in use.)

cube-from -vp-grid-address!! vp-set integer-pvar [F u n c tio n]
&rest integer-pvars

This function translates a series of pvars, specifying the grid addresses of some num
ber of processors in v p -se t, into a single pvar that specifies the send addresses of those
processors. This is the parallel equivalent of cube-from -vp-grid-address.

The v p -s e t argument must be a VP set that has previously been both defined and in
stantiated.

The in teg er-p va r argument must be a non-negative integer pvar. In each processor, it
specifies a coordinate point along the Oth dimension in v p -s e t’s geometry.

The &rest integers arguments must be non-negative integers. The &rest arguments
specify coordinate points along consecutive axes in the n-dimensional grid of v p -s e t’s
geometry. The number of integer pvar arguments supplied, including the second re

Chapter 6. N-Dimensional Interprocessor Communication 89

quired parameter and the &rest arguments, must equal the number of dimensions in
vp-set.

The return value of cube-from -vp-grid-address is an integer pvar.

For example, assuming my-vp has a three-dimensional geometry, the following call
might be made.

(cube-from-vp-grid-address!! my-vp (!! 10) (!! 20) (!! 30))
=> (!! 1036)

Here, the send address equivalent of the my-vp set cube address (10,20, 30) is discov
ered to be 1036; a copy of this value is stored in all active processors. (Note that the
value 1036 is used here solely for the purpose of illustration; actual send addresses vary
depending on the geometry of the current VP set, on the number of physical proces
sors, and on the system software version in use.)

grid-from -vp-cube-address vp-set cube-address dimension [Function]

This function translates a single integer, representing the send address of a single
processor in vp-set, into a single integer representing the grid address of that processor
along the specified dimension in VP set vp-set.

The cube-address argument must be a non-negative integer within vp-set’s range of
send addresses.

The dimension argument must be a non-negative integer between zero and one less
than the rank of vp-set’s dimensions.

The return value of grid-from -vp-cube-address is a non-negative integer: one of the
integers in the series of integers that constitute the complete grid address of the speci
fied processor, in the context of a non-current VP set. This is a front-end scalar value.

For example, assume my-vp has a four-dimensional geometry and assume that the
processor referenced by send address 6534 is, in the geometry of my-vp, a grid address
of (6 52 75 259).

(grid-from-vp-cube-address my-vp 6534 2) =>75

Here, the grid address component corresponding to dimension 2 is returned. To ob
tain all the grid address components, call grid-from -vp-cube-address repeatedly,
specifying a different dimension each time.

90 Supplement to *Lisp Reference Manual

grid-f rom -vp-cube-address!! vp-set cube-address-pvar dimension-pvar [Function]

In each processor, this function considers the cube address specified by that proces
sor’s value of cube-address-pvar to be in the context of vp-set. It translates this value
into a grid address and returns the coordinate value of the dimension specified by di
mension-pvar. This is the parallel equivalent of grid-from-vp-cube-address.

The cube-address-pvar argument must be a pvar containing a non-negative integer in
each processor. Each of these integers must be within the range of valid send ad
dresses for vp-set.

The dimension-pvar argument must be a pvar containing, in each processor, a non
negative integer between zero and the rank of vp-set’s dimensions minus one.

The return value of grid-from-vp-cube-address!! is an integer pvar containing non
negative integers. In each processor the integer returned is the dimension-pvar grid
address component, in the geometry of vp-set, of the processor referenced by cube-ad
dress-pvar in the context of vp-set.

off-vp-grid-border-p!! vp-set integer-pvar &rest integer-pvars [Function]

This function is similar to off-grid-border-p!!. It tests grid addresses for validity rela
tive to a specified VP set.

The number of integer-pvar arguments must be equal to the number of dimensions in
the vp-set argument.

The return value of off-vp-grid-border-p!! is a boolean pvar. It contains t in each
processor for which the local values of the integer-pvar(s) specify an invalid grid ad
dress. In all other processors, nil is returned.

6.4.2 Address Translation Examples

Below are some examples of address translation across VP sets.

(def-vp-set ld-vp-set '(8192))
(def-vp-set 2d-vp-set '(128 128)

:*defvars '((self-x (self-address-grid!! (!! 0)))
(self-y (self-address-grid!! (!! 1)))))

Chapter 6. N-Dimensional Interprocessor Communication 91

(*with-vp-set ld-vp-set
(pref self-x (cube-from-vp-grid-address 2d-vp-set 3 4)))

=> 3

(*with-vp-set ld-vp-set
(pref self-y (cube-from-vp-grid-address 2d-vp-set 34)))

=> 4

(*with-vp-set ld-vp-set
(grid-from-vp-cube-address!!
2d-vp-set (cube-from-vp-grid-address!! 2d-vp-set (!! 3) (!! 4))

(! ! 0)))
=> (!! 3)

(*with-vp-set ld-vp-set
(grid-from-vp-cube-address!!
2d-vp-set (cube-from-vp-grid-address!! 2d-vp-set (!! 3) (!! 4))

(! ! 1)))
=> (!! 4)

Two VP sets are defined, each with a different geometry. 1d-vp-set is one
dimensional; 2d-vp-set is two-dimensional. 2d-vp-set has two pvars, self-x and
self-y, and they are initialized with the integers 0 and 1 in each processor, respectively.

In the context of 1 d-vp-set, the send address of the processor at 2d-vp-set coordi
nates (3,4) is calculated and and its value of self-x fetched. Next the self-y value in the
same processor is fetched. Next, the inverse relationship between grid and send ad
dresses is demonstrated by taking partial grid addresses of send addresses of grid ad
dresses. The originally-supplied coordinates are returned.

Note: In these examples the use of *w ith-vp-set is unnecessary. It is used solely to
illustrate how a VP set address translation function can be called from within the con
text of a VP set other than the one passed to the function.

6.4.3 Inter-VP Set Communication Operations

To transmit data between processors referenced by pvars belonging to different VP
sets, four operations may be used: *pset, pref!!, pref and setf of pref. Some of these
operations have changed with Version 5.0. The *pset operation now operates across
VP sets without requiring an extra VP set argument. The pref!! and pref operations

92 Supplement to *Lisp Reference Manual

now take optional VP set keyword arguments. The pref operation now evaluates its
arguments the same way pref!! evaluates its arguments.

NOTE

The arguments to *pset have changed. The optional
notify and collision-mode arguments have become key
word arguments.

*pset combiner value-pvar dest-pvar cube-address-pvar [Macro]
&key : notify :collision-mode :vp-set

This operation copies the value of value-pvar from each processor in the currently se
lected set and writes it as the value of dest-pvar in each processor referenced by cube-
address-pvar.

The arguments value-pvar and cube-address-pvar are evaluated in the context of the
CSS of the current VP set. These arguments must be pvars belonging to the current VP
set.

The value-pvar may be any pvar containing elements that can legally be copied into
dest-pvar.

The dest-pvar argument may be any pvar in any VP set; it does not need to belong to the
current VP set.

The cube-address-pvar may contain integer values that constitute valid cube addresses
for the VP set to which dest-pvar belongs. Alternatively, an address object pvar may be
used as the value of cube-address-pvar. (See section 6.5 for a discussion of address
objects.)

If supplied, the :vp-set keyword argument must be the name of the VP set to which
dest-pvar belongs. This argument is available solely for optimization. If a vp-set argu
ment is not supplied, *Lisp determines the VP set to which dest-pvar belongs.

The return value of *pset is nil; *pset is executed for side effect.

The value of the combiner argument determines how multiple source values are com
bined if directed to a single destination processor. (For a further description of *pset

Chapter 6. N-Dimensional Interprocessor Communication 93

and the possible values that may be specified for the combiner argument as well as for
the notify and collision modes, see the *Lisp Reference Manual, revised for Version
5.0, chapter 6.)

pref!! pvar-expression cube-address-pvar [Macro\
&key : collision-mode :vp-set

The pref!! operation returns a pvar containing the value of pvar-expression obtained
from the processors addressed by cube-address-pvar.

The sequence and context in which pref!! evaluates its arguments is somewhat un
usual. First, pref!! evaluates cube-address-pvar. Then, in the VP set to which pvar-ex
pression belongs, exactly those processors referenced by cube-address-pvar are se
lected. In those processors, pvar-expression is evaluated.

The argument pvar-expression may textually be a symbol that evaluates to a pvar or an
expression that evaluates to a pvar. The pvar-expression pvar may belong to any VP
set; it need not belong to the current VP set. However, if it is an expression rather than a
symbol, and if it evaluates to a pvar in a VP set other than the current VP set, then a
: vp-set argument is required.

The cube-address-pvar may contain integer values that constitute valid cube addresses
for the VP set to which pvar-expression belongs. Alternatively, an address object pvar
may be used as the value of cube-address-pvar. (See section 6.5 for a discussion of ad
dress objects.) The processors pointed to by cube-address-pvar do not need to be part
of the currently selected set for the source VP set.

If supplied, the vp-set argument must evaluate to the VP set to which the pvar pvar-ex
pression belongs. If an expression is specified textually as pvar-expression, and if the
value of pvar-expression belongs to a different VP set, then a :vp-set value must be
specified.

The value of the : collision-mode keyword argument determines what happens if more
than one processor attempts to read from a single processor during a pref!! operation.
The possible values for this argument are: nil, :no-collisions, :collisions-allowed, and
: many-colllsions. The default collision-mode value is nil. The default,: collision-mode
nil, invokes a Paris instruction (CM:GET-IL), which uses the CM-2 backward routing
hardware. As the number of collisions increases, this tends to be faster than
:collisions-allowed and :many-collisions, but it uses much more temporary memory.

If a pref!! form causes no collisions, specify: collision-mode a s : no-collisions. If there
Kit few collisions, specify :collisions-allowed or use the default, nil. If there are many
collisions, specify :many-collisions or use the default, nil. These last choices must be

94 Supplement to *Lisp Reference Manual

made heuristically. While the collision-mode default, nil, is faster than
:collisions-allowed or :many-coIlisions when there are many collisions, it uses more
memory. Try using the default. If the program runs out of memory, change the colli
sion-mode for the offending pref!! form(s) to :many-collisions or xollisions-allowed.

NOTE ABOUT PORTING FROM 4.3 TO 5.0

Existing code that specified no collision-mode argu
ment to pref!! and thereby relied on the old collision
mode default, xollisions-allowed, will now get the new
default, nil. Due to this change in the semantics of
pref!!, collision-mode specifications in existing 4.3
*Lisp code should be reconsidered.

pref pvar-expression cube-address &key :vp-set [Macro]

The pref operation returns a Lisp value obtained by evaluating pvar-expression in the
processor addressed by cube-address.

The sequence and context in which pref evaluates its arguments is somewhat unusual.
First, cube-address is evaluated. Second, in the VP set to which pvar-expression be
longs, the lone processor referenced by cube-address is selected. Finally, in that proc
essor, pvar-expression is evaluated. The result is returned to the front end.

The argument pvar-expression may textually be a symbol that evaluates to a pvar or an
expression that evaluates to a pvar. The pvar-expression pvar may belong to any VP set;
it need not belong to the current VP set. If it is a symbol, no :vp-set keyword argument
is required. Conversely, if pvar-expression is an expression and if it evaluates to a pvar
in a VP set other than the current VP set, a value must be specified for :vp-set.

If supplied, the vp-set argument must evaluate to the VP set to which pvar-expression
belongs. If a vp-set argument is not specified, pvar-expression is assumed to belong to
the current VP set.

If pvar-expression is an expression, then, for the duration of the evaluation of
pvar-expression only, the CSS will be set to the one processor from which pref is read
ing. This includes switching VP sets, which may be necessary if the :vp-set argument is
specified.

Chapter 6. N-Dimensional Interprocessor Communication 95

6.4.4 Inter-VP Set Communication Examples

To communicate across VP sets, simply specify a pvar in another VP set and make sure
the specified send address is valid for that VP set. The data will be transmitted to the
specified pvar and processors. Examples using *pset and pref!! are given below. For
convenience, the same VP sets are used in each example.

(def-vp-set ld-vp-set '(8192))
(def-vp-set 3d-vp-set '(128 128 4)

:*defvars '((3d-self (self-address!!))
(3d-self-x (self-address-grid!! (!! 0)))
(3d-self-y (self-address-grid!! (!! 1)))
(3d-self-z (self-address-grid!! (!! 2)))))

(*with-vp-set ld-vp-set
(*let ((temp (pref!! 3d-self (random!! (!! 8192)))))

(*and (and!!
(=!! (grid-from-vp-cube-address!! 3d-vp-set temp (!! 0))

(pref!! 3d-self-x temp))
(=!! (grid-from-vp-cube-address!! 3d-vp-set temp (!! 1))

(pref!! 3d-self-y temp))
(=!! (grid-from-vp-cube-address!! 3d-vp-set temp (!! 2))

(pref!! 3d-self-z temp))))))
=> t

(*with-vp-set ld-vp-set
(*let (temp)

(*with-vp-set 3d-vp-set
(*when (<!! (self-address!!) (!! 8192))
(*pset :no-collisions (self-address-grid!! (!! 1))

temp (self-address!!))))
(♦and
(=!! (grid-from-vp-cube-address!! 3d-vp-set (self-address!!)

(!! 1))
temp))))

=> t

Two VP sets are defined, one-dimensional 1d-vp-set and three-dimensional 3d -vp -
set. 3d-vp-set has four pvars, all each of which are initialized. Notice that 3d-self-x,
-y, and -z are each initialized to integer values in the grid address range of their VP set
while 3d-self holds, in each processor, the processor send address.

The two *w ith-vp-set forms illustrate how address translation, reading, and writing
operations can be performed on one VP set from within the context of another.

96 Supplement to *Lisp Reference Manual

The first *w ith-vp-set form demonstrates the correspondence between grid -from -
vp-cube-address!! and pref!!. The grid address of each processor is compared with
its contents.

The second *w ith-vp-set form illustrates in which VP set context *pset evaluates each
of its arguments. Notice that temp is Met within 1d-vp-set. It is then *pset to a grid
address evaluated within the context of 3d-vp-set. The call to grid -from -vp-cube-ad-
dress emphasizes that temp was set to a 3d-vp-set grid address.

The next example shows how pref!! evaluates its source pvar expression in the context
of the processors from which it reads.

(♦with-vp-set ld-vp-set
(♦let ((temp (pref!! (self-address-grid!! (!! 0))

(self-address!!)
:vp-set 3d-vp-set)))

(♦and (=!! (grid-from-vp-cube-address!! 3d-vp-set
(self-address!!)
(!! 0))

temp))))

=> t

(♦with-vp-set ld-vp-set
(♦let ((temp (pref!! (self-address-grid!! (!! 0))

(self-address!!))))
; missing :vp-set argument

(♦and (=!! (grid-from-vp-cube-address!! 3d-vp-set
(self-address!!)
(!! 0))

temp))))

=> nil

Notice that the the vp-set keyword argument to pref!! is not required. In both *w ith-
vp-set forms, the source-pvar is an expression. If no :vp-set argument is given, the
source pvar expression is evaluated in the CSS of the current VP set.

The macro pref is similar. Consider the following.

(set-vp-set ld-vp-set)
=> ld-vp-set

(pref 3d-self-y 26)

Chapter 6. N-Dimensional Interprocessor Communication 97

=> 1

(pref (1+!! 3d-self-z) 563)
=> error

In the first pref form, the arguments are unambiguous. A call to (pvar-vp-set
3d-self-y) easily determines that 3d-self-y belongs to 3d-vp-set. On the other hand,
the second pref form causes its first argument to be evaluated in the context of the
current vp set, 1d-vp-set. (1+!! 3d-self-z) is unknown in this context and an error
results.

(pref (1+!! 3d-self-z) 563 :vp-set 3d-vp-set)
=> 3

The above form specifies the VP set of the source expression and can therefore execute.

6.5 Address O bjects-an Experimental
Addressing Feature

A new approach to grid addressing is introduced with a feature known as address ob
jects. Address objects simplify and generalize grid addressing across VP sets.

(pvar address-object) [Pvar Type]

Address objects are structures defined with 'defstruct. They are defined to contain
grid coordinates. The most salient feature of address objects is that the functions for
creating them do not need to know which VP set is being referenced. *Lisp automati
cally computes this information when necessary.

*Lisp provides functions for creating and manipulating address objects. The address
object creation functions grid and grid!! each take an arbitrary number of coordinate
integers and return an address object containing those coordinates. Address object
manipulation functions extract coordinates from address objects and increment speci
fied dimensions of an address object.

As with other *Lisp addressing techniques, address objects provide two kinds of ad
dress values: front-end scalars and pvars. Accordingly, there are both scalar and par
allel versions of the functions that operate on address objects. A scalar address object

98 Supplement to *Lisp Reference Manual

is a single structure residing on the front end computer. A parallel address object is a
parallel structure residing in a pvar on the Connection Machine system.

Address objects add little functionality to *Lisp. Most of the same results can be ob
tained with the operations cube-from -vp-grid-address and cu be-from -vp -g rid -
address!!. For instance, address objects are intended to be passed as addresses to
pref!!, pref, setf of pref!!, and setf of pref. This is also true of the results of cube-
from -vp-grid-address!! and cube-from -vp-grid-address. Nonetheless, address ob
jects can be more convenient and easier to use than these translation functions.

Address objects offer several other significant advantages in addition to convenience.
An address object may be used to address any VP set within the address object’s coor
dinate range. Also, address objects continue to point to the same processor in a VP set,
even after that VP set has grown or shrunk. In contrast, cube-from -vp-grid-address!!
would have to be reinvoked to retranslate grid addresses if the referenced VP set ge
ometry changed. It is anticipated that VP sets with dynamic resizing will be imple
mented in the near future.

(See section 7.11 for a description of a debugging feature for use with address objects,
ppp-address-object.)

grid &rest integers [Function]

This function creates and returns a front-end address object that contains the speci
fied integers.

The integers argument must be a sequence of VP set dimension integers.

grid!! &rest integer-pvars [Function]

This function creates and returns a pvar of address objects containing the specified
integer pvars.

grid-relative!! &rest integer-pvars [Function]

This function is equivalent to

(grid!! (+!! integer-pvar-0 (self-address-grid!! (!! 0)))
(+!! integer-pvar-1 (self-address-grid!! (!! 1)))
(+!! integer-pvar-2 (self-address-grid!! (!! 2)))
. . .)

Chapter 6. N-Dimensional Interprocessor Communication 99

address-nth front-end-address-object dimension [Function]

This function returns the specified grid coordinate of front-end-address-object. For
example:

(address-nth (grid x y z) 0) => x
(address-nth (grid x y z) 2) => z

address-nth!! address-object-pvar dimension-pvar [Function]

This function returns the specified grid coordinate of a parallel address object ad-
dress-object-pvar. For example:

(address-nth!! (grid!! x y z) (!! 1)) => y
(address-nth!! (grid!! x y z) (!! 2)) => z

address-rank front-end-address-object [Function]

This function returns the number of coordinates in front-end-address-object.

address-rank!! address-object-pvar [Function]

This function returns the number of coordinates in a parallel address object.

address-plus-nth front-end-address-object [Function]
integer dimension

This function returns a front end address object that is a copy of front-end-address-
object but with the specified dimension incremented by integer. For example:

(address-plus-nth (grid x y z) i 1) => (grid x (+ i y) z)
(address-plus-nth (grid x y z) i 2) => (grid x y (+ i z))

100 Supplement to *Lisp Reference Manual

address-plus-nth!! address-object-pvar [Function]
integer-pvar dimension-pvar

This function returns a pvar of address objects that is a copy of a d d re ss -o b je c t-p v a r
but with the specified dimension incremented by integer-pvar. For example:

(address-plus-nth!! (grid!! x y z) i (!! 1)) => (grid!! x (+! ! i
y) Z)

(address-plus-nth!! (grid!! x y z) i (!! 2)) => (grid!! x y (+!!
i z))

self!! [Function]

This function returns an address object that contains the grid coordinates of each
processor. It is equivalent to:

(grid!! (self-address-grid!! (!! 0))
(self-address-grid!! (!! 1))

(self-address-grid!! (!! n))

where n is (1 - *num ber-of-dim ensions*).

