
e Wcomputer Science Department
J3fLJ(412) 578-2565

Greetingsl

Ca rnegie-1\;1ellon U nive rsity
Pittsbu rgh, Pennsylvania 15213

22 November 1982

Enclosed is a copy of the latest draft ("Laser Edition") of the Common LISP Reference Manual.

Please remember that this is only a draft and not a final version.

A serious error occurred in the formatting of the document. Through a comedy of errors, the

chapter on Arrays was omitted during the final pass through SCRIBE. It was supposed to have been

. Chapter 11. It is enclosed separately as Chapter 16~, with page numbers 192a through 192j. You

are .asked to insert it between Chapters 16 and 17 (pages 192 and 193). Cross·referenc~

occurring within the manuscript may be in error because of the inadvertent omission ..

It is my belief that the Common LISP Group is in essential agreement on the contents of this draft,
. .

and that 'only minor corrections will be needed. A few major language components that have been

previously discussed are not included here, such as the proposed "instances" feature,' the

complex loop macro, and the LetS construct, and of course the dispositions of thes~ are not

necessarily 'yet agreed upon.

I would like very much to freeze a version of this document by January 1983 and publish it as a

fixed reference to which we can point. This is necessary so that implementations may proceed

. with confidence. This is not to say that Common LISP will be complete or fixed. It may be

expect&,;J to continue to evolve and have various aspects extended, included, or mOdified.

However, consideration of. looping constructs or package systems should not be allowed to

impede the progress of implementations unnecessarily. Presumably a revised CO.mmon LISP

document will appear later, perhaps in 1984 or 1985. If there is doubt about the design of some

feature of the language, it 'probably should simply be omitted from this frozen version, in the

expectation that it can be added the second time around.

It would be helpful if all interested parties would send corrections or comments to me as quickly as

possible. The most helpful comments would be corrections of presentation, including indications

22 November 1982 PageZ

of passages that are inconsistent or unclear, and minor improvements to· the language. e
Suggestions for major changes to the language are also welcomed, but I ask that they be included

in separate messages or on separate pieces of paper .. Of course, if I have failed to reflect in this

edition the votes of the committee on any previously balloted issues, this should be drawn to my

attention as quickly as possible.

Thank you for your help with and interest in Common LISP.

Sincerely,

G;; L. s~=:~·-· -. ...-.-
Assistant Professor of Computer Science.

ARPANET: Guy.Staa18 a CMU-CS-A

e

·e

CARNEGIE-MELLON UNIVEltSlrry

DEPARTMENT OF COl\tlPUTER SCIENCE

SPICE PROJECT

Common Lisp Reference Manual

Guy L. Steele Jr.

16 November 1982

Laser Edition
Supposed to be COInpletely Coherent

Copyright © 1982 Guy L. Steele Jr.

Supported by the Defense Advanced Research Projects Agency, Department of Defense, ARPA Order
3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government.

\Vould 'it be wonderful if, under th~ pressure of all these difficulties,

the Convention should have been forced into SOInc deviations from that

artificial structure and regular symmetry which an abstract view of the

subject might lead an ingenious theorist to bestow on a constitution

planned in his closet or in his jnlagination?

-James Jladison, The 'Federalist No. 37, January 11, 1788

•

•

•

•

•

/

TABLE OF CONTENTS

Table of Contents

1. Introduction
1.1. Purpose
1.2. Notational Conventions

2. Data Types
2.1. Numbers

2.1.1. Integers
2.1.2. Ratios
2.1.3. Floating-point Numbers
2.1.4. Complex Numbers

2.2. Characters
2.3. Symbols
2.4. Lists and Conses
2.5. Arrays

2.5.1. Vectors
2.5.2. Strings
2.5.3. Bit-vectors

2.6. Hash tables
2.7. Readtables
2.8. Packages
2.9. Pathnames
2.1 O. Streams
2.11. Random-states
2.12. Structures
2.13. Functions .
2.14. Unreadable Data' Objects
2.15. Overlap, Inclusion, and Disjointness of Types

3. Scope and Extent

4. Type Specifiers
4.1. Type Specifier Symbols
4.2. Predicating Type Specifier
4.3. Type Specifiers That Combine
4.4. Type Specifiers That Specialize
4.5. Type Specifiers That Abbreviate

1
1
3

9
11
11
12
13
15
16
16
18
19
20
21
21
22
22
22
22
22
23
23 '"

. 23

23
24

27

31
31
31
32
32
35

ii

4.6. Defining New Type Specifiers
4.7. Type Conversion Function
4.8. Determining the Type of an Object

5. Program Structure

5.1. Forms
5.1.1. Self-Evaluating Forms
5.1.2. Variables
5.1.3. Special Forms
5.1.4. Macros
5.1.5. Function Calls

5.2. Functions
5.2.1. Named Functions
5.2.2. Lambda-Expressions

5.3. Top-Level Forms
5.3.1. Defining Named Functions
5.3.2. Declaring Global Variables and Named Constants
5.3.3. Control of Time of Evaluation

6. Predicates

6.1. Logical Values
6.2. Data Type Predicates

6.2.1. General Type Predicate
6.2.2. Specific. D~~a Type Predicates

6.3. Equality Predicates
6.4. Logical Operators

7. Control Structure

7.1. Constants and Variables
7.1.1. Reference
7.1.2. Assignment

7.2. Generalized Variables
7.3. Function Invocation
7.4. Simple Sequencing
7.5. Environment Manipulation
7.6. Conditionals
7.7. Blocks and Exits
7.8. Iteration

COMMON LISP REFERENCE MANUAL

36
37
38

39
39
39
39
40
41
42
42
42
43
47
47
48
49

51
51
52
52
52
55
58

61
62
62
64
65
71
72
73
76
79
80

•

••

•

TABLE OF CONTENTS

7.8.1. Simple lteration

7.8.2. General iteration

7.8.3. Simple lteration Constructs

7.8.4. Mapping

7.8.5. The "Program Feature"

7.9. Multiple Values

7.9.1. Constructs for Handling Multiple Values

7.9.2. Rules for Tail-Recursive Situations

7.10. Dynamic Non-local Exits

7.10.1. Catch Forms

7.10.2. Throw Forms

8. Macros
8.1. Defining Macros

8.2. Expanding Macro Calls

9. Declarations
9.1. Declaration Syntax

9.2. Declaration Forms

9.3. Type Declaration for Forms

10. Symbols
10.1. The Property List

10.2. The Print Name

10.3. Creating Symbols

11. Packages •
11.1. Built-in Packages

11.2. Package System Functions and Variables

12. Numbers
12.1. Predicates on Numbers

12.2. Comparisons on Numbers

12.3. Arithmetic Operations

12.4. Irrational and Transcendental Functions

12.4.1. Exponential and Logarithmic Functions

12.4.2. Trigonometric and Related Functions

iii

80
80-

84
85

86
89
89
91
93
93
95

97
97

100

101
101
103
106

107
107
110
III

115
116
116

121
122
122
124
127
127
128

iv COMMON LISP REFERENCE MANUAL

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

12.5. Type Conversions and Component Extractions on Numbers

12.6. Logical Operations on Numbers

12.7. Byte Manipulation Functions

12.8. Random Numbers

12.9. Implementation Parameters

13. Characters
13.1. Predicates on Characters

13.2. Character Construction and Selection

13.3. Character Conversions

13.4. Character Control-Bit Functions

14. Sequences
14.1. Simple Sequence Functions

14.2. Catenating, Mapping, and Reducing Sequences

14.3. Modifying Sequences

14.4. Searching Sequences for Items

14.5. Sorting and Merging

15. Manipulating List Structure
15.1. Conses

.15.2. Lists

15.3. Alteration of List Structure

15.4. Substitution of Expressions

15.5. Using Lists as ·Sets

15.6. Association Lists

16. Hash Tables
16.1. Hash Table Functions

16.2. Primitive Hash Function

17. Strings
17.1. String Access

17.2. String Comparison

17.3. String Construction and Manipulation .

17.4. Type Conversions on Strings

130

133

138

142

144

146

149
150

153

155

156

159
161

162

164

167

169

173
173

174

181

182

183
185 .

189
190

191

193
193

194

195

197

•

TABLE OF CONTENTS v

18. Structures 199
18.1. Introduction to Stnlctures 199
18.2. How to Use Defstnlct 201
18.3. Using the Automatically Defined Constructor Function 202
18.4. defs truct Slot-Options 203
18.5. Options to defstruct 204
18.6. By-position Constructor Functions 207

19. The Evaluator 209
19.1. Run-Time Evaluation of Forms 209
19.2: The Top-Level Loop 211

20. Streams 213
20.1. Standard Streams 213
20.2. Creating New Streams 214
20.3. Operations on Streams 216

21. Input/Output 219
21.1. Printed Representation of LISP Objects 219 • 21.1.1. 'Nhat the rea d Function Accepts 220

21.1.2. Parsing of Numbers and Symbols 221
21.1.3. Macro Characters 223
21.1.4. Sharp-S~gn Abbreviations 229

-,.
"

21.1.5. The Readtable 234
21.1.6. What the p r i n t Function Produces 238

21.2. Input Functions 243'
21.2.1. Input from ASCII Streams 243
21.2.2. Input from Binary Streams 247

21.3. Output Functions 248
21.3.1. Output to ASCII Streams 248
21.3.2. Output to Binary Streams 250

21.4. Formatted Output 251
21.5. Querying the User 261

22. File System Interface 263
22.1. File Names 263

22.1.1. Path names 264
22.1.2. Path name Functions 266

•

----------~---------------------

vi

22.1.3. Dcfaults and fvlcrging

22.1.4. Logical Pathnamcs

22.2. Opcning and Closing Files

22.3. Rcnaming, Dclcting, and Othcr Operations

22.4. Loading Files

22.5. Accessing Directories

23. Errors
23.1. Signalling Conditions

23.2. Establishing Handlers

23.3. Error Handlers

23.4. Signalling Errors

23.5. Standard Condition Names

24. Miscellaneous Features
24.1. The Compiler

24.2. Documentation

24.3. Modules .
24.4. Debugging Tools

24.5. Environment Inquiries

24.5.1. Time Functions

24.5.2. Other Environment Inquiries

24.6. Identity Function

COMMON LISP Summary

Index
Index of Concepts ..

Index of Variables and Constants

Index of Keywords

Index of Functions, Macros, and Special Forms

COMMON LISP REFERENCE MANUAL

270

271

272

276

277

279

281
281

282

283

284

286

289
289

290

291

292

295

295

297

299

301

317
319
323
327

333

•

•

••

LIST OF TABLES

List of Tables
Table I-I: Sample Function Description
Table 1-2: Sample Variable Description
Table 1-3: Sample Constant Description
Table 1-4: Sample Special Form Description
Table 1-5: Sample Macro Description
Table 2-1: Minimum Floating-Point Precision and Exponent Size Requirements
Table 4-1: Standard Type Specifier Symbols
Table 5-1: Nalnes of All COMMON LISP Special Forms
Table 21-1: Standard Character Syntax Attributes
Table 21-2: Syntax of Numbers
Table 21-3: Standard Constituent Character Attributes
Table 21-4: Standard Sharp-Sign Macro Character Syntax

vii

6
6
6
7
7

14
32
41

222
223
224
230

..

viii COMMON I.lSP REFERENCE MANUAL

Acknowledgen1(~nts

COMMON LISP was designed by a diverse group of people representing many institutions. The many

people who have contributed to the design of COMMON Lisp are hereby gratefully acknowledged:

Ahm Bawdenl

Rodney A. Brooksl

Richard L. Hryan2

Glenn S. Burke l

Howard I. Cannoi12

George J. Carrettel

David DiIl3

Scott Eo Fahlman3 ,

Richard ,J. Fateman4

Neal Feinberg3

John Foderaro4

Richard P. Gabriel5,6

Joseph Ginder3

Richard Greenhlatt7

Martin L. Griss8

Charles L. Hedrick9

Earl A. Kiilian6

,John L. Kulp2

Larry IVT. 1\1asinterlO

John McCarthy5

Don IVIorrisonS

David A. Moon2

Kent M. Pitmanl

Jonathan Reesll

\VilIiam L. Scherlis3

Richard IVI. St~lllman 1

Barhara K. Steele3

\Villimn vanl\'Ielle 10

\Valter van l{oggen3

Allan C. \Vechsler2

Daniel L. \Veinreb2

Jon L \Vhite19

Ricluud Zippel1

Leonard Zubkoff3

1. Massachusetts Institute of Technology, 545 Technology Square. Cambridge, Massachusetts 02139

2. Symbolics, Inc., Cambridge. Massachusetts 02139

3. Computer Science Department. Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213

4. Computer Science Division, Department of EECS. University of California. Berkeley, California 94720

5. Computer Science Department, Stanford University, Stanford, California 94305

6. University of California, Lawrence Livermore National laboratory, Livermore, California 94550

7. Lisp Machines Incorporated (LMI), Cambridge. Massachusetts 02139

S. Department of Computer Science. University of Utah, Salt Lake City, Utah 84112
9. Laboratory for Computer Science Research, Rutgers University, New Brunswick, New Jersey 08903

10. Xerox Palo Alto Research Center, Palo Alto, California 94306

11. Department of Computer Science, Yale University, New Haven, Connecticut 06520

Special thanks go to Jon Bentley, Scott Fahlman {and others???} for extraordinarily careful proofreading of

the final drafts of the manuscript.

The organization, typography, and content of this document were inspired in large part by the AlacLISP .
Reference A1anual by David A. Moon and others [9], and by the LISP l-rfachine Nfanual by Daniel We~nreb

and David Moon [15], which in turn acknowledges the efforts of Richard Stallman, Mike McMahon, Alan

Bawden, Glenn Burkc, and "many peoplc too numerous to list".

•

•

•

•

•

ACK NOWLEDG EM I ~NTS

Notes on This Edition

This edition is still in draft form. Please send remarks, corrections, and criticisms to:

Guy L. Steele Jr.

Computer Science Department

Carnegie-Mellon Un i versity

Schenley Park

Pittsburgh, Pennsylvania 15213

The chapter on the evaluator does not contain the proposed evaluator code, which is still under review.

The package system is not yet fully designed. The specification given here is likely to be changed.

ix

I deleted the functions a r ray -1 eng t h and a r r ay - act i v e -1 eng t Ii; for one-dimensional arrays, the

functions array-d imens i on and 1 ength may be used instead.

I couldn't think of a good name for the defstruct ar-ray-l eader type option, so I have temporarily

flushed it, along with the :make-array option.

The function s t r e am- e 1 eme n t,- ty P e (page 227) was added so that you can tell what you got if you

specified: typ e : def au 1 t to op en (page 283) .

The case for a floating-point specifier, apparently mandated to be lower-case by the October 1982 ballot

(issue 1), is not specified in this edition. While an upper-case "$" can be confused with the digit "5", so may

a lower-case ' .. 1 " be confused with the digit" 1".

The quo t e data type specifier mandated by the October 1982 ballot (issue 3) has. been purposely omitted

from this edition. There is some question as to the inconsistency of requiring objects to be quoted in type

specifiers that need not be quoted in ordinary executable forms, such as numbers, strings, and keywords. This

inconsistency is not easily resolved, because t and nil mean something as type specifiers other than their

quoted selves.

Except for the above two issues, all issues from the October 1982 ballot have more or less been accounted

for in this edition. The results from the August 1982 meeting have been in~orporated e~cept as noted below.·

For August 1982 issue 56, the functions read-binary-object

wr i te- bin ar y-obj e ct (page 260) arc proposed.

(page 257) and

For August 1982 issue 62, I could not find an appropriate definition for the requested new version of

catch-all. In this edition I have instead fi~ed up the old definitions of catch-all and unwind-all

(page 93) .

x COMMON LISP REFERENCE MANUAL

For August 1982 'issue 78, I am worried that a lexical declaration to shadow a global special
declaration will unduly slow down the interpreter. Do we really need this in practice? (You can't detect
whether to put one in until you have discovered that you are losing, in which case renaming does the job.)

For August 1982 issue 88, function specs are still under debate and are not included here.

For August 1982 issue 118, a new primitive for getting file information is not yet proposed.

For August 1982 issues 126,127, and 128, the proposed format floating-point, picture, and metric-prefix

directives are omitted here.

For August 1982 issue 153, I am unconvinced that making trace and untrace (page 302) be functions
will be more convenient than their present definition as macros. No proposal has yet been made regarding
keyword arguments, ways to find out what is currently being traced, and a way to untracc all traced functions.

Therefore no change is reflected here.

T~ere

T"'e.5~

(IP'IJ
-eh e,H!,; "" re /Iv1fA.,r

-too Ji~;cJ~
de/tty -t4is

to

•

•

••

•

•

Cllapter 1

Introduction

This manual documents a dialect of LISP called "COMMON LISP", which is a successor to MACLISP [9],

influenced strongly by Lisp Machine LISP [15] and also to some extent by SClIEME [12] and INTERIJSP [14].

1.1. Purpose

COMMON LISP is intended to meet these goals:

Commonality.

Portability.

Consistency.

COMMON LISP originated in an attempt to focus the work of several implementation

groups each of which was constructing successor implementations of t\.1ACLISP for different

computers. These implementations had begun to diverge because of the differences in the

implementation environments: microcoded personal computers (Lisp !\.t1achine LISP, SPICE

LISP), commercial timeshared computer~ (NIL), and supercomputers (S-l LISP). While the

differences among the several implementation environments will of necessity force

. incompatibilities among the implementations, nevertheless COMMON LISP can serve as a

common dialect of which each implementation can be an upward-compatible superset.

COMMON LISP intentionally excludes features that cannot easily be implemented on a '

broad class of machines. On the one hand, features that are difficult or expensive to

implement on hardware without special microcode are avoided or provided in a more

abstract and efficiently implementable fonn. (Examples of this are the forwarding

(invisible) pointers and locatives of Lisp Machine LISP. Some of the problems that they

solve are addressed in different ways in COMMON LISP.) On the other hand, features that

are useful only on certain "ordinary" or "commercial" processors are avoided or made

optional. (An example of this is the type declaration fllcility, which is useful in some

implementations and completely ignored in others; type declarations are completely

optional and for correct programs affect only efficiency, never semantics.) Moreover,

attention has been paid to making it easy to write programs in such a way as to depend as

little as possible on machine-specific characteristics such as word length, while allowing

some variety of implementation techniques .

Most LISP implementations arc internally inconsistent in that by default the interpreter and

-1-

2

Power.

COMMON LISP REFERENCE MANUAL

compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamica11y scoped, while the compiler
assumes all variables to be local unless forced to assume otherwise. This has been done for
the sake of convenience and efficiency, but can lead to very subtle bugs. The dctinition of
COMMON I.lsP avoids such anomalies by explicitly requiring the interpreter and compiler
to impose identical semantics on correct programs.

COMMON LISP is a descendant of MACI.,ISP, which has alwa,ys placed emphasis on
providing system-building tools. Such tools may in turn be used to build the user-level
packages such as INTERLISP provides; these packages are not, however, part of the
COMMON LISP core specification. It is expected such packages will be built on top of the
COMMON LISP core.

Expressivetless. COMMON LISP culls not only from MAC LISP but from INTERLISP, other LISP dialects, and
other programming languages what we believe from experience to be the most useful and
understandable constructs. Constructs that have proved to be awkward or less useful are
being eliminated (an example is the s tore construct of MAC LISP).

Compatibility.

Efficiency.

Stability.

Unless there is a good reason to the contrary, COMMON LISP strives to be compatible with
Lisp Machine LISP, MACLISP, and INTERLISP, roughly in that order.

COMMON LISP has a number of features designed to facilitate the production of high
quality compiled code in those implementations that care to invest effort in an optimizing
compiler. One implementation of COMMON LISP (namely S-1 LISP) already has a compiler
that produces code for numerical computations that is competitive in execution speed to
that produced by a FORTRAN compiler [1]. (This extends the wor.~. do~e in MACLISP to
produce extremely efficient numerical code [4].)

It is intended that COMMON LISP~ once defined and agreed upon, will change only slowly
and with due deliberation. The various dialects that are supersets of COMMON LISP may
serve as laboratories within which to test language extensions, but such extensions will be
added to COMMON LISP only after careful examination and experimentation.

The goals of COMMO~ LISP are thus very close to those of STANDARD LISP [8]. COMMON LISP differs from
STANDARD LISP primarily in incorporating more features, including a richer and more complic~ted set of

data types and more complex control structures.

The COMMON LISP documentation is divided into four parts, known for now as the white pages, the yellow
pages, the red pages, and the blue pages. (This document is the white pages.)

• The white pages (this document) is a language specification rather than an implementation

specification. It defines a set of standard language concepts and constnlcts that may be used for
communication of data stnlctures and algorithms in the COMMON LISP dialect. This is sometimes

e.

e

e

INTRODUCrION

referred to as the "core CO\-1MON Lisp language", becallse it contains conceptually necessary or

important features. It is not necessarily implementationally minimal. ·While some features could

be defined in terms of others by writing LIsp code (and indeed may be implemented Lhat way), it

was felt that these features should be conceptuatly primitive so that there might be agreement

among all users as to their usage. (For example, bignums and rational numbers could be

implemented as LISP code given operations on fixnums. However, it is important to the

conceptual integrity of the language that they be regarded by the user as primitive, and they are

useful enough to warrant a standard definition.)

• The yellow pages is a program library document, containing documentation for assorted and
relatively independent packages of code. While the white pages are to be relatively stable, the

yellow pages are extensible: new programs of sufficient usefulness and quality will routinely be

added from time to time. The primary advantage of the division into white and yellow pages is

this relative stability: a package written solely in the white-pages language should not break if
changes are made to the yellow-pages library.

• The red pages is implementation-dependent documentation; there will be one set for each

implementation. Here are -specified such implementation-dependent parameters as word size,
maximum array size, and sizes of floating-point exponents and fractions, as well as

implementation-dependent information such as the nature of the file system, the method of
invoking the implementation, and so on.

• The blue pages constitutes an implementation guide in the spirit of the INTERLJSP virtual machine
specification [10]. It specifics a subset of the white pages that an implementor must construct, and

indicates a quantity of LISP code written in that subset that implements the remainder of the white
. pages. In principle there could be more than one set of blue pages, each with a companion file of

LISP code.'

1.2. Notational Conventions

3

In COMMON LISP, as in most LISP dialects, the sym,?ol nil (page 51) is used to represent both the empty
list and the "false" value for Boolean tests. An empty list may, of course, also be written" ()"; this nonnally

denotes the same object as "n i 1". (It is possible, by extremely pe'rverse manipulation of the package system,

to cause the sequence of letters "n i 1" to be recognized not as the symbol that represents the empty list but as

another symbol with the same name. However, "()" always denotes the empty list. This obscure possibility

will be ignored in this document.) These two notations may be used interchangeably as far as the LISP system

is concerned. However, as a matter of style, this document will prefer the notation" ()" when it is desirable

to emphasize its use as an empty list, and will prefer the notation "n i 1 " when it is desirable to emphasize its

use as the Boolean "false" or as a symbol~ Moreover, an explicit quote mark is used to emphasize its use as a

symbol rather than as Boolean "false". e For example:

4

(append '() '(» => ()
(not nil) => t
(get 'nil 'color)

COMMON USP RFFERFNCE MANUAL

; Emphasize use of empty lists.
; Emphasize use as Boolean "false".
; Emphasize use as a symbol.

Any data object other than nil is construed to be Boolean "not false", that is, "true". The symbol t is

conventionally used to mean "true" when no other value is more appropriate. When a function is said to

"return false" or to "be false" in some circumstance, this means that it returns nil. However, when a

function is said to "return true" or to "be true" in some circumstance, this means that it returns s(}me value

other than nil, but not necessarily t.

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary.

Execution of code in LISP is called evaluation, because executing a piece of code normally results in a data

object called the value produced by the code. The symbol "=>" will be used in examples to indicate

evaluation. For example:

(+ 4 5) => 9

means "the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9".

The symbol "==>" will be used in examples to indicate macro expansion. For example:

(push x v) ==> (setf v (cons x v»

means "the result of expanding the macro-call form (push x v) is (setf v (cons x v»". This

•

implies that the two pieces of code do the same thing; the second piece of code is the definition of what the •

first does.

The symbol "<=>" will be used in examples to indicate code equivalence. For example:

(- x y) :<=> (T.X (":'y})

means "the v~lue and effects of (- x y) is always the same as the value -and effects of (+ x (- y» for

., any values of the variables x and y". This implies that the two pieces of code do the same thing; however,

neither directly define~ the other in the way macro-expansion docs.

When this document specifies that it "is an error" for some situation to occur, this means that:

• No valid COMMON LISP program should cause this situation to occur.

• If this situation occurs, the effects and results are completely undefined ~s far as adherence to the

COMMON LISP specification is concerned.'

• No COMMON LISP implementation is required to detect such an error.

This is not to say that some particular implementation might not define the effects and results for such a

situation; it is merely that no program conforming to the COMMON LISP specification may correctly depend

on such effects or results.

On the other hand, if it is specified in this document that in some situation "an error is signalled\ this •

•

•

INTRODUCTION 5

means that:

• If this situation occurs, an error will be signalled; see er ror (page 294) and cerror' (page 295).

• Valid COMMON LISP programs may rely on the fact that an error will be signalled.

• Every COMMON LISP implementation is required to detect such an error.

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format. Table 1-1 illustrates the manner in which COMMON I.lSp functions are documented.
The first line specifics the name of the function, the manner in which it accepts arguments, and the fact that it
is a function. Following indented paragraphs explain the definition and uses of the function and often
present examples or related functions.

In general, actual code (including actual names of functions) appears in this typeface: (c 0 n s a b).
Names that stand for pieces of code (meta-variables) are written in italics. In a function description, the
names of the parameters appear in italics for expository purposes. The word "&0 p t ion a 1" in the list of
parameters indicates that all arguments past that point are optional; the default values for the parameters are
described in the text. Parameter lists may also contain "&r est ", indicating that an indefinite number of
arguments -may appear, or "&key", indicating that keyword arguments are accepted. (The
&op t i on a 1 I&res t/&key syntax is actuq,l1y used in COMMON LISP function definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented. The first line specifies the name
of the variable and the fact that it is a variable. Pur.c1y as a matter of convention, all global variables used by
COMMON LISP have names beginning and ending with an asterisk.

Table 1-3 illustrates the manner in which a named constant is documented. The first line specifics the
name of the constant and the' fact that it isa constant. (A constant is just like a global variable, except that it is

J

an error ever to alter its value or to bind it to a new value.)

Tables 1-4 and 1-5 illustrate the documentation of special fonns and macros (which are closely related in
purpose). These are very different from functions. Functions are called according to a single, specific,
consistent syntax; the &opt ional/&rest/&key syntax specifies how the function uses its arguments
intclnally, but does ,not affect the syntax of a call. In contrast, each special form or macro can have its own
idiosyncratic syntax. It is by special fonns and macros that the syntax of COMMON LISP is ~efined and
extended.

In the description of a special fonn or macro, an italicized word names a corresponding part of the form
that invokes the special fonn or macro. Parentheses (" (" and")") stand for themselves, and should be
written as such when invoking the special form or macro. Brackets, braces, stars, plus signs, and vertical bars
are metasyntactic marks. Square brackets ("[" and. "]") indicate that what they enclose is optional (may
appear zero times o~ one time in that place); the square brackets should not be written in code. Curly braces
C'{" and "}") simply parenthesize what they enclose, but may be followed by a star ("*") or a plus sign

6 COMMON LISP REFERENCE MANUAL

sample-function argl arg2 &optional arg3 arg4 [Fullction]

The function s amp 1 e - fun c t ion adds together argl and arg2, and then multiplies the result by

arg3. If arg3 is not provided or is nil, the multiplication isn't done. samp 1 e-funct i on then

returns a list whose first element is this result and whose second element is arg4 (which defaults to

the symbol faa).

For example:

(function-name 3 4) => (7 faa)
(function-name 1 2 2 'bar) => (6 bar)

As'anIle, (sample-function x y) <=> (list (+ x y) 'faa).

Table 1·1: Sample Function Description

sample-variable [Variable]
The variable * s amp 1 e - v a r i ab 1 e * specifics how many times the special form

s amp 1 e - s p e cia 1 - form should iterate. The value should always be a non-negative integer or

nil (which means iterate indefinitely many times). The initial value is o.

Table 1-2: Sample Variable Description

sampl e-constant [Constant]
The named constant sampl e-constant has as its value the height of the terminal screen in

furlongs times the base-2 logarithm of the implementation's total disk capacity in bytes, as a

floating-point number.

Table 1-3: Sample Constant Description

(" + "); a star indicates that what the braces enclose may appear any number of times (including zero, that is,

not at all), while a plus sign indicates that what the braces enclose may appear any non-zero number of times

(that is, must appear at least once). Within braces or brackets, vertical bars ("I") separate mutually exclusive

choices. In summary, the notation "{x}*" rrieans zero or more occurrences of "x", the notation "{x} +"
means one or more occurrences of "x", and the notation "[x]" me~ns zero or one occurrences of "x". These

notations are also. used for syntactic" descriptions expressed as I3NF-like productions, for example in Table

•

•

..

•

•

INTRODUCTION 7

sampl e-speci al-form [name] ({var}*) {form} + [Special jiJrm]
This evaluates each form in sequence as an implicit progn, and does this as many times as specified

by the global variable sample-variable. Each variable var is bound and initialized to 43

before the first iteration, and unbound after the last iteration. The name name, if supplied, may be

used in a return-from (page 79) form to exit from the loop prematurely. If the loop ends

nOimally, sample-special-form returns nil.

For example:

(setq sample-variable 3)
(sample-special-for'm () fonni jorm2)

This evaluatesformi,form2,forml,fonn2,fomll,form2 in that order.

Table 1-4: Sample Special Form Description

sample-macro var {tag I statement}* [Macro]
This evaluates the statements as a prog body, with the variable varbound to 43 .

(sample-macro x (+ x x» => 86
(sample-macro var . body) ==> (prog «var 43» . body)

.. : Table 1-5: Sample Macro Description
,

22-2.

In the last example in Table 1-5, notice the use of "dot notation". The"." appearing in the expression

(s amp 1 e -mac ro var " body) means that the name body stands for a list of forms, ~otjust a single form, at
the end of a list. This notation is often used in examples.

The term "LISP reader" refers not to you, the reader of this document, nor to some person reading LISP

code, but specifically to a LISP program (the function read (page 253» that reads characters from an input

stream and interprets them by parsing as representations of LIsP objects.

Certain characters are used in special ways in the syntax of COMMON LISP. The complete syntax is

explained in detail in Chapter 22, but a quick summary here may be useful:

8

"

\

COMMON LISP REFFRFl'!CE l'vtANUAL

An accent acuteT'single quote") followed by an expressionjhr11l is an abbreviation for (quote form) .

Thus 'foo means (quote foo) and '(cons 'a 'b) means (quote (cons (quote a)

(quote b))).

Semicolon is the comment character. It and all characters up to the end of the line are discarded.

Double quotes surround character strings: "Th; sis a th i rty - n; ne ch ar ac ter s tr; ng . ".

Backslash is an escape character. As a rule, it causes the next character to be treated as a letter rather

than for its usual syntactic purpose. For example, A \ (B denotes a symbol whose name is HA (B", and

If \ "" denotes a character string containing one character, a double-quote.

The number sign begins a more complex syntax. The next character designates the precise syntax to

follow. For example, #0105 means 1058 (l05 in octal notation); #\ L denotes a character object for the

character "L"; and #(abc) denotes a vector of three elements a, b, and c. A particularly important

case is that # 'fn means (fun c t ; 0 n fn), in a manner analogous to 'form meaning (quo t e form).

Vertical bars surround the name of a symbol that has special characters in it.

Accent grave (Hbackquote") signals that the nex"t expression is a template that may contain commas. The

backquote syntax represents a program that will construct a data structure according to the template.

Commas are used within the backquote syntax.

Colon is used tQ indicate which package a symbol belongs to. For example, chao s : res e t denotes the

symbol named res e t in the package named ~ h ao s. A leading colon indicates a keyword, a symbol that

always evaluates to itself.

The square brackets, braces, question mark, and exclamation poillt (that is, "[", "J", "{", "}", "?", and"!")

arc not used for any purpose in standard COMMON LISP s·yntax. These characters are explicitly reserved to the

user, prim~ri1y for use as macro characters for user-defined syntax extensions. See section 22.1.3 (page 233).

All code in this manual is written ip lower case. COMMON LISP is generally insensitive to the case in which

code is written. Internally, names .. of sym130ls are ordinarily converted to and stored in upper-case form.

There are ways to force case conversion on output if desired. In this document, wherever an interactive

exchange between a user and the LISP system is shown, the input is exhibited in lower case and the output in

upper case~

Some symbols arc written with the colon (:) character apparently in their names. In particular, all keyword

symbols have names starting with a colon. The colon character is not actually part of the print name, but is a

package prefix indicating that the symbol belongs to the keyword package. This is a~l explained in Chapter

11; until you read that, just pretend that the colons are sOlnewhat like quote marks, causing such symbols to

evaluate to themselves.

•

•

•

Chapter 2

Data Types

COMMON Lisp provides a variety of types of data objects. It is important to note that in LISP it is data

objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to

make an explicit declaration that a variable will in fact take on one of only a limited set of values. However,

such a declaration may always be omitted, and the program will still run correctly, Such a declaration merely

consititutes advice from the user that may be useful in gaining efficiency. See dec1 are (page 101).)

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many LISP objects belong to more

than one such set, and so it doesn't always make sense to ask what the type of an object is; instead, one usually

asks only whether an object belongs to a given type. The predicate ty pep (page 52) may be used to ask the

latter .question, and the function ty p e - 0 f (page 38) to ask the former .

The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared

subtrees) defined by ilie subset relationship. Certain sets of objects are interesting enough to deserve .labels

(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout

this document, the word symbol refers to atomic symbols, one kind of LISP object). See Chapter 4 for a

complete description of type spec.ifiers.

The root of the hierarchy, which is the set of all objects, is specified by the symbol t. The empty data type,

which contains no objects, is denoted by n i 1. A type called common encompasses all the data objects

required by the COMMON LISP language. A COMMON LISP implcmentationis free to provide other data types

that are not sul?types of common.

COMMON LISP objects may be roughly divided into the following categories: numbers, characters,

symbols, lists, arrays, structures, and functions. Some of these categories have many subdivisions. There are

also standard types that arc the union of two or more of these categories. The categories listed above, while

they are data types, are neither more nor less "real" than other data types; they simply constitute a

particularly useful slice across the type hierarchy for expository purposes.

Each of these categories is described briefly below. Then one section of this chapter is devoted to each,.

going into more detail, and briefly describing notations for objects of each type. Descriptions of LISP

functions that operate on data objects arc in later chapters.

-9-

10 COMMON LISP REFERENCE MANUAL

• Numbers arc provided in variolls forms and' representations. COMMON LISP provides a true
integer data type: any integer, positive or negative, has in principle a representation as a COMMON
LISP data object, subject only to total fTlCmory limitations (rather than machine word width). A

true rational data type is provided: the quotient of two integers, if not an integer, is a ratio.
Floating-point numbers of various ranges and precisions are also provided. Some
implementations may choose to provide Cartesian complex numbers.

• Characters represent printed glyphs such as letters or text fonnatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

• Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects. LISP

provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
ha-ve properly lists, which in effect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object.

• Lists arc sequences represented in the form of linked cells called conses. There is a special object
(the symbol nil) that is the empty list. All other lists are built recursively by adding a new
element to the front of an existing list. This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing Jist. (Conses may actually be used completely generally as
two-element record structures, but their most important use is to represent lists.)

• Arrays are dimensioned collections of objects. An array 'can have any non-negative number of
dimensions, and is indexe~ by a s~q~qnce of integers. General arrays can have any LISP object as

~a a component; others are specialized for efficiency, and can hold only certain types of LISP objects .
.. It is possible for two arrays, possibly with differing dimension information, to share the same set
of clements (such that modifying one ~rray modifies the other also), by causing one to be displace~
to the other. One-dim'ensional arrays of any kind are called vectors. One-dimensional arrays of
characters are called strings. One dimensional arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

• Hash tables provide an efficient way of mapping any LISP object (a key) to an associate.d object.

• Readtables are used to control the built-in expression parser rea d (page 253).

• Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by
looking up character sequences in the "current package".

• Pathnames represent names of files in a fairly implementation-independent manner. They are
used to interface to the external file system.

• Streams represent sources or sinks of data (typically characters or bytes). They are used to

•

DATA TYPES

perform 110, as wel1 as for internal purposes such as parsing strings.

• Random-slales are data structures used to encapsulate the state of the built-in random-number
generator.

• Structures are user-defined record structures, objects that have named components. The
defstruct (page 211) facility is used to define new structure types. Some COMMON LISP

implementations may choose to implement certain system-supplied data types as structures such
as bignUlns, readlables, streams, hash lables, and palhnames.

• FUllctions are objects that can be invoked as procedures; these may take arguments, and return
values. (All LISP procedures can be construed to return a value, and therefore treated as
functions. Those that have nothing better to return usual1y return n i 1.) Such objects include
closures (functions that have retained bindings from some environment) and compiled-junctions
(compiled code objects). Some functions are represented as a list whose car is a particular symbol
such as 1 amb d a. Symbols may also be used as functions.

11

These categories are not always mutually exclusive. The required relationships among the various data
types arc explaine~ in more detail in section 2.15 (page 24).

e 2.1. Numbers

There are several kinds of numbers defined in COMMON LISP. They are divided into rational numbers,
consisting of integers and ratios; floating-point numbers, with names provided for up to four different
precision's; and complex numbers.

2.1:1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming languages,
COMMON LISP in principle imposes no limit on the magnitude of an integer; storage is automatically allocated
as necessary to represent large integers.

In every COMMON LIS~ implementation there is a range of integers that are represented more efficiently
thac. others; each such integer is called ajixJ1um, and an integer that is not a fixnum is called a bignum., The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important; in particular, it is guaranteed that the rank of an array, as well as any dimension
of an array (and therefore any index into an array), can be represented as a fixnum. Exactly which integers
are fixnums is implementation-dependent; typically they will be those integers in the range - 2n to 2n -1,

inclusive, for some n not less than 15. See most-positive-fixnum (page 146) and
most-negative-fixnum (page 146),

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by

12 COMMON LISP REFERENCE MANUAL

a sign and optionally followed by a decimal point.

For example:

o
-0
+6
28

1024.
-1

15511210043330985984000000.

; Zero.
; This always means the same as O.
; The first-perfect number.
; The second perfect number.
; 'I\yo to the tenth power.
; e1T1

; 25 factorial (251) .. Probably a bignum.

Compatibility note: MACLlsP and Lisp Machine Lisp normally a<isume that integers are written in oClal (radix-8) notation
unless a decimal point is present. INTER LISP a'iSlImes integers are written in decimal notation, and uses a trailing Q to
indicate octal radix: however, a decimal point, even in trailing position, always indicates a floating-point number. This is of
course consistent with FORTRAN: ADA does not permit trailing decimal points. but instead requires them to be embedded. In
COMMON LISP. integers written a'i described above are always construed to be in decimal notation, whether or not the
decimal point is present: allowing the decimal point to be present permits compatibility with MACLISP.

Integers may be notated in radices other than ten. The notation

#nnrddddd or #nnRddddd

means the integer in radix-JlI1 notation denoted. by the digits ddddd. More precisely, one may write "iI", a

non-empty sequence of decimal digits represent.ing an unsigned decimal integer 11, "r" (or "R"), an optional

sign, and a sequence of radix-n digits, to indicate an integer written in radix J1 (which must be between 2 and

36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may

contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits

above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations "#b"
for "#2r", '"#0" for "H8r", and "#x" for "#16r".

For example:

2.1.2. Ratios

#2r11010101
#b11010101

#b+11010101
#0325

#xD5
#16r+D5

#0-300
#3r-12010

#25R-7H

.; Another way of writing 213 decimal.
; Ditto.
; Ditto.
; Ditto, in octal radix.
; l),itto, in hexadecimal rad~x. '
; Ditto.
; Decimal -192, written in base 8.
; Same thing in base 3.
; Same thing in base 25.

A ratio is a number representing the mathematical ratio of two integers. Integers and ratios are collectively

called rationals. The canonical printed representation of a rational number is as an integer if its value is

integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greateslcommon

divisor is one, and of which the denominator is positive (and in fact greater than 1, or else the value would be

integral), written with "/" as a separator thus:" 3/5". It is possible to notate ratios in non-canonical

(unreduced) forms, such as "4/6", but the LIS~ function pr i n 1 (page 258) always prints the canonical form

for a ratio.

Implementation note: While each implementation of COMMON LISP will pr.obably choose to maintain all ratios in reduced
form, there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance

•

•

•

•

DATA TYPES

appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms, this
savings is likely to be counteracted by the increased cost of operating on larger numerators and denominators.

13

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty sequences of digits separated by a "I". This syntax may be described as follows:

ratio:: = [sign] {digit} + 1 {digit} +

The second sequence may not consist entirely of zeros.

For example:

2/3
4/6
-17123
-30517578125/32768
10/5

; This is in canonical form.
; A non-canonical form for the same number.

; This is (- 5/2)15.
; The canonical form for this is 2.

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #llnR, #0,

#8, or #X) as for integers,

For example:

#0-101/75
#3r120/21
#Xbc/ad

2.1.3. Floating-point Numbers

; Octal notation for - 6 5/61.
; Ternary notation for 15/7,
; Hexadecimal notation for 188/173.

A floating-point number is a (mathematical) rational number of the form s*f* be- P, where sis + 1 or -1,

thc sign; b is an integer greatcr than 1, ¢e base or radix of thc representation; p is a positive integer, the
jJrecis(on (in 'basc-b digits) of the fl~ating-point number; f is a positive integer between 1JP- 1 and 1JP-1
(inclusive), the significand; and e is an intcger, the exponent. The value of p and the rangc of e depends on the
implementation and on the type of floatin~-point num.ber within that implementation. In addition, there is a
floating-point zero; depending on the implementation, there may also be a "minus zero", Iftherc' is no minus
zero, then "0.0" and "-0.0" are both interpreted as simply a floating-point zero.

Implementation note: "me form of the above description should not be constmed to require the internal representation to
be in sign-magnitude form. Two'~-complement and other representations are also acceptable. Note that the radix of the
internal representation may be other than 2, as on the IBM 360 and 370, which use radix 16; see fl oat-raa i x (page 137).

Floating-point nmnbers may be provided in a variety of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
moderately portable, however, certain definitions are made here:

• A short floating-point number is of the representation of smallest fixed precision provided by an
implementation .

• A long floating-point number is of the representation of the largest fixed precision provided by an
implemcntation~

14 COMMON IJSP REFERENCE MANUAL

• Intermediate between short and long formats are two others, arbitrarily caIted single and double.

The precise delinition of these categories is implementation-dependent. However, the rough intent is that

short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at

least to about seven decimal places; and double noating-point numbers, at least to about fourteen decimal

places. Therefore the following minimum requirements are suggested for these formats: the precision

(measured in "bits", computed as P*log2b) and the exponent size (also measured in "bits", computed as the

base-2 logarithm of one plus the maximum exponent value) must be at least as great as the values in Table

2-1.

Format Minimum Precision Minimum EXQonent Size

Short 13 bits 5 bits

Single 24 bits 8 bits

Double 50 bits 8 bits

Long 50 bits 8 bits

Table 2-1: Minimum Floating-Point Precision and Exponent Size Requirements

•

In any given implementation the categories may overlap or coincide. For example, short might mean the •

same as single, and long might mean the same as double.

Implementation note: Where it is feasible, it is recommended that an implementation provide at least two types of
floating-point number. and preferably three. Ideally. short-format floating-point numbers should have an "immediate"
representation that does not require consing. single-format floating-point numbers should approximate IEEE proposed
standard single-format floating-point numbers, and double-format floating-point numbers should approxim!lte I~E
proposed standard double-format floating-point numbers [6,2,3]. . .

- Floating point numbers are written in "either decimal fraction or "computerized scientific" notation: an

optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal

exponent specification. The decimal point is required, and there must be digits either before or after it;

moreover, digits are required after the decimal point if there is no exponent specifier. The exponent specifier

consists of an exponent marker, an optional sign, and a non-empty sequence of digits. For preciseness, here is

a modifi~d-BNF decription of floating-point notation.

floating-point-number :: = [sign] {digit}* . {digit} + [exponent] I [sign] {digit} + [. {digit}*] exponent
sign:: = + I -
digit:: = 0 /1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

exponent :: = exponent-marker [sign] {digit} +

exponent-marker:: = e I s I f I d 11 1 b 1 ElF 1 DIS 1 LIB

If no exponent specifier is present, or if the exponent marker "e" (or "E") is used, then the precise format to

be used is not specified. When such a floating-point number representation is read and converted to an •

DATA TYPES 15

internal floating-point data object, the format specified by the variable *read-defau1 t-f1 oat-format'"

(page 253) is used: the initial valLIe of this variable is sin 9 1 e.

The letters "s", "f", ··d", and ··1" (or their respective upper-case equivalents) specify explicitly the use of
short, single, double, and long format, respectively. The letters "b" and ··8" are reserved for future definition.

Examples of floating-point numbers:

0.0
OEO
-.0

; Floating-point zero in default format.
; Also floating-point zero in default format.
; This may be a zero or a minus zero,

.; depending on the implementation.
O.
O.OsO
OsO
3.1415926535897932384dO
6.02E+23
602E+21
3.1010299957f-1
-0.000000001s9

2.1.4. Complex Numbers

; The inleger zero, not a floating-point number!
; A floating-point zero in short fonnat.
; Also a floating-point zeroin short format.
; A double-format approximation to 11.

; Avogadro's number, in default format.
; Also Avogadro's number, in default format.
; 10g10 2, in single format.
; e'ITl m short format, the hard way.

Complex numbers mayor may not be supported by a COMMON LISP implementation. They are
reprcscnted·in Cartesian form, with a real part and an imaginary part each of which is a non-complex number
(integer, floating-point number, or ratio). It should be emphasized that the parts of a complex number are
not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differs fro111 FORTRAN. In
general, these identities hold:

(eq1 (rea1part (complex x y» x)
(eq1 (i~agpart (complex x y» y)

Complex numbers may be notated by writing the characters "#C" followed .py it list of the real and
imaginary parts. (Indeed, "#C(a b)" is equivalent to "#, (complex a b)"; see the description of the
function comp 1 ex (page 137).)

For example:

#C(3.0s1 2'.Os-l)
#C(5 -3)
#C(5/3 7.0)
#C(O 1)

; A Gaussian integer.

; The imaginary unit.

Some implementations furthermore provide specialized representations of complex numbers for efficiency.
In such representations the real part and imaginary part are of the same specialized numeric type. The "#C"

construct will produce the most specialized representation that. will correctly represent the two notated parts.

The type of a specialized complex number is indicated by a list of the word comp 1 ex and the type of the
components; for example, a specialized representation for complex numbers with short floating-point parts

would be of type (complex short-float). The type complex encompasses all complex

representations; the particular representation that allows palts of any numeric type is referred to as type

16 COMMON LISP REFERENCE MANUAL

(compl ex t).

2.2. Characters

Every character object has three attributes: code, bits, and jont. The code attribute is intended to

distinguish among the printed glyphs and formatting functions for characters. The bits attribute allows extra

"flags to be associated with a character. The font attribute permits a specification of the style of the glyphs

(such as italics). Each of these attributes may be understood to be a non-negative integer.

A character object can be notated by writing H#\" followed by the character itself. For example, "#\g"

means the character object for a lower-case Hg". This works well enough for Hprinting characters". Non

printing characters have names, and can be notated by writing "#\" and then the name; for example,

H#\return" (or "#\RETURN" or "#\Return", for example) means the (return) character. The syntax for

character names after H#\" is the same as that for symbols.

The font attribute may be notated in unsigned decimal notation between the "#" and the "\". For

example, #3 \A means the letter" A" in font 3. Note that not all COMMON LISP implementations provide for

non-zero font attributes; see c h a r - f 0 n t -1 i mit (page 149).

The bits attribute may be notated by preceding the name of the character by the names or initials of the

bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by

"\". For example:

#\Contro1-Meta-Return
#\Hyper-Space
#\Control-A
~Met.a-\8
#\C.,-M-Return

Note that not all COMMON LISP imple~entations provide for non-zero bits attributes; see

char-bits-1 imit (page 149).'

Any character whose bits and font attributes are zero may be contained in strings. All such characters

together constitute a subtYI?e of the characters; this subtype is called s t r i n 9 - ch ar.

2.3. Symbols

Symbols are LISP data objects that serve several purposes and have several interesting characteristics.

Every symbol has a name, called its print name. Given a symbol, one can obtain its name in the form of a

string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. (More

precisely, symbols are organized into packages, and all the symbols in a package are uniquely identified by

name.)

Symbols have a component called the property list, or plist. By convention this is always a list whose "

•

•

•

DATA TYPES 17

even-numbered- components (calling the initial one component zero) are symbols, here functioning as

property names, and whose odd-numbered components are associated property values. Functions are

provided for manipulating this property list; in effect, -these allow a symbol to be treated as an extensible

record structure ...

Symbols are also used to represent certain kinds of variables in LIsp programs, and there are functions for

dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. If its name is not empty, and if the name consists only

of upper-case alphabetic, numeric, or certain "pseudo-alphabetic" special characters (but not delimiter

characters such as parentheses or space), and if the name of the symbol cannot be mistaken for a number,

then the symbol can be notated by the sequence of characters in its name.

For example:-

FROBBOZ
frobboz
fRObBoz
unwind-protect
+$
1+
+1
pascal_style
b"'2-4*a*c

; The symbol whose name is "FROBBOZ".
; Another way to notate the same symbol.
; Yet another way to notate it.
; A symbol with a "-" in its name.
; The symbol named "+$".
; The symbol named" 1 +".
; This is the integer 1, not a symbol.
; This symbol has an underscore in its name.
; This is a single symbol!

It has several special characters in its name.
f i 1 e . re 1 .43 ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

Besides letters and numbers, the following characters are normally considered to be "alphabetic" for the

·purposes of notating symbols:

+ - * / I @ $ % '" & _ = < > ? - •

_ Some of these characters have conventjonal purposes for naming things; for example, symbols that name

functions having extremely implementation-dependent semanti<;s generally have names beginning with "%".

The last character, " . ", is considered alphabetic provided that it does not stand alone. By itself, it has a role in

the notation of conses. (It also serves as the decimal point.)

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LISP

reader normally converts lower:case letters to the corresponding upper-case letters when reading symbols.

The net effect is that most of the time case makes no difference when notating symbols. However, case does'

make a difference internally and when printing a symbol. Internally the symbols that name all standard

COMMON LISP functions, variables, and keywords have upper-case names; their names appear in lower case

in this document for readability. Typing such names in lower case works because the function read will

convert them to upper case.

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains

special characters or lower-case letters, then there arc two "escape" conventions for notating them. Writing a

18 COMMON LISP REFERENCE MANUAL

"\" character before any character causes the character to be treated itself as an ordinary character for usc in a
symbol name. If any character in a notation is preceded by \, then that notation can never be interpreted as a

number.

For example:

\(
\+1
+\1
\frobboz
3.14159265\50
3.14159265\SO
3.1415926550
APL\\360
ap1\\360
\(b"'2\)\ -\ 4*a*c

; The symbol whose name is "(".
; 'rhe symbol whose name is "+ 1".
; Also the symbol whose name is "+ 1".
; The symbol whose name is "fROBBOZ".
; The symbol whose name is "3.1415926550".
; The symbol whose name is "3. 14159265S0".
; A short-format floating-point approximation to 'IT.

; The symbol whose name is "APL \360".
; Also the symbol whose name is "APL \360".
; The name is "(B"'2) - 4*A*C".

It has parentheses and two spaces in it.

It may be tedious to insert a "\" before evelY delimiter character in the name of a symbol if there are many
of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol's name,as if "\" had been written before each one,
excepting only I itself and \, which must nevertheless ~e preceded by \.

For example:

I" I
I (b A 2) - 4*a*cl
I frobboz I'
IAPL\3601

IAPL\\3601
lap1\\3601
I \ I \ II

2.4. Lists and Conses

; The same as writing \ " .
;The name is "(b"'2) - 4*a*c".
; The name is "frobboz", not "FROBBOZ".
; The name is "APL360", because

the" \" quotes the" 3".
; The name is "APL \360".
;The name is "ap 1 \ 360".
; Same as \ I \ I : the name is " I I".

A. cons is a record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists.

A list is recursively defined to be either the empty list (which is represented by the symbol nil, but can
also be written as "()") or a cons whose cdr cOlnponent is a list. A list is therefore a chain of conses linked by
their cdr components and terminated by nil. The car components of the conscs are called the elements of
the list. For each element of the list there is a cons. The empty list has no clements at all.

A list is notated by writing the elements of the list in order, separate9 by blank space (space, tab, or return
characters) and surrounded by parentheses.

For example:

(a b c)
(2.050 (a 1) #*)

: A list of three symbols.
; A list of three things: a short floating-point number,

another list, and a character object.

•

•

DATA TYPES 19

This is why the empty list can be written as .. ()"; it is a list with no clements.

A dolled list is one whose last cons does not have nil for its cdr, but some other data object (which is also

not a cons, or the first-mentioned cons would not be the last cons of the list). Such a list is called "dotted"

because of the special notation used for it: the clements of the list arc written between parentheses as before,

but' after the last clement and before the right parenthesis are written a dot (surrounded by blank space) and

then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between

parentheses and separated by a space-surrounded dot.

For example:

(a . 4)

(a be. d)

; A cons whose car is a symbol
and whose cdr is an integer.

; A list with three clements whose last cons
has the symbol d in its cdr.

Compatibility note: In MACLISP, the dot in dotted-list notation need not be surrounded by white space or other delimiters.
1be dot is required to be delimited in COMMON LISP, as in l.isp Machine LISP.

It is legitimate to write something like (a b . (c d»; this means the same as (a bed). The

standard LISP output .routines will never print a list in the first form, however; they will avoid dot notation

wherever possible.

Often the term list is used to refer either to true lists or to dotted lists. The tenn "true list" will be used to

refer to a list tenninated by nil, when the distinction is important. Most functions advertised to operate on

• lists will work on dotted lists and ignore the non- n i 1 cdr at the end.

•

Sometimes the tenn tree is used to refer to some cons and all the other conses transitively accessible to it

through car and cdr links until non-conses are reached; these non-conses are called the leaves of the tree.

, ,

Lists, ~~tted lists, and trees are not mutually exclusive data types; they are simply useful points of view

about structures of conses. There arc yet other tenns, such as association list. None of these are true LISP data

types. Conses are a data type, and n i 1 is the s01e object of type nu 11. The LISP data type 1 ; s t is taken to

mean the union of the con sand n u 11 data types, and therefore encompasses both true lists and dotted lists.

2.5. Arrays

An array is an object with components arranged according to a rectiliI1:ear coordinate system. In general,

these components may be any LISP data objects. .

The number of dimensions of an array is called its rank (this terminology is borrowed from APL). This is a

non-negative integer; for convenience, it is in fact required to be a fixnum (an integer of limited magnitude).

Likewise, each dimension is itself anon-negative fixnum. The total number of clements in the array is the

product of all the dimensions .

An implementation of COMMON LISP may impose a liInit on the rank of an array, but this limit may not be

20 COMl\10N LISP REFERENCE MANUAL

smaller than 63. Thei'efore, any COMMON I JSP program may assume the use of arrays of rank 63 or less .

It is permissible for a dimension to be zero. In this case, the array has no clements, and any attempt to
access an clement in in error. However, other properties of the array (such as the dimensions thermselves)
may be used. If the rank is zero, then there arc no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array therefore has a single clement.

An array clement is specified by a sequence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension.
Array indexing is therefore zero-origin, not one-origin as in (the default case of) FORTRAN.

As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then second index may be 0, 1, 2, 3, or 4. One may refer to array clements using the function aref
(page 196):

(aref foo 2 1)

refers to clement (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as
. many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole clement of the array.

In general, arrays can be multi-dimensional, can share their contents with other array objects, and can have

•

their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also •
have a fill pointer.

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional
~rray is' stored as a one:-dimensional array, with the multidimensional index sets ordered lexicographically, last
index varying fastest. This is important in two situations: (1) when arrays with different dimensions share·
their contents" and (2) when accessing very large arrays in virtual-memory implementation. (The first
situatiQn is a matter of semantics; the second, a Illatter of efficiency.)

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP. Vectors and lists are collectively considered to
be sequences. They differ in that any component of a one-dimensional array can be accessed in constant time,
while the average component access time for a list is linear in the length of the list~ on the other hand, adding
a new element to the front of a list ~akes constant time, while the same operation on an array takes time linear
in the length of the array ..

A vector that is not displaced to another array, has no fill pointer, and is not to have its size adjusted
dym1.mical~y after creation, is called a simple vector. Some implclllentations can handle simple vectors in an
especially efficient manner. The user may provide declarations that certain arrays will be simple vectors.
Simple vectors may have a more compact representation than non-simple vectors.

A general vector (a one-dimensional array of S-expressions with no additional paraphernalia) can be •

•

DATA TYPES

notated by notating the components in order, separated by whitespace and surrounded by "#(" and H)".

For example:

(a be) ; A vector oflength 3.
#(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47)

; A vector containing the primes below 50.
#() ; An empty vector.

When the function read parses this syntax, it always constructs a simple general vector.

I~ationale: Many people have suggested that square brackets be used to notate vectors: "[abc]" instead of "#(a b
c) ". This would be shorter. perhaps more readable. and certainly in accord with cultural conventions in other parts of
computer science and mathematics. I lowever. to preserve the usefulness of the user-definable macro-character feature of
the function read (page 253). it is necessary to leave some characters to the user for this purpose. Experience in MAcLJSP

has shown that users. especially implcmentors of AI languages, often want to define special kinds of brackets. Therefore
COMMON LISP avoids using square brackeL<; and braces for any purpose.

21

Implementations may provide certain specialized representations of arrays for efficiency in the case where

all the components are of the same specialized (typically numeric) type. All implementations provide

specialized arrays for the cases when the components are characters (or rather, a special subset of the

characters); the one-dimensional instances ·of this specialization arc called strings. 1\11 implementations arc

also required to provide specialized arrays of bits, that is, arrays of type (a r r ay bit); the one-dimensional

instances of this specialization are called bit-vectors.

2.5.2. Strings

A string can be written as the sequence of characters '~ontained in the string, preceded and followed by a

""" (double-quote) character. Any""" or "\" character in the sequence must additionally have a"\,'

character before it.

For example:

"Foo"
""
"\"APL\\360?\" he cried."
"I x I = I-xl"

; A string with three characters in it.
; An empty string.
; A string wi£h twenty characters.
; A "ten-character string.

Notice that any vertical bar" I " in a string need not be preceded by a "\". Similarly, any double-quote in

the name of a symbol written using vertical-bar notation need not be preceded by a "\". The double-quote

and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the

sequence of characters, while vertical bars indicate a symbol whose name is the contained sequence of

characters. The function pr i n 1 will print any character vector using this synt~x, but the function read will

always constnlct a simple string from this syntax.

2.5.3. Bit-vectors

A bit-vector can be written as the sequence of bits contained in the string, preceded by "#*"; any delimiter

character (such as whitespace) will terminate the bit-vector syntax.

For example:

22 .

#*10110
#*

COMMON LISP REFERENCE MANUAL

; 1\ five-bit bit-vector; bit 0 is a 1.
; I\n empty bit-vector.

The function p r i n 1 will print any bit-vector using this'syntax, but the function re ad will always construct

a simple bit-vector from this syntax.

2.6. I-Iash tables

Hash tables provide an efficient way of mappin~ any LISP object (a key) to an associated object. They are

provided as primitives of COMMON LISP because some implementations may need to use internal storage

management strategies that would make it very difficult for the user to implement hash tables himself in a

portable fashion. Hash tables are described in chapter 16 (page 189).

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP expression parser. In

particular, a readtable indicates for each character with syntax macro character what its macro definition is.

This is a mechanism by which the user may reprogram the parser to a limited but useful extent. See section

22.1.5 (page 244).

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking

up character sequences in the "current package". ~ac.k~ges can be used to hide names internal to a module

from other ccrde. ~echanisms are provided for exporting symbols from a given package to the primary

"user" package. See chapter 11 (page 115).

2.9. Pathnames

Pathnames are .the means by which a COMM<;1N LISP program can interface to an external file system in a

reasonably implementation·independent manner. See section 23.1.1 (page 274).

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all function that perform I/O do

so with respect to a specified stream. The function open (page 283) takes a pathname and returns a stream

connected to the file specified by the pathname. There are a number of standard streams that are used by

default for various purposes. See chapter 21 (223).

•

•

•

DATA TYPES 23

2.11. Random-states

For information about random-state objects and the random-number generator, see section 12.8 (page

144).

2.12. Structures

Structures are instances of user-defined data types that have a" fixed number of named components. They
are analogous to records in PASCAL. Structures are declared using the defstruct (page 211) construct;
de f s t rue t automatically defines access and constructor functi()J1s for the new data type.

Diff~rent structures may print out in different ways; the definition of a structure type may specify a print
procedure to use for objects of that type (see the :print-function (page 217) option to defstruct).

The default notation for stnlctures is:

#S (structure-name
slot-name-/ slot- value-/ "
s/ot-name-2 slot-value-2

...)
where "#S" indicates structur~ syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and each corresponding slot-value is the representation
of the LISP object in that slot.

2.13. Functions

A function is anything that may be correctly given to the fun c a 11 (page 71) or a p ply ..{pag~

71) function, to be executed as code when arguf!1cnts are supplied.

A compiled-function is a compiled code object.

A list whose caris "1 ambda may serve as a function; see Chapter 5.

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol's function cell to be used. See 5ymb 0 I - fun c t ion (page 63),

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. As a rule, such objects cannot reliably be

reconstru"cted from a printed representation, and so they are printed usually in a format informative to the
user but not acceptable to the read function:

#<useful injonnation>

A hypothetical example might be:

24 COMMON LISP REFERENCE MANUAL

#<stack-pointer si:rename-within-new-definition-maybe 311037552>

The Lisp reader will signal an error on encountering "#<".

2.15. Overlap, Inclusion, and Disjointncss of Types

The COMMON LJSP data type hierarchy is tangled. and purposely left somewhat open-ended so that

imp1cmentors may experiment with new data types as extensions to the language. This section states

explicitly all the defined relationships between types, including subtype/supertype relationships. disjointness,

and exhaustive partitioning. The user of COMMON LISP should not depend on any relationships not explicitly

stated here. For example, it is not valid to assume that because a number is not complex and not rational that

it must be a flo a t. because implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object of type y is also of type x, and y is

said to be a subtype of x. If types x and yare disjoint, then no object (in any implementation) may be both of

type x and of type y. Types a1 through a are an exhaustive union of type x if each a. is a subtype of x, and
n J

any object of type x is necessarily of at least one of the types a.; a
1

through a are furthermore an exhaustive
J n

partition if they are also pairwise disjoint.

• The type t is a supertype of every type whatsoever. Every object belongs to type t.

• The type nil is a subtype of every type whatsoever. No object belongs to type nil.

• The types cons, symbol, array, ~umber, and character are pairwise disjoint.

• The types rq t i on a 1, f 1, oa t, and comp 1 ex are pairwise disj~int SUbtypes of numb er.

• The types in te ge rand rat i 0 are disjoint subtypes of ~ at i on a 1.

• The types f; xn urn and b i gn urn are disjoint subtypes of ; n teger.

• The types short-float, single-float, double-float, and 10n~-f10at are subtypes
of f loa t. Any two of them must be either disjoint or identical; if identical, then' any other types

between them in the above ordering must also be identical to them (for example, if

Single-float and long-float are identical types, then double-float must be identical

to them also).

• The type null is a subtype of symbol; the only object of type null is n i 1.

• The types con sand null form an exhaustive partition of the type 1 i st.

• Th~ type standard-char is a subtype of string-char; string-char is a subtype of

character.

•

•

•

•

•

DATA TYPES

• The type string is a subtype of vector, forstring means (vector string-char).

• The type bi t-vector is a subtype of vector, for bi t-vector means (vector bi t).

• The type vector is a subtype of array; for all types x, the type (vector x) is a 'subtype of

the type (a r r ay x (*», the set of all one-dimensional arrays.

• The types has h - tab 1 e, re adtab 1 e, pack age, pa th name, s t re am, and ran dom- s ta te

are pairwise disjoint.

• Any two types created by defstruct (page 211) are disjoint unless one is a supertype of the

other by virtue of the :i nc 1 ude (page 215) option.

• An exhaustive union for the type common is formed by the types .cons, symbo 1, (array x)

where x is a subtype of common, fixnum, bignum, ratio, short-float, single-float,

double-float, long-float, (complex x y) where x and yare subtypes of common,

standard-char, hash-tabl e, readtabl e, package, pathname, stream,

random-state, and all types created by defstruct. No data type not mentioned in this

document may be a subtype of common. Note thata type such as number or array mayor may

not be a subtype of common, depending on whether or not the given implementation has

extended the set of objects of that type .

-.
"

25

26 COMMON I.ISP REFERENCE MANUAL

•

•

•

•

•

Chapter 3

Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are

frequently useful. These arise when some object or construct must be referred to from some distant part of a

program. Scope refers to the spatial or textual region of the program within which references may occ!lr.

Extent refers to the interval of time within which references may occur.

As a simple example, consider this program:

(defun copy-cell (x) (cons (car x) (Cdr x»)

The scope of the parameter named x is the body of the defun form. There is no way to refer to this

parameter from any other place but within the body of the defun. Similarly, the extent of the parameter x

(for any particular call to copy-cell) is the interval from the time the function is invoked to the time it is

exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that .

cunnot occur in this simple case.)

Within CO.MMON LISP, a referenceable entity is established by the execution of some language constnlct,

and the scope and extent of the entity are. described relative to the construct and the time (during execution of

the construct) at which the entity is established.' There are a few kinds of scope and extent that are

particularly useful in describing COMMON LISP:

• Lexical scope. Here references to the established entity can occur only within certain program

portions that are lexically (that is, textually) contained within the establishing construct Typically

the construct wi~l have a pa.rt designated the body, and the scope of all entities ~stablished will be

(or include) the body.

Example: the names of parameters to a function normally are lexically scoped.

• Indefinite scope. References may occur anywhere, in any program.

• Dynamic extent. References may occur at any time in the interval between establishment of the

entity and the explicit disestablishment of the entity. As a rule, the entity is disestablished when

execution of the establishing construct completes or is otherwise terminated. Therefore entities

with dynamic extent obey a stack-like disciplin~, paralleling the nested executions of their

establishing constructs.

- 27-

28 COMI\10N LISP REFERENCE MANUAL

Example: the with-open-file (page 286) creates opens a connection to a file and creates a

stream object to represent the connection. The stream object has indefinite extent, but the

connection to the open file has dynamic extent: when control exits the with-open-file

construct, either normally or abnormally, the file is automatically closed.

Example: the binding of a "special" variable has dynamic extent.

• Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An

implementation is free to. destory the entity if it can prove that reference to it is no longer

possible.)

Example: most COMMON LISP data objects have indefinite extent.

Example: the names of lexically scoped parameters to a function have indefinite extent. (By

contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent.)

This function definition:

(defun compose (f g)
#'(lambda (x) (f (g x»»

when given two arguments, immediately returns a func~ion as its value. The parameter bindings

for f and 9 do not disappear, because the returned function, when called, could still refer to those

bindings. Therefore

(funcall (compose #'sqrt #'abs) -9.0)

produces the value 3. O. (An analogous procedure would not work correctly in typical ALGOL

implementations.)

,J.

In addition to the above terms, it is convenient to define dynamic scope to mean indefinite scope and

dynamic extent. Thus we speak of "special" variables as having dynamic scope, or being dynamically scoped,

because they have indefinite scope and dynami~ extent: a special variable can be referred to anywhere as long

as its binding is currently in effect.

The above definitions do not take into account the possibility of shadowing. Remote reference of entities is

accomplished by using names of one kind or another. If two entities have the same name, then the second .

(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer'

to the first.

In the case of lexical scope, if two constructs that establish entities with the same name are textually nested,

then references within the inner construct refer to the entity established by the inner one; the inner one

shadows the outer one. Outside the inner one but inside the outer one, references refer to the entity

established by the outer construct. For example:

(defun test (x z)

•

•

{let {(z (* x 2») (print z» •
z)

SCOPI~ AND EXTENT 29

The binding of the variable z by the let (page 73) construct shadows the parameter binding for the function

te s t. The reference to the variable z in the p r i n t form refers to the let binding. The reference to z at
the end of the function refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities with the same name overlap, then one
interval will necessarily be nested within the other one (this is a property of the design of COMMON LISP). A
reference will always refer to the entity that has been most recently established that has not yet been
disestablished. For example:

(defun funl (x)
(catch 'trap (+ 3 (fun2 x)))).

(defun fun2 (y)
. (catch 'trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw 'trap z))

Consider the call (fun 1 7). The result will be 10. At the time the th row (page 95) is executed, there are
two outstanding catchers with the name t r'ap: one established within procedure fun 1, and the other within
procedure fun2. The latter is the more recent, and so the value 7 is returned from the catch form in fun2.
Viewed from within fun3, the catch in fun2 shadows the one in fun1. (Had fun2 been defined as

(defun fun2 (y)
(catch 'snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in fun 1 would not be shadowed.
The result would then have been 7.)

As a rule. this document will simply speak of the scope or extent of an entity; the possibility is shadowing
will be left implicit.

A list of the important scope and extent rules in COMMON.LISP:

• Variable bindings normally have lexical scope and indefinite extent.

• Variable bindings that are declared to be s p e cia 1 have dynatnic scope (indefinite scope and
dynamic extent).

• A catcher established by a catch (page 93), catch-all (page 93), unwi nd-all (page 93),
or unwi nd-protect (page 94) special form has dynamic scope.

• An exit point established by a b 1 0 c k (page 79) construct has lexical scope and dynamic extent.
(Such exit points are also established by do (page 80), pro 9 (page 87), and other iteration
constructS.)

• The tags established by a prog (page 87) and refererice~ by go (page 89) have lexical scope and
dynamic extent.

-- ----------------------------------

30 - COMl\10N I ,IS» REFERENCE MANUAL

• Named constants such as nil (page 51) and pi (page 130) have indefinite scope and indefinite

extent.

Constructs that use lexical scope effectively generate a new name for each established entity on each
execution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular

importance when dynamic extent is involved. For example:

(defun contorted-example (f 9 x)
(if (= x 0)

(funcall f)
(block here

(+ 5 (contorted-example 9
#'(lambda () (return-from here 4»
(- xl»»»

Consider the call (contorted-exampl e ni 1 ni 1 2). This produces the result 4. At the time the
funcall is executed there are three block (page 79) exit points outstanding, each apparently named

here. However, the return-from (page 79) form executed refers to the outermost of the outstanding exit
points, not the innermost, as a consequence of the rules of lexical scoping: it refers to that exit point textually

visible at the point the fun c t ion (page 62) construct (here abbreviated by the #' syntax) was executed .

•

•

•

•

•

Chapter 4

Type Specifiers

In COMMON LISP, types are named by LISP objects, specifically symbols and lists, called type specifiers.

Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of

simpler types, Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Synlhols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure

type is defined using defs truct (page 211), the name of the structure type becomes a valid type symbol.

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type

information. As a general convention, any subsidiary item may be replaced by *, or simply omitted if it is the

last item of the list; in any of these cases the item is said to be unspecified.

-]a

4.2. Predicating Type Specifier

. A type specifier list (sat is fie s predica~e-name) denotes the set of all objects that satisfy the predicate

named by predicate-name, which must be a symbol whose global function definition is a Ot).e-argument

predicate; (A name is required; lambda-expressions are not allowed in order to avoid scoping problems.) For

example, the type (satisfies numberp) is the same as the type number. The call (typep x

, (sat i sf i e s p» results in applying p to x and' returning t if the result is true and nil if the result is •

false.

As an example, the type s t r i n g - c h a r could be defined as

(deftype string-char () (and character (satisfies string-charp»)

See deftype (page 36).

As a rule, a predicate appearing in a sat i sf i e s type specifier should not cause any side effects when

invoked .

- 31-

32 COMMON LISP REFERENCE MANUAL

4.3. Type Specifiers That Conlbine

The following type specifier lists define a data type in terms of other types or objects.

t nil common
null cons list symbol
array vector bit-vector string
sequence simple-vector simple-bit-vector simple-string
function compiled-function pathname character
number rational .float string-char
intege'r ratio short-f.loat standard-char
fixnum complex single-float package
bignUln random-state double-float stream
bit readtable long-float hash-table

Table 4-1: Standard Type Specifier Symbols

(membe r objectl object2 ...)

(not type)

This denotes the set containing precisely those objects named. An object is of this type if

and only if it is e q 1 (page ~56) to one of the specified objects.

Compatibility note: 'This is approximately equivalent to what the INTERLrsp DECL package calls
memq,

This denotes the set of all those objects that are not of the specified type.

(0 r type] type2 ...)
This denotes the union of the specified types. For example, the type 1 is t by definition is

thesam'e as. (or null cons). Also, the val~e returned by the function position
(page 168.) is always of type (0 r n u 11 (.; n t e g e r 0 "')) (either nil or a non-negative

integer).

Compatibility note: This is equivalent to what the INTERLrsp DECL package calls 0 n eof.

(an d type] type2 ...)
This denotes the intersection of th~ specified types.

Compatibility note: 1bis is equivalent to what the INTER LISP DECL package calls a 11 of.

??? Query: ShQuld 0 r and and type specifiers guarantee the order in which the types are
examined? This matters if a sat is fie s type specifier has side effects or if it relies on previous
type restrictions, as in writing (typep x . (and number (s at is t'i e s p r imep»).

4.4. Type Specifiers 'That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializations may

be reflected by more efficient representations in the underlying implementation. As an example, consider the

•

•

•

'IYPE SPl~CII:IERS 33

typ·e (array short-float). Implementation i\ may choose to provide a specialized representation for

arrays of short floating-point numbers, and implementation B may choose not to.

] f you should want to create an array for the express purpose of holding only short-float objects, you may

optionally specify to make-array (page 193) the clement type short-float. This does not require

make-array to create an object of type (array short-float); it merely permits it. The request is

construed to mean "Produce the most specialized array representation capable of holding short-floats that the

implementation can provide." Implementation i\ will then produce a specialized short-float array (of type

(array short-float»), and implementation B will produce an ordinary array (one of type (array

t »).

Ifone were then to ask whether the array were actually of type (array short-float), implementation

A would say "yes", but implementation 13 would say "no". This is a property of make-array and similar

functions: what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrimination. Declaring to

make-array that elements will always be of type short-float pennits optimization. Similarly, declaring

that a variable takes on values of type (a r r ay s h 0 r t - flo a t)- amounts to saying that the variable will take

on values that might be produced by specifying element type short-float to make-array. On the other

hand, if the predicate typep is used to test whether an object is of type (array· short-float), only

objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test.

The valid list-format names for data types are:

(array element-type dimensions)

This denotes th~ set of specialized arrays whose ele.ments are all members of the type

element-type and whose dimensions match dimensions. For declaration purposes, this type

encompasses those arrays that can result by spe9ifying element-type as the element typ~ to

the function ma k e -a r ray (page 193); this may be different from what the· type means

for discrimination purposes. element-type must be a valid type specifier or unspecified.

dimensions may be a non-negative integer, which is the number of dimensions, or it may be

a list of non-negative integers representing the length of each dhpension (any dimension

may be unspecified instead), or it may be unspecified.

For example:

(array
(array
(array
(array

integer 3)
integer (* * *»
* (4 5 6»
character (3 *»

; Three-dimensional arrays of integers.
; Three-dimensional arrays of integers.
; 4-by-5-by-6 arrays.
; Two-dimensional arrays of characters

that have exactly three rows.
(array short-float (» ; Zero-rank arrays of short-format

; floating-point numbers.

Note that (array t) is a proper subset of (array' *).

(v e c tor element- type size)

34 COMMON LISP REFERENCE MANUAL

This denotes the set of specialized one-dimensional arrays whose elements are all of type

element-type and whose lengths match size. This is entirely equivalent to (array

element-type (size».

For example:

(vector double-float)

(vector lie 5)
(vector t 5)
(vector (mod 32) *)

; Vectors of double-format
; floating-point numbers.
; Vectors oflength 5.
; General vectors oflength 5.
; V.ectors of integers between 0 and 31.

The specialized types (vector string-char) and (vector bit) are so useful that

they have the special names s t r in g and bit - vee to r. Every implementation of

COMMON LISP must provide distinct representations for these as distinct specialized data

types.

(s impl e-vector element-type size)
This is the same as (vector element-type size) except that it includes only simple

vectors.

(c omp 1 ex rtype itype)
Every clement of this type is a complex !lumber whose real part is of type rtype and whose

imaginary part is of type itype. For declaration purposes, this type encompasses those

complex numbers that can result by giving numbers of the specified type to the function

comp 1 ex (page 137); this may be different from what the type means for discrimination

purposes.

It1' a bret\k with the usual convention 'on omitted items, if itype is omitted (but not if it is

explicitly 4l1.specified) then it is taken to be the same as rtype. As examples, GaussIan

integers might be described as (c omp 1 ex in t e g e r), and the result of the complex

logarithm function might be desoribed as being of type (complex float (float

#.(- pi) #.pi».

(function (argl-type arg2-type ...) value-type)
This type may be used only for declaration and not for discrimination; typep (page

52) will signal an error if it encounters a specifier of this form. Every element of this type is

a function that accepts arguments at least of the types specified by the argj-type forms, and

returns a value that is a member of the types specified by the value-type form. The

&0 p t ion a 1 , & res t, and & key keywords may appear in the list of argument types. The

va!ue-typemay be a val ues type specifier, to indicate the types of multiple values.

As an example, the function cons (page 174) is of type (function (t t) cons),

because it can accept any two arguments and always returns a cons. It is also of type

(fun c t ion (f loa t s t r i n g) 1 i s t), because it can certainly accept a floating-point

number and a string (among other things), and its result is always of type 1 is t (in fact a •

•

. TYPE SPECIFIERS 35

co n s and never null, but that does not matter for this type declaration). The function

truncate (page 135) is of type (function (number number) (values number

number»),aswellasoftype (function (integer -(mod 8» integer).

(val ue s valuef-type value2-type ...)
This type specifer is extremely restricted: it may be used only as the value-type in a

funct i on type specifier or in a the (page 106) declaration. It is used to specify
individual types when multiple values are involved. The &optional, &rest, and &key

keywords may appear in the value-type list; thC;y thereby indicate the parameter list of a
function that, when given to mu 1 tip 1 e - val ue - call (page 90) along with the values,

would be suitable for receiving those values.

4.5. Type Specifiers That Abbreviate

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far

too verbose to write out explicitly (using, for example, member).

(integer low high)

(mod n)

This denotes the integers_ between low and high. The limits lolV and high must each be an
integer, a list of an integer, or unspecified. An integ~r is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively. The type fix n urn is simply a name for

(i nteger smallest largest) for implementation-dependent values of smallest and
largest. The type (i n t e 9 e r 0 1) is so useful that it has the special name bit.

The set of non-negative integers less than n. This is equivalent to (in tege r 0 n-f)or

to (i n t e g e r 0 (n)).

(s i gned-byte s)

The set of integers that can be represented in two's-complement form in a byte of s bits.
This is equiv~lent to (integer _2s- 1 2s- 1 _1). Simply signed-byte or

(s i g ned - by t e *) is the same as i n t e 9 e r.

(unsigned-byte s)

The set of non-negative integers that can be represented in a byte of s bits. This is

equivalent to (mod 2s), that is, (integer 0 2s-1). Simply unsigned-byte or

(unsigned-byte *) is the same as (integer 0 .(», the set of non-negative

integers.

(rat ion a 1 low high)

This denotes the rationals between low and high. The limits low and high must each be a

rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a

•

36 COMMON I.lSP REFERENCE MANUAL

rational is an exclusive limit, and >I< means that a limit does not exist and so effectively

denotes minus or plus infinity, respectively.

(float low high)
The set of floating-point numbers between low and high. The limits low and high must

each be a floating-point number, a list of a floating-point number, or unspecified; a

floating-point number is an inclusive limit, a list of a floating-point number is an exclusive

limit, and >I< means that a limit does not exist and so effectively denotes minus or plus

infinity, respectively. .

In a similar manner one may use:

(short-float low high)
(single-float fuw h~h)
(doubl e-fl oat low high)
(1 ong-fl oat low high)

In this case, if a limit is a floating-point number (or a list of one), it must be one of the

appropriate format.

(s t r in 9 . size) This means the same as (a r r ay s t r i n 9 - c h a r (size)) : the set of strings of the

indicated size. One may also use the name simp 1 e - s t r in 9 to include only simple

strings.

(b i.t-vector size)
This means the same as (a r r ay bit (size)): the set of bit-vectors of the indicated size.

One may also use the name·s imp 1 e - bit - v e c to r to include only simple bit-vectors.

4.6. DeQning New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new structure type with

defstruct (page 211) automatically causes the name of the structure to be a new type specifier symbol.

Second, the deftype special fonn can be used to define new type-specifier abbreviations.

deftype name lambda-list {declaration I doe-slrillg}* {fomz}* [Alaero]

This is very similar to a defmacro (page 99) form: name is the symbol that identifies' the type

specifier being defined, varlisl is similar in fonn to a latnbda-list (and may contain &0 p t ion a 1 and

&r est tokens), and body is the body of the expander function. If we view a type specifier list as a

list containing the type specifier name and some argument forms, the argument forms

(unevaluated) are bound to the corresponding parameters in varlisl. Then the body forms are

evaluated as an implicit progn, and the value of the last form is interpreted as a new type specifier

for which the original specifier was an abbreviation.

deftype differs from defmacro in that ifno iniLfomz is specified for an &opt ional parameter,

•

•

•

•

TYPE SPEC! FI ERS 37

the default value is *, not nil.

If the optional documentation string doc-sIring is present, then it is attached to the /lame as a

documentation string of type type; see documen tat i on (page 301).

For example:

(deftype mod (n) '(integer 0 (,n»)
(deftype list () '(or null cons»
(deftype square-matrix (&optiona1 type size)

"SQUARE-MATRIX includes all square two-dimensional arrays."
, (a r ray , t y p e, (, s i z e ,s i z e))).

(square-matrix short-float 7) means (array short-float (77»
(square-matrix bit) means (array bit (* *»

If the type name defined by deftype is used simply as a type specifier symbol, it is interpreted as a

type specifier list with no argument forms. Thus, in the example above, s qua re -ma tr i x would

mean (array * (* *», the set of two-dimensional arrays. This would unfortunately fail to

convey the constraint that the two dimensions be the same; (square-matrix bit) has the

same problem. A better definition is:

(defun equidimensiona1 (a)
(or « (array-rank.a) 2)

(apply #': (array-dimensions ,a»»

(deftype square-matrix (&optiona1 type size)
• (and (a r ray , t y p e (, s i z e ,s i z e))

(satisfies equidimensiona1»)

4.7. Type Conversion Function

" ...
coerce object result-type [Function]

. The result-type must be a type specifier;. the object is converted to 'an "equivalent" object of the

specified type. As a rule, if object is already of the specified type, as determined by typep ,(page

52), then it is simply returned. It is not generally possible to convert any object to be of any type

whatsoever; only certain conversions are permitt~d:

• Any sequence type may be converted to any other sequence type, provided that the new

sequence can contain all actual elements of the old sequence (it is an error if it cannot).

