
..
". ~ .,,:

(

..

RC 7 7 71 (# 3 36 3 9) 7 / 1 8/ 7 9
Computer Science 34 pages

LISP/370 CONCEPTS AND FACILITIES

• Fred W. Blair

IBM Thomas J. Watson Research Center
Yorktown Heights. New York 10598

Abstract: This paper describes the basic kernel of the LISP /370 system. It presents:- an
informal definition of the syntax and semantics for LISP /370 expressions; brief descriptions of
basic da!a---: types and data operators; description of input-output; description of interrupts and
traps.

.1.

INTRODUCTION
j

This document is intended as a brief description of the central concepts and facilities of

LISP /370. It does not attempt to be a users guide and is not an implementation description.

The version of LISP /370 described here is one of a series of systems ~roduced during the

continuing development of LISP at the IBM Thomas J. Watson Research Center. This version

was selected for submission as an Installed User Program because it has been used for more

than a year at that site, during which time we feel that most major implementation errors have

been detected and corrected. Our thoughts about several aspects of LISP have evolved since

this system was devised, but implementation of these new ideas is still in an experimental

stage.

LISP/370 SYNTAX AND SEMANTICS

LISPt is noteworthy among programming languages, in that only a rather small kernel of

knowledge is required to understand the meaning of its utterances. The whole question of

"understanding" can be stated as: How does an expression of the following form evaluate?

Understanding utterances of natural languages and most computer languages through deduction

is simply out of the question. Understanding through deduction is unproductive when the

underlying rules or axioms are not known.

The understanding of LISP /370 evaluation is possible through the mastery of the following

concepts and the aid of a dictionary of primitive operators. Questions about the intent of a

program or certain global understandings may not be answered by this process.

In LISP /370 we can deduce both the value denoted by an expression and also the sequence of

computational states that its evaluation entails.

t The particular dialect LISP /370 that is defined here corresponds to IBM licensed program

5796-PKL.

2

In this description we attempt to convey the underlying rules without using much formal

notation. In describing syntax however we use a few conventions:

{ and I are used for ~etalinguistic grouping.

I is used to separate alternatives.

[and] are used to indicate optionality.

The ellipsis" ... " is used to denote zero or more objects.

The syntax of LISP /370 is described in the well known list form. This is really just one of t~~

concrete representations that one might select. If you relax your attention from the parenthe­

sis to the italicized words you may see that an abstract syntax is also defined.

While the LISP /370 kernel is thought to exhibit an improved structure over many other LISP

dialects, it undoubtably has some weaknesses. For instance. certain identifiers have reserved

meanings when applied. The readers' criticism ~ invited.

EXPRESSIONS

The three primitive expression classes are constants, variables, and combinations of expres­

sions.

A LISP expression e is one of:

c denoting a constant.

id an identifier denoting a variable.

(ralor rand ...) denoting an operator-operands combination

where the operator ralor is an e and each operand rand is an e.

CONSTANTS

The evaluation of constants is trivial: constants are idempotent. i.e. they evaluate to them­

selves.

LISP /370 has the fonowing broad classes of constants:

{decimal-number I applicative-constant I nil I ranked-array I selector-structure}

The representation forms for these constants is described in the output canonical form section.

The reserved identifier NIL is considered a constant.