Example using address objects:

(def-vp-set 2d-vp-set '(64 64)
:*defvars ((a (!! 55))

(2d-address-object (grid!! (!! 10) (!! 20)))))

(def-vp-set big-2d-vp-set '(256 256)
:*defvars ((b (!! 66))))

(defun foo (pvarl address)
(setf (pref!! pvarl address)

(+!! (pref!! pvarl address)
(!! 5))))

(*with-vp-set 2d-vp-set
(*when (=!! (self-address!!) (!! 0)) ; make sure only 1

; selected processor
(foo a 2d-address-object)
(foo b 2d-address-object))

Chapter 6. N-Dimensional Interprocessor Communication 101

(pref a (grid 0 0)) => 55
(pref a (grid 10 20)) => 60
(pref b (grid 0 0)) => 66
(pref b (grid 10 20)) => 71

6.5.1 What Address Objects Do

An address object is a defined with ’ defstruct and contains two slots, one for a send
address and one for a geometry-id number. Given a geometry that contains a grid co
ordinate, any grid coordinate may be translated into a send address with that geome
try. The send address may also be translated back to the original grid coordinate with
that same geometry.

The functions grid!! and grid always translate the specified grid coordinate into a send
address and a geometry-id that contains that grid coordinate.

When an address object is passed to pref!!, to *pset, or any of the communication
functions, it is examined to make sure that the geometry-id is the same as that of the
VP set with which the operation is communicating. If the geometry-id is not correct,
the address object is translated back to its original grid coordinates and then
retranslated to a send address for the correct geometry. This send address is then used
by the communication function just as it would use any send address.

As a result of this automatic translation, an address object may be used to point to a
grid address for any VP set within range.

When automatic translation occurs, the address object itself is modified. If the ad
dress objects is repeatedly used on the same VP set, translation overhead is incurred
only once: the first time it is used. Subsequent uses involve no translation; the geome
try-id of the address object matches the geometry-id of the VP set being used for com
munication.

6.6 Obsolete *Lisp Communication Functions

The following operations have become obsolete with the introduction of Version 5.0.

*pset-grid *pset-grid-relative
pref—grid!! pref-grid-relative!!
pref-grid scan-grid!!

102 Supplement to *Lisp Reference Manual

Alternatives to each obsolete operation are given below.

*pset-grid

Instead of *pset-grid use one of the following constructs.

(*setf (pref!! dest-pvar (grid!! x y)) value-pvar)

(*setf
(pref!! dest-pvar (cube-from-grid-address!! x y))
value-pvar)

(*pset :no-collisions value-pvar dest-pvar
(grid!! x y))

(*pset :no-collisions value-pvar dest-pvar
(cube-from-grid-address!! x y))

*pset-grid-relative

Instead of *pset-grid-relative use one of the following constructs.

(*setf (pref!! dest-pvar (grid-relative!! x y)) value-pvar)

(*setf (pref!! dest-pvar
(cube-from-grid-address!!
(+!! x (self-address-grid!! (!! 0)))
(+! ! y (self-address-grid!! (!! 1)))))

value-pvar)

pref—grid!!

Instead of pref-grid!! use one of the following constructs.

Rather than: (pref-grid!! source-pvar x y)

do: (pref!! source-pvar (grid!! x y))

or: (pref!! source-pvar (cube-from-grid-address!! x y))

Chapter 6. N-Dimensional Interprocessor Communication 103

pref-grid-relative!!

Instead of pref-grid-relative!! use one of the following constructs.

Rather than: (pref-grid-relative!! source-pvar x y)

do: (pref!! source-pvar (grid-relative!! x y))

or: (pref!! source-pvar (cube-from-grid-address!!
(+!! x (self-address-grid!! (!! 0)))
(+!! y (self-address-grid!! (!! 1)))))

Rather than: (pref-grid-relative!! source-pvar (!! x) (!! y))

do: (news!! source-pvar x y)

Read the definition of news!! in this chapter; these last two forms are not quite equiva
lent. In this case, news!! will not signal an error if a processor is reading off the edge of
the VP set geometry configuration; news!! will wrap around to the other end of any
dimension for which it is given an out-of-range index.

Rather than: (pref-grid-relative!! source-pvar (!! x) (!! y)

See the definition of news-border!! in this chapter. The function news-border!! is
similar to the obsolete pref-grid-relative!! when pref-grid-relative!! was given a
: border-pvar argument.

pref-grid

Instead of pref-grid use one of the following constructs.

(pref source-pvar (grid x y))

(pref source-pvar (cube-from-grid-address x y))

:border-pvar foo)

do: (news-border!! source-pvar foo x y)

104 Supplement to *Lisp Reference Manual

scan-grid!!

Instead of scan-grid!! use scan!! with its new :dimension keyword argument.

Rather than: (scan-grid!! 2D-pvar max!! :dimension :x)

do: (scan!! 2D-pvar max!! :dimension :x)

Chapter 7

Assorted New *Lisp Features

7.1 Generally Useful Forms

help &optional symbol [Function]

When given no argument, help prints a message describing where to find information
about *Lisp. When given a symbol defined by the *Lisp language, help prints informa
tion about the symbol, including whether it is a function, a macro, a * defun, or a vari
able, and whether the symbol is new as of Version 5.0.

describe-pvar pvar &optional stream [Function]

This function prints out information about a pvar in a neat format. The printed infor
mation includes length, type, VP set, and absolute memory address.

Examples:

(describe-pvar (!! 2))
=>
Pvar Name: nil

Location: 4
Field Id: 65536
Length: 2
Type: :field
Vp Set Name: *default-vp-set*
Vp Dimensions: (32 16)
Constant value: 2

nil

105

106 Supplement to *Lisp Reference Manual

allocated-pvar-p pvar [Function]

This function determines whether or not pvar has CM memory allocated for it. The
return value of allocated-pvar-p is either -.stack, :heap or nil. If its argument has been
allocated on the *Lisp stack and has not been deallocated, : stack is returned. If its
argument has been allocated on the *Lisp heap and has not been deallocated, :heap is
returned. Otherwise, nil is returned.

Examples:

(allocated-pvar-p (!! 3)) => :stack
(allocated-pvar-p (allocate!! (!! 3))) => :heap

(setq x (!! 3)) => #<field-pvar 12-2>
(*warm-boot) => nil
(allocated-pvar-p x) => nil
(setq y (allocate!! (!! 2)))
=> #<field-pvar-* allocate!!-return 1336-2>
(*cold-boot) => 512
(32 16)
(allocated-pvar-p y) => nil

*setf placel valuel &optional place2 value2 ... place-n value-n \Macro\

This operation takes one or more sets of place-value pairs and evaluates each argu
ment. For each pair, it updates the pvar data found at the CM locations accessed by the
value ofplace-n with the value of value-n. The return value of a *setf form is nil; *setf is
executed for side effect.

This is the *Lisp equivalent of the Common Lisp setf macro. It should be used instead
setf within a *Lisp expression. The use of setf within *Lisp expressions is obsolete with
the release of Version 5.0.

The place arguments must be pvar accessor forms such as aref!!, sideways-aref!!, pref,
pref!! and those constructed by 'defstruct. Note that 'se tf will work on place argu
ments that return pvar accessors that are themselves pvars as well as on pvar accessors
that are scalars.

The most common use of 'se tf is to change the value of pvar array elements and pvar
structure slots. (See chapters 3 and 4 for descriptions of these pvar types.) For exam
ple,

(*setf (aref!! 3by6-array-pvar (!! 2) (!! 5)) (!! 28))

Chapter 7. Assorted New *Lisp Features 107

changes the value of element 2, 5 of 3by6-array-pvar in each processor to 28.

(*setf (foo-struct-slotl!! foo-struct-pvar) (!! 84))

changes the value of siotl of the structure pvar foo-struct-pvar in each processor to 84.

* unless pvar &body body [Macro]

This form subselects processors from the currently selected set (CSS). Within the body of
the form, all active processors in which the value of pvar is nil are selected. Upon exit from a
* unless form;, the CSS is returned to the state that was in effect prior to the execution of the
form. The ‘ unless form is the same as the ‘ when form except that the condition pvar
pvar is negated. Thus:

(•unless unworthy-pvar body-forms)
<=>
(•when (not!! unworthy-pvar) body-forms)

‘ locally declaration-1 declaration-2... declaration-n &body body \Macro\

This macro is used to provide declarations for the *Lisp compiler. The declarations
declaration-1 through declaration-n are used by the compiler for the body of the body
form. A ‘ locally declaration must be a declare form. Any valid compositions of
declare may be used within a ‘ locally form, including optimize and ‘ optimize forms.

In previous releases, declarations would only be seen by the "Lisp compiler when used
within a ‘ defun, ‘ let, or ‘ let* form. With the use of ‘ locally, the user is now able to give
the *Lisp compiler type information and optimization directives anywhere in a pro
gram.

Examples:

(defun locally-test (j)
(•compile ()

(•locally
(declare (type fixnum j))
(•let (temp)

(declare (type (unsigned-byte-pvar 32) temp))
(•set temp (!! j))
))))

108 Supplement to *Lisp Reference Manual

(defun ♦locally-example (result)
(♦locally

(declare (type single-float-pvar result))
(do-for-selected-processors (j)

(♦locally
(declare (type fixnum j))
(f let

((local-pvar-function (x)
(♦locally

(declare (type single-float-pvar x result))
(declare (♦optimize (safety 0)))
(♦set result (+!! x (!! j)))
)))

(dotimes (i ♦current-cm-configuration#)
(♦locally

(declare (type fixnum i))
(♦let ((temp (♦!! (+!! (float!! (!! i)) (!! j))

(sin!! (!! j)))))
(declare (type single-float-pvar temp))
(local-pvar-function temp)
))))))))

Without ^locally, the *Lisp compiler could handle the expressions in the above exam
ples that include (!! j) only if each use of (!! j) were replace by (!! (the fixnum j)). In
most cases, using * locally once within each enclosing form is easier.

Notice that * locally allows declaration of the arguments to local functions defined by
flet and labels. Previously there was no way to do this.

pow er-of-tw o-p positive-integer [Function]

This function returns t if positive-integer is a power of two, otherwise it returns nil.

next-pow er-of-tw o->= positive-integer [Function]

This function returns an integer satisfying pow er-of-tw o-p and greater than or equal
to positive-integer.

compare!! numeric-pvarl numeric-pvar2 [Function]

This function returns a pvar having values -1, 0, or 1, depending on whether its first
argument is less than, equal to, or greater than, its second argument, respectively. The

Chapter 7. Assorted New *Lisp Features 109

arguments numeric-pvarl and numeric-pvar2 must both be non-complex numeric
pvars. A pvar of type (pvar (signed-byte 2)) is returned.

return-pvar-p [Declaration]

The declaration forms

(declare (return-pvar-p t))
(declare (return-pvar-p nil))

are recognized by the *Lisp forms ‘ all, *when, *le t,*le t* and *defun.

A return-pvar-p declaration is a promise that the enclosing form either always or
never returns a pvar. Using return-pvar-p declarations results in more efficient code,
both interpreted and ‘compiled. Violating a return-pvar-p declaration is an error.

Examples:

(*when (<!! (self-address!!) (!! 10))
;; We promise that the ‘WHEN will not return a pvar
(declare (return-pvar-p nil))
; ; In fact it returns a number
(*sum number-of-elements-pvar)
)

(*let (x y z j)
(declare (type single-float-pvar x y z))
;; We promise that the *LET will return a pvar
(declare (return-pvar-p t))
(declare (type (field-pvar 32) j))
;; In fact, +!! returns a pvar and thus the *LET returns a pvar
(+!! (floor!! (min!! x y z)) j)
)

integer-reverse!! integer-pvar [Function]

This function returns an integer pvar of the same type and length as the argument. The
result pvar contains a reverse copy of integer-pvar9s bits, so that the high-order bits
become the low-order bits and vice versa.

The argument integer-pvar must be an integer pvar.

110 Supplement to *Lisp Reference Manual

Note: This function relies on the internal representation of pvars in the Connection
Machine system and therefore cannot work in the *Lisp simulator.

null!! pvar [Function]

This function is identical to not!!.

rem!! numeric-pvar numeric-divisor-pvar [Function]

This function is the parallel equivalent of the Common Lisp function rem.

7.2 Type Predication Functions

equalp!! pvarl pvar2 [Function]

This function is equivalent to eql!! iipvarl andpvar2 are boolean pvars. It is equivalent
to char-equal!! if they are character pvars. Iipvarl and pvar2 are numeric pvars, it is
equivalent to =!!. If the parameters are structures or arrays, equalp!! returns the logical
AND of calling itself on the slot pvars or element pvars, respectively, of the structures
or arrays.

booleanp!! pvar [Function]

This predicate returns t in each processor in which pvar contains either t or nil, and
returns nil in every other processor. When using general pvars, this can be useful to
determine which processors contain boolean values.

Standard Common Lisp does not have a boolean type. *Lisp defines such a type as
boolean < = > (member t nil).

typep!! pvar scalar-type [Function]

This function is the parallel version of the Common Lisp function typep. It tests
whether the value of pvar in each processor is of type scalar-type. The results of this
predicate test are returned as a pvar containing t in each processor where pvar is of
type scalar-type and containing nil elsewhere. For example:

Chapter 7. Assorted New *Lisp Features 111

(typep!
(typep!
(typep!

(!! t) 'boolean) => t !!
(self-address!!) '(integer 0 10))
(float!! (self-address!!)) '(float 0.0 1 0 .0))

The last two invocations of typep!! above return t in processors 0 through 10 and nil
elsewhere.

The argument pvar may be any pvar. The argument scalar-type must be one of the fol
lowing type specifiers.

array
boolean
double-float
integer
null
single-float
t

bignum
character
fixnum
long-float
number
standard-char
unsigned-byte

bit
complex
float
mod
short-float
string
vector

bit-vector
complex
front-end
nil
signed-byte
string-char

In addition, a user-defined structure type specifier may be used as the value of scalar-
type.

Any of these valid type specifiers may be composed using or, and, not, and member in
order to test pvar against more than one type.

Note: No *Lisp equivalent of the Common Lisp satisfies type constructor is provided.

7.3 Type Coercion and Conversion Functions

coerce!! pvarpvar-type [Function]

The coerce!! function is the parallel equivalent of the Common Lisp coerce func-
tion.This function attempts to convert pvar to type pvar-type. If this is possible, the
result is returned as a new pvar allocated on the *Lisp stack. If pvar is already of type
pvar-type,pvar is simply returned. If the specified conversion is not possible, an error is
signaled.

The argument pvar may be any pvar. The argument pvar-type must be a valid *Lisp
pvar type specifier.

It is not generally possible to convert any pvar to any type whatsoever; only certain
conversions are permitted:

112 Supplement to *Lisp Reference Manual

• An integer pvar (a signed-byte or unsigned-byte pvar) may be converted to an integer
pvar type of a different size. For instance, a pvar of type (pvar (unsigned-byte 8))
may be coerced to a pvar of type (pvar (signed-byte 16)).

• Integer pvars may be converted to floating-point pvar types. For example, a pvar of
type (unsigned-byte-pvar 16) may be converted to a pvar of type (pvar single
float).

• A floating-point pvar may be converted to a floating-point pvar of a different size. For
instance, a pvar of type (pvar single-float) may be coerced to a pvar of type
(pvar double-float).

• An integer pvar or a float pvar may be converted to a complex pvar. For example, a
single-float pvar can be converted to a complex pvar for which both exponent and sig-
nificand are of type (pvar double-float)

• A complex pvar may be converted to a complex pvar of a different size. Thus, a pvar of
type single-complex-pvar can be converted to a pvar of type double-com plex-
pvar.

• An integer pvar may be converted to a character pvar. This conversion is identical to
that performed by the function int-char!!.

• A string-char array pvar of length 1 may be converted to a character pvar.

• Any pvar, except an array or a structure pvar. may be converted to a general pvar.

• An array pvar’s element type may be converted in accordance with the permitted con
versions mentioned above. For instance, an array pvar with elements of type single
float may be coerced to an array pvar with elements of type double-float.

Explicit single-argument type conversion functions may be used in place of coerce!!.
Examples of *Lisp functions in this category are: character!!, complex!!, float!!, and
truncate!!.

taken-as!! pvar pvar-type [Function]

This function is unlike any in Common Lisp. It is somewhat similar to the C language
cast function in that it allows a pvar of one type to be used as though it were of another
type. The function taken-as!! returns the original bits of pvar with type pvar-type. No
coercion or change in representation occurs. For example,

(taken-as!! (!! 1.0) '(pvar (unsigned-byte 32))
=> (!! 1065353216)

Chapter 7. Assorted New *Lisp Features 113

The argument pvar may be any pvar, except a structure pvar. The argument pvar-type
must be a valid *Lisp pvar type specifier with a length no larger that the length of pvar’s
initial type.

Note: This function relies on the internal representation of pvars in the Connection
Machine system and therefore cannot work in the *Lisp simulator.

Examples:

(taken-as!! (!! #C(1.0 1.0)) '(pvar (array single-float (2))))

This demonstrates that a complex pvar can be taken as a one-dimensional array pvar
containing 2 single-float numbers in each processor.

(♦proclaim '(type (pvar (unsigned-byte 8)) U8))
(♦defvar U8)
(fun-that-requires-unsigned-byte-8 U8)
(fun-that-requires-bit-vector-8

(taken-as!! U8 '(pvar (bit-vector 8))))
(fun-that-requires-unsigned-byte-8 U8)

Here, U8 is an unsigned-byte pvar of length 8. The call to taken-as!! allows U8 to be
passed to a function that expects a bit-vector pvar of length 8.

ffloor!! number-pvar ^optional divisor-pvar [Function]
fceiling!! number-pvar &optional divisor-pvar [Function\
ftruncate!! number-pvar &optional divisor-pvar [.Function]
fround!! number-pvar &optional divisor-pvar [Function]

These functions are the parallel equivalents of the Common Lisp functions ffloor,
fceiling, ftruncate, and fround. They behave like floor!!, ceiling!!, truncate!!, and
round!!, except that the result in each processor is always a floating-point number
rather than an integer. The argument pvars may contain either integers or floating
point numbers. The behavior is as if ffloor!!, for instance, gave its arguments to floor!!
and then applied float!! to the result.

scale-float!! float-pvar integer-pvar [Function]

This function takes a floating-point pvar and an integer pvar; it returns, in each proc
essor, that processor’s float-pvar component multiplied by 2 to that processor’s inte
ger-pvar component power. For instance:

114 Supplement to *Lisp Reference Manual

(scale-float!! (!! 3.5) (!! -1)) <=> (!! 1.75)
(scale-float!! (!! 1.0) (M2)) <=> (!! 4.0)

float-sign!! float-pvarl &optional float-pvarl [Function]

This function returns a floating-point pvar result with the same sign float-pvarl and
the same absolute value as float-pvar2. The argument float-pvar2 defaults to a pvar of
l ’s; therefore, (float-sign!! x) always produces, in each processor, a 1.0 or a -1 .0 with
the same format as x.