If the result-type is specified as simply array, for example, then (array t) is

assumed. A specialized type such as string or (vector (complex

s h 0 r t - flo at)) may be specified; of course, the result may be of either that type or

some more general type, as detennined by the implementation. If the sequence is

already of the specified type, it may be returned without copying it; in this (coerce

type sequence) differs frOtn (con cat e nat e type sequence), for the latter is required

to copy the argument sequence. In particular, if one specifies seq u e nee, then the

argument may simply be returned, if it already is a seq u e nee.

38 (,OMMON \.ISP REFERENCE MANUAL

(coerce '(a b c) 'vector) ,=> #(a b c)

• Some strings, symbols, and integers may be converted to characters. If object is a string

of length 1, then the sole clement of the string is returned. I f object is a symbol whose

print name is of length 1, then the sole clement of the print name is returned. If object
is an integer 11, then (i nt-char 11) is returned. See character (page 154).

(coerce "a" 'character) => #\a

• Any non-complex number can be converted to be ash 0 r t - flo at, sin 9 1 e - f loa t,

double-float, or long-float. If simply float is specified, and object is not

already a float of some kind, then the object is converted to be a s i ng1 e-fl oat.

(coerce a 'short-float) => O.OSO
(coerce 3~5LO 'float) => 3.5LO
(coerce 7/2 'float) => 3.5

• Any number can be converted to be a complex number. If the nllmber is not already

complex, then a zero imaginary part is provided by coercing the integer zero to the type

of the given real part.

(coerce 4.5s0 'complex) => #C(4.5S0 O.OSO)
(coerce 7/2 'comp1ex~ => #C(7/2 0)
(coerce #C(7/2 0) '(complex double-float»

=> #C(3.500 0.000) .

Coercions from floating-point numbers to rationals and from ratios to integers are purposely not
provided, because of rounding problems. The functions rational (page 134), rational ize,

floor (page 1~5), ce i 1 in g, trun ca te, and roun d may be used for such purposes.

4.8. Determining the Type of aQ Object
..

type-of object [Function]
(ty p e - 0 f object) returns an 'implementation-dependent result: some type of which the object is

a member. Implementations are encouraged to return the most specific type that can be

conveniently computed and is likely to be useful to the user. If the argument is a user-defined

named structure created by de f s t r' u c t. then ty'p e - 0 f will return the type name of that structure.

Because the result is implementation-dependent, it is usually better to use type - 0 f of one

argument primarily for debugging purposes; however, there are a few situations where portable

code requires the use of type-of, such as when the result is to be given.to the coerce (page

37) or ma p (page 163) function. On the other hand, often the ty pep (page 52) function or the

ty p e cas e construet is more appropriate for some purpose than ty p e - 0 f .

Compatibility note: In MACLISP this function is called typep, and anomalously so, for it is not a predicate.

•

•

•

•

•

Chapter 5

Program Structure

In the previous chapter the syntax was sketched for notating data objects in COMMON LISP. The same

syntax is used for notating programs, because all COMMON LISP programs have a representation as COMMON

LISP data objects.

5.1. Forms

The standard unit of interaction with a COMMON LISP implementation is the Joml, which is simply an

S-expression meant to be evaluated as a program to produce one or more values (which are also data objects).

One may request evaluation of any data object, but only certain ones (such as symbols and lists) are

meaningful forms, while others (such as most arrays) are not. Examples of meaningful forms are 3, whose

. value is 3, and (+ 3 4), whose value is 7. We write "3 => 3" and" (+ 3 4) => 7" to indicate these facts.

(" => " means "evaluates to".)

Meaningful forms may be divided into, three categories: self-evaluating for~s, such as numbers; symbols,

which stand for variables; and lists. The lists in turn may be divided into three categories: special forms,

macro ~al1s, and function calls. (Any COMMON LISP data object not explicitly defined to be a valid fonn is

• not a valid form, and attempting to evaluate such an object will cause an er~or to be signalled.)

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit7vcctors are self-evaluating forms. When such an object is

evaluated, that object itself (or possibly a copy in the case of numbers) is returned as the value of the .fonn.

The empty list (), which is also the false .value nil, is also a self-evaluating form: the value of n.; 1 is n i 1.

Keywords (symbols written with a leading colon) also evaluate to thcmse~ves: the value of : s ta r t is

: start.

5.1.2. Variables

Symbols are used as names of variables in COMMON LISP programs. When a symbol is evaluated as a form,

the value of the variable it names is produced. For example, after doing (s e t q items 3), which assigns

• the value 3 to the variable named i terns, then i terns => 3. Variables can be assigned to, as by setq (page

- 39-

40 COM:\[ON LISP REFERENCE MANUAL

64), or bound, as by" et (page 73). Any program construct that binds a variable effectively saves the old

value of the variable and causes it to have a new value, and on exit from the construct the old value is

reinstated.

There are aClually two kinds of variables in COMMON LISP, called lexical (or sIalic) variables and special (or
dynamic) variables. At any given time either or both kinds of variable with the same name may have a current
value. Which of the two ,kinds of variable is referred to when a symbol is evaluated depends on the context of
the evaluation. The general nIle is that if the symbol occurs textually within a program construct that creates
a binding for a variable of the same name, then the reference is to the variable specified by the binding; if no
such program construct textually contains the reference, then it is taken to refer to the special variable of that

name.

The distinction between the two kinds of variable is one of scope and access. A lexically bound variable
can be referred to only by forms occurring at any place textually within the program construct that binds the
variable. i\ dynamically bound (special) variable can be referred to at any lime from the time the binding is
made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding
imposes spatial limitations on occurrences of references, whereas dynamic binding imposes temporal

limitations.

•

The value a special variable has when there are currently no bindings of that variable is called the global
value of the variable. A global value can be given to a variable only by assignment, because a value given by

binding by definition is not global. •

The symbols t and n i' are reserved. One may not assign a value to t or n i , , and one may not bind t or
n i ,. The global value of t is always t, and the global value of, n i' is ?hyqys n i ,. Constant symbols defined
by de f con s tan t (page 48) alsa- bccQITle reserved and may not' be further assigned to or bound. ,

Rationale: It would seem appropria~·for the compiler to be justified in issuing a warning if one does a setq on a constant
defined by de f con s tan t. 'If one cannot assign, one should not be able to bind, either.

5.1.3. Special Form~

If a list is to be evaluated as a form, the first step is to examine the first element of the list. If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the
word "special" is unrelated to its use in the phrase "special variable".)

Special forms are generally environment and control constnlcts. Every special form has its own
idiosyncratic syntax. An example is the if special form: "(i f P (+ x 4) 5)" in COMMON LISP means

what "if p then x+4 else 5" would mean in ALGOL.

The evaluation of a special form normally produces a value or values, but it may instead call for a non-local
exit; see re tu rn -from (page 79), go (page 89), and th row (page 95).

The set of special fonns is fixed in COMMON LISP; no way is provided for the user to define more. The •

PROGRA1\:1 STRUCrURE

and
or
quote
function
setq
progn
let*
progv
flet
labels
macrolet
if
block

(page 58)
(page 59)
(page 62)
(page 62)
(page 64)
(page 72)
(page 74)
(page 75)
(page 75)
(page 75)
(page 75)
(page 77)
(page 79)

return-from
tagbody
go
multiple-value-call
multiple-value-progl
catch
catch-all
unwind-all
unwind-protect
throw
declare
the

(The page numbers indicate where the definitions of these special forms appear.)

Table 5-1: Names of All COMMON LISP Special Forms

user can create new syntactic constructs, however, by defining macros.

(page 79)
(page 87)
(page 89)
(page 90)
(page 90)
(page 93)
(page 93)
(page 93)
(page 94)
(page 95)
(page 101)
(page 106)

41

The set of special forms in COivIMON L[sp is purposely kept very small, because any program-analyzing

program must have special knowledge about every type of special form. Suc~ a program needs no special

knowledge about macros, because it is simple to expand the macro and operate on the resulting expansion.

(This is not to say that many such programs, particularly compilers, will not have such special knowledge. A

compiler may be able to produce much better code if it recognizes such constructs as ty pee a s e and
mu 1 tip 1 e - val ue -b i nd and gives them customized treatment.)

An implementation is free to implement as a macro any consuuct described herein as being a special form.
Converseiy, an implementation,is free to implement as a special form any constnlct described herein as being·

a macro, provided that an equiv~lent macro definition is also provjded.

5.1.4. Macros

If a fonn is a list and the first clement is not the name of a special form, it may be the name of a macro; if

so, the form. is said to be a macro call. A macro is essentially a function from forms to forms that will, given a

call to that macro, compute a new form to be evaluated in place of the macro call. (This computation is

sometimes referred to as macro expansion.) For example, the macro named return (page 79) will take a

form such as (return x) and from that form compute a new form (return-from nil x). We say

that the old form expands into the new form. The new form is then evaluated in place of the or~ginal form;

the value of the new form is returned as the value of the original form.

There are a number of standard macros in COMMON LISP, and the user can define more by using

defmacro (page 99).

- ---

42 COMMON LISP REFERENCE MANUAL

Macros provided by a COMMON Lisp implementation as described herein may expand into code that is not

portable among differing implementations. That is, a macro call may be implementation-independent by

virtue of being so defined in this document, but the expansion need not be.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first clement is not a symbol that names a special form or

macro, then the list is assumed to be a junction call. The first element of the list is taken to name a function.

Any and all remaining clements of the list are forms to be evaluated; one value is obtained from each form,

and these values become the argwnellts to the function. The function is then applied to the arguments. The

functional computation normally produces a value, but it may instead call for a non-local exit; see th row

(page 95). A function that does return may produce no value or several values; see val u e s (page 89). If

and when the function returns, whatever values it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (:Ie 4 5». The symbol + names the addition

function, not a special form or macro. Therefore the two forms 3 and (:Ie 4 5) are evaluated to produce

arguments. The fOlm 3 evaluates to 3, and the form (:Ie 4 5) is a function call (to the multiplication

function). Therefore the forms 4 and 5 are evaluated, producing arguments 4.and 5 for the multiplication.

The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as

arguments to the addition function, which calculates and returns the number 23. Therefore we say (+ 3 (:Ie

4 5» => 23.

5.2. Functions

There are two ~ays to indicate a function to be used in a function call form. One is to use a symbol that

names the function. This use of symbols to name functions is .completely independent of their use in naming

special and lexic,al variables. The other way is to use a lambda .. expression; which is a list whose first elementis

• the symbol 1 amb da. A lambda-expression is not·a form; it cannot be meaningfully evaluated. L(l.mbda

expressions and symbols as names of functions can appear only as the first clement of a function-call form, or

as the second element of the fun c t ion (page 62) special form.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be given to a function by using

the de fun (page 47) special form. A local name can be given to a function by using the 1 abe ls (page
, .

75) special form. If a symbol appears as the first element of a function·call form, then it refers to the

definition established by the innermost 1 abe 1 s constnlct that textually contains the reference, or if to the

global definition (if any) if there is no such containing 1 abe 1 s construct.

When a function is named, a lambda-expression is associated with that name (in effect). See de fun (page

47) and 1 abe 1 s (page 75) for an explanation of these lambda-expressions.

•

•

PROG RAM STR UCTURE 43

5.2.2. Lamb(hl- Expressions

A lambda-expressioll is a list with the following syntax:

(1 amb d a lambda-list . body)

The first element must be the symbol 1 amb d a. The second element must be a list. It is called the lambda-list,

and specifies names for the parameters of the function. When the function denoted by the lambda-expression
is applied to arguments, the arguments are matched with the parameters specified by the lambda-list. The

body may then refer to the arguments by using the parameter names. The body consists of any number of
forms (possibly zero), These fOIms are evaluated in sequence, and the vaIue(s) of the last form only are
returned as the value(s) of the application (the value nil is returned if there arc zero forms in the body),

The complete syntax of a lambda-expression is:

(1 ambda ({var}*
[&optional {var I (var [init/orm [svat]])}*]
[&rest var]
[&k ey {var I ({ var I (keyword var)} Ullit/orm [svar]])}*

~allow-other-keysll
[&aux {var I (var [inilform]) }*])

{declaraliol] I documenlation-string}*
{jo!"m}*)

Each clement of a lambda-list is either a parameter specifier or a lambda-list keyword; lambda-list keywords
begin with "&", (Note that lambda-list keywords are not keywords in the usual sense; they do not belong to
the keyword package. They arc ordinary symbols whose name begins with an ampersand.)

In all cases a var must be a symbol, the name of a variable, and similarly for svar also; each keyword must
be a keyword symbol, such as ": s tart". An initform may be any form.

-.
A lambda-list has five parts, any or all of which may be empty:

, ~ .

• Specifiers for- the required parameters. These are. all the parameter' specifie'rs up to the first
lambda-list keyword; if there is no such lambda-list keyword, then all the specifiers are for
required parameters.

• Specifiers for optional parameters. If the lambda-list keyword &0 p t ion a 1 is present, the
optional parameter specifiers are those following the lambda-list keyword &0 p t ion a 1 up to the
next lambda-list keyword or the end of the list.

• A specifier for a rest parameter. The lambda-list keyword &r est, if present, must be followed by
a single rest parameter specifier, which in turn must be followed by another lambda-list keyword
or the end of the lambda-list.

• Specifiers for keyword parameters. If the lambda-list keyword &k ey is present, all specifiers up to
the next lambda-list keyword or the end of the list are keyword parameter specifiers. The keyword
parameter specifiers may optionally be followed by the lambda-list keyword

44 COl'vIMt)N LISP REFERENCE MANUAL

&allow-other-keys .

• Specifiers for aux variables. These are not really parameters. I f the lambda-list keyword &au x is

present, all specifiers after it are auxiliwy variable specifiers.

When the function represented by the lambda-expression is applied to arguments, the arguments and

parameters are processed in order from left to right. In the simplest case, only required parameters are

present in the lambda-1ist~ each is specified simply by a name var for the parameter variable. When the

function is applied, there must be exactly as many arguments as there are parameters, and each parameter is

bound to one argument. Here, and in general, the parameter is bound as a lexical variable unless a

declaration has been made that it should bea special binding (see decl are (page 101».

In the more general case, if there are n required parameters (11 may be zero), there must be at least n

arguments, and the required parameters are bound to the first Il arguments. The other parameters are then

processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments

remain, then the parameter variable var is bound to the next remaining argument, just as for a required

parameter. If no arguments remain, however, then the inil/orm part of the parameter specifier is evaluated,

and the parameter variable is bound to the resulting value- (or to nil if no inil/onn appears in the parameter

specifier). If another variable name svar appears in the specifier, it is bound to {rue if an argument was

available, and to flllse if no argument remained (and therefore illil/orm had to be evaluated). The variable

svar is called a supp/ied-p parameter; it is not bound to an argument, but to a value indicating whether or not

an argument had been supplied for another parameter.

After all optio~lGl param'eter specifiers have been processed, then there mayor may not be a rest parameter.

If there is a rest parameter, it is boun? to a list of all as-yet-unprocess~d arguments~ (If no unprocessed

arguments remain, the rest parameter is 'bound to the empty list.) If there is no rest parameter and there are
- .

no keyword parameters, then there should be no unprocessed arguments (it is an error if there are).

Next any keyword parameters are processed: For this purpose the same arguments are processed that

would be made into a list for a rest parameter. (Indeed, it is permitted to specify both &r est and &k ey; in

this case the argume~ts are used for both purposes. This is the only situation in which an argument is used in

the processing of more than one parameter speCifier.) If &key is specified, there must remain an even

number of arguments: these are considered as pairs, the first argument in each pair being interpreted as a

keyword name and the second as the corresponding value. It is an error for the first object of each pair to be

anything but a keyword.

Rationale: 'Ibis last restriction is imposed so that a compiler may issue warnings about malformed calls to functions that
take keyword arguments.

In each keyword paramcter specifier must be a name var for the parameter variable. If an explicit keyword

is specified, that is the keyword name for the parameter. Otherwise the name var serves to indicate the

keyword namc, in that a keyword with the same name (in the keyword package) is used as the keyword. •

•

PROGRAM STRUCTURE 45

Thus

(defun faa (&key radix (type 'integer» ...)

means exactly the same as

(defun faa (&key «:radix radix» «:type type) 'integer» ...)

The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left to right.

For each keyword parameter specifier, if there is an argument pair whose keyword name matches that

specifier's keyword name (that is, the names arc eq), then the parameter variable for that specifier is bOllnd to

the second item (the value) of that argument pair. If more than one sllch argument pair matches, it is not an

error; the leftmost argument pair is used. If no such argument pair exists, then the init/orm for that specifier

is evaluated and the parameter variabl~ is bound to that value (or to nil if no inil/onn was specitied). The

variable svar is treated as for ordinary optional parameters: it is bound to true if there was a matching

argument pair, and to false otherwise. It is an error if an argument pair has a keyword name not matched by

any parameter specifier, unless &all ow-ather-keys was specified, in which case the argument pair is

simply ignored (but sllch an argument pair is accessible through the &r est parameter if one was specified).

After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the

lambda-list keyword &aux) arc processed from left to right. For each one the init/arm is evaluated and the

variable var bound to that value (or to nil if no init/arm was specified). (Nothing can be done with &aux

variables that cannot be done with the special form 1 e t (page 73):

(1 am b d a (x y & a u x (a (c a r x» (b 2) c) ...)
<=> (lambda (x y) (let.«a (car x» (b 2) c) ... »

Which to usc is purely a matter of style.)

As a rule, whenever any init/arm is evaluated. for any' parameter specifier, that form may refer to any

parameter variable to the left of the specifier in which the init/ann appears, including any supplied-p
. .

variables, and may rely on no other parameter variable having yet been bound (including its own parameter

variable) .

Once the lambda-list has been processed, the forms in the body of the lambda-expression arc executed.

These forms may refer to the arguments to the function by using the names of the parameters. On exit from

the function, either by a normal return of the function's value(s) or by a non-local exit, the parameter

bindings, whether lexical or special, are no longer in 'effect (but are not necessarily permanently discarded, for

a lexical binding can later be reinstated if a clasure over that binding was created and saved before the exit·

occurred).

Examples of &0 p t ian a 1 and & res t parameters:

- ---

46 COMMON LISP REFERENCE MANUAL

«lambda (a b) (+ a (* b 3))) 4 5) => 19
«lambda (a &optional (b 2)) (+ a (* b 3») 4 5) => 19
«lambda (a &optional (b 2)) (+ a (* b 3») 4) => 10
«lambda (&optional (a 2 b) (c 3 d) &rest x) (1 is t a b c d x»)

=> (2 nil 3 nil nil)
«lambda (&optional (a 2 b) (c 3 d) &rest x) (1 is t a b c d x» 6)

=> (6 t 3 nil nil)
«lambda (&optional (a 2 b) (c 3 d) &rest x) (1 is t a b c d x» 6 3)

=> (6 t 3 t ni1)
«lambda (&optional (a 2 b) (c 3 d) &rest x) (1 is t a b c d x»
6 3 8)

=> (6 t 3 t (8»
«lambda (&optional (a 2 b) (c 3 d) &rest x) (1 is t a b c d x»
6 3 8 9 10 11)

=> (6 t 3 t (8 9 10 11»

Examples of &k ey parameters:

«lambda (a b &key c d) (list a b cd» 1 2) => (1 2 nil nil)
«lambda (a b &key c d) (1 is t a b cd)) 1 2 :c 6)
«lambda (a b &key c d) (1 is t a b c d» 1 2 :d 8)
«lambda (a b &key c d) (1 is t a b c d)) 1 2 :c 6
«lambda (a b &key c d) (1 is t a b c d» 1 2 :d 8
«lambda (a b &k~y c d) (1 is t a b c d)) : a 1 :d 8
«lambda (ab &key c d) (1 is t a b cd» :a : b :c

=> (: a : b :d nil)

Examples of mixtures:
«lambda (a &optiona1 (b 3) &rest x &key c (d a»

(list abc d x»
1) => (1 3 () nil 1)

«lambda (a &optional (b 3) &rest x &key c (d a»
(li~t abc d x») •

1 2) => (1 2 () nil 1) -.

«lambda (a &optional (b 3) &rest x &key c (d a»
(1 i s t a' b c 'd x»

: c 7) => (: c 7 () nil : c)

«lambda (a &optiona1 (b 3) &rest x &key c Cd a»
(list abc d x»

1 6 :c 7) => (1 6 (:c 7) 7 1)

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x»,

1 6 :d 8) => (1 6 (:d 8) nil 8)

«lambda (a &optional (b 3) &rest x &key c (d a»
(list abc d x»

=> (1 2 6 nil)
=> (1 2 nil 8)

:d 8) => (12 6
: c 6) => (1 2 6

:c 6) => (: a 1
: d)

1 6 : d 8 : c 9 : d 10) => (1 6 (: d 8 : c 9 : d 10) 9 8)

8)
8)
6 8)

All lambda-list keywords are permitted, but not terribly useful, in lambda-expressions appearing explicitly
as the first element of a function-call form, as shown in the examples above. They are extremely useful,
however, in functions given global names by defun (page 47).

•

•

•

PROGRAM STRUCrURE 47

All symbols whose names begin with "&" arc conventionally reserved for use as lambda-list keywords and

should not be used as variable names. Implementations of COMMON Lisp are free to provide additional

lambda-list keywords.

lambda-list-keywords [Constant]

The value of 1 amb d a -1 is t - k eywo r d s is a list of all the lambda-list keywords used in the

implementation, including the additional ones used only by defmacro (page 99). It must contain

at least the symbols &optiona1, &rest, &key, &a11ow-other-keys, &aux, &body, and

&who 1 e.

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implementation is via what is called a

read-eval-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk
file), evaluates it. and then prints the value(s) to some output sink (such as a display screen or another disk

file). As a rule any form (evaluable S-expression) is acceptable. However, certain special forms are

specifically designed to be convenient for use as top-level forms, as opposed to forms embedded within other

forms, as "(+ 3 4)" is embedded within" (if P (+ 3 4) 6)". These top-level special forms may be

used to define globally named functions, to define macros, to make declarations, and to define global values

for special variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on

context. Compilers, for example, may not recognize these forms properly in other than top-level contexts.
(As a special case, however, if a-progn (page 72) form appears at top level, then all forms within that progn

are considered by the compiler to be top-level forms.)

Compatibility note: In MACLISP, a top-level pro 9 n is considered to contain top-level forms only if the first form is
.. (quote comp i 1 e)", This odd marker is unnecessary in COMMON LISP,

Macros are usually defined by using the special form defmacro (page 99). This facility is fairly

complicated, and is described in Chapter 8.

5.3.1. Defining ~amed Functions

def.un name lambda-list {declaration I doc-string}* {form}* [Nfacro]

Evaluating this special form causes the symbol name to be a global name for the function specified

by the lambda-expression

(1 ambd a lambdq.-list {declaration}* (fonn}*)

defined in the lexical environment in which the de fun form was executed (because defun forms

normally appear at top level, this is normally the null lexical environment) .

If the optional documentation string doc-string is present (if not followed by a declaration, it may be

48 COMMON LISP REFERENCE MANUAL

present only if at least one form is also specified, as it is otherwise taken to be a form), then it is

attached to the name as a documentation string of type fun c t ion ~ see doc ume n tat ion (page

301).

The body of the defined function is implicitly enclosed in a bloc k (page 79) construct whose

name is the same as the name of the function. Therefore return (page 79) and return-from

(page 79) may be used to exit from the function.

Other implementation-dependent bookkeeping actions may be taken as well by defun. The name
is returned as the value of the defun form.

For example:

(defun discriminant (a b c)
{declare (number a b c»
"Compute the discriminant for a quadratic equation.

Given a, b, and c, the value b"'2-4*a*c is calculated.
The quadratic equation a*x"'2+b*x+c=O has re~l, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."

(- (* b b) (* 4 a c»)
=> discriminant
and now (discriminant 1 2/3 -2) => 76/9

It is permissible to redefine a function (for example, to install a corrected version of an incorrect

definition!).

5.3.2. Declaring Global Variables and Named Constants

defvar name [initial-value [documentation]]
defparameter name initial-value [documentation]
defconstant name initial-value [documentation]

[Macro]
[lVlacro]

. .. [~acro]
• defvar is the recommended way to declare the use of a special variable in a program. It is

normally used only as a top-level form.

(defvar variable)

declares var i aq 1 e to be spec i a 1 (see decl a~e (page 101»), and may perform other system

dependent bookkeeping actions. If a second "argument" is supplied:

(defvar vari abl e initial-value)

then v ar i ab 1 e is initialized to the result of evaluating the form initial-value unless it already has a

value. The initial-value form is not evaluated unless it is used; this is useful if it does something

expensive like creating a large data structure. The initialization is performed by assignment, and so

assigns the variable a global value unless there are currently special bindings of that variable ..

de f v a r should be used only at top level, never in function definitions.

de f v ar also provides ~ good place to put a comment describing the meaning of the variable

(whereas an ordinary spec i a 1 declaration offers -the temptation to declare several variables at

•

•

•

•

•

PROGRAM STRUCrURE 49

once and not have room to describe them all).

(defvar tv-height 768 "Height of TV screen in pixels")

defparameter is similar to defvar, but requires an initial-value form, and always evaluates it

and assigns the result to the variable. The semantic distinction is that defvar is intended to

declare a variable changed by the program, whereas defparameter is intended to declare a

variable that is normally constant, but can be changed (possibly at run time), considered as a change

to the program. de f par ame te r therefore does not indicate that the quantity never changes; in

particular, it does not license the compiler to build assumpti~ns about the value into programs

being compiled.

defconstant is like defparameter, but does assert that the value of the variable name is fixed,

and does license the compiler to build assumptions about the value into programs being compiled.

It is an error if there are any special bindings of the variable at the time the de f con s tan t form is

executed (but implementations mayor may not check for this). If the variable is already has a

value, an error occurs unless the existing value is e qua 1 p (page 57) to the specified initial-value.

Once a name has been declared by de f con s tan t to be constant, any further assignment to or

binding of that sp~cial variable is an error. This is the case for sllch system-supplied constants as t

(page 51) and most-positive-fixnum (page 146). !\ compiler may also choose to issue

warnings about bindings of the lexical variable of the same name.

For any of these constructs, the documentation should be a string. It is attached to the name of the

variable, parameter, or constant under the var i ab 1 e documentation type: sec documentat ion
(page 301).

'S.3.3. Control of Time of Evaiualion,

eva 1 -wh en ({s itua t i on}*) {fonn}* [Function]
The body of an eval-when form is processed as an implicit progn, but only in the situations

listed. A situation' may be comp i 1 e, load, or eva 1.

eva 1 specifics that the interpreter should process the body .. comp i 1 e specifics that the compiler

should evaluate the body at compile time in the compilation context. load specifies that the

compiler should arrange to evaluate the forms in the body when the compiled file containing the

eval-when form is loaded.

The default interpretation is that top-level forms arc effectively processed in eva 1 and load

situations. eval-when is occasionally useful to get different effects. For example, if the compiler

is to be able to read a file properly that uses user-defined reader macro characters, it is necessary to

write

(eval-when (compile load eval)
(set-macro-character #\$ #'(lambda (stream char)

(declare (ignore char»
(list 'dollar (read stream»»)

50 CO:\1MON LISPRFFFRENCE MANUAL

•

•

Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns nil if the

condition is false, or some non-n i 1 value if the condition is true. One may think of a predicate as producing

a Boolean value, where nil stands for false and anything else stands for true. Conditional control structures

such as cond (page 76), if (page 77), when (page 77), and unless (page 77) test such Boolean values.

We say that a predicate is true when it returns a non-n i 1 value, and is false when it returns nil; that is, it is
true or false according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter "p" (which stands for "predicate").

The control structures that test Boolean values only test for whether or not the value is nil, which is

considered to be false. Any other value is considered to be tnle. A function that returns nil if it "fails" and

some useful value when it "succeeds" is called a pseudo-predicate, because it can be used not only as a test but

also for the useful valuc provided in case of success. An 'cxample of a pseudo-predicate is member (page
183).

If no better non- nil value is available for the purpose of indicating succes.s, by convention the symbol t is
used as the "standara" non-false value .

•

6.1. Logical Values

nil

t

[Constant]
The value of nil is always nil. This object represents the logical false val1Je and also the empty

list. It can also be written" ()".

[Constant]
The value of t is always t.

- 51-

52 COMMON LISP REFERENCE MANUAL

6.2. Data Type Predicates

Perhaps the most important predicates in I.lsP are those that deal with data types: that is, given a data

object one can determine whether or not it belongs to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicate

typep object type [Function]
type p is a predicate that is true if object is of type type, and is false otherwise. Note that an object

can be "of' more than one type, since one type can include another. The type may be any of the

type specifiers mentioned in Chapter 4 except that it may not be or contain a type specifier list

whose first clement is fun c t ion. A specifier of the form (s at i sf i e s Ill) is handled simply by

applyingfiz to object: the object is considered to be of the specified type if the result is not n i 1.

subtypep type! type2 [Function]
The arguments must be type specifiers that are acceptable to typep (page 52). The two type

specifiers arc compared; this predicate is true if typel is definitely a (not necessarily proper) subtype

of type2. If the result is nil, however, then type! mayor may not be a subtyp'e of type2 (sometimes

it is impossible to tell, especially when sat is fie s type specifiers arc involved). A second

returned value indicates the certainty of the resu1t~ if it is tnle, then the first value is an accurate

indication of the SUbtype relationship. Thus there are three possible result combinations:

t t
nil t

[nil nil

typel is definitely a subty·pe of type2

type! is definitely not a subtype of type2
. -..

S LI b typ e p could n~t determine the relationship

6.2.2. Specific Data Typ'e Predicates

The following predicates arc for testing for individual data types.

null object [Function]
null is true if its argument is (), and otlierwise i,s false. This is the same operation p'erformed by

the function not (page 58); however, not is normally used to invert a Boolean value, while null

is normally used to test for an empty list. The programmer can therefore express intent by the

choice of function name.

(null x) < = > (t Y pep x ' nUll) < = > (e q x t.(»

•

•

•

••

PREDICATES 53

symbolp object [Function]

symb 0 1 P is true if its argument is a symbol, and otherwise is false.

(symbolp x) <=> (typep x 'symbol)

atom object [Function]
The predicate a tom is true if its argument is not a cons, and otherwise is false. Note that (a tom
, ()) is true, because () :: nil.

(atom x) <=> (typep x 'atom) <=> (not (typep x 'cons»

consp object [Function]

The predicate consp is true if its argument is a cons, and otherwise is false. Note that the empty

list is not a cons, so (con s p '(» < = > (c 0 n s p 'n i 1) = > nil.

1 is tp object

(consp x) <=> (typep x 'cons) <=> (not (typep x 'atom»
Compatibility note: Some LISP implementations call this function p air p or 1 is t p. The name p air p was
rejected for COMMON LIsp because it emphasizes too strongly the dotted-pair notion rather than the usual usage
of conses in lists. On the olherhand, 1 is tp loo strongly implies that the cons is in fact part of a list, which
after all it might not be; moreover, () is a list, though not a cons. The name consp seems to be the
appropriate compromise.

[Function]

1 is tp is true if its argument is a cons or the empty list (), and otherwise is false. It does not check

for whether the list is a "true list" (one terminated by nil) or a "dotted list" (one terminated by a

non-null atom).

(listp x) <=> (typep x 'l~st) <=> (typep x '(cons nUll»

numberp object [Function] .

numb e r p is tnle if its argument is any kind of number, and otherwise is false.

(numberp x) <=> (typep x 'number)

integerp object [Function]
in te ge r p is tnlC if its argument is an integer, and otherwise is false.

(integerp x) <=> (typep x 'integer)
Compatibility note: In MACLIsp this is called fix p. Users have been confused as to whether this meant
"i ntegerp" or "f; xnump", and so these names have been adopted here.

rationalp object [Function]

rat i on alp is true if its argument is a rational number (a ratio or an integer), and otherwise is

false .

(rationalp x) <=> (typep x 'rational)

54 COMMON LISP REFERENCE MANUAL

f loa tp object
fl oatp is true ifits argument is a floating-point number, and otherwise is false.

(floatp x) <=> (typep x 'float)

comp 1 ex p object
comp 1 exp is tnlC ifits argument is a complex number, and otherwise is false.

(complexp x) <=> (typep x 'complex)

characterp object
c h a r act e r p is true if its argument is a character, and otherwise is false.

(characterp x) <=> (typep x 'character)

stringp object
s t r i n 9 p is true if its argument is a string, and otherwise is false.

(stringp x) <=> (typep x 'string)

bi t-vector-p object
bi t-vector-p is true ifits argument is a bit-vector, and otherwise is false.

(bit-vector-p x) <=> (typep x 'bit-vector)

vectorp object
ve c t 0 r.p is true if its argument is a vector, and othe~wise is false.

(vectorp x) <=> (typep x 'vector)

•
simp 1 e - s t r in 9 - p object

simp 1 e - s t r i n 9 - p is true if its argument is a simple string, and otherwise is false.

(simple-string-p x) <=> (typep x 'simple-string)

simple-bit-vector-p object

[Fullction]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]
simp 1 e-b i t-vector-p is true if its argument is a simple bit-vectdr, and otherwise is false.

(simple-bit-vector-p x) <=> (typep x 'simple-bit-vector)

simple-vector-p object
simp 1 e - v e c tor - p is true if its argument is a simple vector, and otherwise is false.

(simple-vector-p x) <=> (typep x 'Simple-vector)

[Function}

•

PREDICATES 55

arrayp object" [Func I ion]

ar r ayp is true if its argument is an array, and otherwise is false.

(arrayp x) <=> (typep x 'array)

funct i onp object [Fu1lction]

fun c t ion p is true if its argument is suitable for applying to arguments, using for example the

funcall or apply function. Otherwise funct ionp is false.

compiled-function-p object [Function]

compiled-function-p is true if its argument is any compiled code object, and otherwise is

false.

(compiled-function-p x) <=> (typep x 'compiled-function)

common p object [Function]

common p is true.if its argument is any common data type, and otherwise is false.

(commonp x) <~> (typep x 'common)

See also s tan dar d - c h a r p (page 150), s t r i n 9 - c h a r p (page 150), s t ream p (page 227), pac k age p

(page 117), random-state-p (page 146), readtabl ep (page 245), hash-tabl e-p (page 191), and

pathnamep (page 278).

6.3. Equality Predicates
-.

COMMON LISP 'provides a spectrum of prediCates for testing for equality of two objects: e q (the most

specific), e q 1, e qua 1, and e qua 1 p (the most general). e q and e q ~ a 1 have the meanings traditional in

LISP. eql was added because it is frequently needed, and equa 1 p was added primarily to have a version of

equa 1 that would ignore type differences when comparing numbers and case differences when comparing

characters. If two objects satisfy anyone of these equality predicates, then they also satisfy all those that are

more general.

eq x y [Function]

(e q . x y) is true if and only if x and yare the same identical object. (Implementationally, x and y

are usually e q if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily e q to each other. Symbols

with the same print name usually are e q to each other, because of the use of the i n t ern (page

117) function. However, numbers with the same value need not be eq, and two similar lists are

usually not e q.

For example:

56

eql X Y

COMMON I ,IS!> REFEt{ENCE MANUAL

(e q 'a 'b)' is false
(e q 'a 'a) is true
(e q 3 3) might be true or false, depending on the implementation
(e q 3 3. 0) is false
(e q (c 0 n s 'a 'b) (c 0 n s 'a 'c» is false
(e q (c 0 n s 'a 'b) (c 0 n s 'a 'b» is false
(set q x '(a . b» (e q x x) is true
(eq #\A #\A) might be true or false, depending on the implementation
(e q "F 0 0 " "F 0 0 ") is false
(eq "FOO" "foo") isfalse

Implementation nole: eq simply compares the two pointers given it. so any kind of object that is represented in
an "irrimediate" fashion will indeed have like-valued instances satisfy eq. In some implemnetations, for
example. fixnums and characters happen to "work". However, no program should depend on this, as other
implementations of COMMON l.lsP might not use an immediate representation for these data types.

[Function]
The e q 1 predicate is true if its arguments are e q, or if they are numbers of the same type with the

same value (that is, they are = (page 122)), or if they are character objects that represent the same

character (that is, they are ch ar = (page 152)).

For example:

(e q 1 'a 'b) is false
(e q 1 'a 'a) is true
(e q 1 3 3) is tnlC
(e q 1 3 3. 0) is false
(e q 1 (c 0 n s 'a 'b) (c 0 n s 'a 'c» is false
{ e q 1 (c 0 n s 'a 'b) (c 0 n s 'a 'b» is false
(set q x '(a . b» (e q 1 x x) is true
(eq1 #\A #\A) is true .
(e q 1 " F 00 " "F 0 0 ".) is false
Ceq1 "FOO" "foo") isfalse

•

equal x y [Function]
The e qua 1 predicate is true if its arguments are similar (isomorphic) objects. A rough rule of

thumb is that two objects are e qua 1 if and only if their printed representations are the same.

Numbers and characters arc compared as for eq 1. Symbols are compared as for eq. This can

violate the rule of thumb about printed representations, but only in the case of two distinct symbols

with the same print name, and this does not ordinarily occur (only if uninterned symbols are

involved).

Most objects that have components are e qua 1 if they are of the· same type and corresponding

components are equa 1. This test is implemented in a recursive manner, and may fail to terminate

for circular structures. For conses, equa 1 is defined recursively as the two car's being equa' and

the two cdrs being e qua' .

Two arrays are equa 1 only if they are eq, with one exception: strings and bit-vectors are •

compared element-by-elcmcnt. Upper-case and lower-case letters in strings are considered to be

PREDICATES

distinct by equa 1.

Compal ibilily nole: In Lisp Machine LISP, e qua' ignores the di fference between upper and lower case in
strings. 'Ibis violates the nIle of thumb about printed representations, however, which is very useful, especially
to novices. It is also inconsistent with the treatment of single characters, which in Lisp Machine LIsP are
represented as fixnums.

57

Two pathname objects are equa 1 iff corresponding components (host, device, and so on) are

equivalent. Whether or not case is considered equivalent in strings depends on the file name
conventions of the file system. The intent is that path names that are e qua 1 should be functionally

equivalent.

For example:

(e qua 1 'a 'b) is false
(e qua 1 'a 'a) is true
(equal 3 3) is true
(e qua 1 3 3. 0) is false
(equal (cons 'a 'b) (cons 'a 'c)) isfalse
(e qua 1 (c 0 n s 'a 'b) (c 0 n s 'a t b)) is true
(set q, x '(a . b)) (e qua 1 x x) is true
(equal #\A #\A) is tnle
(equal "Foo" "Foo") istrue
(equal "FOO" "foo") is false

To compare a tree of conses, using eql (or any other desired predicate) on the leaves, use
tree-equal (page 174).

" equa 1 p x y [Function]
Two objects are e qua 1 p if they are e qua 1 : if they arc characters and satisfy c h a r - e qua 1 (page
153), which ignores alphabetic case and certain other" attributes of charactcrs~ if they arc numbers
and have the same numerical value, even if they are of different types; orif they have components

that are all equal p .

• Objects that have components are e qua 1 p if they are of the same type' and correspohding

components are equa 1 p. This test is implemented in a recursive manner, and may fail to terminate

for circular structures. For conses, equal p is defined recursively as the two cars being equal p

and the two cdrs being e qua 1 p.

Two arrays are e qua 1 p if and only if they have the same number of dimensions, the dimensions

match, and the corresponding components are equa 1 p. The specializations need not match; for
example, a string and a general array that happens to contain the same characters will be equa 1 p

(though definitely not e qua 1).

Two symbols can be equa 1 p only if they are eq, that is, the same identical object.

For example:

58 COMMON LISP REFERENCE MANUAL

(e qu alp 'a 'b) is falsc
(e qua 1 p 'a 'a) is tme
(e qua 1 p 3 3) is true
(e qua 1 p 3 3. 0) is tme
(e qua 1 p (c 0 n s 'a 'b) (e 0 n s 'a 'e» is false
(equalp (cons 'a 'b) (cons 'a 'b» istrllc
(set q x '(a . b» (e qua 1 p x x) is true
(equalp #\A #\A) istrue
(e qu alp "F 00" "F 00") is true
(equalp "FOO" "foo") istrue

6.4. Logical Operators

COMMON LISP provides three operators on Boolean values: and, or, and not. Of these, and and or are

also control structures, because their arguments are evaluated conditionally. not necessarily examines its

single argument, and so is a simple function.

not x [Fullction]

no t returns t if x is nil, .and otherwise returns nil. It therefore inverts its argument, interpreted

as a Boolean value.

null (page 52) is the same as not; both functions are included for the sake of clarity. As a matter

of style, it is customary to use null to check whether something is the empty list, and to use not to

invert the sense of a logical value.

an d {fonn}*. ': . [Specialform]
-,a

(0 and fonni form2) evaluates each fohn, one at a time, from left to right. If any form

evaluates to nil ~ the value nil is immediatery"returned without evaluating the remaining forms. If

every form but the last evaluates to a non-n i 1 value, an d returns whatever the last foml returns.

Therefore in general and can be used both for logical operations, where nil stands for false and

non- nil values stand for true, and as a conditional expression~

For example:

(if (and (>= n 0)
(lessp n (length a-simp1e-vector»
(eq (vref a-simp1e-veetorn) 'fool)

(prine "Fool"»

The above expression prints "Fool" if element n of a-simple-vector is the symbol foo,

provided also that n is indeed a valid index for a - simp 1 e - vee tor. Because an d guarantees

left-to-right testing of its parts, vref is not performed if n is out of range. (In this example writing

(and (>= n 0)
(lessp n (length a-simp1e-veetor»
(eq (vref a-simple-veetor n) 'fool
(prine "~ool"»

would accomplish the same thing; the difference is purely stylistic.) Because of the guaranteed

•

•

•

PREDICATES 59

left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like

languages is called cand, rather than the und operator.

See also if (page 77) and wh e n (page 77), which are sometimes stylistically more appropriate

than an d for conditional purposes.

From the general definition, one can deduce that (and x) <=> x. Also, (and) is true, which is

an identity for this operation.

and can be defined in terms of cond (page 76) as follows:

(and x y z ... w) <=>

or {fomz}*

(cond «not x) nil)
«not y) nil)
«not z) nil)

(t w»

[Special form]

(0 r form} fonn2 ...) evalu.ates each form, one at a time, from left to right. I f any form other
than the last evaluates to something other than nil, or immediately returns that non-n i 1 value
without evaluating the remaining fonns. I f every fonn but the last evaluates to nil, 0 r returns
whatever evaluation of the last of the forms returns. Therefore in general 0 r can be used both for
logical operations, where nil stands for false and non-n i 1 values stand for true, ,and as a
conditional expression. Because of the guaranteed left-to-right ordering, or is like the or else
operator in ADA, or what in some PASCAL-like languages is called cor; rather than the or operator.

See also if (page 77) and un 1 e s s (page.77), which are sometimes stylistically more appropriate
than 0 r for conditional purposes ..

From .the general definition, one can deduce that (or x) <=> x. Also, (or) is false, which is the

identity for this operation.
-

or can be defined in terms of cond (page 76) as follows:

(or x y z ... w) <=> (cond (x) (y) (z) (t w»

60 COMMON LISP REFERENCE MANUAL

•

•
•

. ,

•

•

Chapter 7

Control Structure

LISP provides a variety of special structures for organizing programs. Some have to do with flow of control
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically expand into complex program

fragments involving special forms).

Function application is the primary method for construction of LISP programs. Operations are writtcn as
the application of a function to its arguments. Usually, LISP programs are written as a large collection of small
functions, each of which implements a simple operation. These functions operate by calling onc another, and
so larger operations are defined in terms of smaller ones. LISP functions may call upon thcmselves
recursively, eithcr directly or indirectly .

LISP, whilc more applicative in style than statcment-oriented, nevertheless provides many operations that
produce side-effects, and consequently requires con'Stnlcts for controlling thc sequencing of side-cffccts. The
construct progn (page 72), which is roughly cquivalent to an ALGOL begin-cnd block wjth all its semicolons,

. executes ,a n'umber of forms sequentially, discarding YlC values of all but the' last. Many LISP control
constructs include sequencing implicitly, in which ca~ -they are said to provide an "implicit pro 9 n". Other
sequencing constructs include p r.o 9 1 (page 72) and pro 9 2 (page 72).

For looping, COMMON LISP provides ,the general iteration faci~ity do (page 80), as well as a variety of
special-purpose iteration facilities for iterating or mapping over various data structures.

COMMON LISP provides the simple one-way conditionals when and unl ess, the simple two-way
conditional if, and the more general multi-way conditionals such as con d and cas e. The choice of which
form to use in any particular situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines arc provided: block (page 79),
return (page 79), catch (page 93), and throw (page 95).

The multiple-value constructs provide an efficient way for a function to return more than one value; see

val u e s (page 89) .

- 61-

62 COMMON LISP RFFERENCltMANUAL

7.1. Constants and Variables

7.1.1. Reference

quote object [Special/orm]
(quote x) simply returns x. The argument is not evaluated, and may be any LISP object. This

construct allows any LISP object to be written as a constant value in a program.

For example:

(setq a 43)
(list a (cons a 3)) => (43 (43 . 3))
(list (quote a) (quote (cons a 3»=> (a (cons a 3»

Since quote forms are so frequently useful but somewhat cumbersome to type, a standard

abbreviation is defined for them: any form preceded by a single quote (,) character is assumed to

have" (quo t e)" wrapped around it.

For example:

(setq x '(the magic quote hack»

is normally interpreted by re ad (page 253) to mean

(setq x (quote (the magic quote hack»)

funct i on In [Special/orm]
The value of fun c t ion is always the functional interpretation of lIZ; /n is interpreted as if it had

appeared in the functional position of a function invocation. In particular, if In is a symbol, the

. func.tional value of the variable whose name.is that symbol is returned. If In is a lambda expression,

then 'a lexical closure is returned.

Since funct i on forms are so frequently useful (for passing functions as arguments ,to other - ..
function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any

form preceded by a sharp sign and then a single quote (#') is assumed to have" (fun c t ion)"

wrapped around it.

For example:

(remove-if #'numberp '(1 a b 3»

is normally interpreted by read (page 253) to mean

(remove-if (function numberp) '(1 a b 3»

symbol-val ue symbol [Function]
symb 0 1 - val u e returns the current value of the dynamic (special) variable named by symbol. An

error occurs if the symbol has no value; see boundp (page 63) and makunbound (page 65). Notc

that constant symbols are really variables that cannot be changed, and so symbol-val ue may be

used to get the value of a named constant. In particular, symbol-val ue of a keyword will

•

•

•

•

CONTROI.STRucrURE 63

(normally) return that keyword.

symbol-val ue cannot access the value ofa lexical variable.

This function is particularly useful for implementing interpreters for languages embedded in LIsp.

The corresponding assignment primitive is set (page 64).

syrnbol-funct i on symbol [Function]

symbol-funct ion returns the current global function definition named by symbol. An error

occurs if the symbol has no function definition; see fboundp (page 63). Note that the definition

may be a function, or may be an object represen~ing a special form or macro. See macro-p (page

63) and spec i a l-form-p (page 63).

s yrnb 0 1 - fun c t ion cannot access the value of a lexical function name produced by f 1 e t (page

75) or 1 abe 1 s (page 75).

This function is particularly useful for implementing interpreters for languages embedded in LISP.

The corresponding assignment primitive is f set (page 65).

boundp symbol
fboundp symbol

[Function]
[Function]

boundp is true if the dynamic (special) variable nafi?ed by symbol has a value; otherwise, it returns

nil. f b 0 un d p is the analogous predicate for the global function definition named by symbol.

See also set (page 64), fset (page 65), rnakunbound (page 6?), and frnakunbound (page

65).

macro-p symbol [Function]
specia1-forp1-p symbol [Function].

The function rna c r 0 - p takes a symbol. If the symbol globally names a macro, then the expansion

function (a function of one argument, the macro-call form) is returned; otherwise nil is returned.

(The function rnacroexpand (page 100) is the best way to invoke the expansion function.}

The function s p e cia 1 - form - p also takes a symbol. If the symbol globally names a special form

(example: quote (page 62)}, then a non-n i 1 value is returned, typically a function of

implementation-dependent nature that can be used to interpret a special form; otherwise n; 1 is

returned.

It is possible for both macro-p and special-form-p to be true ofa symbol. This is possible

because an implementation is pClmitted to implement any macro also as a special form for speed.

On the other hand, the macro definition must be available for use by programs that understand

only the standard special forms listed in Table 5-1.

64 COMMON LISP REFERENCE MANUAL

7.1.2. Assignment'

se tq {var fonn}* [,S'pecial form]

The special form (s e t q var! form! var2 form2 ...) is the "simple variable assignment

statement" of Lisp. First forml is evaluated and the result is assigned to var!, then form2 is

evaluated and the result is assigned to var2, and so forth. The variables are represented as symbols,

of course, and are interpreted as referring to static or dynamic instances according to the usual rules.

set q returns the last value assigned, that is, the result of the evaluation of its last argument. As a

boundary case, the form (s e t q) is legal and returns n i 1. As a rule there must be an even number

of argument forms.

For example:

(setq x (+ 3 2 1) Y (cons x nil»)

x is set to 6, Y is set to (6), and the set q returns (6). Note that the first assignment was

performed before the second form was evaluated, allowing that form to usc the new value of x.

See also the description of setf (page 66),. which is the "general assignment statement", capable of

assigning to variables, array clements, and other locations.

psetq {var form}* [Macro] •
A p set q form is just like a s e tq form, except that the assignments happen in parallel; first all of

the forms are evaluated, and then the variabl.es are set to the resulting values. The value of the

psetq f01111 is n i 1.

For example:

(setq a 1)
(setq b 2)
(psetq a b b a) •
a => 2
b => 1

"

In this example, the values of a and b are exchanged by using parallel assignment. (If several

variables are to be assigned to in parallel in the context of a loop, the do (page 80) constnlct may

be appropriate.)

set symbol value [Function]
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable

named by symbol to take on value as its value. Only the value of the current dynamic binding is

altered; if there are no bindings in effect, the most global value is altered.

For example:

(set (if (eq a b) tc 'd) tfoo)

will either set c to f 00 or set d to f 00, depending on the outcome of ~e test (e q a b). •

CONTROL STRUCTURE 65

Both functions return value as the result value.

sel cannot alter the value of a local (lexically bound) variable. The special form se tq (page 64) is

usually used for altering the values of variables (lexical or dynamic) in programs. set is

particularly useful for implementing interpreters for languages embedded in LISP. See also progv

(page 75), a construct that performs binding rather than assigmnent of dynamic variables.

f set symbol value [Fullction]
f set allows alteration of the global function definition named by symbol to be value. f set returns

value.

fset cannot alter the value of a local (lexically bound) function definition, as made by f 1 e t (page

75) or 1 abel s (page 75). fset is particularly useful for implementing interpreters for languages

embedded in LISP.

makunbound symbol
fmak u n b ou n d symbol

[Function]
[Function]

makunboun d causes the dynamic (special) variable named by symbol to become unbound (have no

value). fmakunbound does the analogous thing for the global function definition named by

symbol.

For example:

(setq a 1)
a => 1
(makunbound 'a)
a => causes an error
(defun faa (x) (+ x 1»
(f 0 o. 4) = > 5 .
(fmakunbound .'foo)
(f 00 4) => causes an error

Both functions return symbol as the result value.

7.2. Generalized Variables

In LISP, a variable can remember one piece of data, a LISP object. The main operations on a variable are to

recover that piece of data, and to alter the variable to remember a new object; these operations are often

called access and update operations. The concept of variables named by symbols can be generalized to any

storage location that can remember one piece of data, no matter how that location is named. Examples of

such storage locations are the car and cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, there are typically two functions that implement the conceptual

access and update operations. For a variable, merely mentioning the name of the variable accesses it, while

the setq (page 64) special form can be used to update it. The function car (page 173) accesses the carofa
cons, and the function rp 1 aca (page 181) updates it. The function symbo 1 -val ue (page 62) accesses the

66 COivlMON LISP REFERENCE MANUAL

dynamic value of a variable named by a given symbol, and the function set (page 64) updates it.

Rather than thinking about two distinct functions that respectively access and update a storage location

somehow deduced from their arguments, we can instead simply think of a call to the access function with

given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage

location (a variable), so (c ar x) is a name for the car of some cons (which is in turn named by x). Now,

rather than having to remember two functions for each kind of generalized vatiablc (having to remember, for

example, that r p 1 a c a corresponds to car), we adopt a uniform syntax for updating storage locations named

in this way, using the setf special form. This is analogous to the way we use the setq special form to

convert the name of a variable (which is also a form that accesses it) into a form that updates it. The

uniformity of this approach may be seen from the following table: .

Access function Update function Update using set f
x (setq x newvalue) (setf x newvalue)
(car x) (rplaca x newvalue) (setf (car x) newvalue)
(symbol-value x) (set x newvalue) (setf (symbol-value x) newvalue)

set f is actually a macro that examines an access form and produces a call to the corresponding update

function.

Given the existence of set f in COMMON LISP, it is not necessary to have set q, r p 1 a c a, and set as well;

they are redundant. They are retained because of their historical importance in LIsP. However, most other

update functions (such as putpr'op, the update function for get (page 108» have been eliminated in the

expectation that set f be uniformly used in their place.

set f {place newvalue} * [Afacro]

(set f place newvalue) takes a form place that when evaluated accesses a data object in some

. location, and "inverts" it to produce a corresponding form to update the lo~ation. A call to the

set f macro therefore expands. into an update form that stores the result of evaluating the form

newvalue into me place referred to by the access-Jorm.

If more than one place-newvalue pair is specified, the pairs are processed sequentially:

(set f place 1 newvaluel
place2 newvalue2)

placen . newvaluen)

is precisely equivalent to

(progn (setf placel newvalueJ)
(set f place2 newvalue2)

(set f placen l1ewvaluen»

For consistency, it is legal to write (set f), which simply returns n i 1.

The form place may be anyone of the following:

• The name ofa variable (either lexical or dynamic).

•

•

•

•

CONTROl, STRucrURE

• A function call form whose first clement is the name of anyone of the following

functions:

car (page 173) caaaar (page 174) cadddr (page 174)

cdr (page 173) cdaaar (page 174) cddddr (page 174)

caar (page 174) cadaar (page 174) elt (page 161)

cdar (page 174) cddaar (page 174) aref (page 196)

cadr (page 174) caadar (page 174) svref (page 197)

cddr (page 174) cdadar (page 174) sgvref (page, 197)

caaar (page 174) caddar (page 174) symbol-value (page 62)

cdaar (page 174) cdddar (page 174) symbol-function (page 63)
cadar (page 174) caaadr (page 174) get (page 108)

cddar' (page 174) cdaadr (page 174) symbol-plist (page 109)

caadr (page 174) cadadr (page 174) gethash (page 191)

cdadr (page 174) cddadr (page 174) documentation (page 301)

caddr (page 174) caaddr (page 174) nth (page 175)

cdddr (page 174) cdaddr (page 174)

• A function call form whose first clement is the name of a selector function constructed
by defstruct (page 211) .

• A function call form whose first clement is the name of anyone of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the specified "location" (which is in each of these cases not really a truly
generalized variable):

Function name
char (page 203}
bit (page 197)
subseq (page 161)

-36

Required type'
string-ch'ar
(mod 2)
sequence

In the case of subseq, the replacement value must be a sequence whose clements may
be contained by the sequence argument to subseq.

• A function call form Whose first clement is the name of anyone of the following
functions, provided that the specified argument to that function is in turn a place form;
in this case the new place has stored back into it the result of applying the specified
"update" function (which is in each of these cases not a true update function):

Function name Argument that is a place

ch ar - bit (page 157) First
1 db (page 143) Second
mask-fiel d (page 143) Second

Update function used
set - c h a r - bit (page 157)
dpb (page 143)
depos it -f i e 1 d (page 144)

67

68 COMMON I ,ISP REFERFNCE MANUAL

.!\. ca11 on getf (page 109}, in which case (setf (getf x y) z) expands into

(putf x y z) .

• !\. the (page 106) type declaration form, in which case the declaration is transferred to

the Ilewvalue form, and the resulting set f form is analyzed. For example,

(setf (the integer (cadr x» (+ y 3»
is processed as if it were

{setf (cadr x) (the integer (+ y 3»)

• !\. macro call, in which case set f ~xpands the macro call and then analyzes the

resulting form.

set f carefully arranges to preserve the usual left-to-right order in which the various subforms are

evaluated. On the other hand, the exact expansion for any particular form is not guaranteed and

may even be implementation-dependent; all that is guaranteed is that the expansion of a

set f -form will be an update form that works for that particular implementation, and that the

left-to-right evaluation of subforms is preserved.

The ultimate result of evaluating a set f form is the value of newvalue. (Therefore {s e t f (car
x) y) does not expand into precisely (rp 1 aca x y), but into something more like

(let «G1 x) (G2 y» (rp1aca x y) y)

the precise expansion being implementation-dependent.)

The user can define new set f expansions by u.sing de f set f (page 70).

psetf {place ne wva,lue} * [iVlacro]
p set f is like set f except tha~ if more than one place-newvalue pair is specified t.hen the

assignments of new values to places is done in parallel. Mo're precisely, all subforms that are to be

evaluated are evaluated from left to right; after all evaluations have been performed, ;11 of the

assignments are performed.

p set f always returns nil,

s hi f t f place {place}* newvalue [iV/aero]
Each place form may be any form acceptable as a generalized variable to set f (page 66), In the

form (s hi f t f place/ place2 ,.. placen newvalue), the values in placel through placen are

accessed and saved, and newvalue is evaluated, for a total of n + 1 values in all. Values 2 through

n+ 1 aI\' then stored into placel through placen, and ';alue 1 (the original value of placel) is

returnc(. I t is as if all the places form a shift register; the newvalue is shifted in from the right, all

values shift over to the left one place, and the value shifted out of placel is returned.

For example:

•

•

•

•

CONTROL STRUCTURE

(setq x '(a be» .
(shiftf (eadr x) 'z) => b

and now x => (a z c)

The effect of (sh i ft f place! place2 ... placen newvalue) is roughly equivalent to

(p rog 1 place!
(set f place! place2)
(set f place2 place3)

(set f placen newvalue»

69

except that the latter would evaluate any sub forms of each place twice, while s hi f t f takes care to

evaluate them only once.

For example:

(setq n 0)

but

(setq x '(a bed»
(shiftf (nth (setq n (+ n 1» x) 'z) => b

and now x => (a zed)

(setq n 0)
(setq x '(a bed»
(progl (nth (setq n (+ n 1» x)

(setf (nth (setq n (+ n 1» x) 'z» => b
and now x = > (a b z d)

Moreover, for certain place forms s hi f t f may be significantly more efficient than the p f" og 1

version.

Rationale: shiftf and rotatef (below) have been included in COMMON LISP as generalizations of
two-argument vcrsions formerly called s w a p f and ex c h f. 111c two-argument versions have been found to be
very useful, but the names were easily confused. The generalization to many argument forms and the change of
names were both inspired by the work of Suzuki [13], which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easicr to prove correct.

rota tef {place}*
•

[~faero]

Each place form may be any form acceptable as a generalized variable to set f (page 66). In the

form (rotatef place] place2 ... placen), the values in placel through placen are accessed

and saved. Values 2 through 11 and value 1 are then stored into placel through placen. Jt is as if all

the places form an end-around shift register that is rotated one pla~e to the left, with the value of

place 1 being shifted .around the end to placen. Note that (rotatef place] place2) exchanges'

the contents ofplace and place2.

The effect of (rot ate f place 1 place2 ... placen newvalue) is roughly equivalent to

(p set f place 1 place2
place2 place3

placen place 1)

except that the latter wou Id evaluate any su bfoTIns of each place twice, while rot ate f takes care to

evaluate them only once. Moreover, for certain place forms exchf may be significantly more

efficient than the pro 9 1 version.

70 COMMON LISP REFERENCE MANUAL

rotatefalways returns nil.

Other macros that manipulate generalized variables include ge t f (page 109), put f (page 109), remf
(page 110), i ncf (page 126), decf (page 126), push (page 179), and pop (page 180).

defsetf access-fll {update-fn [doc-sIring] I
lambda-list lambda-list {declaration I doc-string}* {fbrm}*} [Alacro]

!\ de f set f declaration may take one of two forms. In either form, access-fn must be a symbol, the

name ofa function or macro for which a setf-inverse is to be defined.

The simple form of defset f is

(defsetf access-fn update-fn [doc-sIring])

The update-fn must name a function or macro that takes one more argument than access-fn does.

When set f (page 66) is given a place that is a call on access-In, it expands into a call on the
updale-fn that is given all the arguments to the access-In and also, as the last argument, the new

value. For example, after

(defsetf getfrob putfrob)

the form (setf (getfrob 'a 3) foo) would expand into (putfrob 'a 3 foo).

The complex form of defsetf has the same form as defmacro (page 99) except that there are
two lambda-lists, the first representing the argument forms to the access-In and the second
representing the value(s) of the newvalue fonn given to setf. The body of the defsetf

definition must then compute a replacement fonn for the set f fonn, just as for any other macro.

Th<; boqy is responsible for ensuring that the expansiQll causes subforms to be evaluated e'Xactly
once each and'in the correct (left-to-right) order. -.

If the second lambda-list specifics ot,her ~an a single required argument, set f will effectively
arrange to usc mu 1 tip 1 e - val u e - call (page 90) to receive the values from the newvalue form.
For example, consider this simple function:

(defun uncons (cell) (values (car cell) (cdr cell»)

An appropriate def s et f definition would be:

(de f set fun con s (c ell) (a &0 p t ion a 1 (d .' f 00))

t(values (setf (car ,cell) ,a) (setf (cdr ,cell) ,d»)

The result of expanding (setf (uncons (reckon q» (floor 5 3» would then be

something like:

(let «GOOOl (reckon q»)
(multiple-value-call #'(lambda (G0002 &optional (GOa03 'foo»

(values (setf (car GOOOl) G0002)
(setf (cdr G0001) G0003»)

(floor 5 3»)

Note that the values of parameters in t11e second lambda-list will be names of variables by means of

which the expansion may refer to the values returned by newvalue.

'.

•

•

•

•

CONTROL STRUCTURE

7.3. Function 'Invocation

The most primitive form for function invocation in Lisp of course has no name; any list that has no other

interpretation as a macro call or special form is taken to be a function call. Other constructs are provided for
less common but nevertheless frequently useful situations;

app 1 Y junc/ion arg &res t more-args . [Function]
This applies jimc lio II to a list of arguments. function may be a compiled-code object, or a lambda
expression, or a symbol; in the latter case the global functional value of that symbol is used (but it is
illegal for the symbol to be the name of a.macro or special fOlm). The arguments for the jimc/ion
consists of the last argument to ap ply appended to a list of all the other arguments to ap ply but
the jill1Ctioll itself.

For example:

(setq f '+) (apply f '(1 2» => 3
(setq f '-) (apply f '(1 2» => -1
(apply #'max 3 5 '(2 7 3» => 7
(apply 'cons '«+ 2 3) 4» =>

((+ 2 3) . 4) not (5 . 4)

After the jimclion argument there may be any number of individual ?rguments (possibly none)
followed by a list of all the rest of the arguments. If no individual arguments are specified and the
final lista rgument is empty, then the function receives no arguments. Note that if the function
takes keyword arguments, the keywords as well as the corresponding values must appear in the
argument list:

(apply H'(lambda (&key a b) (list a b» '(:b 3» => (nil 3)

This can be very useful in conjunction with the &all ow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let «v (apply ·#'make-simp1e-v·ector size keys»)

(if double (concatenate y v) v»))

(foo 4 :initia1-contents '(a bed) :doub1e t)
=> #(a bed abc d)

??? Query: The above example looks like the right thing, but conflicts with the specification that it is an error
to pass an incorrect keyword to a function. What shall we do to preserve the utility of &a 11 QW-Q t he r - keys?

funca 11 In &res t arguments [Function]

(fun c a 11 In al a2 ... an) applies the function In to the arguments aI, a2, ... , an. fn may not
be a special fonn nor a macro; this would not be meaningful.

For example:

(cons 1 2) => (1 . 2)
(setq cons (symbol-function '+»
(funcal1 cons 1 2) => 3

The difference between fu n call and an ordinary function call is that the function is obtained by

ordinary LISP evaluation rather than by the special interpretation of the function position that

72 COMMON LISP REFERENCE MANUAL

normally occurs.
COIII(latihility note: This corresponds roughly to the INTERI.ISP primitive app 1 y*.

7.4. Sinlple Sequencing

progn {fonn}* [Special form]
The progn constnlct takes a number of forms and evaluates them sequentially, in order, from left
to right. The values of all the forms but the last are discarded~ whatever the last form returns is
returned by the p r 09 n form. One says that all the forms but the last are evaluated for effect,
because their execution is useful only for the side effects caused, but the last form is executed for

value.

progn is the primitive control structure construct for "compound statements"; it is analogous to
begin-end blocks in ALGOL-like languages. Many LISP constructs are "implicit progn" fonns, in
that as part of their syntax each allows many forms to be written that are to be evaluated
sequentially, discarding the results of all forms but the last, and returning the results of the last
form.

If the last form of the p r og n returns multiple values, then those multiple values are returned by the
pro 9 n form. I f there arc no forms for the pro 9 n, then the result is nil. These rules generally
hold for implicit progn forms as well.

prog1 first {form}* [At/aero]
prog1 is similar to progn, but it returns the value of its first form. All the argument forms are
execu~ed sequentially; the value the first form produces is saved while all the others are executed,
and is then returned.

pro 9 1 is most commonly used to evaluate an expression with side effects, and return a value that
mus~ be computed before the side effects happen.

For example:

(prog1 (car x) (rplaca x 'foo»

alters the car of x to be f 0 0 and returns the old car of x.

p r og 1 always returns a single value, even if the first form tries to return multiple values. A

consequence of this is that (p r 0 9 1 x) and (p r 0 9 n x) may behave differently if x can produce
multiple values. See mu It i P 1 e -va 1 ue -p rog 1 (page 90).

prog2 first second {fonn}* [Afaero]

prog2 is similar to prog 1, but it returns the value of its second form. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,

and is then returned.

•

•

•

•

•

CONTROL STRUCrURE 73

p r og 2 is provided mostly for historical compatibility.

(prog2 abc ... z) <=> (progn a (progl be ... z»

Occasionally it is desirable to perform one side effect. then a value-producing operation, then

another side effect; in such a peculiar case prog2 is fairly perspicuous.

For example:

(prog2 (open-a-file) (compute-on-file) (close-the-file»
; value is that of c omp ute - 0 n - f i 1 e

prog2, like prog 1, always returns a single value, even if the second form tries to return multiple

values. i\ consequence of this is that (prog2 x y) and (prognx y) may behave differently if

y can produce multiple values.

7.5. Environment Manipulation

1 e t ({ var I (var value)}*) {form}* [kfacro]

Ale t form can be used to execute a series of forms with specified variables bound to specified

values.

For example:

(1 et ((varl valuel)
(var2 value2)

(vann valuem»
bodyl
body2

bodyn)
"

first evaluates the expressioI)s valuel, value2, and so on, jn that order, saving the resulting values.

Then all of the variables var) are bound to the corresponding values in parallel; each binding will be . . .
a local binding unless there is asp e cia 1 declaration to the contrary. The expressions body) are

then evaluated in order; the values of all but the last are discarded (that is, the body of ale t form

is an implicit progn). The 1 et form returns what evaluating bodyn produces (if the body is empty,

which is fairly useless, 1 e t returns nil as its value). The bindings of the variables disappear when

the 1 e t form is exited.

Instead of a list (varj value) one may write simply var). In this case' VGlj is initialized to nil. As a

matter of style, it is recoI?mended that var) be written only when that variable will be stored into

(such as by s e tq (page 64)) before its first use. If it is important that the initial value is nil rather

than some undefined value, then it is clearer to write out (var) nil) (if the initial value is

intended to mean "false") or (var) • ()) (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of ale t; they apply to the code in the body

and to the bindings made by 1 e t, but not to the code that produces values for the bindings .

The 1 e t form shown above is entirely equivalent to:

74

((lamb d a (varl var2 varm)
body I body2 ... bodYIl)

value I value2 ... valuem)

COMMON I lSI> RFFFRENCE MANUAL

but 1 e t allows each variable to be textually close to the expression that produces the corresponding

value, thereby improving program readability.

1 e t* ({ var I (var value)}*) {form}* [.. S'pecialfonn]
1 e t * is similar to 1 e t (page 73), but the bindings of variables are performed sequentially rather

than in parallel. This allows, the expression for the value of a variable to refer to variables

previously bound in the 1 e t * form.

More precisely, the form:

(let* «varl valuel)
(var2 value2)

(varm valuem»
bodyl
body2

bodyn)

first evaluates the expression valt/el, then binds the variable varl to that value;· then its evaluates

value2 and binds vaT2; and so on. The expressions bod}] are then evaluated in order; the values of

all but the last are discarded (that is, the body ofa let* form is an implicit progn). The let*

fonn returns the results of evaluating bodyn (if the body is empty, which is fairly useless, 1 e t *

returns nil as its value). The bindings of the \:ariables disappear when the 1 e t lie form is exited.

Instead of a list (var) value}) one may write simply varY. In this case vGlj is initialized to nil. As a

matter of style, it ,is recomrpended that var} be written only when that variable will be stored into

(such as by setq (page 64» before its first use. Ifit is import~nt :nat the initial value is ni 1 rather

than some undefined value, then it is clearer to write out (yar) nil) (if the initial value is

intended to mean "false") or (var) , ()) (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of ale' t; they apply to the code in the body

and to the bindings made by 1 e t, but not to the code that produces values for the bindings.

compiler-let ({var I (var value)}*) lfonn}* [Alacro]
When executed by the LISP .interpreter, c omp i 1 e r -1 e t behaves exactly like 1 e t (page 73) with

all the variable bindings implicitly declared s p e cia 1. When the compiler processes this fonn,

however, no code is compiled for the bindings; instead, the processing of the body by the compiler

is done with the special variables bound to the indicated values in the execution context of the

compiler. This is primarily useful for communication amon'g complicated macros.

•

•

•

•

CONTROL STRUCTURE 75

pr'ogv symbols values {jiJnn}* [.~'p('cial jhrl11]

progv is a special fOim that allows binding one or more dynamic variables whose names may be

determined at rLln lime. The sequence of forms (an implicit pro g n) is evaluated with the dynamic

variables whose names are in the list symbols bound to corresponding values from the list values. (If
too few values are supplied, the remai l1 ing symbols are bound and then made to have no value; see
mak u n b 0 u n d (page 65). I f too many values are supplied, the excess values are ignored.) The
results of the progv form are those of the last form. The bindings of the dynamic variables are
undone on exit from the pr'ogv form. The lists of symbols and values are computed quantities;
this is what makes progv different from, for example, 1 et (page 73), where the variable names

are stated explicitly in the program text.

progv is particularly useful for writing interpreters for languages embedded in LiSp; it provides a

handle on the mechanism for binding dynamic variables.

f 1 e t ({ (name lambda-list {declaration I doc-string}* {jbrm}*)}*) {form}*

1 abe 1 s ({ (name lambda-list {declaration I doc-slring}* {fomz} *) }*) {fonn}*

macrolet ({(name var/ist {declaration I doc-string}* {fonn}*)}*) {form}*

[Special foml]

[Special form]

[Special fonn]

f 1 e t may be used to define locally named functions. Within the body of the f 1 e t form, function
names matching those defined by the f 1 e t refer to the locally defined functions rather than to the

global function definitions of the same name.

Any number of functions may be simultaneously defined. Each definition is similar in format to a
defun (page 47) fOlm: first a name, then a parameter list (which may contain &optional,
&rest, or &key parameters), then optional declarations and documentation str,ing, and finally a
body.

The- 1 abe 1 s constnlct is identical in form to the f 1 e t construct. It dIffers in tha~ the scope of the
defined function names for f 1 e t epcompasses only the body, while for 1 ab e 1 s it encompasses.
the function defin~tions themselves. That is, 1 abe 1 s can be used to define mutually recursive
functions, but f 1 e t cannot. This distinction is useful. Using f 1 e t one can locally redefine a
global function name, and the new definition can refer to the global definition; the same
construction using 1 abe 1 s would not have that effect.

(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine.
(declare (type (integer 0 *) k»)
(labels «exptO (x k a)

(declare (integer x a) (type (integer 0 *) k»
(cond «zerop k) a)

«evenp k) (exptl (* x x) (floor k 2) a»
(t (exptO (* x x) (floor k 2) (* x a»»)

(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k»
(cond «evenp k) (exptl (* x x) (floor k 2) a»

(t (exptO (* x x) (floor k 2) (* x a»»»
(exptO n k 1»)

76 COMMON LISP REFERENCE MANUAL

macrol et is similar in form to fl et, but defines local macros, using the same format used by

defmacro (page 99).

7.6. Conditionals

cond {(lest {form}*)}* [Alacro]
The cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each

clause consists of a test followed by zero or more consequents.

For example:

(cond (Iest-! consequent-!-l consequent-!-2 ...)
(test;.2)
(test-3 consequent-3-/ ...)
...)

The first clause whose test evaluates to non-n i 1 is selected: all other clauses are ignored, and the

consequents of the selected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order .from left to right. For each clause, the lest is

evaluated. If the result is nil, cond advances to the next clause. Otherwise, the cdr of the clause is

treated as a list of forms, or consequents, which are evaluated in ord~r from left to right, as an

implicit progn. After evaluating the consequents, cond returns without inspecting any remaining

••

clauses. The con d special form returns the results of evaluating the last of the selected •

consequents: if there were no consequents in the selected clause, then the single (and necessarily

non-null) value of the test is returned. If con d n1l1S out of clauses (every test produced nil, and

therefore no clause was selected), the value of the con d form is nil .
.,.

If it is desired to select the last clause unconditionally if all others fait, the standard convention is to

,usc t for the test. As a matter of style, it is desirable to write a last tl"ause " (t nil)" if the value of

the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause

of a cond be a "singleton clause"; an explicit t should be provided. (Note moreover that (cond

(x» may behave differently from (eond (t x» if x might produce multiple

values; the former always returns a single value, while the latter returns whatever .values x returns.}

For example:

(setq z (eond (a 'fool (b 'bar»)
(setq z (eond (a 'fool (b 'bar) (t nil»)
(eond (a b) (e d) (e»
(cond (a b) (c d) (t e»
(eond (a b) (e d) (t (values e»)
(eond (a b) (c»)
(e~nd (a b) (t c»
(if a b c)

; Possibly confusing.
; Better.
; Possibly confusing.
; Better.
; Better (if one value needed).
; Possibly confusing.
; Better.
; Also better.

A LISP. co n d form may be compared to a continued if-thcn-cIscif as found in many algebraic

programming languages: •

•

•

CONTROL STRUCTURE

(cond (p ...)
(q ...)
(r ...)

(t ... »

i f pred then [else]

roughly
corresponds

to

if p then ...
else if q then
else if r then

else

77 _r

[Special form]

The if special form corresponds to the if-then-else construct found in most algebraic programming
languages. First the form pred is evaluated. I f the result is not nil, then the form then is selected;
otherwise the form else is selected. Whichever form is selected is then evaluated, and if returns
whatever evaluation of the selected form returns ..

(i f pred then else) < = > (c 0 n d (pred then) (t else»

but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of pred is nil then nothing is done and
the value of the if form is nil. If the value of the if form is important in this situation, then the
an d (page 58) construct may be stylistically preferable, depending on the context. If the value is
not important, but only the effect, then the wh e n (page 77) constnlct may be stylistically

preferable.

when pred lform}* [.iVfuero]

(who n pred form! fonn2 ...) first evaluates pred. If the result is nil, then no fonn is
evaluated, and nil is returned. Otherwise the forms constitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.

(when p a b e) <=> (and p (progn a be»
(when p a be), <=> (cond (p a be»
(when p a b e) <=> (if P (progn a b c) ;ni1)
(when p a b c) <=> (unless (not p) a b c) .

As a matter of style, when is normally used to conditionally produce some side effects, and the
value of the when-form is normally not used. If the value is relevant, then and (page 58) or if
(page 77) may be stylistically more appropriate.

unless pred {form}*

(un 1 e s s pred form! form2

[Macro]

) first evaluates pred. If the result is not nil, then the forms

are not evaluated, and nil is returned. Otherwise the fonns constitute an implicit progn, and so
are evaluated sequentially from left to right, and the value of the last one is returned.

(unless p a b e) <=> (cond «not p) a be»
(unless p a b e) <=> (if P nil (progn a be»
(unless p a b e) <=> (when (not p) a'b e)

As a matter of style, un 1 e s s is normally used to conditionally produce some side effects, and the
value of the un 1 e s s -fonn is normally not used. If the value is relevant, then 0 r (page 59) or if

(page 77) may be stylistically more appropriate.

78 COi'vIMON LISP REFERENCE MANUAL

case kc)iorm {(({key}*) {jbrm}*)}* [,Hacro]

cas e is a conditional that chooses one of its clauses to execute by comparing a value to various

constants, which are typically keyword symbols, integers, or characters (but may be any objects). Its

form is as follows:

(case keyform
(keylisl-I consequelll-I-I cOflsequent-I-2 ...)
(keylisl-2 consequenl-2-/ ...)
(keylisl-3 cOllsequenl-3-/ ...)
...)

Structurally case is much like cond (page 76), and it behaves like cond in selecting one clause

and then executing all consequents of that clause. It differs in the mecl).anism of clause selection.

The first thing case does is to evaluate the form keyform to produce an object called the key objecl.
Then case considers each of the clauses in turn. If key is in the keylisl (that is, is eql to any item

in the keylist) of a clause, the consequents of that clause are evaluated as an implicit pr ogn, and

case returns what was returned by the last consequent (or nil if there are no consequents in that

clause). If no clause is satisfied, cas e returns nil.

It is an error for the same key to appear in more than one clause.

Instead ofa keylist, one may write one of the symbols t and otherwise. A clause with such a

symbol always succeeds, and must be the last clause.

•

Compatibility note: Lisp Machine LISP uses eq for the comparison. In Lisp Ma~hine LISP case therefore •
works for fixnums but not bignums. In the interest of hiding the fixnum-bignum distinction, cas e uses e q 1 in
COMMON LISP.

If there is only one key for a clause, then that key may be written in place of a list of-that key,

provided that no ambiguity result<; (the key should not be a cons or one of nil (which is confusable

with (), a 1i~t of no keys), t, or otherwi se).

typecase keyform {(type (form}*)}* [A1acro]

ty pee a s e. is a conditional that chooses one of its clauses by examining the type of an object. Its

form is as follows:

(typecase keyform
(type-i cOl1sequent-i-i consequent-I-2 ...)
(lype-2 consequent-2-i)
(type-3 consequent'-3-1 ...)
...)

Structurally typecase is much like cond (page 76) or case (page 78), and it behaves like them

in selecting one clause and then executing all ~onsequents of that clause. It differs in the

mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an object called the key

object. Then ty pee a s e considers each of the clauses in tu rn. The. first clause for which the key is

of that clause's specified type is selected, the consequents .. of this clause are evaluated as an implicit

progn, and typecaseq returns what was returned by the last consequent (or nil ffthere are no
. . •

•

CONTROL STRUCTURE 79

consequents in that clause). Ifno clause is satisfied, typecase returns n i 1.

As for case, the symbol t or otherwi se may be written for type to indicate that the clause

should always be selected.

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of

another; the earliest applicable clause is chosen.

For example:

(typecase an-object
(string ...)
((a r r ay t) ... }
«array bit) ... }
(array ...)
«or list number) ...)
(t ... »

; This clause handles strings.
; This clause handles general arrays.
; This clause handles bit arrays.
; This handies all other arrays.
; This handles lists and numbers.
; This handles all other objects.

- A COMMON LISP compiler may choose to issue a warning if a clause cannot be selected because it is

completely shadowed by earlier clauses.

7.7. Blocks and Exits

block name lfonn}* [Special form]
The b 1 ock constnlct executes each form from left to right, returning whatever is returned by the

last [onn. If, however, a return or return -from form is executed during the execution of some

form, then the results specified by the ret urn or ret urn - from are immediately returned as the

value of the b 1 oc k construct, and execution proceeds as if the b 1 0 c k had terminated normally. In

this b 1 oc k differs ~rom pro g n (page 72); the latter has notFAng t~ do with ret urn.

l11e name is not evaluated; it must -be a symbol. The scope of the 'name is lexical; only are tu r n or

return-from textually contained in som~fonn can exit from the block. The extent of the name

is dynamic. Therefore it is only possible to exit from a given nlll-time incarnation of a hlock once,

either normally or by explicit return.

The defun (page 47) form implicitly puts a b 1 ock around the body of the function defined; the

block has' the same name as the function. Therefore one may use return-from to return

prematurely from a function defined by de fun.

return-from name [result]
re tu r n [result]

[Special [onn]
[Macro]

ret urn .- from is used to return from a b 1 0 c k or from such constructs as do and pro 9 that

implicitly establish a b 1 ock. The name is not evaluated, and must be a symbol. A b 1 ock

constnlct with the same name must lexically enclose the occurrence of ret urn - from; whatever

the evaluation of result produces is immediately returned from the block. (If the result form is

omitted, it defaults to n i 1. As a matter of style, this form ought to be used to indicate that the

80 COMMON LISP REFFRFNCF MANUAL

particular vallie returned doesn't matter.)

The return-fr'orn form itself never returns, and cannot have a value: it causes results to be

returned from a b 1 oc k construct. I f the evaluation of result produces multiple values, those

multiple values are returned by the constnlct exited. ,

(return form) is identical in meaning to (return-from n i 1 fonn): it returns from a block

named n i 1. As a rule, blocks established implicitly by iteration constructs such as do are named

n i 1 , so that ret urn .will exi t properly from such a constnlCt.

7.8. Iteration

COMMON I:JSP provides a number of iteration constnlcts. The loop (page 80) construct provides a trivial

.iteration facility; it is little more than a progn (page 72) with a branch from the bottom back to the top. The

do (page 80) and do * (page 80) constructs provide a general iteration facility for controlling the variation of

several variables on each cycle. For specialized iterations over the elements of a list or n consecutive integers,

dol i st (page 84) and dot imes (page 84) are provided. The tagbody (page 87) construct is the most

general, permitting arbitrary go (page 89) statements within it. '(The traditional p r og (page 87) construct is

a synthesis of tagbody, block (page 79), and 1 et (page 73).) All of the iteration constructs permit

statically defined non-local exits in the form of the r e tu r n - from (page 79) and ret urn statements.

7.8.1. Simple Iteration

100p {form}* [lHacro]
Each fonn is evaluated in turn, from left to right. When the last form has been evaluated, then the

firstfomi is evaluated again, and so on, in a n~ver-ending cycle. The loop construct never returns
a value. It must'be explicitly tenninated, for example by establishing'a block (page 79) around it

and using are t urn - from statement, or by using t h r ow (page 95) ..

1 oop does not establish an implicit block named n i 1.

Rationale: This construct is' included primarily as a primitive building block for more comp'licated iteration
macros that is perhaps more easily understood by a compiler than a full-blown tagbody (page 87).

A 1 oop construct has this meaning only if every form is non-atomic (a list). The case where o~e or
more than one fonn is a symbol is reserved for future extensions.

7.8.2. General iteration

do ({ (var [init [step]])}*) (end-test lform} *) {declaration}* {tag I statement}'"
do'" ({(var [init [step]])}*) (end-test lform}*) {declaration}* {tag I statement}*

[Alaero]
[Nlacro]

The do special form provides a generalized iteration facility, with an arbitrary number of "index

variables". These variables arc bound within the iteration and stepped in parallel in specified ways.

