
LISP370 files and the EXF operation.

Cyril N. Alberga

,,

PREFACE

What follows is advice, not dictum. It is based on several years use of
the YKTLISP system, mainly system building, but also some application pro­
gramming. It assumes some familiarity with LISP in general, and LISP370
in particular. Yk'TLISP is the Yorktown version of LISP370, with numerous
changes and amendations. This is one of a series of extant and projected
notes on using YKTLISP.

Preface ii

• ·_·•-.• -··

CONTENTS

Introduction

Creating LISPLIBs
SUPV
Exr

Definitional Facility
Function definition
Object definition
Action definition
Environment of definition
Messages and value.
Status of output files.

Now I have a LISPLIB, what can

Contents

do with it?

... ·.··:- .,
.. •f,.~,.,.-._:·,-~1,.,;,··

1

2
2
2

4
4
4
4
5
5
5

7

iii

INTRODUCTION

Irr YKTLISP we encourage a mode of system building which differs from that
which is common to most LISP systems. (In fact we encourage two modes of
system building, the one described herein, and the use of LISPEDIT, which
is much superior.) The kernel of the advice is: "don't FILELISP until you
really mean it".

YKTLISP supports files which are analogous to CMS TXTLIB files, (akin to
other LISPs' FASL files). These files (traditionally of file-type
LISPLIB, will be referred to as LISPLIBs herein) are random access, key
addressed files of LISP objects, stored in a form which can be read faster
than the forms read by the READ function. The keys are normally strings.
Unlike files read by the READ function LISPLIBs may contain represent­
ations of compiled object code (binary program images, BPI's). In addi­
tion, each item has an associated flag, with a value of O to 255.
Facilities exist for creating LISPLIBs, for "loading" the entire contents
or selected items from them, and for copying, merging and pruning them.

At present all items are given flags of O or 1. The loading functions test
the flag, and for a value of O perform an assignment of the item to the
INTERNed key. For a value of 1, the item is passed to the interpreter to
be evaluated. The later action allows load-time evaluations, which can be
used to establish values in property lists, to create streams, and for any
other action requiring values which pre-exist in the LISP system being
augmented by the loading process.

Introduction 1

CREATING LISPLIBS

While LISPLIBs can be created directly by the user (by means of the R ...
functions) they are generally created by use of the EXF operator. In
order to describe how this is accomplished I must digress a bit. EXF, an
earlier version of which is described in the LISP370 manual, interacts
with the SUPV function and-with a collection of functions including COM­
PILE, ASSEMBLE, FILEQ etc., which I will refer to as the definitional
facility.

SUPV

SUPV is the "usual", system supplied READ-EVAL-PRINT loop. It is invokes
with two arguments, an input stream and an output stream which it binds
FLUIDly as CURINSTREAM and CUROUTSTREAM. It proceeds to read expressions
from the input stream and evaluate them. The expression read and the val­
ue computed will be PRETTYPRI:t\Ted on the output stream.

EXF

EXF is called with arguments which specify a source for expressions, des­
tinations for various values produced, and various "options" which con­
trol the production of values by the functions which make up the
definitional facility. It should be remembered that EXF receives it's
arguments unevaluated.

(EXF input <output <option-name option-value>~'. >)

The "input" argument specifies an input stream to be given to SUPV. A
value of NIL specifies that the current CURINSTREAM is to be used. This

• '
is rarely used, but it allows manual entry of expressions while specifying
various options for the definition facility. The other legitimate values
for "input" are an identifier or a list of 1 to 3 identifiers. These are
used as filename, filetype and filemode for an input file. The filetype
defaults to LISP370 or LISP (with LISP370 preferred), while the filemode
defaults to *.
The "output" argument specifies the output stream for SUPV. If it is
missing it defaults to the current value of CUROUTSTREAM. If it is "=", a
file output stream is created, with the same filename as the input stream,
a filetype of EXF and a filemode of Al. (Note that (EXF () = ...) is ille­
gal.) Otherwise, "output" must be an identifier or a list of 1 to 3 iden­
tifiers. This is interpreted in the same manner as "input", with default
filetype of EXF and default filemode of Al. If the extant option list

Creating LISPLIBs 2

(··-_·_ .• -~.

contains an OUTPUTLENGTH entry, or if one is found in the option
name/value part of the call to EXF, it is used to define the output file
line length. Otherwise the line length defaults to 80.