7.4 Floating-Point Limits

Common Lisp provides a set of constants that define the largest and smallest floating
point representations provided by an implementation. (See Common Lisp: The
Language, section 12.10) *Lisp makes this information available with a series of func
tions.

m ost-positive-f loat!! floating-point-pvar [Function]
least-positive-float!! floating-point-pvar [Function]
most-negative-float!! floating-point-pvar [Function]
least-negative-f loat!! floating-point-pvar [Function]

These functions each return a floating-point pvar with the same floating-point format
as the argument floating-point-pvar but with a value of the named quantity. That is, the
lengths of the return value’s exponent and significand will be the same as those of float
ing-point-pvar. In each case, the argument floating-point-pvar may be any floating
point pvar. For example,

(pref (most-positive-float!! (!! 0.0)) 0)
=> 3.4028235e38

The same result would be obtained with an argument of (!! 5.8) or with any single-pre
cision floating-point pvar.

In each processor, the value returned by most-positive-f loat!! is the floating-point
number closest to positive infinity that can be represented by the Connection Machine
system (the CM) in the same floating-point format as floating-point-pvar.

Chapter 7. Assorted New *Lisp Features 115

In each processor, the value returned by least-positive-float!! is the positive floating
point number closest to (but not equal to) zero that can be represented by the CM in
the same floating-point format as floating-point-pvar.

In each processor, the value returned by most-negative-float!! is the floating point
number closest to negative infinity that can be represented by the CM in the same
floating-point format as floating-point-pvar.

In each processor, the value returned by least-negative-float!! is the negative floating
point number closest to (but not equal to) zero that can be represented by the CM in
the same floating-point format as floating-point-pvar.

float-epsilon!! floating-point-pvar [Function]

In each processor, the value returned by float-epsilon!! is the smallest positive float
ing-point number, e, that can be represented by the CM in the same floating point for
mat as floating-point-pvar and for which

(not (= (float 1 e) (+ (float 1 e) e)))

is true when evaluated.

negative-float-epsilon!! floating-point-pvar [Function]

In each processor, the value returned by negative-float-epsilon!! is the smallest nega
tive floating-point number e that can be represented by the CM in the same floating
point format as floating-point-pvar and for which

(not (= (float 1 e) (- (float 1 e) e)))

is true when evaluated.

116 Supplement to *Lisp Reference Manual

7.5 Logical Operations on Integer Pvars

lognand!! integer-pvarl integer-pvar2 [Function]
lognor!! integer-pvarl integer-pvar2 [Function]
logandcl!! integer-pvarl integer-pvar2 [Function]
logandc2!! integer-pvarl integer-pvar2 [Function]
logorc l!! integer-pvarl integer-pvar2 [Function]
logorc2!! integer-pvarl integer-pvar2 [Function]

These functions take two integer pvars and, within each processor, perform a bit-wise
logical operation on the components of the argument pvars. The functions each return
an integer pvar that contains the results of the logical operation. Like their Common
Lisp analogs, these functions are not associative; they take exactly two arguments. Also
like their Common Lisp analogs, these six functions are the nontrivial results of com
bining the basic logical operations AND, OR, and NOT. The equivalences are:

(lognand!! nln2)
(lognor ! ! nln2)
(lo g a n d c l ! ! nln2)
(l o g a n d c 2 ! ! nln2)
(l o g o r c l ! ! nl n2)
(logorc2M nl n2)

<=> (lognot!!
<=> (lognot!!
<=> (logand!!
<=> (logand!!
<=> (logior!!
<=> (logior!!

(lo g a n d !! nl n2))
(lo g io r !! n ln 2))
(lo g n o t! ! nl) n2)
nl (lo g n o t!! n2))
(lo g n o t!! n l) n2)
nl (lo g n o t!! n 2))

boole!! op-pvar integer-pvarl integer-pvar2 [Function]

The function boole!! permits the user to specify different logical operations be per
formed in different CM processors. It takes an operation pvar and two integer pvars; it
returns an integer pvar that contains, in each processor, the result of the specified op
eration on the two integer components.

The following Common Lisp constants are acceptable as components of the op-pvar
argument:

boole-clr
boole-set
boole-eqv
boole-xor

boole-and
boole-ior
boole-nor
boole-nand

boole-1
boole-2
boole-c1
boole-c2

boole-andcl
boole-andc2
boole-orcl
boole-orc2

For example,

(b o o le ! ! (! ! boole-and) n l n2) <=> (logand!! n l n2)

Chapter 7. Assorted New "Lisp Features 117

Or, to have boole-and execute in all odd processors and boole-ior execute in all even
processors, do:

(b oo le ! ! (i f ! ! (oddp!! (s e l f - a d d r e s s ! !))
(! ! boole-and)
(!! b o o l e - i o r))

n l n2)

logbitp!! index-pvar integer-pvar [Function]

This predicate function is true in each processor where the bit in integer-pvar whose
index is index-pvar is a one-bit; otherwise it is false. The behavior is:

(l o g b i t p ! ! k n) <=>

This predicate function is true in each processor where any of the one-bits in integer-
pvarl is also a one-bit in integer-pvar2. The behavior is:

(l o g t e s t ! ! x y) = (not! ! (z e r o p ! ! (l o g a n d ! ! x y)))

This function determines, in each processor, the number of bits in that processor’s
component of integer-pvar and returns a non-negative integer pvar containing the re
sults. If the component of integer-pvar is positive, then the one-bits in its binary repre
sentation are counted. If the component of integer-pvar is negative, then the zero-bits
in its two’s-complement binary representation are counted.

integer-length!! integer-pvar [Function]

This function determines, in each processor, the number of bits required to represent
that processor’s component of integer-pvar; it returns a non-negative integer pvar con
taining the results.

A signed number requires (1+!! (integer-length!! integer-pvar)) bits to represent the
integer in signed two’s-complement form. For example,

(p lu sp !! (ld b !! (by te!! k (!! 1)) n))

logtest!! integer-pvar 1 integer-pvarl [Function]

logcount!! integer-pvar [Function]

118 Supplement to * Lisp Reference Manual

(in te g e r - le n g th ! (! 0)) AIIV 0)
(in te g e r - le n g th ! (! 1)) <=> (i)
(in te g e r - le n g th ! (! 3))

AIIV 2)
(in te g e r - le n g th ! (! 4)) AIIV 3)
(in te g e r - le n g th ! (! 7)) AIIV 3)
(in te g e r - le n g th ! (! - 1)) A II V 0)
(in te g e r - le n g th ! (! - 4))

WAIIV 2)
(in te g e r - le n g th ! (! - 7)) AIIV 3)
(in te g e r - le n g th ! (! - 8)) AIIV 3)

7.6 Arithmetic Operations on Integer Pvars

The functions in this section are the parallel equivalents of the Common Lisp func
tions gcd and Icm.

gcd!! &rest integer-pvars [Function]

This function takes zero or more integer pvars and computes, in each processor, the
greatest common divisor of all of the argument pvar components in that processor.
The function always returns a non-negative integer pvar. Specifically:

• If no arguments are given, 0 is returned in each processor.

• If one argument is given, its absolute value is returned in each processor.

• If two arguments are given, the gcd of the two pvar components is returned in each
processor.

• If three or more arguments are given, the behavior is:

(gcd! ! a b c ... z) <=> (gcd! ! (gcd! ! a b) c ... z)

Icm!! integer-pvar &rest integer-pvars [Function]

The function Icm!! takes one or more integer pvars and computes, in each processor,
the least common multiple of the argument pvar components in that processor. It al
ways returns a non-negative integer pvar. Specifically:

• If one argument is given, its absolute value is returned in each processor.

Chapter 7. Assorted New *Lisp Features 119

® If two arguments are given, the 1cm of the two pvar components is returned in each
processor.

• If three or more arguments are given, the behavior is:

(lcm! ! a b c ... z) = (1cm! ! (1cm! ! a b) c ... z)

• If one or more arguments (component values) are zero, then the result is zero.

• For two arguments that are not both zero,

(l c m ! ! a b) <->
(t r u n c a te ! ! (abs!! (*! ! a b)) (g c d ! ! a b))

7.7 Byte Manipulation Function

*Lisp provides parallel equivalents of all Common Lisp byte manipulation functions.
Here, as in Common Lisp, a byte is defined as an arbitrary number of contiguous bits.
Also as in Common Lisp, many of these functions take an object called a byte specifier
to designate a specific byte position within an integer. A parallel byte specifier is con
structed by the function byte!!.

byte!! size-pvar position-pvar [Function]

This function is the parallel equivalent of the Common Lisp function byte. It takes two
integer pvars representing the size and position of a byte pvar. For instance, a size-pvar
of (!! 16) and a position-pvar of (!! 3) specify, in each processor, a 16-bit byte that
starts at bit 3 (zero-based) of an integer pvar to be manipulated by one of the byte
manipulation functions.

The arguments size-pvar and position-pvar may contain different values in each proc
essor. The return value of byte!! is a byte specifier pvar suitable for use as an argument
to byte-manipulation functions such as Idb!! and dpb!!.

byte-size!! bytespec-pvar [Function\

The function byte-size!! takes a byte specifier pvar—the result of a call to byte!! —and
returns a copy of the originally specified size-pvar as an integer pvar. Thus:

120 Supplement to *Lisp Reference Manual

(byte-size!! (byte!! size pos)) <=> size

byte-position!! bytespec-pvar [Function]

The function byte-position!! takes a byte specifier pvar—the result of a call to
byte!! — and returns an integer pvar that is a copy of the originally specifiedposition-
pvar. Thus:

(byte-position!! (byte!! size pos)) <=> pos

Idb!! bytespec-pvar integer-pvar [Function]

The function Idb!! is similar to the function load-byte!! and is the parallel equivalent
of the Common Lisp function Idb. The bytespec-pvar specifies a byte of integer-pvar to
be extracted. The result is returned as a non-negative integer pvar. The following forms
are equivalent.

(load-byte!! integer-pvar position-pvar size-pvar)
<=>
(Idb!! (byte!! size-pvar position-pvar) integer-pvar)

Idb—test!! bytespec-pvar integer-pvar [Function]

This function is a predicate test and the parallel equivalent of Idb-test. It returns t in
those processors where the byte field of integer-pvar specified by bytespec-pvar is non
zero. Elsewhere, it returns nil.

dpb!! newbyte-pvar bytespec-pvar integer-pvar [Function]

This function is the parallel equivalent of the Common Lisp function dpb.

The function dpb!! returns an integer pvar that is the same as integer-pvar with the
exception that the bits specified by bytespec-pvar receive their values from newbyte-
pvar. The following forms are equivalent.

(deposit-byte!!
integer-pvar position-pvar size-pvar newbyte-pvar)

Chapter 7. Assorted New "Lisp Features 121

(dpb!!
newbyte-pvar (byte!! size-pvar position-pvar) integer-pvar)

mask-field!! bytespec-pvar integer-pvar [Function]

The function mask-field!! is the parallel equivalent of the Common Lisp function
mask-field. It is similar to Idb!!; however, the result contains, for each processor, the
byte of integer-pvar that is in the position specified by bytespec-pvar, rather than in
position 0 as with Idb! L The result therefore agrees with integer-pvar in the byte speci
fied, but has zero-bits everywhere else.

The behavior is:

(mask-field (byte!! sp) n) <=>
(logand!! n (dbp!! (!! -1) (byte!! s p) 0))

7.8 Conversions between Integers and Gray Code

The following two functions convert between integers and Gray code. Gray code is
used in NEWS addressing in CM System Software supporting the Connection Ma
chine model CM-2. See the System Front Ends Release Notes.

integer-from -gray-code!! integer-pvar [Function\

This function treats each component of the argument pvar as a Gray-coded integer
and converts it to a non-Gray-coded integer. The integer-pvar argument should con
tain unsigned integers.The function returns a pvar containing the unsigned results.
The binary reflected Gray code is used.

gray-code-from -integer!! integer-pvar [Function]

This function converts each integer component of the argument pvar into a Gray code
representation. The integer-pvar argument should contain unsigned integers. The
function returns a pvar containing the unsigned results.The binary reflected Gray code
is used.

122 Supplement to *Lisp Reference Manual

7.9 The Front-End Pvar Type

The front-end type is provided to allow *Lisp to manipulate front-end objects that
cannot be represented on the CM.

(pvar front-end) [Pvar Type]

This is the type specifier for a pvar containing, in each active processor, a pointer to a
front-end object. A single front-end object is pointed to by all active processors.

The use of front-end pvars is only sensible with certain types of *Lisp operations: those
which access, move, or compare data, but do not combine or compute with it. The
following list is representative of operations that may take front-end pvar arguments:

eq!! if!! news!!
pref!! pref *pset
scan!! with copy!! *set setf of pref

front-end!! scalar-object [Function]

This function returns a pvar of type (pvar front-end). Note that a general pvar—that
is, a pvar of type (pvar t)— can store a front-end pvar.

The argument scalar-object must be an object allocated on the front end computer.

front-end-p!! pvar [Function]

This function tests pvar and returns t in those processors containing pointers to a
front-end object and nil elsewhere. Note that if pvar is a general pvar, t could be re
turned in some processors while nil is returned in others.

7.10 *Lisp Error Checking

*Lisp version 5.0 includes enhanced error checking facilities. There are two basic
kinds of error checking performed by *Lisp: compile-time error checking and run
time error-checking. Both the compiler and the interpreter perform a certain amount
of error checking automatically. For example, many *Lisp functions check for floating
point overflow and divide-by-zero errors. In addition, the *Lisp compiler and inter
preter each have a safety level. The *Lisp compiler safety settings (determined by the

Chapter 7. Assorted New *Lisp Features 123

value of the variable ‘ safety*) are documented in the *Lisp Compiler Guide. In what
follows, the *Lisp interpreter safety is described.

‘ interpreter-safety* [Variable]

This variable determines the amount of run-time error checking performed by those
Lisp operations that are capable of it. The value of ‘ interpreter-safety must be an
integer between 0 and 3, inclusive. The effect of each setting is given below.

0 most run-time error checking disabled
1 minimal run-time error checking; for any error signaled,

an error message is not emitted until the next time a value
is read from the CM

2 do not use this setting; reserved for future expansion
3 maximum run-time error checking; error messages emitted immediately

The value of ‘ interpreter-safety* may be set in two ways. First, the function *co ld -
boot now takes an optional: safety keyword argument. If specified, the value of :safety
sets both the *Lisp ‘ interpreter-safety* variable and Paris safety. (For information on
Paris safety, see the Paris documentation.) Thus,

(*cold-boot :dimensions '(2 36 36) -.safety 3)

initializes the CM in a three-dimensional virtual processor configuration and sets both
Paris safety and ‘ interpreter-safety* to 3.

To set the value of ‘ interpreter-safety* during a session, simply use the setq function:

(setq * interpreter-safety* 3)

This causes maximum run-time error checking to be performed.

Examples:

The interactions shown below demonstrate how ‘ interpreter-safety* affects error
messages. Assume we begin with an ‘ interpreter-safety* value of 3, using Symbolics
Common Lisp. (The screen display for Lucid Common Lisp is slightly different.)

* interpreter-safety* => 3

As safety level 3, errors are reported immediately. A division by zero is attempted.

124 Supplement to *Lisp Reference Manual

(/!!(!! 3) (!! 0))
Error: In interpreted /!!.
The result of a (two argument) float /!! overflowed.
There are 8192 selected processors, 8192 processors
have an error.
A SINGLE-FLOAT temporary pvar stored at location 458752 caused
the error.

/! i-2
Arg 0 (A): #<FIELD-Pvar 4-2>
Arg 1 (B): #<FIELD-Pvar 12-1>

s-A, :Ignore Error.
s-B: Display Processors With Error.
s-C: Display Value in Processors with Error.
s-D: Display Selected Processors.
s-E: Display Value in Selected Processors.
s-F: Display Value in All Processors.
s-G, :Return to Lisp Top Level in Dynamic Lisp Listener 1
s-H: Restart process Dynamic Lisp Listener 1

Return to Lisp Top Level in Dynamic Lisp Listener 1
Back to Lisp Top Level in Dynamic Lisp Listener 1.

Now *interpreter-safety* is set to 1.

(setq *interpreter-safety* 1) => 1

At this setting, any error is reported only after a value has been read out of the CM.
Another division by zero is attempted:

(/!! (!! 3) (!! 0))
#<FLOAT-Pvar 52-32>
;; Notice that no error has been signaled yet.
;; Now we read a value out of the CM.
(pref (!: ! 0) 0)
Error: Error while accessing *UC-OUTPUT-FIFO-READ-ADDRESS*.
The result of a (two argument) float /!! overflowed

CMI::WAIT-UNTIL-FEBI-OUTPUT-FIF0-N0T-EMPTY
s-A, :Return to Lisp Top Level in Dynamic Lisp Listener 1
s-B: Restart process Dynamic Lisp Listener 1

Return to Lisp Top Level in Dynamic Lisp Listener 1
Back to Lisp Top Level in Dynamic Lisp Listener 1.

Chapter 7. Assorted New '‘Lisp Features 125

Finally, ‘ interpreter-safety* is set to 0.

(*warm-boot)
(setq *interpreter-safety* 0)

At this setting, no error is ever generated:

(/!! (!! 3) (!! 0))
#<FLOAT-Pvar 20-32>
(pref (!! 0) 0)
0

7.11 New Debugging Features

The *Lisp debugging tools have been updated with the release of Version 5.0. The ppp
macro has been augmented and several related tools have been added.

ppp!! pvar &rest keyword-args [Macro]

The function ppp!! is identical to ppp except that it returns its pvar argument. The
argument pvar may be any pvar. The keyword-args are identical to those for ppp. (See
the *Lisp Reference Manual.)

pppdbg pvar & rest keyword-args [Macro]

This macro is equivalent to ppp, except that the : title keyword argument defaults, not
to nil (no title), but to the form that is evaluated to provide the pvar argument for ppp.
The argument pvar may be any pvar. The keyword-args are identical to those for ppp.
(See the *Lisp Reference Manual.)

Examples:

(pppdbg (!! 2) :end 10)

(!! 2): 2 2 2 2 2 2 2 2 2 2

(pppdbg random-pvar :end 10)

126 Supplement to *Lisp Reference Manual

random-pvar: 0 3 8 7 2 9 8 7 5 2

ppp-address-object address-object-pvar &rest keyword-args \Macro\

This prints out a pvar of type (pvar address-object) in a format that is easily under
stood. The geometry-id, cube-address, and each grid-address per processor are
printed. See chapter 6 for information about address objects.

Only the :start, :end, :title and :mode keyword arguments are allowed. Otherwise the
function is identical to ppp.