•

•

•

•

CONTROl. STRUCTURE 8l

They may be lIsed both to generate successive values of interest (such as successive integers) or to

accumulate results. When an end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:

(do ((vorl ill it I stepl)
(var2 illil2 step2)

(varn iniln stepn»
(end-test. result)
{declaration}*
. tagbody)

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable

specifier is a list of the name of a variable var, an initial value inft (which defaults to nil if it is

omitted) and a stepping form step. If step is omitted, the var is not changed by the do constnlct

between repetitions (though code within the do is free to alter the value of the variable by using

setq (page 64».

An index-variable specifier can also be just the name of a variable. In this case, the variable has an

initial value of nil, and is not changed between repetitions.

Before the first iteration, all the il1it forms are evaluated, and then each var is bound to the value of

its respective illit. This is a binding, not an assignment; when the loop terminates the old values of

those variables will be restored. Note that all of the inil forms arc evaluated before any var is

bound; hence init forms may refer to old values of the variables.

The second element of the do-form is a list of an end-testing predicate form end-lest, ~nd zero or

more forms, called the result forms. This resembles a cond clause. At the beginning of each

iteration, after processing the variables, the end-test is evaluated. If the res~lt is nil, execution

proceeds with the body of the do. lfthe result is not nil, the result forms arc evaluated in order as

an implicit progn (page 72), and then do returns. do returns the results ofevall:lating the last·

result form. If there are nr> result forms, the value of do is nil; note that this is not quite analogous

to the treatment of clauses in a cond (page 76) special form.

At the beginning of each iteration other than the first, the index variablc3 are updated as follows.

First every step form is evaluated, from left to right. Then the resulting values are. assigned (as with

p set q (page 64» to the respective index variables. Any variable that has no associated step form

is not affected. Because all of the step forms are evaluated before any of the variables are altered,

when a step form is evaluated it always has access to the old values of the index variables, even if

other step forms precede it. After this process, the end-test is evaluated as described above.

If the end-test of a do form is nil, the test will never succeed. Therefore this provides an idiom for

"do forever": the body of the do is executed repeatedly, stepping variables as usual, of course.

(The loop (page 80) construct performs a "do forever" that steps no variables.) The infinite loop

can be terminated by the use of ret urn (page 79), ret urn - from (page 79), go (page 89) to an

outer level, or th r ow (page 95) .

. For example:

82

(do «j 0 (+ j 1»)
(nil)

(format t II-%Input -0:" j)
(let «item (read»)

(if (null item) (return)
(format t II-&Output -0:

COMMON LISP Ri~FEREN(,E MANUAL

; Do forever.

; Process items until nil seen.
-S" j (process item»»)

The remainder of the do form constitutes an implicit tagbocJy (page 87). Tags may appear

within the body of a do loop for use by go (page 89) state~ents appearing in the body (but such

go statements may not appear in the variable specifiers, the end-test, or the result forms). When the

end of a do body is reached, the next iteration cycle (beginning with the evaluati?n of step forms)

occurs.

An implicit bloc k (page 79) named nil surrounds the entire do form. Are tu r n (page

79) statement may be used at any point to exit the loop immediately.

decl are (page 101) forms may appear at the beginning of a do body. They apply to code in the

do body, to the bindings of the do variables, to the step forms (but not the init forms), to the

end- test, and to the result forms.

Compatibility note: "Old-stylc" MAcLrsp do loops, ofth.c form (do var init step end-test . body), arc not
supported. They are obsolete, and are easily converted to a new-style do with thc insertion of threc pairs of
parentheses. In practice the compilcr can catch nearly all·instances of old-style do loops because they will not
have a legal format anyway.

Here are some examples of the use of do:

(do « i 0 (+ i 1» ; Sets every null element of a - v e c tor to zero.
(n (array-dimension a-vector 0»)

«= in»
(when (null (aref a-vector i»

(setf (aref a-vector i) 0»)

The construction'

(do «x e (cdr x»
(oldx x x»

«null x»
body)

exploits parallel assignment to index variables. On the first iteration, the value of 01 dx is whatever

value x had before the do was entered. On succeeding iterations, 01 dx contains the value that x

had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do,

and the body is empty.

For example:

(do «x foo (cdr x»
(y bar (cdr y»
(z' 'C) (cons {f (car x) (car y» z»)

«or (null x) (null y»
(nreverse z»)

•

•

does the same thing as (mapcar #' f foo bar) .. Note that the stepcompu~1tion for z exploits •

the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use

. I

•

CONTROL STRUCTURE 83

of nrever'se (page 162) to put an accumuhlted do loop result into the correct order is a standard

idiom.

Other examples:

(defun list-length (list)
(do «x list (cdr x»)

(j 0 (+ j 1»)
«endp x) j»)

(defun list-reverse (list)
(do «x list (cdr x»

(y 'C) (cons (car x) y))
«endp x) y»)

Note the use of endp (page 175) rather than null (page 52) to test for the end of a list in the

above two examples. This results in more robust code.

As an example of nested loops, suppose that en v holds a list of conses. The car of each cons is a list

of symbols, and the cdr of each cons is a list of equallcngth containing corresponding values. Such

a data structure is similar to an association list, but is divided into "frames"; the overall structure

resembles a rib-cage. A lookup function on such a data stnlcture might be:

(defun ribcage-lookup (sym ribcage)
(do «r ribcage (cdr r»)

«null r) nil)
(do «s (caar r) (cdr s»

(v (cdar r) (cdr v»)
«null s»

(when (eq (car s) sym)
(return-from ribcage-lookup (car v»»»

(Notice the use of indentation in the above example to,set off the bodies of the do loops.)

'A do loop may be explained in terms of the more primitive constru,cts block (page 79), return

(page 79),1 et' (page 73),1 oop (page 80), tagbody (page 87), and p'setq (page 64) as follows:

(block nil
(1 e t « varl initl)

(var2 ini(2)

(varn initn»
{declaration} *
(loop (when end-test (return (progn . result»)

(tagbody . tagbody)
(psetq varl stepl

var2 step2

varn stepn»»

do'" is exactly like do except that tl1e bindings and steppings of the variables are performed

sequentially rather than in parallel. At the beginning each variable is bound to the value of its init

form before the init form for the next variable is evaluated. Similarly, between iterations each

variabl~ is given the new value compu ted by its step form before the step form of the next variable is

evaluated. It is as if, in the above explanation, 1 et were replaced by 1 et * (page 74) and psetq

84 COMMON LISP REFERENCE MANUAL

were replaced by setq (page 64).

7.8.3. Simple Iteration Constructs

The constructs dol i st and dot imes perform a body of statements repeatedly. On each iteration a

specified variable is bound to an clement of interest that the body may examine. do 1 is t examines

successive clements of a list, and dot imes examines integers from 0 to 11-1 for some specified positive

integer n.

The value of any of these constructs may be specified by an optional result form, which if omitted defaults

to the value nil.

The ret urn (page 79) statement may be used to return immediately from ado 1 is t or dot i me s form,

discarding any following iterations that might have been performed: in effect, a bloc k named nil

surrounds the construct. The body of the loop is implicitly a tagbody (page 87) construct; it may contain

tags to serve as the targets of go (page 89) statements. Declarations may appear before the body of the loop.

do 1 is t (var list/onn [result/oml]) {declaration}* {tag I statement}* [Macro]
do 1 is t provides straightforward iteration over the clements of a list. First do 1 is t evaluates the

form list/arm, which should produce a list. It then executes the body once for each clement in the

list, in order, with the variable var bound to the element. Then result/onn (a s-ingle form, not an

implicit pro 9 n) is evaluated, and the result is the value of the dol is t form. (\\fhen the result/omz
is evaluated, the control variable var is still bound, and has the value nil.) If result/orm is omitted,

the result is nil.

For example:

(do1ist (x '(a bed» (prin1 x) (prine" "» => nil
after printing" abc d '~

An explicit ret urn statement may be used to terminate the loop and return a specified value.

Compatibility. note: The result/arm part of ado 1 is t is not currently supported in Lisp Machine LISP. It seems
to improve the utility of the construct markedly.

dot imes (var count/onn [result/onn]) {declaration}* {tag I statement}* [Macro]

do time s provides straightforward it~ration over a sequence of integers. The expression

(dot imes (var count/omz result/onn) progbody) evaluates the form count/orm, which should

produce an integer. It then performs progbody once for each integer from zero (inclusive) to count
·(exclusive), in order, with the variable va,. bound to the integer; if the integer is zero or negative,

then the progbody is performed zero times. Finally, result/orm (a single form, /lot an implicit

pro 9 n) is evaluated, and the result is the value of the dot i me s fonn. (When the result/orm is

evaluated, the control variable var is' still bound, and has as its value the number of times the body

was executed.) If result/onn is omitted, the result is nil.

Alteri~g the value of varin the body of the loop (by using setq (page 64), for example) will have

•

•

•

CONTROL STRUCrURE 85

unpredictable, possibly implementation-dependent results. 1\ COMMON LIsp compiler may choose
to issue a warning ifsuch a variable appears in a setq.

For example:

(defun string-posq (char string &optional
(start 0)
(end (string-length string»)

(dotimes (k (- end start) nil)
(when (char= char (char string (+ start k»)

(return k»»

An explicit return statement may be used to tenninate the loop and return a specified value.

See also do-symbol s (page 119) and related constnlcts.

7.8.4. Mapp.ing

Mapping is a type of iteration in which a function is successively applied to pieces of one or more
sequences. The result of the iteration is a sequence containing the respective results of the function
applications. There are several options for the way in which the pie~es of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map (page 163) may be used to map over any kind of sequence. The following functions

• operate only on lists.

mapcar function list &rest more-lists

maplist fU.l1ction list &rest more·/ists
mapc fimction list &res t more-lists "

[Function]

[Function]
[Function]

mapl functio~l list &rest more-lists [Function]
mapcan junction list &res t more-lists [Fun~tion]

mapcon jUnction list &res t more-lists [Function]
For each these mapping functions, the first argument is a function and the rest must be lists. The
function must take as many arguments as there are lists.

ma p car operates on successive elements of the lists. First the function is applied to the car of each·
list, then to the cadr of each list, and so on. (Ideally all the lists are the salIle length; if not, the
iteration terminates when the shortest list runs out, and excess elements in other lists are ignored.)
The value returned by ma p car is a list of the results of the successive calls to the function.

For example:

(mapcar #'abs '(3 -4 2 -5 -6» => (3 4 2 5 6)
(mapcar #'cons '(a b c) '(1 2 3» => «a. 1) (b . 2) (c . 3»

map 1 is t is.1ike map car except that the function is applied to the list and successive cdr's of that
list rather than to successive clements of the list.

For example:

86

(maplist #'(lambda (X) (cons 'foo'x»
'(a b cd»

COMMON LISP REFERENCE MANUAL

=> «foo abc d) (foo b c d) (foo c d) (foo d»
(maplist #'(lambda (x) (if (member (car x) (cdr x» 0 1»)

'(a b a c d b c»
=> (0 0 1 0 1 1 1)
; An entry is 1 iff the c()rresponding element of the input

list was the last instance of that element in the input list.

map 1 and mapc are like map 1 is t and mapcar respectively. except that they do not accumulate
the results of calling the function.

Compatibility note: In all I.ISP systems since LIsp 1.5. map 1 has been called map. In the chapter on sequences
it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence
mapper. in closer accordance to the computer science literature. especially the growing body of papers on
functional programming.

These functions are used when the function is being called merely for its side-effects. rather than its
returned values. The value returned by rna p 1 or rna p c is the second argument. that is, the first
sequence argument.

mapcan and mapcon are like mapcar and mapl ist respectively, except that they combine the
results of the function using nco n c (page 178) instcad of 1 is t. That is,

(mapcon fxl ... xn)
<=> (apply #'nconc (maplist f xl ... xn»

and similarly for the relationship between mapcan and mapcar. Conceptually, these functions
allow the mapped function to return a variable numbcr ofitcms to be put into the output list. This
is particularly useful for effectively returning zero or one item:

(mapcan #'(lambda (x) (and (~umberp x) (list x»)
'(a 1 b c 3 4 d 5»

=> (1 3 4 5)

In this case the function serves as a filter; this is a standard LISP idiom using mapcan. (The
function r emo v e - if - not (page 165) might have be'cn useful in this particular context, however.)
Rcmember that nconc is a destructive operation, and thercfore so are mapcan and mapcon; the
listS rcturned by the function are altered in order to concatenate them.

. .
Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code.

Thc functional argument to a mapping function tnust be acceptablc to app 1 y; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions that have
&opt ional and&rest parameters.

7.8.5. The "Program Feature"

LISP implementations since LISP 1.5 have had what was originally called "the program feature", as ifit were
impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statcments, which can refer to tags in the body of the prog~

•

•

•

•

CONTROl. STRUCTURE 87

Modern LIsP programming style tends to use p r og rather infrequently. The various iteration constructs, such

as do (page 80), have bodies with the characteristics ofa prog.

prog actually performs three distinct operations: it binds local variables, it permits use of the return

statement, and it permits use of the go statement. In COMMON LISP, these three operations have been

separated into three distinct constructs: let (page 73), block (page 79), and tagbody (page 87). These

three constIucts may be used independently as building blocks for other types of constructs.

tagbody {tag I slatement}* [Special/onn]

The part of a prog after the variable list is called the body. An item in the· body may be a symbol

or an integer, in which case it is called a lag, or a list, in which case it is called a Slalenzent.

Each clement of the body is processed from left to right. A tag are ignored; a statement is

evaluated, and its results are discarded. If the end of the body is reached, the tagbody returns

nil.

If (go tag) is evaluated, controljumps to the part of the body labelled with the tag. The go tag is

not evaluated.
Compatibility note: The "computed go" feature of MACLISP is not supported. 'The syntax of a computed go is
idiosyncratic, and the feature is not supported by Lisp Machine LISP, NIL, or INTERLISP.

The scope of the tags established by a tagbody is lexical, and the extent i~ dynamic. Once a

tagbody construct has been exited, it is no longer legal to go to a tag in its body. It is permissible

for a go to jump to a tagbody that is not the innermost tagbody construct containing that go;

the tags established by a tagbody will only shadow other tags of like name in an outer tagbody.

p r og ({ var I (var [in it]) }*) {declaration}* {tag I statement}*

prog* ({var-I (var [init])}*) {declaration}* {tag I statement}*

A typical pro 9 looks like: •

(prog {-varl var2 (var3 init3) var4 (var5 ini(5))
{declaratiolZ}*

tagl

tag2

statement!

statement2
statement3
statement4

statement5

)

[Macro]
[i\llacro] .

The list after the keyword prog is a set of specifications for binding var], var2, etc., which are

temporary variables, bound locally to the pro g. This list is processed exactly as the list in ale t

(page 73) statement: first all the init forms are evaluated from left to right (where nil is used for

any omitted fnit fonn), and then the variables are all.bound in parallel to the respective results. Any

declaration appearing in the prog is used as if appearing at the top of the 1 et body.

88

" .

COl\1MON LISP REFERENCE MANUAL

The body of the prog is executed as if it were a tagbody (page 87) construct; the go (page

89) statement may be used to transfer control to a lag.

Apr og implicitly establishes a bloc k (page 79) named nil around the entire p r og constmct, so

that return (page 79) may be used at any time to exit from the prog construct.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)
(prog (x y z) ;Initializex,y,ztonil

loop
(setq y (car w) z (cdr w»

(cond «null y) (return x»
«null z) (go err»)

rejoin
. (setq x (cons (cons (car y) (car z» x»

(setq y (cdr y) z (cdr z»

err
(go loop)

(error "Mismatch - gleepllf)
(setq z y)
(go rejoin»

which is accomplished somewhat more perspicuously by:

(defun prince-of-clarity (w)
(do «y (car w) (cdr y»

(z (cdr w) (cdr z»
(x '() (cons (cons (car y) (car z» x»)

«null y) x)
(when (null z)

(error "Mismatch -' gleepllf)
(setq z y»»

. ~

The pro 9 construc.t may be exphiined in terms of the simpler constructs b 1 0 c k (page 79), 1 e t

(page 73), and tagbody (page 87) as follows:

(prog variable-list {declaration}* . body)
<=> (b lock nil (1 et variable-list {declaration}* (tag body . body»)

The prog* special form is almost the same as prog. The only difference is that the binding and

initialization of the temporary variables is done sequentially, so that the init form for each one can

use the values of previous ones. Therefore pro 9 * is to pro 9 as 1 e t * (page 74) is to 1 e t (page

73).

For example:

(prog* «y z) (x (car y»)
(return x»

returns the car of the value of z.

•

•

CONTROL STRUCTURE 89

go lag [.)'pecial fiJrm]

The (go lag) special form is used to do a "go to" within a tagbody (page 87) construct. The lag

must be a symbol or an integer: the lag is not evaluated. go transfers control to the point in the
body labelled by a tag eql to the one given. If there is no such tag in the body, the bodies of
lexically containing tagbody constructs (if any) are examined as well. It is an error if there is no
matching tag.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before using a go. Most purposes
of go can be accomplished with one of t.he iteration prim.itives, nested conditional forms, or
re tu r n - from (page 79). If the use of go seems to be unavoidable, perhaps the control structure
implemented by go should be packaged up as a macro definition.

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient
for a function to compute several objects and return them. COMMON LISP provides a mechanism for handling
mUltiple values directly. This mechanism is cleaner and more efficient than the usual tricks involving
returning a list of results or stashing results in global variables.

• 7.9.1. Constructs for Handling Multiple Values

•

Normally multiple values are not used. Special forms are required both to produce multiple values and to
receive them. If the caller of a function does not request multiple values, b~t the called function produces
multiple values, then the first value is given to the caller and all others are· discarded (and if the called
function produces zero values then the caller gets nil as a value).

The primary primitive for producing multiple values is val u e s (page 89), whkh takes any number of
arguments and returns that many values. If the last form in the body of a function is a va 1 ues with three
arguments, then a call to that function will return three values. Other special forms also produ~e multiple
values, but they can be described in terms of val u e s. Some built-in COMMON LISP functions (such as
f 100 r (page 135» return multiple values; those that do are so documented.

The special forms for receiving multiple values are mu 1 tip 1 e - va 1 u e - bin d (page 90),
mu 1 tip 1 e-v a 1 ue (page 91), and mu 1 tip 1 e -va 1 ue -1 is t (page 90). These specify a form to evaluate
and an indication of where to put the values returned by that form.

va' u e s & res t args [Function]
Returns all of its arguments, in order, as values.

For example:

90 COMMON LISP REFERENCE MANUAL

(defun polar (x y)
(values (sqrt (+ (* x x) (* y y») (atan y x»)

(mu1tip1e-va1ue-1et (r theta) (polar 3.0 4.0)
(list r theta»

=> (5.0 0.9272952)

The expression (val u e s) returns zero values.

val u e s -1 i s t list [Function]
Returns as multiple values all the clements of list.

For example:

(values-list (list a be» <=> (values a b e)

mu1tip1e-va1ue-1ist form [Macro]
mu 1 tip 1 e - val u e -1 is t evaluates fonn, and returns a list of the multiplevalues it returned.

For example:

(mu1tip1e-va1ue-1ist (floor -3 4» => (-1 1)

mu 1 tip 1 e - val ue - e a 11 function {{ann}* [Specialfonn]
mu 1 tip 1 e - val u e - call first evaluates jimclion to obtain a function, and then evalua~es all of the

forms. All the the values of the forms arc gathered together (not just one value from each), and

given as arguments to the function. The result of mu 1 tip 1 e - val ue - call is whatever is

returned by the function.

For ~xample:

(mu1tip1e-va1ue-cal1 #t+ (floor 5 3) (floor 7 3»
<=> (+ 1 2 2 1) => 6

(multip1e-v.a1ue-list /onn) <=> (multi'ple-value-call #tlist /orn:z)
•

multiple-value-progl fonn {{onn}* [Special fo nn]
mu 1 tip 1 e - val u e - pro 9 1 evaluates the first fonn and saves all the values produced by that fonn.

It then evaluates the other fonns from left to right, discarding their values. The values produced by

the firstform are returned by multiple-value-prog1. See progl (page 72), which always

returns a single value.

multiple-value-bind ({var}*) values-jonn {declaration}* f/onn}* [Macro]
The values-fonn is evaluated, and each of the variables var is bound to the respective value returned

by that fonn. If there are more variables than values returned, extra values of nil are given to the

remaining variables. If there are more values than variables, the excess values are simply discarded.

•

•

The variables are bound to the values over the execution of the fonns, which make up an implicit •

progn.
Compatibility note: This is compatible with Lisp Machine LISP.

, ..

CONTROL STRUCTURE 91

For example:

(multiple-value-bind (x) (floor 5 3) (list x» => (1)
(multiple-value-bind (x y) (floor 5 3) (list x y» => (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y z»

=> (1 2 nil)

mul t ipl e-val ue variables form [A-facro]

The variables must be a list of variables. The form is evaluated, and the variables are set (not

bound) to the values returned by that form. If there are more variables than values returned, extra

values of nil are assigned to the remaining variables. If there are more values than variables, the

excess values are simply discarded.

Compatibility notc: This is compatible with I.isp Machine LIsP.

mu 1 tip 1 e - val ue always returns a single value, which is the first value returned by form, or nil

if fonn prqduces zero values.

7.9.2. Rules for Tail-Recursive Situations

It is often the case that the value of a special form is defined to be the value of one of its sub-forms. For

example, the value of a cond is the value of the last form in the selected clause. In most such cases, if the

sub-form produces multiple values, then the original form wi11 also produce all of those values. This

passing-back of multiple values of course has no effect unless eventually one of the special fonns for receiving

multiple values is reached.

To be explicit, multiple values can result from a special fonn under precisely these circumstances:

• eva 1 (page 219) returns multiple va.1ues if the form given it to evaluate produ~s m1Jltiple values.

'. apply (page 71)? funcall (page 71), and multipie-.valu?-call (page 90), pas~ back

multiple values from the function applied or called.

• When a lambda-expression is invoked, the function passes back multiple values from the last form

of the 1 ambda ~ody (which is an implicit progn).

• Indeed, progn (page 72) itself passes back multiple values from its last subfonn,' as does any

construct some part of which is defined to be an "implicit progn"; these include progv (page

75), let (page 73), let* (page 74), when (page 77), unless (page 77), case (page 78),

typecase (page 78), multiple-value-bind (page 90), multiple-value (page 91),

catch (page93),andcatch-all (page 93).

• mu 1 tip 1 e - val u e - pro 9 1 (page 90) passes back multiple values from its first sub form.

However, prog 1 (page 72) always returns a single value.

• unwi nd-protect (page 94) returns multiple values if the form it protects docs.

92 COMl'vtON I.ISP REFERENCE MANUAL

• catch (page 93) returns multiple values if the result form in cl throw (page 95) exiting from

such a catch produces multiple values.

• cond (p<lge 76) passes back multiple values from the last subform of the implicit progn of the

selected clause. I f, however, the clause selected is a singleton clause, then only a single value (the

non-n i 1 predicate value) is returned. This is true even if the singleton clause is the last clause of

the con d. It is nol permitted to trcat a final clause" (x)" as being the same as .. (t x)" for this

reason: the latter passes back multiple ~alues from the form x.

• if (page 77) passes back multiple values from whichever subform is selected (the lhen fOlm or

the else form).

• an d (page 58) and or (page 59) pass back multiple values from the last subform, but not from

subforms other than the last.

• b 1 oc k (page 79) passes back multiple values from its last subform when it exits normally. If

return-from (page 79) is used to terminate the block prematurely, then return-from

passes back multiple values from its subform as the values of the terminated block. Other

constructs that create implicit blocks, such as do (page 80), dol i st (page 84), dot imes (page

84), prog (page 87), and prog* (page 87), also pass back multiple values specified by

return-from (or return (page 79». In addition, do passes back multiple values from the last

form of the exit clause, exactly as if the exit clause were a con d clause. Similarly, do 1 is t and

dot imes pass back multiple values from the resultfonn if that is executed.

Among special forms that never pass back multiple values arc s e tq (page 64), mu 1 tip 1 e - val u,e (page

91), and pro 9 1 (page 72). A .good way to force only one value to. be returned from a form x is to write

(values x).

The most important rule about multiple values is:

No matter how many values a form produces,
if the form is an argument form in a function c,lll,

then exactly ONE value (the first one) is used.

For exaruple, if you write (con s (f 00 . x)), then con s will receive exactly one argument (which is of

course an error), even if foo returns two values. To pass both values from foo to cons, one must use a

special form, such as (mu1 tip 1 e -val ue - c a 11 # t con s (foo x». In an ordinary function call, each

argument' form produces exactly one argument; if such a form returns zero values, nil is used for the

. argumen~ and if In ore than one value, all but the first are discarded. Similarly, conditional constructs that test

the value of a form will use exactly one value (the first) from that form and discard the rest, or use n i 1 if zero

values are returned.

•

CONTROl, STRUCrURE 93

7.10. Dynamic Non-local Exits

COMMON I -ISP provides a facility for exiting from a complex process in a non-local, dynamically scoped
manner. There are two classes of special forms for this pUrpl)Se, called calch forms and throw forms, or simply
catches and throws. A catch form evaluates some subforms in such a way that, if a throw form is executed
during such evaluation, the evaluation is aborted at that point and the catch form immediately returns a value
specified by the throw. Unlike block (page 79) and return (page 79), which allow for so exiting a til ock
form from any point lexically within the body of the block, the catch/throw mechanism works even if the
throw form is not textually within the body of the catch form. The throw need only occur within the extent
(time span) of the evaluation of the body of the catch. This is analogous to the distinction between
dynamically bound. (special) variables and lexically bound (local) variables.

7.1 0.1. Catch Forms

catch tag {fOlm}* [Special fonn]

The cat c h special fonn is the simplest catcher. The lag is evaluated first to produce an object that
names the catch; it may be any LISP object. Thefonns are evaluated as an implicit progn, and the
results of the last form are returned, except that if during the evaluation of the forms a throw should
be executed, such that the tag of the throw matches (is eq to) the tag of the catch, then the
evaluation of the forms is aborted and the results specified by the throw are inulledi'-1:tely returned
from the cat c h expression.

The tag is used to match up throws with catches (using eq, not eq1; therefore numbers and
characters should not be used as catch tags). (c ate h ' f 00 form) will catch a (t h row .' f 00

fonn) but not a (throw 'bar form). It is an error if throw is done when there is nO,suitable
cat c h (or one of its variants) ready to catch it.

catch-all catch-function {fonn}* .
unwi nd-all catch-function {form}*

•
[Special fonn]
[Special form]

catchall behaves roughly like catch, except that instead ofa tag, a catch-function is provided.
If no throw occurs during the evaluation of the forms, then this behaves just as for c a tc h:. the

catchall form returns what is returned from evaluation of the last of the forms. catch-all
will catch any throw not caught by some inner catcher, however; if such a throw occurs, then the
function is called, and whatever it returns is returned by c a tc h - a 11. The catch-function will get
one or more arguments; the first argument is always the throw tag, and the other arguments arc the
thrown results (there may be more than one if the result form for the throw produces multiple
values),

The cat c h - a 11 is not in force during execution of the catch-function. If a throw occurs within the
catch-junction, it will throw to some catch exterior to the cat c h - a 11. This is useful because the
catch-function can examine the tag, and if it is not of,interest can relay. the throw.

" ,

94 COMMON LISP REFERENCE MANUAL

(catch-all #'(lambda (tag &rest results)
(caseq tag ; Check tag.

(win (values-list results» ;Ifwin,returnresults.
(lose (cleanup) ; Iflose,c1ean up

(fer r 0 r " Los e los e ! " » ; and signal an error.
(otherwi se ; Otherwise relay throw.

(throw tag (values-list results»»)
(determine-win-or-lose»

Note that an attempt to use go (page 89) or return-from (page 79) to exit from a catch-all

will also be trapped by the catch-jullction; the tag given to the catch function will be some internal

implementation-dependent object that can nevertheless be given to th row to continue the go or

return-from operation.

u nw in d - all is just like cat c h - a 11 except that the catch-junction is always called, even if no

throw occurs; in that case the first argument (the "tag") to the catch-juJlction is nil, and the other

arguments are the results from the last ofthejorms. Often unwi nd-protect is more suitable for

a given task than u nw in d - all, however; the choice should be weighed for any particular

application.

Compatibility note: In MAcIJSP, ago from within a MAclJSP ca'tchall (note the different spelling) quietly
breaks up the cat c hall frame without invoking the cat c hall function, which means that it catches all
throws but not all exits! In COMMON LISP, c a tch- a 11 traps all attempts to exit.

unwi nd-protect protected-form {cleanup-jomz}* [Specialjorm]
Sometimes it is necessary to evaluate a form and make sure that certain side-effects tElke place after

the form is evaluated; a typical example is:

(progn (start-motor)
(drill-hole)
(stop-motor»

"
The non-local exit facility of Lisp creates a situation in which the above code won't wt>fk, however:

it d rill - h ole sh'ould do a throw to a catch that is outside of the Pr:o g n form (perhaps ~ecause
the drill bit broke), then (s top-motor) will never be evaluated (and the motor will presumably

be left running). This is particularly likely if d rill - h ole causes a LISP ,error and the user tells the

error-handler to give up and abort the computation. (A possibly more practical example might be:

(prog2 (opan-a-fila)
"(pro c e s s - f i 1 e)
(close-the-file»

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the above program to work, it can be rewritten using unwi nd-protect as

follows:

(unwind-protect .
(progn (start-motor)

(drill-hole»
(stop-motor»

If drill-hole does a throw that attempts to quit out of the unwind-protect, then

(s top-motor) will be executed.

•

•

•

CONTROL STRUCTURE 9S

As a general rule, unwi nd-protect guarantees to execllte all the cleanup-forms before exiting,
whether it terminates normally or is aborted by a throw of some kind. unwi nd-protect returns

whatever results from evaluation of the protected-form, and discards all the result~ from the
cleallup-jorms.

7. t 0.2. Throw Forms

th row tag result [Special jo rm]
The th row special form is the only explicit thrower in COMMON LISP. (However, errors may cause
throws to occur also.) The tag is evaluated first to produce an object called the throw tag. The most
recent outstanding catch whose tag matches the throw tag is exited. Some catches, sllch as a
c.a tc h - all, will match any throw tag; a ca tc h matches only if the catch tag is eq to the throw
tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any
intervening unwi nd-protect cleanup code is executed. The result fonn is evaluated before the
unwinding process commences, and whatever results it produces are returned from the catch (or
given to the catch-junction, if appropriate).

If there is no outstanding catch whose tag matches the throw tag, no unwinding of the stack is
performed, and an error is signalled. When the error is signalled, the outstanding catches and the
. dynamic variable bindings are those in force at the point of the throw.

Implementation note: These requirements imply that throwing should typically make two passes over the
control stack. In the first pass it simp ly searches for a matching catch. In this search every cat c h,
.catch -a 11. and unwi nd- a 11 must be considered. but every unw i rl d -p r otec t·should be ignored. On the
second pass the stack is actually unwound, one frame at a time. undoing 'dynamic bindings and outstanding
u nw in d - pro tee t constructs in reverse order of creation until 'the matching catch is reached.

96 COMMON USP RFFERENCE MANUAL

•

•
•

•

•

"

•

Chapter 8

Macros

The COMMON LISP macro facility allows the user to define arbitrary funclions that convert certain LISP

forms into different forms before evaluating or compiling them. This is done at the S-expression level, not at

the character-string level as_ in most other languages. Macros are important in the writing of good code: they

make it possible to write code that is clear and elegant at the user level, but that is converted to a more

complex or more efficient internal form for execution.

When eva 1 (page 219) is given a list whose car is a symbol, it looks for local definitions of that symbol (by

f1 et (page 75),1 abel s (page 75), and macrol et (page 75»; if that fails, it looks for a global definition.

If the definition isa macro definition, then the original list is said to be a macro call. Associated with the

definition will be a function of one argument, called the expansion jUllction. This function is called with the

entire macro call as its one argument; it must return some new LISP form, called the expansion of the macro

call. This expansion is then evaluated in place of the original fonn.

When a function is being compiled, any macros it contains are expanded at compilation time. This means

that a macro defipition must be seen by the compHer before the first 'use of the macro.' Mactos car\not be used

as functional argume~ts to such things as ap ply (page 71), fune a 11 (page 71), or map (page 163); in such

situations: the list representing .the "original macro call" does not exist, sp the expansion functio~ would not

know what to work on.

8.1. Defining Macros

macro name (var) {declaratioll}* {form}* [Nfacro]

The primitive special fonn for establishing a global macro definition is macro. Note, however, that

the usc of macro is often very awkward, and it is preferable to use defmacro (page 99) in almost

all circumstances. A call to macro has the following fonn:

(mac ro name (var) . body)

This is very siimilar to a defun fonn: name is the symbol whose macro-definition we are creating,

vaT is a single required parameter name that is bound to the elltire calling form, and body is the

body of the expansion function, which is executed as an implicit progn. The last form in body

produces, as its value, the form that will be passed back to e val as the macro expansion; the

- 97-

98 COMMON LISP REFERENCE MANUAL

expansion is then evaluated in place of the macro call. (Note that the expansion could itself be a

macro call, and the cycle would repeat.)

The if (page 77) construct could be defined in terms of con d (page 76) as a macro:

(macro if (call-form)
t(cond (,(cadr call-form) ,(caddr call-form»

(t ,(cadddr call-form»»

If the above form is executed by the interpreter, it ·will cause the definition of the symbol if to be a macro .

associated with which is a one-argument expansion function equivalent to:

(lambda (calling-form)
(list 'cond

(list (cadr calling-form) (caddr calling-form»
(list 't (~adddr calling-form»»

(The lambda-expression is produced by the ma c r 0 construct. Thc calls to 1 is t are the (hypothetical) result

of the backquotc (t) macro character and its associated commas.)

Now, if ev a 1 encounters

(if (null fool bar (plus bar 3»

this will be cxpanded into

(cond ((null fool bar)
(t (plus bar 3»)

and e val tries again on this new form.

As you can sec in the above example, the main disadvantage of using ma c r 0 to definc macros is that the

user must decomposc thc' argument into its constituents using car and cdr. Ina complcxmacro, this process

is confusing and error-prone. ,The use of defmacro' (page 99) allcviates' this problem. It should also be

~lear that the backquotc facility (page 237) is l/ery useful in writing macros, 'since the form to be returned is

normally a complex list structure, mostly constant but with a few evaluated f01111s scatt-crcd thr.ough the

structure.

Note that when ma c r 0 is encountered by the compiler, the normal action is to add thc definition to the

compilation environment and also to place a compiled version of the expander-function into the load file, so

that the macro will be defined at nmtime as well as during the current compilation. If the macro is to be used

only during the current compilation and not at nlntime, this can be achieved by using the eva 1 -wh en (page

49) construct:

(eval-when (compile)
(macro name (var)

body))

•

•

•

MACROS 99

defmacro name lallibda-list {declaratiol1 I doe-slrillg}* {jbrm}* [Alaero]

defmacro is a macro-defining macro that, unlike maCI'O, decomposes the calling form in a more
elegant and useful way. defmacro has the same syntax as defun (page 47): name is the symbol

whose macro-definition we arc creating, varlis! is similar in form to a lambda-list, and body is the

body of the expander function. If we view the macro call as a list containing a function name and
some argument forms, in effect the expander function and the list of (unevaluated) argument forms
is given to ap ply (page 71). The parameter specifiers arc processed as for any lambda-expression;
using the macro-call argument forms as the arguments. Then the body forms are evaluated as an
implicit progn, and the value of the last form is returned as the expansion of the macro call.

] f the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least one fhrm is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type funct ion; see documentat ion (page

301).

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords
&optional, &rest, &key, &allow-other-keys, and &aux. For &optional and &key
parameters, initialization fonns and "supplied-p" parameters may be specified, just as for de fun.
Two additional tokens are allowed in dejinaero variable lists only:

&body This is identical in function to &res t, but it informs certain pretty-printing and
editing functions that the remainder of the fonn is treated as a body, and should
be indented accordingly. (Only one of&body or &res t may be used.)

&whole This is followed by a single variable that is bound to the entire macro call form;
this is the same value that the single parameter in a rna G r 0 definition form
would receive.

Compatibility note: Some LISP implementa.tions, nota.bly MAciJISP and Lisp Machine LISP, allow a
"destructuring" pattern to be used instead of, or mixed with, the defucn-like arglist specified here. Prior to the
appearance of &op tiona 1, the pattern may co~tain not only top-level symbols, but an arbitrary list structure
built from cons cells and symbols: this is matched against the macro call cell by cell, producing a binding
wherever the defmacro pattern contains a symbol. This is not supported by COMMON LISP: it does not
support dcstructuring in defun, and defmacro needs to parallel defun as closely as possible to minimize
confusion in what is already a difficult area for new users. Some COMMON LISP implementations may choose to
provide desuuctu ring de f mac r 0 as an ex tension.

Using defmacro, a definition for three-argument if 'in terms of cond would look like this:

(defmacro if (pred result else-result)
'(cond (.pred .result)

(t ,else-result»)

This would produce the same macro-definition for if as the definition using rna c r ° above. If if
is to accept two or three arguments, with the e 1 s e - res u 1 t defaulting to nil, as in fact it does in
COMMON LISP, the definition might look like this:

(defrnacro if (pred result &optional (else-result 'nil»
'(cond (.pred ,result)

(t ,else-result»)

If the compiler encounters a defmacro, the normal effect is that same as for a macro form: the

100 COMMON I ,1SP REFERENCE MANUAL

new macro is added to the compilation environment, and a compiled form of the expansion _
function is also added to the olltput file so that the new macro will be operative at runtime. If this is .,
not the desired effect, the defmacro form can be wrapped in an eva1-when.

See also ma c r ole t (page 75), which establishes macro definitions over a restricted lexical scope.

8.2. Expanding Macro Calls

macroexpand form &rest environment [Function]

macroe x pand -1 form &re s t environment [Fullction]

If form is a macro call, then macroexpand-1 will expand the macro call once and return two
values: the expansion and t. If form is not a macro calI, then the two values form and nil are

returned.

A form is considered to be a macro call only if it is a cons whose car is a symbol that names a macro.
The environment is similar to that used within the evaluator and made visible via eva 1 hook (page
220); any local macro definitions established within the environment by· ma c r ole t (page 75) will

be considered. If only fotln is given as an argument, the environment is null, and only global macro
definitions (as established by de fmac ro (page 99» will be considered.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that a symbol
names a macro, it obtains the expansion function for that macro. The value of the variable
macroexpand~hook (page 100) is then called as a function of two arguments: the expansion
function and the form. The value returned from this call is taken to be the expansion of the macro
call. The initial value of *macroexpand-hook* is funca11 (page 71), and the net effect is to
inv9ke the ex~ansion function, giving it the, f01m as its single argument. (The p-frrpose of
macroexpand-hook is to facilitate various techniques for improving interpretation speed by

caching 'macro expansions:) ,

macroexpand is similar to macroexpand-l, but repeatedly expands form until it is no longer a
macro call. (In effect, macroex pan d simply calls macroexpan d -1 repeatedly until the second
value returned is nil.) A second value of tor nil is returned as for macroexpand-l, indicating
whether the original form was a macro call.

* mac roe x pan d - h 00 k * [Variable]

. ' .

The value of *macroexpand-hook* is used as' the expansion interface hook by
macroexpand-1 (page 100) .

•

Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All

declarations are completely optional and correct declarations do not affect the meaning of a correct program,

with one exception: spec i a 1 declarations do affect the interpretation of variable bindings and references,

and so must be specified where appropriate. All other declarations are of an advisory nature, and may be used

by the LIsP system to aid you by perfomling extra error checking or producing more efficient compiled code.

Declarations are also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such as a ty p e declaration), but

an implementation is not required to detect such errors (though such detection, where feasible, is to be

encouraged).

9.1. Declaration Syntax

de C 1 ar e {declaration-form}* [Special/ann]

A dec 1 are form is known as a aeclaration. Declarations may occur only at top level, er at the

beginning of ~e bodies of certain special forms; that is, a declaration not at top level 'may occur

pnly as a statement of such a special form, and all statements preceding it (if any) must also be

decl are forms (or possibly documentation strings, in· some cases). Declarations may occur in

lambda-expressions, and in the following forms:

def type (page 36) do 1 is t
de f un (page 47) dot i me s
defsetf (page 70) prog
1 et (page 73) pro.g*
let* (page 74) multiple-value-bind
fl et (page 75) macro
labels (page 75) defmacro
macrolet (page 75) locally
do (page 80) do-symbols
do* (page 80) do-all-symbol s

If a declaration is found anywhere else an error will be signalled.

(page 84)
(page 84)
(page 87)
(page 87)
(page 90)
(page 97)
(page 99)
(page 103)
(page'119)
(page 119)

It is permissible for a macro call to expand into a declaration and be recognized as such, provided

- 101-

102 COMi\'ION l.IS}> REFERENCE MANUAL

that the macro call appears where a declaration may legitimately appear.

Each declaraliol1-jbrm is a list whose car is a keyword specifying the kind of declaration it is.

Declarations may be divided into two classes: those that concern the bindings of variables, and

those that do not. Those that concern variable bindings apply only to the bindings made by the

special form at the head of whose body they appear. For example, in

(defun foo (x)
(declare (type float x» ...
(let ((x 'a» ...)
...)

the type declaration applies only to the outer binding of x, and not to the binding made in the 1 e t.
Compatibility notc: This is different from MAC LISP, in which type declarations arc pervasive.

If a declaration that applies only to variable bindings appears at top level, it applies to the dynamic

value of the variable. For example, the top-level declaration

(declare (type float tolerance»

specifics that the dynamic value of to 1 e ran ce should always be a floating-point number.

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code
in the body of the special form. As an example of a pervasive declaration,

(defun foo (x y) (declare (notinline floor» ...)

advises that everywhere within the body of f 00 the function f 100 r should not be open-coded, but

called as an out-of-line subroutine.

As a rule, code in any initialization forms used to compute initial values for bOlmd variables is not
affected by pervasive declarations in that special form, with one exception: lambda-list
initialization form~, which appear in lambda-expressions as well as defun (page 47), defmacro
(page 99), macro (page 97), deftype (page 36), and defsetf (page 70) fOITIls, are affected by
spec i a 1 declarations for variables not bound by that fonn; so is e\{ery initialization form in a

1 e t * except for the first initialization form. •

For example:

(de fun f 00 (x (y * p r inc i r c 1 e *)) ; This reference to * p r ; n c ; r c 1 e * is
(declare (special *princircle*» ; special because of this declaration .
. . .)

Any pervasive declaration made at top level constitutes a universal declaration, always in force

unless locally shadowed.

For example:

(declare (;n1;ne floor»

advises that f 100 r should normally be open-coded in-line by the compiler (but within f 00 it will

be compiled out-of-line anyway, because of the shadowing local declaration to that effect).

For example:

•

•

•

DECLARATIONS 103

(defun nonsense (k x)
(declare (type integer k»
(let ((j (faa k x»

(x (* k k»)
(declare (inline faa) (special x»
(faa x j»)

In this rather nonsensical example, k is declared to be of type in t e g e r. The in 1 in e declaration

applies to the inner call to f 00, but not to the one to whose value j is bound, because that is eode in

the binding part of the 1 e t. The s p e cia 1 declaration of x causes the 1 e t form to make a special

binding for x, and causes the reference to x in the body of the 1 e t to be a special reference.

However, the reference to x in the first call to f 0 0 is a local reference, not a special one.

Compatibility note: In MAd_IS? decl are does nothing in interpreted code. and is defined to simply evaluate
all the argument forms in the compilation environment. In COMMON LISP. decl are docs useful things for
both interpreted code and compiled code. and therefore arbitrary forms are not pem1itted within it. The tricks
played in MAClisp with dec 1 are are better done using e val -w hen (page 49).

1 oca 11 y {declaration}* {fonn}* [Alaero]

This special form may be used to make local pervasive declarations where desired. It does not bind

any variables, and so cannot be used meaningfully for declarations of variable qindings.

For example:

(locally (declare (inline floor»
(declare (notinline car cdr»
(optimize space)

(floor (car x) (cdr y»)

9.2. Declaration Forms
-.

Here is a list of valid declaration forms for use in decl are. A construct is said to be "affected" by a

declaration if it occurs within the s~opc of a declaration.

special

" .

(speci al var! var2 ...) declares that ali of the variables named are to be considered

special. This declaration affects variable bindings, but also pervasively affects references.

All variable bindings affected are made to be dynamic bindings, and affected variable

references refer to the current dynamic binding rather than the current local binding.

For example:

(defun hack (thing *mod*)
(declare (special *mod*»
(hack1 (car thing»)

(defun hack1 (?rg)
(declare (special *mod*»

(if (atom arg) *mod*

; The binding of *mod * is visible to
; hack 1, but not that of th i ng.

; Declare that references to *rnod *
; within hack 1 are special.

(cons (hack1 (car arg» (hack1 (cdr arg»»)

Note that it is conventional, though not required, to give special variables names that begin

104

type

type

ftype,

function

COM [\:\ON LISP REFERENCE MANUAL

and end with an asterisk.

This declaration docs l10t pervasively affect bindings unless it occurs at top level (this latter

exception arising from convenience and compatibility with MAC] JSP). I nner bindings of a

variable implicitly shadow a spec i a 1 declaration, and must be explicitly re-declarcd to be

special.

For example:

(dec 1 are (s p e cia 1 x» ; x is always special.
(defun example (x y)

(declare (special y»
(let ((y 3»

(print (+ y (locally (declare (special y» y»)
(let «(y 4» (declare (special y» (foo x»»

In the c.ontorted code above, the outermost and innermost bindings of yare special, and

therefore dynamically scoped, but the middle binding is lexically scoped. The two

arguments to + arc different, one being the value (which is 3) of the lexically bound

variable y, and the other being the value of the special variable named y (a binding of

which happens, coincidentally, to lexically surround it at an outer level).

(type type var! var2 ...) affects only variable bindings, and declares that the

specified variables will take on values only of the specified type. In particular, values

assigned to the variables by set q (page 64), as well as the initial values of the variables,

must be of the specified type.

(type var! var2 ...) is an abbreviation for (typ e type var! var2 ...). provided

that type is one of the symbols appearing in Table 4-1 (page 32).

(f ty P e type junclion-name-! junction-name-2 ...) declares' that the named functi~ns.

will be of the functional type type.

for example:

(declare (ftype (function (integer list) t) nth)
(ftype (function (number) float) sin cos»

(function name arglist result-type! resu!t-type2 ...) is entirely equivalent to

(ftype (function namearglist result-type! result-type2 ...) name)

but nlay be more convenient for some purposes.

For example:

(declare (function nth (integer list) t)
(function sin (number) float)
(function cos (number) float»

. The syntax mildly resembles that of de fun (page 47): a function name, then an argument

list, then a specification of results.

•

•

DECLARATIONS 105

in 1 i ne (in 1 in e fUllction I fUIlction2 ...) declares that it is desirable for the compiler to

open-code calls to the specified functions: that is, the code for a specified function should
be integrated into the calling routine, appearing "in line", rather than a procedure call
appearing there. This may achieve extra speed at the expense of debuggability (calls to
functions compiled in-line cannot be traced, for example). This declaration is pervasive.
Remember that a compiler is free to ignore this declaration.

notinline

ignore

optimize

(not i n 1 i ne functionl function2 ...) declares that it is undesirable to compile the
specified functions in-line. This declaration is pervasive. Remember that a compiler is free
to igno.re this declaration.

(ignore var! var2 ... varn) affects only variable bindings, and declares that the
bindings of the specified variables are never used. It is desirable for a compiler to issue a
warning if a variable so declared is ever referred to or is also declared special, or if a
variable is lexical, never referred to, and not declared to be ignored.

(opt imi ze (quality!' value!) (quality2 value2) ...) advises the compiler that each
quality should be given attention according to the specified corresponding value. A quality
is a symbol; standard qualities include s pee d (of the object code), s p ac e (both code size
and run-time space), safety (nm-time error checking), and compilation-speed
(speed of the compilation process). Other qualities may be recognized by particular
implementations. A value should be a non-negative integer, nonnally in the range 0 to 3.

The value 0 means that the quality is totally unimportant, and. 3 that the quality is
extremely important; 1 and 2 are intermediate values, with 1 the "normal" or "usual"
value. One may abbreviate "(quality 3)" to simply "quality". This declaration is
pervasive.

For example:

(defun often-used-subrouti~e (x y)
(declare (optimize (safety 2»)
(error-check'x y)
(hairy-setup x)
(locally

;; This inner loop really needs to burn.
(declare (optimize speed»
(do ((i 0 (+ i 1»

(z x (cdr z»)
((null z»

(declare (fixnum i»»)
declaration (declaration namel name2 ...) advisesthecompilerthateachnamejisavalidbut

non-standard declaration name. The purpose of this is to tell one compiler not to issue
warnings for declarations meant for another compiler or other program processor.

For example:

106 COMMON LISP REFERENCE MANUAL

(declare (declaration author target-language
target-machine»

(declare (target-language ada) (target-machine IBM-650»
(declare (author "Harry Tweeker"»

An implementation is free to support other (implementation-dependent) declaration forms as well. On the

other hand, a COMMON LISP compiler is free to ignore entire classes of declaration forms (for example,

implementation-dependent declaration forms not supported by that compiler's implementation!), except for

the de c 1 ar a t i on declaration form. Compiler imp1cmentors are encouraged, however, to program the

compiler by default to issue a warning if the compiler finds a declaration form of a kind it never uses. Such a

warning is required if a declaration form is not one of those defined above and has not been declared in a

de c 1 ar at i on declaration.

9.3. Type Declaration for Forms

Frequently it is useful to declare that the value produced by the evaluation of some fOlm will be of a

particular type. Using dec 1 are one can declare the type of the value held by a bound variable, but there is

. no easy way to declare the type of the value of an unnamed form. For this purpose the the sp.ecial form is

defined: (t h e type fonn) means that the value of form is declared to be of type type.

th e value-type form [Special fonn]

The form is evaluated; whatever it produces is returned by the th e form. In addition, it is an error

if what is produced by the fonn does not conform to the data type specified by value-type (which is

not evaluated). (A given implementation mayor may not actually check for this error.

Implementations are encouraged to make an explicit error check when running interpretively.).ln

effect, this declares that the user undertakes to guaratitee that the values of the form will always be . ,

of the specified type.

For example:

(the string (concatenate x y»
(the integer (+ x 3»
(+ (the integer x) 3)
(the (complex rational) (* z 3»
(the· (u n s i g ned - by t e 8) (log and x

; concatena te will produce a,string.
; The result of + will be an integer.
; The value of x will be an integer.

mask»

The val u e s type specifier may be used to indicate the types of multiple values:

" ,

. (the (values integer integer) (floor x y»
(the (values string t) (gethash the-key t~e-string-table»
Compatibility note: This construct is borrowed from the INTERLIsp DECL package: INTER Lisp, however, allows
an implicit pro 9 n after the type specifier rather than just a single form. The MAC LISP fix n um- ide n t ity
and f1 onum- i den t i ty constructs can be expressed as (the f i xnum x) and (the sing 1 e-fl oat x) .

•

•
-.

•

Chapter 10

Symbols

A LISP symbol is a data object that has three user-visible components:

• The property list is a list that effectively provides each symbol with many modifiable named

components.

• The print name must be a string, which is the sequence of characters used to identify the symbol.

Symbols are of great use because a symbol can be located given its name (typed, say, on a

keyboard). It is ordinarily not permitted to alter a symbol's print name.

• The package cell must refer to a package object. A package is a data structure used to locate a

symbol given its name. A symbol is uniquely identified by its name only when considered relative.

to a package. A symbol may be in many packages, but it can be owned by at most one package.

The package cell points to the owner, if any. .

A symbol may.actually have other comp.onents as well ~or use by the impleITJentation: One of the more

important uses of symbols is as names for program variables; it is frequently desirf,lble for the implementor to

use certain components of a symbol to impIcment the semantics of variabIcs. However, there are several . -
possible implementation strategies, and so such possible components are not described here.

10.1. The Property List

Since its inception, LISP has associated with each symbol a kind of tabular data structure called a property

list (plist for short). Aproperty list contains zero or more entries; each entry associates with a symbol (called

the indicator) a LISP object (called the value or, sometimes, the property). There are no duplications among

the indicators; a prop~rty-list may only have one property at a time with a given name. In this way, given a

symbol and an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference is that a property 'list is an

object with a unique identity; the operations for adding and removing property-list entries are destructive

operations that alter the property-list rather than making a new one. Association lists, on the other hand, are

normally augmented non-destlUctively (without side effects), by adding new entries to the front (see aeon s

- 107-

108 COMMON LISP REFERENCE MANUAL

(page 186) and p air 1 is (page 186».

A property list is implemented as a memory cell containing a list with an even number (possibly zero) of

clements. (Usually this memory cell is the property-list cell of a symbol, but any memory cell acceptable to

set f (page 66) can be llsed if certain special forms are lIsed.) Each pair of elements in the list constitutes an

entry; the first item is the indicator and the second is the value. Because property-list functions are given the

symbol and not the list itself, modifications to the property list can be recorded by storing back into the

property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Properties are created by using get (page

108) within a set f (page 66) form.

COMMON LISP does not use a symbol's property list as extensively as earlier LISP implementations did.

Less-used data, such as compiler, debugging, and documentation information, is kept on property lists in

COMMON LISP.

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on
its property list. 'Inc value cell was introduced into MAclJSP and INi'ER LISP to speed up access to variables; similarly for the
print-name cell and function cell (MAciJSP docs not usc a function cell). Recent LIsp implementations such ac; SPICE LIsp,
Lisp Machine LISP, and NIL have introduced all of these cells plus the package cell. None of the MAC LIsp system property

names (expr, fexpr, macro, array, subr, 1 subr, fsubr, and in former times value and pname) exist in COMMON

LISP.

Compatibility note: In COMMON Lisp. the not jon of "disembodied property list" inlroduced in MACLlsP is eliminated. It

tended to be used for rather kludgy things. and in Lisp Machine LIsp is often associated with the usc of locatives (to make it
"off by one" for searching alternating keyword lists). In COMMON LISP special set f -like property list functions are
introduced: get f (page 109), put f (page 109), and rem f (page 110). -

get symbol indicator &option~l default [Function]

get searches the property list of symbol for an indicator e q to indicator. If one is found, then the

corresponding value is returned;. otherwise default is rcturned. If default is nqt specified, then nil

is used for default. Notc that there is no way to distingui~ an absent property from one whose

value is default.

(get x y) <=> (getf (symbol-plist x) y)

Suppose that the propertylistoffoo is (bar t baz 3 hunoz "Huh?"). Then,forexample:

(get 'foo 'baz) => 3
-(get 'foo 'hunoz) => "Huh?"
(get 'foo 'zoo) => nil

??? Query: In MAC LISP, get of a non-symbol quietly returns nil. What about COMMON LISP?

set f (page 66) may be used with ge t to create a new property-value pair, possibly replacing an

old pair with the same property name.

For example:

(get 'clyde 'species)' => nil
(setf·(get 'clyde 'species) 'elephant) => elephant
andnow (get 'clyde 'species) => elephant

•

SYMBOLS 109

remp r 0 p symbol indicator [FUllctioll]
This removes from symbol the property with an indicator e q to indica/or, by splicing it out of the

property list. It returns nil if no sLlch property was fOLlnd, or non-n i 1 if a property was found.

(remprop x y) <=> (remf (symbol-plist x) y)

For example:

If the property list of f 00 was
(color blue height 6.3 near-to bar)

then
(remprop 'foo 'height) => t

and foo's property list would have been altered to be
(color blue near-to bar)

symbol-pl ist symbol [Function]

This returns the list that conta.ins the property pairs of symbol; the contents of the property list cell

are extracted and returned.

Note that using ge t on the result of symb 0 1 - P 1 is t does not work., One must give the symbol

itself to get, or usc the function getf (page 109).

set f (page 66) may be used with symbo 1 - P 1 is t to destructively replace the entire property list
of a symbol. Care must be taken that the new property list is in fact a list of even length.

ge t f place indicator &op t i on a 1 default [Function]

geifsearches the property list stored in place for an indicator e q to indicator. If one is found, then
the corresponding value is returned; otherwise default is returned. If default is not specified, then
n i~· is used for default. Note that there is no way to distInguish an absent property from' one Whose,

< •

value'is defaulL. Often place is computed from a generalized variable acceptable to set f (page

66). &e get (page 108).

set f (page 66) may be used with get f, in which case the place must indeed be acceptable as a

place to set f. The effect is to perform a put f operation.

put f place il1dicat~'" newvalue [Macro]
This causes the property list stored in place to have a property whose indicator is indicator and
whose value is newvalue. If the property list already already had a property with an indicator e q to
indicator, then the value previously associated with that indicator is removed from the property list

and replaced by newvalue. The property list is destructively altered by using side effects. After a
.' 'p u t f is done, (g e t f place indicator) will return value. put r' returns the new value. The form

place may be any generalized variable acceptable to set f (page 66).

110 C01VIMON LISP REFERENCE MANUAL

remf place indica/or [J\,Iacro]

This removes from the property list stored in place the property with an indicator eq to indicator,

by splicing it out of the property list. It returns nil if no such property was found, or t if a

property was found. The form place may be any generalized variable acceptable to set f (page

66). See remprop (page 109).

ge t - P rope r tie s place indicator-list [Function]
get-propert i es is like getf (page 109), except that the second argument is'a list of indicators.

get-properties searches the property list stored in place for any of the indicators in

indicator-list, until it finds a property whose indicator is one of the elements of indicator-list.
Normally place is computed from a generalized variable acceptable to set f (page 66).

get-properties returns three values. The third value is t ifany property was found, in which

case the first two valties are the indicator and value for some property whose indicator was in

indicator-list; if no property was found, all three values are nil.

When more than one of the indicators in indicator-list is present in the property list, which one

get-propert i es returns depends on the implementation. All that is guaranteed is that if there

are one or more properties whose indicators are in indicator-list, some one such property will be

chosen and returned.

10.2. The Print Name

Every symbol has an associated string called the ·print-name. This string is used as the external

representation of the symbol: if the' characters in the string are, typed in to read (with suitable escape

conventions for certain characters), it is inter:Preted as a reference to that symbol (if it is interned); and if the

symbol is pri~ted" p r i n t types out the print-name. For mQre information, see the section on the reader (see .

section 22.i.l; page 230) and printer (see section 22.1.6, page 248).

symbo1-print-name sym [Fullction]

This returns "the print-name of the symbol sym.

For example:

(symbo1-print-narne 'XYZ) => "XYZ"

It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a

modification may confuse the function read (page 253) and the package system tremendously.

s arne p n arne p syml, sym2 [Function]

This predicate is true if the two symbols syml and sym2 have e qua 1 print-names; that is, if their

printed representation is the same. Upper and lower case letters are considered to be different.

Compatibility note: In Lisp Machine LISP, ,samepnamep normally considers upper and lower case to be the
same. However, in MAcLIsp, which originated this function, the cases are distinguished; Lisp Machine LISP

•

•

•

SYMBOl,S 111

introduced lhe incompatibility. COMMON LISP is compatible with MACLISP here.

I f either or both of the arguments is a string instead of a symbol, then that string is used in place of

the print-name. samepnamep is useful for determining if two symbols would be the same except

that they are not in the same package.

For example:

(samepnamep 'xyz (make-symbol "XYZ")) istrue
(s amep n amep 'xyz (mak e - symbo 1 "WXY"» is false

10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one that is indexed by its
print-name in a catalog called a package. Every time anyone asks for a symbol with that print-name, he gets
the same (eq) symbol. Every time input is read with the function read (page 253), and that print-name
appears, it is read as the same symbol. This property of symbols makes them appropriate to use as names for
things and as hooks on which to hang penpanent data objects (using the property list, for example; it is no
accident that symbols are both the only LISP objects that are cataloged and the only LISP objects that have
property lists).

Interned symbols are normally created automatically: the first time someone (such as the function read)
asks the package system for a symbol with a given print-name, that symbol is automatically created. The
function to use to ask for an interned symbol is in te r n (page 117), or one of the functions related to
intern.

Although interned symbols are the most commonly used, they will not be discussed further here. For more
information, see chapter 11 (page 115).

An uninterned symbol is a symbol used simply as a data object, wi,th no special cataloging (it belongs to no
particular package). An uninterned symbol print<; in the same way as an interned symbol with the same
print-name, but cannot be read back in. The following are some functions for creating uninterned symbols.

mak e - symb 0 1 print-name [Function]
(make-symbol print-name) creates a new, uninterned symbol, whose print-name is the string
print-name. The value and function bindings will be unbound and the property list will be empty.

The string actually installed in the symbol's print-name component may be the given string

print-name or may be a copy of it, at the implementation's discretion. The user should not assume
that (symbol-print-name (make-symbol x» is eq to x, but also should not alter a string
once it has been given as an argument to make-symbol.

Implementation note: An implementation might choose, for example, to copy the string to some read-only
area, in-the expectation that it will never be altered.

Compatibility note: Lisp Machine LISP uses the second argument for an odd flag related to areas. It is unclear
what NIL docs about this.

112 COMMON LISP REFERENCE MANUAL

copy-symbol sym&opt ional copy-props [Function]

This returns a new uninlerned symbol with the same print-name as SYIIl. If copy-props is notl-n i 1,

then the initial value and function-definition of the new symbol will be the same as U10se of sym,

and, the property list of the new symbol will be a copy of sym's. If copy-props is nil (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.

gensym &optional x [Function]
gensym invents a print-name. and creates a new symbol with that print-name. It returns the new,
uninterned symbol.

The invented print-name consists of a prefix (which defaults to ItG It), followed by the decimal
representation ofa number. The number is increased by one every time gensym is called.

If the argument x is present and is an integer, then x must be non-negative, and the internal counter
is set to x for future use; otherwise th'"c internal counter is incremented. If x is a string, then that
string is made the default prefix for this and future calls to ge n sym. After handling the argument,
gensym creates a symbol as it would with no argument.

For example:

(gensym) =>G7
(gensym "FOO-It) => FOQ-8
(gensym 32) => FOO-32
(gensym) => FOO-33
(gensym "GARBAGE-") => GARBAGE-34

gensyrn is usually used to create a symbol that should not normally be seen by the user, and whose
print-name is unimportant, except to allow easy distinction by eye between two such symbols. The
optional, argument is rarely supplied. The name comes from "generate symbul", and the symbols
produced by it arc often called "gensyms".

If it is cnlcial that no two generated symbols have the same print name (rather than merely being
, . .

distinct data structures), or if it is desirable for the generated symbols to be interned, tlien the
function gentemp (page 112) may be more appropriate to use.

gentemp prefix &option~l package [Function]
gentemp, like gensym (page 112), creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern (page 117» in the package (which defaults to
the current package; see *package* (page 117». gentemp guarantees the symbol will be a new
one not already existing in the package; it docs this by using a counter as 9 ens ym docs, but if the
generat~d symbol is not really new then the process is repeated until a new one is created. There is
no provision for resetting the gentemp counter. Also, the prefix for genternp is not remembered
from one call to the next; if prefix is omitted, the default prefix T is used.

•

•
-.

•

SYMBOLS 113

symbo 1 - pack age sym [Fullction]

Given a symbol Sy111, symbol-package returns the contents of the package cell of that symbol.

This will be a package ohject or nil.

keywordp symbol [Function]

The argument must be a symbol. The predicate keywor dp is tnlc if thc symbol is a keyword (that

is, belongs to the keyword packagc).

114 COMMON LISP REFERFNCE MANUAL

••
•

•

Chapter 11

Packages

One problem with most LIsp systems is the use of a single name space for all symbols. In large LISP

systems, with modules written by many different programmers, accidental name collisions become a serious

problem. In the past, this problem has been. addressed by the use of a prefix on each symbol name in a

module or by some sort of clumsy "obarray" switching to keep the names separated.

COMMON LISP addresses this problem through the package system, derived from an earlier package system

developed for Lisp rvlachine LISP [15]. The proper design of a package system for LISP is still a subject of

research; CO~lMON LISP therefore defines only a minimal facility purposely designed to accommodate

experimentation with extensions by implementors. Certain desirable features and facilities have been

omitted. What is defined here is intended to be just enough to allow modules in the yellow pages library to

hide most internal symbols and make names of external functions and variables visible to the user, without

making any commitment on such issues as nested packages and hierarchical inheritance.

A package is a data stnlcture that establishes a mapping from print names (strings) to symbols. (The
.. . ..

package thus' replaces the "oblist" 9r "obarray" of earlier LISP systems.) A symbol may appear in many

packages, but will always have the same. name. On the other hand, the same name may refer to different

symbols in different packages: No two symbols'in the same package may have the same nam~.

The value of the special variable *package* (page 117) must always be a package object or the name ofa

package object; this is referred to as the current package. Each package is named by a symbol.

When the LISP reader has, by parsing, determined a string of characters thought to name a symbol, that

name looked up in the current package. If the name is found, the corresponding symbol is returned. If the

name is not found tpere, a new sYlnbol is created fur it and is placed in the current package as an internal

symbol; if the name is seen again while this same package is current, the same symbol will then be returned.

When a new symbol is created, a pointer to the package in which it is initially placed is stored in the package

cell of that sy~bol; the package is said to be the symbol's home package, and is said to own the symbol.

(Some symbols arc not owned by any package; they are said to be uninlerned.)

Often it is desirable, when typing an expression to be read by the LISP reader, to refer to a symbol in some

package other than the current one. This is done through the use of a qualified name, which consists of the

package name, followed by a colon, followed by the print name of the symbol. This causes the symbol's name

- 115-

116 COMMON LISP REFERENCE MANUAL

to be looked up in the specified package. For example, "editol':buffer" refers to the syrnbol named
"buffer" in the package named "ed i tor", regardless of whether there is a symbol named "buffer" in
the current package. If "b u ff e 1''' does not exist in package "ed i to r ", it is created there as a new internal
symbol. (If, on the other hand, there is no package named "ed i tor", an error is signal1ed.)

The package named keyword contains all keyword symbols. Because keyword symbols are used so
frequently, COMMON LISP permits "keyword: foo" to be abbreviated to simply": foo". (The keyword

package is also treated specially in that whenever a symbol is added to.the keyword package, the symbol is
automatically declared to be a constant and is made to have itself as its value. This is. why every keyword

evaluates to itself.)

All other uses of colons within names of symbols are not defined by COMMON LISP, but are reserved for
experimentation by implementors; this includes names that end in a colon, contain two or more colons, or
consist of just a colon.

Each symbol contains a package slot that is used to record the home package of the symbol. When the
symbol is printed, if it is in the keyword package then it is printed with a preceding colon; otherwise, if it is
present in the current package, it is printed without any qualification; otherwise, it is printed with the name of
the home package as the qualifier. A symbol that is uninterned (has no home package) is printed preceded by

"#:",

11.1. Built-in Packages

The following packages are built into the ~OMMON LISP system:

user

keyword

si

The use r package is, by default, the current package at the time a COMMON LISP system
starts up. The standard symbols used by COMMON LISP as function names, variable names,
and forother purposes are available in this package.

~

This package contains all of the keywords used by built-in or user-defined LISP functions.

This package name is reserved to the implementation. (The name is an abbreviation for
"system internals".) Nonnally this is used to contain natnes of functions and variables that
are needed to implement the user-level COMMON LISP facilities ..

11.2. Package System Functions and Variables

make - pack age package-name &op t i on a 1 copy-from [Function]
Creates and returns a new package with the specified package name. The package-name should be

•

a symbol or a string. •

•

•

PACKAGES 117

If a package of this name already exists, a correctable error is signalled. The copy-from argument

may specify another package of which the new one will initially be a copy; that is, the new package

will logically contain (but not own) all symbols in the copy-from package. If copy-from is nil (the

default), the new package is empty.

package [Variable]
The value of this variable must be either a package or a symbol that names a package; this package

is said to be the current package. The initial value of *package'" is the user' package.

packagep object [Function]
packagep is true if its argument is a package, and otherwise is false.

(packagep x) <=> (typep x 'package)

package package [Function]
This converts its argument to be a package object. If the argument is already a package, it is a

returned. If it is a symbol, the package it names is returned (it is an error if it does not name a

package) .

package-name package [Function]
This returns a symbol that names a package. If the argument is a package. its name is returned. If

the argument is a symbol, it is returned if it names a package, but an error is signalled if it does not.

intern string-or-symbol" &optional package [Function]
The package may be a package or ~ symbol that names a package, and default;s to the current.

package ... It is searched for a symbol with the name specified by tbe first argument. If one is found,

it is returned; note particularly that if the argument was symbol, and a different symbol with the

same name is found in already in the package, the latter is returned and the argument is discarded.

If one is not found, then if the first argument is a string a symbol with that name is created; then the

given or created symbol is installed in the package as an internal symbol al)d returned. Moreover, if

the symbol has no home package, then package becomes its home package.

If package is the keyword package and a symbol of the specified name is not already in the package,

then as the symbol is installed in the k e ywo r d package it will be given itself as its value; see

symbol-val ue (page 62). If the argument is a symbol rather than a string, then it must not

already have a home package other than the keywor d package .

e'

118 COMMON LISP REFERENCE MANUAL

unintern string-or-symbol &optional package [Fullclion] •
I f the first argument is a string. the package is searched for a symbol of that name: if the first

argument is a symbol, that symbol is used directly. If the symbol given or found is in fact in the

package, i~ is removed from the package. Moreover, if package is the home package for the symbol,

the symbol is made to have no home package. The package defaults to the current package.

un i n te r n returns t if it actually removed a symbol, and nil otherwise.

Compatibility note: The equivalent of this in MACLISP is remob.

internedp slring-or-symbol &optional package [Function]
This is a predicate. If the first argument is a string, then in te r ned p is true if the package contains

a symbol whose name is the string. If the first argunlent is a symbol, then i nternedp is true if the

package contains that very symbol. Otherwise in te rn e dp is false. The package may be a package

or a symbol that names one, and defaults to the current package.

export symbols [Function]
T~e argument should be a list of symbols or strings, or possibly a single symbol or string. It is

arranged for symbols of the specified names to be available in both the current package rlnd the

use r package; for each name, the same symbol must be in both packages. If a name is in neither

package, a symbol is created and interned in both. If a name is in just one, it is interned in the

other. If the two packages have different symbols of the same name, the one in the current package

is first removed by using un i n te r n (page 118). In any case, the owner of the symbol is changed

to be the user package. export returns t.

By convention, a call to export listing all exported symbols is placed near the start of a file to

advertise which of the ~ymbols use~ mentioned the file are intendeq to be used by other programs.

s·hadow symbols [Function]
The argument should be a list of symbols or strings, or possibly a single symbol or string. For each

specified name, it is arranged that the current package, if it is not the use r package, will contain a:
symbol of that name that is different from the symbol of that natne in the use r package. If the

current package and the ~ s e r package share a symbol whose name has been specified, that symbol

is first removed from the current package.

The purpose'of shadow is to provide a means for declaring that a particular symbol is to be used

"locally" in the package, even though it might have imported from some other package. For

example, suppose one were writing an INTERLISP compatibility package for COMMON LISP. One

qifference between the two is the definition of the function nth (page 175). One might write:

•

PACKAGES

'(provide 'interlisp)
(export '(masterscope hel psys dwimify ... »
(shadow '(nth ... »
(require 'odd-utilities)

(defun nth (x n)
...)

;InterLISP NTH function .

shadow returns t.

do - symbo 1 s (var [package] [result-jbrm]) {declaralion}* {lag I statement}*

119

[Macro]
do-symbol s provides straightforward iteration over the symbols of a package. The body is
performed once for each symbol in the package, in no particular order, with the variable var bound
to the symbol. Then result/orm (a single form, not an implicit progn) is evaluated, and the result is
the value of the do-symbol s form. (When the resull/orm is evaluated, the control variable varis

still bound, and has the value nil.) If result/orm is omitted, the result is nil: return (page
79) may be used to terminate the iteration prematurely. If execution of the body affects which
symbols are contained in the package, other than possibly to remove the symbol currently the value
of var by using un i n te r n (page 118), the effects are unpredictable.

do-all-symbols (var [result-form]) {declaration}* {tag I slatenzent}* [Macro]
This is similar to do-symbol s, but executes the body once for every symbol contained in "every"
package. (This may not get all symbols whatsoever, depending on the implementation.) It is not in
general the case that each symbol is processed only once, since a symbol may appear in many
packages .

120 COMMON IJSI> REFERENCE MANUAL

•

. '

•

'.

.'

•

Chapter 12

Nllmbers

COMMON LISP provides several different representations for numbers. These representations may be
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Those functions that accept only certain kinds of
numbers are so documented below.

In general, numbers in COMMON LISP are not true objects; e q cannot be counted upon to o'perate on them
reliably. In particular, it is possible that the expression

(let ((x z) (y z» (eq x y»

may be false rather than true, if the value of z is a number.
Rationale: 111is odd breakdown of eq in the case of numbers allows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MAC Lisp requires this freedom, for example, in order
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility, CO~lMON Lisp makes this same restriction.

If two objects are to be compared for "identity", but either might be a number, then the predicate e q 1 (page
56) is probably appropriate; if qoth objects ,are known to be numbers, then:: (page 122) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precision of a floating-. .
. point number is not necessarily correlated at all with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to '1T than 3.14159, but the latter is more accurate. T~e
precision refers to the number of bits retained in the representation. When an operation combines a short
floating-point number with a long one, the result will be a long floating-point number. This nIle is made to
ensure that as much accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISP

numerical routines do assume, however, that the accuracy of an argument does no~ exceed its precision.
Therefore when two small floating-point numbers are combined, the result will always be a small floating
point number. This assumption can be overridden by first explicitly converting a small floating-point number
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one in
an effort ~o save space.)

Rational computations cannot overflow in the usual sense (though of course there may not be enough
storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point
computations may get exponent overflow or underflow, in which case an error is signalled.

- 121-

122 . COMMON LISP REFERENCE MANUAL

12.1. Predicates Oil Numbers

zerop number [Function]
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex

zero), and is false otherwise. It is an error jf the argument number is not a i1umber.

plus p number [Function]
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if

the argument number is not a non-complex number.

mi nusp number [Function]
This predicate is true if number is strictly less than zero; otherwise nil is returned. It is an error if

the argument number is not a non-complex number.

oddp integer [Function]
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It

is an error if the argument is not an integer.

evenp integer [Function]
This predicate is true if the argument integer is even (divisible by two), and otherwise is false. It is

an error if the argument is not an integer.

'See also the data-type predicates integerp (page'S3), rationalp (page 53) floatp (page 54),

comp 1 exp (page 54), an~ numberp (page 53).

12.2. Comparisons on Numbers

All of the functions in this section require that their arguments be numbers, and signal ~n error if given a

non-number. They work on all types of numbers, automatically performing any required coercions.

= number & res t more-numbers
/ = number &r est more-numbers

[Function]
[Function]

< number &res t more-numbers [Function]
> number &res t more-numbers· [Function]
<= number &rest more-numbers. [Function]

•

•

>= number &res t more-numbers [Function]
These functions each take one or more arguments. If the sequence of arguments satisfies a certain •

condition:

•

•

•

NUMBERS

= all the same

all different

< monotonically increasing

> monotonically decreasing·

<= monotonically nondecreasing

>= monotonically nonincreasing

123

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and

/ =, but the others require non-complex arguments.

For example:

(= 3 3) is true (/= 3 3) is false
(= 3 5) is false (/= 3 5) is tnte
(= 3 3 3 3) is true (/= 3 3 3 3) is false
(= 3 3 5 3) is false (/= 3 3 5 3) is false
(= 3 6 5 2) is false (/= 3 6 5 2) is true
(= 3 2 3) is false (/= 3 2 3) is false

« 3 5) is true «= 3 5) is true

« 3 -5) is false «= 3 -5) is false

« 3 3) is false «= 3 3) is true

« 0 3 4 6 7) is true «= 0 3 4 6 7) is true

« 0 3 4 4 6) is false «= 0 3 4 4 6) is tnle
(> 4 3) is true (>= 4 3) is true
(> 4 3 2 1 0) is true (>= 4 3 2 1 0) is true
(> 4 3'3 2 0) is false (>= 4 3 3 2 0) is true
(> 4 3 1 2 0) is false (>= 4 3 1 2 0) is false

With two arguments, these functions perform the usual arithmetic comparison tests. With three or

more arguments, they are usefui for range checks.

For example:

«= o x 9) ; true iff x is between 0 and 9, inclusive
« 0.0 x 1.0) ; true iff x is .between 0.0 and 1.0, exclusive

« -1 j (langth s)) ; true iff j is a,valid index for s

«= o j k (- (length s) 1)) ; true iff j and k are each valid
indices for s and also j~k

Rationale: The "unequality" relation is called .. / =" rather than "<>" (the name used in PASCAL) for two
reasons. First. / = of more than two arguments is not the same as the 0 r of < and > of those same arguments.
Second, unequality is meaningful for complex numbers even though < and > are not For both reasons it
would be misleading to associate unequality with the names of < and >.

Compatibility note: In COMMON LISP. the comparison operations perform "mixed-mod<;" comparisons: (= 3
3.0) is true. In MACLISP, there must be exactly two arguments, and they must be either both fixnums or both
floating-point numbers. To compare two numbers for numerical equality and type equality, use eq 1 (page
56).

max number &res t more-numbers [Function]
The arguments may be any n~n-complex numbers. max returns the argument that is greatest

(closest to positive infinity) .

For example:

124

(max 1 3 2 -7) => 3
(max -2 3 0 7) => 7
(max 3) => 3
(max 3.0 7 1) => 7 or 7.0

COMMON I JSP REFERENCE MANUAL

If the arguments are a mixture of integers and floating-point numbers, and the largest is a rational,
then the implementation is free to produce either that rational or its floating-point approximation.

mi n number &res t more-numbers [Fullction]
The arguments may be any non-complex numbers. mi n returns the argument that is least (closest
to negative infinity).

For example:

(max 1 3 2 -7) => -7
(max -2 3 0 7) => -2
(min 3) => 3
(min 3.0 7 1) => 1 or 1.0

If the arguments are a mixture of rationals and floating-point numbers, and the smallest is a
rational, then the implementation is free to produce either that rational or its floating-point
approximation.

12.3. Aritlllnetic Operations

All of the functions in this section require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required coercions.

-,...
+ &res t numbers -. [Function]

Returns. the sum of the arguments. If there are no arguments, the result is 0, which is an identity
for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine LISP, it is incompatible with M~cLISP,
which uses + for fixnum-only addition.

- number & res t more-numbers [Function]
The function -, wh.en given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts frOln the first argument
all the others, and returns the result. For example, (- 3 4 5) => -6.

Compatibility note: While - is compatible with its use in Lisp Machine LISP, it is incompatible with MAC LISP,

which uses - for fixnum-only subtraction. Also, - differs from difference as used in most LISP systems in
the case of one argument

•

•

•

•

•

NUMBERS 125

'" &r est numbers [Function]
Returns the product of the arguments. If there are no arguments, the result is 1, which is an
identity for this operation.

Compatihility note: While * is compatible with its use in Lisp Machine LISP. it is incompatible with MACLISP,
which uses * for fixnum-only multiplication.

I number &res t more-numbers [Function]
The function I, when given more than one argument, successively divides the first argument by all
the others, and returns the result

With one argument, I reciprocates the argument.

I will produce a ratio if the mathematical quotient of two integers is not an exact integer.

For example:

(I 12 4) => 3
(I 13 4) => 13/4
(I -8) => -1/8
(I 3 4 5) => 3120

To divide one integer by another producing an integer result, use one of the functions f 100 r,
ceil in9, truncate, or rGund (page 135).

If any argument is a floating-point number, then the rules of floating-point contagion apply.

1+ number
1- number

Compatibility note: What / does is totally unlike what the usual / / or quo tie n t operator does. In most LISP
systems. quotient behaves like / except when dividing integers, in which case it behaves like truncate
(page 135) of two arguments; this behavior is mathematically intractable, leading to such anomalies as

(quotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0

. In practice quat; en t is used only when one is sure that both argument are integers, or when one is sure that
at least one argument is a floating-point number. / is tractable for its purpose, and "works" for any numbers.
For "integer division", t run cat e (page 135). flo 0 r (page 135), c e i 1 ; n 9 (page 135), and r 0 u n d . (page
13S) are 4vailable in COMMON LISP. .

[Function]
[Function]

(1 + x) is the same as (+ xl).

(1- x) is the same as (- xl). Note that the short name may be confusing: (1- x) does not
mean 1- x; rather, it means x-I.

Rationale: 'These are included primarily for compatibility with MAc LISP and Lisp Machine LISP.

Implementation note: Compiler writers are very strongly encouraged to ensure that (1 + x) and (+ xl)
compile into identical code, and similarly for (1- x) and (- xl), to avoid pressure on a LIsp programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language
transformation .

126 COMMON I ,lSI' REFERENCE MANUAL

i nef place [della] [Alaero]

decf place [della] [Alacro]

The number produced by the form delta is added to (incf) or subtracted from (decf}the number
in the generalized variable named by place, and the sum is stored back into place and returned.
The form place may be any form acceptable as a generalized variable to set f (page 66). I f delta is
not supplied, then the number in place is changed by 1.

For example:

(setq n 0)
(incf n) => 1 and now n => 1
(deef n 3) => -2 and now n => -2
(decf n --5) => 3 and now n => 3
(decf n) => 2 and now n => 2

The effect of (in c f place delta) is roughly equivalent to

(set f place (+ place delta»

except that the latter would evaluate any subforms of place twice. while inc f takes care to evaluate
them only once. Moreover, for certain place forms i n e f may be significantly more efficient than
the set f version.

conjugate number [Function]
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z,

(conjugate z) <=> (complex (realpart z) (- (imagpart z»)

gcd &rest integers [Function] . .
Returns the greatest common divisor of all the arguments, which must be integers. The result is
always a non-negative integer. If no argurnents arc given, ged returns 0, which is an identity for,

this operation.

For example:

(ged 91 -49) => 7

1 em integer &res t more-integers [Function]

This returns the least common multiple of its ~rguments, which must be integ€rs. For two
arguments,

(lcm a b) <=> (/ (* a b) (gcd a b»

For one argument, 1 cm returns that argument. For three or more arguments,

(lem abc ... z) <=> (lcm (lcm a b) c ... z)

For example:

(lcm 14 35) => 70

•

•

•

•

NUMBERS 127

12.4. Irrational and Transcendental Functions

COMMON 1 JSP provides no data type that can accurately represent irrational values. The functions in this

section are described as if the results were mathematically accurate, but actually they all produce floating

point approximations to the true mathematical result. In some places mathematical identities are set forth

that are intended to elucidate the meanings of the functions; however, two mathematically identical

expressions may be computationally different because of errors inherent in the floating-point approximation

process.

12.4.1. Exponential and Logarithmic Functions

exp number [Fullction]
Returns e raised to the power numb e r, where e is the base of the natural logarithms.

expt base-number power-number [Function]
I~eturns base-number raised to the power power-number. If the base-number is rational and the

power-number is an integer, the calculation will be exact and the result will be rational; otherwise a

floating-point approximation may result.

Implementation note: If the exponent is an integer a repeated-squaring algorithm may be used, while if the
exponent is a floating-point number or complex the result may be calculated as:

(exp (* power-number (109 base-number»)

or in any other reasonable manner.

log number· &opt-tona:l base [Function]
Returns the logarithm of number in the base base, which defaults to e, the base of the natural

logarithms.

For example:

sqrt number

(log 8.0 2) => 3.0
(log 0.01 10) => -2.0

Returns the principal square root of number.
[Function]

isqrt integer [Function]
Integer square-root: the argument mllst be a non-negative integer, and the result is the greatest

integer less than or equal to the exact positive square root of the argument.