If the CUROUTSTREAM at the time of the invocation of EXF is a console
st_ream EXF provides a MESSAGE option with that stream as value. This
stream is used by the definitional facility for informative and warning
messages, unless suppressed by a QUIET option.

The only one of the option name/value pairs which is treated specially is
FILE. It is used to define a LISPLIB file, with the value item interpret­
ed in the same way as the "output" argument, with the filetype defaulting
to LISPLIB. In addition, the presence of a FILE option in the absence of
an explicit NOLINK option force a (NOLINK. T) option on the optionlist.

All remaining options are added to the option list, OPTIONLIST, which is
bound FLUIDly by EXF. The options are as described in the LISP370 manual,
with the addition of a QUIET option, which if -.NIL suppresses most infor­
mational output to the console.

Creating LISPLIBs 3

C-_·
DEFINITIONAL FACILITY

The definitional facility consists of a collection of functions which are
called solely for their side-effect. There are four groups, those which
define functions, those which define objects, those which define actions
and those which modify the environment of definition.

FUNCTION DEFINITION 1
. . ; ,,._J

r . t..,. {L7-'-·--I'
"'/);':/)•'

Functions are defined by DEFINE, CONPILE, ASSEMBLE and COMP370. (See COM­
PILE notes.) These functions accept one or more function definitions
C(:iJLAMBDA expression in the cases of DEFINE COMPILE and COMP370, Lisp
Assembler Programs in the case of ASSEMBLE), process them to varying
extents, and make the resulting objects ct:r-i)LAMBDA expressions or BPis)
available by assignment and/or writing them onto a LISPLIB. When a defi­
nition is added to a LISPLIB by any of these functions it is flagged with
0, the ASSIGN flag.

OBJECT DEFINITION

Objects are defined by FILEQ and SETANDFILEQ. These functions have the
same form as SETQ, that is, their first argument is unevaluated. Their __
second argument is evaluated, and in the presence of a FILE option it~~­
placed in the LISPLIB with a flag of O and a key derived from the first
(unevaluated) argument. SETANDFILEQ, in addition, performs the assign­
ment in the current context.

ACTION DEFINITION

Actions are defined by FILEACTQ and EVALANDFILEACTQ. These function have
two unevaluated arguments. The first is an arbitrary key, for use in the
presence of a FILE option. The second is any s-expression. The
S-expression is placed in the LISPLIB (when present) with a flag of 1, to
be evaluated at load time. EVALANDFILEACTQ, in addition, evaluates the
expression in the current context.

An example of the use of FILEACTQ would be:

(FILEACTQ FOO (MAKEPROP "FOO "BAR "123))

This would cause the id FOO to be given BAR as a property with the value
123 at load time.

Definitional Facility . 4

;:,

ENVIRONMENT OF DEFINITION

Fup.ction which modify the environment of definition (see the note on COM­
PILE) are ORTEMPDEFINE MATEMPDEFINE ORADDTEMPDEFS MAADDTEMPDEFS
ORTEMPSETQ MATEMPSETQ and ADDOPTIONS. The first six of these add defi­
nitions to the compilers Operation Recognition environment (OR) or its
Macro Application environment (MA). The definitions are added to the head
of the respective environments in such a way that they are dropped upon
exit from the invocation of EXF in which they are encountered. They do
not replace pre-existing values of the same identifiers, but simply mask
them, allowing the earlier definitions to become available again after the
current file is processed. Thus, private definition for system functions
or macros can be made available temporarily, e.g. for "bootstrapping" to a
new system. The last (ADDOPTIONS) is described in the PDOM.

eeTEHPDEFINE has the same format as DEFINE. It allows macro or function
definitions to be placed within the file that uses them.

eeTEMPSETQ allows arbitrary values to be added to the environments. The
format is that of the SETQ.

eeADDTEMPDEFS has the same format as LOADVOL. It augments the environment
with definitions and values loaded from a LISPLIB. Only items with flags
of Oare loaded, flag 1 (actions) are ignored. This is done in order to
maintain the "push down" nature of these functions. There would be no way
to undo the arbitrary actions possible with flag 1 items. Note that we
still do not have a "hyper"garbage collector, thus BPis, once loaded con­
sume space forever (at least until YKTLISP is unloaded). Thus ADDTEMPDEFS
must be used with care to avoid BPI space overflow. If you are willing to
pay the cost of interpreting (as opposed to the cost of reloading YKTLISP)
you should created LISPLIBs for ADDTEMPDEFS with symbolic definitions,
using DEFINE, rather than COMPILE.