Example:

(ppp-address-object
(grid!! (!! 1) (!! 2) (self-address!!)) :end 5)

Rank: 3Single cached geometry id: 25,
Cube Address 129 131 133
Grid Coordinate 0: 1 1 1 1 1
Grid Coordinate 1: 2 2 2 2 2
Grid Coordinate 2: 0 1 2 3 4
NIL

ppp pvar &rest keyword-args [Macro]

This macro is documented in the *Lisp Reference Manual. However, the keyword
: ordering is new with Version 5.0 and is described below.

The : ordering keyword argument to ppp and related operations takes a list of integers
specifying axes. It is valid only when used in conjunction with the :grid value of the
:mode keyword and most useful for printing a pvar defined in a VP set of more than
two dimensions. With the ppp :ordering keyword, the user can specify how ‘slices’ of
an n-dimensional area are to be displayed. The last two axes specified are the two axes
which are shown in a single slice.

Chapter 7. Assorted New * Lisp Features 127

Example:

(def-vp-set 3d '(16 16 2))
=> 3D
(*with-vp-set 3d
(ppp (self-address!!) :mode :grid :ordering '(0 1 2)

:end '(1 16 2)))

(0 1 2)

DIMENSION 0, COORDINATE 0

DIMENSION 1---- ----->

0 4 8 12 64 68 72 76 192 196 200 204 128 132 136 140
256 260 264 268 320 324 328 332 448 452 456 460 384 388 392 396

(*with-vp-set 3d
(ppp (self-address!!) :mode :grid rordering '(2 1 0)

:end '(16 16 1)))

(2 1 0)

DIMENSION 2, COORDINATE 0

DIMENSION 1 ----->

0 4 8 12 64 68 72 76 192 196 200 204 128 132 136 140
1 5 9 13 65 69 73 77 193 197 201 205 129 133 137 141
2 6 10 14 66 70 74 78 194 198 202 206 130 134 138 142
3 7 11 15 67 71 75 79 195 199 203 207 131 135 139 143
16 20 24 28 80 84 88 92 208 212 216 220 144 148 152 156
17 21 25 29 81 85 89 93 209 213 217 221 145 149 153 157
18 22 26 30 82 86 90 94 210 214 218 222 146 150 154 158
19 23 27 31 83 87 91 95 211 215 219 223 147 151 155 159
48 52 56 60 112 116 120 124 240 244 248 252 176 180 184 188
49 53 57 61 113 117 121 125 241 245 249 253 177 181 185 189
50 54 58 62 114 118 122 126 242 246 250 254 178 182 186 190
51 55 59 63 115 119 123 127 243 247 251 255 179 183 187 191
32 36 40 44 96 100 104 108 224 228 232 236 160 164 168 172
33 37 41 45 97 101 105 109 225 229 233 237 161 165 169 173
34 38 42 46 98 102 106 110 226 230 234 238 162 166 170 174
35 39 43 47 99 103 107 111 227 231 235 239 163 167 171 175

Chapter 8

Parallel Variable Types

This chapter describes the different types of parallel variables, or pvars, available in
*Lisp. The following new pvar types are introduced with *Lisp Version 5.0: character,
string-char, array, front-end, complex, structure. For these, as well as for previously
implemented pvar types, this chapter discusses the rules of type coercion and the se
mantics of using *set across various data types.

Version 5.0 introduces the pvar property of changing size without changing type. This
is known as being mutable. Many pvar types may be declared mutable—with the ad
vantage that declarations can be made without exact length specifications.

Previous versions of *Lisp implemented the indefinite pvar type, known as the general
pvar type and declared as (pvar t) . A general pvar may now be declared mutable with
the type specification (pvar *). This type of pvar is called a general mutable pvar.
Whereas in previous versions of *Lisp, pvars allocated without declarations defaulted
to type (pvar t), undeclared pvars now default to type (pvar *). This can result in better
performance for interpreted *Lisp code without pvar declarations. This chapter high
lights the automatic type conversion that takes place when general mutable pvars are
used.

129

130 Supplement to *Lisp Reference Manual

8.1 Pvar Types

A pvar is defined by the kind of values that can be stored in it. The following pvars
types are supported in *Lisp:

For most pvar types, ’Lisp provides several equivalent forms that may be used in dec
larations. For instance, given any valid pvar type specifier (pvar x), x-pvar is also a
valid type specifier.

Each pvar type is listed below with equivalent type forms. Each pair of forms sepa
rated by <=> are equivalent and may be used interchangeably within * proclaim , de
clare , and the forms.

boolean
unsigned-byte
defined-float
string-char
array
front-end

complex
character
structure
general

signed-byte

general

(pvar t) <=> general-pvar

front-end

(pvar front-end) <=> front-end-pvar

boolean

(pvar boolean) <=> boolean-pvar

signed-byte

(pvar (signed-byte width)) <=> (signed-pvar width)

unsigned-byte

(pvar (unsigned-byte width)) <=> (unsigned-byte-pvar width)

defined-float

(pvar (defined-float significand exponent))

float-pvar <=> (pvar (defined-float * *))

Chapter 8. Parallel Variable Types 131

short-float-pvar <=> (pvar short-float)
<=> (pvar (defined-float 15 8))
single-float-pvar <=> (pvar single-float)
<=> (pvar (defined-float 23 8))
double-float-pvar <=> (pvar double-float)
<=> (pvar (defined-float 52 11))
long-float-pvar <=> (pvar long-float)
<=> (pvar (defined-float 74 21))
(pvar extended-float) <=> (pvar (defined-float 96 31))

complex

(pvar (complex (def ined-f loat significant! exponent)))

complex-pvar <=> (pvar (complex (defined-float * *)))
short-complex-pvar <=> (pvar (complex short-float))
<=> (pvar (complex (defined-float 15 8)))
single-complex-pvar <=> (pvar (complex single-float))
<=> (pvar (complex (defined-float 23 8)))
double-complex-pvar <=> (pvar (complex double-float))
<=> (pvar (complex (defined-float 52 11)))
long-complex-pvar <=> (pvar (complex long-float))
<=> (pvar (complex (defined-float 74 21)))

character

(pvar character) <=> character-pvar

string-char

(pvar string-char) <=> string-char-pvar

array

(pvar (array element-type dimensions-list))

structure

(pvar foo-struct) <=> foo-struct-pvar
where foo-struct is a parallel structure that has been defined
with * defstruct as described in chapter 4

132 Supplement to *Lisp Reference Manual

8.2 Mutable Pvars

If a pvar can change its type in any way, it is said to be mutable. Each pvar type form
has zero or more parameters associated with it. To declare a pvar as mutable, specify
the symbol * as the value of the parameter or parameters.

Examples:

(*let (mutable-signed-pvar)
(declare (type (signed-pvar *) mutable-signed-pvar))

• - .)

(♦proclaim '(type (pvar (defined-float ♦ ♦)) mutable-float-pvar))
(♦defvar mutable-float-pvar)

Each pvar type is governed by certain rules and restrictions concerning mutable type
specification. These are detailed below in section 8.5, “Type Declaration and Coer
cion.”

8.3 General Pvars

(pvar t) [Type]

A pvar that is declared explicitly as (pvar t) is a general pvar. Before a general pvar is
initialized, it is referred to as void.

General pvars are allowed to contain, in different processors at the same time, data
belonging to the following pvar types:

boolean character
signed-byte defined-float
complex

Whenever a general pvar is used, *Lisp checks to see which data types it contains.
Then, each data type the general pvar contains is checked to verify that it satisfies the
domain requirements of the operation being performed. All this run-time checking
takes time. General pvars therefore offer almost complete generality with a corre
spondingly severe reduction in run time efficiency.

When data of a particular type is stored in a general pvar, *Lisp ensures that the pa
rameters for that type are identical across all the values of that type. If an attempt is

Chapter 8. Parallel Variable Types 133

made to store pvars of the same type but with divergent parameters into a general pvar,
*Lisp will coerce each pvar into a single type with identical parameters.

For example, when source values of type (defined-float 52 8) are stored in a general
pvar containing values of type (defined-float 23 11), the source values are copied and
they and all the original values in the destination are coerced into type
(defined-float 52 11).

General pvars can receive data from any pvar that is not of type array or structure.
When data of a particular pvar type is stored in a general pvar, *Lisp applies rules of
type coercion specific to that pvar type. These rules are detailed in section 8.5 below.

8.4 Mutable General Pvars

Pvars that are not declared to be of a specific type default to a type known as mutable
general. Before a mutable general pvar is initialized, it is said to be void. Notice that an
uninitialized general pvar, (pvar t), is also known as void.

(pvar *) [Type]

This is the form used within declarations to explicitly declare a mutable general pvar.
For example, the forms

(•proclaim '(type (pvar •) random-mutable-pvar))
(•defvar random-mutable-pvar)

proclaim random-mutable-pvar to be a mutable general pvar and then allocate the
pvar random-mutable-pvar.

Once a mutable general pvar has contained data of two or more distinct types, it loses
its mutable quality and becomes a general pvar. For example, if a pvar declared to be
of type (pvar *) has both integers and characters stored in it, it becomes a pvar of type
(pvar t).

If a mutable general pvar is void and a pvar of any single type is *set into it, then the
mutable general pvar will assume the characteristics of that type, but the general muta
ble pvar will not lose its status as a general mutable pvar. For the purpose of this defini
tion, the following pvar types are considered to belong to different types with respect to
their effect on a mutable general pvar:

134 Supplement to *Lisp Reference Manual

boolean signed-byte
defined-float complex
character

The signed-byte pvar type is considered a super type that subsumes the
unsigned-byte pvar type. Similarly, the character pvar type is considered to subsume
the string-char pvar type. Thus, during a session, a mutable general pvar may hold
both string-char and character data and still retain its status as a mutable general
pvar. Similarly, if a mutable general pvar of type unsigned-byte has signed integers
stored in it, it changes into a mutable general pvar of type signed-byte.

Given the above distinctions in type membership, as long as no data of a different type
is *set into the mutable general pvar, the mutable general pvar will behave exactly as if
it were a mutable pvar of the same type as the data stored it. This is significant be
cause, if a mutable general pvar has held only one type of data, no tests are performed
on the types it contains. Thus, the run-time execution speed of code using mutable
general pvars that hold only one type of data is much faster than the execution speed of
the same code using general pvars.

Mutable general pvars can receive data from a pvar that is not an array pvar or a struc
ture pvar. Under one condition, an array pvar or a structure pvar may be stored in a
mutable general pvar. If a mutable general pvar is void, it may be the destination pvar
for a *set with array or structure source data. In this case, the mutable general pvar
ceases to be a mutable general pvar and becomes an array or structure pvar of the
same type and size as the source.

Within a *set form, a general pvar destination is always expanded as necessary to hold
whatever size data is provided by the source. If the source is a general pvar, *set exe
cutes as though it were called once for each type of data contained in the source general
pvar. Thus, given a source general pvar containing boolean, signed-byte, and complex
data, the *set operation effectively performs the following sequence. First, only the
processors containing boolean data are activated. Next, the boolean data is copied to a
boolean pvar. Finally, *set is called with the general destination pvar and the boolean
source pvar. This process is repeated for the signed-byte and complex data types.

If the source pvar of a *set with a destination of type general pvar is not a general pvar,
•set works as described under each type of pvar, below.

Chapter 8. Parallel Variable Types 135

8.5 Type Declaration and Coercion

Type declarations are useful for two reasons. First, interpreted code executes faster if
type declarations are provided for all allocated pvars. Second, the *Lisp compiler will
compile *Lisp code only if it employs pvars that are declared to be of a definite type.
Neither general pvars nor general mutable pvars will compile.

This section defines the *Lisp rules of type declaration and coercion. For each *Lisp
pvar type, the following questions are answered.

• Can data of this type be declared mutable?

• What happens when data of this type is stored in a general pvar?

• What types of data can be 'se t into a pvar of this type?

Note that, when source pvar values are *set into destination pvar locations, the source
is first copied, then it is type converted if necessary. Finally the (possibly converted)
copy of the source is stored in the destination.

(pvar boolean) [Type]
boolean-pvar [Type]

Boolean pvars have no parameters associated with them and are therefore never muta
ble.

When boolean data is stored in a general pvar, no type conversion is performed.

Within ‘set forms, boolean destination pvars can receive source data of type boolean
only.

A general pvar can be *set into a boolean pvar if and only if all the active data in the
general pvar is boolean.

(pvar front-end) [Type]

Front-end pvars have no parameters associated with them and are therefore never
mutable.

When front-end data is stored in a general pvar, no type conversion is performed.

Within 'se t forms, front-end destination pvars can receive front-end source data
only.

136 Supplement to *Lisp Reference Manual

A general pvar can be*set into a front-end pvar if and only if all the active data in the
general pvar is of type front-end.

Pvars of type string-char have no parameters associated with them and therefore can
never be declared as mutable.

When data of type string-char is put into a general pvar, it is first converted to type
character.

Within *set forms, string-char destination pvars can receive source data of type
string-char or of type character only. If the data, source, is of type character, then
(*and (string-char-p!! source)) must return t.

A general pvar can be *set into a string-char pvar if and only if all active data in the
general pvar is of type string-char. That is, (*set destination source) is valid if destination
is a string-char pvar and if, for the general pvar source, (*and (string-char-p!!
source)) returns t.

(pvar character) [Type]
character-pvar [Type]

Character pvars have no parameters associated with them and therefore can never be
declared as mutable.

When character data is put into a general pvar, no type conversion is performed.

Within *set forms, character destination pvars can receive source data of type string-
char or of type character only.

A general pvar can be *set into a character pvar if and only if all the active data in the
general pvar is of type string-char or of type character.

(pvar (unsigned-byte length)) [Type]
(field-pvar length) [Type]

Pvars of type unsigned-byte are also known as field pvars. They have one parameter
associated with them, a length in bits. This length may be specified as any positive
integer, or as *. Pvars declared as (pvar (unsigned-byte *)) or (field-pvar *) are mu
table. For instance,

(pvar string-char)
string-char-pvar

[Type]
[Type]

Chapter 8. Parallel Variable Types 137

(declare (type (field-pvar 16)) ubsixteen)

declares an unsigned-byte pvar of exactly 16 bits per processor. On the other hand,

(declare (type (field-pvar *)) ub-mut)

declares a mutable unsigned-byte pvar. Pvars declared as (pvar (unsigned-byte *))
are initially allocated 1 bit per processor. They can, however, store unsigned values of
any length.

When data of type unsigned-byte is put into a general pvar, it is first converted to an
equivalent quantity of type signed-byte.

Within *set forms, destination pvars of type unsigned-byte can receive source data of
type unsigned-byte or of type signed-byte only. If the source data is of type signed-
byte, then all the data values must be non-negative; the source data is coerced to type
unsigned-byte before storage is effected. If the destination is of type
(unsigned-byte *), then data of any number of bits is allowed. Otherwise, it must be
possible to represent every active datum in the source using the number of bits speci
fied for the destination’s length.

A general pvar can be *set into a pvar of type unsigned-byte if and only if all the active
data in the general pvar satisfies all the constraints detailed in the preceding para
graph.

(pvar (signed-byte length)) [Type]
(signed-pvar length) [Type]

Pvars of type signed-byte have one parameter associated with them, a length in bits.
This length may be specified as any positive integer greater than 1, or as *. Pvars de
clared as (pvar (signed-byte *)) are mutable. For instance,

(•proclaim '(type (pvar (signed-byte *)) s-mut))

proclaims a mutable signed-byte pvar. Signed-byte pvars declared with * are initially
allocated 2 bits per processor. They can, however, store signed values of any length.

If source data of type signed-byte is moved into a general pvar, and if the source data
length is larger than the length of the signed-byte data already contained in the desti
nation, the signed-byte data already contained in the general pvar destination is sign-
extended to accommodate the increased size.

138 Supplement to *Lisp Reference Manual

Within *set forms, signed-byte pvars can receive source data of type unsigned-byte or
of type signed-byte only. If the source data is of type unsigned-byte, it is coerced into
type signed-byte before *set storage takes place. If the destination is of type (signed-
byte *), then source data any number of bits in length is allowed. Otherwise, it must be
possible to represent every active datum in the source using the same number of bits as
the destination.

A general pvar can be *set into a signed-byte pvar if and only if all the active data in
the general pvar satisfies all the constraints detailed in the preceding paragraph.

(pvar (defined-float significand exponent)) [Type]

Pvars of type defined-float have two parameters associated with them: each defines
the number of bits allocated per processor to store a portion of a floating-point num
ber. The first parameter specifies the significand length; the second parameter speci
fies the exponent length.

The significand length may be any positive integer greater than or equal to 1 and less
than cm :*m axim um -significand-length*. The exponent length may be any positive
integer greater than or equal to 2 and less than cm :*m axim um -exponent-length*.

Mutable defined-float pvars are declared using * instead of a value for both sig
nificand length and exponent length. For example:

(declare (type (pvar (defined-float * *))) mut-float)

It is illegal to specify only one of these parameters as *. Mutable floating-point pvars
are initially allocated 23 bits for the significand and 8 for the exponent, in each proces
sor—with the sign bit, the total length is 32 bits..

When defined-float data is put into a general pvar, floating-point numbers with one
representation may be coerced into floating-point numbers of another representation.
If defined-float data with significand length SL and exponent length EL is copied into a
general pvar containing defined-float data with significand length GSL and exponent
length GEL, both the copied source and all floating-point values originally in the desti
nation are coerced into a representation with (max SL GLS) significand length and
(max GSL GEL) exponent length. If there was originally no floating-point data in the
general destination pvar, this has no effect; GLS and GEL are both zero in this case. If,
however, floating-point data of a different representation resides in the destination
pvar, such coercion may have repercussions with respect to overflow, underflow, preci
sion, and accuracy.

Chapter 8. Parallel Variable Types 139

The above rule of floating-point coercion for data stored in general pvars also applies
to data stored in mutable defined-float pvars, pvars declared as (pvar (defined-
float * *).

Within *set forms, defined-float pvars can receive source data of type unsigned-byte,
type signed-byte, or type defined-float only. If the source data is of type unsigned-
byte or type signed-byte, a copy of it is converted to type defined-float using the *Lisp
float!! operation. This implies that, even if the destination pvar is a mutable defined-
float, it is an error to attempt to store unsigned-byte or signed-byte source data in that
destination unless the source data can be represented in the same floating-point for
mat as is the destination pvar data. If this error is made, an overflow error either is or is
not be signaled, depending on safety level.

If the *set source data is of the same floating-point format as that of the destination, a
simple data copy is done.

If the *set source data is of a floating-point format larger than the destination in either
significand length or exponent length, and if the destination is not a mutable defined-
float pvar, then it is an error.

If the *set destination is of type mutable defined-float, then both a copy of the source
and the destination data are converted to a floating-point representation defined by
the maximum of their significand and exponent lengths. After this conversion, a simple
data copy is done.

A general pvar can be *set into a defined-float pvar if and only if all the active data in
the general pvar satisfies the constraints in the preceding paragraphs.

(pvar (complex (defined-float significand exponent))) \Type\

*Lisp supports complex pvars with real and imaginary parts of type defined-float.

The restrictions on complex pvars parameters are identical to the restrictions on de
fined-float parameters. The real and imaginary parts are always of exactly the same
type. Mutable complex pvars are declared with a * instead of with an integer value for
each parameter. For example,

(♦proclaim '(type (pvar (complex (defined-float * *))) cplx-mut)

declares a mutable complex pvar capable of storing variably sized complex numbers.