128 COMMON LISP REFERENCE MANUAL

12.4.i. Trigononu~tric and Related Functions

abs number [Fullction]
Returns the absolute value of the argument. For a non-complex number,

(abs x) <=> (if (minusp x) (- x) x)

For a complex number z, the absolute value may be computed as

(sqrt (+ (expt (realpart z 2» (expt (imagpart z 2»»

For non-complex numbers, ab s is a rational function, but it may be irrational for complex
arguments.

phase number [Function]
The phase of a number is the angle part of its polar representation as a complex number. That is,

(phase x) <=> (atan (realpart x) (imagpart 'x»

The result is in radians, in the range - '1T (exclusive) to '1T (inclusive). The phase of zero is defined to
be zero.

signum number [Function]
By definition,

(signum x)· <=> (if (zerop x) x (/ x (abs x»)

For a rational number, sign um will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result wi1l be a floating-point number
of the same. format with one of the mentioned three values. For a complex number z, (s i g n urn
z) is a complex number of the same phase but with unit magnitude, unless z is a complex zero, in
which case the result i~ z.

- ..
For non-complex numbers, s; gnum is a rational function, but it may be .irrational for complex
arguments.

s; n radians
cos radians

[Function]
[Function]

tan radians [Function]
s; n returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in
radians. The argument may be complex.

cis radians [Function]
This computes /·radians. The name" c ; s" means "cos + i sin", because eiO = cos 0 + i sin O. The
argument is in radians, and may be any non-complex number. The result is a complex number
whose real part is the cosine of the argument, and whose itnaginary part is the sine. Put another
way, the result is a complex number whose phase is the argument and whose magnitude is unity.

•

•

•
•

•

NUMBERS

Implementation note: Oncn it is cheaper to calculate the sine and cosine of a single angle together than to
perform two disjoint calculations.

129

as i n number [Function]
acos number [Function]

as in returns the arcsine of the argument, and cos the arccosine. The result is in radians. The

argument may be complex.

atan y &optional x [Function]
An arctangent is c"alculated and the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the arctangent of the

quantity y/x. The signs of y and x are used to derive quadrant information~ moreover, x may be

zero provided y is not zero. The value of a t an is always between - 'IT (exclusive) and 'IT (inclusive).

The following table details various special cases.

Condition Cartesian locus Range of result

y=O x>O Positive x-axis 0
y>O x>O Quadrant I 0< result < '!T12

y>O x=O Positive y-axis w/2

y>O x<O Quadrant II '!T 12 < result < w

y=O x<O Negative x-axis '!T

y<O x<O Quadrant III -w < result < - ,"/2

y<O x=O Negative y-axis -w/2
y<O x>O Quadrant IV - ,"/2 < result < 0

y=O x=O Origin error

Actually, the < signs in the above table ought to be ~ signs, because of rounding effects; if y is

greater than zero but nevertheless very small, then the floating-point approximation to w 12 ·might

be a more accurate result than any other floating-point number. (For that matter, when y = 0 the

exact value w/2 cannot be produced anyway, but instead only an approximation.)

With only one argument y, the argument may be complex. The result is the arctangent of y. For

non-complex arguments the result lies between -w/2 and w/2 (both exclusive),

Compatibility notc: MACLISP has a function called at an whose range is from 0 to 2'IT. Every other language in
the world (ANSI FORTRAN, IBM PL/I, InterLISP) has an arctangent function with range -'IT to 'IT. Lisp
Machine LISP provides two functions, atan (compatible with MACLlsP) and alan2 (compatible with everyone
else). "

CoMMON Lisp makes atan the standard one with range -'IT to 'IT. Observe that this makes the one-argument
and two-argument versions of a tan compatible in the sense that the branch cuts do not fall in different places.
which is probably why most languages use this definition. (An aside: the INTERLISP one-argument function
arctan has a range from 0 to 'IT, while every other language in the world provides the range -'lT12 to 'lT12!
Nevertheless, since INTERLISP uses the standard two-argument version, its branch cuts are inconsistent anyway.)

130

pi

sinh

cosh

tanh

COMMON LISP REFERENCE MANUAL

[COllstallt]
This global variable has as its value the best possible appr<?ximation to 'IT in long floating-point

format.

For example:

(defun sind (x) ; The argument is in degrees.
(sin (* x (/ (float pi x) 180»»

An approximation to 'IT in some other precision can be obtained by writing (flo at pix), where

x is a floating-point number of the desired precision; sec f loa t (page 134).

nurnber [Function]
number [Function]
number [Function]

asinh number [Function]
acosh

atanh

number [Function]
number [Function]

These functions compute the hyperbolic sine, cosine, tangent, arcsine, arccosine, and arctangent

functions, which arc mathematically defined as follows:

Hyperbolic sine

Hyperbolic cosine

Hyperbolic tangent

Hyperbolic arcsine

Hyperbolic arccosine

Hyperbolic arctangent ...
"

(£1- e- X)/2

(ex+e- X)/2

(£1- e-X)/(ex+ e-~
log (x+Y1+2) ------
log (x+(x+l)Y(x-l)/(x+ 1))

log «~+x)Yl-:l/2)

Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrihie methods for floating-point computation! Implementors should consult a good text on
numerical analysis. The formulas given above are not nec~ssarily the simplest ones for. real-valued
'computations, either; they are chosen to define the branch cuts in desirable ways for the complex case. "

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

Many of the irrational "and transcendental functions are multiply-defined in the complex domain; for

example, there are in general an infinite number of complex values for the logarithm function. In each such

case a principal value must be chosen for the function to return. In general, such values cannot be chosen so

, as to make the range continuous; lines of discontinuity called branch cuts must be defined.

COMMON LISP defines the branch cuts, principal . values, and boundary conditions for the complex

functions following a proposal for complex functions in APL [11]. The contents of this section are borrowed

largely from that proposal.

Compatibility note: The branch cuts defined here differ in a few very minor respects from those advanced by W. Kahan.
who considers not only the "usual" definitions but also the special modifications necessary for IEEE proposed floating-point
arithmetic, which has infinities and minus zero as explicit comp.utational objects. For example, he proposes that
vi -4+0i =2i. but Y -4-0; = -2;.

•

•

•

•

NUMBI~RS 131

sqrt

It is likely that the differences between the API. proposal and Kahan's proposal will be ironed out, perhaps in 1983. If SO,

COMMON LISP will be changed is necessary to be compatible wilh these other groups. Any changes from the specification
below arc likely to be quite minor.

An implementation of COMMON LIsP is not required to support complex numbers before January I, 1984. It is expected that
the compatibility problems will have been resolved by then. As of thal dale, every COMMON LISP implementation will be
expected to support complex numbers at; then defined.

The branch cut for square root lies along the negative real axis, continuous with quadrant

II. The range consists of the right half-plane, including the non-negative imaginary axis

and excluding the negative imaginary axis.

phase The branch cut for the phase function lies along the negative real axis, continuous with

quadrant II. The range consists of that portion of the real axis between - 'IT (exclusive) and

'IT (inclusive).

log

exp

exp't

asin

The branch cut for the logarithm function of one argument (natural logarithm) lies along

the negative real axis, continuous with quadrant II. The domain excludes the origin. For a

complex number z= x+ y i, log z is defined to be (1og Izl)+ i phase(z). Therefore the range

of the one-argument logarithm function is that strip of the complex plane containing

numbers with imaginary parts between -1T (exclusive) and 'iT (inclusive).

The two-argument logarithm function is defined as 10gb z= (1og z)/(1og b). This defines the

principal values precisely. The range of the two-argument logarithm function is the entire

complex plane. It is an error if z is zero. If z is nonzero and b is zero, the logarithm is taken

to be zero.

The simple exponential function has no branch cut.

The two-argument exponential function' is degned as bX = eX log b. This defines the

principal values precisely. The range of the two-argument exponential function is the

entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut.

Regarded as a .funct!on of b, with x fixed, there is, in general, a branch cut along the

negative real axis, continuous with quadrant II, and the domain excludes the origin. By

definition, 0° = 1. If b= 0 and the real part of x is strictly positive, then bX = O. For all other

values of x, Ox is an error.

The fonowing definition for arcsine determines the range and branch cuts:

arcsin z = - i log (i z+ V 1-;')

The' branch cut for the arcsine function is in two pieces: one along the negative real axis to

the left of -1 (inclusive), continuous with quadrant II, and one along the positive real axis

to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the

complex plane containing numbers whose real part is between - 'lT12 and 'IT/2. A number

132

acos

at an

•

asinh

COMMON LISP REFERENCE MANUAL

with real part equal to -'/T12 is in the range iff its imaginary part is non-negative; a number

with real part equal to '/T12 is in the range iff its imaginary part is non-positive.

The following definition for arccosine determines the range and branch cuts:

arccos z= - i log (z+ i V 1-?)

or, which is equivalent,

arccos z = ('/T 12) - arcsin z

The branch cut for the arccosine function is in two pieces: one along the negative real axis

to the left of -1 (inclusive), continuous with quadrant II, and one along the positive real

axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut

as for arcsine. The range is that strip of the complex plane containing numbers whose real

part is between 0 and '/T. A number with real part equal to 0 is in the range iff its imaginary

part is non-negative; a numbe.f with real part equal to '/T is in the range iff its imaginary part

is non-positive.

The following definition for (one-argument) arctangent determines the range and branch

cuts:

arctan z= - i log «1 + i z) V1/(1 + l))

Beware of simplifying this formula; :'obvious" simplifications are likely to alter the branch

cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent

function is in two pieces: one along the positive imaginary axis above i (exclusive),

continuous with quadrant II, and ·one along. the negative imaginary axis below - i

(exclusive), continuous wi~ quadrant IV. The poipts i and - i are excluded from the

domain. The range is that strip of the complex plane containing numbers whose real part

is between -'/T12 and '/T12. A number with real part equal to -'/T12 is in the range iff its

imaginary part is strictly positive; a number with real part equal to '/T12 is in the range iff its

imaginary part is strictly negative. Thus the range of arctangent is identical t9 that of

arcsine with the points - '/T 12 and '/T 12 excluded.

The following definition for the ihverse hyperbolic sine determines the range and branch

cuts:

arcsinh z=log (x+v1+2)

The branch ~ut for the inverse hyperbolic sine function is in two pieces: one along the

positive imaginary axis above i (inclusive), continuous with quadrant I, and one along the

•

•

negative imaginary axis below - i (inclusive), cqntinuous with quadrant III. The range is •

that strip of the complex plane.containing numbers whose imaginary part is between -1112

•

NUMBERS

acosh

atanh

133

and TT12. A number with imaginary part equal to -TT/2 is in the range iff its real part is

non-positive; a number with imaginary part equa! to TTI2 is in the range iff its imaginary

part is non-negative.

The following definition for the inverse hyperbolic cosine determines the range and branch

cuts:

arccosh z= log (x+(x+ 1)v'(x-1)/(x+ 1) }

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left

of 1 (inclusive), extending indefinitely along the negative real axis, continuous with

quadrant II and (between 0 and 1) with quadrant I. The range is that half-strip of the

complex plane containing numbers whose real part is non-negative and whose imaginary

part is between -TT (exclusive) and TT (inclusive). A number with real part zero is in the

range iff its imaginary part is between zero (inclusive) and TT (inclusive).

The following definition for the inverse hyperbolic tangent determines the range and

, branch cuts:

arctanh z= log «1 + x)v'1-1/.x2)

Beware of simplifying this formula; "obvious" simplifications are likely to alter the branch

cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic

tangent function is in two pieces: on~ along the negative real axis to the left of .-1
(inclusive), continuous with quadrant III, and one along the positive real axis to the right of

1.(inc1q~ive), continuous with quadrant I. The range is that strip of the complex plane , .

containing numbers whose imaginary part is between - TT 12 and TT 12. A number with

imaginary"p'art equal to - TT 12 is in the range iff its real part is strictly negative; a number

with imaginary part equal to TTI2, is in the range iff its imaginary part is strictly positive.

Thus the range of arctangent is identical to that of arcsine with the points - TT il2 and TT il2

excluded.

With these definitions, the following useful identities are obeyed throughout the applicable portion of the

complex domain, even on the branch cuts:

sin i z = i sinh z

cos i z = cosh z

taniz= itanhz

sinh i z = i sin z

cosh i z = cos z

arcsin i z = i arcsinh z

12.5. Type Conversions and Component Extractions on Numbers

arctan i z = i arctanh z

arcsinh i z = i arcsin z

arctanh i z = i arctan z

While .most arithmetic functions will operate on any kind of number, coercing types if necessary, the

following functions are provided to allow specific conversions of data types to be forced, when desired.

134 COMMON LISP REFFRENCE MANUAL

float number &opt ional other [Function]
Converts any non-complex number to a floating-point number. With no second argument, then a

S i ngl e-fl oat is produced. If the argument other is provided, then it must be a floating-point

number, and /lumber is con verted to the same format as other. See also co e r c e (page 37).

rat ion a 1 number [Function]
rationalize number [Function]

Each of these functions converts any non-complex number to be a rational number. If the

argument is already rational, that argument is returned. The two functions differ in their treatment

of floating-point numbers.

rat i on a 1 assumes that the floating-point number is completely accurate, and returns a rational

number mathematically equal to the precise value of the floating-point number. This is (probably)

much faster than rat ion ali z e.

ra t i on ali ze assumes that the floating-point number is accurate only to the precision of the

floating-point representation, and may return any rational number for which the floating-point

number is the best available approximation of its format; in doing this it attempts to keep both

numerator and denominator small. It is always the case that

(eql (float (rationalize x) x) x)

•

That is, rationalizing a floating-point number and then converting it back to a floating-point •

number of the same format produces the original number.

numerator rational [Function]
denomina,tor rational [Function]

'nlese functions take a rational number (an integer or ratiq) and return as an integer the numerator

or denominator of the cimonical reduced form of the rational. The numerator of an integer is that

integer, and the denominator of an integer is 1. Note that

(ged (numerator x) (denominator x» => 1
, .

The denominator will always be a strictly positive integer; the numerator may be any integer.

For example:

(numerator (/ 8 -6» => -4
(denominator (/ 8 -a»~ => 3

There is no fix function in COMMON LISP, because there are several interesting, ways to convert non

integral values to integers. These are provided by the functions below, which perform not only type

conversion but also some non-trivial calculations.

•

•
•

•

NUMBERS 135

floor number &optional divisor
ceiling number &optional divisor

[Fullction]

[Fullction]
truncate number &optional divisor [Function]

round number &optional divisor [Function]
In the simple, one-argument case, each of these functions converts its argument /lumber (which may

not be complex) to be an integer. If the argument is already an integer, it is returned directly. If the

argument is a ratio or floating-'point number, the functions use different algorithms for the

conversion.

f 100 r converts its argument by truncating towards negative infinity; that is, the result is the largest

integer that is not larger than the argument.

ce i 1 in 9 converts its argument by truncating towards positive infinity; that is, the result is the

smallest integer that is not smaller than the argument.

truncate converts its argument by truncating towards zero; that is, the result is the integer of the

same sign as the argument and which has the greatest integral magnitude not greater than that of

the argument.

r 0 u n d converts its argument by rounding to the nearest integer; if number is exactly halfway

between two integers (that is, of the form integer+0.5) then it is rounded to the one that is even

(divisible by two) .

Here is a table showing what the four functions produce when given various arguments.
Argument

2.6
2.5
2.4
0.7
0.3

-0.3
-0.7
-2.4
-2.5
-2.6

floor
2
2
2
o
o

-1
-1
-3
-3
-3

ceiling
3
,3

3
1
1
o
o

-2
-2
-2

truncate
2
2
2
o
o
o
o

-2,
-2
-2

round
3
2
2
1
o
o

-1
-2
-2
-3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or

tnlncation applied to the result of dIviding the number by the divisor. For example, (f ,'oor 5 2)

= (f' oor (I 5 2», but is potentially more efficient. The divisor may be any non-complex

number. The one-argument case is exactly like the two-argument case where the second argument

is 1.

Each of the functions actually returns two values; the second result is the remainder, and may be

obtained using mu 1 tip' e - val u e - bin d (page 90) and related constructs. If any of these

functions is given two arguments x and y and produces results q and r, then q*y+ r= x. The

remainder r is an integer if both arguments are integers, is rational if both arguments are rational,

and is floating-point if either argument is floating-point. (In the one-argument case the remainder

is a number of the same type as the argument.) The'first result is always an integer.

136 COMMON I.ISP REFERENCE MANUAL

Compatibility note: "1l1e names of the functions floor. ceil in9. truncate. and round are more accurate
than names like fix that have heretofore been used in various l,lsp systems. "1l1e names used here are
compatible with standard mathematical terminology (and with PI.!l. as it happens). In FORTRAN if i x means
truncate. ALGOL 68 provides rOlllld. and uscs entier to mean floor. In MAcl.lsP. fix and ifix both
mean floor (one is generic. the other OOllum-in/lixnum-oul). In INTERI.ISP. fix means truncate. In Lisp
Machine LIsP. fix means floor and fixr means round. STANDARD LISP provides a fix function. but does
not accurately specify what it does exactly. The existing usage of the name fix is so confused that it seems best
to avoid it altogether.

The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MACI JSP and NIL

seem likely to follow suit

mo d number divisor [Function]
:-emainder number divisor [Function]

mo d performs the operation f 100 r (page 135) on its two arguments, and returns the second result

of floor as its only result. Similarly, rem performs the operation truncate (page 135) on its

arguments, and returns the second result of t run cat e as its only result.

mod and rem are therefore the usual modulus and remainder functions when applied to two integer

arguments. In general, however. the arguments may be integers or floating-point numbers.

(mod 13 4) => 1 (rem 13 4) => 1
(mod -13 4) => 3 (rem -13 4) => -1
(mod 13 -4) => -3 (rem 13 ~4) => 1
(mod -13 -4) => -1 (rem -13 -4) => -1
(mod 13.4 1) => 0.4 (rem 13.4 1) => 0.4
(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4

f floor number &0 p t ion a 1 divisor [Function]
fceil ing number &optiona1. divisor [Function]

" ftruncate number &opt ional .. ~ivisor '[Function]
f rou nd number &opt i on a 1 divisor [J""unction]

These'functIons are just like floor, ce i 1 in g, tr.un ca te, and roun d, except that the result (the

first result of two) is always a floating-point number rather than an integer. It is roughly as if

ffl oor gave'its arguments to floor, and then applied float to the first result before passing

them both back. In practice, however, ff 1 oor nlay.be implemented much more efficiently.

Similar remarks apply to the other three functions. If the first argument is a floating-point number,

and the second agrument is not a floating-point number of shorter format, then the first result will

be a floating-point number of the same type as the first argument.

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5dO) => 3.0dO and 0.5dO

•

•

NUMBERS 137

float-significand float

float-exponent float

sea 1 e - flo at float integer

flo a t - r ad i x float

[Fullction]

[I'ilIlclion]

[Fullction]

[Function]

[Function] flo a t - s i 9 n fl oa tl & 0 P t ion a 1 fl oa t2
The function float-fraction takes a floating-point number and returns a new floating-point

number of the same format. Let b be the radix for the floating-point representation; then

float-significand divides the argument by an integral power of b so as to bring its value

between II b (inclusive) and 1 (exclusive), and returns the quotient. If the argument is zero,

however. the result equals the argument.

The function flo a t - e x p on e n t performs a similar operation, but then returns the integer

exponent e to which b must be raised to produce the appropriate power for the division. If the

argument is zero, any integer value may be returned, provided that the identity shown below for

seal e-fl oat holds.

The function seal e-fl oat takes a floating-point number land an integer k, and returns (>Ie f
(expt· (float b 1) k)). (Theuseofscale-float may be much more efficient than using

exponentiation and multiplication, and avoids intermediate overflow and underflow if the final

result is representable.)

Note that (scale-float (float-fraction I) (float-exponent I)) <=>J.

The function fl oat- rad i x returns (as an integer) the radix b of the floating-point argument.

The function flo a t - s i 9 n returns a floating-point number z such that z and jloatl have the same

sign and also such that z and float2 have the same absolute value. The argument jloat2 defaults to

. the value of (flo a t 1 float!); (f loa t - s i 9 n x) therefore always produces a 1. 0 or -1. 0

according to the sign qf x.

Rationale: lbese functions allow the writing of machine-indcpendttnt, or at least machine-parameterized,
floating-point software of reasonable efficiency. ..

c omp 1 e x rea/part &0 p t ion a 1 imagpart [Function]

The arguments must be non-complex numbers; a complex number is returned that has rea/part as

its real part and bnagpart as its imaginary part. If imagpart is not specified then (>Ie rea/part 0) is . .

effectively used (this definition has the effect that in this case the two parts will be both rational or

both floating-point numbers of the same format).

real part number
imagpart number

[Function]
[Function]

These return the real and imaginary parts of a complex number. If number is a non-complex

number, then rea 1 par t returns its argument number and i mag par t returns (>Ie number 0)

(this has the effect that the imaginary part of a ratiol!al is 0 and that of a floating-point number is a

floating-point zero of the same format).

•

138 COMMON LISP REFERENCE MANUAL

12.6. Logical Operations on Numbers

The logical operations in this section treat integers as jf they were represented in two's-complement

notation.

Implementation note: Internally, of course, an implementation of COMMON LISP mayor may not use a two's-complement
representation. All that is nccessary is that the logical operations perform calculations so as to give this appearance to the
uscr.

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a

conceptual vector be indexed by the non-negative integers. Then bit} is assigned a "weight" 2i. Assume that

only a finite number of bits are ones, or that only a finite number of bits are zeros. A vector with only a finite

number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with

only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative

integer.

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that

some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers.

Then a set can be represented as a bit vector; an element is in the set if the bit whose index corresponds to

that clement is a one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets

whose complements are finite (by negative integers). The functions log i or, 1 ogand, and 1 ogxor· defined

below then compute the union, intersection, and symmetric difference operations on sets represented in this

•

way. •

log i or &res t integers [Function]
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is

zero, which is an identity for this operation .

logxor &res t integers [Function]
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is

zero, which is an identity for this operation.

logand &rest integers [Function]
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is --1,

which is an identity for this operation.

logeqv &res t integers . [Function]
Returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no

argument is given, then the result is -1, which is an identity for this operation.

•

•

•

NUMBERS

lognand integ'erl integer2

lognor integerl integer2

logandcl integer! integer2
10gandc2 integer! integer2

logo r c 1 integerl integer2
10gorc2 integerl integer2

139

[Fullction]

[Fullction]

[Fullction]

[Func lion]

[Function]

[FUllc t ion]
These are the'other six non-trivial bit-wise logical operations on two arguments. Because they are

not commutative or associative, they take exactly two arguments rather than any non-negative

number of arguments.

(lognand nl n2) <=> (lognot (log and III n2»
(lognor 111 n2) <=> (lognot (log 0 r n! n2»

(logandcl III n2) <=> (logand (log not n I) n2)
(10gandc2 111 1l2) <=> (log and n I (log not 1l2»
(logorc 1 n1 112) <=> (logor (lognot n1) n2)
(10gorc2 n1 n2) <=> (log 0 r n I (log not n2»

The ten bit-wise logical operations on two integers are summarized in this table:

Argument 1 0 0 1 1
Argument 2 0 1 0 1 012eration name

logand 0 0 0 1 and
logi~r 0 1 1 1 inclusive or
logxor 0 1 1 0 exclusive or
logeqv 1 0 0 1 equivalence (exclusive nor)
lognand 1 1 1 0 not-and
lognor 1 0 0 0 not-or
logandcl 0 1 0 0 and.cmnplement of argl with arg2
logandc2 -0

" 0 1 0 and af!~l with complement of arg2
logorcl 1 1 0 1 or complement of argl with arg2
10gorc2 1 0 1 1 or argl with complement of arg2

boo 1 e op integer1 integer2 [Function]
boole-clr [Constant]
boole-set [Constant]
bocle-l [Constant]
boole-2 [Constant]
bo'ol e-cl [Constant]
boole-c2 [Constant]
boole-and [Constant]
boole-ior [Constant]
boole-xor [Constant]
boole-eqv [Constant]
boole-nand, [Constant]
boole-nor [Constant]

-,
140 COMMON LISP REFERENCE MANUAL

boole-andcl

boole-andc2

boole-orc1

boole-orc2

[COIls/alll]

[COl/Slant]

[Cons/ai'll]
[eOfISlant]

The function boo 1 e takes an operation op and two integers, and returns an integer produced by

performing the logical operation specified by op on the two integers. The precise values of the

sixteen variables are implementation-dependent, but they are suitable for use as the first argument

to boo le:

in!egeri 0 0 1 1
inleger2 0 1 0 1 Opera/ioll performed

bool e-cl r~ 0 0 0 0 always 0
boole-set 1 1 1 1 always 1
boole-1 0 0 1 1 inlegerl
boole-2 0 1 0 1 integer2
boole-cl 1 1 0 0 complement of integerl
boole-c2 1 0 1 0 complement of integer2
boole-and 0 0 0 1 and
boole-;or 0 1 1 1 inclusive or
boole-xor 0 1 1 0 exclusive or
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 nut-and
boole-nor 1 0 0 0 not-or
boole-andcl 0 1 0 0 and complement of inlegerl with integer2
boole-andc2 0 0 1 0 and inlegerl with complement of inleger2
boole-orc! 1 1 0 1 or complement of inlegerl with integer2
boole-orc2 1 0 1 1 or inleger! with complement of in/eger2

boo 1 e can therefore compute all sixteen logical functions on two arguments. In general,

(boole boole-and x y) <=> (logand x y)

and the latter is more perspicuous. However, boo 1 e is useful when it is necessary to parameterize

a procedure so that it C~lll use one of several logical operations.

lognot integer [Function]
Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the

corresponding bit in the argument.

{logbitp j (lognot x» <=> (not (logbitp j x»

1 ogtes t integer] integer2 [Function]

log t est is a predicate that is true if any of the bits designated by the 1's in integer] are 1's in

integer2.

(logtest x y) <=> (not {zerop (logand x y»)

•

•

•
•

•

NUMBERS 141

10gb i tp index integer [FUllctioll]
logbitp is true if the bit in integer whose index is index (that is, its weight is 2index) is a one-bit;

otherwise it is false.

For example:

(log bit P 2 6) is tnlc
(log bit p 0 6) is false
(logbitp k n) <=> (ldb-test (byte 1 k) n)

as h integer count [Function]
Shifts integer arithmetically left by count bit positions if count is positive, or right - count bit

positions if count is negative. The sign of the result is always the same as the sign of integer.

Arithmetically, this operation performs the computationjlo01(integer*2count).

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves

them to the right, discarding bits. (In this context the question of what gets shifted in on the left is

irrelevant; integers, viewed as strings of bits, are "half-infinite", that is, conceptually extend

infinitely far to the left.)

For example:

(1- 0 9 bit P j (a s h n k»
<=> (and (>=jk) (logbitp (-jk) n»

1 ogcount integer [Function]
The number of bits in integer is determined and returned. If integer is positive, then 1 bits in its

binary representation are counted. If integer is negative, then the 0 bits in its two's-complement

binary representation are counted. The result is always a non:-negative integer.
«

For example:

(logcount 13) => 3
(logcount -13) => 2
(logcount 30) => 4
(logcount -30) => 4

The following identity always holds:

; Binary representation is ... 0001101
; Binary representation is ... 1110011
; Binary representation is ... 0011110
; Binary representation is _ ... 1100010

(logcount x) <=> (logcount (- (+ xl»)

integer-l ength integer [Function]

This function performs the computation

i[ceiling](logiif integer < 0 then - integer else integer+ 1»

This is useful in two different ways. First, if integer is non-negative~ then its value can be

represented in uilsigned binary form in a field whose width in bits is at least (i n t e 9 e r -1 eng t h

integer). Second, regardless of the sign of integer, its value can be represented in signed binary

142 COMMON LISP REFERENCE MANUAL

two's-complement form in a field whose width in bits is at least (+ (i nteger-l ength integer) •
1) .

For example:

(integer-length 0) => 0
(integer-length 1) => 1
(integer-length 3) => 2
(integer-length 4) => 3
(integer-length 7) => 3
(integer-length -1) => 0
(integer-length -4) => 2
(integer-length -7) => 3
(integer-length -8) => 3

Compatibility note: This function is similar to the MAC LIsp function hau long. One may define hau long as

(haulong x) <=> (integer-length (abs x»

12.7. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing

anywhere in an integer. Such a contiguous set of bits is called a byte. Here the term byte docs not imply some

fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position

within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know

that the function byte will construct one, and that the byte-manipulation functions will accept them. The

function byte accepts two integers representing the position and size of the byte, and returns a byte specifier.
Such a specifier designates a byte whOje width is size, and whose bits have \vcights 2Position+size-l through

. 2Position. -.

byte size position [Function]
byte takes two integers representing the size and position of a byte, and returns a byte specifier

suitable for use as an argument to byte-manipulation functions.

byte-s i ze bytespec
byte-pos i t ion bytespec

[Function]
[Function]

Given a.byte specifier, byte-size returns the size specified as an integer; byte-position
similarly returns the position.

For example:

(byte-size (byte j k» <=> j
(byte-position (byte j k» <=> k

•

•

•

•

NUMBERS 143

1 db bytespec integer [Fullction]

byte~pec specifics a byte of integer to be extracted. The result is returned as a positive integer.

For example:

(logbitp j (ldb (byte s p) n)
<=> (and « j s) (logbitp (+ j p) n»

The name of the function ""1 db" means "load byte".

Compatibility note: '[be MAcLJSP function h a i par t can be implemented in terms of 1 db as follows:

(defun haipart (integer count)
(let «x (abs integer»)

(if (minusp count)
(ldb (byte (- count) 0) x) .
(ldb (byte count (max (- (integer-length x) n) 0» x»»

setf (page 66) may be used with 1 db, provided that the argument integer is specified by a form

that is a place form acceptable to set f, to modify a byte within the integer that is stored in that

place. The effect is to perfonn a dp b (page 143) operation and then store the result back into the

place.

1 db - t est bylespec integer [Function]
1 db - te s t is a predicate that is tme if any of-the bits designated by the byte specifier bytespec are

1's in inleger; that is, it is true if the designated field is non-zero .

(1 db-test bytespec n) <=> (not (zerop (1 db bytespec n»)

mask-field bytespec integer [Function]

This is similar, to 1 d'b; however, th-c result contains the specified byte of inleger in the position

specified by bylespec, rather than in position 0 as with 1 db. The result therefore agrees with integer
in the'byte specified, but has,ze~o bits everywhere else.

For example:

(1 db bs (m ask - fie 1 d bs n» < = > (1 d b bs n)
(logbitp j (mask-field (byte s p) n»

<=> (and (>= j p) « j s) (logbitp j n»
(mas k - fie 1 d bs n) < = > (log and n (1 db bs - 1))

setf (page 66) may be used with mask -f i e1 d, provided that the argument integer is specified

by a form that is a place fonn acceptable to set f, to modify a byte within the integer that is stored

in that place. The effect is to perform a de po sit - fie 1 d (page 144) operation and then store the

result back into the place.

dpb newbyte bytespec integer [Function]

Returns a number that is the same as integer except in the bits specified by bytespec. Let s be the

size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by

bytespec. The integer Ilewbyle is therefore interpret~d as being right-justified, as if it were the result

of1db.

144

For example:

(logbitp j (dpb m (byte s p) n»
<=> (if (and (>= j p) « j (+ p s»)

(logbitp (- j p) m)
(logbitp j n»

The name of the function Hdpb" means "deposit byte".

COMMON USP REFERENCE MANUAL

deposit-field newby/e by/espec integer [Function]

•

This function is to ma s k - fie 1 d as d p b is to 1 db. The result is an in teger that contains the bits of

newbyle within the byte specified by by/espec, and elsewhere contains the bits of integer ..

For example:

(logbitp j (dpb m (byte s p) n»
<=> (if (and (>= j p) « j (+ p s»)

(logbitp j m)
(logbitp j n»

Implemcntation notc: If the bytespec is a constant, one may of course construct, at compile time, an equivalent
mask m, for example by computing (d e p 0 sit - fie 1 d -1 bytespec 0), Given this mask m, one may then
compute

(depos i t - fie 1 d newbyte bytespec integer)

by computing

(logor (1 ogand newbyle m) (1 ogand integer (1 ognot m»)

where the result of (l ognot m) can of course also be computed at compile time, However, the following
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in
some situations:

(logxor integer (1 ogand m (1 ogxor integer rlewbyte»)

A related, though possibly less useful, trick is that

(let «z {logand (logxor x y)' m»)
(setq x (logxor z x»
(setq y (logxor z y»)

interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of x and y for 'Which m
is O.

12.8. Random Numbers

random number &optional state [Function]
(ran dom n) accepts a positive number n and returns a number of the same kind between zero

(inclusive) and n (exclusive). The number n may be an integer or a floating-point number. An

approximately uniform choice distribution is used: if n is an integer, each of the possible results

occurs with (approximate) probability II n. (The qualifier "approximate" is used because of

implementation considerations; in practice the deviation from uniformity should be quite small.)

The argument state must be an object of type ran d om - s tat e; it defaults to the value of the

variable *random-state*. This object is used to maintain the state of the pscudo~random

number generator, and is altered as a side effect oftbe random operation.

•

•

•

•

NUMBERS

. Compatibility 1101e: random of zero arguments as defined in MAciJSP has been omitted because its value is too
implementation-dependent (limited by fixnum range).

Implementation note: In genera\. it is not adequate to define (r an dom n) for integral n to be simply (mod
(random) n): this fails to be uniformly distributed if n is larger than the largest number produced by
ran dom, or even if n merely approaches this number. Assuming that the underlying mechanism produces
"random bits" (possibly in chunks such as fixnums). the best approach is to produce enough random biL'i to
construct an integer k some number d of bit<; larger than (integer-length n) (sec integer-l ength
(page 141», and then compute (mo d k n). The quantity d should be at least 7. and preferably 10 or more.

145

To produce random floating-point numbers in the range [A, B), accepted practice (as determined by a quick
look through the Collected Algorithms from the ACM. particularly algorithms] 33, 266. 294. and 370) is to
compute X*(B- A)+ A, where X is a floating-paint number uniformly distributed over [0.0, 1.0) and computed
by calculating a random integer N in the range [0, Af) (typically by a mulliplicative-congru~ntial or linear
congruential method mod M) and then setting X=NIM. See also [7]. If one takes M = i, where fis the
length of the signilicand of a floating-point number (and it is in fact common to choose M to be a power of .
two). then this method is equivalent to the following a<;sembly-Ianguage-Ievel procedure. Assume the
representation has no hidden bit. Take a floating-point 0.5, and clobber its entire significand with random bits.
Normalize the result if necessary.

For example. on the PDP-IO. a<;sume that accumulator T is completely random (all 36 bits are random). 1hen
thc code sequence

LSH T, - 9. ; Clear high 9 bil<;: low 27 arc random.
FSC T, 128. ; Install exponent and normalize.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). (Instead of the LSH,
one could do '''TLZ T, 777000: but if the 36 random bits came from a congruential random-number
generator, the high-order bil<; tend to be "more random" than the low-order ones, and so the LSH would be a
bit bettcr for uniform distribution. Ideally all the bil<; would be the result of high-quality randomness.)

With a hidden-bit representation. normalization is not a problem, but dealing with the hidden bit is. The
method can be adapted a<; follows. Take a floating-point 1.0 and clobber the explicit significand bits with
random bits; this produces a random floating-point number in the range [1.0, 2.0). 1bcn simply subtract 1.0.
In effect, we let the hidden bit creep in and then subtract it away again.

For example, on the VAX, assume that regi$ter T is completely random (but a little less random than on the
PDP-IO, as it has only 32 random bits). Then the code sequence

INSV #AX81,#7~#g,T
SUBF #AF1.0,T '

; Install correct sign bit and exponent.
; Subtract 1.0.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). Again, if the low-order
bits ~e not random enough, then "ROTl #7, T" should be performed first.

* ran dom- s ta te* [Variable]
This variable holds a data structure, an object of type ran d ~m - s tat e, that encodes the internal

state of the random-number generator that ran d om uses by default. The nature of this data

sUucture is implementation-dependent. It may be printed out and successfully read back in, but

mayor may not function correctly as a random-number state object in another implementation. A

call to random will perform a side effect on this data structure. Lambda-binding this variable to a

different random-number state object will correctly save and restore the old state object, of course.

make-random-state &optional state [Function]
This function returns a new object of type random-state, suitable for use as the value of the

variable *random-state*. If Slale is ni 1 or omitted, random-state returns a copy of the

current random-number state object (the value of the variable * ran dom- s ta te *). If stale is a

state object, a copy of that state object is returned. If Slate is t, then a new state object is returned

-,
146 COMMON LISP REFERENCE MANUAL

that has been "randomly" initialized by some means (such as by a time-of-day clock).

random- s ta te -p object [Function]
random-state-p is true ifits argument is a random-state object, and otherwise is false.

(random-state-p x) <:> (typep x 'random-state)

'12.9. Inlpleluentation Parameters

The values of the named constants defined in this section are implementation-dep~ndent. They may be

useful for parameterizing code in some situations.

most-pos it i ve-fi xnurn [Constant]
mos t -n e ga t i ve- fix num [Constant]

The value of mo s t - P 0 sit i v e - fix n um is that fixnum closest in value to positive infinity

provided by the impkmentation.

The value of most-negative-fixnum is that fixnum closest in value to negative infinity

provided by the implementation.

most-positive-short-float

least-positive-short-float
[C ollstant]
[Constant]

1 e as t - neg at i ve - s hor t -f 1 oat [Constant]
mos t -n e ga t i v e- short -f loa t [Constant]

The value of '010 s t - P 0 sit i v e - s h 0 r t - flo a t is that short-format floating-point number closest

in value to positive infinity provided by ~e implementation.
..

The value of least-positive-short-float is that positive short-format floating-point

number closest in value to zero provided by the itnplementation.

The value of least-negative-short-float is that negative short-format floating-point

number closest in value to zero provided by the implementation.

The value of rno s t - neg a t i ve - s h 0 r t - flo a t is that shortJformat floating-point number closest

in value to negative infinity provided by the implementation.

most-positive-single-float

least-positive-single-float

least-negative-single-float

most-negative-single-float

most-positive-double-float

least-positive-double-float

[Constant]
[Constant]
[Constant]
[Constant]

[Constant]
[Constant]

•

•

•

•

•

NUMBERS 147

least-negative-double-float [CoIlSlalll]

most-negative-double-float [ConSlalll]

most-positive-long-float [Coils/an I]

least-positive-long-float [COIlSlan/]

least-negative-long-float [ConSlallt]

most-negative-long-float [Constalll]

These are analogous to the constants defined above for short-format floating-point numbers.

short-float-epsilon
single-float-epsilon
double-float-epsilon
long-float-epsilon

[C ollSlan/]

[ConSlan/]

[ConSlan/]

[C onSlan/]

These constants indicate, for each floating-point format, the smallest positive number e of that

format such that

(not (:;; (float 1 e) (+ e (float 1 e»»

short-float-negative-epsilon
single-float-negative-epsilon
double-float-negative-epsilon
long-float-negative-epsilon

[ConSlan/]

[COllstan/]

[Conslant]

[Constant]

These constants indicate, for each floating-point format, the smallest positive number e of that

format such that

(not (:;; (float 1 e) (- e (float 1 e»»

•

148 COMMON LISP RFI'VRENCE MANUAL

•

•
"

•

•

•

Chapter 13

Characters

COMMON LISP provides a character data type; objects of this type represent printed symbols such as letters.

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish

among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be

associated with a character. The font attribute permits a specification of the style of the glyphs (such as

italics).

char-code-1imit [Constant]
The value of·char-cade-1 imi t is a non-negative integer that is the upper exclusive bound on

values produced by the function ch ar - cade (page 154), which returns the code component of a

given character; that is, the values returned by char - c a de are non-negative and strictly less than

the value ofchar-cade-1 imi t.

char-fant-limit [COlistant]
The value of ch ar - fan t -1 i mit is a non-negative integer that is the upper exclusive bound on .

, , ~ ,

values produced by the function c h a r - fan t (page 154), which returns the font component of a

given character; that is, the values returned by c h a r - f 0 n t are non-negative and strictly less than

the value of char-fant-l imi t.

Implementation note: No COMMON LISP implementation is required to support non-zero font attributes; if it
docs not, then char-font-1 imit should be 1.

char-bits-limit [Constant]
The value of c h a r - bit s - 1 i mit is a non-negative integer that is the upper exclusive bound on

values produced by the function c h a r - bit s (page 154), which returns the bits component of a

given character; that is, the values returned by c h a r - bit s are non-negative and 'Strictly less than

the value of ch ar -b its -1 i mi t. Note that the value of ch ar -:- b i ts'-l i mi t will be a power of

two.
Implementation note: No COMMON LIsp implementation is required to support non-zero bits attributes; if it
docs not, then char-b its -1 imit should be 1.

- 149-

150 COMMON LISP REFERENCE MANUAL

13.1. Predicates on Characters

The predicate characterp (page 54) may be used to determine whether any LISP object is a character
object. .

standard-charp char [Function]
The argument char must be a character object. standard-charp is true if the argument is a
"standard character", that is, one of the ninety-five ASCII printing characters or <return>. If the
argument is a non-standard character, then standard-charp is false.

Note in particular that any character with a non-zero bits or font attribute i'i non-standard.

graphic-charp char [Function]
The argument char must be a character object. 9 r ap hi c - c h a r p is true if the argument is a
"graphic" (printing) character, and false if it is a ··non-graphic" (formatting or control) character.
Graphic characters have a standard textual representation as a single glyph, such as "A" or "*" or
"=". By convention, the space character is considered to be graphic. Of the standard characters (as
defined by stan dar d - ch arp), all but <return> are graphic. If an implementation provides any of
the semi-standard characters <backspace>, <tab>, <rubout>; <1inefeed>, and <page>, they are not
graphic.

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs
may depend on this for purposes of columnar fonnatting. Non.-graphic characters and characters of
other fonts may be of varying widths.

Any character with a non-zero bits attribute is non-graphic.

s t r in 9 -~ h a r p char [Function]
The argument char must be a character object. s t r i n 9 - c h a r p is true if char can be stored into a
string, and otherwise is false. Any character that satisfies s tan dar d - c h a r p also satisfies
s t r i n 9 - c h a r p; others may also.

al pha-charp char [Function]
The argument char must be a character object. alp h a - c h a r p is true if the argurpent is an
alphabetic character, and otherwise is false.

Of the standard characters (as defined by standard-charp), the letters "A" through "Z" and "a"
through "z" are alphabetic.

•

•

•

•

CllARAcrERS

uppe rc asep char

lowercasep char

bothcasep char

151

[Function]

[Function]

[Function]

The argument chm: must be a character object. uppercasep is true if the argument is an upper

case (majuscule) character, and otherwise is false. lowercasep is true if the argument is an

lower-case (minuscule) character, and otherwise is false.

both ca s ep is true if the argument is upper-case and there is a corresponding lower-case character

(which can be obtained using char-downcase (page 155», or if the argument is lower-case and

there is a corresponding upper-case character (which can be obtained using char-upcase (page

155».

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is

permissible in theory for an alphabetic character to be neither uppercase nor lowercase.

Of the standard characters (as defined by standard-charp), the letters HA" through "z" arc'

upper-case and "a" through "z" are lower-casco

dig i t - c h a r p char &0 p t ion a 1 (radix 10.) [Function]

The argument char must be a character object, and radix must be a non-negative integer.

dig it - c h a r p is a pseudo-predicate: if char is not a digit of the radix specified by radix, then it is

false; otherwise it returns a non-negative integer that is the "weight" of char in that radix.

Digits are necessarily graphic characters.

Of the standard characters (as defined by stan dar d - c h a r p), the characters "0" through "9", "A"

through "Z", and "a" through "z" are digits. The weights of "0" through "9", are the integers 0

through 9, and of "A" through'''Z'' (and also "a" througl). "z") are 10 through 35. dig i t-charp

returns the weight for one pf these digits if and only if its weight is strictly less than radix. Thus, for

example, the digits for radix 16 are "0123456789ABCDEF" .

. (defun convert-string-to-integer (str &optiona1 (radix 10»
" G i v e n a dig its t r i n"'g and 0 p t ion a.1 r a d ix, ret urn ani n t e g e r . "
(do «j 0 (+ j 1»

a1 phanumeri cp char

(n 0 (+ (* n radix)
(or (digit-charp (char str j) radix)

(ferror "Sad radix- O digit: C"
radix
(char str i»»»

«= j (string-length str» n))

[Function]

The argument char must be a character object. alp h an ume ric p is truc if char is either alphabetic

or numeric. By definition,

(a1phanumericp x) <=> (or (a1pha-charp x) (digit-charp x»

Alphanumeric characters are therefore necessarily ,graphic (as defincd by g rap hi c - c h a r p (page

152 COMMON LISP REFERENCE MANUAL

150».

Of the standard characters (as defined by standard-charp), the characters HO" through "9", "A"
through HZ", and "a" through HZ" are alphanumeric.

char= character &rest more-characters
char/= character &rest more-characters
char< character &rest more-characters
ch a r> character &r es t more-characters
char<= character &rest more-characters

[Function]
[Function]
[Function]
[Function]
[Function]

char>= character &rest more-characters [Fullction]
The arguments must all be character objects. These functions compare the objects using the

implementation-dependent total ordering on characters, in a manner analogous to numeric

comparisons by = (page 122) and related function.

The total ordering on characters is guaranteed to have the following properties:

• The alphanumeric characters obey the following partial ordering:

A<B<C<D<E<F<G<H<I<J<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z
0<1<2<3<4<5<6<7<8<9
either 9<A or Z<O
either 9<a or z<O

This implies that alphabetic ordering holds, and that the digits as a group are not

interleaved with letters, but that the possible interleaving of upper-case letters and

lower-case letters is unspecified .

• If two characters have the same bits and font attributes, then their ordering by ch ar< is

'consistent witl). the numerica~. ordering by the predicate' < (page, 122) on their code
•

attributes.

Notice that the total ordering is not necessarily the same as the total ordering on the integers

produce by applying c h a r - i n t (page 155) to the characters. Also, while alphabetic characters of

a given ca~e must be properly ordered, they need not be contiguous; therefore (char<= #\a x

#\ z) is not a valid way of determining whether or not x is a lower-case letter, for example; that is

why a separate lowercasep (page 151) predicate is provided.

For example:

,"

CIIARAcrERS 153

(c h a r = #\ d #\ d) is true (c h a r I = #\ d #\ d) is false
(c h a r = #\ d 11\ x) is false (c h a r 1= 11\ d 11\ x) is truc
(char= #\d #\0) is false (char/= #\d 11\0) is true
(c h a r = #\ d #\ d #\ d #\ d) is true (c h a r 1= #\ d #\ d 11\ d #\ d) is false
(char= #\d lI\d. #\x #\d) isfalse (char/= #\d #\d #\x #\d) isfalse
(char= #\d #\y #\x #\c) isfalse (char/= #\d lI\y #\x #\c) istrue
(char= #\d #\c #\d) is false (char/= #\d #\c #\d) is false
(char< ,#\d #\x) is true (char<= #\d #\x) is true
(char< #\d #\d) is false (char<= #\d #\d) is true
(char< #\a #\e #\y #\z) istrue (char<= #\a #\e #\y #\z) istrue
(char< #\a #\e #\e #\y) isfalse (char<= #\a #\e #\e #\y) istrue
(char> #\e #\d) istrue (char>= #\e #\d) istrue
(char> #\d #\c #\b #\a) istrue (char>= #\d #\c #\b #\a) istnlc
(char> #\d #\d #\c #\a) isfalse (char>= #\d #\d #\c #\a) istrue
(> #\ e #\ d #\ b #\ c #\ a) is false (> = #\ e #\ d #\ b #\ c #\ a) is false
(> #1 z #\A) may be true or false (> #\ Z #\ a) may be true or false

There is no requirement that (e q c 1 c 2) be tnle merely' because (c h a r = c 1 c 2) is true.

While e q may distinguish two character objects that c h a r = does not, it is distinguishing them not

as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of

course, if (e q c 1 c 2) is true then one may expect (c h a r = c 1 c 2) to be true.) However, e q 1

(page 56) and equa 1 (page 56) compare character objects in the same way that char= does.

char-equal character &rest more-characters
ch ar -n 0 t- equa 1 character &r es t more-characters
char-lessp character &rest more-characters
char-greaterp character &rest more-characters
char-not-greaterp character &rest more-characters
char-not-)essp character &rest more-characters

< •

[Function]
[Function]
[Function]
[Function]
[Function]
[Fullction]

The predicate c h a r - e qua 1 is like' c h a r =, and similarly for the others, except according to a

different ordering such that differences of bits attributes'and case are ignored, and font information

is taken'into accpunt in an implementation-dependent manner. For the standard characters, the

ordering is such that A=a, B=b, and so on, up to Z=z, and furthermore either 9<A or Z<O.

For example:

(char-equal #\A #\a) is true
(c h a r = # \ A # \ a) is false
(char-equal #\A #\Control-A) is true

The ordering may depend on the font information. For example, an implementation might decree

that (char-equal #\p #\p) be true, but that (char-equal #\p #\",) be false (where #\'/T

is a lower-case "p" in somc font).
"

13.2. Character Construction and Selection

154 COMMON LISP REFERENCE MANUAL

charactar object' [Fullction] •
The function character coerces its argument to be a character if possible~ see coerce (page

37).

(character x) <=> (coerce x 'character)

char -code char [Function]
The argument char must be a character object. char-code returns the code attribute of the

character object; this will be a non-negative integer less than the (nOimal) value of the variable

char-code-l imi t (page 149).

.char-b its char [Function]
The argument char must be a character object. c~ar-bi ts returns the bits attribute of the

character object; this will be a non-negative integer less than the (normal) value of the variable

char'-bits-l imit (page 149).

c h a r - f 0 n t char [Function]
The argument char must be a character object. char-font returns the fOllt attribute of the

character object; this will be a non-negative integer less than the (normal) value of the variable

char-font-l imi t (page 149).

code-char code &optional (bits 0) (font 0) . [Function]
All three arguments must be non-negative integers. If it is possible in the implementation to

construct a character object whose code attribute is code, whose bits attrib.ute is bits, and ~hose font

attribute is font, then such an object is returned; otherwise nil is returned.

For any integers c, b, and/. if (cod e - c h arc b 1) is not n; 1 then

(char-co'de (code-char c b 1) => c
(char-bits (code-char c b 1)t => b
(char-font (code-char c b 1) => f .

If the font and bits attributes of a character object x are zero, then it is the case that

(char= (code-char (char-code c» c) is true

make-char char &option~l (bits 0) (font 0) [Function]
The argument char must be a character, and bits and font must be non-negative integers. If it is

possible in the implementation to construct a character object whose code attribute is that of char,

whose bits attribute is bits, and whose font attribute is font, then such an object is returned;

otherwise n ; 1 is returned.

If bits and font are zero, then rna k e - c h a r cannot fail. This implies that for every character object

one can "turn off' its bits and font attributes.

CIIARAcrFRS 155

• 13.3. Character Conversions

•

ch a,' - u pcase char [Function]

char-downcase char [Fullction]

The argument charmust be a character object. char-upcase attempts to convert its argument to

an upper-case equivalent: char-downcase attempts to convert to lowercase.

char-up case returns a character object with the same font and bits attributes as char, but with

possibly a different code attribute. If the code is different from char's, - then the predicate

lowercasep (page 151) is true of char, and uppercasep (page 151) is true of the result

character. Moreover, if (c h a r = (c h a r - u p c as ex) x) is not true, then it is true that

(char= (char-downcase (char-upcase x» x)

Similarly, char-downcase returns a character object with the same font and bits attributes as

char, but with possibly a different code attribute. If the code is different from char's, then the

predicate uppercasep (page 151) is true of char, and lowercasep (page 151) is true of the

result character. Moreover, if (c h a r = (c h a r - down cas ex) x) is not true, then it is true that

(char= (char-upcase (char-downcase x» x)

digit-weight weight &optional (radix 10.) (bits 0) (font 0) [Function]

All arguments must be integers. dig it-we i 9 h t determines whether or not it is possible to

construct a character object whose bits attribute is bits, whose font attribute is font, and whose code

is such that the result character has the weight weight when considered as a digit of the radix radix
(sec the predicate di gi t-:-charp (page 151». It returns such a character if that is possible, and

otherwise returns nil.

dig ,i t -we i 9 h t cannot return nil if bits and font are zero,. radix is between 2 and 36 inclusive,.

and weight is non-negative and less than radix. •

If more than one character object can encode such a weight in the given radix, one shall be chosen

consistently by any given implementation; moreover, among the standard characters upper-case

letters are preferred to lower-case letters.

For example:

(digit-char 7) => #\7
(digit-char 12) => nil
(digit-char 12 16) => #\C
(digit-char 6 2) => nil
(digit-char 1 2) => #\1

; not #\c

char~int char [Function]

The argument char must be a character object. c h a r - i n t returns a non-negative integer encoding

the character object.

. '

156 COMMON LISP REFERENCE MANUAL

If the font and bits attributes of char are zero, then ch ar - i n t returns the same integer •
char-code would. Also,

(char= cl c2) <=> (= (char-int el) (char-int c2»

for characters c 1 and c2.

This function is provided primarily for the purpose of hashing characters.

int-char integer [Function]
The argument must be a non-negative integer. int-char returns a character object e such that
(c h a r - i n t c) is equal to integer, if possible; otherwise in t - c h a r is false.

ch ar -n arne char [Function]
The argument char must be a character object. If the character has a name, then that name (a
symbol) is returned; otherwise nil is returned. All characters that have zero font and bits
attributes and that are non-graphic (do not satisfy the predicate graphic-charp (page 150»
have names. Graphic characters mayor may not have names.

The standard characters <return> and <space> have the respective names J'eturn and space. The
optional characters <tab>, <page>, <rubout>, <line feed>, and <backspace> have the respective names
tab, page, rubout, 1 i nefeed, and backspace.

Characters·that have names can be notated as "#\" followed by the name: #\Spaee.

n arne - char sym [Function]
The argument syrn must be a symbol. If the sy~bol is the name of a character object, that qbject is
returned; otherwise nil is returned .

13.4. Character Control-Bit Functions

COMMON LISP provides explicit names for four bits of the bits attribute: Control,!vl eta,. Hyper, and Super.
The following definitions are provided for manipulating the~e. Each COMMON LISP implementation provides
these functions for compatibility, even if it does not support any or all of the bi ts named below.

char-control-bit

char-rneta-bit

char-super-bit

char-hyper-bit

" .

[Constant]
[Constant]
[Constant]
[Constant]

The values ofthesenameq constants are the "weights" (as integers) for the four named control bits.
The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8 .

If a given implementation of COMMON LISP docs not support a particular bit, then the

•

•

•

•

CIIARACI'ERS 157

corresponding variable is zero instead.

char-bit char l1aJne [Function]
ch ar - bit takes a character object char and the name of a bit, and returns non-n i 1 if the bit of

that name is set in char, or nil if the bit is not set in char. Valid values for name are

implcmentation-dependent, but typically are :control, :rneta, :hyper,and :super.

For example:

(char-bit #\Control-X :control) => true

setf (page 66) may be used with char-bi t, provided that the argument char is specified by a

fonn that is a place form acceptable to set f, to modify a bit of the character stored in that place.
The effect is to perfonn a set-char-bi t (page 157) operation and then store the result back

into the place.

set- char- bit char name newvalue [Function]
c h a r - bit takes a character object char, the name of a bit, and a flag. A character is returned that

is just like char except that the named bit is set or reset according to whether newvalue is non-n i 1

or nil. Valid values for name are implementation-dependent, but typically are : con t r 01,

:meta, :hyper,and :super.

For example:

(set-char-bit #\X :control t) => #\Control-X
(set-char-bit #\Control-X :control t) => #\Control-X
(set-char-bit #\Control-X :control nil) => #\X

158 (,OMMO~ I.ISP RFFFRF~CE MANUAL

•

•
•

Chapter 14

Sequences

The type sequence encompasses both lists and vectors (one-dimensional arrays). While these are

different data structures with different structural properties leading to different algorithmic uses, they do have

a common property: each contains an ordered set of clements.

There are some operations that arc useful on both lists and arrays because they deal with ordered sets of

clements. One may ask the number of clements, reverse the ordering, extract a subsequence, and so on. For

such purposes COMMON LISP provides a set of generic functions on sequences:

elt reverse map remove remove-duplicates
subseq nreverse some delete delete-duplicates
copy-seq concatenate every position find
fill length notany mismatch search
replace sort notevery maxprefix SUbstitute
count merge reduce maxsuffix nsubstitute

Some of these operations come in more than one version .. Such versions are indicated by adding a" suffix to

the basic name of the operation. In addition, many operations accept one or more optional keyword

arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion, then the criterion may be

specified in one of two ways. The basic operation accepts an item, and elements are tested for being eq 1 to

that item. (A test other than eql can be specified by the : test or : test-not keyword.) The variants

formed by adding "-if" and "-if-not" to the basic operation name do not take an item, but'mstead a

one-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an example,

(remove item sequence)

returns a copy of sequence from which all elements e q 1 to item have been removed;

(remove item sequence :test #'equal)

returns a copy of sequence from which all elements e qua 1 to item have been removed;

(remove-if #'numberp sequence)

returns a copy of sequence from which all numbers have becn removed.

If an operation tcsts clements qf a sequence in any manner, the keyword argument : key, if not nil,

should be a ~nction of one argument that will extract from an element the part to be tested in place of the

-159 -

160 COMMON I.ISP R [FERENCE MANUAL

whole clement. For example, the effect of the MACLISP expression (a s s q item seq) could be obtained •

by

(find itelll sequence : tes t #' eq : key # 'car)

This searches for the first element of sequence whose car is eq to item.

For some operations it can be useful to specify the direction in which the sequence is processed. In this

case the basic operation normally processes the sequence in the forward direction. and processing in the

reverse direction is indicated by a non-n i 1 value for the keyword argument: from-end.

Many operations allow the specification of a subsequence to be operated upon. Such operations have

keyword arguments called: start and: end. These arguments should be integer indices into the sequence,

with start5.end; they indicate the subsequence starting with and including clement start and up to but

excluding element end. The length of the subsequence is therefore end- start. If start is omitted it defaults to

zero, and if end is omitted or n i 1 it defaults to the length of the sequence; therefore if both are omitted the

entire sequence is processed by default. For the most part this is permitted purely for the sake of efficiency;

one can simply call subseq instead to extract the subsequence before operating on it. However, operations

thac-produce indices return indices into the original sequence, not into the subsequence.

(positi6n #/b "foobar" :start 2 :end 5) => 3
(position #/b (subseq "foobar" 2 5» => 1

If two sequences are involved, then the keyword arguments: 5 tart 1, : end 1, : 5 tart2, and: end2 are

used to specify separate subsequences for each sequence.

For some functions, notably remove and del ete, th: keyword argument: count is used to specify how

many occurrences of the item should be affected. If this is n i 1 or is not supplied, all matching items are

affected.

In the following function descriptions, an clement x of a sequence "satisfies the test" if either of the

following holds:

• A basic function was called, tesl/n was specified by the keyword.: t est, and (f un c a 11 tesl/n
item (keyfn x» is true.

• A basic function was called, tesl/n was specified by the keyword : tes t - not, and (fun ca 11

tes(fn item (keyfn x» is false.

• An "- if" function was called, and (fun c a 1 1 predicate (keyfn x» is true.

• An "- i f - not" function was called, and (f un c a 11 predicate (keyfn x» is false.

In each case keyfn is the value of the : key keyword argument (the default being the identity function). See,

for example, remove (page 165).

In the following function descriptions, two elements x and y taken from sequences "match" if either of the •

•

SEQUENCES

fiJllowing holds:

• test/II was specified by the keyword : t est, and (f u n c a 11 test/n (keyfn x) (keyfn y)) is

true .

• lestfn was specified by the keyword : t est - not, and (f un c a 11 lestfn (keyfn x) (keyfiz
y)) is false.

Sec, for example, search (page 169).

161

As a nIle, whenever a sequence function must constnlct and return a new vector, it is always a simple

vector.

14.1. Simple Sequence Functions

e 1 t sequence index [Function]
This returns the element of sequence specified by index, which must be a non-negative integer less

than the length of the sequence. The first clement ofa sequence ha.s index o.

set f (page 66) may be used with e 1 t to destructively replace a sequence clement with a new

value.

subseq sequence start &optional end [Function]
This returns the subsequence of sequence specified by start and end. subseq always allocates a

new sequence for a result; it never shares storage with an old sequence. The result subsequence is

always of the same type as the argument sequence.

setf (page 66) may be used with subseq to destructively replace a subsequence with a sequence

of new values; see also rep 1 ace (page 165).

copy-seq sequence [Function]
A copy is made of the argument sequence; the result is equa 1 to the argument but not eq to it.

(copy-seq x) <=> (subseq x 0)

but the name ·copy-seq is more perspicuous when applicable.

, ength sequence [Function]
The number of elements in sequence is returned as a non-negative integer. If the sequence is a

vector with a fill pointer, the "active length" as specified by the fill pointer is returned. See section

17.6 (page 199) .

162 COMMON LISP REFERENCE MANUAL

reverse sequence [Fullction]
The result is a new sequence of the same kind as sequence, containing the same clements but in

reverse order. The argument is not modified.

n rever s e sequence [Function]
The result is a sequence containing the same elements as sequence but in reverse order. The

argument may be destroyed and re-used to produce the result. The result mayor may not be eq to

the argument. so it is usually wise to say something like (setq x (nreverse x», because

simply (nreverse x) is not guaranteed to leave a reversed value in x.

make-sequence type size &key :~nitial-element [Function]
This returns a sequence of type type and of length size, each of whose clements has been initialized
to the : in i t i a 1 -el ement argument. Ifspccified, the : in it i a 1 -el ement argumenrmust be

an object that can be an clement of a sequence of type type.

For example:

(make-sequence '(vector double-float) 100 :initial-element ldO)

If an : i nit i a 1 - e 1 e me n t argument is not specified, then the sequence will be initialized in an

implementation-dependent way.

14.2. Catenating, Mapping, and Reducing Sequences

concatena te result-type &res t sequences [Function]
The result is a new sequence that contains all the clements of all the sequences in order. All of the

sequences are copied from; the result does not share any structure with any of the argument

sequences (in this concatenate differs from append). The type of the result is specified by

.result-type, ~hich must be a SUbtype of sequence, as for the function coerce (page 37). It must

be possible for every element of the argument sequences to be an element of a sequence of type

result- type.

The lmplementation must be such that concatenate is associative, in the sense that the elements

of the result sequence are not affected by reassociation (but the type of the result sequence may be

affected). If no arguments are provided, concatenate returns a·new empty sequence of type

result-type.

If one argument is provided, and it has the type specified by result-type, concatena te is required

to copy the argument rather than simply returning it. If a copy is not required, but only possible

type-conversion, then the coerce (page 37) function may be appropriate.

•

•

•

•

SEQUENCES 163

map result-type· jUllctioll sequence &rest more-sequellces [Fullction]
The jUllctioll must take as many arguments as there arc sequences provided; at least one sequence
must be provided. The result of map is a sequence slich that clement j is the result of applying
jUllction to clement j of each of the argument sequences. The result sequence is as long as the
shortest of the input sequences .

. If the junction has side-effects, it can count on being called first on all the clements numbered 0,
then on all those. numbered 1, and so on.

The type of the result sequence is specified by the argument result-type, as for the function coerce
(page 37). In addition, one may specify nil for the result type, meaning that no result sequence is
to be produced: in this case the junction is invoked only for effect, and map returns nil. This gives
an effect similar to that ofmapc (page 85).

Compatibility note: In MAC LIsp, Lisp Machine LISP, I NTER LISP, and indeed even Lisp 1.5, the function map
has always meant a non-value-returning versjon. Ilowcver. standard computer science literature, and in
particular the recent wave of papers on "functional programming", have come to use map to mean what in the
past LISP people have called mapcar. To simplify things henceforth. COMMON LISP follows current useage,
and what was formerly called map is named map 1 (page 85) in COMMON LISP.

For example:

(map 'list #'- '(1 2 3 4» => (-1 -2 -3 -4)
(map 'string #'(lambda (x) (if (oddp x) #\1 #\0» '(1 2 3 4»

=> "1010"

some predicate sequence &res t more-sequences
every predicate sequence &rest more-sequenc~s

notany predicate sequence &res t more-sequences

[Function]
[Fullction]
[Function]

notevery predicate sequence &rest more-sequences [Function]
These are all predicates. The predicate must take as many arguments as there are sequences
provided. The predicate is first applied to the clements with index 0 in each of the sequences, and
possibly then to the elements with index 1, and so on, until a termination criterion is met or the end·
of the shortest of the sequences is reached.

some returns as soon as any invocation of predicate returns a non-ni 1 value; some returns that
value. If the end of a sequence is reached, some returns nil. Thus as a predicate it is true if some
invocation of predicate is true.

eve r y returns nil as soon as any in vocation of predicate returns nil. If the end of a sequence is
reached, every returns a non-n i 1 value. Thus as a predicate it is true if every invocation of
predicate is true . . '
notany returns nil as soon as any invocation of predicate returns a non-n i 1 value. If the end of
a sequence is reached, notany returns a non-ni 1 value. Thus as a predicate it is true if no
invocati~n of predicate is true .

noteve ry returns a non-n i 1 value as soon as any invocation of predicate returns nil. If the end
of a sequence is reached, not eve r y returns nil. Thus as a predicate it is true if not every

164 COMMON LISP REFERENCE MANUAL

invocation of predicate is true.

Compatibility note: The order of the argumcnts here is not compatible with I NTERi.ISP and Lisp Machine LISP.

This is to stress the similarity of thcse functions to map. The functions are therefore extended here to functions
of more than one argument, and multiple sequences.

reduce junction sequence &key :frorn-end :start :end :initia1-va1ue [Fullction]
The specified subsequence of the sequence is "reduced" using the junctioll, which must accept two

arguments. The reduction is left-associative, unless the : from-end argument is tnle (it defaults to

nil), in which case it is right-associative. If an : in it i a 1 - val ue argument is given, it is logically

placed before the subsequence (after it if : f rom- end is true) and included in the reduction

operation. Ifno :initia1-value is given, and the specified subsequence is empty, then the

'junction is called with zero arguments, and reduce returns whatever the function docs. (This is

the only case where the junction is called with other than two arguments.)

For example:

(reduce #'+ '(1 2 3 4» => 10
(reduce #'- '(1 2 3 4» <=> (- (- (- 1 2) 3) 4) => -8
(reduce #' - ' (1 2 3 4) : from-end t) ; Alternatingsum.

<=> (- 1 (- 2 (- 3 4») => -2
(reduce #'list '(1 2 3 4» => «(1 2) 3) 4)
(red u c e #' 1 i 5 t ' (1 2 3 4) : f ro m - end t) = > (1 (2 (3 4»)
(reduce#'list '(123 4) :initia1--va1ue 'fool

=> ««foo 1) 2) 3) 4)
(reduce #'list '(1 2 3 4) :from-end t :initial-va1ue 'fool

=> (1 (2 (3 (4 fool»~)

14.3. Modifying Sequences

fi 11 sequence item &key : start : end [Function]
The sequence is destructively modified by replacing the elements of the subsequence specified by

the : 5 tart and: end parameters with the item. The item may be any Lisp object, but must be a

suitable clement for the sequence. The item is stored into all specified components of the sequence,
beginning at the one specified by the : 5 tart index (which defaults to zero), and up to but not

including the one specified by the : end index (which defaults to the length of the sequence).

fill returns the modified sequence.

For example:

(setq x (vector 'a 'b 'c 'd 'e» => #(a b c d e)
(fill x 'z :start 1 :end 3) => #(a z z d e)

and now x => #(a z z de)
(fill x 'p) => #(p p P P p)

and now x => # (p P P P p)

•

•

•

•

SEQUENCES 165

replace sequence/ sequence2 &key :start1 :end1 :start2 :end2 [Function]
The sequence sequence/ is destructively modified by copying successive clements into it from

sequence2. The clements of sequence2 must be of a type that may be stored into sequencel. The

subsequence of sequence2 specified by : s tart2 and: end2 is copied into the subsequence of

sequence] specified by : start 1 and: end 1. (The arguments: start 1 and: s tart2 default to

·:start, which defaults to zero. The arguments :end1 and :end2 default to :end, which

defaults to nil, meaning the end of the appropriate sequence.) If these subsequences arc not of

the same length, then the shorter length determines how many clements are copied; the extra

clements near the end of the longer subsequence are not involved in the operation. The number of

clements copied may be expressed as:

(min (- end] start!) (- end2 start2»

The value returned by rep 1 ace is the modified sequencel.

If sequencel and sequence2 are the same object and the region being modified overlaps with the

region being copied from, then it is as if the entire source region were copied to another place and

only then copied back into the target region.

remove item sequence &key :from-end :test :test-not :start :end

:count :key

remove- if test sequence &key : from";'end : start : end : count : key

remove-if-not test sequence &key :from-end :star't :end :count :key

[Function]

[Function]
[Function}

The result is a sequence of the same kind as the argument sequence that has the same elements

except that those in the subsequence delimited ~y : s tart and: end and satisfying the test (see

above) have been removed. This is a nondestructive operation; the result is a copy of the input

sequence, save that some clements are not copied.

The : co un t argument, if supplied, limits the number of elements removed; if more than : co u n t

elements satisfy the test, only,the leftmost: count such are removed.

A non-n i 1 : from-end specification matters only when the : count argument is provided; in

that case only the rightmost : co un t clements satisfying the test are removed.

For example:

(remove 4 t(1 2 4 1 3 4 5» => (1 2 1 3 5)
(remove 4 t(1 2 4 1 3 4 5) :count 1) => (1 2 1 3 4 5)
(remove 4 t(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5·)
(remove 3 '(1 2 4 1 3 4 5) :test #t» => (4 3 4 5)
(remove-if #toddp t(1 2 4 1 3 4 5» => (2 4 4)
(remove-if #tevenp t(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)

The result of remove and related functions may share with the argument sequence; a list result may

share a tail with an input list, and the result may be eq to the input sequence if no elements need to

be removed~

166 COMMON LISP REFERENCE MANUAL

delete item sequeilce &key :from-end :test :test-not :start :end

:count :key

[Fullc/ioll]

delete-if lest sequence &key :from-end :star't :end :count :key

delete-if-not tes/ sequence &key :from-end :start :end :count :key

[Fullction]

[Fullction]

'fhis is the destructive counterpart to remove. The result is a sequence of the same kind as the

argument sequence that has the same clements except that those in the subsequence delimited by

: s tart and : end and satisfying the test (sec above) have been deleted. This is a destructive

operation. The argument sequence may be destroyed and used to construct the result; however, the

result mayor may not be e q to sequence.

The: count argument, if supplied, limits the number of clements deleted; if more than: count

clements satisfy the test. ()t11y the leftmost: count such are deleted.

A non-ni 1 : from-end spe~ification matters only when the : count argument is provided; in

that case only the rightmost: count elements satisfying the test are deleted.

For example:

(delete 4 '(1 2 4 1 3 4 5» => (1 2 1 3 5)
(delete 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 1 3 4 5)
(delete 4 '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 5)
(delete 3 '(1 2 4 1 3 4 5) :test #'» => (4 3 4 5)
(delete-if #'oddp '(1 2 4 1 3 4 5» => (2 4 4)
(delete-if #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2. 4 1 3 5)

Compatibility note: In MACLISP, the delete function uses an equal comparison rather than eql. which is
the default test for del e t e in COMMON LISP. Where in MACLISP one would write (del e t e x y) one must
in COMMON LISP write (de 1 ete x y : tes t #' equa 1).

remove-dupl i cates sequence &key : test : test-not : start : end

delete-duplicates sequence &key :test :test-not :start :end
[Function]
[Function]

The elements of sequence are examined, and if any two match then one is discarded. The result is a

sequence of the same kind as the argument sequence with eno~gh clements removed so that no two

of the remaining elements match. r e mo v e - d u P 1 ; cat e s is the non-destructive version of this

operation, whereas del e t e - d u P 1 i cat e s may destroy the argument sequence.

remove-dupl'i cates is useful for converting a sequence into a canonical form suitable for
representing a set.

(remove-duplicates '(a b c b d de»
=> (a c b d e) or (a b c d e)

SUbstitute newitem olditem sequence &key :from-end :test :test-not

:start :end :count :key

subst i tute- i f newitem test sequence &key : from-end : start : end

:count :key

subst i tute- if-not newitem test sequence &key : from-end : start : end

[Function]

[Function]

[Function]

•

SEQUENCES 167

:count :key

The result is a sequence of the same kind as the argument sequellce that has the same clements

except that those in the subsequence delimited by : s tar t and : end and satisfying the tcst (sec

above) have been replaced by newitem. This is a nondestructive operation; the result is a copy of

the input sequence, save that some clements are changed.

The: count argument, if supplied, limits the number of clements altered: if more than: count

clements satisfy the test, only the leftmost: count such are replaced.

A non-n i 1 : from-end specification matters only when the : count argument is provided; in

that case only the rightmost· : co un t clements satisfying the test are removed.

For example:

{substitute 9 4 '(1 2 4 1 3 4 5» => (1 2 9 1 3 9 5)
{substitute 9 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 9 1 3 4 5)
{substitute 9 4 '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 9 5)
(substitute 9 3 '(1 2 4 1 3 4 5) :test #'» => (9 9 4 9 3 4 5)
(substitute-if 9 #~oddp '(1 2 4 1 3 4 5» => (9 2 4 9 9 4 9)
{substitute-if 9 #'evenp '(1 2 4 1 3 4 5) :count 1 :from-end t)

=> (1 2 4 1 3 9 5)

The result of sub s tit ute and related functioI)s may share with the argument sequence; a list

result may share a tail with an input list, and the result may be eq to the input sequence if no

elemen~s need to be changed.

nsubstitute newitem olditem sequence &key :from-end :test :test-not

:start :end :count :key
nsubstitute-if newitem test sequence &key :from-end :start :end

:count :key

nsubstitute-if-not newitem test sequence &key :from-end :start :end

:count :key

[Function]

[Function]

[Function] .

This is the destructive counterpart to sub s tit ute. The resu It is a sequence of the same kind as

the argument sequence that has the same elements except that those in the subsequence delimited

by : s tar t. and : end and satisfying the test (see above) have been replaced by newitem. This is a

destructive operation. The argument sequence may be destroyed and used to constluct the result;

however, the result mayor may not be e q to sequence.

14.4. Searching Sequences for Items

find item sequence &key :from-end :test :test-not :start :end :key

find-if test sequence &key :from-:end :start :end :key

find-if-not test sequence &key :from-end :start :end :key

[Function]
[Function]
[Function]

If the sequence contains an element satisfying the test, then the leftmost such element is returned;

otherwise nil is returned.

168 COMMON:IJSP REFERENCE MANUAL

If : s tart and: end keyword arguments are given, only the specified subsequence of sequence is
searched.

If a non-n i 1 : from-end keyword argument is specified, then the result is the rightmost element

satisfying the test.

position item sequence &key :from-end :test :test-not :start :end :key [Function]
position-if test sequence &key :from-end :start :end :key [Fullction]
position-if-not test' sequence &key :from-end :start :end :key [Function]

If the sequence contains an clement satisfying the test, then the index within the sequence of the

leftmost such element is returned as a non-negative integer; otherwise nil is returned.

If : s tart and: end keyword arguments are given, only the specified subsequence of sequence is
searched. However, the index returned is relative to the entire sequence, not to the subsequence.

If a non-n i 1 : f rom- end keyword argument is specified, then the result is the index of the

rightmost element satisfying the test. (The index returned, however, IS an index from the left-hand

end, as usual.)

count item sequence &key :from-end :test :test-not :start :end :key
count-if test sequence &key :from-end :start :end :key

[Function]
[Function]

count- if-not lest sequence &key : from-end : start : end : key [Function]
The result is always a non-negative integer, the number of elements in the specified subsequence of

sequence satisfying the test (see above).

mi smatch sequencel sequence2 &key : from-end : test : test-not : key [Function]
:startl :start2 :endl :end2

The specified subsequences of sequencel and sequence2 are compared clement-wise. If they are of

equal length and match in every element, the result is nil. Otherwise, the result is a non-negative

integer, the index within sequencel of the leftmost position at which they fail to match; or, if one is

shorter than and a matching prefix of the other, the index within sequencel beyond the last position
tested is returned.

If a non-n i 1 : f rom- e nd keyword argument is given, then the index of the rightmost position in

which the sequences differ is returned. The (sub)sequences arc aligned at their right-hand ends; the

last elements are compared, the penultimate clements, and so on. The index returned is again an

index into sequencel.

maxprefix sequencel sequence2 &key :from-end :test :test-not :key [Function]
:startl :start2 :endl :end2

maxsuffix sequencel sequence2 &key :from-end :test :test-not :key [Function]
:startl : s tar·t2 :endl :end2

•

•

•

SEQUENCES 169

The arguments sequence I and sequence2 are compared clement-wise. The result is a non-negative

integer, which for maxp ref i x is the index of the leftmost position at which they fail to match; or,

if one is shorter than and a matching prefix of the other, the length of the shorter sequence is

returned. If they are of equal length and match in every clement, the result is the length of each.

The keyword arguments : s tar t 1 and : end 1 delimit a subsequence of sequencel to be matched,

and: start2 and: end2 delimit a subsequence of sequence2. The comparison proceeds by first

aligning the left-hand ends of the two subsequences; the index returned is an index into sequencel.
maxprefix is therefore not commutative if: start1 and: start2 are not equal.

The suff i x versions differ in that 1 plus the index of the rightmost position in which the

sequences differ is returned. The (sub)sequences arc aligned at their right-hand ends; the last

clements are compared, the penultimate elements, and so on. The index returned is again an index

into sequencel.

The implementation may choose to match the sequences in any order; there is no guarantee on the'

number of times the test is made. For example, maxsuff i x might match lists from left-to-right

instead of from right-to-Ieft. Therefore it is a good idea for a user-supplied predicate to be free of

side-effects.

search sequencel sequence2 &key : from-end : test : test-not : key [Function]
:start1 :start2 :endl :end2

A search is conducted for a subsequence of sequence2 that clement-wise matches sequencel. If

there is no such subsequence, the result is nil; if there is, the result is the index into sequence2 of
the leftmost element of the leftmost such matching subsequence.

If a non-n i 1 : from-end keyword argument is given, the index of the leftmost element of the

rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no guarantee on the

number of times the test is made. For example, search-from-end might search a list from

left-to-right instead of from right-to-Ieft. Therefore it is. a good idea for a user-supplied predicate

be free of side-effects.

14.5. Sorting and Merging

sort sequence predicate &key : key

stabl e-s,ort sequence predicate &key : key

[Function]
[Function]

The sequence is destructively sorted according to an ordering determined by the predicate. The

predicate should take two arguments, and return non-n i 1 if and only if the first argument is strictly

less than the second (in some appropriate sense). If the first argument is greater than or equal to the

second (in the appropriate sense), then the predicate should return n i 1.

The so r t function determines the relationship· between two elements by giving keys extracted

170 COMMON LISP REFERENCE MANUAL

fi'om the clements to the predicate. The function k. when applied to an clement. should return the e
key for that element: k defaults to the identity function, thereby making the element itself be the
key.

The: key function should not have any side effects. A useful example of a : key function would
be a component selector function for a de f s tr u ct. (page 211) structure, for sorting a sequence of
structures.

(sort a p :key s)
< = > (s 0 r t a #' (1 am b d a (x y) (p (s x) (s y»»

While the above two expression are equivalent, the first may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply k to each item just once, putting the resulting keys into a separate table, and then sort the
parallel tables, as opposed to applying k to an item every time just before applying the predicate.

If the k and predicate functions always return. then the sorting operation will always terminate,
producing a sequence containing the same elements as the original sequence (that is, the result is a
permutation of sequence). This is g~aranteed even if the predicate does not really consistently
represent a total order. If the k consistently returns meaningful keys, and the predicate docs reflect
some total ordering criterion on those keys, then the elements of the result sequence will conform to
that ordering.

The sorting operation performed by sort is not guaranteed stable, howcv~r; elements considered
equal by the predicate mayor may not stay in thei~ original order. The function stable-sort
guarantees stability, but may be somewhat slower.

The sorting operation may be destructive in all cases. In the case of an array argument, this is
accomplished by permuting the elements in place. In the case of a Hst, the list is destnlctively
reordered in the same. manner as for n rever s e (page 162). Thus if the argument should not be
destroyed, the user must sort a copy of the argument.

Should execution of k or predicate cause an error, the state of the list or array being sorted is
undefined. However, if the error is corrected the sort will, of course, proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting will
be much faster if the predicate is a compiled function rather than interpreted.

For example:

(defun mostcar (x)
(if (symbolp x) x (mostcar (car x»»

(sort foovector #'string-lessp :key #'mostcar)

If foovector contained these items before the sort:

(Tokens (The lion sleeps tonight»
(Carpenters (Close tG you»
((Rolling Stones) (Brown sugar»
((Beach Boys) (I get around» .
(Beatles (I want to hold your hand»

e

SEQUENCES

then after the sort foovector would contain:

((Beach Boys) (1 get around»
(Beatles (I want to hold your hand»
(Carpenters (Close to you»
((Rolling Stones) (Brown sugar»
(Tokens (The lion sleeps tonight»

merge sequencel sequence2 predicate &key : key

171

[Function]
The sequences sequencel and sequence2 are destructively merged according to an ordering

determined by the predicate. The predicate should take two arguments, and return non-n i 1 if and

only if the first argument is strictly less than "the second (in some appropriate sense). If the first

argument is greater than or equal to the second (in the appropriate sense), then the predicate should

return n i 1.

The me r g e function determines the relationship between two element') by giving keys extracted

from the elements to the predicate. The function k, when applied to an clement, should return the

key for that element; the k function defaults to the identity function, thereby making the clement

itselfbe the key.

The: key function should not have any side effects. A useful example of a : key function would

be a component selector function for a defstruct .(page 211) structure, for merging a sequence

of structures.

If the k and predicate functions always return, then the merging operation will always terminate.

The result of merging two sequences x andy is a new sequence z such that the length of z is the sum

- of the lengths of x and y, and z contains the all the clements of x and y. If xl and x2 are two

elel:TIents of x, and- xl precedes x2 in x, then xl precedes x2 in z; similarly for elements of y. In

other words, z is an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then z will also be correctly

sorted. If x or y is not so sorted, then z will not be sorted, but will nevertheless be an interleaving of

x andy.

The merging operation is guaranteed stable; if two or more clements are considered equal by the

predicate, then the elements from sequencel will precede those from sequence2 in the result.

For example:

(me r g e '(1 3 4 6 7) '(2 5 8) #' <) => (1 "2 3 4 5 6 7 8)

172 COMMON LISP REFERENCE MANUAL

••

•

•

Chapter 15

Manipulating List Structure

A cons, or dotted pair. is a coinpound data object having two components, called the car and cdr. Each

component may be any LISP object. A list is a chain ofconses linked by cdr fields; the chain is terminated by

some atom fa non-cons object). An ordinary list is terminated by n i , , the empty list (also written" () "). A

list whose cdr-chain is terminated by some non-n i' atom is called a dotted list.

The recommended predicate for testing for the end of a list is end p (page 175).

15.1. Conses

car x

cdr x

[Function]
Returns the car of x, which must be a cons or () ; that is, x must satisfy the predicate 1 i s t p (page
53). By definition, the car of () is (). If the cons is regarded as the first cons of a list, then ear
returns the first element of the list.