MESSAGES AND VALUE.

EXF binds (FLUIDly) a set of variables which are used to collect counts of
compiler, assembler and macro-expansion errors. Upon receiving control
back from SUPV (usually because of reaching EOF, or reading (FIN)), EXF
reports the various error counts and then returns their sum as its value.
Thus an error free EXF run will return a value of O.

STATUS OF OUTPUT FILES.

If an EXF file is to be created any previously existing EXF file of the
same name is first erased. If a LISPLIB is to be created and a file of the

Definitional Facility 5

same name already exists the new LISPLIB is created under the name TEMPLIB
(any existing TEHPLIB file being erased first). In this case the
pre-existing file is erased and the TEMPLIB renamed only if SUPV returns
normally (whether or not errors have occurred). If control return to EXF
via an UN\flND the TErlPLIB is left and the pre-existing file is retained.

Definitional Facility 6

NOW I HAVE A LISPLIB, WHAT CAN I DO WITH IT?

LISPLIBs can be read and written directly, using the "R" (random-access)
functions, RDEFIOSTREAM, RREAD, RWRITE, RTYPE, RSETTYPE, RSHUT, etc. All
of these save RTYPE and RSETTYPE are described in the LISP370 manual.
RTYPE returns the flag value for an item, while RSETTYPE sets (changes)
it.

For housekeeping there are three functions, RDROPITEMS, RCOPYITEMS and
RPACKFILE.

(RDROPITEMS file itemlist)

will delete all items whose keys are in the itemlist from the directory of
the file, "file". Filetype defaults to LISPLIB, while filemode defaults
to*· Remember, only the directory is changed, to actually shorten the
file you must use RPACKFILE.

(RCOPYITEMS inputfile outputfile itemlist)

copies all items whose keys are in "itemlist" from the inputfile to the
outputfile. Items with identical keys which pre-exist in the outputfile
will be lost.

(RPACKFILE file)

copies the file "file", dropping any unreachable items, then erases the
original and renames the copy.

In all of these functions (and the ones to follow) a file is named either
by a single ID or by a list, (fn <ft <fm>>), e.g.

(RPACKFILE "MYJUNK)
(RPACKFILE "(MYJUNK LISPLIB C))

with ft defaulting to LISPLIB and fm to *. The elements of the
"itemlist"s may be either strings or identifiers.

Finally (and most importantly) one can load all or some of the items in a
LISPLIB or a set of related LISPLIBs.

(LOADVOL file)

will read all items from the designated file. Those with flags of O will
be assigned to the identifier resulting from (INTERN key). Those with
flags of 1 will be evaluated for side effects, and discarded. The value
is a list of items loaded.

(SUBLOAD file idlist)

Now I have a LISPLIB, what can I do with it? 7

will load only those items whose keys are in "idlist". The flag values
have the same meanings as in LOADVOL. The value is a list of two lists,
the first is a list of items loaded, the second a list of items not found.

(LOADCOND file)

ignores all items with flag values of 1. Of the others only those are
loaded which will not replace a pre-existing functional value (LAMBDA
expression, BPI or FUNARG). Thus you may have two LISPLIBs which share
certain function definitions, and by use of LOADCOND you may load only one
copy of the shared functions. The value is a list of those items loaded.

(DEPLOAD (file•':) item list)

will load all items from itemlist (ignoring flag 1 items), from which ever
LISPLIB in the file list it finds them in. It then examines any BPis that
it has loaded and lists all the functions that they call. If any of these
functions does not have a functional definition the set of LISPLIBs is
searched for one, and if found, it is loaded. This function is checked in
the same way. The value is a list of two lists, the first being the names
of all items loaded, the second a list of items which could not be found.

Now I have a LISPLIB, what can I do with it? 8