Since complex pvars can contain only defined-float components, the coercion rules for
putting complex data into a general pvar are identical to those for defined-float quan

140 Supplement to *Lisp Reference Manual

tities. Note however that complex data is completely independent of defined-float data
with respect to coercion: the existence of either type of data in a general pvar does not
affect the representation of the other type.

The rule of complex coercion for data stored in general pvars also applies to data
stored in mutable complex pvars.

Within *set forms, complex pvars can receive source data of type unsigned-byte,
signed-byte, defined-float, or complex only. If the *set source data is of type un
signed-byte, signed-byte, or defined-float, it is coerced into the floating-point format
determined by the complex destination, following the same rules as for defined-float.
The source data is then converted to complex data of the same floating-point format as
the destination, with 0.0 as its imaginary part. Finally, a simple data copy is done.

General pvars can be *set into complex pvars if and only if all the active data satisfies
the constraints in the preceding paragraph.

(pvar (array element-type dimensions)) [Type]

Array pvars may not be declared mutable.

Array pvars may not be stored in general pvars. There is one exception: an array pvar
may be stored in a void mutable general pvar. A void mutable general pvar is a pvar of
type (pvar *) that has never had any data stored in it. When an array pvar is stored in a
void mutable general pvar, that mutable general pvar becomes an array pvar with the
same type and size as the array pvar which has been stored in it.

Within *set forms, array pvars can receive source data from other arrays pvars of the
same shape. Effectively, 's e t is called on each element of the destination and source.
The normal rules of type coercion with respect to the destination apply to *set opera
tions acting on arrays.

(pvar struct-name) [User-Defined Type]

A pvar of type struct-name may be declared only after struct-name has been defined with
*defstruct.

Structure pvars may not be declared mutable.

Structure pvars may not be stored in general pvars. There is one exception: a structure
pvar may be stored in a void mutable general pvar. A void mutable general pvar is a
pvar of type (pvar *) that has never had any data stored in it. When a structure pvar is

Chapter 8. Parallel Variable Types 141

stored in a void mutable general pvar, that mutable general pvar becomes a structure
pvar with the same type and size as the structure pvar which has been stored in it.

Within *set forms, structure pvars can receive source data from other structure pvars
of exactly the same type. A simple bit copy is performed.

8.6 If No Processors Are Active,
No Type Coercion Happens

It is an error for the source pvar in a *set form to be a void pvar when there are selected
processors. If any processors are active, and if an attempt is made to use avoid pvar as
the source in a *set form, and if *interpreter-safety* is greater than 0, then an error is
signaled. Conversely, if no processors are active it is not an error to use avoid pvar as
the source in a *set form.

The basic rule concerning *set when no processors are active is that nothing happens
and nothing changes. No bits are copied and none of the the parameters of any pvar
types are changed.

Examples:

(♦let (x)
;; x is now (pvar *)
(♦when nil! (♦set x (!! -3)))
;; x is still void. It is not of type signed-byte.
)

(♦all
(♦let (x)

;; x is void.
(♦set x (!! 3))
;; x is now of type unsigned-byte, and mutable to general
(♦when nil!! (#set.x (!! 1.1)))
;; x is still of type unsigned-byte, mutable to general.
;; It is not of type (pvar t), which it would have been
;; had there been any processors selected.
))

142 Supplement to *Lisp Reference Manual

(♦let (x)
(declare (type (pvar (unsigned-byte 8)) x))
(♦when nil!! (♦set x (!! -1)))
;; This is not an error since nothing is proclaimed and
;; therefore no processor is receiving the improper negative
;; value.

Experimental Features

143

A Warning About Experimental Features

Experimental features are features that are not completely stable. These features may
be substantially changed in future *Lisp versions and Thinking Machines makes no
guarantee that future implementations will be backwardly compatible with the current
implementation. Users who wish to experiment with the capabilities permitted by
these features do so at the risk of rewriting application code in the future to conform to
a new, incompatible version.

144

Chapter 9

- > Experimental < -
Scanning with Segment Sets

The functionality of segmented scans has been enhanced. A new abstraction, termed a
segment set, is now implemented. A segment is defined as a series of Connection Ma
chine processors identified by contiguous send addresses. A segment set is defined as
a collection of segments such that no processor is included in more than one segment.
The segments included in a segment set need not span the entire address space.

Segment sets differ in two major characteristics from the segments optionally speci
fied in a call to the scan!! function. First, segment sets are independent of the currently
selected set (CSS). The segments specified as members of a segment set may include
processors outside the CSS. Second, a segment set may be disjoint. That is, taken in
ascending send address order, segments may be specified such that the first and last
processors participating in any two segments need not be adjacent.

The use of segment sets for scanning is provided by two new *Lisp functions: seg-

m ent-set-scan!! and create-segment-set!!.

9.1 Operations for Segmented Scans

A segm ent-set-scan!! operation works just like a scan!! operation except that it uses
segment sets. It performs a specified associative binary *Lisp function over the values
contained in the processors of each segment. This is done as a reduction analogous to
the Common Lisp sequence function reduce. The cumulative result of the reduction is
stored in each processor within a segment. For each segment, the scan operation is
reinitiated; results obtained within one segment are not carried over into the next.

145

146 Supplement to *Lisp Reference Manual

segm ent-set-scan!! pvar scan-operator segpient-set-pvar [Function]
&key : direction

:check-for-processors-not-in-segm ent-set
:activate-all-processors-in-segm ent-set

The function segm ent-set-scan!! is similar to the function scan!!. It is used to per
form scan operations over segment sets. At present, only scans using send address
order are supported. (For a description of send addresses, see the definition of scan!!
in section 6.2.) The :include-self option of scan!! is not used. Each processor always
receives the result of applying the scan operation to all processors in its segment, in
cluding itself.

The return value of a call to segm ent-set-scan!! is a pvar containing scan results in
each processor included in the specified segment set. In processors which have not
participated in the scan operation, the result pvar contents are undefined.

The argument pvar may be any pvar acceptable to the function specified as the scan-
operator argument.

The scan-operator may be one of the following associative binary parallel functions:

+!!, and!!, or!!, max!!, min!!, copy!!, logand!!, logior!!, logxor!!

The segment-set-pvar is a pvar returned by a call to the function create-segm ent-

set!!. See the function description for create-segment-set!!, below.

The :directior> keyword argument may be given as either :forward or :backward and
defaults to :forward. A forward scan operation is performed in ascending send address
order. Descending send address order is used if a backward direction is specified.

The :check-for-processors-not-in-segm ent-set keyword takes a boolean value and
defaults to nil. If t is specified, segm ent-set-scan!! checks for processors which are in
the CSS but which are not included in the segment set. If any are found, an error is
signaled. If the default is used, the pvar value in processors which are in the CSS but
which are not included in the segment set are simply ignored.

The :activate-all-processors-in-segment-set keyword takes a boolean value and de
faults to t. If the default is used, all processors in the segment set are activated for the
duration of the segm ent-set-scan!! operation. If nil is specified, the scan operation
skips the pvar value in any processor that is not in the CSS, regardless of whether that
processor is included in a segment of the segment set. This can fragment segments by
allowing “holes” of deactivated processors. When a scan encounters a segment thus
fragmented, it ignores any deactivated processors and carries the cumulative value of
the scan into the next active processor in the segment.

Chapter 9. Experimental Scanning with Segment Sets 147

Notice that the last option enables scans that operate only in those processors both
active when the function is entered and inside one of the segments defined by the seg
ment set.

create-segm ent-set!! start-segment-pvar end-segment-pvar [Function]

This function returns a segment set structure suitable for use as the third argument in
a call to the segm ent-set-scan!! operation.

The two arguments to create-segment-set!! specify which processors are included in
the segments of the segment set. These are boolean pvars, one or the other but not both
of which may be nil!!.

The start-segment-pvar argument may be nil!! or it may contain t in each processor
which starts a segment and nil in all other processors. The end-segment-pvar argument
may be nil!! or it may contain t in each processor which ends a segment and nil in all
other processors.

With these arguments, it is possible to specify a segment set from which certain proc
essors are entirely excluded. However, if either argument to create-segment-set!! is
nil!!, adjacent segments are defined.

When constructing start-segment-pvar and end-segment-pvar, take care to properly
interleave the starting and ending processors for each segment. It is an error to specify
overlapping segments.

From the segment start and end information, a structure pvar is constructed. The
structure pvar created by a call to create-segment-set!! is defined as follows:

(*defstruct segment-set
(start-bits nil :type boolean)
(end-bits nil :type boolean)
(processor-not-in-any-segment nil :type boolean)
(start-address 0

:type (signed-byte 32)
:cm-type (pvar (signed-byte(1+ *current-send-address-length*))))

(end-address 0
:type (signed-byte 32)
:cm-type (pvar (signed-byte(1+ *current-send-address-length*))))

)

The start-bits and end-bits slot pvars are identical to the start-segment-pvar and end-
segment-pvar arguments provided to create-segment-set!!. The processor-not-in-

148 Supplement to *Lisp Reference Manual

any-segment slot pvar is t in each processor excluded from the segments in the set and
nil elsewhere.

The send address of every first and last processor in each segment is calculated and
stored with the segment-set structure in the start-address and end-address slot
pvars. In each processor that is included in a segment, the start-address slot pvar con
tains the send address of the first processor in the segment and the end-address slot
pvar contains the send address of the last processor in the segment. For processors
excluded from all segments in the set, the start-address and end-address slot pvars
each contain -1.

Chapter 10

- > Experimental < -
Parallel Vector Functions

*Lisp provides a set of experimental operations on numeric vector pvars. These per
form standard operations, such as vector addition and dot product, on numeric vector
pvars. For top performance, a set of specialized routines are provided for vector pvars
of element type single-float.

All the numeric data types supported by *Lisp are valid element types for the vector
pvars used in the parallel vector operations. These include unsigned-byte, signed-
byte, float and complex.

The normal rules of *Lisp contagion are followed. For instance, the addition of a
signed vector pvar with a float vector pvar results in a float vector pvar. The scaling of a
float vector pvar by a complex scalar yields a complex result vector pvar.

The normal rules of *Lisp sizing are supported. For example, adding two vector pvars
with element types (unsigned-byte 8) yields a result vector with element type
(unsigned-byte 9).

In general, it is an error if the vectors provided to any vector math function are not all
of the same length.

*vset-components vector-pvar &rest component-pvars [*Defun]

If there is a single component-pvar argument, then every element of vector-pvar is *set

to it. If there are as many component-pvar arguments as there are elements in vector-
pvar, then the jth element of vector-pvar is *set to the jth component-pvar argument.
An error will be signaled if the number of component-pvar arguments is not either 1 or
the number of elements in the vector-pvar.

149

150 Supplement to *Lisp Reference Manual

v+!! vector-pvar &rest more-vector-pvars
v-!! vector-pvar Sorest more-vector-pvars
v*!! vector-pvar Screst more-vector-pvars

[Function]
[Function]
[Function]

These functions allocate a result vector pvar according to the standard *Lisp conta
gion and sizing rules, discussed above. The obvious operation is performed element
wise. If a single argument is given to v + !! or v*H it is returned unchanged.

This function returns a scalar pvar of the proper type and size. In each processor, the
inner product of the two vectors is returned. Thus,

(dot-product!! cl-pvar c2-pvar)
<=>
(reduce #' + (map 'vector #'* cl c2))

in every active processor.

cross-product!! vector-pvarl vector-pvar2 [Function]

In each processor, the cross product of the two vector pvars is computed. The result is
returned as a vector pvar.

vabs-squared!! vector-pvar [Function]

This function returns a scalar pvar of the same type as vector-pvar—but, if the element
type is unsigned or signed, of larger size.

Calling (vabs-squared!! vector-pvar) is equivalent to

(dot-product!! vector-pvar vector-pvar)

vabs!! vector-pvar [Function]

This function returns a scalar pvar of type float if the element type of vector-pvar is
non-complex. If the element type of vector-pvar is complex, vabs!! returns a complex
pvar. This function is equivalent to

dot-product!! vector-pvarl vector-pvar2 [Function]

(sqrt!! (vabs-squared!! vector-pvar))

Chapter 10. Experimental Vector Functions for *Lisp 151

vscale!! vector-pvar scalar-pvar [Function]

This function returns a vector pvar of the proper type and size according to the *Lisp
contagion and sizing rules.

In each processor, each element of the input pvar, vector-pvar, is multiplied by the
single element of scalar-pvar in that processor.

This function is equivalent to

(vscale!! vector-pvar (/!! (vabs!! vector-pvar)))

except that vector-pvar is evaluated once.

It is an error if (vabs!! vector-pvar) is zero in any processor.

10.1 Experimental Special-Purpose
Single-Float Vector Operations

The *Lisp Compiler does not currently ‘compile parallel vector math operations.
Therefore, specialized functions are offered to optimize interpreted code.

Special versions of the above functions (plus a few more) are provided for vector pvars
with element type single-float. The function names for these functions begin with the
prefix “sf-’\ for single-float.

Also provided are even more specialized functions that take a vector pvar destination
argument as well as the usual arguments. These functions avoid the execution time and
memory utilization overhead of allocating temporary result vector pvars. Avoiding this
overhead is especially important when operating on long vectors. The function names
for these functions begin with the prefix “d”, for destination.

All functions prefixed with “sf-” and “d” require vector pvars whose element type is
single-float. Any non-vector pvar arguments must be of type (pvar single-float). It is
an error if these conditions are not observed.

Be aware that these functions perform no overflow, underflow, or divide by zero error
checking. In other words, their behavior is like that of code compiled with * safety* set
to 0. These functions are provided solely for speed.

vscale-to-unit-vector!! vector-pvar [Function]

152 Supplement to *Lisp Reference Manual

*sf-vset-components vector-pvar &rest component-pvar [*Defun\

This operation is analogous to *vset-components.

sf-v+-constant!! vector-pvar scalar-pvar [Function]
sf-v— constant!! vector-pvar scalar-pvar [Function]
sf-v*-constant!! vector-pvar scalar-pvar [Function]
sf-v/-constant!! vector-pvar scalar-pvar [Function]

In each processor, these functions add, subtract, multiply, or divide each element of
the input pvar, vector-pvar, by the input pvar, scalar-pvar, and return a pvar vector of
element type single-float.

dsf-v+-constant!! vdest vector-pvar scalar-pvar [*Defun]
dsf-v— constant!! vdest vector-pvar scalar-pvar [*Defun]
dsf-v*-constant!! vdest vector-pvar scalar-pvar [* Defun]
dsf-v/-constant!! vdest vector-pvar scalar-pvar [*Defun]

These operations perform the same computation as their analogues above and store
the result in vdest. The argument vdest must be a pvar vector of element type
single-float.

sf-v+!! vector-pvar &rest more-vector-pvars [Function]
sf-v-!! vector-pvar &rest more-vector-pvars [Function]
sf-v*!! vector-pvar &rest more-vector-pvars [Function]

These functions are the single-float analogues of v+!!, v-!! and v*!!, respectively.

dsf-v+!! vdest vector-pvar &rest more-vector-pvars [*Defun]
dsf-v-!! vdest vector-pvar &rest more-vector-pvars [*Defun]
dsf-v*!! vdest vector-pvar &rest more-vector-pvars [*Defun]

These operations perform the same computation as their analogues above and store
the result in vdest. The argument vdest must be a vector pvar of element type single

float.

Chapter 10. Experimental Vector Functions for *Lisp 153

sf-vabs!! vector-pvar [Function]
sf-vabs-squared!! vector-pvar [Function]
sf-dot-product!! vector-pvarl vector-pvar2 [Function]
sf-vscale!! vector-pvar scalar-pvar [Function]
sf-vscale-to-unit-vector!! vector-pvar [Function]

These functions are the single float analogues of vabs!!, vabs-squared!!, dot-prod-

uct!!, vscale!! and vscale-to-unit-vector!!, respectively.

sf-cross-product!! vector-pvarl vector-pvar2 [Function]

The arguments vector-pvarl and vector-pvar2 must each be a pvar vector of type (pvar

(array single-float (3))).

In each processor, the cross product of the two vectors is computed and returned as a
pvar vector of type (pvar (array single-float (3))).

sf-vector-normal!! vector-pvarl vector-pvar2 [Function]

This function is equivalent to

(sf-vscale-to-unit-vector!!
(sf-cross-product!! vector-pvarl vector-pvar2))

dsf-vscale!! vdest vector-pvar scalar-pvar [*Defuri]
dsf-vscale-to-unit-vectorl! vdest vector-pvar [*Defun]
dsf-cross-product!! vdest vector-pvarl vector-pvar2 [*Defun]
dsf-vector-normal!! vdest vector-pvarl vector-pvar2 [*Defun]

These operations each perform the expected operation and store the result in vdest.
The argument vdest must be a pvar vector of element type (pvar single-float). For dsf-

cross-product! ! and dsf-vector-norm al!!, the arguments vector-pvarl and vector-pvar2
must each be a pvar vector of type (pvar (array single-float (3)))).

154 Supplement to *Lisp Reference Manual

10.2 Serial Equivalents of the Single-Float
Vector Operations

For symmetry, serial equivalents to the above functions are provided.

All these operations operate on any kind of numeric vector and perform according to
the rules of Common Lisp contagion and coercion.

v+-constant vector scalar [Function]
v— constant vector scalar [Function\
v*-constant vector scalar [Function]
v/-constant vector scalar [Function]

v+ vector &rest more-vectors [Function]
v - vector &rest more-vectors [Function]
v* vector &rest more-vectors [Function]

dot-product vectorl vector2 [Function]
vabs-scfuared vector [Function]
vabs vector [Function]
cross-product vectorl vector2 [Function]
vscale vector scalar [Function]
vscale-to-unit-vector vector [Function]
vector-normal vectorl vector2 [Function]
vfloor vector [Function]
vceiling vector [Function]
vround vector [Function]
vtruncate vector [Function]

Chapter 11

- > Experimental < -
Parallel Sequence Operations

*Lisp sequence operations are the parallel equivalents of Common Lisp sequence op
erations, with the exception of the following general restrictions and of the further re
strictions stated in the operation definitions given in this chapter.

In *Lisp, the term sequence pvar refers to any one-dimensional array pvar, also called a
vector pvar. This differs from Common Lisp, which defines the sequence data type to
include both lists and vectors. *Lisp does not implement list pvars.

Array pvars in *Lisp are restricted to be of the same fixed size in each processor. The
manner in which this restricts the generality of certain sequence functions is noted in
the definitions that follow.

*Lisp provides the following subset of Common Lisp sequence functions, imple
mented to operate on sequence pvars.

subseq!! some!!
copy-seq!! every!!

length!! notany!!

*nreverse notevery!!

reverse!! reduce!!

•fill find!!

substitute!! position!!

nsubstitute!! count!!

As in Common Lisp, *Lisp includes variations on many of these operations. Such vari
ations are indicated by the addition of “- i f ’ or “-if-not” as a suffix .

155

156 Supplement to *Lisp Reference Manual

11.1 Argument Conventions in Sequence Operations

The operation definitions that follow all use arguments denoted by the metavariable
sequence-pvar. This argument must be an array pvar of one dimension.