For example:

(car tea be» => a

See fi rs t (page 176). The car of a cons may be altered by using rp 1 aca (page 181) or setf
(page 66).

[Function]
Returns the cdr of x, which must bf' a cons or () ; that is, x must satisfy the predicate , i s t p (page

53). By definition, the cdr of () i5 (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all clements but the first of the original list

For example:

(cdr tea be» => (b c)

See res t (page 176). The cdr of a cons may be altered by using rp 1 acd (page 181) or setf

(page 66) ..

-173 -

174

c ... r X

COMMON I.lSI> REFERENCE MANUAL

[Fullction]
All of the compositions of up to four car's and cdr's are defined as functions in their own right. The

names of these functions begin with HC" and end with "r", and in between is a sequence of "a" and

"d" letters corresponding to the composition performed by the function.

For example:

(cddadr x) is the same as (cdr (cdr (car (cdr' x))))

If the argument is regarded as a list, then cadr returns the second clement of the list, caddr the

third, and cadddr the fourth. If the first clement ofa list is a list, then caar is the first element of

the sublist, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so

on.

As a matter of style, it is often preferable to define a function or macro to access part of a

complicated data stnlcture, rather than to use a long car/cdr string:

(defmacro lambda-vars (lambda~exp) '(cadr ,lambda-exp))
; then use lamb d a - v a r s everywhere instead of cad r

See also defstruct (page 211), which will automatically define new record data types and access

functions for instances of them.

Any of these functions may be used to specify a place for set f (page 66).

cons x y [Function]
con s is the primitive function to create a new cons, whose car is x and whose cdr is y.

For example:

(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c '()))) => (a b c)
(cons 'a '(b cd)) => (a bed)

con s may be thought of as creating a cons, or as adding a new element to the front of a list.

tree-equal x y &key :test :test-not [Function]
This is a predicate that is true if x and yare isomorphic trees with identical leaves; that is, if x and y

are atoms that ~atisfy the test (by default e q l), or if they are both conses and their calS are

tree-equal and their cdrs are tree-equal. Thus tree-equal recursively compares conses

(but not any other objects that have components). See e qua 1 (page 56), which does recursively

compare other structured objects.

" 15.2. Lists

•

•

•

MANIPULATING LIST STRUCrURE 175

endp object [Fullction]
The predicate end p is the recommended way to test for the end of a list. I t is true of conses, false of

nil, and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, especially in the interpreter, for a
non-list argument The endp function is defined so as to allow compiled code to perform simply an atom
check or a null check if speed is more important than safety.

1 is t -1 ength list &opt i ona 1 limit [Function]
list-length returns, as an integer, the length of list. The length ofa list is the number of

top-level conses in it. If the argument limit is supplied, it should be an integer; if the length of the

list is greater than limit (possibly because the list is circular!), then limit is returned.

For example:

(list-length 'C»~ => 0
(list-length tea b cd» => 4
(1 is t -1 eng t h '(a (b c) d» => 3
(list-length '(a b c d e f g) 4) => 4

1 i st-l engt.h c~uld be implemente.d by:

(defun list-length (x &optional (limit nil limitp»
(declare (integer limit»
(do «n 0 (+ n 1»

(y x (cdr y»)
«endpy) n)

(when (and limitp (>= n limit»
(return limit»»

See' ength (page 161), which will return the length of any sequence.

nth n list [Function]
(nth n list) returns the n'th element of list, where the zeroth clement is the car of the list. n must

be a non-negative integer .. If the length of the list is not greater than n, then the result is (.), that is,

n·i 1. (This is consistent with the idea that the car and cdr of () are each (}.)

For example:

(nth 0 '(foo bar gack» => foo
(nth 1 '(foo bar gack» => bar
(nth 3 '(foo bar gack» => ()

Compatibility note: This is not the same as the INTER Lisp function caJled nth, which is similar to but not
exactly the same as the COMMON LISP function nth cdr. 'This definition of nth is compatible with Lisp
Machine LISP and NIL. Also, some people have used macros and functions called nth of their own in their old
MAC LIsp programs, which may not work the same way. .

nth may be used to specify a place to setf (page 66); when nth is used in this way, the argument

n must be less than the length of the list .

176 COMMON I.lSP REFERENCE MANUAL

first list [Function]
second list [Fullction]
third list [Function]
fourth list [Function]
fifth list [Function]
sixth list [F'unction]
seventh list [Function]
eighth

ninth

tenth

list [Function]
list [Function]
list [Function]

These functions arc sometimes convenient for accessing particular clements of a list. fir s t is thc

same as car (page 173); second is the same as eadr; and so on. Notc that the ordinal

numbering used here is one-origin, as opposed to the zero-origin numbering used by nth (page

175):

(fifth x) <=> (nth 4 x)

??? Query: Should these be general sequence functions?

res t list [Function]
res t means the same as cdr, but mnemonically comp lements fir st.

nth cdr n list [F'unc t ion]
(nth e d r n list) performs the cdr operation n times on list, and returns the result.

For example:

(nthcdr 0 ' (a b c» => (a b c)
(nthcdr 2 ' (a b e» => (e)
(nthedr 4 ' (a b e» => ()

In other words, it returns the n'th cdr of the list

Compatibility note: This is similar to the INTER LISP function nth, except that the INTERLISP function is
one-based instead of zero-based.

1 as t list

{car (nthcdr n x» <=> (nth n x)

1 as t returns the last cons (not the last element!) of list. If list is (), it returns ().

For example:

(setq x t(a bed»
(last x) => (d)
(rplaed (last x) '(e f»
x => '(a bed e f)
(1 as t '(abc . d» ='> (c • d)

[Function]

•

•

•

MANIPULATING LIST STRUCTURE 177

1 is t &re s t args [Function]
1 is t constructs and returns a list of its arguments.

For example:

(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4)

1 is t * arg &res t others [Function]
1 is t * is like 1 is t except that the last cons of the constructed list is "dotted".' The last argument

to 1 is t * is used as the cdr of the last cons constructed; this need not be an atom. If it is not an

atom, then the effect is to add several new clements to the front of a list.

For example:

(1 i s t * ' a ' b 'c ' d) => (a be'. d)
This is like
(cons 'a (cons 'b (cons 'c 'd»)
Also:
(list* 'a 'b 'c '(d e f» => (a bed e f)
(list* x) <=> x

make-list size &key :initial-element [Function]
This creates and returns' a list containing size clements, each of which is initialized to the

: in i t i a 1 - e 1 eme n t ~rgument (which defaults to nil). size should be a non-negative integer.

For example:

(make-list 5) => (nil nil nil nil nil)
(make-list 3 'rah) => (rah rah rah)

Compatibility note: The Lisp Machine LISP function make-l is t takes arguments area and size. Areas are not
relevant to COMMON LIsp. The argument order used here is compatible with NIL.

a p pen d & res t lists , [Function]
The arguments to a p pen d are lists. The result is a list that is the concatenation of the arguments.

The arguments are not destroyed.

For example:

(append' '(a b c) 'Cd e f) 'C) '(9» => (a bed e f g)

Note that ap pen d copies the top-level list structure of each of its arguments except the last. The

function concatenate (page 162) can perform a similar operation, but always copies all its

arguments. See also ncone (page 178), which is like append but destroys all' arguments but the

last

The last argument actually need not be a list, but may be any LISP object, which becomes the tail
end of the constructed list. For example, (append '(a b e) 'd) => (a be. d).

(a p pen d ,x '(» is an idiom once frequently used to copy the list x, but the cop y -1 i s t

function is more appropriate to this task.

178 COMMON US}> REFERENCE MANUAL

copy-list list [Function]
Returns a list that is eq ua 1 to lis!, but not eq. Only the top level of list-structure is copied; that is,

copy-l is t copies in the cdr direction but not in the car direction. If the list is "dotted", that is,

(cdr (1 as t list)) is a non-n i 1 atom, this will be true of the returned list also. See also

copy - seq (page 161).-

cop y - ali s t list [Function]
cop y - a li s t is for copying association lists. The top level of list structure of list is copied, just as

copy -1 is t does. In addition, each clement of list that is a cons is replaced in the copy by a new

cons with the same car and cdr.

copy-tree object [Function]
copy-tree is for copying trees ofconses. The argument object may be any LISP object. Ifit is not

a cons, it is returned; otherwise the result is a new cons of the results· of calling copy - tree on the

car and cdr of the argument. In other words, all conses in the tree are copied recursively, stopping

only when non-conses are encountered. Circularities and the sharing of substructure are not
preserved.

revappend x y [Function]
(revappend x y) is exactly the same as (append (reverse x) y) except that it is

potentially more efficient. Both x and y should be lists. The argument x is copied, not destroyed.

Compare this with nreconc (page 179), which destroys its first argument.

ncon c &res t lists [Function]
nconc takes lists as arguments. It returns a list that is the arguments concatenated together. T~e

arguments are changed, rather than copied. (Compare this with append (page 177), which copies

arguments rather than destroying them.)

For example:

(setq x tea be»
(setq y 'Cd e f»
(nconc x y) => (a bed e f)
x => (a bed e f)

Note, in the example,that the value of x is now different. since its last cons has been rp 1 acd'd to

the value of y. If one were then to evaluate (n con c x y) again, it would yield a piece of

"circular" list structure, whose printed representation would be (a b c d e f d e f d e f

. . .), repeating forever; if the * p r inc ire 1 e * (page 248) switch were non -nil, it would be

printed as (a be. #1=(d e f . #1#».

•

MANIPULATING LIST STRUCTURE 179

nreconc x y [Function]
(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is more
efficient. Both x and y should be lists. The argument x is destroyed. Compare this with
rev append (page 178).

pus h item place [~lacro]

The form place should be the name of a generalized variable containing a list; item may refer to any
Lisp object. The item is consed onto the front of the list, and the augmented list is stored back into
place and returned. The form place may be any· form acceptable as a generalized variable to setf
(page 66). If the list held in place is viewed as a push-down stack, then push pushes an element
onto the top of the stack.

For example:

(setq x '(a (b c) d»
(push 5 (cadr x» => (5 b c) andnow x => (a (5 b c) d)

The effect of (pus h item place) is roughly equivalent to

(setf place (cons item place»

except that the latter would evaluate any subforms of place twice, while push takes care to evaluate
them only once. Moreover, for certain place forms pu s h may be significantly more efficient than
the set f version.

pushnew item place [Macro]
The form place should be the name of a generalized variable containing a list; ilem may refer to any
LISP object. If the item is already a member of the list (as determined by comparisons using the
: tes t predicate, which defaults to eq 1), then the item is consed onto the front of the list, and the
augmented list is stored back into place and returned; otherwise the unaugmented list is ,returned.
The form place may be any form acceptable as a generalized variable to set f (page 66). If the list
held in place is viewed as a set, then pus h new adjoins an element to the set; see ad j 0 i n (page
184). pushnew returns n i 1.

For example:

{setq x '{a (b c) d»
(pushnew 5 (cadr x» => (5 b c) andnow x => {a (5 b c) d)
(pushnew 'b (cadr x» => (5 b c) and x is unchanged

The effect of (pus h new item place : t est p) is roughly equivalent to

{ set f place (a d j 0 i n item place : t est p»

except that the latter would evaluate any subforms of place twice, while pus h n ew takes care to
evaluate them only once. Moreover, for certain place forms push new may be significantly more
efficient than the set f version.

180 COMMON LISP REFERENCE MANUAL

pop place [Alacro]

The form place should be the name of a generalized variable containing a list. The result of pop is

the car of the contents of place, and as a side-effect the cdr of the contents is stored back into

place. The form place may be any form acceptable as a generalized variable to set f (page 66). If

the list held in place is viewed as a push-down stack, then pop pops an clement from the top of the

stack and returns it.

For example:

(setq stack '(a b c»
(pop stack) => a andnow stack => (b c)

The effect of (pop place) is roughly equivalent to

(progl (car place) (setf place (cdr place»)

except that the latter would evaluate any subforms of place thrice, while pop takes care to evaluate

them only once. Moreover, for certain place forms pop may be significantly more efficient than the

set f version.

butlast list &optiona1 n [Function]
This· creates and returns a list with the same elements as list, excepting the last n clements. n
defaults to l. . The argument is not destroyed. If the list has fewer than n elements,· then () is

returned.

For exa~ple:

(but1ast '(a b cd» => (a b c)
(but1ast '«a b) (c d» => «a b)J
(but1ast '(a» => ()
(but1ast nil) => ()

The name is from the phrase "all elements but the last".

nbutlast list &optiona1 n [Function]
This is the destructive version of but 1 as t; it changes the cdr of the cons n + 1 from the end of the

list to nil. n defaults to l. If the list has fewer than n elements, then n but 1 as t returns (),. and

the argument is not modified. (Therefore one normally writes (set q a (n but 1 as t a» rather

than simply (nbut1 ast a).)

For example:

(setq foo '(a b cd»
(nbutlast foo) => (a b c)
foo => (a b c)
(nbutlast '(a» => ()
(nbut1ast 'nil) => ()

•

•

-..;

MANIPULATING LIST STRUCrURE 181

1 d iff list sublist [Function]

list should be a list. and sublist should be a sub list of list. Le., one of the conses that make up list.

1 d iff (meaning "list difference") will return a new list, whose clements are those clements of list

that appear before sub/isl. If sublist is not a tail of list, then a copy the entire list is returned. The

argument list is not destroyed.

For example:

(setq x '(a b c de»
(setq y (cdddr x» => (d e)
(ldiff x y) => (a b c)
but
(1 d iff '(abc d) t (c d» => (a b cd)
since the sublist was not e q to any part of the list.

15.3. Alteration of List Structure

The functions rpl aca and rpl acd may be used to make alterations in already-existing list stnlcture; that

is, to change the cars and cdrs of existing conses. One may also use set f (page 66) in conjunction with car

and cdr (page 173).

The structure is n?t copied but is physically altered; hence caution should be exercised when using these

functions, as strange side-effects can occur if portions of list stnlcture become shared unbeknownst to the

programmer. The nco n c. (page 178), n rever s e (page 162), n r e con c (page 179), and n but 1 as t (page

180) functions already described, and the de 1 e te (page 166) family described later, have the same property.

Howcvcr, they are normally not used for this side-effect; rather, the list-structure modification is purely for

efficiency and compatible non-modifying functions are provided.

rp 1 aca x y [Function]
(r p 1 a c a x y) changes the car of x to y and returns (the modified). X. x must be a cons, but y may

be any Lisp object.

For example:

(setq 9 '(a b c»
(rplaca (cdr g) 'd) => (d c)
Now 9 => (a d c)

rp 1 acd x y [Function]
(r p 1 a cd x y) changes the cdr of x to y and returns (the modified) X. x must be a cons, but y may

be any Lisp object.

For example:

(setq x '(a be»
(rplacd x'd) => (a • d)
Now x => (a . d)

182 COMMON LISP REFERENCE MANUAL

15.4. Substitution of Expressions

1\ number of functions are provided for performing substitutions within a tree. All take a tree and a

description of old sub-expressions to be replaced by new ones. They come in non-destructive and destnlctive

varieties, and specify substitution either by two arguments or by an association list.

subst new oM tree &key :test :test-no~ :key
subs t - if predicate new tree &key : key

[Function]
[Function]

sub s t - i f - not predicate new tree &k ey : key [Function]
(sub s t new old tree) substitutes new for every leaf of tree (whether a car or a cdr) such that old
and the leaf satisfy the test, and returns the modified copy of tree. The original tree is unchanged,

but the result tree may share with parts of the argument tree .
. Coinpatihility note: In MAC LISP, sub s t is guaranteed not to share with the tree argument, and (s u b s t nil
nil x) was used as an idion for copying the tree x. In COMMON LISP, the function copy-tree (page
178) should be used to copy a tree. as the sub s t idiom will not work.

For example:

(subst 'tempest 'hurricane
'(shakespeare wrote (the hurricane»)

=> (shakespeare wrote (the tempest»
(subst 'foo 'nil '(shakespeare wrote (twelfth night»)

=> (shakespeare wrote (twelfth night .foo) . fool

This function is not destructive; that is, it does not change the car or cdr of any already-existing list

structure. One possible definition of sub s t:

(defun subst (old new tree &rest x &key test test-not key)
(cond «atom tree)

For example:

(if (satisfies-the-test old tree :test test
:test-not test-not :key key)

new tree»
(t (let «a (apply #'subst old new (car tree) x»

(d (apply #'subst old new (cdr tree) x»)
(if (and (eq a (car tree» (eq d (cdr tree»)

tree
(cons a d»»»

See a1so subs t i tute (page 166), which substitutes for top-level elements of sequence.

nsubst new old tree &key :test :test-not :key
nsubst-if predicate new tree &key : key
nsubst- if-not predicate new tree &key : key

[Function]
[Fullction]
[Fullction]

nsubst is a destructive version of subst. The list structure of tree is altered by destructively

replacing with new each leaf of the tree such that old and the leaf satisfy the test.

•

•

MANIPULATING LIST STRUCrURE 183

sublis alist tree &key :test :test-not :key [Function]
sub 1 ; s makes substitutions for symbols in a tree (a structure of conses). The first argument to

sub 1 ; s is an association list. The second argument is the tree in which substitutions are to be

made, as for sub s t (page 182). sub 1 i s looks at all leaves in the tree: if a leaf appears as a key in

the association list (that is, the key and the leaf satisfy the test), it is replaced by the object it is

associated with. This operation is non-destructive. In effect, sub 1 is can perform several sub s t

operations simultaneously.

For example:

(sublis '«x. 100) (z . zprime»
'(plus x (minus 9 z x p) 4»

=> (plus 100 (minus 9 zprime 100 p) 4)

nsubl is alist tree &key : test : test-not : key

n sub 1 isis like sub 1 i s but destructively modifies the relevant leaves of the tree.

15.5. Using Lists as Sets

[Function]

COMMON LISP includes functions that allow a list of items to be treated as a set. Some of the functions

usefully allow the set to be ordered; others specifically support unordered sets. There are functions to add,

remove, and search for items in a list, based on various criteria. There are also set union, intersection, and

difference functions.

The naming conventions for these functions and for their keyword arguments generally follow the

conventions for the generic sequence functions. See Chapter 14.

member item list &key :test :test-not :key [Function]
member-if predicate list &key :key [Function]
member-if-not predicate list &key :key [Function]

The list is searched for an element that satisfies the test. If none is found, nil is returned;

otherwise, the tail of list beginning with the first clement that satisfied the tCst is returned. The list

is searched on the top level only. These functions are suitable for use as predicates.

For example:

(member 'snerd '(a bed» => nil
(member-if #'numberp '(a #\Space 5/3 fool) => (5/3 fool
(member 'a '(9 (a y) cad e a f» => (a d e a f)

Note, in the last example, that the value returned by member is eq to the portion of the list

beginning with a. Thus rp 1 aca on the result of member may be used, if you first check to make

sure member did not return nil, to alter the found Jist element

See also fin d (page 167) and po sit ion (page 168).
Compatibility note: In MACLISP, the member function uses an equal comparison rather than eql, which is

184 COMMON LISP REFERENCE MANUAL

the default test for membe I' in COMMON LISP. Where in MACLlsP one would write (membe r x y) one must
inCoMMoNLlspwrile(member x y :test #'equal).

t ail p sublist list [Fullction]

This predicate is true if sublist is a sublist of lisl (Le., one of the conses that makes up list).

Otherwise it is false. Another way to .look at this is that ta i 1 P is true if (n th cd r n list) is

sub/ist, for some value of n. See 1 d i ff (page 181).

adjoin item list &key :test :test-not :key [Function]

ad j 0 in is used to add an clement to a set, provided that it is not already a member. The equality

test defaults to e q 1 .

(adjoin item list) <=> (if (member item list) list (cons item list»

Sec pushnew (page 179).

union listl list2 &key :test :test-not :key
nunion listl list2 &key :test :test-not :key

[Function]

[Function]

un ion takes two lists and returns a new list containing everything that is an clement of either of the

lis Is. If there is a duplication between two lists, only one of the duplicate instances will be in the

result. If either of the arguments has duplicate entries within it, the redundant entries mayor may

not appear in the resl:llt

For example:

('union tea b c) t(f a d» =>' (a b c f d)

There is no guarantee that the order of elements in the result will reflect the ordering of the

arguments in any-particular way. The implementation is therefore free to use any of a variety of

strategies.

nun i on is the destnlctive version of un i on. It performs the same operation, but may destroy the

argument lists, using their cells to construct the result

i n t e r sec t ion listl list2 & key : t est : t est - not : key
nintersection listl list2 &key :test :test-not :key

[Function]

[Function]

i n t e r sec t ion takes two lists and returns a new list containing everything that is an element of

both argument lists. If either list has duplicate entries, the redundant entries mayor may not

appear in the result
" For example:

(intersection '(a b c) '(f a d» => (a)

There is no guarantee that the order of elemet:lts in the result will _ reflect the ordering of the

•

arguments in any particular way. The implementation is therefore free to use any of a variety of •

strategies.

MANIPULATING LIST STRUCrURE 185

nintersection is the destructive version of intersection. It performs the same operation,

but may destroy list! using its cells to construct the result. (The argument list2 is not destroyed.)

set-difference list! list2 &key :test :test-not :key

nset-difference listl list2 &key : test : test-not : key

[Fullction]
[Function]

set-difference returns a list of clements of list! that do not appear in list2. This operation is

not destructive.

n set - d iff ere n c e is the destnlctive version of set d iff ere n c e. This operation may destroy

listl.

set-exclusive-or listl list2 &key :test :test-not :key [Function]
nset-exclusive-or listl list2 &key :test· :test-not :key [Function]

set - ex c 1 us i v e - 0 r returns a list of elements that appear in exactly one of listl and list2. This

operation is not destructive.

nset-exclusive-or is the destructive version of set-exclusive-or. Both lists may be

destroyed in producing the result.

subsetp listl list2 &key : test : test-not : key [Function]
sub set p is a predicate that is true iff every element of listl appears in list2.

15.6. Association Lists

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs

(conses); each pair is an association. The car of a pair is called the key, and the cdr is called the datum.

An advantage of the a-list representatiofl is that an a-list can be incrementally augmented simply by adding

new entries to the front Moreover, because the searching function ass 0 c (page 186) searches the a-list in

order, new entries can "shadow" old entries. If an a-list is viewed as a mapping from keys to data, then the

mapping can be not only augmented but also altered in a non-destructive manner by adding new entries to

the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. For

this purpose the "reverse" searching function rassoc (page 187) is provided. Other variants of a-list

searches can be constructed using the function fin d (page 167) or me mb e r (page 183).

It is permissible to let nil be an element of an a-list in place of a pair.

186 COMMON LISP REFERENCE MANUAL

a con s key datum a-list [FulIction]
aeon s constructs a new association list by adding the pair (key . datum) to the old a-list.

(aeons x y a) <=> (cons (cons x y) a)

pairlis keys data &optional a-list [Fullction]
p air 1 i s takes two lists and makes an association list that associates clements of the first list to

corresponding elements of the second list. .It is an error if the two lists keys and data are not of the

same length. If the optional argument a-list is provided, then the new pairs are added to the front

of it.

For example:

(pairlis '(beef clams kitty) '(roast fried yu-shiang»
=> «beef. roast) (clams. fried) (kitty. yu-shiang»

(pairlis '(one two) '(1 2) '"'«three. 3) (four. 19»)
=> «one. 1) (two .2) (three. 3) (four. 19»

as soc item a-list &key : tes t : tes t - not [Function]
assoc- i f predicate a-list [Function]
assoc- if-not predicate a-list [Function]

Each of these searches the association list a-list. The value is the first pair in the a-list such that the

car of the pair satisfies the test, or nil if there is none such.

For example:

(assoc 'r '«a. b) (c . d) (r . x) (s . y) (r . z»)
=> (r. x) "

(assoc 'goo '«foo . bar) (zoo. goo») => nil
(assoc '2 '«1 a b c)"(2 b c d) (-7 x y z») => (2 bed)

It is possible to r p 1 a cd the result of ass 0 c provided that it is not nil, if your intention is to

"update" the "table" that was assoc's second argument. (However, it is often better to update an

a-list by adding new pairs to the front, rather than altering old pairs.)

For example:

(setq values '«x. 100) (y . 200) (z . 50»)
(ass 0 c.' y values) = > (y . 200)
(rplacd (assoc 'y values) 201)
(assoc 'y values) => (y .201) now

A typical trick is to say (c d r (a s soc x y». Because the cdr of nil is guaranteed to be nil,

this yields nil if no pair is found or if a pair is found whose cdr is nil. This is useful if nil serves

its usual role as a "default value".

Compatibility notc: This is of course not compatible with MACLISP, which uses e qua 1 , not e q 1 , as the default
comparison tesl

(assoc item list : tes t In)
<=> (find item list :test In :key #'car)

See fin d (page" 167) and po sit ion (page 168).
Compatibility notc: In MACLISP, the assoc function uses an equa 1 comparison rather than eq 1, which is the

•

•

•

MANIPULATING LIST STRUCl'URE 187

"default test for assoc in COMMON LISP, Where in MACLisp one would write (assoc x y) one must in

COMMONiJspwritc(assoc x y :test #'equal).

rassoc item a-list &key : test : test-not
r as s oc - i f predicate a-list

[Function]
[Fullction]

rassoc-;f-not predicate a-list [Fullction]
rassoc is the reverse fonn of assoc; it searches for a pair whose cdr satisfies the test, rather than
the car. If the a-list is considered to be a mapping, then rassoc treats the a-list as representing the

in verse mapping.

For example:

(rassoc 'a '«a. b) (b . c) (c . a) (z . a») => (c . a)

(rassoc item list : test In)
<=> (find item list :test In :key #'cdr)

188 CO~'IMON LISP REFERENCE MANUAL

•

•

•

Chapter 16

Hash Tables

A hash table is a LISP object that can efficiently mapa given I JSP object to another IJs}> object. Each hash

table has a set of entries, each of which associates a particular key with a particular value. The basic functions

that deal with hash tables can create entries, delete entries, and find the value that is associated with a given

key. Finding the value is very fast even if there are many entries, because hashing is used; this is an important

advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try to add a second value it will

replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By

contrast, association lists can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are compared with eq, eql, or

. equa 1. In other words, there are hash tables that hash on Lisp objects (using eq or eq 1) and there are hash

tabies that hash on abstract S-expressions (using e qua 1). .

Hash tables of the first kind are created with the function rna k e - has h - tab 1 e, which takes various

options. New entries are added to hash tables with the p u th as h function. To look up a key and find the

associated value, use gethash; to remove an entry, use remhash. Here. is a simple example.

(setq a (make-hash-table»
(puthash 'color 'brown a)
(puthash 'name 'fred a)
(gethash 'color a) => brown
(gethash 'name a) => fred
(gethash 'pointy a) => nil

In this example, the symbols color and name are being used as keys, and the symbols brown and fred

are being used as the associated values. The hash table has two items in it, one of which associates from

co lor to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object.

Hash tables are properly interfaced to the relocating garbage collector so that garbage collection will have no

perceptible effect on the functionality of hash tables.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.

- 189-

190 COMMON LISP REFERENCE MANUAL

Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With

t.he maximum possible bad luck, the capacity could be very much less, but this rarely happens. If-so many

entries arc added that the capacity is exceeded, the hash table will automatically grow, and the entries will be

rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup

still works). This is transparent to the caller: it all happens automatically.

Compatibility note: This hash table facility is compatible with Lisp Machine LIsp. It is similar to the hasharray facility of
iNTERIJSP. and some of the function names are the same. However, it is not compatible with INTER I.lSP. 'Inc exact details

and the order of arguments are designed to be consistent with the rest of MAcLIsp rather than wiLh INTERLisp. For instance.
the order of arguments to maphash is different, there is no "system hash table", and there is not the INTER Lisp restriction
that keys and values may not be nil.

j 6.1. Hash Table Functions

This section documents the functions for hash tables, which usc objects as keys and associate other objects

with them.

make-hash-tabl e &key : test : size : rehash-s ize : rehash-threshol d [Function]
This function creates and returns a new hash table. The: tes t argument determines how keys are

compared; it must be one of the three values # I eq, #' eq 1, or #' equa 1, or one of the three

symbols eq, eql, or equa1.

The : s i z e argument sets the initial size of the hash table, in entries, as a fixnum. The default is 64.

(The actual size may be rounded up from the size you specify to the next "good" size, for example

to make it a prime number.) You won't neces~arily be able to store this many entries into the table

before it overflows and becomes bigger; but except in the case of extreme bad luck you will be able

to store almost this many_

The: rehash-size argument specifies how much to increase the size of the hash table when it

becomes full. This can be an integer greater than zero, which is the number of entries to add, or it

can be a floating-point number greater than one, which is the ratio of the new size to the old size.

The default value for this argument is implementation-dependent

The : rehash-threshol d argument specifies how full the hash table can get before it must

grow. This can be an integer greater than zero and less than the rehash-size (in which case it will be

scaled whenever the table is grown), or it can be a floating-point number between zero and one.

The default value for this argument is inlplemcntation-dependent.

For example:

(make-hash-table :rehash-size 1.5
:size (' number-of-widgets 43»

•

•

•

•

HASH TABLES 191

has h - tab 1 e - p object [Function]
hash-tabl e-p is tnlC ifits argument is a hash table, and otherwise is false.

(hash-table-p x) <=> (typep x 'hash-table)

gethash key hash-table &opt ional -default [Fullction]
Find the entry in hash-table whose key is key, and return the associated value. If there is no such
entry, return default, which is nil if not specified.

gethash actually returns two values, the second being a predicate value that is true if an.entry was
found, and false if no entry was found.

setf (page 66) may be used with gethash to make new entries in a hash table. In this context,
the default argument should not be specified to gethash. If an entry with the specified key
already-exists, it is removed before the new entry is added.

remhash key hash-table [Fullction]
Remove any entry for _key in hash-table. This is a predicate that is true if there was an entry or false
if there was not.

maphash junction hash-table [Function]
For each entry in hash- table, call function on two arguments: the key of the entry and the value of
the entry. Ifentries are added to or deleted from the hash table while amaphash is in progress, the
results are unpredictable. map h as h returns ni 1.

c 1 rh as h hash-table [Function]
Remove all the entries from hash-table. Returns the hash table itself.

has h - tab 1 e - co u n t hash- table [Function]
This returns the number of entries in the hash- table. When a hash table is first created or has been
cleared, the number of entries is zero.

16.2. Primitive Hash Function

sxhash S-expression [Function]
sxhash computes a hash code of an S-expression, and returns it as a non-negative fixnum. A
propertyofsxhash is that (equal x y) implies (= (sxhash x) (sxhash y».

The manner in which the hash code is computed is implementation-dependent, but is independent
of the particular "incarnation" or "core image". -Hash values may be written out to files, for

example, and read in again into an instance of the same implementation.

' ..
192 COMMON LISP REFERENCE MANUAL

•

•

•

Chapter. ".,

Arrays

An array is an object with components arranged according to a rectilinear coordinate system. Arrays in

COMMON LIsp may have any number of dimensions, including zero. (A zero-dimensional array has exactly
one element.) Every COMMON LIsp implementation must support arrays with up to 63 dimensions. Each
dimension is a non-negative integer; ifany dimension of an array is zero; the array has no elements.

An 'array may be a general array, meaning each element may be any LIsp objec~ or it may be a specialized
array, meaning that each element must be of a given restric,ted typeo

One-dimensional arrays are called·vectors. General vectors may contain any LIsp object Vectors whose
elements are retricted to type stri ng-char areca1led stringso Vectors whose.elements are resUicted to type
bit are called bil-vecton-..

17.1. Array Creation

make-array dimensions Brkey :element-type : initia'f-element [Function]
:initial-contents :adjustable :fill-pointer
:displaced-to :displaced-index-offset

This is the primitive function for making arrays. The dimensions argument should be a list of
non-negative integers (in fact, fixnums) that are to be the dimensions of the array; the length of the
list will be the dimensionality ,of the array. Note that if dimensions is nil then a zero-dimensional
array is created. For convenience when making a one-dimensional array, the single dimension may
be provided as an integer rather than a list of one integer.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may
not be smaller than 63. Therefore, any COMMON LISp program may assume the use of arrays of
~ 63 or less. In any case, the rank of an array must be a fi xnum. The implementation
dependent limit on array rank is reflecte~ in ar r ay- r an k -1 i mit (page 195).

The : e 1 eme n t - typ e argument should be ~e name of the type of the elements of the array; an
array is constructed of the most specialized type that can nevertheless accommodate elements of the
given type. The type t specifies a general array, one who~e elements may be any LISP object; this is

1114--.-

CO\I\ION LISP RFFEI~E~CE \1ANUAL

the dcfault type.

The :'i nit ia 1-e 1 emen t argument may be used to initialize each element of the array. The
value must. be of the type specificd by the :"~ 1 erne n t - ty p e argument If the
: i nit i a 1 - e 1 erne n t option is omitted, the initial values of the array elements are undefined
(unless the :initia1-contents or· :disp1aced-to option is used). The
:initial-element option may not be used 'with the :initia1-contents or
: d i sp laced- to option.

The : i ni t i a l-contentsargument may be used to initialize the contents of the array. The
value is a nested structure of sequences. If the array is zero-dimensional, then the value specifies
the single element.. Otherwise, the value must be a sequence whose length is equal to the first
dimension; each' element must be a nested structure for an array whose dimensions are the
remaining dimensions, and so OD.

:for example:

(make-array '(4 2 3") :initia1"';contents
'«(a b c) (1 2 3»

((d "8 f) (3 1 2»
«g h 1) (2 3 1»
«j k 1) (~ 0 OJ»~)

The numbers of levels in the structure must. equal the rank of the array. Each leaf of the nested
structUre must be of the type specified.by the : type option. If the : in it i a l-contents option _
is omitted, the initial values of the array elements are undefined (unless" the : in; ti a 1 - e 1 erne n t ..
or : disp1 aced"-to option is used) ... The-: i n,i ti al-contents option may not be used with

the : ini tia1-element or : displ aced.-to option.

The.: adJustab1 e argument," if specified and not nil, indicates that it must be possible to alter
the array's size dynamically after it is created.

The : fill - poi n t e r argument spC!=ifies that the array should have a fill pointer. If this option is
specified and not n 11, the array must be one-dimensional. The value is used to initialize the fill
pointer for the array. if the value t is specified, the length of the array is used; otherwise the value
must be an integer between 0 (inclusive) and the length of the array (inclusive).

The : dis P 1 ace d - t 0 argumen~ if not nil, specifies that the array will be a displaced array. The
argument must then be an array; make-array will create an indirect or shared array that shares its
contents with the specified array. In this ~e the : dis P 1 ace d - i n d ex - 0 f fs e t option may be
useful. .The :displaced-to option may not be used with the : initial-element or·
: i ni t i al-contents option.

?? 1 Quell: A long, extended disalssion of displaced arrays is clearly needed here.

The : d i sp 1 ace d -:- ; n d ex - 0 f f set argument may be used only in conjunction with the
di sp 1 aced-to option. This argument should be a non-negative fixnum (it defaults to zero); it is

made to be the index-offset of the created shared a~y.

For example: •

ARRAYS

Create a one-dimensional array of five elements.
(make-array 5)

;; Create a two-dimensional array~ 3 by 4, with four-bit elements.
{make-array '(3 4) ':type '(mod 16»

;; Create an array of single- floats.
(make-array 5 ' : type ':sing1e-f1oat»

, , Making a shared ~y.
(setq a (make-array '(4 3»)
(setq'b (make-array 8 ' :displaced-to a

':displaced-index-offset
; ; Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b Z) <=> (aref a 1 1)
(aref b 3) <=> (aref a 1 2)
(aret b 4) <=> (aref' a 2 0)
(aret b 5) <=> (aret a Z 1)
(aret b 6) <=> (aref' a Z 2.)

. (aret b. 7) <=> (a'ret a 3. 0)

',2, (" •

/

2»

The last example depends. on the fact that arrays are~ in effect, stored in row-major order for
purposes of sharing. Put another way,. the sequences of indices for the elements of an array are
ordered lexicographiCa1ly~

CompatiItiIil)' DOte: Both Usp Machine LIsP and FOR.TRAN store arrays in column-major order.

array-rank-l111l1t [Conslan/1
The value of array-rank-limit is'a positive integer that is the upper exclusive bound on the
rank of an array_ This value will not be smaller than 64; therefore every COMMON LIsp
implementation supports arrays whose rank is betwen 0 and 63 (inclusive).

make-s imple-vector length &key : e1 ement-type : i ni t i a1-e1 ement [Function]
:initial-contents

make-vector is like make-array (page 193)~ but guarantees to return a simple vector.
Depending on the implementation, use of a vector (and declaration of such use to the compiler)
may result.in significantly more efficient code. One may not specify a list of dimensio~ but only a
single integer, the length. The :-type, : initial-element, and : initial-contents
keyword arguDients are as for make - ar r ay.

The function make-array in fact always returns a simple vector if requested to make a one
dimensional array that is not displace~ has no fill pointer~ and does not have adjustable size.
However, ma k e - s ; mp 1 e - vee tor may be easier for clearer to use in some situations.

CO\I\ION I.ISP 1<!:VERF?\CE 1\-I.\:\L.\1.

vector &rest objects [Function]
The ftmction vector is a convenient means for creating a simpJe general vector with specified
initial co~tents. [t is analogous to the function 1 i st.

(vector a1 a2 ••• an)
<=> (make-simple-vector n :type t

:initial-contents t(a1 a2 an»

17.2. Array Access

aref array &rest subscripts [Function]
This accesses and returns the element of array specified by the subscripts. The number of subscripts
must equal the rank of the array, and each subscript must be a non-negative integer less than· the
corresponding array dimension.

aref is unUsual among the functions that operate on arrays in that it completely ignores fill
pointers. aref can access without error any array e1emen~ whether active or not.

setf (page 66) may be used with are.f to destructively rep.lace an array element with a new value.

17.3. Array Information

array-el eme.nt-type array [Function)
array-el ement-type returns a type specifier for the set of objects. that can be stored in the
anay. This sei may be larger than the set requested when the array was created; for example, the
result of

(array-alement-typ& (make-array 5 :element-type '(mod 5»)

could be (mod 5), (mod 8), fixnum, t,oranyothersupertypeof(mod 5).

array-rank array [Function)
Returns the number of dimensio~s (axes) of array. This will. be a non-negative integer. See
array-rank-l imit (page 195).

Compatibility note: In Lisp Machine LIsP this is called a ay-II-d ims. This name causes problems in
MAcl.Jsp because of the II character. The problem is better avoided.

array-dimens ion array axis-number [Function]
The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array. If the array is a
vector with a fill pointer, a r ray - dime n s ion returns the total size of the vector, including inactive
elements, not the size indicated by the fill pointer.

Compatibility note: This is similar to the Lisp Machine LIsp function array-dimension-n, but takes its

.\I~R:\ ';'S 112..e _

arguments in the other order. and is zero-origin for consistency instead of one-origin. In Lisp Machine LIsp
(array-dimens ion-n O) T"wrns the length of the array leader.

array-dimensions array [Function]
. array-dimens ions returns a list whose elements are the dimensions of array.

array-in-bounds-p array &rest subscripts . [Function]
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are;

otherwise it is false. The subscripts must be integers.

17.4. Access Functions for Simple Vectors

The functions in this section are equivalent in operation to aref (page 196) corresponding more general
functions, but require arguments to be· simple··vectors (of general or specialized type). These functions are

provided primarily for reasons of e~iency and convenience.

svref Simple-vector index [Function]
~e element of the simple-yector specified by the integer index is returned. The index must be

nOJl-negative and less than the length of the vector.

set! (page 66) may be used with svref to destructively replace a simple-vector element with a
new value..

sgvref general-vector index [Function]
The element of the general-yector specified by the integer index is returned. The vector must be a

simple general. vector~ not a non-simple or specialized one. The index must be non-negative and

less than the length of the vector.

setf (page 66) maY'be used with. sgvref to destructively replace an element with a new value.

17.5. Functions on Arrays of Bits

bit bit-array &re s t subscripts [Function]
bi t is exactly like aref (page 196) but requires an array of bits, that is, one of type (array

bit). The result will always be 0 o~ 1.

set f (page 66) may be used with bi t to destructively replace a bit-array element with a new

value.

• ('0;\,1\10:\ f1SP I-!FI'FPF\:CF \1 \~l.' .. \1

bit -and bit-array bit-array-) &opt i ona1 result-hit-array
bit-ior hit-arrax biL-array-2 &optional result-hit-array
bit-xor bit-array bit-array-2 &optiona1 result-bit-array
bit-eqv bit:-array bit-array-2 &optiona1 result-bit-array
bit-nand bit-arrayl bit-array2 &optional result-bit-array
bit-nor btt-array] bit-array2 &optional result-bit-array

[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Function]
[Fullction]

bi t-andc1 bit-array] bit-array2 &opt ional result-bit-array
bit-andc2 bit-array] bit-array2 &opti"onal result-bit-array
bit-orc1 bit-array] bit-array2 &optional result-bit-array
bit -orc2 bit-array] bit~array2&opt ional resuli-bit-array

These functions perform bit-wise logical operations on bit-arrays. All of the arguments to any of

these functions must be bit-arrays of the satne rank and dimensions. The result is a bit-array of

matching rank and dimensions9 such that any given bit of the result is produced by operating on

corresponding bits from each of the arguments.

If the third argument is nil or omitted, a new array is created to contain the result If the third

argument is a bit-array, the result is destructively placed into that array. Ifth~ third argument is t,

then the first argument ~ also used as the third argument; that is, the result is placed back in the

first alTar ..
The following -table indicates what the result bit is for each operation when two arguments arc

given. (Those operations that accept an indefinite number of arguments are. commutative and •

associative, and-require at least one argument)

argumentl 0- 0 1 t
tlTf!Uagnl2. 0 1 g 1 Operation name

bit-and 0 0 0 1 and
bit-ior 0 1 1 1 inclusive or
bit-xor 0 1 r 0 exclusive or
bit-eqv 1 0 0 1 equivalence (exclusive nor)
bit-nand 1 1 1 0 not-and
bit-nor 1 0 0 0 not-or
bit-andcl 0 1 0 0 and complement of argumentI with argument2
bit-andc2 0 0 1 0 and argumentI with complement of argumenl2
bit-orc1 1 1 0 1 or complement of argumentJ with argument2
blt-orc2 1 0 1 1 or argumentl with complement of argument2

For example:

(bit-and #*1100 #*1010) => #*1000
(bit-xor #*1100 #*1010) => #*0110
(bit-andcl #*1100 #*1010) => #·0100

See 1 ()g~nd (page 138) and related functions.

•.. ~

•

•

.\RR,\ YS "2J •
bit-not bit-array &opt; ona 1 result-bit-array [Function]

The first argument must be an array of bits. A bit-array of matching rank and dimensions is

retu.med that contains a copy of the argument with all the bits inverted. Sec 10gnot (page 140).

If the second argument is nil or omitted, a new array is created to contain the result If the second
argument is a bit-array, the result is destructively placed into that array. If the second argument is
t, then the first argument is also used as.the second argument; that is, the result is placed back in

the first ~y.

17.6. Fill Pointers

A set of functions for manipulating a fill pointer are provided in COMMON LISP to make it easy to
incrementally fill in the contents of a vector, and more generally to allow efficient varying of the length ofa
vector. For example, a string with a fill pointer has most of the characteristics of a PUl varying string. . . .

The fill pointer is a non-negative integer no larger than the total number of elements in the vector (as
returned by array-dimension· (page 196»; it is the number of "active" or "ruled-in" elements in the
vector. The fill pointer constitutes the '6active length" of the vector; all vector elements whose index is less
than the fu1 pointer are acti.y~ and the others are inactive. Nearly all functions that operate on the contents of
a vector will operate only on the active elements. An important exception is aref (page 196), which can be
used to access any vector element whether in the active region of the vector or not. It is important to note that
vector elements not in the active region are- still considered part of the vector. (An implication of this for
implementors is that vector elements outside the ac~ve region may not be garbage-col1ected.)

Only vectors (one-dimensional arrays) may have till pointers; multi-dimensional arrays may not. (Note,
however, that one can create a multi-dimensional arrays that is displaced to a vector that has a fill pointer.)

reset-fi l1-poi nter vector 8ropt ional index [Function)
The fill pointer of vector is reset to index, which defaults to zero. The index must be a non-negative
integer not greater than the dimension of the vector; see array-d imens i on (page 196).

vector-push vector new-element [Function]
vector must be a one-dimensional array that has a fill pointer, and new-element may be any object. .
vector-push attempts to ·store new-element. in the element of the vector designated by the fill
pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the
vector (specifically, when "it gets too big), it is unaffected and vector-push returns ni 1.
Otherwise, the store and increment take place and ve c tor - pus h returns the former value of the
fill pointer (one less than the one it leaves in the vector); thus the value of vector-push is the
index of the new element pushed.

vector-push-extend veclor x &optional extellsion [Fullction]
vectqr-push-ex tend isjust like yec.tor-push except that ifulC fin pointer gets too large, thc

vector is extended (using adjust-array (page 200» so that it can contain more elclncnts; it

never "failsn the way vector-push does, and so never returns nil. The optional argument

extension, which must be a positive integer, is the minimum number of elements to be added to the

vector if it must be extended

vector-p~p vector [Functioll]
vector must be a one-dimensional array that has a fill pointer. It is an error if the fill pointer is zero.

The fill pointer is decreased by one, and the vector element designated by the new value of the fill

pointer is returned.

17.7. Changing the Dimensions of an Array

adjust-array array newadimensions&key :type : initial-8"lement [Function]
:initia1-contents :fi11-pointer

:disp1aced-to :disp1aced-index-offset

adjust-array takes an array and a number 'of other arguments as for make-array (page 193).

The n~ber of dimensions specified by n~dimensions must equal the rank of amlY.

adjust-'array returns an array of the same: type and rank as array, with the specified

n~dimensions. In effect.. the. tlI1'a'Y argument itself is modified to conform to the new·

specifications, but this may be achieved either by modifying the Qml)I or by creating.'a new array

and modifying the array argument to be displaced to the new array.

In the simplest case, one specifies 'only the new-dimensions and possibly an :; nit i a1-e 1 ement

argument. Those elements of array that are still in bounds appear in the new array. The elements

of the new array that are not in the bounds of array are initialized to the : in; t; a 1 - e 1 eme n t; if
this argument is not provided, then the initial contents of any new elements are undefined

If : type is specified, then amzy must be such that it could have been originally created with that

type; otherwise an error is signalled. Specifying: type to adjust-array serves only to require

such an error check.

It: in i t i a 1-contents or : di sp1 aced':'to is specified, then it is treated as for make-array ..

In this case none of the original contents of array appears in the new array.

If : fill - poi nt e r is specified, the fill pointer of the array is reset as specified. An error is

signalled if array had no fIll pointer already.

adjust-array may, depending on the implementation and the arguments, simply alter the given

array or create and return a new one. In the latter. case the given array will be altered so as to be

displaced to the new array and have the given new dimensions.

ARRAYS If2.i ..

It is not pcnnitted to call" adjust-array on an array that was not created with the
: adj us tab 1 e option.

If adjust-array is applied to an array that is displaced to another arrax:-;x, then afterwards
neither array nor the returned result is displaced to x unless such displacement is explicitly re

specified in the call to adjus t-array.

Example: suppose that the 4-by-4 array m has the following contents:

alpha beta gamma delta
epsilon zeta eta theta
iota kappa lambda mu
nu " xi omicron pi

Then the result of
(adjust-array m '(3 5) :initial-element 'baz)

is a 3-by-5 array with contents
alpha beta gaMa" delta baz
epsilon zeta eta theta baz
iota kappa lambda mu baz

Note that if array a is created displaced to array b and subsequently array b is given to

adjust-array, array a will still be displaCed to array b; ~e effects of thiS displace~ent and.the
rule of row-major storage order must be taken into account.

_ IfZj

•

CJlapter 17

Strings

A string is a specialized kindof vector (one-dimensional array) whose clements are characters. Specifically,

the type string is identical to the. type (vector string-char), which in turn is the same as (array

string-char (*»

As a rule, any string-specific function whose name begins with the prefix" s t r i n g" will accept a symbol

instead of a string as an argument provided that the operation never modifies that argument~ the print-nrone of

the symbol is used. In this respect the string-specific sequence operations arc not simply specializations of the

generic versions~ the generic sequence operations never accept symbols as sequences. This slight inelegance is

permitted in COMMON LISP in the name of pragmatic utility. Also, there is a slight non-parallelism in the

names of string functions. Where the suffixes e qua 1 p and e q 1 would be more appropriate, for historical

compatibility the suffixes e qua 1 and = are used instead to indicate case-insensitive and case-sensitive

character comparison, respectively.

Any LISP object may be tested for being a string by the predicate s t r i n g p (page 54).

Note that strings, like all vectors, may have fill pointers (though such strings are not simp/e). String

operations generally operate only on the active portion of the string (below the fill pointer). See

res e t - fill - poi n t e r (page 199) and related functions.

17.1. String Access

ch~r string index [Function]

The given index must be a non-negative integer less than the length of string, which must be a (not

necessarily simple) string. The character at position index of the string is returned as a character

object. (This character will necessarily satisfy the predicate s t r i n 9 - c h a r p (page 150).) As with

all sequences in COMMON LISP, indexing is zero-origin.

For example:

(char "F1oob-Boober-Bab-Boober-Bubs" 0) => #\F
(char "F1oob-Boober-Bab-Boober-Bubs" 1) => #\1

See aref (page 196) and el t (page 161). In effect,

-193 -

194 COMMON LISP REFERENCE MANUAL

(char s j) <=> {aref (the string s) j)

set f (page 66) may be used with c h a r to destructively replace a character within a string.

17.2. String Comparison

string= string! string2 &key :startl :endl :start2 :end2 [Fullction]
s t r i n g = compares two strings, and is true if they are the same (cO"rresponding characters are

identical) but is false if they are not. The function e qua 1 (page 56) calls s t r in g = if applied- to

two strings.

The keyword arguments :startl and :start2 are the places in the strings to start the

comparison. The arguments: end 1 and: end2 are the places in the strings to stop comparing;

comparison stops just before the position specified by a limit. The start arguments default to zero

(beginning of string), and the end arguments (if either omitted or nil) default to the lengths of the

strings (end of string), so that by default the entirety of each string is examined. These arguments

are provided so that substrings can be compared efficiently.

s t r i n g = is necessarily false if the (sub)strings being compared are of unequal length; that is, if

{not {= (- endl startl) (- end2 start2»)

is true then s t r i n g = is false.

For example:

(s tr i n g = "f 00" "f 00 Ii) is true
(s t r i n 9 = " f 00 " "F 0 0 ") - is false
(s t r i n g = " f 00 " " bar") is false
(string: "together" "frog" :startl 1 :endl 3 :start2 2)

is true

string-equal stringl string2 &key :startl :endl :start2 :end2 [Function]
s t r i n g - e qua 1 is just like s t r i n g = except that differences in case are ignored; two characters

are considered to be the same if char-equa 1 (page 153) is true of them.

For example:

(string-equal "foo" "Foo") istrue

string< string} string2 &key :startl :endl :start2 :end2
string> string] f{ring2 &key :startl :endl :start2 :end2
string<= string! string2 &key :startl :endl :start2 :end2
string>= stringi string2 &key :startl :endl :start2 :end2
string/= stringi string2 &key :startl. :endl :start2 :end2

[Function]

[Function]
[Function]

[Function]

[Fullc lion]
The two string arguments are compared lexicographically, and the result is nil unless string} is

(less than, greater than, less than. or equal to, greater' than or equal to, not equal to) string2,

respectively. If the condition is satisfied, however, then the result is the index within the strings of

•

•

STRINGS 195

the first character position at which the strings fail to match: put another way, the result is the

length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the character of a is less

than the corresponding character of b according to the function c h a r < (page 152), or if string a is

a proper prefix of string b (of shorter length and matching in all the characters of a).

The optional arguments startI and start2 are the places in the strings to start the comparison. The

optional arguments endl and end2 places in the strings to stop comparing: comparison stops just

before the position specified by a limit. The start arguments default to zero (beginning of string),

and the end arguments (if either omitted or nil) ,default to the lengths of the strings (end of string),

so that by default the entirety of each string is examined. These arguments are provided so that

substrings can be compared efficiently. The index returned in case of a mismatch is an index into

stringJ.

string-lessp stringJ string2 &key :startl :endl :start2 :'end2 [Function]
[Fullction]

, [Function]
[Function]
[Function]

stri ng-g~eaterp stringl string2 &key : startl : endl : start2 : end2
string-not-lessp stringJ string2 &key :startl :endl :start2 :end2
string-not-greaterp stringl string2 &key :startl :endl :start2 :end2
string-nat-equal string] string2 &key :startl :endl :start2 :end2

These are exactly like s tr i ng<, s t ring>. s t r i ng:<=, s t ring> =, and s tr i ng<>, respectively,

except that distinctions be~ween upper-case and lower-case letters are ignored. It is as if

char -1 e ss p (page 153) were used instead of ch ar< (page 152) for comparing characters.

17.3. String Construction and Manipulation

make-string size &key : initial-element [Function]
This returns a string of length size, each of whose characters has been initialized to the

: in it i a 1 - e 1 erne n t argument. If an : in it i a 1 - e 1 erne n t argument is not specified, then the

string will be initialized in an implementation-dependent way_

Implementation note: It may be convenient to initialize the string to null characters, or to spaces, oUo garbage
("whatever was there").

s t r i n 9 - t rim character-bag string
s tr i ng -1 eft - tr irn character-bag string
stri ng-ri ght-trirn character-bag string

[Function]
[Function]
[Function]

s t r i n 9 - t rim returns a substring of string, with all characters in character-bag stripped off of the

beginning and end. The function s t r i n 9 -1 eft - t rim is similar, but strips characters off only

the beginning; s t r i n 9 - rig h t - t rim strips off only the end. The argument character-bag may

be any sequence containing characters.

111 Query: Should this be generalized to any sequence, calling them trim, 1 eft-trim, and right-trim?
Or just one function t rim, also taking a : from - end keyword? .

196 COMMON LISP REFERENCE MANUAL

For example: •

(string-trim '(#\Space #\Tab #\Return) " garbanzo beans
") => "garbanzo beans"

(string-trim" (*)" " (*three (silly) words*) ")
=> "three (silly) words"

(string-left-trim " (*)" " (*three (silly) words*) ")
=> "three (silly) words*) "

(string-right-trim " (*)" " (*three (silly) words*) ")
=> " (*three (silly) words"

string-upcase string &key :start :end [Function]
string-downcase string &key :start :end [Function]
string-capital ize string &key :start :end [Function]

s t r i n 9 - up cas e returns a string just like string with all lower-case alphabetic characters replaced

by the corresponding upper-case characters. More precisely, each character of the result string is

produced by applying the function char-upcase (page 155) to the corresponding character of

string.

string-downcase is similar, except that upper..,case 'characters are converted to lower-case

characters (using char-downcase (page 155».

The keyword arguments : S tar t and : end delimit the portion of the string to be affected. The

result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument require conversion, the

result may be either the argument or a copy of it, at the implementation's discretion.

For example:

(string-upcase "Dr. Livingston, I presume?")
=> "DR. LIVINGSTON, I PRESUME?"

(string-downcase "Dr. Livingston, I presume?")
=> "dr. 1 ivingston, i presume?"

(string-upcase "Dr. Livingston, I presume?" 6 10)
=> "Dr. LiVINGston, I presume?"

s t r in 9 - cap ita 1 i z e produces a copy of string such that every word (subsequence of case

modifiable characters or digits delimited by non-case-modifiable non-digits) has its first character, if

case-modifiable, in upper-case and any other case-modifiable characters in lower-casco

For example:

(string-c.apitalize " hello It) => " Hello"
(string-capitalize

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION")
=> "Occluded Casements Forestall Inadvertent Defenestration"

(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search"
(string-capitalize "DON'TI") => "Don'TI" ;nol "Don'tl"
(string-capitalize "pipe 13a, foo16c") => "Pipe 13a, Foo16c"

•

•
STRINGS 197

nstring-upcase sIring &key : start : end

nstring-downcase string &key :start :end

[Function]

[Fullction]

nstring-capital ize sIring &key : start :end [Function]
These functions are just like string-upcase, string-downcase, and

s t r i n 9 - cap ita 1 i z e (page 196), but destructi vely modi fy the argument string by altering case

modifiable characters as necess"ary.

The keyword arguments: start and: end delimit the portion of the string to be affected. The

argument string is returned as the result.

17.4. Type Conversions on Strings

s tr i n9 x [Function]
s t r in 9 coerces x into a string. Most of the string functions apply this to such of their arguments

as are supposed to be strings. If x is a string, it is returned. If x is a symbol, its print-name is

returned. If x cannot be coerced to be a string, an error occurs.

To get the string representation of a number or any other LISP object, use p r i n 1- to - s t r i n 9

(page 259), p r inc - to - s t r i n 9 (page 259), or forma t (page 261).

198 COMMON LISP REFERENCE MANUAL

•

•

•

Chapter 18

Structures

COMMON LISP provides a facility for creating named record structures with named components. In effect,

the user can define. a new data type; every data structure oJ that type has components with specified names.

Constructor, access, and assignment constructs are automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is

very simple and allows the user to take advantage of the type-checking, modularity, and convenience of

user-defined record data types. The second part discusses a number of specialized features of the facility that

have advanced applications. These features are completely optional, and you needn't even know they exist in

order to take. advantage of the basics.

Rationale: It is important not to scare the novice away from defstruct with a multiplicity of features. The basic idea is
very simple, and we should encourage its use by providing a very simple description. The hairy stuff. including all options.
is shoved to the end of the chapter.

18.1. Introduction to Structures

The structure facility is embodied in the de f s t rue t macro, which allows the user to create and use'.

aggregate datatypes with named elements. These arc like "structures" in PL/I, or "records" in PASCAL.

As an example, assume you are writing a LISP program that deals with space ships in a two-dimensional

plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting

things about a space ship, as far as your program is concerned, are its position (represented as x and y

coordinates), velocity (represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components: x-position, y-position,

x-velocity, y-velocity, and mass. This structure could in turn be implemented as a LISP object in a number of

ways. It could be a list of five elements; the x-position could be the car, the Y-PQsition the cadr, and so on.

Equally well it could be a vector of five clements: the x-position could be element 0, the y-position element 1,

and so on. The problem with either of these representations is that the components occupy places in the

object that are quite arbitrary and hard to remember. Someone looking at (c add drs hip 1) or

(v ref s hip 1 3) in a piece of code might find it difficult to detennine that this is accessing the y-velocity

component of s hip 1. Moreover, if the representation of a ship should have to be changed, it would be very

-199-

·200 COMMON LISP REFERENCE MANUAL

difficult top find all the places in the code to be changed to match (not all occurrences of cadddr are

intended to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would like to write something like

(sh i p-y-ve 1 oc i ty sh i P 1) instead of (caddd r sh i p 1). One would also like a more mnemonic way

to create a ship than this:

(list 0 0 0 0 0)

Indeed, one would like s hip to be a new data type, just like other LISP data types, that one could test with

typep (page 52), for example. The defs truct facility provides all of this.

defstruct itself is a macro that defines a structure. For the space ship example one we might define the

stnlcture by saying:

(defstruct ship
x-position
y-position
x-velocity
y-velocity
·mass)

This declares that every s hip is an object with five named components. The evaluation of this form does

several things:

• It defines s hip - x - p 0 sit ion to be a function of one argument, a ship; that returns the

x-position of the ship; s hip - Y - P 0 sit ion and the other components are given similar function

definitions. These functions are called the access junctions, as they are used to access elements of

the structure.

• The symbol" s hip becomes the name of a data type, of which instances of ships are clements.

This name becomes acceptable to typep (page 52), for example; (typep x t sh i p) is true iff

x is a ship. Moreover, all ships are instances of the type s t r u c t u r e, because s hip is a subtyp.e

of structure.

• A function named s hip - P of one argument is detined; it is a predicate that is Que if. its argument

is a ship, and is false 9therwise~

• A function called make-sh i p is defined that, when invoked, will create a data structure with five

components, suitable for use with the access functions. Thus executing

(setq ship2 (make-ship»

sets s hip 2 to a newly-created s hip object. One can specify the initial values of any desired

component in the call to rna k e - s hip in this way:

(setq ship2 (make-ship :mass *default-ship-mass*
:x-position 0
:y-position 0»

This constructs a new ship and initializes three of its components. This function is called the

•

•

•

•

•

STRucrURES

constructor function. because it constructs a new structure.

• One may usc set f to alter the components of ash i p:

(setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because defstruct generates an

appropriate de f set f (page 70) form for each access function. .

201

This simple example illustrates the power of defstruct to provide abstract record structures in a

convenient manner. defs truct has many other features as well for specialized purposes.

18.2. I-Iow to Use Defstruct

defstruct name-and-options [doc-string] {slot';'description} +
Defines a record-structure data type. A general call to de f s t r u c t looks like this:

(defstruct (name option-i option-2 ...)
doc-siring
slot-description-i
s/ot-descripiion-2
...)

[Macro]

name must be a symbol; it becomes the name of a new data type consisting of all instances of the
structure. The function ty pep (page 52) will accept and usc this name as appropriate.

Usually no options are needed at all. If 110 options are specified, then one may write simply name
instead of (name) after the word defstruct. The syntax of options and the options provided are

discussed in section 19.5 (page 214).

If the optional documentation string doc-string is present, then it is attached to the name as a

documentation string of type s t rue t u r e; see doc ume n tat ion (page 301) .

. Each slot-description-j is of the form

(slot-name default-init
slot-option-name-l slot-option- value-]
slot-option-name-2 slot-option- value-2
...)

Each slot-name must be a symbol; an access function is defined for each slot. If no options and no

default-init are specified, then one may write simply slot-name instead of (slot-name) as the slot

description. The default-init is a form that is evaluated each time a structure is to be constructed;

the value is used as the initial value of the slot. If no default-init is specified, then the initial

contents of the slot are undefined and implementation-dependent. The available slot-options are

described in Section 19.4.
Compatibility' note: Slot-options are not currently provided in Lisp Machine LISP, but this is an upward
compatible extension.

Besides defining an access function for each slot, de f s t rue t arranges for set f to work property

202 COMMON LISP REFERENCE MANUAL

on such access functions, defines a predicate named lIame-p, and defines a constructor function •

named rna k e -name. All names of automatically created functions are symbols of the same package

(if any) to which the structure name itself belongs. Also, all such functions may be declared

in 1 in e at the discretion of the implementation to improve efficiency; if you do not want some

function declared in1ine, follow the defstruct form with a notin1ine declaration to

overrride any automatic in 1 i n e declaration.

Because evaluation of a defs truct form causes many functions to be defined, one must take care that

two defstruct forms do not define the same name Gust as one must take care not to usc defun to define

two distinct functions of the same name). For this reason, as well as for clarity in the code, it is conventional

to prefix the names of all of the slots with some text that identifies the stnlcture. In the example above, all the

slot names start with "ship-". The :conc-narne (page 214) option can be used to provide such prefixes

automatically.

18.3. Using the Automatically Defined Constructor Function

After you have defined a new strllcture with def s tru ct, you can create instances of this structure by

using the constructor function. -By default, de f s tr uc t defines this function automatically. For a structure
named foo, the constructor function is normally named make-foo; you can specify a different name by

giving it as the argument to the : constructor (page 215) option, or specify that you don't want a normal

constructor function at all by using n i 1 as the argument.

A call to a constructor function, in general, has the form

(name-ofconstructor-function
slol- keyword-l fonn-i
slol-keyword-2 fonn-2
...)

All arguments are keyword arguments. Each slot-keyword should be a keyword whose name matches the

name of a slot of th~ structure (defstruct determines the possible keywords simply by-interning each

slot-name in the keyword package). All the keywordsandfonns are evaluated.

If slot-keyword-j names a slot, then that element of the created structure will be initialized to the value of

form-j. Ifno slol-keyword-jlform-j pair is present for a given slot, then the slot will be initialized by evaluating

the defaull-init form specified for that slot in the call to defs truct. (In other words, the initialization

specified in the defstruct defers to any specified in a call to the constructor function.) If the default

initialization form is used, it is evaluated at construction time, but in the lexical environment of the

de f s t r u c t form in which it appeared. If the de f s t r u c t itself also did not specify any initialization, the

element's initial value is undefined. You should always specify the initialization, either in the defstruct or

in the call to the constructor function, if you care about the initial value of the slot.

Compatibility note: The Lisp Machine LISP documentation is slightly unclear about when the initialization specified in the •
defstruct form gets evaluated: at defstruct evaluation time, or at constructor time? lbe code reveals that it is at
constructor time, which causes problems with referential transparency with respect to lexical variables (which currently

•
STRUCTURES

don't exist officially in Lisp Machine LIsP anyway). The above remark concerning the lexical environment in effect requires
that the initialization fonn is treated ali a thunk: it is evaluated at constructor time, but in the environment where it was
written (lhe defstruct environment). Most of the lime this makes no difference anyway, as the initialization form is
typically a quoted constant or refers only to special variables. The requirement is imposed here for unifonnity. and to
ensure that what look like special variable references in the initialization form are in fact always treated as such.

203

The order of evaluation of the initialization forms is not necessarily the same as the order in which .they

appear in the constructor call or in the de f s t rue t fonn; code should not depend on the order of evaluation.

The initialization fOlms are re-evaluated on every constructor-function call, so that if, for example, the form

(gen sym) were used as an initializatiQn form, either in the constructor-function call or as the default form in

the de f s t rue t declaration, then every call to the constructor function would call g ens ym once to generate

a new symbol.

18.4. de f s t rue t ,Slot-Options

Each slot-description in a de f s t r u c t form may specify one or more slot-options. A slot-option consists of

a pair ofa keyword and a value (which is not a form to be evaluated, but the value itself).

For example:

(defstruct ship
(ship~x-position 0.0 :type short-float)
(ship-y-position 0.0 :type short-float)
(ship-x-velocity 0.0 :type short-float)
(ship-y-velocity 0.0 :type short-float)
(ship-mass *default-ship-mass* :type short-float :read-only t»

This specifies that the first four slots will always contain short-format floating-point numbers, that the last

three slots are "invisible" (will not ordinarily be shown when a ship is printed), and that the last slot may not

be altered once a ship is constructed.

The available slot-options are:

:type The option (: ty p e type) specifics that the contents of the slot will always be of the

specified data type. This is entirely analogous to the declaration of a variable or function; .
indeed, it effectively declares the result type of the access function. An implementation
mayor may not choose to check the type of the new object when initializing or assigning to

a slot.

: i n vis i b 1 e The option : i n v; sib 1 e specifics that the contents of this slot should not be printed

when an instance of the structure is printed.

: rea d - 0 n 1 y The option : rea d - 0 n 1 y specifies that this slot may not be altered; it will always contain

the value specified at construction time. set f (page 66) will not accept the access

function for this slot.

204 COMMON LISP REFERENCE MANUAL

18.5. Options to defstruct

The preceding description of defstruct is all that the average user will need (or want) to know in order

to use structures. The remainder of this chapter discLlsses more complex features of the defs truct facility.

This section explains each of the options that can be given to defstruct. I\s with slot-options, a

defstruct option may be eithcr a keyword or a list ofa keyword and arguments for that keyword.

:conc-name

:type

This provides for automatic prefixing of names of access functions. It is conventional to· .

begin the names of all the access functions of a structure with a specific prefix, the name of

the stnlcture followed by a hyphen. This is the default behavior.

The argument to the : conc-name option specifics an alternatc prefix to be used. (If a
hyphen is to be used as a separator, it must be specified as part of the prefix.) If nil is

specified as an argument, then no prefix is used; then the names of the access functions are

the same as the slot names, and it is up to the user to name the slots reasonably.

Note that no matter what is specified for : con c - name, with a constructor function one

uses slot keywords that match. the slot names, with no prefix attached. On the other hand,

one uses the access-function name when using set f. Here is an cxample:

(defstruct (door (:conc-name nil»
knob-color width material)

(setq ,my-door (make-door :knob-color tred :width 5.0»
(door-knob-color my-door) ==> red
(alter-door my-door :~nob-color tgreen :material twood)
(door-material my-door) => wood
(setf (door-width my-door) 43.7)
(door-width my-door) => 43.7

The : type option specifies what kind of LISP object will be used to implement the
structure. It takes one argument, which must be one of the types enumerated below.

Specifying this option has the effect of forcing a specific representation, and of forcing the

components to be stored in successive elements of the specified representation.

Normally this option is not specified, in which case the structure is represented in an

implementation-dependent manner, and the : named option is assumed unless: unnamed

is explicitly specified.

vector Use a general vector, storing components as vector elements .. This is

normally : name d. The' first component is vector element 1 if the

structure is : named, and element 0 if it is : unnamed.

(vector element-type)

A specialized vector may be used, in which case every component must

STRUCTURES

: named

:unnamed

list

205

be of a type that can be stored in such a vector. The first component is

vector clement 1 if the structure is : named, and clement 0 if it is

: unnamed.

Use a list. A structure of this type cannot be distinguished by typep,

even if the : name d option is used. By default this is : un n arne d. The

first component the cadr if the structure is : named, and the car if it is
: unnamed.

The: named option specifics that the structure is "named"; this option takes no argument.

A named structure has an associated predicate for determining whether a given LISP object

is a structure of that name. Some named structures in addition can be distinguished by the

predicate ty pep (page 52). If neither : name d nor : LJ n name d is specified, then the

default depends on the : type option.

The : un name d option specifies that the structure is not named; this option takes no .

argument.

: constructor This option takes one argument, a symbol, which specifies the name of the constructor

function. If the argument is not provided or if the option itself is not provided, the name

of the constructor is produced by concatenating the string "make-" and the name of the
structure, putting the name in the same package as the structure name. If the argument is

provided and is nil, no constructor function is defined.

:predicate

:include

This option actually has a more general syntax that is explained in section 19.6 (page 217).

This option takes one argument, which specifies the name of the type predicate. If the

argument is not provided or if the option itself is not provided, the name of the predicate is

made by concatenating the name of the structure to the string "- p " , putting the name in
the same package as the structure name. If the argument is provided and is nil, no

predicate is defined. A predicate can be defined only if the structure is : name d (page

215).

This option is used for building a new structure definition as an extension of an old

structure definition. As an example, suppose you have a structure called per son that

looks like this:

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since astronauts

are people too, you would like them to also have the attributes of name, age, and sex, and

you would like LISP functions that operate on per son structures to operate just as well on

as tronaut structures. You can do this by defining as tron aut with the : inc 1 ude

option, as follows:

206 COMMON I ,IS» REFERENCE MANUAL

(defstruct (astronaut (:include person)
(: conc-name 'astro»

helmet-size'
(favorite-beverage 'tang»

The : inc 1 u d e option causes the structure being defined to have the same slots as the

included structure, in such a way that the access functions for the included structure will

also work on the structure being defined. In this example, an astronaut will thereforc

have five slots: the three defined in person, and the two defined in astronaut itself.

The access functions defined by the pe r s on stnlcture can be applied to instances of the

astronaut structure, and they will work correctly. Moreover, astronaut will have its

own access functions for components defined by the per son structure. The following

examples illustrate how you can use as tron aut structures:

(set~ x (make-astronaut :name 'buzz
:age 45.
:sex t
:helmet-size 17.5»

(-person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang

The difference between the access functions per son - n arne and as t r 0 - n arne is that

person-name may be correctly applied to any person, including an astronaut, while

as tro-name may be correctly applied only to an as tronaut. (An implementation may

or may not check for incorrect use of access functions.)

The argument to the : inc 1 u d e option is required, and must be the name of some

previously defined structure. The included structure must be of the same: type as this

structurc. The structure name of the including structure definition becomes the name of a
data type, of course; moreover, it becomes a SUbtype of the included structure. In the

above example, as tronaut is a subtype of person; hence

(typep {make-astronaut) 'person)

is true, indicating that all operations on persons will work on astronauts.

The following is an advanced teature of the : inc 1 u d e option. Sometimes, when one

structure includes another, the default values or slot-options for the slots that Calne from

the included structure are not what you want. The new structure can specify default values

or slot-options for the included slots different from those the included structure specifies,

by giving the : inc 1 u d e option as:

(: inc 1 u de name slot-description-l slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that is the same as that of

some slot in the included structure. If slot-descri/Jlion-j has no default-init, then in the new

. structure the slot will have no initial value. Otherwise its initial value form will be replaced

e·

, I

STRUCTURES 207

by the defi7Ult-inil in slut-descriptiun-}. i\ normally writable slot may be made read-only,

and a normally visible slot may be made invisible in the defined structure. If a slot is

invisible or read-only in the induded structure, then it must also be so in the induding

structure. I f a type is specified for a slot, it must be a the same as or a subtype of the type

specified in theinduded structure. (fit is a strict subtype, the implementation may Of may

not choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default age for an

astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45»)
helmet-size
(favorite-beverage 'tang»

:print-function

I'his option may be used only with : n arne d stmctures. The argument to this option

should be a function of three arguments to be used to print stnlctures of this type. When a

structure of this type is to be printed, the function is called on the stmcture to be printed, a

stream to print to, and an integer indicating the current depth (to be compared against

lie p r in 1 eve 1 lie (page 252)}. The printing function should observe the yalues of such

printer-control variables as lie p r ; n esc ape lie (page 248) and lie p r i n pre t ty lie (page 248).

~ :initial-offset

:eval-when

This allows you to tell de f s t r u c t to skip over a certain number of slots before itstarts

allocating the slots described in the body. This option requires an argument, a non

negative integer, which is the number of slots you want de f s t r u c t to skip. To make use

of this option requires that you have some familiarity with how defstruct is

implementing your structure; otherwise, you will be unable to make use of the slots that

def s truct has left unused.

Normally the functions defined by de f s t r u c t are defined at eval time, compile time,

and load time. This option allows the user to control this behavior. The argument to the

: eva l-when option is just like the list that is the first subform of an eva 1 -whe n (page

49) special form. For example,

(:eval-when (:eval :compile»

will qmse the function~ to be defined only when the code is running interpreted or inside

the compiler.

18.6. By-position Constructor Functions

If the : constructor (page 205) option is given as (: constructor name arglist), then instead of

making a keyword driven constructor function, de f s t r u c t defines a "positional" constructor function,

taking arguments whose meaning is determined by the argument's position rather than by a keyword. The

208 COMMON I.ISP REFFRENCF MANUAL

arglisl is used to descoribe what the arguments to the constructor will be. In the simplest case something like

(: cons tructor make-faa (a be» defines make-faa to be a three-argument constructor function

whose arguments are used to initialize the slots named a, b, and c.

In addition, the keywords &opt ional, &rest, and &aux arc recognized in the argument list. They work

in the way you might expect, but there are a few fine points worthy of explanation.

For example:

(:constructor create-faa
(a &optional b (c tsea) &rest d &aux e (f teff»)

This defines create-foo to be a constructor of one or more arguments. The first argument is used to

initialize the a slot. The second argument is used to initialize the b slot. If there isn't any second argument,

then the default value given in the body of the defstruct (if given) is used instead. The third argument is

used to initialize the c slot. If there isn't any third argument, then the symbol sea is used instead. Any

arguments following the third argument arc collected into a list and used to initialize the d slot. If there are

three or fewer arguments, 0 then nil is placed in the d slot. The e slot is not initialized; its initial value is

undefined. Finally, the f slot is initialized to contain the symbol ef f.

The actions taken in the band e cases were carefully chosen to allow the user to specify all possible

behaviors. Note that the &aux "variables" can be used to completely override the default initializations given

in the body.

With this definition, one can° write

(create-foo 1 2)

instead of

(make-foo alb 2)

and of course create-foo provides defaulting different from that ofmake-foo.

It is permissible to use th~ : co 11 S t r u ~ tor option more than once, so that you can define several different

constructor functions, each taking different parameters.

Because a constructor of this type operates By Order of Arguments, it is sometimes known as a BOA

constructor.

•

•

•

•

Chapter 19

The Evaluator

19.1. Run-Time Evaluation of Forms

eva 1 form [Function]
The form is evaluated in the current dynamic environment and a null lexical environment.

Whatever results from the evaluation is returned from the call to eva 1.

Note that when you write a call to eva 1 two levels of evaluation occur on the argument form you

write. First the argument form is evaluated, as for arguments to any function, by the usual

argument evaluation mechanism (which involves an implicit use of eva 1). Then the argument is

passed to the eva 1 function, where another evaluation occurs.

For example:

(eval (list 'cdr (car '«quote (a . b» c»» => b

The argument form (list 'cdr (car '«quote (a . b» c») is evaluated in the. usual

way to produce the argument (c d r (q u 0 t e (a . b))); this is then given to e val because

e val is being called explicitly, and e val evaluates its argument (cdr (q u 0 t e (a . b) » to

produce b.

If all that is required for some application is to obtain the current dynamic value of a given symbol,

the function symbol-val ue (page 62) may be more efficient than eval.

*eva 1 hook * [Variable]
If the value of * e val h 0 0 k * is not nil, then e val behaves in a special way. The non-nil value

of *evalhook* should be a function that takes arguments according to a lambda-list that looks

like (fonn &r est env); this is called the hook jUllction. When a form is to be evaluated (any

form at all, even a number or a symbol), whether implicitly or via an explicit call to eva 1, no
"

attempt is made to evaluate the form. Instead, the hook function is invoked, and passed the fonn to

be evaluated as its first argument. The hook function is then responsible for evaluating the form;

whatever is returned by the hook function is assumed to be the result of ~valuating the fonn .

The other arguments passed to the hook func.tion contain information about the lexical

environment in an implementation-dependent format. These arguments are suitable for the

- 209-

210 COMMON I ,1SP REFERENCE MANUAL

function *eval (page 220) and evalhook (page 220).

The *evalhook* feature is provided as an aid to debugging. The step (page 303) facility is

implemented around this hook.

If a non-local exit causes a throw back to the top level of LISP, perhaps because an error could not

be corrected, then *eva 1 hook * is automatically reset to nil.

*eval fonn &rest env [Functioll]
This function is just like eva 1, but treats env as a specification of the lexical environment in which

to evaluate the fOlm. The format of env is implementation-dependent, and may be required to

consist of a certain number of arguments, but anything' that is passed to a hook function because of

the *eva 1 hook * feature will be acceptable.

Note that if a hook function simply calls *eva 1 to evaluate the form, an endless loop may occur,

because * e val will invoke the hook function on its argument if * e val h 00 k * is not nil. See

eva 1 hook (page 220).

eva1hook form hookfn &rest env [Function]
The eva1 hook function is provided to make it easier to exploit the *eval hook* feature. The

form is evaluated with *eva 1 hook * bound to hookfn, which should be a hook function or nil .

The env arguments are used as the lexical environment, as for * e val (page 220). The check for a

hook function. is bypassed for .the evaluation of the fOlm itself, but not for subsidiary evaluations,

such as of sub forms. It is this one-shot bypass that makes e val h 0 0 k so useful.

Here is an example ofa very simple tracing routine that uses the *eva 1 hook * feature:

(defvar *hook1evel* 0)

(defun hook (x)
(let «*eva1hook* 'hook-function»

(eval x»)

(defun hook-function (form &rest env)
(let «*hookleve1* (+ *hookleve1* 1»)

(format trace-output "-%-V@TForm: -S"
(* *hooklevel* 2) form)

{let «(values (multiple-value-list
(apply #'~valhook form'env»»

{format trace-output "-%-V@TValue:-{-S -}"
(* *hooklevel* 2) values»»

Using these routines, one might see the following interaction:

•

•

•

TIlE EVALUATOR 211

'(hook '(cons (floor *base* 2) 'b))
Form: (CONS (FLOOR *BASE* 2) (QUOTE B))

Form: (FLOOR *BASE* 3)
Form: *BASE*
Value:'10
Form: 3
Value: 3

Valu'e: 3 1
Form: (QUOTE B)
Value: B

Value: (3 . B)
(3 . B)

cons tan tp object [Function]
The predicate con s tan t p is true of any LISP object that may be considered to have a constant

value. This includes all self-evaluating objects (numbers, characters, strings, bit-vectors, and

keywords) as well as constant symbols declared by defconstant (page 48) such as ni 1 (page

51), t (page 51), and pi (page 130).

19.2. The Top-Level Loop

Normally one interacts with LISP through a "top level read-eval-pr i nt loop", so called because it is the

highest level of control and consists of an endless loop that reads an expression, evaluates it, and prints the

results. One has an effect on the state of the LISP system only by invoking actions that have side effects.

The precise nature of the top-level loop for COMMON LISP is purposely not specified rigorous.ly here, so

that implementors can experiment to improve the user interface. For example, an implementor may choose

to require line-at-a-time input, or may provide a fancy editor or complex graphics-display interface. An

implementor may choose to prompt explicitly for input, or may choose (as MACLISP does) not to clutter up

the transcript with prompts.

The top-level loop is required to trap all throws and recover gracefully. It is also required to print all values

resulting from evaluation of a form, perhaps on separate lines. If a form returns zero values, as little as

possible should be printed.

The following variables are maintained by the top-level loop as a limited safety net, in case the user forgets

to save an interesting input expression or output yalue. (Note that the names of some these variables violate

the convention that names of global variables begin and end with an asterisk.) These are intended primarily

for user interaction, which is why they have short names. Use of these variables should be avoided in

programs.

212

+

++

+++

**

I

II

III

COMMON LISP REFERENCE MANUAL

[Variable]
. [Variable]

[Variable]
While a form is being evaluated by the top-Ievc1loop, the variable + is bound to the previous form

read by the loop. The variable ++ holds the previous value of + (that is, the t()rm evaluated two

interactions ago), and +++ holds the previous value of ++.

[Variable]
While a form is being evaluated by the top-level loop, the variable - is bound to the fonn itself; that

is, ·it is the value about to be given to + once this interaction is done.

[Variable]
[Variable]
[Variable]

While a form is being evaluated by th~ top-level loop, the variable * is bound to the result printed

at the end of the last time through the loop;· that is, it is thevalue produced by evaluating the form

in +. If several values were produced, '" contains the first vah.le only (or nil if zero values were

produced). The variable * * holds the previous value of * (that is, the result printed two

in teractions ago), and'" !Ie !Ie holds the previous value of '" '" .

•

If the evaluation of + was aborted for some reason, !Ie will have the value nil; this is so that + and •

!Ie, ++ and !Ie "', and +++ and'" '" * will be correspond properly.

[Variable]
[Variable]
[Variable]

While a form is being evaluated by the top-level loop, the variable / is bound to a list of the results

printed at the end of the last time through the loop; that is, it is a list of all values produced by

evaluating the form in +. The value of * should always be equal to the car of the value of I. 1be

variable II holds the previous value of / (that is, the results printed two interactions ago), and III

holds the previous value of / / .

If the evaluation of + was aborted for some reason, / will ha~e the value n; 1 ; this is so that + and

I, ++and II, and +++ and III will be correspond properly.

Chapter 20

Streams

Streams are objects that serve as sources or sinks of data. Character streams produce or absorb characters;

binary streams produce or absorb integers. The normal action of a COMMON LIsp system is to read characters

from a character input stream, parse the characters into successive S-expressions, evaluate each S-expression

in turn, and print the results to an output character stream.

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as

the ambassadors of external devices by which input/output is accomplished.

A stream may be input-only, output-only, or bidirectional. What operations may be performed on a stream

depends on which of the three types ~f stream it is.

20.1. Standard Streams

There are several variables whose values are streams used by many functions in the LISP system. These

variables and their uses are listed here. By convention, variables that are expected to hold a stream capable of

input have names ending with "- input", and similarly "-output" for output streams. Those expected to

hold a bidirectional stream have names ending with" - i 0".