Many definitions in this chapter include keyword arguments denoted by : start and
:end. In all cases, these are used to define a subsequence pvar which is then acted upon
by the operation. This use of : start and :end keyword parameters is consistent with
Common Lisp.

Arguments to : start and :end must be positive integer pvars containing values within
the range of 0 through n + 1, where n is the highest index of the sequence pvar and n + 1
is the length of the sequence pvar. The subsequence pvar thus defined includes ele
ments indexed by the start value in each processor up to but excluding elements in
dexed by the end value. In any active processor, the start must be less than or equal to
the end. The value of start defaults to (!! 0). The value of end defaults to
(length!! sequence-pvar). If different start and end values are stored in different proces
sors, it is as though the processors contain subsequence vectors of different lengths.

Many sequence operations that require comparing sequence pvar elements with other
given values will allow specification of a test other than the default, eql!!. An optional
predicate function can be supplied as a keyword argument to either :test or :test-not.

Some sequence operations perform tests on sequence pvar elements. Where these op
erations require that part of an element be extracted and supplied to the test, a user-
defined function may be provided as an argument to the keyword :key. Such key func
tions must take one argument: a sequence pvar element.

11.2 Simple Operations on Sequence Pvars

subseq!! sequence-pvar start &optional end [Function]

This function returns, in each processor, a sequence pvar of the same type as se
quence-pvar and of length (-!! end start). The resulting sequence pvar contains a copy
of the values of the elements found in sequence-pvar.

The argument sequence-pvar must be a sequence pvar. The arguments start and end
must be non-negative integer pvars within the range of indices for sequence-pvar. Un
like most of the other sequence pvar operations, both start and end must contain uni

Chapter 11. Experimental *Lisp Parallel Sequence Operations 157

form values in all active processors. Thus, the value of (-!! end start) must be the same
across all active processors.

Example:

(setq abed (typed-vector!! '(pvar character)
(!! #\A) (!! #\B) (!! #\C) (!! #\D)))

(setq be (subseq!! abed (!! 1) (!!2))

(ppp (aref!! be (!! 0) (M 1)) :end 3)

=>#\B #\C #\B #\C #\B #\C

copy-seq!! sequence-pvar [Function]

This function returns a copy of sequence-pvar. The argument sequence-pvar must be a
vector pvar.

length!! sequence-pvar [Function]

This function returns a positive integer pvar indicating the number of elements in
sequence-pvar.

The argument sequence-pvar must be a vector pvar. The pvar returned by length!!

holds the same value in each processor. Therefore:

(length!! sequence-pvar)
<=>
(!! (*array-total-size sequence-pvar))

*nreverse sequence-pvar *Defuri\

The function *nreverse destructively modifies sequence-pvar to contain its elements in
reverse order. The argument sequence-pvar must be a vector pvar. For example:

(*nreverse (!! # (1 2 3 4))) => (!! # (4 3 2 1)) .

158 Supplement to * Lisp Reference Manual

reverse!! sequence-pvar [Function]

This function returns a sequence pvar that is a reversed copy of sequence-pvar. The
argument sequence-pvar must be a vector pvar. The following equivalence always
holds:

(reverse!! sequence-pvar)
<=>
(*nreverse (copy-seq!! sequence-pvar))

11.3 Mapping Predicates Over Sequence Pvars

some!! predicate sequence-pvar &res? more-sequence-pvars [Function]
every!! predicate sequence-pvar &rest more-sequence-pvars [Function]
notany!! predicate sequence-pvar &rest more-sequence-pvars [Function]
notevery!! predicate sequence-pvar &rest more-sequence-pvars [Function]

Each of these functions returns a boolean pvar indicating whether predicate is true for
some, every, none, or not all sequence pvars given.

The function some!! returns t in each processor where predicate proves true for any
element of the sequence in that processor. If predicate proves false for all elements of
the sequence in a processor, some!! returns nil in that processor.

The function every!! returns nil in each processor where predicate proves false for any
element of the sequence in that processor. If predicate proves true for all elements of
the sequence in a processor, every!! returns nil in that processor.

The function notany!! returns nil in each processor where predicate proves false for all
elements of the sequence in that processor. If predicate proves true for any element of
the sequence in a processor, notany!! returns nil in that processor.

The function notevery!! returns t in each processor where predicate proves false for any
element of the sequence in that processor. If predicate proves true for all elements of
the sequence in a processor, notany!! returns nil in that processor.

The argument sequence-pvar must be a vector pvar, as must each &rest argument. All
sequence pvars provided must be the same size. The argument predicate must be a test
function that takes as many arguments as there are sequence pvars provided.

Chapter 11. Experimental * Lisp Parallel Sequence Operations 159

In each processor, the argument predicate is applied sequentially to each element, be
ginning with the Oth element and continuing until the termination criterion is met or all
sequence pvars are exhausted.

reduce!! function sequence-pvar &key :from-end [Function]
: start :end
:initiai-vaiue

The function reduce!! operates in each processor to combine all the elements of
sequence-pvar, two at a time, using function. A pvar containing the reduction result in
each processor is returned. For example:

(reduce!! #'+!! number-sequence-pvar)

adds up all the elements of number-sequence-pvar in each processor.

The argument function must be a binary operation that accepts pvar arguments of the
type contained in sequence-pvar. The argument sequence-pvar must be a vector pvar.

The keyword :from-end takes a boolean and defaults to nil. Reduction is left-associa
tive in any processor with a :from-end value of nil. Otherwise, reduction is right-asso
ciative.

The keywords : start and :end take values as described at the beginning of this chapter
and thereby define a subsequence of sequence-pvar. If a subsequence is defined by
:start and :end, it is reduced using function.

The keyword : initial-value takes a pvar of the same type as the elements of sequence-
pvar. If an : initial-value value is supplied, it is logically placed at the beginning of
sequence-pvar or of the subsequence pvar and included in the reduction calculation. If
:from-end is t, the value o f : initial-value is logically placed at the end of sequence-pvar
or of the subsequence pvar and included in the reduction calculation.

11.4 Operations Modifying Sequence Pvar

•fill sequence-pvar item &key :start :end [* Defun]

This function destructively modifies sequence-pvar ox a subsequence of sequence-pvar
by filling each element with item.

160 Supplement to *Lisp Reference Manual

The argument sequence-pvar must be a vector pvar. The argument item must be a pvar
of the same type as the elements of sequence-pvar.

The keywords : start and :end take values as described at the beginning of this chapter
and thereby define a subsequence of sequence-pvar.

substitute!! newitem olditem sequence-pvar [Function]
&key :from -end :test :test-not

:start :end :count :key

substitute-if!! newitem test sequence-pvar [Function]
&key :from -end : start :end

:count :key

substitute-if-not!! newitem test sequence-pvar [Function]
&key :from -end :start :end

:count :key

The function substitute!! compares each element of sequence-pvar on a per-processor
basis with olditem. The return value is a modified copy of sequence-pvar in which
newitem has been substituted for each element that is the same as olditem.

The function substitute-if!! applies test to each element of sequence-pvar. Where test
succeeds, substitute!! substitutes the local value of newitem. The return value is a
modified copy of sequence-pvar.

The function substitute-if-not!! applies test to each element of sequence-pvar. Where
to t fails, substitute-if-not!! substitutes the local value of newitem. The return value is a
modified copy of sequence-pvar.

The argument sequence-pvar must be a vector pvar. The arguments newitem and ol
ditem must be pvars of the same type as the element type of sequence-pvar. These argu
ments may contain different values in different processors.

The argument test must be a scalar predicate in one argument.

The keyword :from -end takes a boolean pvar that specifies from which end of se
quence-pvar in each processor the operation will take place. The default is nil!!, indi
cating a forward direction for all processors. A non-nil :from -end argument indicates
the reverse direction but makes no difference unless a : count argument is also sup
plied.

Chapter 11. Experimental *Lisp Parallel Sequence Operations 161

The keywords :test and :test-not may not be used together. Arguments to these must
be binary equivalence-testing functions. The comparison between olditem and
newitem is made using eql!! unless another test function is supplied with either the
:test or the :test-not keyword.

Arguments to the keywords : start and :end define a subsequence pvar to be operated
on by substitute!! as described at the beginning of this chapter.

The : count keyword argument must be a positive integer pvar with values less than or
equal to (length!! sequence-pvar). The function returns after count elements have sat
isfied the test.

The :key keyword accepts a user-defined function used to extract a part of an element
of sequence-pvar. This key function must take one argument: an element of sequence-
pvar.

nsubstitute!! newitem olditem sequence-pvar [Function]
&key :from-end :test :test-not

:start :end :count :key

nsubstitute-if!! newitem test sequence-pvar [Function]
&key :from-end :start :end

:count :key

nsubstitute-if-not!! newitem test sequence-pvar [Function]
&key :from-end :start :end

:count :key

These functions are the parallel equivalents of the Common Lisp nsubstitute func
tions.

The nsubstitute!! functions are destructive versions of the substitute!! functions.
Upon return from an nsubstitute!! operation, sequence-pvar is modified.

162 Supplement to *Lisp Reference Manual

11.5 Operations Searching Sequence Pvars

find!! item sequence-pvar
&key :from-end :test :test-not

:start :end :key :return-value-if-not-found

[Function]

find—if!! test sequence-pvar
&key :from -end :start :end

:key :return-value-if-not-found

[Function]

find-if-not!! test sequence-pvar
&key :from-end :start :end

:key :return-value-if-not-found

[Function]

These functions are the parallel equivalents of the Common Lisp find functions except
that an additional keyword, :return-value-if-not-found, is provided.

The function find!! searches sequence-pvar for elements that match item. It returns a
pvar containing a copy of the first instance found in each processor. In any processor
failing the search, the result contains retum-value-if-not-found,if it was supplied and
nil otherwise. Elements of sequence-pvar are tested against item with eql!! unless either
test or test-not is supplied as an alternative.

The functions find—if!! and find-if-not!! are similar. They search sequence-pvar for
elements that either do or do not pass test and return a copy of the first element found
in each processor.

The argument item must be a pvar of the same type as the element type of sequence-
pvar. The argument sequence-pvar must be a vector pvar of any ‘Lisp type.

The argument test must be a scalar predicate taking one argument of the same type as
that of each element of sequence-pvar.

The keyword :from-end takes a boolean pvar that specifies from which end of se
quence-pvar in each processor the operation will take place. The default is nil!!, indi
cating a forward direction for all processors.

The keywords -.test and :test-not may not be used together. Arguments to these must
be binary equivalence-testing functions. The comparison between sequence-pvar ele
ments and item is made using eql!! unless either test or test-not is supplied.

Chapter 11. Experimental * Lisp Parallel Sequence Operations 163

Arguments to the keywords : start and :end define a subsequence pvar to be operated
on, as described at the beginning of this chapter.

The :key keyword accepts a user-defined function used to extract a part of an element
of sequence-pvar. This key function must take one argument: an element oisequence-
pvar.

The keyword argument to :return-value-if-not-found must be a pvar and defaults to
nil!!. The value of this pvar is returned in any processor where the search is not suc
cessful.

position!! item sequence-pvar [Function]
&key :from-end :test :test-not

: start :end :key

position—if!! test sequence-pvar [Function]
&key :from-end :start :end :key

position-if-not!! test sequence-pvar [Function\
&key :from-end :start :end :key

The position!! functions are very similar to the find!! functions. Here, however, it is not
the found sequence pvar elements but their indices that are returned.

These functions are almost parallel equivalents of the Common Lisp position func
tions with two exceptions. Rather than returning nil, these return -1 in processors
where the search fails. Each position!! function returns a 32 bit signed-byte pvar.

The function position!! searches sequence-pvar for elements that match item. It re
turns a pvar containing the index of the first match found in each processor. In any
processor failing the search, the result contains -1. Elements of sequence-pvar are
tested against item with eql!! unless either test or test-not is supplied as an alternative.

The functions position-if!! and position-if-not!! are similar. They search sequence-
pvar for elements that either do or do not pass test.

The argument item must be a pvar of the same type as the element type of sequence-
pvar. The argument sequence-pvar must be a vector pvar of any *Lisp type.

The argument test must be a scalar predicate taking one argument: a sequence ele
ment.

Chapter 11. Experimental *Lisp Parallel Sequence Operations 165

The argument test must be a scalar predicate taking one argument: a sequence-pvar
element.

The keyword :from -end takes a boolean pvar that specifies from which end of se-
quence-pvar in each processor the operation will take place. The default is nil!!, indi
cating a forward direction for all processors.

The keywords :test and :test-not may not be used together. Arguments to these must
be binary equivalence-testing functions. The comparison between sequence-pvar ele
ments and item is made using eql!! unless either test or test-not is supplied.

Arguments to the keywords : start and :end define a subsequence pvar to be operated
on, as described at the beginning of this chapter.

The :key keyword accepts a user-defined function used to extract a subsequence of
sequence-pvar. This key function must take one argument: an element of sequence-
pvar.

164 Supplement to *Lisp Reference Manual

The keyword :from-end takes a boolean pvar that specifies from which end of se
quence-pvar in each processor the operation will take place. The default is nil!!, indi
cating a forward direction for all processors.

The keywords :test and :test-not may not be used together. Arguments to these must
be binary equivalence-testing functions. The comparison between sequence-pvar ele
ments and item is made using eql!! unless either test or test-not is supplied.

Arguments to the keywords :start and .-end define a subsequence pvar to be operated
on, as described at the beginning of this chapter.

The :key keyword accepts a user-defined function used to extract a subsequence of
sequence-pvar. This key function must take one argument: an element of sequence-
pvar.

count!! item sequence-pvar [Function]
&key :from -end :test :test-not

: start :end :key

count-if!! test sequence-pvar [Function\
&key :from-end :start :end :key

count-if-not!! test sequence-pvar [Function]
&key :from-end :start :end :key

The count!! functions are very similar to the find!! functions. Here, however, the
search continues until sequence-pvar is exhausted. A count of the sequence-pvar ele
ments satisfying the search is returned. Each count!! function returns a 32 bit un
signed-byte pvar.

The function count!! searches sequence-pvar for elements that match item. It returns a
pvar containing a count of the matching elements found in each processor. Elements
of sequence-pvar are tested against item with eql!! unless either test or test-not is sup
plied as an alternative.

The functions count-if!! and count-if-not!! are similar. They search sequence-pvar
for elements that either do or do not pass test and return a count.

The argument item must be a pvar of the same type as the element type of sequence-
pvar. The argument sequence-pvar must be a vector pvar of any *Lisp type.

Appendixes

Appendix A

The Relationship between the
CM-2 Architecture, Paris, and *Lisp

This appendix explains which advanced features of the CM-2 architecture are accessi
ble from *Lisp, Version 5.0 and which are not. The advanced CM-2 features considered
here are:

• Sprint routing
• Backward routing
• Combined routing
• Indirect addressing
• Floating-point accelerator
• Spreads

In each case, the *Lisp features provided to take advantage of the CM-2 hardware ar
chitecture are briefly described. For descriptions of the Paris software features men
tioned here, see the Paris Reference Manual, Version 5.0.

A.1 Sprint Routing

Before the release of the Connection Machine System Software Version 5.0, routing
using a virtual processor (VP) ratio of n took time that was not proportional to n, but
rather to some higher power of n. Paris sprint routing software now allows routing
using a VP ratio of n to take time proportional to n.

The choice between regular routing and sprint routing is made by the Paris routing
software based on the current VP ratio. The *Lisp user has no control over this deci
sion. Paris chooses to do normal routing when a low VP ratio is in effect and sprint
routing when a high VP ratio is in effect. For example, with a VP ratio of 1, Paris will
effect normal routing. In contrast, with a VP ratio of 16, Paris will chose sprint routing.

169

170 Supplement to the *Lisp Reference Manual

A.2 Backward Routing

Backward routing allows a *Lisp user to execute a pref!! with collisions in nearly the
same time as a pref!! with no collisions, albeit with a significant tradeoff in space.
There is currently no way to predict how much memory will be used. The amount of
memory used is a function of the VP ratio and the exact routing pattern used. It is
roughly on the order of 100 times the VP ratio in bits.

In order to cause the Connection Machine to do backward routing, the semantics of
pref!! have been changed slightly for Release 5.0. The default value of the :collision

mode keyword has been changed from :collisions-allowed to nil. If no value is speci
fied for this keyword, or if the value specified is nil, then backward routing will be used.
If any of the previously defined keywords are specified (: no-collisions, :collisions-al-

lowed, or :many-coliisions), then backward routing will not be used.

A detailed description of pref!! can be found in the Supplement to the *Lisp Reference
Manual chapter 6, entitled “TV-Dimensional Interprocessor Communication.”

A.3 Combining Routing

Combining routing has the effect of making *pset calls that use combiners such as
:add and :logior operate much faster than on a CMl. Previously, *pset combining was
done exclusively at the destination processors in a serial fashion. Now, the combining
is done inside the router as the messages are traversing the hypercube.

This feature is used automatically by the Paris send instructions whenever possible.
The *Lisp user has no control over whether the combining router is used or not.

A.4 Indirect Addressing

In *Lisp the term indirect addressing is used to refer to pvar array referencing that uses
different index values in different processors. This type of array referencing is gener
ally slower than array referencing that uses index pvars containing the same values in
each processor. The CM-2 is capable of doing fast indirect addressing when data is
represented sideways. (See the function definitions for TRANSPOSE-DATA,
AREF-32-2L, and ASET-32-2L in the Paris Reference Manual, Version 5.0.)

Appendix A: Relationship between CM2, Paris, and *Lisp 171

To use this capability, two new experimental *Lisp functions, *sideways-array and
sideways-aref!! are introduced with Release 5.0. The function *sideways-array takes
an existing array pvar and forces it to be represented sideways. After this is done, side

ways-aref!! and (*setf (sideways-aref!!...)) can be used to read non-uniformly posi
tioned array pvar elements out of each processor. The use indirect addressing in *Lisp
is described in detail in chapter 3 of the Supplement to the *Lisp Reference Manual.

A.5 Floating-Point Accelerator

The CM-2 floating-point accelerator operates on data turned sideways. Paris floating
point instructions must therefore turn data sideways before it can be processed by the
floating-point hardware and invert it before writing it back to memory. At low VP ra
tios this can be inefficient. Therefore, keeping floating-point data sideways can result
in performance improvements. This CM-2 capability is, however, not yet supported in
software.

When a CM-2 has floating-point hardware, Paris and *Lisp use it by turning data side
ways before executing any floating-point operation and returning it to a normal repre
sentation afterwards. From *Lisp, there is currently no way to have floating-point data
that is turned sideways operated on by the *Lisp floating-point functions.

WMmmmsmmmmMmmmmmmmmmmmmmmmmsmtm.

PERFORMANCE NOTE

On a CM-2 with the special floating-point accelerator,
*Lisp code that uses float pvars of type (pvar single

float) in numeric calculations executes significantly
faster than code that uses other types of float pvars.

A.6 Scans and Spreads

All scan operations in Paris and in *Lisp have been enhanced to work on n-dimen-
sional grids. In addition, two new functions have been added to *Lisp: spread!! and
reduce-and-spread!!. These take advantage of new Paris instructions that spread
data across the Connection Machine processors along a specified dimension.. For

172 Supplement to the *Lisp Reference Manual

definitions of spread!! and reduce-and-spread!!, see section 6.3 of the Supplement to
the *Lisp Reference Manual.