* s tandard- i npu t * [Variable]
In the normal LISP top-level loop, input is read from *standard-inpu~* (that is, whatever

stream is the value of the global variable *standard-input*). Many input functions, including

read (page 253) and read-char (page 255), take a s~ream argument that defaults to

standard-input.

* s tan dar d - 0 u t put * [Variable]
In the normal LISP top-level loop, output is sent to *standard-output* (that is, whatever

stream is the value of the global variable *s.tandard-output*). Many output functions,

including print (page 258) and write-char (page 259), take a stream argument that defaults

to *standard-output*.

- 213-

214 COMMON LISP RITFRENCE MANUAL

ef'ror-output . [Variable] •
The value of *e r rof' - ou tpu t * is a stream to which error messages should he sent. Normally this

is the same as *standard-output*, but *standard-output* might be bound to a file and

* error -ou tp u t * left going to the terminal or a separate file of error messages.

* query- i 0* [Variable]
The value of * q ue r y - ; 0 * is a stream to be used when asking questions of the user. The question

should be output to this stream, an~ the answer read from. it. When the nOimal input to a program

may be coming from a file, questions such as "Do you really want to delete all of the files in your

directory??" should be sent directly to the user, and the answer should come from the user, not

from thedata file. *que ry-; 0* is used by such functions as ye s -or - no -p (page 271).

term; na 1- i 0 [Variable]
The value of * term ina 1 - ; 0 * is ordinarily the stream that connects to the user's console.

* tr ace -ou tpu t * [Variable]
The value of *trace-output* is the stream on which the trace (page 302) function prints its

output.

* s tandard-; nput *, * standard-output *, *error-output *, *trace-output *, and

query-; 0 are initially bound to synonym streams ~at pass all operations on to the stream that is the
value of *term;nal-;o*. (See make-synonym-stream (page 224).) Thus any operations performed

on those streams will go to the terminal.

No user program should ever change the value of * term ina 1 - i 0 *. A program that wants (for example)

to divert output to a file should do so by binding the value of *standard-output*; that way error

messages sent to *error-output* can still get to the user by going through *term;nal-io*, which is

usually what is desired.

20.2. Creating New Streams

Perhaps the most important construct~ for creating new streams are those that open files; see

wit h - 0 pe n - f i 1 e (page 286) and 0 pen (page 283). The following functions construct streams without

reference to a file system.

make-synonym-s tr~am symbol [Function]
make-synonym-s tream creates and returns a "synonym stream". Any operations on the new

stream will be performed on the stream that is then the value of the dynamic variable named by the •

symbol. If the value of the variable should change or be bound, then the synonym stream will

STREAMS 215

operate on the new stream.

make-broadcast-stream &rest streams [Fullc/ion]
Returns a stream that only works in the output direction. Any output sent to this stream will be

sent to all of the streams given. The set of operations that may be performed on the new stream is

the intersection of those for the given streams. The results returned by a stream operation arc the

values returned by the last stream in streams; the results of performing the operation on aU

preceding streams arc discarded.

make-concatenated-stream &rest streams [Function]
Returns a stream that only works in the input direction. Input is taken from the first of the streams
until it reaches end-of-file; then that stream is discarded, and input is taken from the next of the

streams, and so on. If no arguments are given, the result is a stream with no content; any input

attempt will result in end-of-file.

make-two-way-stream input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to

output-stream.

make -echo- s tre am input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to

output-stream. In addition, all input taken from input-stream is echoed to output-stream.

make-string-input-stream string &optional start end [Function].
Returns an input stream that will supply the characters the substring of string delimited by start and

end in order and then signal end-of-file.

make -s tr i ng-output -s tream &opt i on a 1 line-length [Function]
Returns an output stream that will accumulate all output given it for the benefit of the function

get-output-stream-string.

get-output - s tream- s tr i ng string-output-stream [Function]
Given a stream produced by make-s tri ng-output-stream, this returns a string containing all

the characters' output to the stream so far. The stream is then reset; thus each call to

get - 0 u t put - s t ream - s t r i n 9 gets only the characters since the last such call (or the creation of

the stream, if no such previous call has been made).

216 COMMON LISP REFERENCP MANUAL

with-input-from-string (var sIring {keyword valueJ*) {declaralion}* {jbrm}* [Alaero]

The body is executed as an implicit pr'ogn with the variable var bound to a character input stream

that supplies slIccessive characters from the value of the form string.

with - i n pu t - f rom- s t r i n 9 returns the results from the lastjbrm of the body.

The input stream is automatically dosed on exit from the with - input - f rom- s tr i n 9 form. It

is best to regard the stream as having dynamic extent.

The following keyword options may be used:

: index

:start

:end

For example:

The form after the : index keyword should be a place acceptable to setf. If

the with-input-from-string form is exited normally, then the place will

have stored into it the index into the string indicating the first character not read

(the length of the string if all characters were used). The place is not updated as

reading progresses, but only at the end of the operation.

The : s tar t keyword takes an argument indicating, in the manner usual for

sequence functions, the beginning of a substring of string to be used.

The : end keyword takes an argument indicating, in the manner usual for

sequence functions, the end of a substring of string to be used.

(with-input-from-string (s "Why a Duck?" :index j :start 6)
(read s» => duck?

As a side effect, the variable j is set to 10.

with-output-to-string (var [string]) {declaration}* {fonn}* [At/aero]
The body is executed as an implicit progn with the variable var bound to a character output

stream. All output to that stream is saved in a string. If no string argument is provided, then the

·value of wi th-output-fro"1-str.i ng is a string containing all the collected output. If string is

specified, it must be a string with a fill pointer, the output is incrementally appended to the string

(see vector- push (page 199»; in this case wi th -output - to- s tr; ng returns the results

from the lastfor~ of the body.

The ou tpu t stream is automatically closed on exit from the wit h - 0 u t put - from - s t r i n 9 form.

It is best to regard the stream as having dynamic extent.

20.3. Operations on Streams

•

•

•

STREAMS 217

s t re amp objeCt [Fullction]
streamp is true ifits argument is a stream, and otherwise is false.

(streamp x) <=> (typep x 'stream)

input - s tream-p stream [Function]
This predicate is true if its argument (a stream) can handle input operations, and otherwise is false.

output-stream-p stream [Function]
This predicate is true if its argument (a stream) can handle output operations, and otherwise is false.

stream-el ement-type stream [Function]
A type specifier is returned to indicate what objects may be read from or written to the stream.
Streams created by op e n (page 283) will have an clement type restricted to a subset of

character or integer, but in principle a stream may conduct transactions using any LISP

objects.

close stream &key : abort [Function]
The stream is closed. No further input/output operations may be performed on it. However,

certain inquiry operations may still be performed, and it is permissible to close an already-closed

stream.

If the : abort paramctcris not nil (it defaults to nil), itindicatcs an abnonnal termination of

the use of the stream. An attempt is made to clean up any side effects of having created the stream

in the first place. For example, if the stream performs output to a file, the file is deleted and any

previously existing file is not superseded.

218 COMMON I .ISP REFERENCE MANUAL

•

•

•

Chapter 21

Input/Output

21.1. Printed Representation of LIsP Objects

LISP objects are not normally thought of as being text strings; they have very different properties from text

strings as a consequence of their internal representation. However, to make it possible to get at and talk about

LISP objects. LISP provides a representation of objects in the form of printed text; this is called the printed
representation, which is used for input/output purposes and in the exanlples throughout this manual.

Functions such as p r i n t (page 258) take a LISP object and send the characters of its printed representation

to a stream. The collection of routines that does this is known as the (LISP) printer. The' ra ad function takes

characters from a stream, interprets them as a printed representation of a LISP object, builds a corresponding

object, and returns it; the collection of routines that does this is called the (LISP) reader .

Ideally, one could print a LISP object and then read the printed representation back in, and so obtain the

same identical object. In-practice this is difficult, and for some purposes not even desirable. Instead, reading

a printed representation produces an object that is (with obscure technical exceptions) aqua 1 (page 56) to

the originally· printed object.

Most LISP objects have more than one possible printed representation. For example, the int~ger twenty

seven can be written in any of these ways:

27 27 . #033 #x 16 #b11011 #.(* 3 3 3)

A list of two symbols A and 6 can be printed in many, many ways:

(A 6) (a b) (a b) (\A 161)
(I\AI

6

The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever

.. whitcspace is permissible in a printed representation, any number of spaces, tab characters, and new lines may

appear.

When p r i n t produces a printed representation, it must choose arbitrarily from among many possible

printed representations. It attempts to choose one that is readable. There are a number of global variables

that can be used to control the actions of p r i nt, and a number of different printing functions.

- 219-

220 COMMON LISP REFERENCE MANUAL

This section describes in detail what is the standard printed representation for any I jsp object. and also

describes how re ad operates.

21.1.1. 'Vltat the rea d Function Accepts

The purpose of the reader LISP is to accept characters, interpret them as the printed representation of a

LISP object. and construct and return such an object. The reader cannot accept everything that the printer

produces; for example. the printed representations of compiled code objects and closures cannot be read in.

However. the reader has many features that are not used by the output of the printer at all, ·such as comments,

alternative representations. and convenient abbreviations for frequently-used unwieldy constructs. The

reader is also parameterized in such a way that it can be used as a lexical analyzer for a more general

user-written parser.

When the reader is invoked, it reads a character from the input stream and dispatches according to the

attributes of that character. Every character that can appear in the input stream can have one of the following

attributes: whitespace, constituent, escape character, or macro character. In addition, a macro character may

be terminating or non-terminating (of tokens).

Supposing that the first character has been read; call it x. The reader then performs the following actions:

• If x is a whitespace character, then discard it and start over, reading another character.

• If x is a macro character; then execute the function associated with that character. The function

may return zero values or one value (see val ues ~page 89)). If one value is returned, that object
is returned by the reader. If zero values are returned, the reader starts anew, reading a character

from the input stream and dispatching. The function may of course read characters from the

input stream; if it does, it will see those characters following the macro character.

• If x is an escape character, then read the next character and pretend it is a constituent, ignoring its
usual syntax. Drop into the following case.

• If x is a constituent, then it begins an extended token, representing a symbol or a number. The

reader reads more characters, accumulating them until a whitespace character or a macro character
that is terminating is found, or until end-of-file is reached. However, whenever an escape
character is found during the accumulation, the character after that is treated as a pure constituent
and also accumulated, no matter what its usual syntax is. Similarly, any non-terminating macro
character is simply accumulated as if it were a constituent. Call the eventually found whitespace
character or macro character y. All characters beginning with x up to but not including y fonn a

single extended token. (If end-of-file was encountered, the characters beginning with x up to the

end of the file fonn the extended token.) This token is then interpreted as a number if possible,

and otherwise as a symbol. The number or symbol is then returned by the reader.

•

•

Compatihility note: What MACLISP calls a "single character object" (tokens of type single) are not porvided for explicitly in •
COMMON LISP. They can be viewed as simply a kind of macro character. That is, the effect of (setsyntax · $ t S ingl e

"

•

INPUT/OUTPUT

nil) in MAd .lSI' can be achieved in COMMON LISP by

(set-macro-character '$ "(lambda (stream char)
(declare (ignore stream char))
'$))

221

The characters of the standard character set initially have the attributes shown in Table 22-1. Note that the

square brackets. braces. question mark, and exclamation point (that is, ·l", .. J", '" {", '"}", "?", and" t") are

nOimally defined to be constituents, but arc not used for any purpose in standard COMMON LISP syntax and

do not occur in the names of built-in COMMON LISP functions or variables. These characters are explicitly

reserved to the user, primarily for usc as macro characters if desired.

21.1.2. Parsing of Numbers and Synlbols

When an extended token is read, it is interpreted as a number or symbol. As a rule, letters not preceded by

escape characters are converted to upper case. If the token can be interpreted as a number according to the

BNF syntax in Table 22-2. then a nUJllbcr objectofthe appropriate type is constructed andreturned. It should

be noted that in a given implementation it may be that not all tokens conforming to the syntax for numbers

can actually be converted into number objects. For example, specifying too large or too small an exponent for

a floating-point number may make the number impossible to represent in the implementation. Similarly, a

ratio with denominator zero (such as "-35/000") cannot be represented in any implementation. The

exponent markers "b" and "6" are undefined, but are reserved for future extension of the floating-point type.

In any such circumstance where a token with the syntax of a number cannot be converted to an internal

number object, an error is signalled. (On the other hand, an crror cannot be signalled for specifying too many

significant digits for a floating-point number.)

Note that a token representing a number may not contain any escape characters. An escape character robs

the following character of all syntactic qualities, forcing it to be strictly alphabetic.

If the token consists solely of dots (with no escape characters), then an error is signalled, except in one

circumstance: if the token is a single dot, and occurs in a situation appropriate to "dotted list" syntax, then it is .

accepted as a part of such syntax. (Signalling an error catches not only misplaced dots in dotted list syntax,

but also lists that were truncated by * p r in 1 eng th * (page 252) cutoff.}

In all other cases the token is construed to be the name of a symbol. If there are any package markers

(colons) in the token, they divide the token into pieces used to control creation of the symbol. The cases

where there arc two or more colons. Of where a colon appears at the end of the token, presently do not mean

anything in COMMON LISP and are reserved for future use; sec chapter 11 (page lIS). If there is a single

non-final colon, it divides the token into two parts. The first part specifics a package. A null first part

indicates the keyword package; otherwise it is interpreted as the name of a symbol in the current package,

and that symbol must name a package. The second part is the name of the symbol.

If a symbol token contains no package markers, then the entire token is the name of the symbol. The

symbol is looked up in the default package; see *package* (page 117).

222 COMMON I.ISP REFERENCE MANUAL

<tab> whilespace <page) whitespace <return) whitespace
<space) whitespace @ COllst ituen t tenllinalillg macro character

constituent A constituent a cOllstituent
" tenninating macro character B constituent b constituent
terminating macro character C constituent c constituent
$ constituent D constituent d constituent
% constituent E constituent e constituent
& constituent F constituent f constituent

tenninating rnacro character G constituent 9 constituent
(tenninating macro character H constituent h constituent
) tenninating macro character I constituent i constituent

* constituent J constituent j constituent
+ constituent K constituent k constituent

terminating macro character L constituent 1 constituent
constitu.ent M constituent m cOllstituent
const ituent N constituent n constituent

/ constituent 0 constituent 0 constituent
0 constituent P constituent p constituent
1 constituent Q constituent q constituent • 2 constituent R constituent r constituent
3 constituent S constituent s constituent
4 constituent T constituent t constituent
5 constituent U constituent u constituent
6 constituent V constituent v constituent
7 constituent W constituent w constituent
8 constituent X constituent x constituent
9 constituent Y constituent y constituent

constituent Z constituent z constituent
terminating macro character [constituent { constituent

< constituent \ escape character I terminating macro character

= constituent] constituent } constituent

> constituent constituent constituent
? constituent constituent <rubout> constituent
<backspace) constituent <linefced> whitespace

Table 21·1: Standard Character Syntax Attributes

I N PUT/OUTPUT

number:: = integer 1 ratio Ifloating-point-number
integer:: = [sign] {digit} + [.]

ratio:: = [sign] {digit} + / {digit} +

floating-poillt-number:: = [sign] {digit}* . {digit} + [exponent] 1 [sign] {digit} + [. {digi/}*] exponent

sign:: = + I -
digit:: = 0 I 1 1 2 1 3 I 4 I 5 I 6 I 7 1 8 I 9

exponent:: = exponent-marker [sign] {digit} +

exponent-marker:: = e 1 s 1 f I d 11 I b I ElF I DiS I LIB

223

The notation "{x}*" means zero or more occurrences of "x", the notation "{x} +,. means one or more

occurrences of "x", and the notation "[x]" means zero or one occurrences of "x".

Table 21-2: Syntax of Numbers

The interpretation of standard characters within extended tokens is shown in Table 22-3. These

interpretations can be used, of course, only for characters defined to be constituent characters. For characters

of type whilespace, macro character, or escape character, the interpretations in Table 22-3 arc effectively

shadowed. (The interpretation of '4superdigits" is relevant to the reading of rational numbers in a radix

greater than ten.)

21.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that macro character is called,

and may produce an object to be returned. This function may read following characters in the stream in

whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax.

Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for
strings).

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols

and numbers, and the coilection of macro characters. Any character can be reprogrammed as a macro

character; this is a means by which the reader can. be extended. The macro characters normally defined are:

(The left parenthesis character initiates reading of a pair or list. The function read (page 253) is called

recursively to read successive objects, until a right parenthesis is found to be next in the input stream. A
list of the objects read is returned. Thus

(a b c)

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not follow the

printed representation of the last object immediately; whitespace characters may precede it. This can be

useful for putting one object on each line and making it easy to add new objects:

224 COMMON (,1St> REFERENCE MANUAL

<tab) alphabetic * { alphabetic

<linefeed) alphabetic * I alphabetic *
<page) alphabetic * } alphabetic

<return) alphabetic * alphabetic *
<space) alphabetic * @ alphabetic

! alphabetic A,a alphabetic, superdigit

" alphabetic *. B,b alphabetic, sllperdigit, reserved exponent

alphabetic * e,c alphabetic, superdigit

$ alphabetic D,d alphabetic, superdigit, double-float exponent

% . alphabetic E,e alphabetic, superdigit, float exponent

& alphabetic F, f alphabetic, superdigit, single-float exponent

alphabetic * G,g alphabetic, superdigit

(alphabetic * H, h alphabetic, superdigit

) , alphabetic * I, i alphabetic, superdigit

* alphabetic J,j alphabetic, superdigit

+ alphabetic, plus sign K,k alphabetic, superdigit

alphabetic * L, 1 alphabetic, supcrdigit, long-float exponent

alphabetic, minus sign M,m alphabetic, superdigit
alphabetic, dot, decimal point N,n alphabetic, superdigit

/ alphabetic, ratio marker 0,0 alphabetic, superdigit

0 digit P,p alphabetic, superdigit

1 digit Q,q alphabetic, superdigit

2 digit R,r alphabetic, superdigit

3 digit S,S alphabetic, superdigit, short-float exponent

4 digit T"t alphabetic, superdigit

5 digit U,U alphabetic, superdigit

6 digit V,V alphabetic, superdigit

7 digit W,W alphabetic, superdigit

8 digit X,X alphabetic, superdigit

9 digit Y,Y alphabetic, superdigit

package marker Z,Z alphabetic, superdigit

alphabetic * [- alphabetic

< alphabetic \ alphabetic *
= alphabetic] alphabetic

> alphabetic alphabetic

? alphabetic alphabetic

<rubout> alphabetic alphabetic

<backspace) alphabetic

* The interpretations in this table apply only to characters determined to have the constituent attribute.

Entries marked with an asterisk are nonnally shadowed because the indicated characters have lvhitespace,
macro character, or escape character syntax.

Table 21-3: Standard Constituent Character Attributes

•

•

•
INPUT/OUTPUT

(defun traffic-light (color)
(caseq color

(green)
(red (stop})
(amber (accelerate»
))

225

; I nsert more colors after this line.

It may be that no objects precede the right parenthesis, as in "()" or .. ()"; this reads as a list of zero

objects (the empty list).

If a token is read between objects that is just a dot" . ", not preceded by an escape character, then exactly

one more object must follow (possibly followed by whitespace), and then ,the right parenthesis:

(a be. d)

This means that the cdr of the last pair in the list is not nil, but rather the object whose representation

followed the dot. The above example might have been the result of evaluating

(cons 'a (cons 'b (cons 'c 'd»} => (a b c . d)

Similarly, we have

(cons 'znets 'wolq-zorbitan) => (znets . wolq-zorbitan)

It is permissible for the object following the dot to be a list:

(a b cd. (e f . (g))) is the same as (a b c d e f g)

but this is 'a non-standard form that p r i n t will never produce.

The right-parenthesis character is part of various constructs (such as the syntax for lists) using the

left-parenthesis character, and is invalid except when usqd in such a construct

The single-quote (accent acute) character provides an abbreviation to make it easier to put constants in

programs. 'faa reads the same as (q uote faa): a list of the symbol quote andfoo.

Semicolon is used to write comments. The semicolon and everything up through the next newline are

ignored. Thus a comment can be put at the end of any line without affecting the reader (except that

semicolon, being a macro character and therefore a delimiter, will terminate a token, and so cannot be

put in the middle of a number or symbol).

For example:

226

"

COMMON I.ISI> REFERENCE MANUAL

COMMENT-EXAMPLE and relat~d nonsense.
'" This function is useless except to demonstrate comments.
;;; Notice that there are several kinds of comments.

(defun comment-example (x y) ;X is anything; Y is an a-list.
(cond «listp x) x) ;IfX is a list, use that.

;; X is now not a list. There are two other cases.
«symbolp x)
;; Look up a symbol in the a-list.
(cdr (assq x y») ;Remember, (cdr nil) is nil.

" Do this when all else fails:
(t (cons x ;Add x to a default list.

'«lisp t) ;lISP is okay.
(fortran nil) ; FORTRAN is not.
(pl/i -500) ;Note that you can put comments in
(ada .001) ; "data" as well as in "programs".
:: COBOL??
(teco -1.0e9»»»

This example illustrates a few conventions for comments in common use. Comments may begin with

one to four semicolons.

• Single-semicolon comments are all aligned to the same column at the right; usually each

comments about only the line it is on~ Occasionally two or three contain a single sentence
together: this is indicated by indenting all but the first by a space.

• Double-semicolon comments are aligned to the level of indentation of the code. A space

follows the two semicolons. Usually each describes the state of the program at that point, or
describes the section that follows.

• Triple-semicolon comments are aligned to the left margin. Usually they are not used within
S-expressions, but precede them in large blocks.

• Quadruple-semicolon comments are interpreted as subheadings by some software such as the

ATSIGN listing program.

The double-quote character begins the printed representation of a string. Characters are read from the

input stream and accumulated until another double-quote is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a

matching double-quote is seen, all the acculTIulated characters up to but not including the matching

double-quote are made into a simple string and returned.

The vertical-bar character begins one printed representation of a symbol. Characters arc read from the

input stream and accumulated until another vertical-bar is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a

matching vertical-bar is seen, all the accumulated characters up to but not including the matching

vertical-bar arc made into a symbol and returned. In this syntax, no characters are ever converted to

upper case; the name of the symbol is precisely those characters between the vertical bars (allowing for

•

•

INPUT/OUTPUT 227

any escape characters}.

The backquote (accent grave) character makes it easier to write programs to construct complex data

structures by using a template.As an example, writing

'(cond «numberp ,x) ,@y) (t (print ,x) ,@y»

is roughly equivalent to writing

(list 'cond
(cons (list 'numberp x) y)
(list* 't (list 'print x) y»

The general idea is that the ~ackquote is followed by a template, a picture of a data structure to be built.

This template is copied, except that within the template commas can appear. Where a comma occurs,

the form fonowing the comma is to be evaluated to produce an object to be inserted at that point.

Assume b has the value 3, for example, then evaluating the form denoted by" , (a b ,b ,(+ b 1)

b) " produces the result (a b 3 4 b).

If a comma is immediately fonowed by an at-sign C'@"), then the form following the at-sign is evaluated

to produce a list of objects. These objects are then "spliced" into place in the template. For example, if

x has the value (a b c), then

'(x ,x ,@x faa ,(cadr x) bar ,(cdr x) baz ,@(cdr x»
=> (x (a b c) abc faa b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of several situations in which

backquote can be used, a possible interpretation of that situation as an equivalent form is given. Note

that the form is equivalent only in the sense that when it is evaluated it will ca1culate the correct result.

An implementation is quite free to interpret backquote in any way such that a backquotcd form, when
evaluated, will produce a result equa 1 to that produced by the interpretation shown here.

• 'simple is the same as 'simple, that is, (q u ate simple), for any form simple that is not a list

or a general vector.

• ' ,form is the same as form, for any form, provided that the representation of form does not
begin with "@" or " . ". (A similar caveat holds for all occurrences of a form after a comma.)

• ' ,@form is an error.

• '(xl x2 x3 xn . atom) may be interpreted to mean (append xl x2 x3 ...
Ml (quote atom», where the underscore indicates a transformation of an xjas follows:

o form is interpreted as (1 is t 'form), which contains a backquoted form that must

then be further interpreted.

o . form is interpreted as (1 is t form).

o • @form is interpreted simply asform.

228 COMMON LISP REFERENCE MANUAL

• '(xl x2 x3 ... Xll) may be interpreted to mean the same as ' (xl x2 x3 ... xn .

nil) .

• '(xl x2 x3 ... xn . ,form) may be interpreted to mean (append xl x2 x3

XI1 form), where the underscore indicates a transformation of an xj as above.

• '(xl x2 x3 ... xn . , @form) is an error.

• '#(xl x2 x3 ... xn) may be interpreted to mean (make-simple,-vector nil

:initial-contents '(xl x2 x3 ... xn».

No other uses of comma are permitted; in particular, it may not appear within the #A or #S syntax.

Anywhere" ,@" may be used, the syntax" , . ""may be used instead to indicate that it is permissible to

destroy the list produced by the form following the .. , ."; this may permit more efficient code, using

nconc (page 178) instead of append (page 177), for example.

If the backquote syntax is nested, the innermost backquoted form should be expanded first. This means

that if several commas occur in a row, the leftmost one belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret a backquoted form as any form

that. when evaluated, will produce a result that is e qua 1 to the result implied by the above definition.

In particular, no guarantees are made as to whether the constructed copy of the template will or will not

share list structure with the template itself. As an example, the above definition implies that ' { (tab)

~ C t @d) will be interpreted as ifit were

{append {l i s t(a p pen d (1 i s t a) (1 i s t " ' b) 'nil» (1 i s t c) d 'nil)

but it could also be legitimately interpreted to mean any of the following:

(append (list (append (list a) (list 'b») (list c) d)
(append (list (append (list a) '(b») (list c) d)
(append (list (cons a '(b») (list c) d)
(list* (cons a '(b» c d)
(list* (cons a (list 'b» c d)
(list* {cons a '(b» c (copy-list d»

(There is no good reason why copy-l i st should be perfonned, but it is not prohibited.)

The comma character is part of the backquote syntax and is invalid if used other than inside the body of

a backquote constnlction as described above.

-The sharp-sigh character is a dispatching macro character. It reads an optional digit string and then one

more character, and uses that character to select a function to run as a macro-character function. See the

next section for predefined sharp-sign macro characters.

•

•

•

INPUT/OUTPUT 229

2 t .1.4. Sharp-Sign Abbreviations

The standard syntax includes forms introduced by a sharp sign ("#"). These take the general form of a
sharp sign. a second character that identities the syntax, and following arguments in some form. If the second

character is a letter, then case is not important; #0 and #0 arc considered to be equivalent, for example.

Certain sharp-sign forms allow an unsigned decimal number to appear between the sharp sign and the

second character: some other forms even require it.

The currently-defined sharp-sign constructs are described below and summarized in Table 22-4; more are

likely to be added in the future. However, the constlucts "#1 ", "#?", "#[", "#J", "#{", and H#}" are

explicitly reserved for the user and will never be defined by the COMMON LISP standard.

#\ #\x reads in as a character object that represents the character x. Also, #\ name reads in as the

character object whose name is name. Note that the backslash "\" allows this construct to be parsed

easily by G\1ACs-like editors.

In the single-character cas~, the character x must be followed by a non-constituent character, lest a

name appear to follow the H#\". A.good model of what happens is that after "#\" is read, the reader

backs up over the "\" and then reads an extended token, treating the initial "\" as an escape

character (whether it really is or not in the current readtable).

Upper-case and lower-case letters are distinguished after H#\"; "#\A" and "#\ a" denote different

character objects. Any character works after #\, even those that are normally special to r'ead, such

as parentheses. Non-printing characters may be used after #\, although for them names are
generally preferred.

#\name reads in as a character object whose name is name (actually, whose name is

(string-upcase /lame); therefore the syntax is case-insensitive). The following names are

standard across all implementations: .

return

space

The carriage return or newline character.

The sp~ce or blank character.

The following names are semi-standard; if an implementation supports them, they should be used for

the described characters and no others.

rubout

page

tab

backspace

linefeed

The rubout or delete character.

The formfeed or page-separator character.

The tabulate character.

The backspace character ..

The line feed character.

The name should have the syntax of a symbol.

When the LISP printer types out the name of a special character, it uses the same table as the #\

230

#(tab) signals error

#(space) signals error

#! undefined

#" undefined

reference to label

#$ undefined

#% undefined

#& undefined

#' funct i on abbreviation

(general vector

) signals error

#* bit-vector

#+ read-time conditional

#, load-time evaluation

#- read-time conditional

. read-time evaluation

/ undefined

#0 (infix argument)

1 (infix argument)

#2 (infix argument)

#3 (infix argument)

#4 (infix argument)

#5 (infix argument)

#6 (infix argument)

#7 (infix argument)

#8 (infix argument)

#9 (infix argument)

#: undefined

; undefined

#< signals error

#= labels LISP object

#> undefined

#1 undefined
#(backspace) undefined

#(page) signals error

#@ undefined

#A array

#8 binary rational

#e complex number

#0 undefined

#E undefined

#F undefined

#G undefined

#H undefined

#1 undefined

#J undefined

#K undefined

L undefined

#M undefined

#N undefined
#0 octal rational

#P. undefined

#Q undefined

#R radix-n rational

#S strUcture

#T undefined

#U undefined

#V undefined

#w undefined

#X hexadecimal rational

#Y undefined

#Z undefined

#[undefined

#\ named character

#] undefined

#" undefined

_ undefined

#<backspace) signals error

COMMON LISP REFFRENCE MANUAL

#(return) signals error

t u~ldefined

#a array

#b binary rational

#c complex number

#d undefined

#e undefined

#f undefined

#9 undefined

#h undefined

i undefined

j undefined

·#k undefined

#1 undefined

#m undefined

#n undefined
#0 octal rational

#p undefined

#q undefined

r radix- n rational

s structure

#t undefined

#u undefined

#v undefined

#w undefined

#x hexadecimal rational

y undefined

#z undefined

#{ undefined

I undefined

#} undefined
#IV undefined

#<rubout) undefined

Table 21·4: Standard Sharp-Sign Macro Character SyntAx

•

•

•

•

INPUT/OUTPUT 231

#'

reader; therefore any character name you see typed out is acceptable as input (in that

implementation). Standard names are always preferred over non-standard names for printing.

The following convention is used in implementations that support non-zero bits attributes for

character objects. I f a name after #\ is longer than one character and has a hyphen in it, then it may

be split into the two parts preceding and following the first hyphen; the first part (actually,

s t r in 9 - up cas e of the first part) may then be interpreted as the name or initial of a bit, and the

second part as the name of the character (which may in turn contain a hyphen and be subject to

further splitting).

For example:

#\Control-Space
#\C-M-Return

#\Control-Meta-Tab
#\H-S-M-C-Rubout

If the character name consists of a single character; then that character is used. Another "\" may be

necessary to quote the character.

#\Control-@
#\Control-\a

#\Control-Meta-\"
#\Meta->

If an unsigned decimal integer appears between the "#" and "\", it is interpreted as a font number,

to become the char-f.ont (page 154) of the character object.

Compatibility note: Formerly, Lisp Machine LIsP and MAc LISP used #\ to mean only the #\name version of this
syntax, using #/ for the #\x version. Lisp Machine LIsp has recently changed to allow #/ to handle both
syntaxes. The incompatibility is a resu It of the general exchange of the / and \ characters.

Also, MACLISP and Lisp Machine LISP define #\ and #/ to be a syntax for numbers, integers that represent
characters. Here they are a syntax for character objects. Code conforming to the "Character Standard for ~ISP"
will not depend on this distinction; but non-conforming code (such as code that does arithmetic on bare character
values) may not be compatible.

'/09 is an abbreviation for (fun ct i on /00). /00 may be the printed representation of any LISP

object. This abbreviation may be remembered by analogy with the I macro-character, since the

f u nc t ion and quo t e special forms are similar in form.

(A series of representations of objects enclosed by "# <." and.")" is read as a simple general vector of

those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the "#" and" (", it specifies explicitly the length of

the vector. In that case, it is an error if too many objects are specified before the closing") ", and if

too few are specified the last one is' used to fill all remaining clements of the vector.

For example:

#(a bee c c)
#6(a b c c c c)
#6(a b c)
#6(a b c c)

all mean the same thing: a vector oflength 6 with elements a, b, and four instances of c.

#* A series of binary digits (0 and 1) preceded by "#*" is read as a simple bit-vector containing those

bits, the leftmost bit in the series being bit 0 of the bit-vector.

232 COMMON LISP REFERENCE MANUAL

If an unsigned decimal integer appears between the "H" and "*", it specifics explicitly the length of

the vector. In that case, it is an error if too many bit arc specified, and if too few arc specified the last

one is lIsed to fill all remaining clements of the bit-vector.

For example:

#*101111
#6*101111
#6*101
#6*1011

all mean the same thing: a vector of length 6 with element~ a, b. and four instances of c.

#: # :foo requires foo to have the syntax of an unqualified symbol name (no embedded colons). It

denotes an uninterned symbol whose name is foo. Every time this syntax is encountered a different

uninterned symbol is created.

. # .foo is read as the object reSUlting from the evaluation of the LISP object represented by fDa, which

may be the printed representation of any LISP object. The evaluation is done during the read

process, when the #. construct is encountered. This, therefore, performs a "read-time" evaluation of

faa. By contrast, #, (see below) performs a "load-time" evaluation.

This allows you, for example. to include in your code complex list-structure constants that cannot be

written with quote. Note that the reader does not put quote around the result of the evaluation.

You must do this yourself if you want it, typically by using the ' macro-character. An example of a

case where you do not want quote around it is when this object is an element of a constant list.

, # ,fDa is read as the object resulting from the evaluation of the LISP object represented by faa, which

may be the printed representation of any LISp· object. The evaluation is done during the read

process, unless unless the compiler is doing the reading, in which case it is arranged that faD will be

evaluated when the file of compiled code is loaded. This, therefore, performs a '"load-time"

evaluation of faD. By contrast, #. (see above) performs a "read-time" evaluation. In a sense, #, is

Jike specifying (.eval load) to eval-when (page 49), while #. is more like specifying (eval

c omp i 1 e). It makes no difference when loading interpreted code, but when code is to be compiled,

#. specifies compile-time evaluation and #, specifics load-time evaluation.

#, allows you, for example, to include in your code complex list-structure constants that cannot be

written with quote. Note that the reader does not put quote around the result of the evaluation.

You must do this yourself if you want it, typically by using the ' macro-character. An example of a

case where you do not want quo t e around it is when this object is an element of a constant list.

#8 #brational reads rational in binary (radix 2). For example, #81101 <=> 13, and #b 10 1/ 11 <=>

5/3.

#0 #orational reads rational in octal (radix 8). For example, #037/15 <=> 31/13, and #0777 <=>

511.

•

•

•

INPUT/OUTPUT 233

#X #xralioll111 reads ratiollal in hexadecimal (radix 16). The digits above 9 are the letters A through F

(the lower-case letters a through f are also acceptable). For example, #x FOO <=> 3840.

#IlR #radixr rational reads rational in radix radix. radix must consist of only digits, and it is read in

decimal; its value must be between 2 and 36 (inclusive).

For example, #3 r 102 is another way of writing 11, and # 11 R 3 2 is another way of writing 35. For

radices larger than 10, letters of the alphabet are used in order for the digits after 9.

#nA The syntax #IlAform constructs an n-dimensional array, using form as the value of the

: initial-contents argument to make-array (page 193).

#S . The syntax #s (name slol/. value I slot2 value2 ...) denotes a structure. This is legal only if

#n=

name is the name ofa structure already defined by defs truct (page 201), and if the stnlctqfe has a

standard constnlctor macro, which it normally will. Let em stand for the name of this constructor

macro; then this syntax is equivalent to

#. (em slot! 'valuel s1012. 'value2 ...)

That is, the constructor macro is called. with the specified slots having the specified values (note that

one docs not write quote-marks in the #S syntax). Whatever object the constnlctor macro returns is

returned by the #S syntax.

The syntax #n=objeel reads as whatever LISP object has object as its printed representation. However,

that object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax

#n# (below). The scope of the label is the S-expression being read by the outermost call to read.

Within this S-expression the same label may not appear twice.

The syntax inn, where n is a required unsigned decimal integer, serves as a reference to some object

labelled,by #n=; that is, #n# represents a pointer to the same identical (eq) object labelled by #n= ..

This permits notation of structures with shared or circular substructure. For example, a structure

#+

. created in the variable y by this code:

(setq x (list 'p 'q»
(setq y (list (list 'a 'b) x 'foo x}}
(rplacd (last x) (cdr x})

. could be represented in this way:

«a b) . #1=(#2=(p q) foo #2# . #1#»

Without this notation, but with * p r i n 1 eng t h * (page 2~2) set to 10, the structure would print in

this way:

«a b) (p .q) faa (p q) (p q) foo (p q) (p q) foo (p q) ... }

A reference #n# may only occur after a label #n=; forward references are not permitted.

The #+. syntax provides a read-time conditionalization facility. The general syntax is "#+ feature

form". If feature is "true", then this syntax represents a LISP object whose printed representation is

form. If feature is "false", then this syntax is effectively whitespace; it is as if it did 'not appear.

234

#-

COMMON LISP REFERENCE MANUAL

The feature should be the printed representation of a symbol or list. 1 f feature is a symbol, then it is •

true iff it is a member of the list that is the value of the global variable * f eat U J' e s * (page 308).
('ompatihilil y nolc: MAC LISP uses the s tat us special form for Lhis purpose. and Lisp Machine l.ISP duplicates
status essentially only for the s,1ke of (status features), 'Ibe use ofa variable allows one to bind Lhe
features list, for example when compiling.

Otherwise, feature should be a boolean expression composed of an d, or, and not operators on

(recursive) feature expressions.

For example, suppose that in implementation A the features s pic e and per q are tnle, and in

implementation B the feature 1 is pm is true. Then the expressions on the left below are read the

same as those on the right in implementation A:

(cons #+spice "Spice" #+lispm "Lispm" x)
(setq a '(1 2 #+perq 43 #+(not perq) 27»
(let «a 3) #+(or spice lispm) (b 3»

(foo a»

In implementation n, however, they are read in this way:

,(cons #+spice "Spice" #+lispm' "Lispm" x)
(setq a '(1 2 #+perq 43 #+(not perq) 27»
(let «a 3) #+(orspice lisp~) (b 3»

(foo a»

(cons "Spice" x) ,
(setq a '(1 2 43»
(let «a 3) (b 3»

(faa a»

(cons "Lispm" x)
(setq a '(1 2 27»
(let ({a 3) (b 3»

(foo a»

The #+ construction must be used judiciously if unreadable code is not to result. The user should

make a careful choice between read-time conditionalization and run-time conditionalization.

#-feature form is equivalent to #+ (not feature) form.

#< This is not legal reader syntax. It is used in the printed' representation of objects that cannot be read

back in. Attempting to read a #< will cause an error. (More precisely, it is legal syntax, but the

macro-character function for it signals an error.)

#<space>, #<tab>, #<return>, #<page>

A # followed by a standard whitespace character is not legal reader syntax. This is so that

abbreviated forms produced via * p r i n 1 eve 1 * (page 252) cutoff will not read in again; this serves

as a safeguard against losing information. (More precisely, it is legal syntax, but the macro-character

function for it sign~ls an error.)

#) This is not legal reader syntax. This is so that abbreviated forms produced via * p r i n 1 eve 1 * (page

252) cutoff will not read in again; this serves as a safeguard against losing information. (More

precisely, it is legal syntax, but the macro-character function for it signals an error.)

21.1.5. The Readtable '

Previous sections have described the standard syntax accepted by the read function. This section

discusses the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects

or to aid the writing of other parsers.

INPUT/OUTPUT 235

There is a data structure called the rcadlable that is used to control the reader. It contains information

about the syntax of each character equivalent to that in Table 21-1. Initially it is set up exactly as in Table

21-1 to give the standard COMMON I -lSI' meanings to all the characters, but the user can change the meanings

of characters to alter and customize the syntax of characters. It is also possible to have several readtables

describing di fferent syntaxes and to switch from one to another by binding the variable'" rea d tab 1 e *.

Even if an implementation supports characters with non-zero bils andjiml attributes, it need not (but may)

allow for such characters to have syntax descriptions in the readtable. However, every character of type

stri ng-char must be represented in the readtable.

* readtab 1 e* [Variable]
The value of *readtabl e* is the current readtable. The initial value of this is a readtable set up

for standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable

being used.

To program the reader for a different syntax, a set of functions arc provided for manipulating readtables.

Normally, you should begin with a copy of the standard COMMON LISP readtable and then customize the

individual characters within that copy.

copy- readtab 1 e &op:t i on a 1 from-readlable to-readtable [Function]
A copy is made of from-readtable, which defaults to the current readtable (the value of the global

variable *re"adtable*). If from-readtable is nil, then a copy of a standard COMMON LISP

readtable is made; for example,

(setq readtable (copy-readtable nil»

will restore the input syntax to standard COMMON LISP syntax, even if the original readtable has

been clobbered (assuming it is not so badly clobbered that you cannot type in the above

expression!).

If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise to-readtable must be a

readtable, which is clobbered with the copy.

re8dtablep object

read tab 1 ep is true if its argument is a readtable, and otherwise is false.

(readtablep x) <=> (typep x 'readtable)

set-syntax-from-char to-char from-char &optional to-readlable from-readtable

[Function]

[Function]
Makes the syntax of to-char in 10-readtable be the same as the syntax of from-char in from-readtable.
The to- readtable defaults to the current readtable (the value of the global variable '" rea d tab' e *

(page 245)), andfrom-readtable defaults to n i " meaning to use the syntaxes from the standard LISP

readtable.

236 COMMON LISP REFERENCE I\fANUAL

Only attributes as shown in Table 21-1 are copied: moreover, if a macro character is copied, the

macro definition function is copied also. However, attributes as shown in Table 21-3 are not

copied: they are "hard-wired" into the extended-token parser. For example, if the definition of"S"

is copied to "*", then .,*" wiH become a cOllstituent, but will be simply alphabetic and cannot be

used as an exponent indicator for short-format floating-point number syntax.

It "works" to copy a macro definition from a character such as "1" to another character; the

standard definition for " 1 " looks for another character that is the same as the character that invoked

it.' It doesn't "work" to copy the definition of"(" to "{", for example: it can be done, but itlets

one write lists in the form .. { abc) ", not" {a b c} ", because the definition always looks for a

closing ")". Sec the function read-del imited-l ist (page 254), which is useful in this

connection.

set-macro-character char jUllction &optional non-terminating-p readtable
get-macro-character char &opt ional readtable

[Function]
[Function]

set-macro-character causes char to be a macro character that when seen by read causes

jUllction to be called. If non-terminating-p is not nil (it defaults to nil), then it will be a

non-terminating macro character: it may be embedded within extended tokens.

get - rna c r 0 - c h a r act e r returns the function associated with char, and as a second value returns

the non-terminating-p flag: it returns nil if char does not have macro-character syntax. In each
case, readtable defaults to the current readtable.

junction is called with two arguments, stream and char. The stream is the input stream, and char is
the macro-character itself .. In the simplest case, junction may return a LISP 'object. This object is

taken to be that whose printed representation was the macro character and any following characters

read by the junction. As an example, a plausible definition of the standard single-quote character

is:

(defun single-quote-reader (stream char)
(declare (ignore char»
(list 'quote (read stream»)

(set-macro-character #\' #'single-quote-reader)

The function reads an object following the single-quote and returns a list of the symbol quote and

that object. The char argument is ignored.

The function may choose instead to return zero values (for example, by using (val ues) as the

return expression). In this case the macro character and whatever it may have read contribute

nothing to the object being read. As an example, here is a plausible definition for the standard

semicolon (comment) character:

•

•

•

•

INPUT/OUTPUT

(defun semicolon-reader (stream char)
(declare (ignore char»
;; First swallow the rest of the current input line.
(do () «char= (read-char stream) #\Return»)
;; Return zero values.
(values»

(set-macro-character #\; #'semicolon-reader)

237

The junction should not have any side-effects other than on the stream. Front ends (such as editors

and rubout handlers) to the reader may cause junction to be called repeatedly during the reading of

a single expression in which the macro character only appears once, because of backtracking and

restarting of the rea d operation.

make -d i sp atch -mac ro-c h ar ac ter char &·opt i on a 1 non-terminating-p readtable [Function]
This causes the character char to be a dispatching macro character in readtable (which defaults to

the current readtable). If non-terminating-p is not nil (it defaults to nil), then it will be a
non-terminating macro character: it may be embedded within extended tokens.

Initially every charactc'r in the dispatch ta~le has a character-macro function that signals an error.

Use set-di spatch-macro-character to define entries in the dispatch table.

set- dis patch -mac ro- ch aracter disp-char sub-char function &opt i ona 1 readtable [Function]
get- d; spa tch -mac ro- ch aracter disp-char sub-char &opt; on a 1 readtable [Function]

set - dis pa tch -mac ro- ch aracte r causes junction to be called when the disp-char followed by

sub-char is read. The readtable defaults to the current readtable. The arguments and return values

for, junction are the same as for normal macro characters, documented abqve under

set-macro-character (page 236), except that function gets sub-char as its second argument,

and also receives a third argument that is the non-negative integer whose decimal representation

appeared between disp-char and sub-char, or nil if there was none. The sub-char may not be one

of the ten decimal digits; they are always reserved for specifying an infix integer argument.

get - dis pat c h - mac r 0 - c h a r act e r returns the macro-character function for sub-char under

disp-char.

As an examp~e, suppose one would like #$joo to be read as if it were (doll a r s joo). One might

say:

(defun sharp-do11ar-reader (stream subchar arg)
(declare (ignore subchar arg»
(list 'dollars (read stream»)

(set-dispatch-macro-character #\# #\$ #'sharp-dol1ar-reader)

Compatibility note: This macro-character mechanism is different from those in MACLISP. INTER LISP, and Lisp Machine
LIsp. Recently LISP systems have implemented very general readers. even readers so programmable that they can parse
arbitrary compiled BNF grammars. Unfortunately, these readers can be complicated to usc. lbis design is an attempt to
make the reader as simple as possible to understand, usc, and implement. Splicing macros have been eliminated: a recent
informal poll indicates that no one uses them to produce other than zero or one value. 'Ibe ability to access parts of the

238 COMMON LISP REFERENCE MANUAL

object preceding the macro character have been eliminated. The single-characler-object feature has been eliminated,
because it is seldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into singlc-character-object macros, and then usc
read purely as a lexical analyzer on top of which to build a parser. It is unnecessary, however, to cater to more complex
lexical analysis or parsing than that needed for COMMON Lisp.

21.1.6. What the p r i n t Function Produces

The COMMON LISP printer is controlled by a number of special variables: * p r in esc a pe * is one of the . .

most important.

pr i nes cape [Variable]
When this flag is n i 1, then escape characters are not output when an S-expression is printed. In

particular, a symbol is printed by simply printing the characters of its print name. The function

pr inc (page 258) effectively binds*p r i ne s cape * to n i 1.

When this flag is not n i 1, then an attempt is made to print an S-expression in such a way that it can

be read again to produce an e qua 1 stnlcture. The function p r i n 1 (page 258) effectively binds

* p r i n esc ape * to t.
Compatibility note: This flag controls what was called slashification in MACLlsP.

The initial value of this variable is t.

p r i np r et ty [Variable]
When this flag is nil, then only a small amount of whitespace is output when printing an

expression, as described below.

When this flag is not nil, then the printer will endeavor to insert extra whitespace where

appropriate to make the expression more readable.

* p r inc i r c 1 e * [Variable]
When this flag is n i 1 (the default), then the printing process proceeds by recursive descent; an

attempt to print a circular structure may lead to looping behavior and failure to terminate.

When this flag is not nil, then the printer will endeavor to detect cycles in the structure to be

printed, and to use #12= and #n# syntax to indicate the circularities.

How an expression is printed depends on its data type ..

Integers. If appropriate, a radix specifier may be printed; see * p r i n r ad ix * below. If an integer is

negative, a minus sign is printed and then the absolute value of the integer is printed. Non-negative integers

•

are printed in the radix specified by *base* in the usual positional notation, most significant digit first The •

number zero is represented by the single digit 0, and never has a sign. A decimal point may then be printed.

I N PUT/OUTPUT 239

base [Variable]

The value of * b as e * determines in what radix the printer will print rationals. This may be any

integer from 2 to 36, inclusive~ the default value is 10 (decimal radix). For radices above 10,

letters of the alphabet arc used to represent digits above "9".

Compatibility notc: MACIJSP calls this variable base, and its default value is 8, not 10.

Floating-point numbers are always printed in decimal, no matter what the value of * b as e *.

prinradix [Variable]
If the variable *prinradix* is non-nil, the printer will print a radix specifier to indicate the

radix in which it is printing a rational number. To prevent confusion of the letter "0" and the digit

"0", and of the letter "B" with the digit "b", the radix specifier is always printed using lower-case

letters. For example. if the current base is twenty-four (decimal), the decimal integer twenty-three

would print as "#24rN". If *base* is 2, 8, or 16, then the radix specifier used is Hb, #0, or #x.

For integers, base ten is indicated by a trailing decimal point, instead of using a leading radix

specifier; for ratios, "#10r" is used. Thedefaultvalueof*prinradix* is nil.

Ratios. If appropriate, a radix specifier may be printed; see * p r i n r ad i x * . If the ratio is negative, a

minus sign is printed. Then the absolute value of the numerator is printed, as for an integer; then a .. /"; then

the denominator. The numerator and denominator are both printed in the radix specified by *base*; they

are obtained as ifby the numerator (page 134) and denomi nator (page 134) functions, and so ratios are

always printed in lowest form.

Floating-point numbers. Floating point numbers are printed in one of two ways. If the floating point

number is between 10- 3 (inclusive) and 107 (exclusive), it may be printed as the integer part of the number,

then a decimal point, followed by the fractional part of the number; there is always at least one digit on each

side of the decimal point. Outside of that range, it will be printed in "computerized scientific notation", with .

the exponent character indicating the precision of the number. For example, Avogadro's number as a

short-format floating-point number would be printed as "6. 02S23". If the format of the number matches

that specified by *read-defau1 t-f1 oat-format* (page 253), however, then the exponent marker "E"

is used.

Characters. When * p r in esc ape * (page 238) is nil, a character prints as itself; it is sent directly to the

output stream. When * p r ; n esc ape * is not n; 1, then #\ syntax is used. For example, the printed

representation of the character #\a with control and meta bits on would be #\CONTROL -META-\a.

Symbols. When * p r ; n esc ape * (page 238) is n i 1, the only characters of the print name of the symbol

are output. When *prinescape* is not nil, backslashes "\" and vertical bars "I" are included as

required, and package prefixes may be printed (using colon":" syntax) if necessary. As a special case, nil

may sometimes be printed as "()" instead, when *p r; nes cape * and * p r; np ret ty tic are each not n i 1.

The rules for package qualifiers are as follows. When the symbol is printed, if it is in the keyword package

240 COMMON I.ISP REFERENCE MANUAL

then it is printed with a preceding colon; otherwise, if it is present in the current package, it is printed without

any qualification; otherwise, it is printed with qualification. See *package* (page 117).
ImlJlcmcntalion nolc: The syntax "foo: 1 string I" presently has no dclined meaning in COMMON I.lSI'. If a package qualilier
must be printed. then vertical-bar syntax may not be used for either the name of the package or the name of the symbol:
instead. individual escape characters must be used. This means that one must print" s i : \ (\ \. \ \)" instead of" s i : I (
.) I ", for example. This unpleasant form of output should not occur very often in practice.

A symbol that is uninterned (has no home package) is printed preceded by "#: ",

Implcmcntation note: Because the "#:" syntax does not intern the following symbol. it is necessary to usc circular-list
syntax if * p r in e ire 1 e * (page 238) is not nil and the same unintcrned symbol appears several times in an expression to
be printcd. For cxamplc, the result of

(let «x (make-symbol "FOO"») (list x x»

would bc printed as "(#: foo # :foo)" if *pr i ne i.re 1 e* were nil, but as "(#1=#: foo #1#)" if *pr i ne i rc 1 e*
were not nil.

The case in which symbols are printed is controlled by the variable * p r inc a s e * (page 250).

* p r inc as e ... [Variable]
The re ad (page 253) function normally converts lower-case letters appearing in symbols to upper

case, so that internally print names normally contain only upper-case characters. However, users

may prefer to see output in lower case or mixed case. This variable controls the case (upper or
lower) in which to print any upper-case characters in the names of symbols when vertical-bar syntax

is not used. The value of *pr i ncase* should be one of the keywords: upcase, : downcase, or

:capitalize.

Lower';case characters in the internal print name are aiways printed in lower case, and are preceded

by an escape character. Upper-case characters in the internal print name are printed in upper case,

lower case, or in mixed case so as to capitalize words, according to the value of * p r inc ase"'. The

convention for what constitutes a "word" is the same as' for the function s tr i ng - cap ita 1 i ze

(page 196).

Strings. The characters of the string are output in order. If * P r in esc ape * (page 238) is not nil, a

double quote "fI" is output beforehand and afterward, and all and double quotes and escape characters are

preceded by "\". The prin'ting of strings is not affected by * p r ina r ray'" (page 252).

Conscs. Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm

is used:

1. Print an open parenthesis" (".

2. Print the car of the cons.

3. If the cdr is a cons, make is the current cons, print a space, and go to step 2.

4. If the cdr is not null, print a space, a dot" . ", a space, and the cdr.
5. Print a close parenthesis" (".

••

INPUT/OUTPUT 241

This form of printing is clearer than showing each individual cons cel1. Although the two S-expressions

below are equivalent. and the reader will accept either one and produce the same data structure, the printer

will always print such a data structure in the second form.

(a . (b . «c. (d . nil» . (e . nil»»
(a b (c d) e)

The printing of conses is affected by the variables * p r i n le vel * (page 252) and * p r i n 1 eng t h * (page

252).

Hit-vectors. A bit-vector is printed as "#*" followed by the bits of the bit-vector in order~ If

• p r ina r ray· (page 252) is nil, however, then the bit-vector is printed in a format (using "#<") that is

concise but not readable.

Vectors. Any vector other than a string or bit-vector is printed using general-vector syntax; this means that

information about specialized vector representations will be lost. The printed representation of a zero-length

vector is "#()". The printed representation of a non-zero-length vector begins with a #(. Following the #(

is printed the first clement of the vector. If there are any other elements, they arc printed in turn, with a space

printed before each additional clement. A close parenthesis after the last clement terminates the printed

representation of the vector. The printing of vectors is affected by the variables * p r in 1 eve 1· (page

252) and • p r in 1 eng t h· (page 252). If· p r ina r ray * (page 252) is nil, however, then the vector is

printed in a format (using "#<") that is concise but not readable.

• Arrays. Normally any array other than a vector is printed using "#nA" format. Let n be the rank of the

array. Then "#" is printed, then n as a decimal integer, then "A", then n left parentheses. Next the clements

are scanned in row-major order. Imagine the array indices being enumerated in odometer fashion. Every

tilne the index for dimension j is incremented, first a right parenthesis is printed; then if dimension j has

overflowed, dimension j-I is incremented; then a left parenthesis is printed. Finally, n right parentheses arc

printed. This causes the contents to be printed in a format suitable for the : in it i a l-con te n ts argument

to make-array (page 193). The lists effectively printed by this procedure are subject to ·prinlevel*

(page 252) and * p r i n 1 eng t h * (page 252). If· p r ina r ray:le (page 252) is nil, however, then the array

is printed in a format (using "#<") that is concise but not readable ..

Structures defined by defstruct (page 201) arc printed under the control of the : pri nter option to

defstruct.

Any other types arc printed in an implementation-dependent manner. It is recommended that printed

representations of all such objects begin with the characters "#<" and end with ">" so that the reader will

catch such objects and not permit them to be read under normal circumstances.

When debugging or when frequently dealing with large or deep objects at top level, the user may wish to

restrict the printer from printing large amounts of information. The variables * p r ; n 1 eve 1 * and

• p r i n 1 eng t h * allow the user to control how deep the printer will print, and how many elements at a given

level the printer will print. Thus the user can see enough of the object to identify it without having to wade

through the entire expression.

242 COMMON LISP REFERENCE MANUAL

"'prinlevel'"

"'prinlength'"

[Variable]
[Variable]

The "'pr'i nl evel '" variable controls how many levels deep a nested data object will print. If

·"'prinlevel'" is nil (the initial value). then no control fsexercised. Otherwise the value should

be an integer. indicating the maximum level to be printed. An object to be printed is at level 0; its

components (as of a list or vector) are at level 1; and so on. If an object to be recursively printed

has components and is at a level equal or greater to the value of '" p r i n 1 eve 1 "', then the object is

printed as simply ""#".

The'" p r in 1 eng th '" variable controls how many clements at a given level arc printed. A value of

nil (the initial value) indicates that there be no limit to the number of components printed.

Otherwise the value of'" p r in 1 eng t h '" should be an integer. Should the number of clements of a

data object exceed the value'" p r in 1 eng th "', the printer will print three dots H in place of

those clements beyond the number specified by "'p r in 1 ength "'. ([n the case of a dotted list, if

the list contains exactly as many clements as the value of '" p r in 1 eng th '" , and in addition has the

non-null atom terminating it. that terminating atom is printed, rather than printing H ••• ".)

As an example, here are the ways the object

(if (member x items) (+ (car x) 3) '(foo . #(a bed "Baz-"»)

would be printed for various values of "'p r i n 1 eve 1'" = v and "'p r in 1 ength * = n.

v n Output

•

01# •

~ ~ ~ ~~ i/: ~ .) .
13 (if## ...)
1 4 (i f # # #)
2 1 (if ...)
2 2 (i f (membe r x •••) •••)
2 3 (if (member x items) (+ # 3) ...)
3 2 (i f (memb e r x items) ...)
3 3 (i f (membe r x ; terns) (+ (car x) 3) ...)
3 4 (if (member x items) (+ (car x) 3). '(foo . #(a bed ... »)

Another way to cut down on the volume of printing is to disable the printing of array contents.

*prinarray· [Variable]
If p r ina r r ay is nil, then the contents of arrays other than strings arc never printed. Instead.

arrays are printed in a concise form using "#<" that gives enough information for the user to be

able to identify the array, but does not include the entire array contents. If p r i n ar r ay is not nil,

non-string arrays are printed using H# (", H#*", or "# nAn syntax.

INPUT/OUTPUT 243

2 t .2. Input Functions

2_1.2. t. Input froln ASCII Streams

Many input functions take optional arguments called input-stream, eoferrorp, and eofvalue. The

inpul-stream argument is the stream from which to obtain input; if unsupplied or nil it defaults to the value

of the special variable * stand ard - i n pu t * (page 213). One may also specify t as a stream, meaning the

value of the special variable * te rm ina 1 - i 0 * (page 214).
Rationale: Allowing the use of t provides some semblance of MAC LISP compatibility.

The eoferrorp argument controls what happens if input is from a file (or any other input source that has a

definite end) and the end of the file is reached. If eoferrorp is true (the default), an error will be signalled at

end of file. If it is false, then no error is signalled, and instead the function returns eof value.

Functions such as re ad (page 253) that read an "object" rather than a single character will always signal

an error, regardless of eoferrorp, if the file ends in the middle of an object. For example, if a file does not

contain enough right parentheses to balance the left parentheses in it, read will complain. If a file ends in a

symbol or a number immediately followed by end-of-file, re ad will read the symbol or number successfully

and when called again will see the end-of-file act according to eoferrorp. Similarly, the function read -1 i ne

(page 255) will successfully read the last line of a file even if that line is terminated by end-of-file rather than

the newline character. If a file contains ignorable text at the end, such as blank lilies and comments, read

will not consider it to end in the middle of an object.

read &optional input-stt:eam eoferrorp eofvalue [Function]
re?d reads in the printed representatio.n of a LISP object from input-stream, builds a corresponding

LISP object, and returns the object. The details are explained above.

read-default-float-format [Variable]
The value of this variable must be. a type specifier symbol for a specific floating-point format; these

include short-float, single-float, double-float, long-float, and may include

implementa.tion-specific types as well. The default value is s i ngl e-fl oat.

read-defaul t-fl oat-format indicates the floating-point format to be used for reading

floating-point numbers that have no exponent marker or have "e" or "E" f01' an exponent marker.

(Other exponent markers explicitly prescribe the floating-point format to be used.) The printer also

uses this variable to guide the choice of exponent markers when printing floating-point numbers.

read-preserv i ng-wh i tespace &opt i ona 1 input-stream eoferrorp eofvalue [Function]
Certain printed representations given to read. notably those of symbols and numbers, require a

delimiting character after them. (Lists do not, because the close parenthesis marks the end of the

list.) Nonnally read will throwaway the deli~iting character if it is a white-space character, but

244 COMMON LISP REFERENCE MANUAL

will preserve it {using unread-char (page 255» if the character is syntactically meaningful, since

it may be the start of the next expression.

The function read-preserving-whitespace is provided for some specialized situations

where it is desirable to detelmine precisely what character terminated the extended token.

As an example, consider this macro-character definition:

(defun slash-reader (stream char)
(declare (ignore char»
(do «path (list (read-~reserving-whitespace stream»

(cons (progn (read-char stream)

path»)

(read- p reser·v i ng-wh i tespace
stream»

«not (char= (peek-char stream) #\/»
(cons 'pathname (nreverse path»»)

(set-macro-character #\1 #'slash-reader)

Consider now calling re ad on this expression:

(zyedh lusr/games/zork lusr/games/boggle)

The "I" macro reads objects separated by more "I" characters; thus Ius rIg ame s I z 0 r k is

intended to read as (pathname usr games zork). The entire example expression should

therefore be read as

(zyedh (pathname usr games zork) (pathname usr games boggle»

However, if read had been used instead of read-preserving-whitespace, then after the

reading of the symbol zork, the following space would be discarded, and then the next call to

peek-char would see the following "I"; and the loop would continue, producing this

interpretation:

(zyedh (pathname usr games zork usr games boggle»

On the other hand, there are times when whitespace should be discarded. If one has a command

interpreter that takes single-character commands, but occasionally reads a LISP object, then if the

whitespace after a symbol were not discarded it might be interpreted as a command some time later

after the symbol had been read.

read-del imi ted-l; st char &opt ;onal input-stream [Function]
This reads objects from stream until the next character after an object's representation (ignoring

whitespace characters) is char. (The char should not have whitespace syntax in the current

readtable.) A list of the objects read is. returned.

This function is particularly useful for defining new macro-characters. Suppose one were to want

"#{ abc ... z}" to read as a list of all pairs of the elements a, b, c, ... , z; for example:

{ p q z a} reads as ((p q) (p z) (p a) (q z) (q a) (z a»

This can be done by specifying a macro-character definition for "#{" that does two things: read in

all the items up to the "}", and construct the pairs. rea d - del i mit e d -1 i s t performs the first •

task.

•

INPUT/OUTPUT

(defun sharp-leftbrace-reader (stream char arg)
(declare (ignore char arg»
(mapcon #'(lambda (x)

(mapcar #'(lambda (y) (list x y» (cdr x»)
(read-delimited-list #\} stream»)

(set-dispatch-macro-character #\# #\{
#'sharp-leftbrace-reader)

245

Note that read-del imi ted-l i st docs not take an eofvalue argument. The reason for this is

that it is always an error to hit end-of-file during the operation of re ad - de 1 i mi ted -1 is t.

read-line &optional input-stream eoferrorp eofvalue [Function]
read-l ine reads in a line of text, terminated by the implementation's usual way for indicating

end-of-line (typically a <return> character). It returns the line as a character string (without the

<return> character). This function is usually used to get a line of input from the user. A second

returned value is a flag that is false if the line was terminated normally, or true if end-of-file

terminated the (non-empty) line. See wr i te -1 in e (page 259).

read-char &opt ional input-stream eoferrorp eofvalue [Function]
read-char inputs one character from input-stream and returns it as a character object.

un read -char character &opt i on a 1 input-stream [Function]
unread-char puts the character onto the front of input-stream. The character must be the same

character that was most recently readfrom the input-stream. The input-stream "backs up" over this

character; when a character is next read from input-stream, it will be the specified character,

followed by the previous contents of input-stream. un re ad - ch ar returns nil.

One may only apply unread-char to the character most recently read from input-stream; .
moreover, one may not invoke unread-char twice consecutively without an intervening

read-char operation. The result is that one may back up only by one character, and one may not

insert any characters into the input stream that were not already there.

Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism for allowing the
LISP reader and other parsers to perform one-character lookahead in the input stream. This protocol admits a
wide variety of efficient implementations, such as simply decrementing a buffer pointer. To have to specify the
character in the call to unread-char is admittedly redundant. since there at any given time is only one
character that may be legally specified. The redundancy is intentional, again to give the implementation
latitude.

,peek-char &opt ianal peek-type input-stream eoferrorp eofvalue [Function]
What pee k - c h a r does depends on the peek-type, which defaults to nil. With a peek-type of

nil, pee k - c h a r returns the next character to be read from input-stream, without actually

removing it from the input stream. The next time input is done from input-stream the character will

still be there. It is as if one had called rea d - c h a r and then un rea d - c h a r in succession.

If peek-type is t, then pee k - c h a r skips over whitespace characters, and then performs the peeking

246 COMMON LISP REFERENCE MANUAL

operation on the next character. This is useful for finding the (possible) beginning of the next

printed representation of a Lisp object. As above, the last character (the one that starts an object) is

not removed from the input stream.

If peek-type is a character object, then peek -char skips over input characters until a character that

is ch ar = (page 152) to that object is found~ that character is left in the input stream.

Characters passed over by peek -char are echoed if input-stream is interactive.

listen &optional input-stream [Function]
The predicate 1 is ten is true if there is a character immediately available from input-stream, and is

false if not. This is particularly useful when the stream obtains characters from an interactive device

such as a keyboard; a call to read-char (page 245) would simply wait until a character was

available, but 1 is ten can sense whether or not input is available and allow the program to decide

whether or not to attempt input. On a non-interactive stream, the general rule is that 1 is ten is

true except when at end-of-file.

read-char-no-hang &optional input-stream eoferrorp eofvalue [Function]
This function is exactly like rea d - c h a r (page 245), except that if it would be necessary to wait in
order to get a character (as from a keyboard), nil is immediately returned without waiting. This

•

allows one efficiently to check for input being available and get the input if it is. This is different •
from the 1 i s ten (page 256) operation in two ways. First, these functions potentially actually read

a character, while 1 i s ten never inputs a character. Second, 1 i s ten does not distinguish between

end-of-file and no input being available, while these functions do make that distinction, returning

eofvalue at end-of-file (or signalling an error if no eofvalue was given), but always returning nil if

no input is available.

clear-input &optional input-stream [Function]
This clears any buffered input associated with input-stream. It is primarily useful for clearing

type-ahead from keyboards when some kind of asynchronous error has occurred. If this operation

doesn't make sense for the stream involved, when cl ear- input docs nothing. cl ear- input

returns n i 1.

read-from-string string &optional start end preserve-p eoferrorp eofvalue [Function]
The characters of string are given successively to the LISP reader, and the LISP object built by the

reader is returned. Macro characters and so on will all take effect.

The arguments start and end delimit a substring of string beginning at the character indexed by start
and up to but not including the character indexed by end. By default start is 0 (the beginning of the

string) and end is (1 eng t h string). This is as for other string functions.

The flag preserve-p, if provided and not ni 1, indicates that the operation should preserve •

•

•

INPUT /OUTPUT 247

whitespace as for read -p r es erv i n g-wh i te s pace (page 243).

The arguments foferrorp and cofvalue control the action if the end of the (sub)string is reached

before the operation is completed, as with other reading functions: reaching the end of the string is

treated as any other end-of-file event.

read-from-stri ng returns two values; the first is the object read and the second is the index of

the first character in the string not read. If the entire string was read, this will be either the length of

the string or one greater than the length of the string. The parameter preserve-p may affect this

second value.

For example:

(read-from-string "(a be)") => (a b c) and 7

parse-number string &optional start end radix no-Junk-allowed [Function]
This function examines tpe substring of string delimited by start and end (which default to the

beginning and end of the string). It skips over whitespace characters and then attempts to parse a

number, in the syntax for <number> given in Table 21-2. The radix defaults to 10, and must be an

integer between 2 and 36. If the radix is not 10, then floating-point numbers will not be permitted

by the parse.

If no-Junk-allowed is nil (the default), then the first value returned is the number parsed, or nil if

no syntactically correct number was seen. The second value is the index into the string of the

delimiter that tennip.ated the parse, or the index beyond the substring if the parse terminated at the

end of the substring.

If no-Junk-allowed is not nil, then the entire· substring is scanned. An error is signalled if the

substring does not consist entirely of the representation of a number, possibly surrounded on either

side by whitespace characters. The returned value is the number parsed, or ° if no number was

found (the substring was blank).

21.2.2. Input from Binary Streams

read-byte binary-input-stream &opt ional eoferrorp eofvalue [Function]
read-byte reads one byte from the binary-input-stream and returns it in the form of an integer.

read-binary-object type binary-input-stream &optional eoferrorp eofvalue [Function]
read-b i nary-object reads an object of the specified type from the binary-input-stream. The

object is assumed to be encoded in the manner used by w r i t e - bin a r y - 0 b j e c t (page 260); the

object is guaranteed to be read properly only if the exact same type is specified to

read-binary-object as was specified to write-binary-object to originally encode the

object, and if the : type (page 283)option for the input stream matches that for the output stream

given to wr i te-b i n ary-obj ect.

248 COMMON LISP REFERENCE MANUAL

The eoferrorp and eofvalue options apply only if the binary-input-stream is at the end of file before

the operation is begun. I f the type requires more than one byte to be read and end-of-file is

encountered before enough bytes have been read, an error is signalled.

21..3. Output Functions

21.3.1. Output to ASCII Streams

These functions all take an optional argument called output-stream, which is where" to send the output. If

unsupplied or nil, output-stream defaults to the value of the variable * stand ard-output * (page 213). If

it is t, the value of the variable *termi nal- i 0* (page 214) is used.

write object &key :stream :prinescape :prinradix :base

:princirc19 :prinpretty :prinlevel :prinlength

:princase :prinarray

[Function]

The printed representation of object is written to the output stream specified by : s t ream, which

defaults to the value of * s tan dar d - 0 u t put * (page 213).

The other keyword arguments specify values used to control the generation of the printed

•

representation. Each defaults to the global variable of the same name; sec *prinescape* (page •

238), *prinradix* (page 239), *base* (page 239), *princircle* (page 238),
prinpretty (page 238), *prinlevel* (page 242), *prinlength* (page 242),
* p r inc a s e * (page 240), and * p r ina r r ay * (page 242); (This is the means by which these

variables affect printing operations: supplying default values for the wr i te function.) Note that

the printing of symbols is also affected by the value of the variable *"package* (page 117).

pr i n 1 object &opt i on a 1 output-stream
print object &optional output-stream
pp r i nt opject &opt i on a 1 output-stream
prine object &optional output-stream

[Function]
[Function]
[Function]
[Function]

p r i n 1 outputs the printed representation of object to output-stream, using escape characters. As a

rule, the output from p r i n 1 is suitable for input to the function rea d (page 243). p r i n 1 returns

object.

(p r in 1 object output-stream)
<=> (write object :stream output-stream :prineseape t)

p r i ntis just like p r i n 1 except that the printed representation of object is preceded by a <return>

character and followed by a <space>. p r i n t returns object.

p p r i ntis just like p r i n t except thai the trailing space is omitted, and the object is printed with

the * p r i n pre t ty * (page 238) flag non-n i 1 to produce "pretty" output. p p r i n t returns object .

p r inc is just like p r in 1 except that the output has no escape characters. A symbol is printed as •

INPUT/OUTPUT 249

simply the characters of its print-name; a string is printed without surrounding double-quotes; and

there may be differences for other data types as well. The general rule is that output from p r i n e is

intended to look good to people, while output from p r i n 1 is intended to be acceptable to the

function read (page 243). pr i ne returns object.

(p r in 1 object ou/put-stream)
<=> (write object :stream output-stream :prineseape nil)

Compatibility note: In MAC Lisp, these three functions return t,. not the argument object. There is some old
code that depends on the value being non-n i 1, such as in:

(and condition (print x) (print y) (print z»

which should have been written as

(cond (condition (print x) (print y) (print z»)

but someone was too lazy to do it that way (when didn't exist in those days). Ugh. COMMON LIsp does not
support this bad style.

wr i te - to- s tr i n g object &key : p r i ne scape : p r in r ad i x : base [Function]
:prineire1e :prinpretty :prin1eve1 :prin1ength

:prinease :prinarray

prinl-to-string object [Function]
prine-to-string object [Function]

The object is effectively printed, as if by wr i te (page 248), p r i n 1 (page 248), or p r i n e (page

248), and the characte~s that would be output are made into a string and returned.

write-char character &optional output-stream [Function]
wr i te-char outputs the charaeterto output-stream, and returns nil.

write-string string &optiona1 output-stream [Function]
write-line string &optiona1 output-stream [Function]

write-string writes the characters Qfthe string to the output-stream. write-1 ine does the

same thing, but then outputs a newline afterwards. (See rea d - 1 in e (page 245).) In some

implementations these may be significantly more efficient than an explicit loop using

write-ch~r.

te rp r i &opt i on a 1 output-stream
fresh-l ine &opt iona1 output-stream

[Function]
[Function] .

te rp r i outputs a newline to output-stream; this may be simply a carriage-return character, a

return-linefeed sequence, or whatever else is appropriate for the stream. t e r p r i returns n ; 1 .

fresh-1 ine is similar to terpri, but outputs a newline only if the stream is not already at the

start of a line. (If for some reason this cannot be determined, then a newline is output anyway.)

This guarantees that the stream will be on a "fresh line" while consuming as little vertical distance

as possible. f res h - 1 in e is a (side-effecting) predicate that is true if it output a newline, and

250 COMMON LISP REFERENCE MANUAL

otherwise false.

finish-output &optiona1 oulpul-stream [Fullction]

force- outpu t &opt i on a 1 oUlput-slream [Function]
clear - outpu t &op t i on a 1 olitpul-stream [Fullction]

Some streams may be implemented in an asynchronous or buffered manner. The function

finish-output attempts to ensure that an output sent to oUlpul-slream has reached its

destination, and-only then returns ni 1. force-output initiates the emptying of any internal

buffers, but returns nil without waiting for completion or acknowledgement.

The function c1 ear-output, on the other hand, attempts to abort any outstanding output

operation in progress, to allow as little output as possible to continue to the destination. This is

useful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs.

c1 ear-output returns n i 1.

The precise actions of all three of these operations are implementation-dependent.

The function format (page 261) is very useful for producing nicely formatted text, producing good

looking messages, and so on. fO'rmat can generate a string or output to a stream.

21.3.2. Output to Binary Streams

wr i te- byte integer binary-output-stream [Function]
wr i te-byte writes one byte, the value of integer. It is an error if integer is not of the type

specified as the : type argument to open (page 283) when the stream was created.

wr i te- bin ar y-ob j ect object type binary-output-stream [Function]
The object is encoded as a stream of bytes and written to the binary-output-stream. The object must

be of the type specified by type. The encoding used may depend on the : type (page 283)of the

stream and on the specified type. For example, the integer 126 may be encoded in different ways

depending on whether the type specified is i n t e 9 e r or (by t e 8) .

The type specified must be one of the following types or a SUbtype of one: number, character,

or (array x) where x is a subtype of integer or character.

The encoding is implementation-dependent However, the function read-b i nary-object

(page 247) may be used in the same implementation to read back an object encoded by

w r i t e - bin a r y - 0 b j e ct. (These functions arc intended to provide efficient storage of data in an

implementation-depdent format.)

•

•

•

INPUT/OUTPUT 251

21.4. Formatted Output

forma t destillation cOlltrol-string &r est arguments [FuJlction]

format is used to produce formatted output. format outputs the characters of control-string,
except that a tilde C~") introduces a directive. The character after the tilde, possibly preceded by

prefix parameters and modifiers, specifics what kind of formatting is desired. Most directives use

one or more clements of args to create their output~ the typical directive puts the next clement of

args into the output, formatted in some special way_

The output is sent to destination. If destination is nil, a string is created that contains the output;

this string is returned as the value of the call to format. In all other cases format returns nil,

performing output to destination as a side effect. If destination is a stream, the output is sent to it.

If destination is t. the output is sent to the stream that is the value of the variable

* standard-output * (page 213).

A format directive consists of a tilde ("~"), optional prefix parameters separated by commas, optional

colon C':") andatsign C'@") modifiers, and a single character indicating what kind of directive this is. The

alphabetic case.of the directive character is ignored. The prefix parameters arc generally decimal numbers.

Examples of control strings:

"-s"
"-3,4:@s"

U-,45"

; This is an S directive with no parameters or modifiers.
; This is an S directive with two parameters, 3 and 4,

and both the colon and atsign flags.
; Here thetlrst prefix parameter is omitted and takes

on its default value, while the second parameter is 4.

The forma t function includes some extremely complicated and specialized features. It is not necessary to

understand all or even most of its features to use format effectively. The beginner should skip over·

anything in the following documentation that is not immediately useful or clear. The more sophisticated

features are there for the convenience of programs with complicated formatting requirements.

Sometimes a prefix parameter is 'used to specify a character, for instance the padding character in a right- or

left-justifying operation. In this case a single quote (" , ") followed by the desired character may be used as

a prefix parameter, so that you don't have to know the decimal numeric values of characters in the character

set For example, you can use " 5, , Od" to print a decimal number in five columns with leading zeros, or

" 5 , , * d" to get leading asterisks.

In place of a prefix parameter to a directive, you can put the letter "V", which takes an argument from

arguments as a parameter to the directive. Normally this should be an integer (but in general it doesn't really

have to be). This feature allows variable column-widths and the like. Also, you can use the character "#" in

place of a parameter; it represents the number of arguments remaining to be processed .

Here are some relatively simple examples to give you the general flavor of how format is used.

252 COMMON LISP REFERENCE MANUAL

(format nil "foo") => "foo"
(setq x 5)
(format nil "The answer is -D." x) => "The answer' is 5. "
(format nil "The answer is -3~.'' x) => "The answer is 5. "
(format nil "The answer is -3, '00." x) => "The answer is 005. "
(format nil "The answer is - :0. " (expt 47 x»

=> "The answer is 229,345,007."

(setq y "elephant")
(format nil "Look at the -Al" y) => "Look at the elephantl"
{format nil "Type -:C to -A." (control #\0) "delete all your files")

=> "Type Control-O to delete all your files."

(setq n 3)
(format nil "-0 item-:P found." n) => "3 items found."
{format nil "-R dog-:[s are-; is-] here." n (= n 1»

=> "three dogs are here."
(format nil "-R dog-:*-[-l; is-:;s are-] here." n)

=> "three dogs are here."
(format nil "Here -[-l;is-:;are-] -:*-R pupp-:@P." n)

=> "Here are three puppies."

The directives will now be described. The tenn arg in general refers to the next item of the set of

arguments to be processed. The word or phrase at the beginning of each description is a mnemonic word for

the directive.

Ascii. An arg, any LISP object, is printed without escape characters (as by p r inc (page 248». In

particular, if arg is a string, its characters will be output verbatim. Nonnally all occurrences of nil
in the printed object will be printed as "n i 1 ", but th~ colon modifier (..... : A) will cause them to be .

printed as "()".

- minco!A inserts spaces on the right, if necessary, to make the width at least minco! columns. The @

. modifier causes the spaces to be inserted on the left rather than the right.

- minco! t colinc t minpad, padeharA is the full fonn of -A, which allows elaborate control, of the

padding. The string is padded on the right with at least minpad copies of padchar, padding
characters are then inserted colinc characters at a time until the total width is at least minco/. The

defaults are 0 for minco! and minpad, 1 for colinc, and the space character for padehar.

""'s S-expression. This is just like -A, but arg is printed with escape characters (as by pr i n 1 (page

248) rather than p r inc). The output is therefore suitable for input to re ad (page 243). ""'s can

accept all the arguments and modifiers that"" A can.

-0 Decima!. An arg, which should be an integer, is printed in decimal radix. -0 will never put a

decimal point after the number.

,.,. minco!D uses a column width of minco!; spaces are inserted on the left if the number requires

fewer than minco! columns for its digits and sign. If the number doesn't fit in minco! columns,

additional columns arc used as needed.

..... minco! t padcharO uses padehar as the pad character instead of space.

•

•

•

•

INPUT/OUTPUT 253

If arg is not an integer, it is printed in A format and decimal base.

The @ modifier causes the number's sign to be printed always: the default is only to print it if the

number is negative. The : modifier causes commas to be printed between groups of three digits;

the third prefix parameter may be used to change the character used as the comma. Thus the most

general form of O is minco!. padehar. cornmaehmf).

-8 Binary. This is just like -0 but prints in binary radix (radix 2) instead of decimal. The full fonn is

therefore - minco!. padehar , eormnaeharB.

-0 Octal. This is just like. -0 but prints in octal radix (radix 8) instead of decimal. The full fonn is

therefore -minco! t padehar , commaeharO.

-x Hexadecimal. This is just like 0 but prints in hexadecimal radix (radix 16) instead of decimal.

The full form is therefore -minco!, padehar. eommaeharX .

.... R. Radix nR prints arg in radix n. The modifier flags and any remaining parameters are used as for

the 0 directive. Indeed, O is the same as 10 R. The full form here is therefore

..... radix, minco! , padehar. eommaeharR.

If no arguments are given to R, then an entirely different interpretation is given. The argument

should be an integer; suppose it is 4 .

• -R prints arg as a cardinal English number: "four".

• -: R print') arg as an ordinal English number:"fourth".

• -@R prints arg as a Roman numeral: "IV".

• -: @R prints arg as an old Roman numeral: "I I I I It.

-P Plural. If arg is not eql to the integer 1, a lower-case "s" is printed; if arg is eql to 1, nothing is

printed. (Notice that if arg is a floating-point 1. 0, the "s" is printed.)

-F

- : P does the same thing, after doing a - : '" to back up one argument; that is, it prints a lower-case

"s" if the last argument was not 1. This is useful after printing a number using 0 .

.... @p prints "y" if the argument is 1, or "i es" if it is not. :@P does the same thing, but backs up

first.

(format nil " 0 tr-:@P/ O win :P" 7 1) => "7 tries/l win".
(format nil " 0 tr :@P/ O win :P" 1 0) => "1 try/O wins"
(format nil 11 0 tr :@P/-O win :P" 1 3) => "1 try/3 wins"

Floating-point.
??? Query: Is this really what we want?

254 COMMON LISP REFERENCE MANUAL

arg is printed in floating point. "'nF rounds arg to a precision of II digits. The minimum value of Il

is 2, since a decimal point is always printed. If the magnitude of arg is too large or too smal1, it is

printed in exponential notation. If arg is not a number, it is printed in ,.,. A format. Note that the

prefix parameter n is not minco!; it is the number of digits of precision desired. Examples:

(format nil """'2F" 5) => "5.0"
(format nil " 4F" 5) => "5.0"
(format nil ""'4F" 1.5) => "1.5"
(format nil ""'4F" 3.14159265) => "3.142"
(format nil 11-3F" lelO) => "l.OelO"
Compatibility note: 'Ibis is not the same as FORTRAN "F" format

???"Query: Sigh. IfI had my druthers. -E. -F. and -G would be the same as FORTRAN"E, F. and G formats;
they are widely known and understood.

-E Exponential. arg is printed in exponential notation. This is identical to F, including the use of a

prefix parameter to specify the number of digits, except that the number is always printed with a

trailing exponent, even if it is within a reasonable range.

Compatibility note: This is not the same as FORTRAN "E" format

""c Character. The next arg should be a character; it is printed according to the modifier flags.