Appendix B

Example Program 1:
Text Processing

; ; ; - * - SYNTAX: COMMON-LISP; MODE: LISP; BASE: 10; PACKAGE: ‘ LISP; - * -

(i n - p a c k a g e ' * l i s p)

;;;; Author: JP Massar.

;;;; This sample program can be found in the file
;;;; /cm/starlisp/interpreter/f5005/text-processing-example.lisp.
;;;; Ask your systems administrator or your applications engineer
;;;; to direct you to the location of this file at your installation.

;;;; This example illustrates many features of ‘ Lisp Version 5.0,
;;;; including ‘ defstruct, array pvars, 1-dimensional NEWS
;;;; communication, dynamically allocated VP sets and
;;;; communication between different VP sets.

;;;; The object of this exercise is to read a large piece of
;;;; text into the Connection Machine system from the front end,
;;;; determine all contiguous non-blank sequences of characters (‘words'),
;;;; and create a VP set which contains one word per processor.

(e v a l - w h e n (c o m p i l e l o a d e v a l)
(d e f c o n s t a n t m a x - w o r d - l e n g t h 3 2)
(d e f c o n s t a n t m a x - w o r d - l e n g t h - i n - b i t s 5)
(d e f t y p e p a r t - o f - s p e e c h - t y p e () ' (u n s i g n e d - b y t e 5))
(d e f t y p e w o r d - l e n g t h - p v a r - t y p e ()

' (p v a r (u n s i g n e d - b y t e m a x - w o r d - l e n g t h - i n - b i t s))
))

;;;; Here is the definition of the parallel structure w ord, an instance
;;;; of which will contain our results. The part-of-speech
;;;; slot is ignored in this example.

(♦ d e f s t r u c t w ord
(c h a r a c t e r s

(m a k e - a r r a y m a x - w o r d - l e n g t h : e l e m e n t - t y p e ' s t r i n g - c h a r)
: t y p e s t r i n g
: c m - t y p e (v e c t o r - p v a r s t r i n g - c h a r m a x - w o r d - l e n g t h)

173

174 Supplement to the *Lisp Reference Manual

: c m - i n i t i a l - v a l u e
(m a k e - a r r a y !! m a x - w o r d - l e n g t h

: i n i t i a l - e l e m e n t (! ! # \ S p a c e)
: e l e m e n t - t y p e ' (p v a r s t r i n g - c h a r)
))

(l e n g t h 0 : t y p e (u n s i g n e d - b y t e 6))
(p a r t - o f - s p e e c h 0 : t y p e p a r t - o f - s p e e c h - t y p e)
)

;;;; This is the definition of WORD-VP-SET, the VP set that wiii contain
;;;; an instance of the parallel word structure when we are done.
;;;; We do not define how big it is at this time. That will
;;;; depend on how may words we find in the text we are
;;;; to process, so we will allocate an appropriate number
;;;; of processors during execution.

(d e f - v p - s e t w o r d s - v p - s e t n i l
: ♦ d e f v a r s
((w o r d - p v a r (m a k e - w o r d ! !) "" (p v a r w o r d)))
)

;;;; Here is the main routine. It takes a piece of text
;;;; in the form of a Common Lisp string.

(d e f u n d o - t e x t - p r o c e s s i n g (s t r i n g)
(l e t ((s t r i n g - l e n g t h (l e n g t h s t r i n g)))

(♦ l o c a l l y
(d e c l a r e (t y p e f ix n u m s t r i n g - l e n g t h))

;; Allocate CHAR-VP-SET, a VP set big enough to hold all
;; the characters in the string, one character per processor.

(l e t - v p - s e t
(c h a r - v p - s e t

(c r e a t e - v p - s e t
(l i s t (max ♦ m i n i m u m - s i z e - f o r - v p - s e t ^

(n e x t - p o w e r - o f - t w o - > = s t r i n g - l e n g t h)
))))

;; Get into this newly-created VP set, char-vp -set,
;; and allocate some temporary variables we will need.

(♦ w i t h - v p - s e t c h a r - v p - s e t
(♦ l e t (

t e x t s t a r t - w o r d - p e n d - w o r d - p s p a c e - p
c h a r a c t e r - p o s i t i o n - i n - w o r d w o r d -n u m b e r
)

(d e c l a r e
(t y p e s t r i n g - c h a r - p v a r t e x t)
(t y p e b o o l e a n - p v a r s t a r t - w o r d - p e n d - w o r d - p s p a c e - p)
(t y p e (s i g n e d - p v a r 3 2) c h a r a c t e r - p o s i t i o n - i n - w o r d)
(t y p e (f i e l d - p v a r 3 2) w o r d -n u m b e r)
)

Appendix B: Sample Program 1 175

;; Move the string into the CM. Note that the char-vp -set
;; VP Set is 1-dimensional, but we choose to look
;; at it in terms of a 1 -dimensional NEWS grid.

(a r r a y - t o - p v a r - g r i d s t r i n g t e x t : g r i d - e n d (l i s t s t r i n g - l e n g t h))
(p p p d b g t e x t :mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))

;; Select those processors which contain valid characters.

(♦w h en (< ! ! (s e l f - a d d r e s s - g r i d ! ! (! ! 0)) (! ! s t r i n g - l e n g t h))

;; Figure out which characters are spaces, which characters begin words,
;; and which characters end words. A word is thus defined as the
;; characters between a start bit and an end bit.

(d e t e r m i n e - s p a c e s - s t a r t - a n d - e n d s
s t r i n g - l e n g t h t e x t s p a c e - p s t a r t - w o r d - p e n d - w o r d - p

)

(p p p d b g s p a c e - p :mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))
(p p p d b g s t a r t - w o r d - p :mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))
(p p p d b g e n d - w o r d - p :mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))

;; Figure out the position in each word of each character,
;; and assign a unique number to each word.
;; Each character in each word will know this unique number.

(d e t e r m i n e - c h a r - p o s i t i o n - a n d - w o r d - n u m b e r
s p a c e - p s t a r t - w o r d - p
c h a r a c t e r - p o s i t i o n - i n - w o r d w o r d -n u m b e r
)

(p p p d b g c h a r a c t e r - p o s i t i o n - i n - w o r d
:mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))

(p p p d b g w o r d -n u m b e r :mode : g r i d : e n d (l i s t s t r i n g - l e n g t h))
(l e t ((h o w -m a n y -w o r d s (♦sum (i f ! ! s t a r t - w o r d - p (! ! 1) (! ! 0)))))

(p r i n t (l i s t 'h o w -m a n y - w o r d s h o w - m a n y - w o r d s))

;; Now instantiate w ord -vp-set, the VP set that will hold the pvar instance
;; of the parallel word structure. Give it enough processors to handle the
;; number of words that exist in the text.

(a l l o c a t e - p r o c e s s o r s - f o r - v p - s e t
w o r d s - v p - s e t
(l i s t (max ♦ m i n i m u m - s i z e - f o r - v p - s e t ^

(n e x t - p o w e r - o f - t w o - > = h o w - m a n y - w o r d s)
)))

;; Send the text characters from the char-vp -set to the characters array
;; in the w ords-vp-set, being sure each character is stored in the
;; appropiate array element, depending on its position within the word.

(d o t i m e s (j m a x - w o r d - l e n g t h)
(♦ l o c a l l y

(d e c l a r e (t y p e f i x n u m j))
(♦w h en (= ! ! c h a r a c t e r - p o s i t i o n - i n - w o r d (! ! j))

176 Supplement to the *Lisp Reference Manual

(i f (* o r t ! !)
(c o m p i l e r - l e t ((* c o m p i l e p * n i l))

(* p s e t : n o - c o l l i s i o n s t e x t
(a l i a s !!

(a r e f !!
(a l i a s ! ! (w o r d - c h a r a c t e r s !! w o r d - p v a r))

(! ! 3)))
w o r d -n u m b e r
: v p - s e t w o r d s - v p - s e t
))))))

;; Now figure out how long each word Is. The array was initially filled with spaces,
;; so the first space we find that still exists determines how long the word is.

(♦ w i t h - v p - s e t w o r d s - v p - s e t
(♦ s e t f (w o r d - l e n g t h ! ! w o r d - p v a r)

(p o s i t i o n ! !
(! ! # \ S p a c e)
(a l i a s !! (w o r d - c h a r a c t e r s !! w o r d - p v a r))))

(♦w h en (m i n u s p ! ! (w o r d - l e n g t h ! ! w o r d - p v a r))
(♦ s e t f (w o r d - l e n g t h ! ! w o r d - p v a r)

(! ! (t h e f i x n u m m a x - w o r d - l e n g t h))))

)

; ; Now p r i n t o u t o u r r e s u l t s i n a n i c e f o r m a t

(c o m p i l e r - l e t ((♦ c o m p i l e p ^ n i l))
(d o t i m e s (j h o w - m a n y - w o r d s)

(l e t ((f r o n t - e n d - w o r d (p r e f w o r d - p v a r j)))
(f o r m a t t " ~ % P r o c e s s o r -D . L e n g t h : ~D. Word: -A"

j (w o r d - l e n g t h f r o n t - e n d - w o r d)
(w o r d - c h a r a c t e r s f r o n t - e n d - w o r d)
))))

))))))))

(d e f u n d e t e r m i n e - s p a c e s - s t a r t - a n d - e n d s
(s t r i n g - l e n g t h t e x t s p a c e - p s t a r t - w o r d - p e n d - w o r d - p)

(♦ l o c a l l y
(d e c l a r e (t y p e f ix n u m s t r i n g - l e n g t h))
(d e c l a r e (t y p e s t r i n g - c h a r - p v a r t e x t))
(d e c l a r e (t y p e b o o l e a n - p v a r s p a c e - p s t a r t - w o r d - p e n d - w o r d - p))
(♦ s e t s p a c e - p (c h a r = ! ! t e x t (! ! # \ S p a c e)))

;; A character begins a word if it is the first character and it is not a space,
;; or it is not a space and the previous character is a space.
;; Since we are viewing the machine as a 1-d grid, we can use new s!! to
;; retrieve the character value in the previous processor.
;; ff we were viewing the machine In cube order, we would have had to
;; use pref!!, which is significantly slower than news!!.

(♦ s e t s t a r t - w o r d - p
(a n d ! ! (n o t ! ! s p a c e - p)

(o r ! ! (z e r o p ! ! (s e l f - a d d r e s s - g r i d ! ! (! ! 0)))
(c h a r = ! ! (! ! # \ S p a c e) (n e w s ! ! t e x t - 1))
)))

Appendix B: Sample Program 1 177

;; A character ends a word if it is the last character and it is not a space,
;; or it is not a space and the next character is a space.

(♦ s e t e n d - w o r d - p
(a n d ! ! (n o t ! ! s p a c e - p)

(o r ! ! (= ! ! (s e l f - a d d r e s s - g r i d ! ! (! ! 0))
(1 - ! ! (! ! s t r i n g - l e n g t h)))

(c h a r = ! ! (! ! # \ S p a c e) (n e w s ! ! t e x t 1))
)))))

(d e f u n d e t e r m i n e - c h a r - p o s i t i o n - a n d - w o r d - n u m b e r
(s p a c e - p s t a r t - w o r d - p c h a r a c t e r - p o s i t i o n - i n - w o r d w o r d -n u m b e r)

(♦ l o c a l l y
(declare (t y p e b o o l e a n - p v a r s p a c e - p s t a r t - w o r d - p e n d - w o r d - p))
(d e c l a r e (t y p e (s i g n e d - p v a r 3 2) c h a r a c t e r - p o s i t i o n - i n - w o r d))
(d e c l a r e (t y p e (f i e l d - p v a r 3 2) w o r d - n u m b e r))

;; If a character is a space, it has no position inside a word. Use -1 to indicate this.
;; Otherwise, figure out the character’s position from the start of the word by
;; using scan!! to add up Vs starting at the start bit.

(♦ s e t c h a r a c t e r - p o s i t i o n - i n - w o r d
(i f ! ! s p a c e - p

(!! -1)
(1 - ! ! (s c a n ! ! (! ! 1) ' + ! ! : d i m e n s i o n 0 : s e g m e n t - p v a r s t a r t - w o r d - p))
))

;; There are as many words as there are start bits. Enumerate these start bits
;; and then tell each character in the word this unique number.

(♦w h en s t a r t - w o r d - p (♦ s e t w o r d -n u m b e r (e n u m e r a t e ! !)))
(♦ s e t w o r d -n u m b e r

(s c a n ! ! w o r d -n u m b e r
' c o p y ! ! : d i m e n s i o n 0 : s e g m e n t - p v a r s t a r t - w o r d - p
))))

(p r o g n (♦ c o l d - b o o t) (d o - t e x t - p r o c e s s i n g " T h is i s som e t e x t t o p r o c e s s "))

;;;Below is the output from running the above command.

TEXT: # \ T #\h #\i # \ s # \ S p a c e #\i # \ s # \ S p a c e # \ s # \ o # \m # \ e
\ S p a c e # \ t # \ e # \ x # \ t # \ S p a c e # \ t # \ o
\ S p a c e # \ p # \ r # \ o # \ c # \e # \ s # \ s

SPACE-P: NIL NIL NIL NIL T NIL NIL T NIL NIL NIL NIL
T NIL NIL NIL NIL T NIL NIL
T NIL NIL NIL NIL NIL NIL NIL

START-WORD-P: T NIL NIL NIL NIL T NIL NIL T NIL NIL NIL
NIL T NIL NIL NIL NIL T NIL
NIL T NIL NIL NIL NIL NIL NIL

END-WORD-P: NIL NIL NIL T NIL NIL T NIL NIL NIL NIL T
NIL NIL NIL NIL T NIL NIL T

/r NIL NIL NIL NIL NIL NIL NIL T

178 Supplement to the *Lisp Reference Manual

CHARACTER-POSITION-IN-WORD: 0 1 2 3 - 1 0 1 - 1 0 1 2 3
- 1 0 1 2 3 - 1 0 1
- 1 0 1 2 3 4 5 6

WORD-NUMBER: 0 0 0 0
(HOW-MANY-WORDS 6)

0 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5

P r o c e s s o r 0 . L e n g t h : 4 . Word: T h i s
P r o c e s s o r 1 . L e n g t h : 2 . Word: i s
P r o c e s s o r 2 . L e n g t h : 4 . Word: som e
P r o c e s s o r 3 , L e n g t h ; 4 . Word: t e x t
P r o c e s s o r 4 . L e n g t h : 2 . Word: t o
P r o c e s s o r 5 .
NIL

L e n g t h : 7 . Word: p r o c e s s

Appendix C

Example Program 2:
Determinants

;;; - * - SYNTAX: COMMON-LISP; MODE: LISP; BASE: 10; PACKAGE: *LISP; - * -

(i n - p a c k a g e ' * l i s p)

;;;; Author: JP Massar.

;;;; This sample code can be found in the file
;;;; /cm/starlisp/interpreter/f5005/determinates-examples. lisp.
;;;; Ask your systems administrator or your applications engineer
;;;; to direct you to the location of this file at your installation.

;;;; The goal of this exercise is to calculate the determinants of a
;;;; set of complex matrices. We take a three-dimensional
;;;; cubic VP set of arbitrary size and, in each processor, we
;;;; place a square complex matrix of arbitrary size. We then
;;;; calculate the determinant of each matrix in the processors
;;;; that lie along the main diagonal of the cube. This result is copied
;;;; into all the other processors in the X-Y plane determined by the Z
;;;; coordinate of the processor that has computed the determinant.

;;;; This code illustrates the use of complex pvars, of a mutable general
;;;; pvar that becomes an array pvar, of spread!!, of *m ap, and of
;;;; recursion in *Lisp.

;;;; Define a VP set of unknown size that has a pvar, which will eventually
;;;; contain a complex matrix of unknown size in each virtual processor.

(d e f - v p - s e t c o m p l e x - c u b e - v p - s e t n i l
: * d e f v a r s
((m a t r i x - p v a r))
)

;;; This is the main routine. Here we obtain the matrix we wish to deal with,
;;; select its main diagonal, calculate the determinate
;;; in each of the selected processors, and spread the
;;; result out to every processor in the same X-Y plane.

179

180 Supplement to the *Lisp Reference Manual

(♦ p r o c l a i m ' (* d e f u n d e t e r m i n a n t - o f - c o m p l e x - m a t r i x ! !))

(d e f u n m a in (s i d e - o f - c u b e s i d e - o f - m a t r i x)
(♦ c o l d - b o o t)
(g e t - c o m p l e x - m a t r i x s i d e - o f - c u b e s i d e - o f - m a t r i x)
(♦ w i t h - v p - s e t c o m p l e x - c u b e - v p - s e t

(♦ l e t ((d e t e r m i n a n t (! ! 0 . 0)))
(d e c l a r e (t y p e s i n g l e - c o m p l e x - p v a r d e t e r m i n a n t))
(♦ w h en (= ! ! (s e l f - a d d r e s s - g r i d ! ! (! ! 0))

(s e l f - a d d r e s s - g r i d ! ! (! ! 1))
(s e l f - a d d r e s s - g r i d ! ! (! ! 2))

)
(♦ s e t d e t e r m i n a n t (d e t e r m i n a n t - o f - c o m p l e x - m a t r i x !! m a t r i x - p v a r))
(♦ p s e t : n o - c o l l i s i o n s d e t e r m i n a n t d e t e r m i n a n t

(c u b e - f r o m - g r i d - a d d r e s s ! !
(! ! 0) (! ! 0) (s e l f - a d d r e s s - g r i d ! ! (! ! 2))
)))

(♦ s e t d e t e r m i n a n t (s p r e a d ! ! d e t e r m i n a n t 0 0))
(♦ s e t d e t e r m i n a n t (s p r e a d ! ! d e t e r m i n a n t 1 0))
(ppp d e t e r m i n a n t :mode : g r i d : e n d ' (4 4 2) : o r d e r i n g '(2 0 1))
)))

;;;; We first instantiate the com plex-cube-vp-set to have
;;;; some defined size. Then we create a complex matrix
;;;; of some defined square size and make m atrix-pvar contain that array.
;;;; Finally, we initialize the elements of the matrix with random values.

(d e f u n g e t - c o m p l e x - m a t r i x (s i d e - o f - c u b e s i d e - o f - m a t r i x)
(a l l o c a t e - p r o c e s s o r s - f o r - v p - s e t

c o m p l e x - c u b e - v p - s e t
(l i s t s i d e - o f - c u b e s i d e - o f - c u b e s i d e - o f - c u b e)
)

(♦ w i t h - v p - s e t c o m p l e x - c u b e - v p - s e t
(c o m p i l e r - l e t ((♦ c o m p i l e p ^ n i l))

(♦ s e t m a t r i x - p v a r
(m a k e - a r r a y ! !