-C prints the character in an implementation-dependent abbreviated format. This format should

be culturally cOtnpatible with the host environment. fi - : C spells out the names of the control bits,

and represents non-printing characters by their names: "Control-Meta-F",
"Control-Return", "Space". This is a "pretty" format for printing characters.

"": @C prints what -: C would, and then if the character requires unusual shift keys on the keyboard

to type it, this fact is mentioned: "Control-8 (Top-F)". This is the format used for telling the

user about a key he is expected to type, for instance in prompt messages. The precise output may

depend not only on the implementation, but on the particular I/O devices in use.

-@C prints the character in a way that the LISP reader can understand, using U#\" syntax.

Rationale: In some implementations the -S directive would accomplish this also, but the -C directive is
compatible with LISP dialects that do not have a character data type .

.... % Outputs a newline (see terpri (page 249». -n% outputs n newlines. No arg is used. Simply

putting a newline in the control string would work, but -% is often used because it makes the

control string look nicer in the middle of a LISP program.

-&. Unless the stream knows that it is already at the beginning of a line, this outputs a newline (see

f res h -, in e (page 249», n& does a : f res h -1 in e operation and then outputs n -1 new lines.

-I Outputs a page separator character, if possible. n I does this n times. I is vertical bar, not capital

I.

Tilde. Outputs a tilde. n- outputs n tildes.

•

•

•

INPUT/OUTPUT 255

-<return>Tilde immediately followed by a <return> ignores the <return> and any following non-<return>

whitespace. With a :, the <return> is ignored but any following whitespace is left in place. With an

@, the <return> is left in place but any following whitcspace is ignored. This directive is typically

used when a format control string is too long to fit nicely into one line of the program:

(defun pet-rack-warning (rock friend amount)
(unless (equalp rock friend)

(format t "-&Warningf Your pet rock -A just -
bit your friend -A,-% and
-:[he-;she-] is suing you for.5-0!"

rock friend (femalep friend) amount»)
(pet-rock-warning "Fred" "Susan" 500) prints:
Warning: Your pet rock Fred just bit your friend Susan,

and she is suing you for 5500!

-T Tabulale. Spaces over to a given column. - eolnum, eolineT will output sufficient spaces to move

the cursor to column eolnum. If the cursor is already past column eolnum, it will output spaces to

move it to column eolnum+ k*eoline, for the smallest non-negative integer k possible. colnum and

colinc default to 1. .

.... : T is like -T, but colnuinand coline are in units of pixels, not characters; this makes sense only for

streams that can set the cursor position in pixel units.

If for some reason the current column position cannot be determined or set, any -T operation will

simply output two spaces. When format is creating a string, -T will work, assuming that the first

character in the string is at the left margin (column 0) .

.... @T performs relative tabulation. eolrel ,coline@T is equivalent to - curcol + colrel , colinc@T

where cureol is the current output column. If the current output column cannot be detennined,

hO'Yever this outputs coirel spaces, not two spaces.

- : @T perfonns relative tabulation in units of pixels instead of columns.

The next arg is ignored. - n* ignores the next n arguments .

.... : * "ignores backwards"; that is, it backs up in the list of arguments so that the argument last

processed will be processed again. n: * backs up 11 arguments.

When within a - { construct (see below), the ignoring (in either direction) is relative to the list of

arguments being processed by the iteration.

This is a "relative goto"; for an "absolute goto", see -G.

-G Go 10. Goes to the nth arg, where 0 means the first one; n defaults to 0, so -G goes back to the first

argo Directives after a - nG will take arguments in sequence beginning with the one gone to.

When within a - { construct, the "goto" is relative to the list of arguments being processed by the

iteration .

This is an "absolute goto"; for a'''relative goto", see - •.

256 COMMON LISP REFERENCE MANUAL

.... ? Indirectiol1. The next arg must be a string: it is processed as part of the control string as if it had

appeared in place of the -? construct.

The format directives after this point are much more complicated than the foregoing: they constitute

"control structures" that can perform case conversion. conditi<mal selection, iteration, justification, and non

local exits. Used with restraint, they can perform powerful tasks. Used with wild abandon, they can produce

completely unreadable and unmaintainable code.

Conditional Case conversion. ° The contained control strings!r is processed, and what it

produces is subject to case conversion. With no flags, all case-modifiable characters are

forced to lower case.;: (capitalizes all words, as if by s t r in 9 - cap ita 1 i z e (pagc
196).; @ (capitalizes just the first word, and forces the rest to lower case.;: @ (forces

all case-modifiable characters to upper casc.

For example:

(format nil " @R (':"@R-)" 14 14) ::::> "XIV xiv"
(defun f (n) (format nil n-@(-R-) error-:P detected." n»
(f 0) ::::> "Zero errors detected."
(f 1) ::::> "One error detected."
(f 23) => "Twenty-three errors detected."

-[SilO ; str!-; ; strn-]

Conditional expression. This is a set of control strings, called clauses, one of which is
chosen and used. The clauses are separated by -; and the construct is terminated by -].

For example,
. .

" [Siamese-;Manx ... ;Persian-] Cat"

The argth clause is. selected, where the first clause is number O. If a prefix parameter is
given (as"" n[), then the parameter is used instead of an argument (this is useful only if the

parameter is specified by U#"). If arg is out of range then no clause is selected. After the

selected alternative has been processed, the control string continues after the -].

-[Sl1{r~ ; strl- ; ... - ; sttn-: ; de/aulr] has a default case. If the last ,,- ; " used to separate

clauses is instead u : ; ", then the last clause is an "else" clause, which is performed if no

other clause is selected. Forexamplc:

II-[Siamese-;Manx-;Persian-: ;Alley-] Cat"

"'[- tagOO, tagOl , ... ; strO-lag!O, lagl! , ... ; strl.] allows the clauses to have

explicit tags. The parameters to each -; are numeric tags for the clause that follows it.

That clause is processed that has a tag matching the argument. If al , a2, bi , b2, ... : ;

(note the colon) is used, then the following clause is tagged not by single values but by
ranges of values ai through a2 (inclusive), bi through b2, etc : ; with no parameters may

be used at the end to denote a default clause. For example:

"-[-'+, '-, 'lII, '/;operator -'A, 'Z, 'a, 'z:o;letter ,..
""0,'9: ;digit -:;other -]"

,.,: [false""; true-] selects the folse control string if arg is nil, and selects the true control

•

•

INPUT/OUTPUT 257

string otherwise.

-@[true-] tests the argument. If it is not nil, then the argument is not used ~p by the

-@[command, but remains as the next one to be processed, and the one clause true is

processed. If the arg is nil, then the argument is used up, and the clause is not processed.

The clause therefore should normally use exactly one argument, and may expect it to be

non-n i 1. For example:

(setq prinlevel nil prinlength 5)
(format nil It-@(PRINLEVEL=-O-]-@[PRINLENGTH=-O]"

prinlevel prinlength)
=> "PRINLENGTH=5"

The combination of [and # is useful, for example, for dealing with English conventions

for printing lists:

(setq foo "Items:-#[none-; -S-; -S and -
-S-:;-@{-#[-l~ and-] -S-",-}-].")

(format nil fool
=> "Items: none."

(format nil foo 'fool
=> "Items : Faa. "

(format nil foo 'foo 'bar)
=> "Items: Faa and BAR."

(format nil foo 'foo 'bar 'baz)
=> "Items: Faa, BAR, and BAZ."

(format nil foo 'foo 'bar 'baz 'quux)
=> "Items: Faa, BAR, BAZ, and QUUX."

Separates clauses in -[and -<constructions. It is undefined elSewhere.

Terminates a - [. It is undefined elsewhere.

Iteration. This is an iteration construct The argument should be a list, which is used as a

set of arguments as if for a recursive call to format. The string str is used repeatedly as

the control string. Each iteration can absorb as many clements of the list as it likes as

arguments; if str uses up two arguments by itself, then two clements of the list will get used

up each time around the loop. If before any iteration step the list is empty, then the

iteration is terminated .. Also, if a prefix parameter n is given, then there will be at most n

repetitions of processing uf str. Finally, the -" directive can be used to terminate the

iteration prematurely.

Here are some simple examples:

(format nil "The winners are:-{ -S-}."
'(fred harry jill»

=> "The winners are: FREO HARRY JILL."
(format nil "Pairs:-{ <-S,""S>-}." '(a 1 b 2 c 3»

=> "Pairs: <A,1> <B,2> <C,3>."

- : {str-} is similar, but the argument should be a list of sublists. At each repetition step

one sublist is used as the set of arguments for processing str; on the next repetition a new

258 COMMON LISP REFERENCE MANUAL

sublist is used, whether or not all of the last sublist had been processed. Example:

(format nil "Pairs :-:{ <-S, -S>-}."
'«a 1) (b 2) (c 3»)

=> "Pairs: <A,I> <B,2> <C,3>."

-@{Slr-} is similar to - {slr-}. but instead of using one argument that is a list, all the

remaining arguments are used as the list of arguments for the iteration. Example:

(format nil "Pairs:-@{ < S, S> }."
'a 1 'b 2 'c 3)

=> "Pairs: <A,t> <B,2> <C,3>."

-: @{slr } combines the features of -: {slr-} and -@{slr-}. All the remaining

arguments are used, and each one must be a list. On each iteration the next argument is

used as a list of arguments to sIr. Example:

(format nil "Pairs:-:@{<-S,-S>-}."
'(a 1) '(b 2) '(c 3)

=> "Pairs: <A,I> <B,2> <C,3>."

Terminating the repetition construct with -:} instead of -} forces sIr to be processed at

least once even if the initial list of arguments is null (however, it will. not override an

explicit prefix parameter of zero).

If sIr is empty, then an argument is used as SIr. It must be a string, and precedes any
arguments processed by the iteration. As an example, the following are equivalent:

(funcall* #'format stream string args)
(format stream "-1{-:}" string args)

This will use s t r i n 9 as a formatting string: The -1 { says it will be processed at most

once, and the - ~} says it will be processed at least once. Therefore it is processed exactly
'once, using args as the arguments. This case may be handled more clearly by the -1

directive, but this general feature of - { is more powerful than -1.

As another (rather sophisticated) example, the format function itself uses

format-error (a routine internal to the format package) to signal error messages,
which in turn uses ferror, which uses format recursively. Now format-error takes

a string and arguments, just like format, but also prints the control string to format

(which at this point is available in the variable ct 1- s t r i n g) and a little arrow showing

where in the processing of the control string the error occurred. The variable c t 1 - in de x

points one character after the place of the error.

(defun format-error (string &rest args)
(ferror nil II-l{-:}-%-VT-J,-%-3X\"-A\"-%"

string args (+ ctl-index 3) ctl-string»

This first processes the given string and arguments using -t{-:}, then goes to a new line,

tabs a variable amount for printing the down-arrow, and prints the control string between'

double-quotes. The effect is something like this:

•

•

I NPUT/OUTPUT

(format t "The item is a -[Foo-;Bar-;Loser'-]." 'quux)
»ERROR: The argument to the FORMAT "-[" command

must be a number.
,J,

"The item is a -[Foo-;Bar-;Loser-]."

Tenninates a - {. It is undefined elsewhere.

259

"'" minco! , colinc, minpad, padchar<slr""'>
Justification. This justifies the text produced by processing str within a field at least minco!
columns wide. str may be divided up into segments with""';, in .which case the spacing is

evenly divided between the text segments.

With no modifiers, the leftmost text segment is left justified in the field, and the ri~htmost

text segment right justified; if there is only one, as a special case, it is right justified. The:

modifier causes spacing to be introduced before the first text segment; the @ modifier

causes spacing to be added after the last. The minpad parameter (default 0) is the

minimum number of padding characters to be output between each ·segment. The padding

character is specified by padchar, which defaults to the space character. If the total width

needed to satisfy these constraints is greater than minco/, then the width used is

minco!+ k*colinc for the smallest possible non-negative integer value k; colinc defaults to

1, and minco! defaults to O.

Exampies:

(format nil II-10<foo -;bar ->") => "foo bar"
(format nil """'10:<foo""';bar->") => II foo bar"
(format nil """'10:@<foo -;bar "'" >") -> II foo bar II
(format nil """'10<foobar""'>") => II foobar"
(format nil """'10:<foobar""'>") => II foobar"
(format nil """'10@<foobar->") => "foobar II
(format nil """'10:@<foobar->") -> " foobar "

Note that sIr may include forma t directives. All the clauses in sIr are processed in order;
it is the resulting pieces of text that are justified ..

The - directive may be used to tenninate processing of the clauses prematurely, in which

case only the completely processed clauses are justified.

If the first clause of a - < is terminated with -: ; instead of "'" ;, then it is used in a special

way. All of the clauses arc processed (subject to - , of course), but the first one is not used

in perf<?nning the spacing and padding. When the padded result has been determined,

then if it will fit on the current line of output, it is output, anu the text for the first clause is

discarded. If, however, the padded text will not fit on the current line, then the text

segment for the first clause is output before the padded text. The first clause ought to

contain a newline (such as a % directive). The first clause is always processed, and so any

arguments it refers to will be used; the decision is whether to use the resulting segment of

text, not whether to process the first clause. If the -: ; has a prefix parameter n, then the

260 COMMON LISP REFERENCE MANUAL

padded text must fit on the current line with 11 character positions to spare to avoid

outputting the first clause's text. For example, the control string

,,~%. 0 ~{~ ~% o. -1" -S- -", -} -%"
Ott < Ott 0, > t • °

can be used to print a list of items separated by commas, without breaking items over line

boundaries, and beginning each line with";; ". The prefix parameter 1 in -1: ;

accounts for the width of the comma that will follow the justified item if it is not the last

element in the list, or the period if it is. If :; has a second prefix parameter, then it is

used as the width of the line, thus overriding the natural line width of the output stream.

To make the preceding example use a line width of 50, one would write

"-% .. -{- -% 1 50" -S"'" -A -} -%"
0" < 0" ,., >,. 0

If the second argument is not specified, then forma t uses the tine width of the output

stream. If this cannot be detennined (for example, when producing a string result), then

forma t uses 72 as the line length.

Terminates a "" <. It is undefined elsewhere.

Up and out. This is an escape construct. If there are no more arguments remaining to be

processed, then the immediately enclosing - { or - < construct is terminated. If there is no

such enclosing construct, then the entire fonnatting operation is terminated. In the ,." <

case, the formatting is performed, but no more segments are processed before doing the

justification. The - '" should appear only at the beginning of a - < clause, because it aborts

the entire clause it appears in(as well as all following clauses). -", may appear anywhere in

a - { construct.

(setq donestr "Oone.- A ~O warning-:P.""'" -0 error-:P.")
(format nil donestr) => "Done."
(format nil donestr 3) => "Done. 3 warnings."
(format nil donestr 1 5) => "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence"" A

is equivalent to -#A.) If two parameters are given, termination occurs if they are equal. If

three are given, termination occurs if the second is between the other two in ascending

order. Of course, this is useless if all the prefix parameters are constants; at least one of

them should be a # or a V parameter.

If '" is used within a"": { construct, then it merely tenninates the current iteration step

(because in the standard case it tests for remaining arguments of the current step only); the

next iteration step commences immediately. To terminate the entire iteration process, use
-.A ..
Here are some examples of the use of"" A within a ,... < construct.

•

•

•

INPUT/OUTPUT

(format nil "-15<-S-;-"-S-;""',,-S >" 'faa)
=> " FOO"

(format nil "-15<-S-;-" S ... ;""'" S->" 'faa 'bar)
=> "FOO BAR"

(format nil " 15< S ; " S ;""'" S >" 'faa 'bar 'baz)
=> "FOO BAR BAZ"

Compatibility note: The -Q directive and user-defined directives have been omitted here. as well as control lists (as opposed
to strings). which are rumored to be changing in meaning.

21.5. Querying the User

261

The following functions provide a convenient and consistent interface for asking questions of the user.

Questions are printed and the answers are read using the stream *query- i 0* (page 214), which normally is

synonymous with * t e r min a 1 - i 0 * (page 214) but can be rebound to another stream for special .

applications.

y-or-n-p &opt ;ona1 message stream [Function]
This predicate is for asking the user a question whose answer is either "yes" or "no". It types out

message (if supplied and not n; 1). reads an answer in some implementation-dependent manner

(intended to be short and simple, like reading a single character such as "Y"" or 'ON"), and is true if

the answer was "yes" or false if the answer was "no".

If the message argument is supplied and not nil, it will be printed on a fresh line (see

f res h -1 in e (page 249». Otherwise it is assumed that a message has already been printed. If

you want a question mark and/or a space at the end of the message, you must put it there yourself;

y - 0 r - n - p will not add it. stream defaults to the value of the global variable * que r y - i 0 * (page.

214).

For example:

(y-or-n-p "Cannot establish connection. Retry? It)

y - 0 r - n - p should only be used for questions that the user knows are coming. If the user is

unlikely to anticipate the question, or if the consequences of the answer might be grave and

irreparable,· then y - 0 r - n - p should not be used, because the user might type ahead and thereby

accidentally answer the question. For such questions as "Shall I delete all of your files?", it is better

to use yes-or-no-p.

yes-or-no-p &opt ional message stream [Function]
This predicate, like y-or-n-p, is for asking the user a question whose answer is either "Yes" or

"No". It types out message (if supplied and not nil)~ attracts the user's attention, and reads a reply

in some implementation-dependent manner. It is intended that some thought have to go into the

reply, such ~s ty~ing the full word "ye s" or "no" followed by a <return>.

If the message argument is supplied, it will be printed on a fresh line (see f res h -1 in e (page

262 COMMON LISP REFERENCE MANUAL

249». Otherwise the caJIer is asslllned to have printed the message already. If you want aquestion
mark and/or a space at the end of the message, you must put it there yourself: yes-or-no-p will
not add it. stream defaults to the value of the global variable *query- io* (page 214).

To allow the user to answer a yes-or-no question with a single character, use y-or-n-p.
yes-or-no-p should be used for unanticipated or momentous questions; this is why it attracts
attention and why it requires thought to answer it

•

•

Chapter 22

File System Interface

A frequent use of streams is to communicate with afile system to which groups of data (files) can be written

and from which files can be retrieved.

. COMMON LISP defines a standard interface for dealing with such a file system. This interface is designed to

be simple and general enough to accommodate the facilities provided by "typical" operating system

environments within which COMMON LISP 'is likely to be implemented. The goal is to make COMMON LISP

programs that perform only simple operations on files reas'onably portable.

To this end COMMON LISP assumes that files are named, that given a name one can construct a stream

connected to a file of that name, and that the names can be fit into a certain canonical, implementation

independent form called a pathname.

Facilities are provided for manipulating pathnames, for creating streams connected to files, and for

manipulating the file system through pathnames and streams.

22.1. File Names

COMMON LISP programs need to use names to designate files. The main difficulty in dealing with names of

files is that different file systems have different naming formats for files. For example, here is a table of

several file systems (actually, operating systems that provide file systems) and what the "same" file name

might look like for each one:

System

TOPS-20

TOPS-IO

ITS

MULTICS

TENEX

VAX VMS

UNIX

File name

<LISPIO>FORMAT.FASL.13
FORMAT.FAS[1,4]
LISPIO;FORMAT FASL
>udd>LispIO>format.fasl
<LISPIO>FORMAT.FASL;13
·[LISPIO]FORMAT.FAS;13
lusr/lispio/format.fasl

- 263-

264 COMMON LISP REFERENCE MANUAL

It would be impossible for each program that deals with file names to know about each different file name

fonnat that exists: a new COMMON LISP implementation might use a format different from any of its

predecessors. Therefore COMMON LIsp provides /wo ways to represent file names: names/ril1gs, which are

strings in the implementation-dependent form customary for the file system, and palhllamcs, which are

special data objects that represent file names in an implementation-independent way. Functions are provided

to convert between these two representations, and all manipulations of files can be expressed in machine·

independent tenns by using pathnames.

In order to allow COMMON LISP programs to operate in a network environment that may have more than

one kind of file system, the path name facility allows a file name to specify which file system is to be used. In

this context, each file sxstem is called a host, in keeping with the usual networking tcnninology.

22.1.1. Path names

All file systems dealt with by COMMON LISP are forced into a common framework, in which· files are

named by a LISP data object of type pat h n arne.

A pathname always has six components, described below. These components are the common interface

that allows programs to work the same way with different file systems; the mapping o~ the pathnamc

components into the concepts peculiar to each file system is taken care of by the COMMON LISP

implementation.

host

device

directory

name

type

version

The name of the file system on which the file resides.

Corresponds to the "device" or "file structure" concept in many host file systems: the

name of a (logical or physical) device containing files.

Corresponds to the "directory" concept in many host file systems: the name of a group of

related files (typically those belonging to a single user or project).

The name of a group of files that can be thought of as conceptually the "same" file.

Corresponds to the "filetype" or "extension" concept in many host file systems. This says

what kind of file this is. Files with the same name but different type are usually related in

som~ specific way, such as one being a source file, anoth9r the compiled form of that

source, and a third the listing of errors messages from the compiler.

Corresponds to the "version number" concept in many host file systems. Typically this is a

number that is incremented every time the file is modified.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a specification (possibly

only a partial specification) of how to access a file. A pathname need not correspond to any file that actually

exists, and morc than one pathname can refer to the same file. For example, the pathname with a version of

•

•

FILE SYSTEM INTERFACE 265

Hnewest" may refer to the same file as a pathname with the same components except a certain number 'ns the

version. Indeed, a palhname with version "newest" may refer to different files as time passes, because the

meaning of such a pathname depends on the state of the file system. In file systems with such fllcilities as

"links", multiple file names, logical devices, and so on, two pathnames that look quite different may turn out

to address the same file. To access a file given a pathname one must do a file system operation such as open

(page 283).

Two important operations involving path names are parsing and merging. Parsing is the conversion of a

namestring (which might be something supplied interactively by the user when asked to supply the name of a

file) into a pathname object. This operation is implementation-dependent, because the fonnat of namestrings

is implementation-dependent. Merging takes a pathname with missing components and supplies values for

those components from a source of defaults.

Not all of the components of a path name need to be specified. If a component of a path name is missing, its

value is ni 1. Before the file system interface can do anything interesting with a file, such as opening the file,

all the missing components of a pathname must be filled in (typically from a set of defaults). Pathnames with

missing components may used internally for various purposes; in particular, parsing a namestring that does

not specify certain components will result in a pathname with missing components.

A component of apathname can also be the keyword: wi 1 d. This is only useful when the pathname is

being used with a directory-manipulating operation, where it means that the pathname component matches

anything. The printed representation of a pathname typically designates : wi 1 d by an asterisk; however, this

is host-dependent.

What values are allowed for components of a pathname depends, in general, on the path name's host.

However, in order for pathnames to be usable in a system-independent way certain global conventions are

adhered to. These conventions are stronger for the type and version than for the other components, since the

type and version are explicitly manipulated by many programs, while the other components are usually

treated as something supplied by the user that just needs to be remembered and copied from place to place.

The type is always a string or n; 1 or : w i 1 d. Many programs that deal with files have an idea of what type

they want to use.

The version is either a positive integer or a special symbol. The meanings of n i 1 and : wi 1 d have been

explained above. The keyword : n ewe s t refers to the largest version number that already exists in the file

system when reading a file, or that number plus one when writing a new file. The keyword : 01 des t refers

to the smallest version number that exists. Some COMMON LISP implementations may choose to define other

special version symbols, such as : ins t a 11 ed, for example, if the file system for that implementation will

support them.

The host may be a string, indicating a file system, or a list of strings, of which the first names the file system

and the rest may be used for such a purpose as inter-network routing.

266 . COMMON LISP REFERENCE MANUAL

The device, directory, and name also can each be a simple string (with host-dependent rules on allowed

characters and length) or a list of strings (in which case such a component is said to be structured). Structured

components are used to handle such file system features as hierarchical directories. COMMON I .IS}> programs

do not need to know about structure.d components unless they do host-dependent operations. Specifying a

string as a pathname component for a host that requires a structured value will cause conversion of the string

to the appropriate form. Specifying a stnlctured component for a host that does not provide for that

component to be structured causes conversion to a string by the simple expedient of taking the first clement

of the list and ignoring the rest.

Some host file systems have features that do not fit into this pathname model. For instance. directories

might be accessible as files, there might be complicated structure in the directories or names. or there might

be relative directories, such as the .. <" syntax in MUL TICS or the special " .. ., file name of UNIX. Such

features are not allowed for by the standard COMMON LISP file system interface. An implementation is free to

accommodate such features in its pathname representation and provide a parser that can process such

specifications in namestrings; such features are then likely to work within that single implementation.

However. note that once your program depends explicitly on any such features, it will not be portable.

22.1.2. PathnameFunctions

These functions arc what programs usc to parse and default file names that have been typed in or otherwise

supplied by the user.

As a rule. any argument called pathname may actually be a pathname, a string or symbol. or a stream, and

any argument called defaults may be a pathname, a string or sYlnbol, a stream, or a pathname defaults a-list.

In the examples, it is assumed that the host named CMUC runs the TOPS-20 operating system, and therefore

uses TOPS-20 file system syntax; furthermore, an explicit host name is indicated by following it with a double

colon. Remember. however, that namestring syntax is implementation-dependent, and this syntax is used

purely for the sake of examples.

pathname thing [Function]

The pathname function converts its argument to be a pathname. The argument may be a

pathname, a string or symbol, or a stream.

truename thing [Function]

The truename function converts thing to be a pathname. and then endeavors to discover the "true

name" of the file associated ~ith that pathname within the file system. The truename function

may be used to account for any file-name translations performed by the file system, as opposed to

logical-pathname translations performed by COMMON LISP (see tran.s1 ated-pathname (page

282».

For example, suppose that "DOC: " is a TOPS-20 logical device name that is translated by the TOPS-20

•

••

•

FIl.E SYSTEM INTERFACE

file system to be "PS: <DOCUMENTATION>".

(setq file (open "CMUC: :OOC:DUMPER.HLP"»
(namestring (pathname file» => "CMUC: :DOC:DUMPER.HLP"
(namestring (truename file»

=> "CMUC: :PS:<DOCUMENTATION>DUMPER.HLP.13"

??? Query: If the file is not found, should t rue n arne signal an error, return n; 1 . or just quietly return an
untranslated pathnamc?

267

parse-narnestring thing &optional convention defaults break-characters start end [Function]

This turns thing into a pathname. The thing is usually a string (that is, a namestring), but it may b~

a symbol (in which case the print name is used) or a pathname or stream (in which case no parsing

is needed, but an error check may be made for matching hosts).

This function does not do defaulting of pathname components: it only docs parsing. The

convention and defaults arguments are present because in some implementations it may be that a

namestring can only be parsed with reference to a particular file name syntax of several available in

the implementation. If convention is non-n il, it must be a string naming the file name syntax

(using a host name will indicate that the conventions peculiar to that host should be used if that is

meaningful), or a list of strings, of which the first is used. If convention is nil then the host name is

extracted. from the default pathname in defaults and used to determine the syntax convention. The

defaults argument defaults to the value of * de f au 1 t - pat h n arne - d e f au 1 t s * (page 28I).

For a string (or symbol) argument, par s e - n arne s t r i n 9 parses a file name within it in the range

delimited by start and end (which are integer indices into string, defaulting to the beginning and

end of the string). Parsing is tenninated upon reaching the end of the specified substrir1g or upon

reaching a character in break-characters, which may be a string or a list of characters; this defaults

to an empty set of characters.

Two values are returned by par s e - n arne s t r i n g. If the parsing is successful, then the first value

is a path name object for the parsed file name, and otherwise the first value is nil. The second

value is an integer, the index into string one beyond the last character processed. This will be equal

to end if processing was terminated by hitting the end of the substring; it will be the index of a

break character if such was the reason for tennination; it will be the index of an illegal character if

that was what caused processing to (unsuccessfully) terminate. If thing is not a string or symbol,

then start is always returned as the second value.

Parsing an empty string always succeeds; producing a pathnarrte with all components (except the

host) : unspecific.

Note that if convention is specified and not nil, and thing contains a manifest host name, an error

is signalled if the conventions do not match.

268 COMMON LISP REFERENCE MANUAL

merge-pathname-'defaul ts patliname &opt ional defaulls de/ault-type defaull-version [Function]

This is the function that most programs should call to process a file name supplied by the user. It

fills in unspecified components of pallillame from the defaults, and returns a new pathname.

patliname can be a pathname, string, or symbol. The returned value will always be a path name.

defaults defaults ,to the value of *default-pathname-defaults* (page 281). dejault-type

defaults to : un s pe c i f i c. default-version defaults to : n ewes t.

The rules for merging can be rather complicated in some situations; they arc described in detail in

section 23.1.3 (page 280). An approximate rule of thumb is simply that any components missing in

the pathname arc filled in from the defaults.

For example:

(merge-pathname~defaults "CMUC: : FORMAT"
"CMUC: :PS:<LISPIO>"
"FASL")

=> a path name object that fe-expressed as a namestring would be
"CMUC: :PS:<LISPIO>FORMAT.FASL.O"

make-pathname &key :host :device :dire6tory :name

:type :vers;on :defaults

.. [Function]

Given some components,make-pathname constructs and returns a pathname. Missing

components default to nil, except the host (all pathnames must have a host). The :def aul ts

option specifies what defaults to get the host from if the ; hos t option is nil or not specified;

however, no other components are supplied from the : defaul ts. The default value of the

: defaul ts option is the value of *defaulOt-pathname-defaul ts* (page 281). All other

keywords specify components for the pathname.

Whenever a pathname is constnlcted, whether by make-pathname or some other function, the

components may be canonicalized if appropriate. For example, if a file system is insensitive to case,

then alphabetic characters may be forced to upper case or lower case by the implementation.

pathnamep object
This predicate is true if object is a pathname, and otherwise is false.

(pathnamep x) <=> (typep x 'pathname)

pathname-hos t pathname
pathname-device pathname
pathname-di rectory pathname

[Function]

[Function]
[Function]
[Function]

pathname-name pathname [Function]
pathname-type pathname [Function]
pathname-vers i on pathname [Function]

These return the components of the argument pathname, which may be a pathname, string, or

symbol. The returned values can be strings, special symbols, or lists of strings in the case of

•

•

•

•

FILE SYSTEM INTERFACE 269

structured components. The type will always be a string or a symbol. The version will always be a

number or a symbol.

pathname-pl ist pathname [Function]
These return the property list of the argument pathname, which may be a path name, string, or

symbol (sec symbo 1 - P 1 is t (page 109».

name s t r i n 9 pathname
f i 1 e - name s t r i n 9 pathname
directory-namestring pathname
h 0 s t - name s t r i n 9 pathname
enough-namestring palhname &optional defaults.

[Function]
[Function]
[Function]
[Function]
[Function]

The pathname argument may be a namelist, a namestring, or a stream that is or was open to a file.

The name represented by pat/mame is returned as a namelist in canonical form.

If pathname is a stream, the name returned represents the name used to open the file, which may

not be the actual name of the file (see truename (page 266».

11 ame s t r i n 9 returns the full form of the pathname as a string. f i 1 e - name s t r i n 9 returns a

string representing just the name, type, and version components of the pathname; the result of

d; rectory-n ames tr; n 9 represents just the directory-name portion; and has t - name str i ng

returns a string for just the host-name portion.· Note that a valid namestring cannot necessarily be

constructed simply by concatenating some of the three shorter strings in some order.

en 0 ugh - name s t r i n 9 takes another argument, defaults. It returns an abbreviated namestring

that is just sufficient to identify the file named by palhname when considered relative to the defaults
(which defaults to the value of * def au 1 t - pa th name - def au 1 ts * (page 281». That is,

(merge-pathname-defaul ts (enough-namestring pathname defaults)
defaults)

<=> (parse-pathname pathname)

user-homed i r·-pathname &opti onal host [Function]
Returns a pathname for the user's "home directory" on host, which defaults in some appropriate

implementation-dependent manner. The concept of "home directory" is itself somewhat

implementation-dependent, but from the point of view of COMMON LISP it is the directory where

the user keeps·personal files such as initialization files and mail. This function returns a pathname

without any name, type, or version component (those components are all nil).

; n i t-f; 1 e-pathname program-name. &opt i ona 1 host [Function]
Returns the pathname of the user's init file for the program program-name (a string), on the host,
which defaults in some appropriate implementation-dependent m~nner. Programs that load init

files containing user customizations call this function to determine where to look for the file, so that

270 COMMON LISP REFERENCE MANUAL

they need not know the separate init file name conventions of each host operating system.

\

22.1.3. Defaults and Merging

Defaulting of pathname components is done by filling in components taken from another pathname; this

filling-in i~ called merging. This is especially useful for cases such as a program that has an input file and an

. output file. and asks the user for the name of both, letting the unsupplicd components of one name default

from the other. Unspecified components of the output pathname will come from the input pathname, except

that the type should default not to the type of the input but to the appropriate default type for output from

this program.

The pathnamc merging operation takes as input a given path name. a defaults path name a default type, and

a default version, and returns a new pathname. Basically, the missing components in the given pathname are

filled in from the defaults pathname, except that if no type is specified the default type is used, and if no

version is specified the default version is used. Programs that have a default type for the files they manipulate

usually will supply it to the merging operation. The default version is usually : n ewe s t; if no version is

specified the newest version in existence should be used. The default type and version can be nil, to

preserve the information that they were missing in the input pathname.

The full details of the· merging rules are as follows. First, if the given path name explicitly specifics a host

and docs not supply a device, then ~e device will be the default file device for that host. Next, if the given

pathname docs not specify a host, device, directory, or name, each such component is copied from the

defaults.

The merging rules for the type and version are more complicated, and depend on whether the pathname

specifics a name. 'If the pathname doesn't specify a name, then the type and version, if not provided, will

come from the defaults, just like the other components. However, if the pathname does specify a name, then

the type and version are not affected by the defaults. The reason for this is that the type and version "JJelong

to" some other filename, and are unlikely to have anything to do with the new one. Finally, if this process

leaves the type or version missing, the default type or default version is used (these were inputs to the merging

operation).

The effect of all this is that if the user supplies just a name, the host, device, and directory will come from

the defaults, but the type and version will come from the default type and default version arguments to the

merging operation. If the user supplies nothing, or just a directory, the name, type, and version will come

over from the defaults together. If the host's file name syntax provides a way to input a type or version

witllout a name, the user can let the name default but supply a different type or version than the one in the

defaults.

•

•

·e

FILE SYSTEM INTERFACE 271

default-pathname-defau1ts [Variable]
This is the default path name-defaults pathname; if any pathname primitive that needs a set of

defaults is not given one, it uses this one. As a general rule, however, each program should have its

own pathname defaults a-list rather than using this one.

Sec also *1 oad-pathname-defau1 ts* (page 289).

22.1.4. Logical Pathnames

Logical pathnames, unlike ordinary pathnames, do notcorrespond to any particular file server. Like every

, pathname, however, a logical pathname must have a host, in this case called a "logical" host. Every logical

pathname can be translated into a corresponding "actual" pathname; there is a mapping from logical hosts

into actual hosts used to effect this translation.

The reason for having logical pathnames is to make it easy to keep bodies of software on more than one file

system. A program may need to have a suite of files at its disposal, but different file systems may have

different conventions about what directories may be used to store such files. Ideally, it should be easy to write

a program in such a way that it will work correctly no matter which site it is run at. This is easily done by

writing the program to use a logical name; this logical name can then be provided with a customized

translation for each implementation, thereby centralizing the implementation dependency.

Here is how translation'is done. For each logical host, there is a mapping that takes a directory name and

produces a corresponding actual host name, device name, and directory name. To translate a logical
pathname, the system finds the mapping for that pathname's host and looks up that pathname's directory in

the mapping. If the directory is found, a new pathname is created whose host is the actual host, and whose

device and directory names come from the mapping. The other components of the new pathname taken from

the old pathname. There is also, for each logical host, a '·default device". If the directory is not found in the

mapping, then the new pathname will have the same directory name as the old one, and its device will be the

default device for the logical host.

This means that when you invent a new logical device for a certain set of files, you also make up a set of

logical directory names, one for each of the directories that the set of files is stored in. Now when you create

the mappings at particular sites, you can choose any actual host for the files to reside on, and for each of your

logi':al directory names, you can specify the actual directory name to use on the actual host. This gives you

flexibility in setting up your directory names; if you used a logical directory name called f red and you want

to move your set of files to a new file server that already has a directory called f red, being used by someone

else, you can translate f red to some other name and so avoid getting in the way of the existing directory.

Furthermore, you can set up your directories on each host to conform to the local naming conventions of that

host

272 COMMON LISP REFERENCE MANUAL

add-1ogica1-pathname-host logical-host actual-host dej(wll-device translations [Fuflction]

This creates a new logical host named logical-host. Its corresponding actual host (that is. the host to

which it will forward most operations) is named by actual-host. logical-host and actual-host should

both be strings. The default-device should be a string limning the default device for the logical host.

'rhe translations should be a list of translation specifications. Each translation specification should

be a list of two items. The first should be a string naming a directory for the logical host. The

second is a pathname (or string, symbol. or stream) whose device component and directory

component provide the translation for the logical directory.

trans1 ated-pathname pathname [Function]

This converts a logical pathname to an actual path name. If the pathname already refers to an actual

host rather than to a logical host, the argument is simply returned.

back-trans1 ated-pathname logical-pathname actual-patlmaJ?le [Function]

This converts an actual pathname to a logical pathname. actual-pathname should be a pathname

whose host is the actual host corresponding to the logical host of logical-pathname. This returns a

pathname whose host is the logical host and whose translation (as by trans1 ated-pathname

(page 282» is actual-pathname.

An example of how this would be used is in connection with truenames. Given a stream s that was

obtained by opening a logical path name,

(pathname s)

returns the logical pathname that was opened;

(truename s)

returns the true name of the file that is open, which of course is a pathname on the actual host. To

get this in the form of a logical pathname, one would do

(back-trans1ated-pathname (pathname s) (truename s»

If the argument /ogical-pathname is actually an actual pathname, then the argument

actual-path name is simply returned. Thus the above example v'ill work no matter what kind of

pathname was opened to create the stream.

The namestring corresponding to a logical pathname is, like all namestrings, of implementation-dependent

fonnat. As a rule, . however, there is no way to specify a device; parsing a Iogical-pathname string always

returns a pathname whose device component is n; 1.

22.2. Opening and Closing Files

When a file is opened, a stream object is constructed to serve as the file system's ambassador to the LISP

environment; operations on the stream are reflected by operations· on the file in the file system. The act of'

c/osingthe file (actually, the stream) ends the association; the transaction with the file system is terminated,

•

•

FILE SYSTEM INTERFACE 273

and input/output may no longer be performed on the stream. The stream function c los e (page 217) may

be used to close a file: the functions described below may be used to open them. The basic operation is

open, but wi th-open-f i 1 e is usually more convenient for most applications.

open filename &key :direction :type : if-exists: if-does-not-exist [Fullction]

Returns a stream that is connected to the file specified by filename. The keyword arguments specify

what kind of stream to produce and how to handle errors:

:direction

:type

This argument specifics whether the stream should handle input, output, or

both.

: ; nput

:output

:; 0

:probe

The result will be an input stream. This is the default.

The result will be an output stream.

The result will be a bidirectional stream.

The result will be a no-directional stream (in effect, the stream

is created and then closed). This is useful for determining

whether a file exists without actually setting up a complete

stream.

This argument specifies the type of the unit of transaction for the stream. As a

rule, anything that can be recognized as being a finite sUbtype of character or

integer is acceptable. In particular, the following types are recognized: .

s t r i n g - c h a r The unit of transaction is a string-character. The functions
read-char (page 245) and/or write-char (page

249) may be used on the stream. This is the default.

c h a r act e r The unit of transaction is any character, not just a string

character. The functions read-char (page 245) and/or

w r ; t e - c h a r (page 249) may be used on the stream.

standard-char
The unit of transaction is a standard character. The functions
read-char (page 245) and/or wr i te-char (page

249) may be used on the stream. This option may be used to

guarantee that no non-standard character will be read from an

input source.

(unsigned-byte n)

The unit of transaction is an unsigned byte (a non-negative

integer) of size n. The functions read-byte (page

247) and/or wr i te-byte (page 250) may be used on the

stream.

274

:if-exists

unsigned-byte

~;;

COMMON LISP REFERENCE MANUAL

The unit of transaction is an unsigned byte (a non-negative

integer): the size of the byte is determined by the file system.
The functions read-byte (page 247) and/or wr i te-byte

(page 250) may be used on the stream.

(signed-byte n)
The unit of transaction is a signed byte of size fl. The

functions read-byte (page 247) and/or wr i te-byte

(page 250) may be used on·the stream.

signed-byte The unit of transaction is'a signed byte of size n. the size of
the byte' is determined by the file system. The functions
read-byte (page 247) and/or· wr i te-byte (page

250) may be used on the stream.

bit The unit of transaction is a bit (values 0 and 1). The
functions read-byte (page 247) and/or write-byte

(page 250) may be used on the stream.

(mod n)

:default

The. unit of transaction is a non-negative integer less than n.
The functions read-byte (pag~ 247) and/or wr i te-byte
(page 250) may be used on the stream.

The unit of transaction is to be determined by the file system,
based ol1 the file it finds. The type can be determined by
using the function stream-el ement-type (page 217).

This argument specifics the action to be taken if the : d ire c t ion is : 0 u t put

or : i a and a file of the specified name already exists. If the direction is : i n put
or : pro be, this argument is ignored.

:error Signal an error. This is the default when the version
component of the filename is not: newes t.

: new-vers ion Create a new file with the same file name, but with a larger

version number. This is the default when the version

component of the filename is : n ewe st.

:rename Rename the existing file to some other name, and then create

a new file with the specified name.

:rename-and-delete

Rename the existing file to some other name and then delete
it (but don't expunge it, on those systems that distinguish

deletion from expunging), Then create a new file with the

specified name.

•

•

•

FILE SYSTEM INTERFACE

:overwrite

:append

:supersede

nil

275

The existing file is used, and output operations on the stream

will destructively modify the file. I f the : d ire c t ion is : i 0,

the file is opened in a bidirectional mode that allows both
reading and writing. The file pointer is initially positioned at

the beginning of the file. This mode is most useful when the
f i 1 e - p 0 sit ion (page 287) function can be used on the

stream.

The existing file is used, and output operations on the stream

will destructively modify the file. The file pointer is initially
positioned at the end of the file. If the : d ire c t ion is : i 0,

the file is opened in a bidirectional mode that allows both
reading and writing.

Supersede the existing file. If possible, the implementation
should arrange not to destroy the old file until the new stream
is closed, against the possibility that the stream will be closed
in "abort" mode.

Do not create a file or even a stream. Instead, simply return
n ;·1 to indicate failure .

:if-does-not-exist

This argument specifies the action to be taken if a file of the specified name does
not already exist.

:error

:create

nil

Signal an error. This is the default if the : d ire c t ion is

: input, or if the : if-ex i sts argument is : overwr i te
or : append.

Create an empty file with the specified name, and' then
proceed as if it had already existed. This is the default if the
:direction is :output or : io, and the : if-exists
argument is anything but: overwr ; te or : append.

Do not create a file or even a stream. Instead, simply return
nil to indicate failure. This is the default if the
:direction is :probe.

When the caller is finished with the stream, it should close the file by using the c los e (page

217) function. The w; t h - 0 pen - f ; 1 e (page 286) special form does this automatically, and so is

preferred for most purposes. 0 pen should be used only when the control structure of the program
necessitates opening and clo~ing of a file in some way more complex than provided by

wit h - 0 pen - f i 1 e. It is suggested that any program that uses 0 pen directly should use the

special fonn unw; nd-protect (page 94) to close.the file ifan abnormal exit occurs.

276 COI\;IMON LISP REFERENCE MANUAL

wi th -op en - f i 1 e billdspee lfonn}* [Alaero]

(w it h - ope n - f i 1 e (stream filename . options) . body) evaluates the fonTIs of body (an

implicit progn) with the variable stream bound to a stream that reads or writes the file named by

the value of filename. The optiolls are evaluated, and are used as keyword arguments to the

function open (page 273).

\Vhen control leaves the body, either nonnally or abnormally (such as by use of th row (page 95»,

the file is automatically closed. If a new output file is being written, and control1eaves abnormally,

the file is aborted and the file system is left. so far as possible, as if the file had never been open?d.

Because wi th -open -f i 1 e always closes the file, even when an error exit is taken, it is preferred

over open for most applications.

filename is the name of the file to be opened; it may be a string, a pathname, or a stream.

For example:

(with-ope~-file (ifile name :direction :input)
(with-open-file (ofile (merge-pathname-defaults ifile

nil
"out")

:direction :output
: if-ex i sts : supersede)

(transduce-file ifile ofile»)

•

Implementation note: While wi th-open-fi 1 e tries to automatically close the stream on exit from the construct, for •
robustness it is helpful if the garbage collector can detcct discarded streams and automatically close them.

22.3. Renaming, Deleting, and Other Operations

Compatibility note: The MAC LISP/Lisp Machine LISP names renamef, del etef, etc., are explicitly avoided here because
they are not sufficiently mnemonic and because the trailing-f convention conflicts with a similar convcntion for forms
related to set f (page 66).

rename-file file new-name &optional error-p [Function]
file can be a filename or a stream that is open to a file. The specified file is renamed to new-name (a

filename). If error-p is true (the default), then if a file-system error occurs it will be signalled as a

LISP error. If error-p is false and an err0r occurs, the error message will be returned as a string. If

no error occurs, r e name f returns n; 1.

.' delete-file file &optional error-p [Function]
file can be a filename or a stream that is open to a file. The specified file is deleted. If error-p is true

(the default), then if a file-system error occurs it will be signalled as a LISP error. If error-p is false

and an error occurs, the error message will be returned as a string. If no error occurs, de 1 etef

returns nil.

•

•

FII,E SYSTEM INTERFACE 277

pro be - f i 1 e filename [Function]
This pseudo-predicate is false if there is no file named filename, and otherwise returns a tilcname

that is the truc name of the file (which may be different from filename because of file links, version

numbers, or other artifacts of the filc system; see truename (page 266».

file-creation-date file [Function]
file can be a filename or a stream that is open to a file. This returns the creation date of the file as

an integer in universal time format, or nil if this cannot be determined.

fi 1 e-author file [Function]
file can be a filename or a stream that is open to a file. This returns the name of the author of the

file as a string, or nil if this cannot be determined.

f i 1 e -pos i t i on file-stream &opt i on a 1 position [Function]
f i 1 e - p 0 sit ion returns or sets the current position within a random-access file.

(f i 1 e - p 0 sit i on file-stream) returns a non-negative integer indicating the current position

within the file-stream, or nil if this cannot be detennined. Normally, the position is zero when the

stream is first created. For a character stream, the position is in units of characters; for a binary file,

the position is in bytes.

(file-position file-stream position) sets the position within file-stream to be position. The

position may be an integer, or nil for the beginning of the stream, or t for the end of the stream.

If the integer is too large, an error occurs (the f i 1 e -1 eng th (page 287) function returns the

length beyond which f i 1 e - po sit ion may not access) .. With two arguments, f i 1 e - p 0 sit ion

is a (side-effecting) predicate that is true if it actually performed the operation, or false if it could

not.

fi 1 e-l ength file-stream [Function]
file-stream must be a stream that is open to a file. The length of the file is returned as a non

negative integer, or nil if the length cannot be determined. For a character stream, the position is

in units of characters; for a binary stream, the position is in bytes.

22.4. Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are typically stored in files;

the expressions in the file arc mostly special fOlms such as defun (page 47), defmacro (page 99), and

de f va r (page 48), which define the functions and variables of the program.

Loading a compiled ("fasload") file is similar, except, that the file docs not contain text, but rather· pre-

278 COMMON LISP REFERENCE MANUAL

digested expressions created by the compiler that can be loaded more quickly.

load &optional filename &key :verbose :print : if-does-not-exist [Fullction]

:set-default-pathname

This function loads the file named by filename into the I jsp environment. It is assumed that a text

(character file) can be automatically distinguished from an object (binary) file by some appropriate

implementation-dependent means, possibly by the file type. If the filename does not explicitly

specify a type, and both text and object types of the file are available in the file system, load

should try to select the more appropriate file by some implementation-dependent means.

If the first argument is a stream rather than a path name, then load determines what kind of stream

it is and loads directly from the stream.

The: verbos e argument (which defaults to the value of * 1 oad- verbos e* (page 288», if true,

permits load to print a message in the form of a' comment to *standard-output* (page

213) indicating what file is being loaded and other useful information.

The : p r in t argument (default nil), if true, causes the value of each expression loaded to be

printed to *standard-output* (page 213).]fa binary file is being loaded, then what is printed

. may not reflect precisely the contents of the source file, but nevertheless some information will be

printed, including the name of each function loaded.

If a file is successfully loaded, load always returns a non-n i 1 value. If: i f-does-not-ex is t

is specified and is nil, loa d just returns nil rather than signalling an error if the file does not

exist.

loa d maintains a default filename in the variable :Ie loa d - pat h name - d e f a u 1 t s * (page 289),

used to default missing components of the filename argument; thus (load) will load the same file

previously loaded., (The function C omp i 1 e - f i 1 e (page 300) also uses and sets these pathname

defaults.) The: set-pathname-defaul ts argument (which defaults to the value of

load-set-pathname-defaults), if true, causes load to update

1 oad- pathname- def au 1 ts from its first argument. '

load-verbose [Variable]
This variable provides the default for the : verbose argument to load (page 288). Its initial

value is implementation-dependent.

load-set-default-pathname [Variabl~

This variable provides the default for the : set - d e fa u 1 t - pat h name argument to loa d (page

288). Its initial'value is implementation-dependent.

See also *compi 1 e-fi 1 e-set-defaul t-pathname* (page 300).

•

•

•

FILE SYSTEM INTERFACE 279

1 oad-pathname-defau1 ts [Variable]
This is the pathname-defaults pathname for the load (page 278) and camp i 1 e -f i 1 e (page

300) functions. Other functions may share these defaults if they deem that to be an appropriate

user in terface.

22.5. Accessing Directories

di rectory pathname [Function]

A list of pathnames is returned, one for each file in the file system that matches the given pathname.
For each such file, the truename (page 266) for that file appears in the result list. Keywords such

as : wi 1 d and : n ew.e s t may be used in : pat h name to indicate the search space.

280 COMMON I JSP REFERENCE MANUAL

•

•

Chapter 23

Errors

COMMON LISP handles errors through a system of conditions. One may establish handlers that gain control

when conditions occur, and signal a condition when an error actually occurs. When the system or a user

function detects an error it signals an appropriately named condition and some handler established. for that

condition may deal with it.

The condition mechanism is completely general and can be used for purposes other than "error" handling.

Every condition is named by a symbol, typically a keyword. When an unusual situation occurs, such as an

error, a condition is signalled. Handlers are established with dynamic scope, and so the most recently

established handler for the condition will be invoked.

23.1. Signalling Conditions

signal condition-name- &rest args [Function]
This searches through all currently established condition handlers, starting with the most recent. If

it finds one established to handle condition-name or to handle any condition, then it calls that

handler, giving it precisely the arguments that were given to signa l, including,the condition-name
as the first argument. The dynamic environment (such as catchers and special variable bindings) is

not unwound; the handler is invoked in the dynamic environment of the call to s i 9 n a 1 .

If a handler returns values, and the first value returned by the handler is not nil, the handler is

said to be willing; all the values it returns are returned from the call to s i 9 n a 1. Otherwise,

s i 9 n a 1 will continue searching for another matching handler. If no matching and willing handler

is found, then s i 9 n a 1 returns nil.

It is possible for a handler to effectively handle the error other than by returning values; it may, for

example, call th row (page 95).

- 281-

282 COMMON LISP REFERENCE MANUAL

23.2. Establishing I-Iandlers

condition-bind bindings {jbrm}* [Alacro]
This is used to establish handlers for conditions, then perform the body in that established handler

environment. The handlers established have dynamic scope. The format is:

(con d it i on - bin d ((condition-name-I handle,.../)

fonnl
form2

formn)

(condition-name-2 handle,...2)

(condition-name-m handle,...m»

Each condition-name-j is either the name of a condition or a list of names of conditions. Each

handle,...j is a form that is evaluated to produce a handler function; they are evaluated in order from

handle,.../ to handle,...m; only after all the handle,...j forms are evaluated is any handler established.

The condition handlers arc established in the order shown, such that if a condition is signalled

handle,...m, as the most recently established, will be the first one examined.

??? Query: This differs from Lisp Machine LISP. However. if shadowing within a single condition-bind is to
, be permitted. this is the more logical definition. Perhaps it would be better not to allow such shadowing?

The expressions lonnj are then evaluated as an implicit progn. The cond i t i on-b i nd form

returns whatever fonnn returns (n i 1 if there are no forms in the body). The established conditions

become disestablished when the cond it i on -b i nd fOlm is exited.

con d i t ion - bin d also establishes a context limiting the extent of effectiveness of

cond it i on -psetq.

cond i t i on -psetq {spec}* [Macro]
The con d i t i o·n - p set q form is used to establish condition handlers as a side effect. It takes the

form:

For example:

(cond it i on-psetq condition-name-I handler-I
condition-name-2 handler-2

condition-name-n handle,...n)

Each condition-name-j is either the name of a condition or a list of names of conditions. Each

handle,...j isa form that is evaluated to produce a handler function. The handle,...} forms are all

evaluated in order, and only then are the results established as condition handlers, in such an order

that handler-/ is examined first when a condition is signalled.

The conditions established by cond i t i on -ps etq remain established until execution is unwound

(either normally or by being thrown) past the most recent con d i t ion - bin d. (If no

cond i t ion -b i nd is in effect, cond i t i on -ps etq' 'effectively establishes globally defined

handlers. Multiple uses of con d i t ion - p set q cause the most recently established handler to be

•

•

ERRORS

tried first when a condition is signalled. For example, consider:

For example:

(condition-psetq :wrong-type-argument 'default-wta-handler)
(+ 23 nil)
(condition-psetq :wrong-type-argument 'hairy-wta-handler)
(+ 105 nil)

283

When the first :wrong-type-argument error is signalled (because of the attempt to add 23 to

nil) the function default-wta-handler will be given first chance at handling the error.

When the second error is signalled (because of the attempt to add 105 to nil) the function

ha i ry-wt'a-handl er will be given first chance. Ifit declines (by returning nil as its first result)'

then defaul t-wta-handl er will be given a chance.

7?? Query: Need Lo have a way to disestablish a handler established by cond i t i on -psetq?

cond i t ion-case fonn {(condition-names {form}*)}* . [Macro]
This is a form sometimes more convenient than con d i t ion - bin d (page 282) for executing a

form with certain condition handlers established. The handlers established have dynamic scope.

The format is:

(condition-case fonn
. clause I
clause2

clausen)

Each clause is similar to a case (page 78) clause; it is a list whose first elemerit specifies keys, in

this case a list of condition names or a single condition name. The remainder of each clause is a

bo~y, a list-of forms constituting an implicit progn. For each condition mentioned a handler is

established, such that if the condition occurs a throw (page 95) is performed to unwind the

dynamic environment back to the point of the con d i t ion - cas e; the body of the corresponding

clause is then executed, and whatever is produced by the last form in the body is returned as the

value of the condition-case form. Note that when the body of any condit;'on-case clause

is executed, all the handlers established by that cond i t i on -case have already been

disestab lished.

Once these handlers are established, the fonn is evaluated. If evaluation of the fonn does not cause

a condition to invoke one of the handlers, the established handlers become disestablished, and

whatever the fonn produced is returned from the·cond it i on -case fonn.

23.3. Error Handlers

Certain conditions names are used by the COMMON LISP system to signal error conditions. Like all

condition handlers; an error handler will receive as arguments all the arguments given to s i 9 n a 1 . By

convention, however, the arguments for a signalled error have the following interpretation:

• condition-name. As for any condition handler, the first argument is the name of the condition.

284 COMMON LISP REFERENCE MANUAL

• proceed-flag. If this is not nil, then the handler, can expect to correct the error by returning

suitable values (see below); the signaller wil1 be prepared to retry the failed operation or otherwise

recover. If this is nil, then if the handler returns a value (other than nil to decline handling of

the condition) a : fa i 1 e d - h an d 1 e r error will be signalled.

• jUllction-name. If this is not nil, it is the name of the function that signalled the error.

??? Query: Here is an odd idea: let every defun implicitly bind a lexical variable named, say,
n arne - 0 f - t his - fun c t ion to the name of the function, in much the same way that it establishes 'an
implicit block for usc by return. Then ferror could be a macro such that (ferror ...) expanded
into

(*ferror narne-of-this-function ...)

and thereby capture the function name automatically.

• control-string. A string suitable for use with the remaining arguments for forma t (page 251).

• other-arguments. Other arguments; these vary with the condition involved.

An error handlcr can do some processing and Jhcn make one of three responses to the error. It can return

nil to decline handling the error, in which case some other handler will be given the opportunity .. It can call

th row Of sign a 1 in an attempt to make a non-local exit. Finally, it can return several values of which the

first is : ret urn, in an attempt to correct the error. If the handler returns values and the first value is not

nil or : ret urn, or if the first value is : ret urn and the signaller is not prepared to correct the error, then

(by convention) a : fa i 1 e d - h an d 1 e r error will be signalled.

The function c err 0 r (page 295) is the primary means for signalling a correctable error. If a handler

returns several values of which the first is : return, then cerror will return all the values except the first

(the: return keyword) as the values from the call to cerror.

23.4. Signalling Errors

LISP programs can signal errors by using one of the functions error (for "trivial errors"), ferror (for

fatal error) or c err 0 r (for ~orrectable error). err 0 r is the easiest way to signal an error, but it provides for
neither distinguishing types of errors nor recovering from errors. fer r 0 r distinguishes among various types

of erroI'!;, and cerror further allows recovery from the error. High-quality software packages should

endeavor to usc cerror or ferror whenever appropriate.

error control-string &rest args [Function]
error takes a control-string and other arguments suitable for format (page 251). It signals an

error using the condition name : err 0 r .

(error s x y ...) <=> (ferror :error s x y ...)

•

•

•

•

ERRORS 285

ferror condition-name control-sIring &rest args
cerror conditioll-name cOll/rul-string &res t args

[Fullction]

[Fullction]

ferror signals the error condition condition-name. The remaining arguments to ferror should

be suitable for format (page 251). The error condition signalled is not correctable: function

ferror never returns. (/\ call to ferror may be terminated by a non-local exit, such as a throw,

however.)

If no handler can be found for condition-name, then a : m iss i n 9 - h an d 1 e r error is recursively

signalled.

If a handler attempts to correct the error (by returning as first value the keyword, : return), then

ferror signals an uncorrectable : fa i 1 ed-handl er error.

cerror is similar to ferror, but signals a correctable error (the second argument given to

sign a 1 is t). If a handler attempts to correct the error (by returning as first value the keyword

: return), then cerror returns as its values all values returned by the handler but the first (that

is, the keyword : ret urn is not returned by c err 0 r).

assert test &opt ional control-sIring &rest args [Macro]
The test is evaluated. If the result is not nil, ass e r t returns nil.

If the result is nil, then a correctable :failed-assertion error is signalled; see cerror

(page 295). If a control-sIring is supplied, it arid the args are used in signalling the error; otherwise a

default message is provided. The control-sIring and args are not evaluated unless the test is nil. If

the handler "corrects" the error, then the lest is re-evaluated; thus as se rt iterates until the test is
satisfied. (If the test is evaluated several times, then control-string and the args may also be

evaluated multiple times, so it is best if they are free of side effects.)

For example:

(assert «=2 base 36»
(assert (apply #'= (array-dimensions a»

"The array -5 is not equidimensional." a)

check-type place typespec &optiona1 string [Mac~o]

The place must be a form acceptable to set f (page 66). If the value of place is of the type,

spesified by typespec, then en e c k - ty p e -simply returns t. Otherwise, it signals a

:wrong-type-argument correctable error. The message will mention the string, which should

be an English name or phrase for the type; if string is omitted (as it frequently is), a name is derived

automatically from the typespec. If a correction value is returned, then set f is used to install the

correction valie in place, and the test is then repeated. Thus check-type will not terminate until

place contains a value of the specified type.

The typespec is not evaluated, but the string (if supplied) is.

For example:

286

(check-type *readtable* readtable)

(defun primep-the-hard-way (x)
(check-type x integer)
(do ((j 1 (+ j 1»)

((> j x) t)
(when (> (gcd j x) 1) (return nil»)

COMMON LISP REFERENCE MANUAL

23.5. Standard Condition Names

Some condition names are used by the COMMON LIsp system itself. They are .listed below along with the

arguments they expect and the conventions follow~d in use of these conditions. The arguments listed are

those that are to follow the control-string as arguments to the handler.

If an error is signalled correctably, the tcrm "correction values" refers to the values returned by the handler

along with the keyword: return. The signaller may use these valucs in any manner, but the conventional

use is described below. A h~ndler may not return valid correction values, of course; a prudent signaller will

re-check correction values using the same t~st that led to the signalling of the original error.

:error This catch-all condition name is used by the err 0 r (page 284) function. There is no

particular convention regarding arguments or correction values.

:wrong-type-argument

Requires type and value, where the first is a type specifier indicating what type of value is

required, and the second is the value being complained about. The correction value should
be a new object to be used in place of the one that was of the wrong type.

:contradictory-arguments

Requires junction and a list of all the arguments given to that function. This condition is

signalled when the arguments to a function are inconsistent with each other, but the fault

does not lie with any particular one of· them. The correction value should be a list

containing a new set of arguments to the same function.

111 Query: This differs from the Lisp Machine LISP: inconSistent-arguments erroc, where
the correction value is simply used as the return value fcom the function that got the bad arguments.

:too-few-arguments

Requires junction and a list of all the arguments given to that function. This condition

indicates that not enough arguments were passed to satisfy the required parameters. The

correction value should be a list containing a new set of arguments to the same function.

:too-many-arguments
Requires function and a list of all the arguments given to that function. This condition

indicates that too many arguments were passed to a function. The correction value should

be a list containing a new set of arguments to the same function.

•

ERRORS 287

~ :unexpected~keyword

~

~

:invalid-form

Requires/ullction and keyword, the latter being the purported name of a keyword passed as

a keyword argument. The keywordis not a valid keyword for /ullction. Correction values

are ignored; correcting the error causes the keyword and its associated value to be ignored.

Requires one argument form. The so-called /onn was not a meaningful form for eva 1.

Probably it was of a bad data type. If the error is proceeded, the value returned should be

a new form to be evaluated in place of the bad form.

:unbound-variable

Requires a symbol. The symbol has no dynamic value associated with it (see

symbol -val ue (page 62) and set (page 64». The correction value is used to satisfy

the request for the symbol's value as a dynamic variable ..

:invalid-variable

Requires an object. An attempt was made to bind or assign to object as a variable, but it is

not a symbol,· or is a symbol but is a constant such as nil (page 51) or pi (page 130).
The correction value should be a symbol to be used in place of object as the name of the

variable.

:undefined-function

Requires/unction-name. The symbol junction-name had no function definition. The first

correction value is used as a function instead. (If this correction value is not a function

after all, presumably an inval id-function error should ensue, but this check is the

responsibility of the signaller.)

:invalid-function

Requires an object. An attempt was made to invoke object as a function, but it is not

suitable for calling. If the object is a symbol, then perhaps it has no function definition, or

is the name of a macro or special form rather than of a function. The corrc~tion value is

used in place of object as a function to be invoked.

:failed-assertion

There is no particula~ convention on arguments. This is signalled correctably when the test

for an as s e r t (page 285) form fails. The correction values are ignored.

:failed-handler

Requires a con d i t ion - name and aU the other arguments given to the handler. The

handler that handled the condition returned the keyword : ret urn for an uncorrectable

error, or returned a first value other than : ret urn or nil. This error is normally

signalled uncorrectably.

288 COMMON LISP REFERENCE MANUAL

:rnissing-handler

Requires a can d it ion - n arne and all the other arguments given to the handler. One of
the error-signalling functions error (page 284), cerror (page 285), or ferror (page
285) could not locate a handler for the specified condition-name. This error is normally
signalled correctably: the correction value is the handler to use.

•

• •

•

•

Chapter 24

Miscellaneous Features

24.1. The Compiler

The compiler is a program that may make code run faster, by translating programs into an implementation

dependent fonn that can be executed more efficiently by the computer. Most of the time you can' write

programs without worrying about the compiler; compiling a file of code should produce an equivalent but

more efficient program. When doing more esoteric things, one may need to think carefully about what

happens at "compile time" and what happens at "load time". Then the difference between the syntaxes "# . "

and H#, " becomes important, and the eva 1 -wh en (page 49) construct becomes particularly useful.

Most declarations are not used by the COMMON LISP interpreter; they may be used to give advice to the

compiler. The compiler Inay attempt to check your advice and warn you if it is inconsistent.

Unlike most other LISP dialects, COMMON ~ISP recognizes spec i a 1 declarations in interpreted code as

well as compiled code. This potential source of incompatibility qetween interpreted and compiled code is

thereby elim{nated in COMMON LISP.

The internal workings of a compiler will of course be highly implementation-dependent. T~e following

functions provide a standard interface to the compiler, however.

compile name &optional definition [Function]

If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled.

If it is not supplied, then name should be a symbol with a definition that is a lambda expression or

select expression; that definition is compiled and the resulting compiled corie is put back into the
symbol as its function definition .

. The definition is compiled and a compiled-function object produced. If name is a symbol, then the

compiled-function object is installed as the global function definition of the symbol and the symbol

is returned. If name is nil, then the compiled-function object itself is returned.

For example:

- 289-

290

(defun foo ...) => foo
(compile 'foo) => foo

; Now foo runs faster.

COMMON LISP REFERENCE MANUAL

; 1\ function definition.
; Compile it.

(compile nil '(lambda (a b c) (- (* b b) (* 4 a c))))
=> a compiled function of three arguments that computes b2 -4ac

comp i 1 e-f i 1 e &opt i ona 1 input-pathname &key : output-f i 1 e [Fullction]
:set-default-pathname

The input-pathname must be a valid file specifier, such as a path name. The defaults for

input-filename are taken from the variable *1 oad-pathname-defaul ts* (page 279). T'he file

should be a LISP source file; its contents are compiled and written as a bInary object C F AS L") file.

The : output argument may be used to specify an output pathname; it defaults in a manner

appropriate to the implementation's file system conventions.

If the :set-default-pathname argument is true, then compile-file will set

* loa d - pat h name - d e f a u 1 t s * (page 279) in such a way that (loa d) will load the newly

compiled file and (comp i 1 e - f i 1 e) will recompile the source for that file.

compile-file-set-default-pathname [Variable]
This variable provides the default for the : set-defaul t-pathname argument to

comp i 1 e-f i 1 e (page 300). Its initial value is implementation-dependent.

di sassembl e name-or-compiled-junction [Function]
The argument should be either a function object, a lambda-expression, or a symbol with a function

definition. If the relevant function is not a compiled function, it is first compiled .. In any case, the

compiled code is then "reverse-assembled" and printed out in a symbolic format. This is primarily

useful for debugging the compiler, but also often of use to the novice who wishes to understand the

workings of compiled code.

Implementation note: Implementors are encouraged to make the ,output readable, preferably with helpful
comments.

24.2 •. Documentation

A simple facility is provided for attaching strings to symbols for the purpose of on-line documentation ..

Rather than using the property list of the symbol, a separate function documentat i on is provided so that

implementations can optimize the storage of documentation strings.

•

•

•

MISCELLANEOUS FEATURES 291

documen tat i on symbol doc-type [Function]
This function returns the documentation string of type doc-type for the symbol, or nil if none

exists. Both arguments must be symbols. Some kinds of doculTlentation arc provided automatically

by certain COMMON LISP constructs if the user writes an optional documentation string within

them:

Construct

defvar (page 48)

defparameter (page 48)

de f con s tan t (page 48)

defun (page 47)

defmacro (page 99)

defstruct (page 201)

deftype (page 36)

defset f (page 70)

Documentation Type

variable

variable

variable

function

function

structure

type

setf

In addition, names of special forms may also have func t i on documentation. (Macro~ and special

fonns are not really functions, of course, but it is convenient to group them with functions. for

documentation purposes.)

setf (page 66)·may be used with documentat i on to update documentation information .

24.3. Modules

prov i de module-name [Function]
require module-name &opt ional pathname [Function]

A module-name should be a string' or a symbol. Calling prov i de notes the fact that a program .

module of the specified name has been loaded or otherwise instantiated. This is used in

conjunction with requ; reo

Calling requ ire does nothing if the indicated package has already been "provided". If it has not,

then the pathname is given to load (page 278) in an attempt to obtain the necessary module from

the file system. After the loading process is done, if the module still has not been provided, then an

error is signalled. The pathname defaults in an implementation-dependent way that may depend on

the module-name. (Typically, the name of the module might be used as a file name to access a

directory where the yellow-pages modules are stored.)

Here is- an example of what a yellow-pages module might look like. The time stamp module

exports three functions: timestamp, moonpr inc, and sunpri nco (The purpose of the module

is to provide facilities to print timestamps to a stream; a timestamp includes the time, date, day of

week~ phase of the moon, 'and 'position of the sun. This module is whimsical, but based on one

actually provided in the MACLISP library.) The timestamp module requires two other modules

for its operation, mo 0 n ph as e and sun cal c; one is a standard library module, and the other is

292 COMMON LISP REFERENCE MANUAL

private. For reasons best ignored here, the timestamp module has its own function named sqrt •

that differs from the standard s q r t (page 127).

(setq *package* (make-package 'timestamp»
(provide 'timestamp)
(export '(timestamp moonprinc sunprinc»
(require 'moonphase)
(require 'suncalc "/usr/gls/chutzpah/suncalc ff)
(shadow 'sqrt)

:;: Location of University of Southern North Dakota at Hoople.
(defconstant latitude 48.503 "Latitude of U. of S.N.D. at H.ff)
(defconstant"longitude 97.61 "Longitude of U. of S.N.D. at H.")

(defun timestamp ...)
(defun moonp"r i nc ...)
(defun sunprinc ...)

(defun stamp-utility ...)
It is important that the call to provide precede the calls to require. For suppose that the

moonphase module needs to use timestamp! When timestamp is loaded, if moonphase is

loaded as a result, it had better find by that point that time stamp has already been provided (or
will be very soon!), lest time stamp be recursively and redundantly loaded, causing an infinite

loop. •

24.4. Debugging Tools

The utilities described in this section are sufficiently complex and sufficiently dependent on the host

environment that their complete definition necessarily belongs to either the yellow pages or the red pages.

However, they are also sufficiently useful as to warrant mention here, to ensure that every implementation

provides some version of them, however clever or however simple.

trace fjunction-name}* [Macro]

untrace {function-name}*[Macro]

Invoking trace with one or more function names (symbols) causes the functions named to be

"traced". Henceforth, whenever such a function is invoked, information about the call, the

arguments passed, and the eventually returned values, if any, will be printed to the stream that is

the value of *trace-output * (page 214).

For example:

(trace fft gcdchase-pacman)

If a function call is open-coded (possibly as a result of an i n 1 i n e declaration), then such a call may

not produce trace output.

Invoking un t r ace with one or more function names will cause those functions not to be traced

•

MISCELLANEOUS FEATURES 293

any more.

Tracing an already-traced function. or lmtracing a function not currently being traced. should

produce no harmful effects. but may produce a warning message.
. .

Calling t r ac e with no argument forms will return a list of functions currently being traced.

Calling un tr ace with no argument forms will cause all currently traced functions to be no longer

traced.

trace and untrace may also accept additional implementation-dependent argument formats.

The format of the trace output is implementation-dependent.

step fonn [Macro]
This evaluates fonn, and returns what fonn returns. However. the lIser is allowed to interactively

"single-step" through the evaluation of fonn. at least through those evaluation steps that are

performed interpretively. The nature of the interaction is implementation-dependent However,

implementations are encouraged to respond to the typing of the character "1" by providing help

including a list of commands.

t ;me fonn [Alacro]
This evaluatesfonn, and returns whatfonn returns. However,as a side effect. various timing data

and other information is printed to the stream that is the value of *trace-output* (page 214).

The nature and format of the printed information is implementation-dependent. However,
implementations are encouraged to provide such· information as elapsed real time, machine. run

time,. storage management statistics, and so on.

Compatibility note: This facility is inspircd by the INTERLlsP facility of the same name. Note that the
MACLISP/Lisp Machine LISP function time does something else entirely. namely return a quantity indicating
relative clapsed real time.

descr i be object [Function]
descr i be prints, to the stream in the variable * standard -output * (page 213), information

about the object. Sometimes it will describe something that it finds inside something else; such

recursive descriptions are indented appropriately. For instance, descr i be ofa symbol will exhibit

the symbol's value, its definition, and each of its properties. des c rib e of a floating-point number

will exhibit its internal representation in a way that is useful for tracking down roundoff errors and

the like. The nature and format of the output is implementation-dependent.

descr; be always returns its argument

294 COMMON LISP REFERENCE MANUAL

ins pec t object [Function]
inspect is an interactive version of descr i be. The nature of the interaction is implementation

dependent, but the purpose of inspect is to make it easy to wander through a data structure,

examining and modifying parts of it. Implementations are encouraged to respond to the typing of

the character"?" by providing help, including a list of commands.

room &optional x [Function]
room prints. to the stream in the variable *standard-output* (page 213), information about

the state of internal storage and its management. This might include descriptions of the amount of

memory in usc and the degree of memory compaction, possibly broken down by internal data type

if that is appropriate. The nature and format of the printed information is implementation

dependent. The intent is to provide information that may help a user to tunc his program to a

particular implementation:

(room nil) prints out a minimal amount of information. (room t) prints out a maximal.

amount of information. Simply (r oom) prints out an intermediate amount of information that is

likely to be useful.

ed &optional x [Fullction]
If the implementation provides a resident editor, this function should invoke it.

(e d) or (e d nil) simply enters the editor, leaving you in the same state as the last time you were

in the editor.

(e d pathname) edits the contents of the file specified by pathname. The pathnam~ may be an

actual path name or a string.

(e d symbol) tries to let you edit the text for the function named symbol. The means by which the

function text is obtained is implementation-dependent; it might involve searching the file system,

or pretty-printing resident interpreted code, for example.

dribbl e &opt ional pathname [Function]
(dribble. pathname) rebinds *standard-input* (page 213) and *standard-output*

(page 213) so as to send a record of the input/output interaction to a file named by pathname. The

primary purpose of this is to create a readable record of an interactive session.

(d rib b 1 e) terminates the recording of input and output and closes the dribble file.

apropos string &optional package [Function]
(apropos string) tries to find all symbols whose print-names contain string as a substring.

Whenever it finds a symbol, it prints out the symbol's name; in addition, information about the

function definition and dynamic value of the symbol, if any, is printed. If package is specified and

not nil, then only that package is searched; otherwise "all" packages are searched, as if by

•

•

•

•

•

MISCELLANEOUS FEATURES 295

do-all-symbol s (page 119). The information is printed to the stream that is the value of
* standard -output * (page 213). ap ropos returns t.

24.5. Environment Inquiries.

24.5.1. Time Functions

Time is represented in three different ways in COMMON LISP: Decoded Time, Universal Time, and
Internal Time. The first two representations arc used primarily to represent "real" (calendar) time, and arc.
precise only to the second. Internal Time is used primarily to represent measurements of "computer" time
(such as run time), and is precise to some implementation-dependent fraction of a second. as specified by
i nternal-t ime-un i ts-per-second (page 306). Decoded Time format is used only for absolute time
indications. Universal Time and Internal Time formats are used for both absolute and relative times.

Decoded Time format represents time of day as a number of components:

• Second: an integer between 0 and 59, inclusive.

• Nfinute: an integer between 0 and 59, inclusive.

• Hour. a~ integer between 0 and 23, inclusive ..

• Date: an integer between 1 and 31, inclusive (the upper limit actually depends on the month and
year, of course).

• /t,t!onth:' an integer between 1 and 12, inclusive; 1 means January, 12 means December.

• Year. an integer indicating the year A.D. However, if this integer is between 0 and 99, the
"obvious" year is used; more precisely, that year is assumed that is equal.to the integer modulo
100 and within fifty years of the current year (inclusive backwards and exclusive forwards). Thus,
in the year 1978, year 28 is 1928 but year 27 is 2027. (Functions that return time in this format
always return a full year number.)

Compatibility note: This is incompatible with the Lisp Machine LISP definition in two ways. First, in Lisp
Machine LIsp a year between 0 and 99 always has 1900 added to it: Second, in Lisp Machine LISP time
functions return the abbreviated year number between 0 and 99, rather than the full year number. The
incompatibility is prompted by the imminent arrival of the twcny-first century. Note that (mod year 100)
always reliably converts a year number to the abbreviated form, while the inverse conversion can be very
~~ .

• Day-ofweek: an integer betwen 0 and 6, inclusive; 0 means Monday, 1 means Tuesday, and so on,
and 6 means Sunday.

111 Query: How did this happen? One would expect Sunday to be either 0 or 1.

• Dayliglzt-savings-Lime-p: a flag that, if not nil, indicate.s that daylight savings time is in effect

296 COMMON LISP REFERENCE MANUAL

• Time-zone: an integer specified as the number of hours west of GMT (Greenwich Mean Time).

For example, in Massachusett'i the time-zone is 5, and in California it is 8. Any adjustment for

daylight savings time is separate from this.

Universal Time represents time as a single integer. For relative time purposes, this is a number of seconds.

For absolute time, this is the number of seconds since midnight, January 1, 1900 GMT. Thus the time 1 is

00:00:01 (that is, 12:00:01 AM) on January I, 1900 GMT. Similarly, the time 2398291201 corresponds to time

00:00:01 on January 1, 1976 GMT. Recall that the year 1900 was not a leap year; for the purposes of

COMMON LISP, a year'is a leap year iff its number is divisible by 4, except that years divisible by 100 are not
leap years, except that years divisible by 400 are leap years. Universal Time format is used as a standard time

representation within the ARPANf!.T: see [5].

Internal Time also represents time as a single integer, in terms of an implementation-dependent unit.

Relative time is measured as a number of these units. Absolute time is relative to an arbitrary time base,

typically the time at which the system began running.

in te rn a 1- t i me- un i ts - pe r - second [Constant]
This value is an integer, the implementa~on-dependent number of internal time units in a second.

(The internal time unit must be chosen so that one second is an integral multiple of it.)

Rationale: The reason for allowing the internal time units to be· implementation-dependcnt is so that
get-internal-time (page 306) can execute with minimum overhead. The idea is that it should be very
likcly that a fixnum will suffice as the returned value from get-interna1-time. 'Ibis probability can be
tuned to the implementation by trading off the speed of the machine against the word size. Any particular unit
will be inappropriate for some implementations: a microsecond is too long for a very fast machine such as an
S-l. while a much smaller unit would force many implementations to return bignums for most calls to
get- inter na 1- time. rendering that function less useful for accurate timing measurements.

get-decoded-time [Function]
The current time is returned in Decoded Time fonnat. Nine values are returned: second, minute,
hour, date, month, year, day-ofweek, daylight-savings-time-p, and time-zone.

Compatihility note: In Lisp Machine LISP the time-zone is not currently returned. Consider, however, the use
of COMMON LISP in some mobile vehicle. It is entirely plausible that the time-zone might change from time to
time.

get-universa1-time [Function]
The current time of day is returned as a single integer in Universal Time fonnat.

get-interna1-time [Function]
The current time is returned as a single integer in Internal Time format. The precise meaning of

this quantity is implementation-dependent; it may measure real time, run time, CPU cycles, or

some other quantity.

? ?? Query: How can this notion be made meaningful and portable? •

MISCELLANEOUS FEATURES 297

sleep seconds [Function]
(sleep n) causes execution to cease and become dormant for approximately II seconds of real

time, whereupon execution is resumed. The argument may be any non-negative non-complex

number. s 1 ee p returns nil.

de code - un i ve r sal - time universal-time &op t ion a 1 time-zone [Function]
The time specified by universal-time in Universal Time format is converted to Decoded Time

fonnat. Nine values· are returned: second, minute, hour, date, month, year. day-of week, .
daylight-savings-time-p. and time-zone.

Compatibility note: In Lisp Machine LIsp the time-zone is not currently returned. Consider. however, the use
of COMMON LIsP in some mobile vehicle. It is entirely plausible that the time-zone might change from time to
time.

The time-zone argument defaults to the current time-zone. .

encode-universa1-time second minute· hour date month year &optiona1 time-zone [Function]
The time specified by the given "Components of Decoded Time format is encoded into Universal

Time format and returned. If you don't specify lime-zone, it defaults to the current time-zone

adjusted for daylight savings time. If you provide time-zone explicitly, no adjustment for daylight

savings time is performed.

24.5.2. Other Environment Inquiries

For any of the following functions, if no appropriate and relevant result can be produced, n i 1 is returned

instead of a string.

Rationale: These inquiry facilities are functions rather than variables against the possibility that a COMMON LISP process
might migrate from mnachine to machine. This need not happen in a distributed environment: consider, for exarpple.
dumping a core image file containing a compiler and then shipping it to another site.

1 isp-implementation-type [Function]
A string is returned that identifies th~ generic name of the particular COMMON LISP

implementation. Examples: "Sp ice LISP", "Zeta 1 i sp".

1 i sp - i mp 1 emen tat ion -ve rs i on [Function]
A string is returned that identifies the version of the particular COMMON LISP implementation; this

infonnation should be of use to maintainers of the implementation. Examples: "1192", "53. 7
with complex numbers", "1746.9A, NEWIO 53, ETHER 5.3".

298 COMMON LISP REFERENCE MANUAL

machine-type [Function]

;\ string is returned that identifies the generic name of the computer hardware on which COMMON

LISP is funning. Examples: "DEC PDP-10", "DEC VAX -111 780".

machine-version [Function]

A string is feturned that identifies the version of the computer hardware on which COMMON LISP is

running. Example: "KL 10, mi crocode 9".

machine-instance [Function]

A string is returned that identifies the particular instance of the computer hardware on which

COMMON LISP is running; this might be a local nickname, for example, andlor a serial number.

Examples: "MIT-MC", "CMU GP-VAX't.

host-software-type [Function]

A string is returned that identifies the generic name of any relevant host software. Examples:

"Spice", "TOPS-20", "ITS".

hos t-software-vers i on [Function]

•

A string is returned that identifies' the version of the particular COMMON LISP implementation; this •

information should be of use to maintriiners of the implementation.

short-site-name

long-:-site-nanie

A string is returned that identifies the physical location of the computer hardware.

short names: "MIT AI Lab", "CMU-CSD". Examples of long names:

"M I T Ar t i f i cia 1 In tel 1 i g en c e Lab 0 rat 0 r y "
"Massachusetts Institute of Technology
Artificial Intelligence Laboratory"
"Carnegie-Mellon University Computer Science Department"

See also user-homed i r- pathname (page 269) and in i t-f i 1 e -pa thname (page 269).

[Function]

[Function] .

Examples of

llefeatu res· [Variable]
The value of the variable lie f eat u res * should be a list of symbols that name "features" provided

by the implementation. Most such symbols will be implementation-specific; typically a name for

the implementation will be included. One standard feature name is i e e e - flo a tin g - poi nt,

which should be present if and only if full IEEE proposed floating-point arithmetic [6] is supported.

The value of this variable is used by the #+ and #- r9ader syntax; see page 233.

MISCELLANI~OUS FEATURES 299

e 24.6. Identity Function

identity object [Function]

The object is returned as the value of i dent i ty. This function is useful primarily as an argument

to other functions.

300 COMMON LISP REFERENCE MANUAL

References

L Brooks, Rodney A.: Gabriel, Richard P.: and Steele, Guy L. Jr. "An Optimizing Compiler for Lexically

Scoped LISP." Proceedings of the 1982 Symposium on Compiler COllstruc/ioll. ACf\1 SIGPLAN (Boston,

lune 1982),261-275. Proceedings published as ACAf SIGP/.AN Notices 17,6 (June 1982).

2. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic."

Computer 13, 1 (lan. 1980},68-79. Errata for this paper appeared as [3].

3. Coonen, lerome T. "Errata for 'An Implementation Guide to a Proposed Standard. for Floating-Point

Arithmetic'." Computer 14,3 (March 1981), 62. These are errata for [2].

4. Fateman, Richard J. "Reply to an Editorial." AC~1 SIGSAAl Bulletin 25 (March 1973), 9-,11.

5. Harrenstien,' Kenneth L. Time Server. Request for Comments (RFC) 738 (NIC 42218), ARPANET

Network Working Group (Oct. 1977). Available from the ARPANET Network Information Center.

6. IEEE Computer Society Standard Committee, Microprocessor Standards Subcommittee, Floating-Point

Working Group. "A Proposed Standard for Binary Floating-Point Arithmetic." Computer 14, 3 (March

1981),51-62.

7. Knuth, Donald E .. The Art ofComput~r Programming. Volume 2: Seminumerical Algorithms. Addison

Wesley (Reading, Massachusetts, 1969).

8. Marti, 1.; Hearn, A.C.; Griss, M.L.; and Griss, C. "Standard LISP Report." SIGPLAN Notices 14, 10
(Oct. 1979),48-68.

•

9. Moon, David. MacLlSP Reference Manual, Revision O. M.LT. Project MAC (Cambridge, Massachusetts, •

April 1974).

10. Moore, 1. Strother II. The InterLlSP Virtual Machine Specification. Tech. Rept. CSL 76-5, Xerox Palo

Alto Research Center (Palo Alto, California, Sept. 1976).

11. Penfield, Paul, Jr. "Principal Values and Branch Cuts in Complex APL:' APL 81 Conference

Proceedings. ACM SIGAPL (San Francisco, Sept. 1981), 248-256. Proceedings published as APL Quote

Quad 12, 1 (September 1981).

12. Steele, Guy Lewis Jr .• and Sussman, Gerald Jay. The Revised Report on SCHEME: A Dialect of LISP.

AI Memo 452, MIT Artificial Intelligence Lab. (Cambridge, Massachusetts, Jan. 1978).

13. Suzuki, Norihisa. "Analysis of Pointer 'Rotation'." Comm. ACM 25,5 (May 1982), 330-335.

14. Teitelman, Warren, et al. lnterLlSP Reference Manual. Xerox Palo Alto Research Center (palo Alto,

California, 1978). Third revision.

15. Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. MIT Artificial Intelligence

Lab. (Cambridge, Massachusetts, July 1981).

•

•

•

COMMON Lisp SUMMARY

COMMON LISP Sumnlary

COMMON LISP Summary

sample-function arg1 arg2 &optional arg3 arg4

sample-variable

sample-constant

sample-special-form [name] ({var}*) {form}+

sampl e-macro var {tag I statement}*

deftype name lambda-list {declaration doc-string}* {form}*

coerce object result-type

type-of object

lambda-list-keywords

defun name lambda-list {declaration I doc-string}* {form}*

defvar name [initial-value [documentation]]

defparameter name initial-value [documentation]

defconstant name initial-value [documentation]

eval-when ({situation}*) {form}*

nil

t

typep object type

subtypep typeJ type2

n"u 11 object

s ymb 0 1 P object

atom object

consp object

1 i s-tp object

numberp object

i ntegerp object

rat ion alp object

f loa tp object

complexp object

characterp object

s tr i ngp object

b i t-vector-p object

vectorp object

simple-string-p object

simple-bit-vector-p object

simp 1 e-vector-p object

arraypobject

funct i onp object

comp il ed-funct ion-p object

commonp object

301

[Function]

[Variable]

[Constant]

[Special form]

[Macro]

[klacroj"

[Function]

[Function}

[Constant]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

" [Function]

[Function]

[Function]

[Function]

302

eq x y

eql x y

equal x y

equalp xy

not X

and {form}'"

or {form}'"

quote object

funct ion In

symbol-value ~}'mbol

symbo l-fu nc t i on symbol

uoundp symbol

fboundp symbol

macro-p symbol

special-form-p symbol

setq {var lorm}'"

p set q {var form}'"

set symbol value

f set symbol value

makunbound symbol

fmakunbound symbol

setf {place newvalue}-

p set f {place newvalue}-

s h i f t f place {place} '" newvalue

rotatef {place}'"

defsetf access-In {update-fn [doc-string] I
lambda-list lambda-list {declaration I doc-string}'" {form}·}

apply function arg &rest more-args

funcall In &rest arguments

progn {form}'"

progl first {form}-

pro 9 2 first second {form}-

let {{var I (var value)}·) {form}·

let'" {{var I (var value)}·) {form}·

compiler-let ({var I (var value)}"') {form}·

progv symbols values {form}·

fl et ({(name lambda-list {declaration I doc-string}'" {form}·)}"') {form}·

labels ({{name lambda-list {declaration I doc-string}'" {form}"')}"') {form}·

macrolet{{(name varlist {declaration I doc-string}* {form}"')}"') {form}·

cond {(test {form}·)}·

if pred then [else]

when pred {form}·

un 1 ess pred {form}-

COMMON LISP REFERENCE MANUAL

[Function]

[Function]

[Function]

. [Function]

[Function]

[Special form]

[Special form]

[Special form]

[Special/orm]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special form]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Special form]

[klacro]

[Macro]

[Macro]

[Special form]

[Macro]

[Special form]

[Spefial form]

[Special form]

[Special form]

[A-facro]

[Special form]

[Macro]

[Macro]

•

•

COMMON LIsp SUMMARY

case kC.liorm {(({key}·) {form}·)}·

typecase ke)iorm {(type {form}"')}'"

block name {form}'"

return-from name [result]

return [result]

loop iform}'"

do ({(var [init [step]])}"') (end-test {form}"') {declaration}'" {tag I statement}'"

do· ({ (var [init [step]])}"') (end-test {form}"') {declaration}* {tag I statement}*

do 1 is t (var Iist/orm [resuliform]) {declaration}* {tag I statement}*

dot imes (var countform [resuliform]) {declaration}'" {tag I statement}*

mapcar function list &rest more-lists

map 1 is 1; function list &res t more-lists

mapc function list &res t more-lists

mapl function list &rest more-lists

mapcan function list &res t more-lists

mapcon function list &rest more-lists

tagbody {tag I statem~nt}*
prog ({var I (var [init])}"') {declaration}'" {tag I statement}'"

pro 9 '" ({ var I (var [in it]) } "') {declaration} * {tag I statement} *

go tag

values &rest args

val u e 5 - 1 i 5 t list

multip'le-value-list form

multiple-value-call function Vorm}*

multip1e-va1ue-progl form {form}'"

multip1e-value-bind ({var}"') values-form {declaration}'" iform}'"

mu 1 tip 1 e-va 1 ue variables form

catch tag {form}'"

catch-a 11 catch-function {form}·

unwi nd-a 11 catch-Junction {form}*

unwi nd-protect protected-form {cleanup-form}·

throw tag result

macro name (var) {declaration}· {form}*

defmacro name lambda-list {declaration I doc-string}'" {form}*

macroexpand form &rest environment

macroexpand-l form &rest environment

macroexpand-hook

decl are {declaration-form}'"

1 oca 11 y {declaration}* {form}*

the value- type form

9 e t symbol indicator &0 p t ion a 1 default

remprop symbol indicator

symbo 1-p 1 is t symbol

303

[Macro]

[Macro]

[Special/onn]

[Special/orm]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Special form]

[Macro]

[Macro]

[Special/orm]

[Function]

[Function]

[Macro]

[SpeCial form]

[Special/orm]

[Macro]

[Macro]

[Special form]

[Special form]

[Special form]

[Special form]

[Special/orm]

[Macro]

[Ar/acro]

[Function]

[Function]

[Variable]

[Special form]

[Macro]

[Special form]

[Function]

[Function]

[Function]

304

get f place indicator &0 p t ion a 1 defoult

put f place indica/or new value

remf place indicator

get -p rope r ties place indicator-list

symbol-print-name sym

samepnamep syml sym2

make-symbol print-name

copy-symbo 1 sym &opt i ona 1 copy-props

gensym &optional x

gentemp prefix &opt i ona 1 package

symbol-package sym

keywordp symbol

make-package pac!cage-name &optional copy-from

package

packagep object

package package

package-name package

i n t ern string-or-·symbol &0 p t ion a 1 package

unintern string-or-symbol &optional package

internedp string-or-symbol &optional package

export symbols

shad ow symbols

do- symbo 15 (vaT [package] [result-form]) {declaration}* {tag I statement}*

do-all-symbols (var [result-/orm]) {declaration}* {tag I statement}*

zerop number

pl usp number

mi nusp number

oddp integer

evenp integer

= number & res t more-numbers

1= number &rest more-numbers

< number &r est more-numbers

> number &r est more-numbers

<= number &res t more-numbers

>= number &res t more-numbers

max number &rest more-numbers

min number &rest more-numbers

+ &rest numbers

- number &r est more-numbers

* &rest numbers

1 number &rest more-number~

1+ number

1- number

COMMON LISP REFERENCE MANUAL

[Function]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Macro)

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

•

•

•

COMMON I .lSi> SUMMARY

inc f place [delra]'

decf place [delta]

conjugate number

ged &res t integers

1 cm integer &res t more-integers

exp number

expt base-number power-number

log number &optional base

sqrt number

i sqrt integer

abs number

phase number

signum number

sin radians

cos radians

tan radians

cis radians

asin number

acos number

atan y &optional x

pi

sinh number

cosh number

tanh number

asinh number

acosh number

atanh number

float number &optional other

rat i ona 1 number

rat ional i ze number

numerator rational

denomi nator rational

floor number &0 p t ion a" divisor

ceiling number &optional divisor

truncate number &optional divisor

round number &opt iona 1 divisor

mo d number divisor

rema i nder number divisor

ffloor number &optional divisor

f c e i 1 i n g number &0 p t ion a 1 divisor

ftrunca te number &opt ional divisor

fround number &optional divisor

float-significand float

305

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

. [Function]

[Function]

[Function]

[Function]

[Function]

[[''unction]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function] .

306

float -exponen t }loat

seal e-fl oat }loat integer

float-radix Jloat

float-sign }loat! &optional }loat2

eomp 1 ex rea/part &opt i ona 1 imagpart

realpart number

imagpart number

logior &rest integers

logxor &rest integers

10gand &rest integers

logeqv &res t integers

lognand integer! integer2

log nor integerl integer2

logandcl integer}

logandc2 integer!

logorcl integer]

logorc2 integerl

boo 1 e op integer]

boole-cl~

boole-set

boole-l

boole-2

boole-cl

boole-c2

boole-and

boole-ior

boole-xor

boole-eqv

boole-nand

boole-nor

boole-andcl

boo1e-andc2

boole-orcl

boo1e-orc2

lognot integer

integer2

integer2

integer2·

integer2

integer2

logtest integer} integer2

log b it P index integer

ash integer count

logcount integer

i n t e 9 e r -1 eng t h integer

by t e size position

byte-s ize 'bytespec

byte-pOSition bytespec

COMMON LISP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function1

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

•

COMMON Lisp SUMMARY

1 db bytespec integer

1 db - t est bytes pee integer

ma s k - fie 1 d bytespec integer

d p b newbJ,te bytespee integer

de p 0 sit - fie 1 d newbyte bytespec integer

random number &optional state

random-state

make- r andom-s ta te &opt i ona 1 state

random-state-p object

most-positive-fixnum

most-negative-fixnum

most-positive-short-float

least-positive-short-float

least-negative-short-float

most-negative-short-float

most~positive-single-float

least-positive-single-float

least-negative-single-float

most-negative-single-float

most-positive-dotible-float

least-positive-double-float

least-negative-double-float

most-negative-double-float

most-positive-long-float

least-positive-long-float

least-negative-long-float

most-negative-long-float

short-float-epsilon

single-float-epsilon

double-float-epsilon

long-float~epsilon

short-float-negative-epsilon

single-float-negative-epsilon

double-float-negative-epsilon

long-float-negative-epsilon

char-code-limit

char-font-limit

char-bits-limit

standard-charp char

graphi c-charp char

string-charp char

a 1 pha-charp char

uppercasep char

307

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant)

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

308

10wercasep char

bothcasep char

dig i t - c h a r p char &0 p t ion a 1 (radix 10.)

alphanumericp char

c h a r = character & res t more-characters

char /= character &res t more-characters

char< character &,'est more-characters

char> character &res t more-characters

char<= character &res t more-characters

char>= character &res t more-characters

char-equa 1 character &res t more-characters

char-not-equal character &rest more-characters

c h a r -1 e ssp character, & res t more-characters

char-greaterp character &rest more-characters

char-not-greaterp character &rest more-characters

c h a r - not -1 e s s pcharacter & res t more-characters

character object

char-code char

char-b i ts char

char-font char

code-char code &opt i ona 1 (bits 0) (font 0)

make-char char &optional (bits 0) (font 0)

char-upcase char

char-down case char

dig it-wei ght weight &opt i ona 1 (radix 10.) (bits 0) (font 0)

c h a r - i n t char

int-char integer

char-name char

name-char sym

char-control-bit

char-meta-bit

char-super-bit

char-hyper-bit

char-bit char name

set-char-b it char name newvalue

e 1 t sequence index

subseq sequence start &optional end

copy-seq sequence

1 ength sequence

reverse sequence

nreverse sequence

make-sequence type size &key : in i t i a 1-e 1 ement

concatenate result-type &rest sequences

COMMON LISP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[FunCtion]

[Function]

[Constant]

[Constant]

[Constant]

[Constant]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

•

•

•

COMMON LIsp SUMMARY

map result-type junction sequence &rest more-sequences

some predicate sequence &res t more-sequences

eve r y predicate sequence & res t more-sequences

notany predicate sequence &rest more-sequences

not eve r y predicate sequence & res t more-sequences

reduce junction sequence &key : from-end : start : end : in i t i a l-va 1 ue

fill sequence item &key :start :end

replace sequence} sequence2 &key :startl :endl :start2 :end2

remove item sequence &key :from-end :test :test-not :start :end

:count :key

remove- if test sequence &key : from-end : start : end : count : key

remove-.if-not test sequence &key :from-end :start :end :count :key

delete item sequence &key :from-end :test :test-not :start :end

:count :ke,Y

del ete-if test sequence &key : from-end : start : end : count : key

delete-if-not test sequence &key :from-end :start :end :count :key

remove-duplicates sequence &key :test :test-not :start :end

delete-duplicates sequence &key :test :test-not :start :end

subst i tute newitem olditem sequence &key : from-end : tes t : test-not

:start :end :count :key

substitute-if newitem test sequence &key :from-end :start :end

:count :key

substitute-if-not newitem test sequence &key :from-end :start :end

:count :key

nsubstitute newitem olditem sequence &key :from-end :test :test-not

:start :end :count :key

nsubstitute-if newitem test sequence &key :from-end :start :end

:count :key

nsubstitute-if-not newitem test sequence &key :from-end :start :end

:count :key

find item sequence &key :from-end :test :test-not :start :end :key

find-if test sequence &key :from-end :start :end :key

find-if-not test sequence &key :from-end .:start :end :key

position item sequence &key :from-end :test :test-not :start :end :key

position-if test sequence &key :from-end :start :end :key

position-if-not test sequence &key :from-end :start :end :key

count item sequence &key :from-end :test :test-not :start :end :key

count-if test sequence &key :from-end :start :end :key

count-if-not test sequence &key :from-end :start :end :key

mismatch sequencel sequence2 &key : from-end : test : test-not : key

:startl :start2 :endl :end2

maxprefix sequence} sequence2 &key :from-end :test :test-not :key

:startl :start2 :endl :end2

309

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Fullction]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Functi~n]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

310

maxsuff i x sequence! sequence2 &key : from-end : tes t : tes t-not : key

:startl :start2 :endl :end2

search sequence! sequence2 &key : from-end : tes t : tes t-not : key

:startl :start2 :endl :end2

sort sequence predicate &key : key

stable-sort sequence predicate &key :key

merge sequenceJ sequence2 predicate &key : key

car x

cdr x

c ... r x

cons x y

tree-equal x y &key :test ~test-not

endp object

1 i s t -1 eng t h list· &0 p t ion a.1 limit

nth n list

fi rs t list

second list

til i rd list

fourth list

fifth list

sixth list

seventh list

eighth list

ninth list

tenth list

res t list

nth cdr n list

1 ast list

1 ist &rest args

1 ist· arg &rest others

make-list size &key :initial-element

append &rest li~s

copy-l is t list

copy-al ist list

copy-tree object

revappend x y

ncone &rest lists

nreconc x y

pus h item place

pushnew item piace

pop place

butlast list &optional n

nbutlast list &optional n

COMMON LISP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function] .

[Function]

[Function]

[Function]

[Function]

[Function1

[Function]

[Function]

[Function1

[Function]

[Fundion]

[Function)"

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function1

[Function1

[Function]

[Function1

[Function1

[Function]

[Macro1

[Macro]

[Macro]

[Function]

[Function]

COMMON Lisp SUMMARY

1 d iff list sublist'

rplaca xy

rplacd xy

subst new old tree &key :test :test-not :key

subst-if predicate new tree &key :key

subst-if-not predicate new tree &key :key

nsubst new old tree &key : test : test-not : key

nsubst-if predicate new tree &key : key

nsubst- if-not predicate new tree &key : key'

sublis alist tree &key :test :test-not :key

nsublis alist tree &key :test :test-not :key

member item list &key : tes t : tes t-not : key.

member-if predicate list &key :key

member- if-not predicate list &key : key

t ail p sublist list

adjoin item list &key :test :test-not :key

union listllist2 &key :test :test-not :key

nunion listl list2 &key' :test :test-not :key

intersection listl list2 &key :test :test-not :key

nintersection listllist2 &key :test :test-not :key

set-difference listl list2 &key :test :test-not :key

n set - d iff ere n c e listl list2. & key : t est : t est - not : key

set-exclusive-or listllist2 &key :test :test-not :key

n set - e x c 1 us i v e - 0 r listl list2 & key : t est : t est - not : key

subse tp listl list2 &key : tes t : tes t-not : key

acons key datum a-list

pairl is keys data &optional a-list

assoc item a-list &key : test : test-not

ass 0 c - i f predicate a-list

assoc-if-not predicate a-list

rassoc item a-list &key : test : test-not

rassoc-if predicate a-list

rassoc-if-not predicate a-list

make-hash-table &key :test :s;ze :rehash-size :rehash-threshold

hash-tabl e-p object

gethash key hash-table &optional default

remhash key hash-table

map hash function hash-table

cl rhash hash-table

hash-tab 1 e-count hash-table

sxhash S-expression

c h a r string index

string= stringl string2 &key :startl :endl :start2 :end2

311

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function1

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

312

string-equal siring! slring2 &key :startl :endl :start2 :end2

string< siring! .wring2 &key :startl :endl :start2 :end2

string> siring! string2 &key :startl :endl :start2 :end2

string<= string! siring2 &key :startl :endl :start2 :end2

string>= string! .'itring2 &key :startl :endl :start2 :end2

string/= string] siring2 &key :startl :endl :start2 :end2

string-1essp string! string2 &key :startl :endl :start2 :end2

string-greaterp sIring! string2 &key :startl :endl :start2 :end2

string-not-1essp string! string2 &key :startl :endl :start2 :end2

string-not-greaterp string! string2 &key :startl :endl :start2 :end2

string-not-equa1 string! string2 &key :startl :endl :start2 :end2

make-string, size &key :initia1-e1ement

s t r i n 9 - t rim characte~bag sIring

s tr i og-l eft- tr im characte~bag string

string-right-trim characte~bag string

string-upcase string &key :start :end

string-downcase string &key :start :end

s t r i n g - cap it ali z e string & key : s tar t : end

nstr ing-upcase string&key : start : end

nstring-downcase string &key :start :end

nstring-capitalize string &key :start :end

string x

defs truct name-and-options [doc-string] {slot-description} +
eval form

*evalhook·

*eval form &rest enl'

evalhook form hookln &rest env

cons tan.tp object

+

++

+++

•
.*
.

I

II

III

*standard-input·

·standard-output·

error-output

·query-io·

*terminal-io·

,.

COMMON LISP REFERENCE MANUAL

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function)

[Function]

[Function)

[Function]

[Function]

[Function]

[Function]

[Function]

[Macro]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Variable] .

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

.[Variable]

[Variable]

[Variable]

[Variable]

•

•

COMMON LISP SUMMARY

trace-output

make-synonym-stream symbol

mak e-b roadcas t - stream &res t streams

make-concatenated-stream &rest streams

mak e - two -way - s t ream input-stream output-stream

make-echo-stream input-stream output-stream

make-string-input-stream string &optional start end

make-s tr i ng-output-s tream &opt i ona 1 line-length

get -outpu t- s tream- s tr i ng string-output-stream

with-input-from-string (var string {keyword value}*) {declaration}* ffonn}*

wi th-output-to- s tr i ng (var [string]) {declaration}* ffonn}*

streamp object

input-stream-p stream

output-s tream-p stream

S tream-e 1 ement-type stream

close stream &key : abort

readtable

copy-read tab 1 e &op tiona 1 from-readtable to-readtable

readtablep object

set- syn tax -from-ch ar to-char from-char &opt i ona 1 to-readtable from-readtable

set-macro-character char function &optional non-tenninating-p readtable

get-macro-character char &opt i ona 1 readtable

make-d i spatch-mac ro-char ac ter char &opt i ona 1 non-tenninating-p readtable

set-d i spa tch-macro-characte r disp-char sub-char function &dpt i ana 1 readtable

get-di spatch-macro-character disp-char sub-char &opt ional readtable

prinescape

prinpretty

princircle

base

prinradix

princase

prinlevel

prinlength

prinarray

read &optional input-stream eoferrorp eofvalue

read-default-float-format

read-preservi ng-wh itespace &opt iona 1 input-stream eoferrorp eofvalue

rea d - del i mit e d - 1 i s t char &0 p t ion a 1 input-stream

read-l i ne &opt i ona 1 input-stream eoferrorp eofvalue

read-char &optional input-stream eoferrorp eofvalue

unread-char character &opt ional input-stream

peek-char &optional peek-type input-stream eoferrorp eofvalue

listen &optional input-stream

313

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function] .

[Function]

[Function]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[F~nction]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

[Variable]

(Variable]

(Variable]

[Variable]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

314 COMMON I.lSI> REFERENCE MANUAL

read-ehar-no-hang &optional input-stream eofcrrorp eofvalue

clear-input &optional input-stream

read-from-string string &optional start end preservc-p cofcrrorp eofvalue

par se-number string &op tiona 1 slart end radix no-junk-allolVed

read-byte· binary-input-stream &op tiona 1 eoferrorp eofvalue

read-binary-object type binary-input-stream &optional eoferrorp eofvalue

write object &key :s~rearn :pr;neseape :prinradix :base

:prineirele :prinpretty :prinlevel :prinlength

:princase :prinarray

p r i n 1 object &op t i on a 1 output-stream

print object &optional output-stream

pprint object &optional output-stream

prine object &optional output-stream

write-to-string object &key :prinescape :prinradix :bas·e

pr i n l-to-s tri ng object

princ-to-string object

:princircle :prfnpretty :prinlevel :prinlength

:princase :prinarray

write-char character &optional output-stream

write-string string &optional output-stream

write-l ine string &optional output-stream

terpri &optional output-stream.

fresh-l ine &optional output-stream

fin i sh-ou tpu t &opt i ona 1 output-stream

force-ou tput &opt i ona 1 output-stream

cl ear-output &opt i ona 1 output-stream

wr i te-byte integer binary-out put-stream

wr; te-b; nary-ob ject object type binary-out put-stream

for rn a t destination control-string & res t arguments

y-or-n-p &optional message stream

yes-or-no-p &optional message stream

pathnarne thing

truenarne thing

par s e - n arne s t ring thing &0 p t ; 0 n a 1 convention defoults break-characters start end

merge-pathnarne-def aul ts pathname &opt iona 1 defaults default-type default-version

make-pathnarne &key :host :device :directory :narne

:type :version :defaults

pathnamep object

pathname-host pathname

pathnarne-device pathname

pathname-d i rectory pathname

pat h n arne - n arne pathname

pathname-type pathname

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[.Function]

[Function]

[Function]

[Function]

[Function]

[Function}

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

•

•

•

COMMON LIsp SUMMARY

pathname-vers ion pathname

pathname-p1 ist pat/mame

names tr i ng pat/mame

f i 1 e-names tr i ng pathname

directory-namestring pat/mame

hos t-names tr i ng pathname

enough-namestring pat/marne &optiona1 defaults

user-homed i r-pathname &opt i ona 1 host

init-file-pathname program-name &optiona1 host

defau1t-pathname-defau1ts

add -log i cal - pat h name - h 0 s t logical-host actual-host default-device translations

trans 1 ~ted-pathname pal/mame

b a c k - t ran s 1 ate d - pat h name logical-pathname actual-palhname

open filename &key :direction :type :if-exists :if-does-not-exist

with-open-fi 1 e bindspec {form}*

rename-file file new-name &optional erro,..p

delete-file file &optiona1 erro,..p

probe-f i 1 e filename

file-creation-date fik

f i 1 e - aut h 0 r file

file-position file-stream &optional position

fi 1 e-l ength file-stream

load &optional filename &key :verbose :print :if-does-not-exist

:set-default-pathname

1oad-verbose

load-set-default-pathname

load-pathname-defaults

directory pal/marne

s i 9 n a 1 condition-name & res t args

condition-bind bindings iform}·

condition-psetq {spec}·

cond it i on-case form {(condition-names {form}*)}·

err 0 r control-string & res t args

ferror condition~name control-string &rest args

cer ror condition-name control-string &res t args

assert test &optiona1 control-string &rest args

check-type place typespec &optional string

compile name &optional definition

comp i 1 e-f i 1 e &opt i ona 1 input-pathname &key : output-f i 1 e

:set-default-pathname"

·compile-file-set-default-pathname*

dis as s emb 1 e name-o,..compiled-function

documentation symbol doc-type

315

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

[Function]

[Function]

[Function]

[Macro]

(Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Variable]

[Variable]

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

[Macro]

[Macro]

[Function]

[Function]

[Variable]

[Function]

[Function]

316 COMMON LISP REFERENCE MANUAL

prov i de module-name

requ i re module-name &opt i ona 1 pat/mame

tr ace {junction-name}*

untrace {junction-name}*

step form

time form

des c rib e object

i nspec t object

room &optiona1 x

ed &optional x

dr i bb 1 e &opt iona 1 pathname

apropos string &opt i ona 1 package

internal-time-units-per-second

get-decoded-time

get-universa1-time

get-interna1-time

sleep seconds

decode-un i versa 1- time universal-time &opt i ona 1 time-zone

encode-universal-time second minute hour date month year &optional time-zone

lisp-implementation-type

lisp-implementation-version

machine-type

machine-version

machine-instance

host-software-type

host-software-version

short-site-name

long-site-name

*features·

identity object

(End of COMMON LIsp summary.)

[Function]

[Function]

[Macro]

[Macro]

[Macro]

[Macro]

[Function]

[Function]

[Function]

{Function]

[Function]

[Function]

[Constant]

[Function]

[Function]

[FunctionJ

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Variable]

[Function]

INDEX OF CONCEPTS 317

Index

318 COMMON LISP REFERENCI.~ MANUAL

INDEX OF CONCEPTS

Index of Concepts
Index of Concepts

Association list 83, 185
Compatibility note 12. 19. 32. 38.47. 53. 57, 72. 78. 82. 84,
86,87.90.91,94, 99, 102, 103, 106. 108. 110, 111, 118, 123, 124,
125. 129. 130, 135. 142. 143. 144. 163. 164. 166, 175. 176, 177,
182. 183. 186. 190. 20l. 202. 220. 231. 234. 237. 238. 239. 249,
254.261.276.293.295.296.297
Implementation note 12. 13. 14. 56, 95. 111. 125. 127. 128.
130,138.144,145.149.175.195.240.276,290
Query 32. 71, 108. 176, 195. 253. 254. 267. 282. 283. 284.
286,295.296
Rationale 21. 40. 44, 69. 80. 121. 123, 125. 137. 199, 243.
245.254,296.297
-% (new line) format directive 254
-& (fresh line) fonnat directive 254
- ((case conversion) fonnat directive 256
-. (ignore argument) fonnat directive 255
- < (justification) fonnat directive 259
- <return> (ignore whitespace) fonnat directive 254
-7 (indirection) fonnat directive 255 .

(l1lde) format directive 254
-[(conditional) fonnat directive 256
-" (loop escape) fonnat directive 260
-A (Ascii) fonnat directive 252
-8 (Binary) fonnat directive 253
-C (Character) fonnat directive 254
-0 (Decimal) fonnat directive 252
-E (Exponential) fonnat directive 254
-F (Floating-point) fonnat directive 253
-G (Goto argument) fonnat directive 255
-0 (Octal) format directive 253
-P (Plural) fonnat directive 253
-R (Radix) fonnat directive 253
-5 (S-expression) fonnat directive 252
-T (Tabulate) fonnat directive 255
-x (heXadecimal) fonnat directive 253
- { (iteration) fonnat directive 257
-I· (new page) fonnat directive 254
" macro character 226
macro character 229 .
• macro character 225
(. macro character 223
) macro character 225
, macro character 228

macro character 225
, macro character 227

macro character 226

A-list 185
Access functions 200
AJ)A 12,58.59
ALCn)L 28,40,86,136
APL 130
Array 19

predicate 55

as a substitution table
compared to hash table

Atom
predicate 53

Bignum 11
Bit string

infinite 138
integer represcntion

Bit-vector
predicate 54

Byte 142
Byte specifiers 142

Car 18.173
Catch 93
Cdr 18.173
Character

predicate 54
Character syntax 229
Cleanup handler 94
Comments 225
Common data type

predicate 55
Compiled function

predicate 55
Complex number

predicate 54
Conditional

and 58
or 59
during read 233

Cons 18.173
predicate 53

Constructor function
Control structure 61

Data type
predicates 52

Declaration
declaration 195
function 104
function type 104
ignore 105
intine 105
notinline 105
optimize 105
special 103
type 104

Declaration declaration
Declarations 101
Defstruct 199
Denominator 12

183
189

138

200

105

319

320

Device (path name component)
Directory (pathname component)
Dotted list 173
Dynamic exit 93

Empty list
predicate 52

Environment structure 61
Extent 27

False
when a predicate is 51

Fixnum 11
Roating-point number 13

predicate 54
Row of control 61
Formatted output 251
FORTRAN 2,12.15.86, 136.254
Function

predicate 55
Function declaration 104
Function type declaration 104

Hash table 189. 191
predicate 191

Home directory 269

264
264

Host (pathname component) 264

Ignore declaration
Implicitprogn
Indicator 107
Init file 269

105
61,73.74,75.76.77.81

Inline declaration 105
Integer 11

predicate 53
INTERLISP 1, 2, 3, 12. 32. 72. 87, 106. 108. 118, 129, 136. 163.
164,175,176,190.237.293
Iteration 80

Keywords
for de f s t rue t slot-descriptions 203

LISP 1.5 86, 163
Lisp Machine LISP 1. 2. 12. 19.57. 78. 84, 87. 90. 91, 99. 108.
110, 111, 115. 124, 125, 129, 136. 163, 164. 175, 177, 190. 201,
202.231,234,237,276,282.286,293.295.296,297
List 18.173

predicate 53
See also dotted list .

List syntax 223
Logical operators

on nil and non- n i 1 values 58
Logical pathnames 271

MACLISP 1,2,12. 19. 21, 38, 47, 53. 82, 87, 94,' 99, 102. 103,
104, 106, 108. 110. 118, 121, 123, 124. 125, 129, 136. 142. 143.
144, 159, 163. 166. 175. 182. 183. 186. 190. 211. 220. 231. 234.
237,238,239.243.249,276.291.293
Macro character 223
Mapping 85

COMMON LISP REFERENCE MANUAL

Merging
of path names 265
sorted sequences 171

Multiple values 89
returned by read- from-s tr i ng

Name (pathname component) 264
Naming conventions

predicates 51
NIL 1,87,108,111,136.175.177
Non-local exit 93

. Notinline declaration 105
Number 121

floating-point 13
predicate 53

N u·meralor 12

Optimize declaration 105

Package
predicate 117

Package cell 107
Parsing 223

of pathnames 265
PASCAL 23,58,59.123
pUI15,136
Plist 107
Position

ofa byte 142
Predicate 51
Predicates

true and false 51
Print name 107, 110, 193
Print-name

coercion. to string 197
Printed representation 219
Printer 219. 238
Property 107
Property list 107

compared to association list 107
compared to hash table 189

Pseudo-predicat~ 51. 151

Querying the user
Quote character

Random-state
predicate 146

Rank 19
Rational

predicate 53
Reader 219.220
Readtable 234

predicate 235
Record structure

S-l LISP

SCHEME

Scope
Set

1.2
1

27

261
225

199

247

•

INDEX OF CONCEPTS

list representation 183
Sets

bit-vector representation 138
in finite 138
integer representation 138

Shadowing 28
Sharp-sign macro characters 229
Simple bit-vector

predicate 54
Simple string

predicate 54
Simplc' vector

predicate 54
Size

ora byte 142
Sorting 169
Special declaration 103
SPICE LISP I, 108
STANDARD LISP 2, 136
String 193

predicate 54
String syntax 226
Structure 199
Structured path name components 265
Substitution 182
Symbol 9, 107

coercion to a string
coercion to string
predicate 53

Symbol syntax 226

Throw 93
Tree 19
True

193
197

~hen a predicate is 51
Type (pathname component) 264
Type declaration 104
Type spccifiers 31

Unwind protection 94

Vector
predicate 54

Version (path name component) 264

Yes-or-no functions 261

321

322 COMMON LISP REFERENCE MANUAL

"

INDEX OF VARIABLFS AND CONSTANTS

Index of Variables and Constants
Index of Variables and Constants

* 212
** 212
*** 212
+ 212
++ 212
+++ 212

212
I 212
II 212
III 212
base 239,248
compi1e-fi1e-set-defau1t-pathname 278.290
*defau 1 t-pathname-def au1 ts * 267.268.269.271
error-output 214
evalhook 209
* f eat u res * 234. 298
*1 oad-pathname-defau1 ts· 271.278.279.290
load-set-default-pathname 278
* 1 oad-verbose* 278,278
*macroexpand-hook * 100,100
package Il2, 115, 117, 221,240,248
prinarray 240,241,242,248
pr i ncase 240.240.248
·princi rcl e* 178.238,240,248
prinescape 207.238.239,240,248
*pr i n 1 ength * 221,233,241,242,248
prinlevel 207,234,241,242.248
prinpretty 207,238.248
* p r; n r ad i x * 239.248
* query- i 0* 214,261,262
random-state 145
*read-defau1 t-fl oat-format· 15,239,243
readtable 235,235
·sample-variable· 5
*standard-input· 213,243,294
• standard-output * 213.248,251,278,293,294,295
termina1-io 214,243,248,261
-trace-output· 214,292,293

A

boole-l 139
bool e-2 139
boole-and 139
boole-andcl 140
bool e-andc2 140
bool e-cl 139
boole-c2 139
bool e - c 1 r 139
boo 1 e-eqv 139
boole-ior 139
boole-nand 139
bool e-nor 139

boo 1 e-orc 1 140
boo 1 e-orc2 140
boole-set 139
boo 1 e- xor 139

C
char-bits-l imit
char-code-limit
char-control-bit
char-font-l imit
char-hyper-bit
char-meta-bit
char-super-bit

D

16. 149, 154
149, 154

156
16.149,154

156
156

156

double-float-epsilon 147
double-float-negative-epsi10n 147

E

F

·G

H

I
internal-time-units-per-second

J

K

L
lambda-list-keywords 47
1east-negative-double-f10at
1east-negative-long-f10at
1east-negative-short-float
least-negative-sing1e-f10at
least-positive-double-f10at
least-positive-long-float
1east-positive-short-float
least-positive-single-float
long-float-epsilon 147
long-float-negative-epsilon

147
147

146
146
146

147
146

146

147

M
most-negative-double-float 147
most-negative-fixnum 11,146
most-negative-long-float 147
most-negative-short-float 146
most-negative-single-float 146
mos t-pos it i.ve-doub 1 e-fl oat 146
mos t-pos it i ve-fi xnum 11,49.146

295,296

323

324

most-positive-long-float
most-positive-short-float
most-positive-single-float

N
nil 3, 29,51,211, 287

0,

P
pi 29,130,2II,287

Q

R

S

147
146

146

sample-constant' 5
short-float-epsilon 147
short~float-negative-epsilon 147
single-float-epsilon 147
single-float-negative-epsilon 147

T
t 49,51, 211

U

V

W

X

Y

Z

COMMON LISP REFERENCE MANUAL

INDEX OF KEYWORDS 325

326 COMMON LISP REFERENCE MANUAL

•

INDEX or KEYWORDS

A
:abort

for close 217
:append

for if-exists option to open 275

B
:base

for wr i te 248
for write-to-string 249

c
:conc-name

for defstruct 202,204
:constructor

for defstruct 202,205,207
:contradictory-arguments

for s i 9 n a 1 286
:count

for del ete 166
for del et.e-if 166
for del ete-if-not 166
for nsubstitute 167
for nsubstitute-if 167
for nsubstitute-if-not
for remove 165
for remove-if 165
for remove- if-not 165
for subst it"ute 166
for subst itute- if 166

167

for substitute-if-not 167
:create

Index of I(eywords
Index of Keywords

for string-equal 194
for str~ng-greaterp 195
for s t r i n 9 - 1 e ssp 195
for string-nat-equal 195
fur string-n6t-greaterp 195
for string-not-lessp 195
for s t r i n 9 / = 1.94
for string< 194
for string<= 194
for s tr i ng= 194
for string> 194
for s tr i ng>= 194

:end2
for maxprefix 168
for maxsuffix 168
for mismatch 168
for replace 165
for search 169
for s t r i n 9 - e qua 1 194
fur string-greaterp 195
for s t r i n 9 -1 e ssp 195
for string-nat-equal 195
for s tr i ng-not-greaterp 195
for string-not-lessp 195
for s t r i n 9 / = 194
for s t r i n 9 < 194
for string<= 194
for s t r i n 9 = 194
for string> 194
for s tr i ng>= 194

:end
for count 168
for count- if 168

for if-does-not-exist option to open 275 for count- if-not 168

D
:default

for type option to open 274
: defaults

for make-pathname 268
:device

for make-pathname 268
:direction

for open 273
:directory

fur make-pathname

E
:endt

for maxprefix
for maxsuffix
for mi smatch
for repl ace
for search

168
168

168
165

169

268

for de 1 ete 166
fur delete-duplicates 166
for del e t e - i f 166
for del ete- if-not 166·
for fi 11 164
for find 167
for fin d - if 167
for fin d - if - r'! 0 t 167
fur nstring-capitalize 197
for ns tr i ng-downcase 197
for nstring-upcase 197
for n sub s t it ute 167
for n sub s tit ute - if 167
fur nsubstitute-if-not 167
for pos i t ion 168
for position-if . 168
for position-if-not 168
for reduce 164
for remove 165
for remove-duplicates 166

327

328

for remove- if 165
for remove-if-not 165
for string-capitalize 196
for string-downcase 196
for string-upcase 196
for subs t itute 166
for substitute-if 166
for substitute-if-not 167
fur with-input-from-string 216

:error
for if-does-not-exist option to open 275
for if-ex ists option to open 274
for signal 286

:eval-when
for defstruct 207

F
:failed-assertion

for signal 287
:failed-handler

for si gna 1 287
:from-end

for count 168
for count-if 168
for count-if-not 168
for delete 166
for delete-if 166
for delete-if-not 166
for find 167
for fi nd-if 167
for fin d - i f - not 167
for maxprefix 168
for maxsuffix 168
for mi smatch 168
for nsubstitute 167
for nsubs t i tu te- if 167
for nsubstitute-if-not
for position 168
for position-if 168

167

for pas it ion- if-not 168
for reduce 164
for remove 165
for remove-if 165
for remove- if-not 165
for search 169
for substitute 166
for substitute-if 166
for sub~titute-if-not 167

G

H
:host

for make-pathname 268

I
:if-does-not-exist

for load 278
for open 275

:if-exists

COMMON I.lSP REFERENCE MANUAL

for open 274
:include

for defstruct 25.205
: index

fur with-input-from-string 216
:initial-element

for make-l is t 177
for make-sequence 162
for make-string 195

: initial-offset
for defstruct 207

:initial-value
for reduce 164

:input
for direction optionto open 273

:. inval id-form
for signal 287

:invalid-function
for s i g n a 1 287

:invalid-variable
for s i g n a 1 287

:invisible
for de f s t r u c t slot· descriptions 203

:io
for direction option to open 273

J

K
:key

for adjoin
for count
for count- if

184
168

168
for count- if-not
for de 1 ete 166
for del ete- if 166

168

for del ete- if-not 166
for find 167
for fin d - i f 167
for fin d - i f - not 167
ror intersection 184
for maxpre~ix 168
for maxsuffix 168
for memb e r 183
for member- if 183
fur member-if-not
for merge 171
for m ism at c h 168

183

184 ror nintersection
for nset-difference 185

nset-exclusive-or 185 for
for
for
for
for
for
for
for
for
for

nsub 1 is 183
nsubst 182
nsubst-if 182
nsubst-if-not 182
nsubs t i tute 167
nsubstitute-if 167
nsubstitute-if-not 167
nun ion 184
pos it i on 168

•

e

INDEX OF KEYWORDS 329

for pos it i on- if 168
for pos i t ion- if-not 168
for remove 165
for remove-if 165
for remove-if-not 165
for search 169
for set-difference 185
for set-exclusive-or 185
for sort 169
for stable-sort 169
for sublis . 183
for subsetp 185
for subst 182
for subs t- if 182
for subst-if-not 182
for substitute 166
for sU'bs t itute- if 166
for substitute-if-not 167
for union 184

L

M
: mi'ss i ng-handl er

for signal 287

N
:name

fur make-pathname 268
:named

for defs truct 205,205
:new-version

for if-ex i sts option to open

0
:output-fi1e

for comp il e-f i 1 e 290
:output

274

for direction option to open 273
:overwrite

for if-exists option to open 274

p
:predicate

for defstruct 205
:prinarray

for wr ite 248
fur write-ta-string 249

:princase
for write 248
fur write-to-string 249

:princircle
for wri te 248
fur write-to-string 249

:prinescape
for wri te 248
fur write-ta-string 249

:prinlength
for wri te 248
fur write-ta-string 249

:prinlevel
for wr ite 248
for write-to-string 249

:prinpretty
for wr ite 248
for write-to-string 249

:prinradix
for wr ite 248
for write-to-string 249

:print-function
for defstruct 23,207

:print
for load 278

:probe
for direction optionto open 273

Q

R
:read-on1y

for de f st r u c t slot-descriptions 203
:rehash-size

fur make-hash-table 190
:rehash-thresho1d

fur make-hash-tab1e 190
:rename-and-delete

for if - e xis t s option to open
: rename

for if - e xis t s option to open

S
:set-defau1t-pathname

for camp il e-f i 1 e 290
for load 278

:size
fur make-hash-tab1e 190

:startl
for maxprefix 168
for maxsuffix 168
for mi sma tch 168
for replace 165

. for search 169
for s t r i n 9 - e qua 1 194
for string-greaterp 195
for s t r i n 9 -1 e ssp 195
for s t r i n 9 - nat - e qua 1 195

274

274

for string-not-greaterp 195
for string-not-1essp 195
for str i ng/= 194
for s tr i ng< 194
for s tr i ng<= 194
for s t r i n 9:0 194
for s tr i n9> 194
for string>= 194

:start2
for maxprefix
for maxsuffix
for mi smatch
for rep1 ace
for search

168 .
168

168
165

169

330 COMMON LISP REFERENCE MANUAL

for s tr i ng-equa 1 194 for maxsuff i x 168
for string-greaterp 195 for member 183
for s t r i n 9 - 1 e ssp 195 for mi smatch 168
for string-not-equal 195 for nintersection 184
for string-not-greaterp 195 for nset-difference 185
for s t r i n 9 - not - 1 e ssp 195 for nset-exclusive-or 185
for string/= 194 for nsub1is 183
for s tr i ng< 194 for nsubst 182
for string<= 194 for nsubst itute 167
for string= 194 for nun ion 184
for string> 194 for position 168
for s tr i ng>= 194 for rassoc 187

:start for remove 165
for count 168 for remove-duplicates 166
for count- if 168 for search 169
for count- if-not· 168 for set-d.ifference 185
for de 1 ete 166 for set-exc1usive-or 185
for delete-dupl icates 166 for s'ublis 183
for de 1 ete- if 166 for subsetp 185
for de 1 ete- if-not 166 for subst 182
for fi 11 164 for substitute 166
for find 167 for tree-equal 174
for fin d':" i f 167 for union 184
for fin d - i f - not 167 :test
for nstring-capital ize 197 for adjoin 184
for nstring-downcase 197 for assoc 186
for ns tr i ng-upcase 197 for count 168
for nsubstitute 167 ior delete 166
for n sub s t it ute - i f 167 for delete-duplicates 166
for n subs t itu te- if-not 167 for find 167
for pas i t ion 168 fur intersection 184
for pas it ion - i f 168 for make-hash-table 190
for pos it i on- if-not 168 for maxprefix 168
for reduce 164 for maxsuffix 168
for remove 165 for memb e r 183
for remove-duplicates 166 for mi smatch 168
for remove-if 165 for n inter sec t i on 184
for remove- if-not 165 for nset-d i fference 185
fur string-capitalize 196 fur nset-exclusive-or 185
for s tr i ng-downcase 196 for n sub 1 i s 183
for s tt i ng-upcase 196 for nsubst 182
for subst i tute 166 for nsubst i tute 167
for sub s tit ute - i f 166 for nun i on 184
for substitute-if-not 167 for po sit ion 168
for wi th- i npu t-from- s t r,i ng 216 for rassoc 187

:stream for remove 165
for wr i te 248 fur remove-duplicates' 166

:supersede for search 169
for if-exists optionto open 275 for set-difference 185

fur set-exc1usive-or 185
T for sub lis 183

:test-not for subsetp 185
for adjoin 184 for subst 182
for assoc 186 for sub s t it ute 166
for count 168 for tree-equa 1 174
for delete 166 for un i on 184
fur delete-duplicates 166 :too-few-arguments
for find 167 for s i g n a 1 286
for intersect ion 184 :too-many-arguments
for maxprefix 168 for signal 286

INDEX OF KEYWORDS 331

:type
for make-pathname 268
for de f s t rue t slot-descriptions 203
for defstruct 204
for open 247,250,273

U
:unbound-variable

for s i g n a 1 287
:undefined-function

for signal 287
:unexpected-keyword

for s i g n a 1 286
:unnamed

for defstruct 205

V
:verbose

for 1 o.a d 278
:version

for make-pathname 268

W
:wrong-type-argument

for signal 286

x
y

z

332 COMMON LISP REFERENCE MANUAL

INDEX OF FUl\ICnONS, MACROS, AND SPECIAL FORMS 333

•• Index of Functions, Macros, and Special Forms
Index of Functions, Macros, and Special Forms

• 125 c ... r 174
·eval 209,210,210 caaaar 67,174
+ 124 caaadr 67,174

124 caaar 67,174
1= 122 caadar 67,174
I 125 caaddr 67,174
1+ 125 caadr 67,174
1- 125 caar 67,174
<= 122 cadaar 67,174
< 122,152 cadadr 67, 174

56,121,122,152 cadar 67, 174
>= 122 caddar 67,174
> 122 cadddr 67, 174

caddr 67,174
A cadr 67,174

abs 128 car 65,67,173,176
acons 107,186 case 78, 78,91,283
acos 129 catch-all 29,40,91,93

acosh 130 catch 29,40,61,91,93
add-logical-pathname-host 272 cdaaar 67,174
adjoin 179,184 cdaadr 67,174
alpha-charp 150 cdaar 67,174
alphanumericp ~1 cdadar 67,174
and 40,58, 77,92 cdaddr 67, 174
append 177,178,228 cdadr 67,174
app 1 y 23, 71,91,97,99 cdar 67,174
apropos 294 -cddaar 67,174
aref 20,67,193 cddadr 67,174
arrayp 55 cddar 67,174
ash 141 cdddar 67,174
as in 129 cddddr 67,174
asinh 130 cdddr 67,174
assert 285,287 cddr 67,174
as soc- if-not 186 cdr 67,173,181
assoc- i f 186 cei ling 125,135
assoc 185,186 cerror 5,284,285,285,288
fatan 129 char-bit 67,157
atanh 130 char-b its 149,154
atom 53 char-code 149,154

char-down case 151,155,196
B char-equa 1 57,153,194

back-translated-pathname 272 char-font 149,154,231
bit-vector-p 54 char-greaterp 153
bit 67 char-int 152,155
block 29,30,40,48,61, 79,80,82.83,8~88.92.93 char-lessp 153,195
boole 139 char-name 156
bothcasep 151 char-not-~qual 153
boundp 62,63 char-not-greaterp 153
butlast 180 char-not-lessp 153
byte-pos i t ion 142 char-upcase 151,155,196
byte-size 142 char/= 152

byte 142 char<a 152
char< 152,195

c ch a r" 56, 152, 246

334

char>= 152
char> 152
char 67,193 .
character 38.154
characterp 54,150
check - type 285
cis 128
clear-input 246
clear-output ~O

close 217.272.275
cl rhash 191
code-char 1S4
coerce 37,38,134.154,162.163
commonp 55
comp i 1 e-f i 1 e 278.279.290.290
compile 289
compiled-function-p 55
compiler-let 74
compl ex 15,34.137
comp 1 exp 54,122
conca tena te 162,177
cond 51,59,76,,78,81,92.98
con d i t ion - bin d 282, 283
cond it i on -case 283
condition-psetq 282
conjugate 126
cons 34,174
consp 53
constantp 211
copy-alist 178
copy-l. is t 178
copy-read tab 1 e 235
copy-seq 161.178
copy-symbol 112
copy-tree 178,182
cos 128
cosh 130
count- ; f-not· 168
count- if 168
count .168

D
decf 70,126
dec 1 are 9,40,44,48,82.101
decode-universal-time 297
defconstant 40,48.211.291
defmacrc 36,41,47, 70, 76.97,98,99,100,101,102,277,
291
defparameter 48,291
defsetf 68,70,101,102,201,291
defstruct 11,23,25,31,36,67,170, IiI, 174, 201, 233,
241,291
deftype 31,36,101,102,291
defun 42,46,47,75.79,99,101,102,104,277,291
defvar 48,277,291
delete-duplicates 166
delete-file 276
delete-if-not 166
delete-if 166
del ete 166,181

COMMON LISP REFERENCE MANUAL

denominator 134.239
depos it - fie 1 d 67, /43, 144
describe 293
dig i t-charp 151,155
digit-weight 155
directory-namestring 269
d ire c tor y 279
dis ass emb 1 e 290
do· 80, SO, 101
do-all-symbols 101, 119,294
do- symbo 1 s 85, 101, 119
do 29,61,64,80,80,8~92, 101
documentat ion 37,48,49,67,99,201,291
do 1 is t 80,84, 92, 101
dot imes 80,84,92,10/
dpb 67, 143, 143
dribbl e 294

E
ed 294
eighth 176
e 1 t 67, 161. 193
encode-universal-time 297
endp 83,173,175
enough-namestring 269
eq 55

compared to e qua 1 55
eql 32.56.121,123.153
equa 1 56,153,174,194,219
equalp 49,57
error 5,284.286.288
eva l-when 49,98,103,207,232,289
eval 91,97,209
eva 1 hook 100,209,210,210
evenp 122
every 163
exp 127
export 118
expt 127

F
fboundp
fcei.l ing
ferror
ffloor
fifth

63,63
i36

285,288
136

176
file-author 277
file-creation-date 277
file-length 277,277
file-namestring 269
f i1 e-pos it i on 275,277
fi 11 164
f i nd- if-not 167
find-if 167
find 167,183.185.186
finish-output 250
first 173.176
fl et 40,63,65,75,97,101
float-exponent 137
float-radix 13.137

•

•
INDEX OF FUNCTIONS. MACROS. AND SPECIAL FORMS

fl 0 a t - s i 9 n 137
f10at-significand 137
fl oat 130.134
floatp 54.122
fl oor 38.89.125. 135. 136
fmakunbound 63,65
force-output ~O

format 197.250.251,284,285
fourth 176
fresh--1 ine 249,254,261
fround 136
fset 63,65
ftruncate 136
funca 11 23.71,91,97,100
funct ion 30,40,42,62
functionp 55

G
gcd 126
gensym 112.112
gentemp 112,112
get-decoded-time 296
get-di spa tch-macro-character 237
get- inter na 1-t ime 296.296
get-macro-character D6
get-output-stream-string 215
get-properties 110
get-universa1-time 296
get 66.67,108,108,109
getf 67.70,108,109,109.110
gethash 67,191
go 2~40,80,81,82,84,8~89,94
graphic-charp 150,151,156

H
hash-tab1e-count 191
hash-tab 1 e-p 55,191
host-namestring 269
host-software-type 298
host-software-version 298

I
identity 299
if 40, 51, 59, 77, 77,92. 98
imagpart 137
i ncf 70,126
i ni t-fi 1 e-pathname 269,298
input-stream-p 217
inspect 294
i nt-'char 156
integer-1 ength 141,145
i ntegerp 53.122
intern 55,111,112,117
i nternedp 118
intersection 184
i sqrt 127

J

K

335

keywordp 113

L
1 abe 1 s 40,42,63.65. 75,97. 101
las t 176
1 cm 126
1db-test 143
1 db 67,143
1 d iff 181,184
length 161,175
1 et* 40,74.83.88,91,101
1 et 28,39,45,73.74, 75.80.83,87.88,91.101
lisp-imp1ementation-type 297
lisp-imp1ementation-version 297
, ist* 177
1ist'-length 175
1 i st 177
1 isten 246.246
1 is tp 53. 173
load 278.278. 279, 291
1 oca 11 y 101.103
log 127
10gand 138
1 ogandc 1 139
logandc2 139
10gbitp 141
logcount 141
logeqv 138
logior 138
lognand 139
10gnor 139
lognot 140
.' ogorc1 139
10gorc2. 139
logtest 140
logxor 138
long-site-name 298
loop 80, 80,81,83
lowercasep 151,152,155

M
machine-instance 29~
machine-type 298
machine-version 298
macro-p 63,63
macro 97,101,102
macroexpand-l 100.100
macroexpand 63,100
macro 1 et 40,75.97,100.101
make-array 33,233,241
make-broad cast-stream 215
make-char 154
make-concatenated-stream 215
make-dispatch-macro-character 237
make-echo-stream 215
make-hash-table 190
make-' ist 177
make-package 116
mak'e-pathname 268
make-random-state 145

'336

make-sequence' '162 "
make-string-input-stream
make-string-output-stream
make-string 195
make-symbol 111

.. 1, ~ • .".

215 ,."
215

make-synonym-stream 214,214
make-two-way-stream 215
makunbound 62,63,65,75
map 38,85,97,163
mapc 85,163
mapcan 85
mapcar 85
mapcon 85
maphash 191
map1 85, /63
map1 ist 85 I'

mask-field 67,143
max 123
maxpref i x 168
maxsuffix 168
member- if-not 183 ' ..
member- if 183
member 5/,183,185:
merge-pathname-defaul ts 268
merge 171
min 124
minusp 122'
mi smatch 168
mod 136
mu 1 tip la-va 1 ue-b i n'd ·:89,90,91,101,135
m1l1 tip 1 e-va 1 ue-ca 11 35,40,70,90,91
multip1e-value-1 ist ::89,90
rou 1 tip 1 e-va 1 ue-pro9-i:" 40,72,90,91
multiple-value 89,91,;91.92

N ~.

name-char 156
namestring 269
nbutlast 180,181
nconc 86. 177,178.181,228 ; "
n intersect ion 184
ninth 176
not 52.58
notany 163
notevery 163
nreconc 178.179.181
nreverse 82,162,170, 181,- ~.;

nset-difference 185
nset-exclusive-or 185
nstring-capitalize 197
nstring-downcase 197
nstring-upcase 197
nsubl is 183
nsubst-if-not 182
n sub s t - i f 182
nsubst 182
nsubstitute-if-not 167
nsubstitute-if 167
nsubstitute 167
nth 67.118,175.176

:\

COMMON LISP REFERENCE MANUAL

nthcdr 176
nu 11 52,58,83 • numberp 53,122
numerator 134,239
nun i on 184

o
oddp 122
open ix, 22, 214, 217, 250, 265., 273.276
or 40,59,77,92
output-stream-p 217

p
package-name 117
package 117
packagep 55,117
pa i rli s 107,186
parse-namestring 267
parse-number 247
pathname-device 268
pathname-directory 268
pathname-host 268
pathname-name 268
pathname-plist 269
pathname-type 268
pathname-version 268
pathname 266
pathnamep 55,268
peek -char 245
phase 128
pl usp 122
pop 70,180
position-if-not 168
position-if 168
position 32;.168,183, /86
pprint 248
prinl-to-string 197,249
p r i n 1 12, 238, 248, 249, 252
princ-to-string 197,249
p r inc 238, 248, 249, 252
print 213,219,248
probe-file 277
prog* 87,92.101
progl 61,72.90,91,92
prog2 61.72
prog 29,80,87.92,101
progn 40,47,61,72,79,80,81,91
progv 40,65,75.91
provide 291
psetf 68
psetq 64,81,83
push 70,179
pushnew 179,184
putf 70,108,109

Q
quote 40,62.63 • ,)

\R f

ran'dom-state-p 55.146

•

•

•

INDEX OF FUNCTIONS, MACROS, AND SPECIAL FORMS

random 144
rassoc-if-not 187
rassoc-if 187
r as soc 185.187
rat i ona 1 38.134
rationalize 134
rat ion alp 53, 122
read-b i nary-object ix. 247. 250
read-byte 247.271'.274
read-char-no-hang 246
read-char 213.245. 246, 273~ :~ ..
read7delimited-list 236,2~
read-from-string 246
read-l i ne 243,245,249
read-preserving-whitespace 243,246 ~
read 7, 10, 21, 62, 110, Ill, 213. "223. 240. 243, 243, 248,
249,252
readtablep 55,235
rea 1 part 137
reduce 164
rema i nder 136
remf 70,108,110
remhash 191
remove-duplicates 166
remove- if-not 86,165
remove- if 165
remove 160,165
remprop 109,110
rename-file 276
rep 1 ace 161, 165
require 291
reset-fil1-pointer 193
res t 173, 176
return-from 5,30,40,48,79,80,81,89,92,94
return 41,48,61,79,81,82,83,84,88,92,93,119
rev append 178,179
reverse 162
room 294
rotatef 69
round 125,135
rp 1 aca 65,173,181
rplacd 173,181

S
samepnamep 110
sample-function 5
sam~le-macro 5
sam~le~special-form 5
sca 1 e-f1 oat 137
search 16/,169
second 176
set-char-bit 67,157,157
set-difference 185 .'
set-dispatch-macro-character 237
set-exc1usive-or 185
set-macro-character 236,237
set-syntax-from-char 235
set 63, 64, 65, 287
setf 64,66,68,69, 70, 108, 109, 110, 126, 143,157, 161,
173,174,175,179,180,181,191,194,203,276,285,291;,:, -

setq
seventh
sgvref
shadow
shiftf

39,40.64,65.73,74,81,83,84,92,104
176

67
118
68

short-site-name 298
signa 1 281
signum 128
simple-bit-vector-p
simple-string-p 54
simple-vector-p 54
sin 128
sinh 130
sixth 176
sleep 297
some 163
sort 169
special-form-p 63.63
sqrt 127.292
stable~sort 169

54

standard-charp 55.150
step 210.293
stream-el ement-type ix. 21;; 274
s treamp 55.217
string-capi tal ize 196,197,240,256
str i ng-charp 55.150,193
str i ng-downcase 196
s t r i n 9 - e qua 1 194
string-greaterp 195
s t r in 9 -1 eft - t rim 195
string-lessp 195
str i·ng-not-equa 1 ': 195
string-not-greaterp 195
string-not-lessp 195
string-right-trim 195
s t r i n g - t r ; m 195
string-upcase 196
s tr i n9-/= 194
s tr i ng<= 194
string< 194
string= 194
string>.= 194
string> 194
string 197
str i ngp 54,193
subl is 183
subseq 67,161
subsetp 185 . 1 ,-~

subst-if-not 182
sub s t - 1 f 182
subst 182,183 ;. ~,li:: '",-

substitute-if-not 167
su b s t it ute - if 166
substitute 166,182
subtypep 52
svref 67
sxhash 191
symbo l-funct ion 23,63,67
symbol-package 113
symbol-p11st 67,109,269

i:

"'/

338 COMMON LISP REFERENCE :VIANUAL

symbol-pr'int-name 110
symbo l-va 1 ue 62~ 65.67. //7.209.287
symbo 1 p 53

Z
zerop 122 •

T
tagbody 40.80.82.83.84.87,87,88,89
ta il p 18"
tan 128
tanh 130
tenth 176
terpri 249,254
the 35,40, 68, 106
third 176
throw. 29.40,42,61.80.8/.9/.95.276.28/.283
time 293
trace 214.292
trans 1 a ted-pathname 266.272.272
tree-equa 1 57. 174
truename 2(~. 269, 277.279
truncate 35.125. 135. JJ6
type-of 9,38
type.case 78.9/
typep 9,34,37.38.52.52.200, 20/. 205

U
unintern 118.118. JJ9
union 184
un 1 ess 51.59,71,91
unread-char 243, US
un trace x,292
ullwind-a 11 ix, 29, 40, 93 • unwind-protect 29,40.9/,94; 275
uppercasep 151.155
user-homed1 r-pathname 269,298

V
va 1 ues-l i st 90
val;.Jes 42.6/.89,89,220
vector-push 216
vectorp 54

W
when 51. SQ, 77, 71, 91
with-input-from-string 216
with-ope.n-file 27,214,275.276
with-output-to-string 216
write-b inary-object ix. 247, 2SO
wri te-byte 250.273.274
write-char 213,249,273
write-line 245.249
write-string 249
write-to-string 249
wri te 248. 249

x

y
y-or-n-p 261
yes-or-no-p. 214,261 •

	Steele_CLRM-Laser-Nov_19820001_a
	Steele_CLRM-Laser-Nov_19820001_b
	Steele_CLRM-Laser-Nov_19820002_a
	Steele_CLRM-Laser-Nov_19820002_b
	Steele_CLRM-Laser-Nov_19820003_a
	Steele_CLRM-Laser-Nov_19820003_b
	Steele_CLRM-Laser-Nov_19820004_a
	Steele_CLRM-Laser-Nov_19820004_b
	Steele_CLRM-Laser-Nov_19820005_a
	Steele_CLRM-Laser-Nov_19820005_b
	Steele_CLRM-Laser-Nov_19820006_a
	Steele_CLRM-Laser-Nov_19820006_b
	Steele_CLRM-Laser-Nov_19820007_a
	Steele_CLRM-Laser-Nov_19820007_b
	Steele_CLRM-Laser-Nov_19820008_a
	Steele_CLRM-Laser-Nov_19820008_b
	Steele_CLRM-Laser-Nov_19820009_a
	Steele_CLRM-Laser-Nov_19820009_b
	Steele_CLRM-Laser-Nov_19820010_a
	Steele_CLRM-Laser-Nov_19820010_b
	Steele_CLRM-Laser-Nov_19820011_a
	Steele_CLRM-Laser-Nov_19820011_b
	Steele_CLRM-Laser-Nov_19820012_a
	Steele_CLRM-Laser-Nov_19820012_b
	Steele_CLRM-Laser-Nov_19820013_a
	Steele_CLRM-Laser-Nov_19820013_b
	Steele_CLRM-Laser-Nov_19820014_a
	Steele_CLRM-Laser-Nov_19820014_b
	Steele_CLRM-Laser-Nov_19820015_a
	Steele_CLRM-Laser-Nov_19820015_b
	Steele_CLRM-Laser-Nov_19820016_a
	Steele_CLRM-Laser-Nov_19820016_b
	Steele_CLRM-Laser-Nov_19820017_a
	Steele_CLRM-Laser-Nov_19820017_b
	Steele_CLRM-Laser-Nov_19820018_a
	Steele_CLRM-Laser-Nov_19820018_b
	Steele_CLRM-Laser-Nov_19820019_a
	Steele_CLRM-Laser-Nov_19820019_b
	Steele_CLRM-Laser-Nov_19820020_a
	Steele_CLRM-Laser-Nov_19820020_b
	Steele_CLRM-Laser-Nov_19820021_a
	Steele_CLRM-Laser-Nov_19820021_b
	Steele_CLRM-Laser-Nov_19820022_a
	Steele_CLRM-Laser-Nov_19820022_b
	Steele_CLRM-Laser-Nov_19820023_a
	Steele_CLRM-Laser-Nov_19820023_b
	Steele_CLRM-Laser-Nov_19820024_a
	Steele_CLRM-Laser-Nov_19820024_b
	Steele_CLRM-Laser-Nov_19820025_a
	Steele_CLRM-Laser-Nov_19820025_b
	Steele_CLRM-Laser-Nov_19820026_a
	Steele_CLRM-Laser-Nov_19820026_b
	Steele_CLRM-Laser-Nov_19820027_a
	Steele_CLRM-Laser-Nov_19820027_b
	Steele_CLRM-Laser-Nov_19820028_a
	Steele_CLRM-Laser-Nov_19820028_b
	Steele_CLRM-Laser-Nov_19820029_a
	Steele_CLRM-Laser-Nov_19820029_b
	Steele_CLRM-Laser-Nov_19820030_a
	Steele_CLRM-Laser-Nov_19820030_b
	Steele_CLRM-Laser-Nov_19820031_a
	Steele_CLRM-Laser-Nov_19820031_b
	Steele_CLRM-Laser-Nov_19820032_a
	Steele_CLRM-Laser-Nov_19820032_b
	Steele_CLRM-Laser-Nov_19820033_a
	Steele_CLRM-Laser-Nov_19820033_b
	Steele_CLRM-Laser-Nov_19820034_a
	Steele_CLRM-Laser-Nov_19820034_b
	Steele_CLRM-Laser-Nov_19820035_a
	Steele_CLRM-Laser-Nov_19820035_b
	Steele_CLRM-Laser-Nov_19820036_a
	Steele_CLRM-Laser-Nov_19820036_b
	Steele_CLRM-Laser-Nov_19820037_a
	Steele_CLRM-Laser-Nov_19820037_b
	Steele_CLRM-Laser-Nov_19820038_a
	Steele_CLRM-Laser-Nov_19820038_b
	Steele_CLRM-Laser-Nov_19820039_a
	Steele_CLRM-Laser-Nov_19820039_b
	Steele_CLRM-Laser-Nov_19820040_a
	Steele_CLRM-Laser-Nov_19820040_b
	Steele_CLRM-Laser-Nov_19820041_a
	Steele_CLRM-Laser-Nov_19820041_b
	Steele_CLRM-Laser-Nov_19820042_a
	Steele_CLRM-Laser-Nov_19820042_b
	Steele_CLRM-Laser-Nov_19820043_a
	Steele_CLRM-Laser-Nov_19820043_b
	Steele_CLRM-Laser-Nov_19820044_a
	Steele_CLRM-Laser-Nov_19820044_b
	Steele_CLRM-Laser-Nov_19820045_a
	Steele_CLRM-Laser-Nov_19820045_b
	Steele_CLRM-Laser-Nov_19820046_a
	Steele_CLRM-Laser-Nov_19820046_b
	Steele_CLRM-Laser-Nov_19820047_a
	Steele_CLRM-Laser-Nov_19820047_b
	Steele_CLRM-Laser-Nov_19820048_a
	Steele_CLRM-Laser-Nov_19820048_b
	Steele_CLRM-Laser-Nov_19820049_a
	Steele_CLRM-Laser-Nov_19820049_b
	Steele_CLRM-Laser-Nov_19820050_a
	Steele_CLRM-Laser-Nov_19820050_b
	Steele_CLRM-Laser-Nov_19820051_a
	Steele_CLRM-Laser-Nov_19820051_b
	Steele_CLRM-Laser-Nov_19820052_a
	Steele_CLRM-Laser-Nov_19820052_b
	Steele_CLRM-Laser-Nov_19820053_a
	Steele_CLRM-Laser-Nov_19820053_b
	Steele_CLRM-Laser-Nov_19820054_a
	Steele_CLRM-Laser-Nov_19820054_b
	Steele_CLRM-Laser-Nov_19820055_a
	Steele_CLRM-Laser-Nov_19820055_b
	Steele_CLRM-Laser-Nov_19820056_a
	Steele_CLRM-Laser-Nov_19820056_b
	Steele_CLRM-Laser-Nov_19820057_a
	Steele_CLRM-Laser-Nov_19820057_b
	Steele_CLRM-Laser-Nov_19820058_a
	Steele_CLRM-Laser-Nov_19820058_b
	Steele_CLRM-Laser-Nov_19820059_a
	Steele_CLRM-Laser-Nov_19820059_b
	Steele_CLRM-Laser-Nov_19820060_a
	Steele_CLRM-Laser-Nov_19820060_b
	Steele_CLRM-Laser-Nov_19820061_a
	Steele_CLRM-Laser-Nov_19820061_b
	Steele_CLRM-Laser-Nov_19820062_a
	Steele_CLRM-Laser-Nov_19820062_b
	Steele_CLRM-Laser-Nov_19820063_a
	Steele_CLRM-Laser-Nov_19820063_b
	Steele_CLRM-Laser-Nov_19820064_a
	Steele_CLRM-Laser-Nov_19820064_b
	Steele_CLRM-Laser-Nov_19820065_a
	Steele_CLRM-Laser-Nov_19820065_b
	Steele_CLRM-Laser-Nov_19820066_a
	Steele_CLRM-Laser-Nov_19820066_b
	Steele_CLRM-Laser-Nov_19820067_a
	Steele_CLRM-Laser-Nov_19820067_b
	Steele_CLRM-Laser-Nov_19820068_a
	Steele_CLRM-Laser-Nov_19820068_b
	Steele_CLRM-Laser-Nov_19820069_a
	Steele_CLRM-Laser-Nov_19820069_b
	Steele_CLRM-Laser-Nov_19820070_a
	Steele_CLRM-Laser-Nov_19820070_b
	Steele_CLRM-Laser-Nov_19820071_a
	Steele_CLRM-Laser-Nov_19820071_b
	Steele_CLRM-Laser-Nov_19820072_a
	Steele_CLRM-Laser-Nov_19820072_b
	Steele_CLRM-Laser-Nov_19820073_a
	Steele_CLRM-Laser-Nov_19820073_b
	Steele_CLRM-Laser-Nov_19820074_a
	Steele_CLRM-Laser-Nov_19820074_b
	Steele_CLRM-Laser-Nov_19820075_a
	Steele_CLRM-Laser-Nov_19820075_b
	Steele_CLRM-Laser-Nov_19820076_a
	Steele_CLRM-Laser-Nov_19820076_b
	Steele_CLRM-Laser-Nov_19820077_a
	Steele_CLRM-Laser-Nov_19820077_b
	Steele_CLRM-Laser-Nov_19820078_a
	Steele_CLRM-Laser-Nov_19820078_b
	Steele_CLRM-Laser-Nov_19820079_a
	Steele_CLRM-Laser-Nov_19820079_b
	Steele_CLRM-Laser-Nov_19820080_a
	Steele_CLRM-Laser-Nov_19820080_b
	Steele_CLRM-Laser-Nov_19820081_a
	Steele_CLRM-Laser-Nov_19820081_b
	Steele_CLRM-Laser-Nov_19820082_a
	Steele_CLRM-Laser-Nov_19820082_b
	Steele_CLRM-Laser-Nov_19820083_a
	Steele_CLRM-Laser-Nov_19820083_b
	Steele_CLRM-Laser-Nov_19820084_a
	Steele_CLRM-Laser-Nov_19820084_b
	Steele_CLRM-Laser-Nov_19820085_a
	Steele_CLRM-Laser-Nov_19820085_b
	Steele_CLRM-Laser-Nov_19820086_a
	Steele_CLRM-Laser-Nov_19820086_b
	Steele_CLRM-Laser-Nov_19820087_a
	Steele_CLRM-Laser-Nov_19820087_b
	Steele_CLRM-Laser-Nov_19820088_a
	Steele_CLRM-Laser-Nov_19820088_b
	Steele_CLRM-Laser-Nov_19820089_a
	Steele_CLRM-Laser-Nov_19820089_b
	Steele_CLRM-Laser-Nov_19820090_a
	Steele_CLRM-Laser-Nov_19820090_b
	Steele_CLRM-Laser-Nov_19820091_a
	Steele_CLRM-Laser-Nov_19820091_b
	Steele_CLRM-Laser-Nov_19820092_a
	Steele_CLRM-Laser-Nov_19820092_b
	Steele_CLRM-Laser-Nov_19820093_a
	Steele_CLRM-Laser-Nov_19820093_b
	Steele_CLRM-Laser-Nov_19820094_a
	Steele_CLRM-Laser-Nov_19820094_b
	Steele_CLRM-Laser-Nov_19820095_a
	Steele_CLRM-Laser-Nov_19820095_b
	Steele_CLRM-Laser-Nov_19820096_a
	Steele_CLRM-Laser-Nov_19820096_b
	Steele_CLRM-Laser-Nov_19820097_a
	Steele_CLRM-Laser-Nov_19820097_b
	Steele_CLRM-Laser-Nov_19820098_a
	Steele_CLRM-Laser-Nov_19820098_b
	Steele_CLRM-Laser-Nov_19820099_a
	Steele_CLRM-Laser-Nov_19820099_b
	Steele_CLRM-Laser-Nov_19820100_a
	Steele_CLRM-Laser-Nov_19820100_b
	Steele_CLRM-Laser-Nov_19820101_a
	Steele_CLRM-Laser-Nov_19820101_b
	Steele_CLRM-Laser-Nov_19820102_a
	Steele_CLRM-Laser-Nov_19820102_b
	Steele_CLRM-Laser-Nov_19820103_a
	Steele_CLRM-Laser-Nov_19820103_b
	Steele_CLRM-Laser-Nov_19820104_a
	Steele_CLRM-Laser-Nov_19820104_b
	Steele_CLRM-Laser-Nov_19820105_a
	Steele_CLRM-Laser-Nov_19820105_b
	Steele_CLRM-Laser-Nov_19820106_a
	Steele_CLRM-Laser-Nov_19820106_b
	Steele_CLRM-Laser-Nov_19820107_a
	Steele_CLRM-Laser-Nov_19820107_b
	Steele_CLRM-Laser-Nov_19820108_a
	Steele_CLRM-Laser-Nov_19820108_b
	Steele_CLRM-Laser-Nov_19820109_a
	Steele_CLRM-Laser-Nov_19820109_b
	Steele_CLRM-Laser-Nov_19820110_a
	Steele_CLRM-Laser-Nov_19820110_b
	Steele_CLRM-Laser-Nov_19820111_a
	Steele_CLRM-Laser-Nov_19820111_b
	Steele_CLRM-Laser-Nov_19820112_a
	Steele_CLRM-Laser-Nov_19820112_b
	Steele_CLRM-Laser-Nov_19820113_a
	Steele_CLRM-Laser-Nov_19820113_b
	Steele_CLRM-Laser-Nov_19820114_a
	Steele_CLRM-Laser-Nov_19820114_b
	Steele_CLRM-Laser-Nov_19820115_a
	Steele_CLRM-Laser-Nov_19820115_b
	Steele_CLRM-Laser-Nov_19820116_a
	Steele_CLRM-Laser-Nov_19820116_b
	Steele_CLRM-Laser-Nov_19820117_a
	Steele_CLRM-Laser-Nov_19820117_b
	Steele_CLRM-Laser-Nov_19820118_a
	Steele_CLRM-Laser-Nov_19820118_b
	Steele_CLRM-Laser-Nov_19820119_a
	Steele_CLRM-Laser-Nov_19820119_b
	Steele_CLRM-Laser-Nov_19820120_a
	Steele_CLRM-Laser-Nov_19820120_b
	Steele_CLRM-Laser-Nov_19820121_a
	Steele_CLRM-Laser-Nov_19820121_b
	Steele_CLRM-Laser-Nov_19820122_a
	Steele_CLRM-Laser-Nov_19820122_b
	Steele_CLRM-Laser-Nov_19820123_a
	Steele_CLRM-Laser-Nov_19820123_b
	Steele_CLRM-Laser-Nov_19820124_a
	Steele_CLRM-Laser-Nov_19820124_b
	Steele_CLRM-Laser-Nov_19820125_a
	Steele_CLRM-Laser-Nov_19820125_b
	Steele_CLRM-Laser-Nov_19820126_a
	Steele_CLRM-Laser-Nov_19820126_b
	Steele_CLRM-Laser-Nov_19820127_a
	Steele_CLRM-Laser-Nov_19820127_b
	Steele_CLRM-Laser-Nov_19820128_a
	Steele_CLRM-Laser-Nov_19820128_b
	Steele_CLRM-Laser-Nov_19820129_a
	Steele_CLRM-Laser-Nov_19820129_b
	Steele_CLRM-Laser-Nov_19820130_a
	Steele_CLRM-Laser-Nov_19820130_b
	Steele_CLRM-Laser-Nov_19820131_a
	Steele_CLRM-Laser-Nov_19820131_b
	Steele_CLRM-Laser-Nov_19820132_a
	Steele_CLRM-Laser-Nov_19820132_b
	Steele_CLRM-Laser-Nov_19820133_a
	Steele_CLRM-Laser-Nov_19820133_b
	Steele_CLRM-Laser-Nov_19820134_a
	Steele_CLRM-Laser-Nov_19820134_b
	Steele_CLRM-Laser-Nov_19820135_a
	Steele_CLRM-Laser-Nov_19820135_b
	Steele_CLRM-Laser-Nov_19820136_a
	Steele_CLRM-Laser-Nov_19820136_b
	Steele_CLRM-Laser-Nov_19820137_a
	Steele_CLRM-Laser-Nov_19820137_b
	Steele_CLRM-Laser-Nov_19820138_a
	Steele_CLRM-Laser-Nov_19820138_b
	Steele_CLRM-Laser-Nov_19820139_a
	Steele_CLRM-Laser-Nov_19820139_b
	Steele_CLRM-Laser-Nov_19820140_a
	Steele_CLRM-Laser-Nov_19820140_b
	Steele_CLRM-Laser-Nov_19820141_a
	Steele_CLRM-Laser-Nov_19820141_b
	Steele_CLRM-Laser-Nov_19820142_a
	Steele_CLRM-Laser-Nov_19820142_b
	Steele_CLRM-Laser-Nov_19820143_a
	Steele_CLRM-Laser-Nov_19820143_b
	Steele_CLRM-Laser-Nov_19820144_a
	Steele_CLRM-Laser-Nov_19820144_b
	Steele_CLRM-Laser-Nov_19820145_a
	Steele_CLRM-Laser-Nov_19820145_b
	Steele_CLRM-Laser-Nov_19820146_a
	Steele_CLRM-Laser-Nov_19820146_b
	Steele_CLRM-Laser-Nov_19820147_a
	Steele_CLRM-Laser-Nov_19820147_b
	Steele_CLRM-Laser-Nov_19820148_a
	Steele_CLRM-Laser-Nov_19820148_b
	Steele_CLRM-Laser-Nov_19820149_a
	Steele_CLRM-Laser-Nov_19820149_b
	Steele_CLRM-Laser-Nov_19820150_a
	Steele_CLRM-Laser-Nov_19820150_b
	Steele_CLRM-Laser-Nov_19820151_a
	Steele_CLRM-Laser-Nov_19820151_b
	Steele_CLRM-Laser-Nov_19820152_a
	Steele_CLRM-Laser-Nov_19820152_b
	Steele_CLRM-Laser-Nov_19820153_a
	Steele_CLRM-Laser-Nov_19820153_b
	Steele_CLRM-Laser-Nov_19820154_a
	Steele_CLRM-Laser-Nov_19820154_b
	Steele_CLRM-Laser-Nov_19820155_a
	Steele_CLRM-Laser-Nov_19820155_b
	Steele_CLRM-Laser-Nov_19820156_a
	Steele_CLRM-Laser-Nov_19820156_b
	Steele_CLRM-Laser-Nov_19820157_a
	Steele_CLRM-Laser-Nov_19820157_b
	Steele_CLRM-Laser-Nov_19820158_a
	Steele_CLRM-Laser-Nov_19820158_b
	Steele_CLRM-Laser-Nov_19820159_a
	Steele_CLRM-Laser-Nov_19820159_b
	Steele_CLRM-Laser-Nov_19820160_a
	Steele_CLRM-Laser-Nov_19820160_b
	Steele_CLRM-Laser-Nov_19820161_a
	Steele_CLRM-Laser-Nov_19820161_b
	Steele_CLRM-Laser-Nov_19820162_a
	Steele_CLRM-Laser-Nov_19820162_b
	Steele_CLRM-Laser-Nov_19820163_a
	Steele_CLRM-Laser-Nov_19820163_b
	Steele_CLRM-Laser-Nov_19820164_a
	Steele_CLRM-Laser-Nov_19820164_b
	Steele_CLRM-Laser-Nov_19820165_a
	Steele_CLRM-Laser-Nov_19820165_b
	Steele_CLRM-Laser-Nov_19820166_a
	Steele_CLRM-Laser-Nov_19820166_b
	Steele_CLRM-Laser-Nov_19820167_a
	Steele_CLRM-Laser-Nov_19820167_b
	Steele_CLRM-Laser-Nov_19820168_a
	Steele_CLRM-Laser-Nov_19820168_b
	Steele_CLRM-Laser-Nov_19820169_a
	Steele_CLRM-Laser-Nov_19820169_b
	Steele_CLRM-Laser-Nov_19820170_a
	Steele_CLRM-Laser-Nov_19820170_b
	Steele_CLRM-Laser-Nov_19820171_a
	Steele_CLRM-Laser-Nov_19820171_b
	Steele_CLRM-Laser-Nov_19820172_a
	Steele_CLRM-Laser-Nov_19820172_b
	Steele_CLRM-Laser-Nov_19820173_a
	Steele_CLRM-Laser-Nov_19820173_b
	Steele_CLRM-Laser-Nov_19820174_a
	Steele_CLRM-Laser-Nov_19820174_b
	Steele_CLRM-Laser-Nov_19820175_a
	Steele_CLRM-Laser-Nov_19820175_b
	Steele_CLRM-Laser-Nov_19820176_a
	Steele_CLRM-Laser-Nov_19820176_b
	Steele_CLRM-Laser-Nov_19820177_a
	Steele_CLRM-Laser-Nov_19820177_b
	Steele_CLRM-Laser-Nov_19820178_a
	Steele_CLRM-Laser-Nov_19820178_b
	Steele_CLRM-Laser-Nov_19820179_a
	Steele_CLRM-Laser-Nov_19820179_b
	Steele_CLRM-Laser-Nov_19820180_a
	Steele_CLRM-Laser-Nov_19820180_b
	Steele_CLRM-Laser-Nov_19820181_a
	Steele_CLRM-Laser-Nov_19820181_b
	Steele_CLRM-Laser-Nov_19820182_a
	Steele_CLRM-Laser-Nov_19820182_b