(l i s t s i d e - o f - m a t r i x s i d e - o f - m a t r i x)
: e l e m e n t - t y p e ' s i n g l e - c o m p l e x - p v a r
)))

(l e t ((j 0))
(♦map

' (la m b d a (x)
(♦ s e t (t h e s i n g l e - c o m p l e x - p v a r x)

(c o m p l e x ! ! (! ! (t h e f i x n u m (ran dom 5))))
)

(i n c f j)

)
m a t r i x - p v a r
))

Appendix C: Sample Program 2 181

;;;; This proclamation teiis the *Usp compiler what type of pvar is returned
;;;; from the named function:

(♦ p r o c l a i m ' (f t y p e (f u n c t i o n (t) s i n g l e - c o m p l e x - p v a r)
d e t e r m i n a n t - o f - c o m p l e x - m a t r i x !!
r e c u r s i v e - d e t e r m i n a n t

))

(♦ d e f u n d e t e r m i n a n t - o f - c o m p l e x - m a t r i x ! ! (c o m p l e x - s q u a r e - m a t r i x)
(d e c l a r e (t y p e (a r r a y - p v a r (c o m p l e x s i n g l e - f l o a t) 2) c o m p l e x - s q u a r e - m a t r i x))

;; Here, we figure out how large our matrix is on a side.

(l e t ((m a t r i x - r o w - s i z e (♦ a r r a y - d i m e n s i o n c o m p l e x - s q u a r e - m a t r i x 0)))

(♦ l e t ((d e t e r m i n a n t (! ! 0 . 0)))
(d e c l a r e (t y p e s i n g l e - c o m p l e x - p v a r d e t e r m i n a n t))

(c o n d

;; A 1-element matrix is its own determinant.

((e q l 1 m a t r i x - r o w - s i z e)
(♦ s e t d e t e r m i n a n t (a r e f ! ! c o m p l e x - s q u a r e - m a t r i x (! ! 0) (! ! 0)))
)

;; A two-by-two matrix

;; A B
C D

;; has determinant AD - BC

((e q l 2 m a t r i x - r o w - s i z e)
(♦ s e t d e t e r m i n a n t

(-! !
(* M (a r e f ! ! c o m p l e x - s q u a r e - m a t r i x (! 0) (! 0))

(a r e f ! ! c o m p l e x - s q u a r e - m a t r i x (! 1) (! 1)))
(♦ ! ! (a r e f ! ! c o m p l e x - s q u a r e - m a t r i x (! 1) (! 0))

)))
(a r e f ! ! c o m p l e x - s q u a r e - m a t r i x (! 0) (! 1)))

(t
(♦ s e t d e t e r m i n a n t

(r e c u r s i v e - d e t e r m i n a n t c o m p l e x - s q u a r e - m a t r i x m a t r i x - r o w - s i z e)

))

d e t e r m i n a n t

)))

182 Supplement to the 'Lisp Reference Manual

(d e f u n r e c u r s i v e - d e t e r m i n a n t (c o m p l e x - s q u a r e - m a t r i x m a t r i x - r o w - s i z e)

; For more than two dimensions, we use a recursive algorithm.
; We allocate a complex matrix measuring 1 less on a side than
; the original matrix. Then, for each element of the top row
; of the original matrix, we copy the appropriate elements into
; the reduced matrix and recurse.

(♦ l o c a l l y
(d e c l a r e (t y p e (a r r a y - p v a r (c o m p l e x s i n g l e - f l o a t) 2) c o m p l e x - s q u a r e - m a t r i x))

(l e t ((r e d u c e d - s i z e (1 - m a t r i x - r o w - s i z e))
(s i g n 1)
)

(♦ l e t (r e d u c e d - a r r a y d e t e r m i n a n t)
(d e c l a r e

(t y p e (a r r a y - p v a r (c o m p l e x s i n g l e - f l o a t) (r e d u c e d - s i z e r e d u c e d - s i z e))
r e d u c e d - a r r a y
))

(d e c l a r e (t y p e s i n g l e - c o m p l e x - p v a r d e t e r m i n a n t))
(♦ s e t d e t e r m i n a n t (! ! 0 . 0))

(d o t i m e s (j m a t r i x - r o w - s i z e)
n i l
(l e t ((r e d u c e d - c o l u m n - i n d e x 0))

n i l
(d o ((c o l u m n - i n d e x 1 (1 + c o l u m n - i n d e x)))

((= c o l u m n - i n d e x m a t r i x - r o w - s i z e))
n i l
(l e t ((r e d u c e d - r o w - i n d e x 0))

n i l
(d o t i m e s (r o w - i n d e x m a t r i x - r o w - s i z e)

n i l
(w hen (n o t (e q l r o w - i n d e x j))

(♦ l o c a l l y
(d e c l a r e

(t y p e f ix n u m r e d u c e d - r o w - i n d e x r o w - i n d e x))
(t y p e f ix n u m r e d u c e d - c o l u m n - i n d e x c o l u m n - i n d e x))

(♦ s e t f (a r e f ! ! r e d u c e d - a r r a y
(! ! r e d u c e d - r o w - i n d e x)
(! ! r e d u c e d - c o l u m n - i n d e x))

(a r e f ! ! c o m p l e x - s q u a r e - m a t r i x
(! ! r o w - i n d e x)
(! ! c o l u m n - i n d e x)
)))

(i n c f r e d u c e d - r o w - i n d e x)
)))

(i n c f r e d u c e d - c o l u m n - i n d e x)
))

Appendix C: Sample Program 2 183

(♦ l e t ((s u b - d e t e r m i n a t e
(d e t e r m i n a n t - o f - c o m p l e x - m a t r i x ! ! r e d u c e d - a r r a y))

(m u l t i p l i c a n d
(a r e f !! c o m p l e x - s q u a r e - m a t r i x (! ! (t h e f i x n u m j)) (! ! 0))))

(d e c l a r e (t y p e s i n g l e - c o m p l e x - p v a r s u b - d e t e r m i n a t e m u l t i p l i c a n d))
(p r i n t (l i s t 'DETERMINANT-OF-SUBMATRIX (p r e f s u b - d e t e r m i n a t e 0)))
(p r i n t (l i s t 'MUTLIPLICAND (p r e f m u l t i p l i c a n d 0)))
(p r i n t (l i s t 'SIGN s i g n))
(♦ s e t d e t e r m i n a n t

(+ ! ! d e t e r m i n a n t
(♦ ! ! s u b - d e t e r m i n a t e m u l t i p l i c a n d (! ! (t h e f i x n u m s i g n)))
)))

(print (l i s t 'SUBTOTAL (p r e f d e t e r m i n a n t 0)))
(s e t q s i g n (* s i g n - 1)))

d e t e r m i n a n t))))

(m a in 8 3)

;;;Below is sample output from running the above command.

(DETERMINANT-OF-SUBMATRIX #C
(MUTLIPLICAND # C (1 . 0 0 . 0))
(SIGN 1)
(SUBTOTAL #C (8 . 0 0 . 0))
(DETERMINANT-OF-SUBMATRIX #C
(MUTLIPLICAND # C (4 . 0 0 . 0))
(SIGN - 1)
(SUBTOTAL # C (- 8 . 0 0 . 0))
(DETERMINANT-OF-SUBMATRIX /
(MUTLIPLICAND # C (3 . 0 0 . 0))
(SIGN 1)
(SUBTOTAL # C (- 1 4 . 0 0 . 0))

(2 0 1)

DIMENSION 2 , COORDINATE 0

DIMENSION 0 >

C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)

DIMENSION 2 , COORDINATE 1

DIMENSION 0 >

C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 . 0) # C (- 1 4 . 0 0 . 0)
C (- 1 4 . 0 0 .0) # C (- 1 4 . 0 0 .0)
NIL

8.0 0 .0))

4 . 0 0 . 0))

-2.0 0.0))

#C(-14.0 0.0) #C(-14.0 0.0)
C (-14.0 0.0) #C(-14.0 0.0)
#C(-14.0 0.0) #C(-14.0 0.0)
^C(-14.0 0.0) #C(-14.0 0.0)

#C (- 1 4 . 0 0 . 0) #C(- 1 4 . 0 0 .0)

#C(- 1 4 . 0 0 .0) #C(- 1 4 . 0 0 .0)

#C(- 1 4 . 0 0 . 0) #C(- 1 4 . 0 0 .0)

#C(- 1 4 . 0 0 .0) #C(- 1 4 . 0 0 .0)

Index

Index

This index covers only the *Lisp language elements and concepts documented in the
Supplement to the *Lisp Reference Manual Also see the Master Index at the back of the binder. It
combines this index with those for the *Lisp Reference Manual and the *Lisp Compiler Guide.

!!, 22, 49 array-dimensions!!, 29
+!!, 4 *array-element-type, 28
-!!, 4 array-in-bounds-p!!, 29
*!!, 4 •array-rank, 28
/!!, 4 array-rank!!, 28
= !!,4 * array-rank-limit, 20
1 +!!, 4 array-row-major-index!!, 29
1-!!, 4 *array-total-size, 29

A
abs!!, 4

array-total-size!!, 29
*array-total-size-limit, 21
asin!!, 4
asinh!!, 4

acos!!, 4 atan!!, 4
acosh!!, 4 atanh!!, 4
address objects, 97—101
address-nth, 99
address-nth!!, 99 B
address-plus-nth, 99 backward routing, 170
address-plus-nth!!, 100 bit-and!!, 34
address-rank, 99 bit-andcl!!, 35
address-rank!!, 99 bit-andc2!!, 35
alias!!, 32, 39, 48 bit-eqv!!, 34
aliasing, 32 bit—ior!!, 34
•all, 109 bit-nand!!, 35
allocate-processors-for-vp-set, 57, 64 bit-nor!!, 35
allocated-pvar-p, 106 bit-not!!, 36
alpha-char-p!!, 14 bit-orcl!!, 35
alphanumericp!!, 15 bit-orc2!!, 35
aref!!, 30, 34, 106 bit-xor!!, 34
array pvars, 19, 131,140 boole!!, 116
•array-dimension, 28 boolean pvars, 130, 135
array-dimension!!, 28 booleanp!!, 110
•array-dimension-limit, 21 both-case-p!!, 14
*array-dimensions, 28 byte specifier, 119

187

188

byte!!, 119
byte-position!!, 120
byte-size!!, 119

c
CSS, 69, 145
char-bit!!, 17
char-bits!!, 10
*char-bits-length, 8
*char-bits-limit, 8
char-code!!, 10
*char-code-length, 8
*char-code-limit, 8
char-downcase!!, 12
char-equal!!, 17, 110
char-flipcase!!, 12
char-font!!, 10
•char-font-length, 8
*char-font-limit, 8
char-greaterp!!, 17
char-int!!, 12
char-lessp!!, 17
char-not-equal!!, 17
char-not-greaterp!!, 17
char-not-lessp!!, 17
char-upcase!!, 12
char/=!!, 16
char=!!, 16
char<!!, 16
char< = , 16
char>!!, 16
char> = !!, 16
character pvar, 112
character pvars, 7—18, 131, 136
character!!, 11, 112
*character-length, 9
character-pvar, 131
characterp!!, 13
cis!!, 4
coerce!!, I l l
*cold-boot, 56, 78
combining routing, 170
communication

inter-VP set, 87—97

inter-VP set operations, 91—97
interprocessor, 77—104
interprocessor examples, 95
near neighbor, 68
router, 68

compare!!, 108
complex canonicalization, 3
complex contagion, 3
complex pvars, 131, 139
complex pvars, 1—6
complex!!, 2, 112
complex-pvar, 131
complexp!!, 2
conjugate!!, 4
copy!!, 38, 50, 86
copy-seq!!, 155, 157
cos!!, 4
cosh!!, 4
count!!, 155, 164
count-if!!, 164
count-if-not!!, 164
create-geometiy, 58, 67
create-segment-set!!, 145, 147
create-vp-set, 56—58, 64
cross-product, 154
cross-product!!, 150
cube-from-grid-address, 80
cube-from-grid-address!!, 81
cube-from-vp-grid-address, 87, 98
cube-from-vp-grid-address!!, 88, 9
current-cm-configuration, 59
current-grid-address-lengths, 60
current-send-address-length, 59
•current-vp-set*, 59
currently selected set, 69, 145

D
deallocate-vp-set, 66
declare, 107
def-vp-set, 56—58, 62
default-vp-set, 58
defined-float pvars, 130, 138
♦defstruct, 23, 33, 39-54, 106
*defun, 107, 109
*defvar, 57, 71

Index

J

Index

describe-pvar, 105
describe-vp-set, 73
digit-char!!, 12
digit-char-p!!, 15
dimension-address-length, 60
dimension-size, 80
dot-product, 154
dot-product!!, 150
double-complex-pvar, 131
double-complex-pvar, 112
double-float pvar, 112
double-float pvars, 131
double-float-pvar, 131
dpb!!, 120
dsf-cross-product!!, 153
dsf-v+!!, 152
dsf-v + -constant!!, 152
dsf-v-!!, 152
dsf-v—constant!!, 152
dsf-v*!!, 152
dsf-v*-constant!!, 152
dsf-v/-constant!!, 152
dsf-vector-normal!!, 153
dsf-vscale!!, 153
dsf-vscale-to-unit-vector!!, 153

E
eql!!, 110
equalp!!, 110
every!!, 155, 158
exp!!, 4
expt!!, 4
extended-float, 131

F

feeding!!, 113
ffloor!!, 113
field pvars, 136
field-pvar, 130
•fill, 155, 159
find!!, 155, 162
find-if!!, 162
find-if-not!!, 162

flet, 108
float!!, 112
float-epsilon!!, 115
float-pvar, 130
float-sign!!, 114
floating-point accelerator, 171
floating-point pvars, 114
front-end pvars, 122, 135
front-end!!, 122
front-end-p!!, 122
fround!!, 113
ftruncate!!, 113

G
ged!!, 118
general pvar, 112
general pvars, 122, 130, 132

and type conversion, 135
graphic-char-p!!, 14
grey-code-from-integer!!, 121
grid, 97, 98
grid address, 60
grid!!, 97, 98
grid-from-cube-address, 81
grid-from-cube-address!!, 82
grid-from-vp-cube-address, 89
grid-from-vp-cube-address!!, 90
grid-relative!!, 98

H
help, 105

I
imagpart!!, 4
indirect addressing, 31, 33, 170
initialize-character, 9
int-char!!, 13, 112
integer pvar, 112
integer pvars, 118
integer-from-grey-code!!, 121
integer-length!!, 117
integer-reverse!!, 109
interpreter-safety, 61, 123—125

190

interprocessor communication, 68,
77—104

irrational functions, and complex pvars, 4

L
labels, 108
Idb!!, 120
ldb—test!!, 120
least-negative-float!!, 114
least-positive-float!!, 114
length!.', 155, 157
*let, 23, 42, 107, 109
let-vp-set, 65
♦let*, 23, 42, 107, 109
♦locally, 107, 108
log!!, 4
logand!!, 116
logandcl!!, 116
logandc2!!, 116
logbitp!!, 117
logcount!!, 117
logor!!, 116
logorcl!!, 116
logorc2!!, 116
logtest!!, 117
long-complex-pvar, 131
long-float pvars, 131
long-float-pvar, 131
lower-case-p!!, 14

M
make-array!!, 21
make-char!!, 11
♦map, 36
mask-field!!, 121
♦minimum-size-for-vp-set*, 59
most-negative-float!!, 114
most-positive-float!!, 114
mutable general pvars, 133
mutable pvars, 132

N
N-D NEWS, 77-104

NEWS address, 68
near neighbor communication, 68
♦news, 85
news!!, 84
news-order, 68
next-power-of-two- > =, 108
notany!!, 155, 158
noteveiy!!, 155, 158
♦nreverse, 155, 157
nsubstitute!!, 155, 161
nsubstitute-if!!, 161
nsubstitute-if-not!!, 161
null!!, 110
number-of-dimensions, 59
number-of-processors-limit, 59
numberp!!, 4

0
off-grid-border-p!!, 83
off-grid-border-relative-p!!, 83
off-vp-grid-border-p!!, 90
♦optimize, 107
optimize, 107

P
phase!!, 4
position!!, 155, 163
position-if!!, 163
position-if-not!!, 163
power-of-two-p, 108
ppp!!> 125
ppp-address-object, 126
pppdbg!!, 125
pref, 37, 94, 98,106
pref!!, 33, 40, 91, 93, 98, 106, 170
♦proclaim, 43
♦pset, 33, 91, 92, 170
(pvar *), 133
(pvar t), 132
pvar-vp-set, 73

R
realpart!!, 4
reduce, 145

)

Index

1

Index

reduce!!, 155, 159
reduce-and-spread!!, 86
rem!!, 110
retum-pvar-p, 109
reverse!!, 155, 158
router communication, 68
routing

backward, 170
combining, 170
sprint, 169

s
scale-float!!, 113
scan!!, 79, 87
scanning, 68, 145
segment sets, 145
segment-set-scan!!, 145, 146
self!!, 100
self-address-grid!!, 80
send address, 59, 68, 101, 145
send-order, 68
sequence pvar, 155
♦set, 32, 33, 141

and type coercion, 135
set-char-bit!!, 18
set-vp-set, 58, 69
♦setf, 30, 37, 40, 42, 106
setf, 91
sf-cross-product!!, 153
sf-dot-product!!, 153
sf-v+!!, 152
sf-v+-constant!!, 152
sf-v-!!, 152
sf-v—constant!!, 152
sf-v*!!, 152
sf-v*-constant!!, 152
sf-v/-constant!!, 152
sf-vabs!!, 153
sf-vabs-squared!!, 153
sf-vector-normal!!, 153
sf-vscale!!, 153
sf-vscale-to-unit-vector!!, 153
*sf-vset-component, 152
short-complex-pvar, 131

short-float pvars, 131
short-float-pvar, 131
sideways-aref!!, 33, 34, 106, 171
♦sideways-array, 33, 171
signed-byte pvar, 112
signed-byte pvars, 130, 137
signum!!, 4
sin!!, 4
single-complex-pvar, 131
single-complex-pvar, 112
single-float pvar, 112
single-float-pvar, 131
sinh!!, 4
some!!, 155, 158
spread!!, 86
spreads, 171
sprint routing, 169
sqrt!!, 4
standard-char-p!!, 14
string-char pvar, 112
string-char pvars, 131, 136
string-char-p!!, 13
string-char-pvar, 131
structure, 140
structure pvar, 39—50
structure pvars, 131
structurep!!, 49
subseq!!, 155, 156
substitute!!, 155, 160
substitute-if!!, 160
substitute-if-not!!, 160
♦sum, 4

T
taken-as!!, 112
tan!!, 4
tanh!!, 4
the, 108
transcendental functions, and complex

pvars, 4
truncate!!, 112
type coercion, 11, 135, 141
pvar types, 129—142
type declaration, 135
typed-vector!!, 27

192 Index

typep!!, 110

u
*unless, 107
unsigned-byte pvars, 112, 130, 136
upper-case-p!!, 14

V
VP, 55
VP set, 56-75

geometry, 67
v + , 154
v + !!, 150
v+-constant, 154
v—, 154
v-!!, 150
v—constant, 154
v*, 154
v*!!, 150
v*-constant, 154
v/-constant, 154
vabs, 154
vabs!!, 150
vabs-squared, 154
vabs-squared!!, 150

vceiling, 154
vector functions, 149

single-float, 151
vector pvars, 27
vector-normal, 154
vector-pvar, 27
vfloor, 154
virtual processor sets, 55—75
virtual processors, 55
vp-set-dimensions, 73
vround, 154
vscale, 154
vscale!!, 151
vscale-to-unit-vector, 154
vscale-to-unit-vector!!, 151
*vset-components, 149
vtruncate, 154

w
*warm-boot, 66
*when, 107,109
*with-vp-set, 58, 69

z
zerop!!, 4