-- -----
~- IB-~~,:'.04-__ ~_

r:­
~~~ 

C"'· 

l 



3 

Binary programs and state des.criptors are LISP /370 data objects and are considered constants. 
The application of these constants has special semantics. 

Binary Programs 

A bpi is a binary program image object which is: 

An mbpi, a machine language macro, 

or an [bpi, a-machine language function. 

A bpi is either a product of the compiler or of the assembly language programmer. The second 

case is beyond the scope of this description. The semantics of applying a binary program 

image bpi that was compiled from a defining expression is similar to the interpreted semantics 

of applying the expression. The compiler works by transforming the origional expression into 

a new LISP expression, in the process performing macro expansion and dealing witli certain 

operators in special ways. The interpreted semantics of this new expression may differ slightly 

from those of the origional expression. The new expression is then compiled into machine 

code which has identical semantics. 

State Descriptors 

A state descriptor sd is a special type of constant. It is created by the special operator STATE 

and certain meta operators that form /unargs, and "captures" the state in which the STATE 

operator was applied. The computational state captured is, in essence, sufficient to allow the 

continuation of the computation, but does not include the current state of all memory settings. 

Because of the effects of updating shared memory structures, multiple continuations of a state 

may not all behave alike. 

The exact nature of the data structure constituting an sd is not exposed. It necessarily 

contains a component sufficient to define the environment E (see below): 

A [unarg is a form that combines an expression e with an environment, thus giving meaning to 

the free variables of e. We use the terms 'closure' and 'funarg' interchangably when refering 

to such forms. The use of the word funarg to describe these closures stems from their early 

usage as functional arguments. 

Application of an sd causes the saved state to continue. In that case the sd is applied to an 

expression whose value appears as the value of the STATE operator (by convention, usually 

--------

- ! 



4 

not a saved state). In other words. the operator STATE gives an sd as value when saving, and 

some other message value if continuing. It is described is more detail later. 

VARIABLES 

The value of a variable is defined by the current context or environment E. We may view E as 

a function that maps a variable into the place or binding in which its value resides. E is a 

metalinguistic construct of this description and not a LISP /370 data object. Nevertheless 

there are first class data objects that have (by implication) an E as a component. 

Bindings are stored objects on which metalinguistic access and update operators are defined. 

Evaluation of a variable involves accessing the value in the appropiate binding, and assign­

ment, SETQ, involves its replacement. 

• Every evaluation takes place with respect to some environment, and some evaluations create 

new ones. In particular, the application of an abstraction creates a new environment by 

augmenting the current one with new bindings for some identifiers; any former bindings of the 

same variables are superseded. 

In LISP /370 two classes of bindings may be created. A fluid binding is accessible to any 

evaluation of a variable for which it is the most recent binding. A lexical binding is not 

accessible to CALLed or ordinary-app"lied operators and thus offers some degree of isolation 

from side effects. 

Whenever no normal binding takes precedence, the global environment gloE is invoked· to 

produce the global binding. The nature of gloE is rather ad hoc and flexible (see the STATE 

operator for more details). It is worth noting that the normal default gloE is such that 

variables have their denoting id as value until otherwise assigned. 

A most significant aspect of LISP is the way that environments can be retained as data objects 

and dynamicly invoked. In LISP "referential transparencytt is optional. Indeed, keeping track 

of the contexts can become a major preoccupation. LISP /370 is somewhat remiss in not 

offering the basic operators as constants with convenient notation; it relies on operator 

variables that evaluate to themselves. 

.( l 



( 

5 

COMBINATIONS 

Except for constants and variables, every expression is a combination. Combinations are used 

to indicate operator application. Some combinations are distinguished for semantic reasons. 

There are three types of combinations: 

1. Meta-combination: A transformation from an operator value which is an mr. and 

the list of unevaluated operands (rand ..• ), into a data value. 

Meta combination example: 

(QUOTE (FOO BAR» = (FOO BAR) 

2. Macro-composition: A transformation from an operator value which is a macro, 

and the original combination (rator rand ••• ), into a new expression. A macro is an 

mbpi, or an mlambda-exp, or a closure of either of these. 

Macro composition example: 

(PLUS 1 2 3) -. (PLUS· 1 (PLUS· 2 3» = 6 

3. Ordinary-application: A transformation from an operator value which is neither a 

macro nor an mr, and a list of the values of the operands, into a data value. An 

ordinary application results in the loss of access to the lexical bindings of the current 

context. If the operator is not recognizably applicable or inapplicable it is reevaluated 

and that value is ordinary-applied. 

Thus, the type of application depends on the value of the operator. It could be considered 

unfortunate that each type of application is not represented by a distinct syntax. The resulting 

lack of transparency is balanced by the flexibility of the delayed interpretation that can be 

considered a feature of this LISP. Indeed the lack of distinction makes the definition of most 

operators a free choice between macro definition and ordinary function definition. 



6 

META COMBINATIONS 

The following identifiers constitute the class of basic meta operators mr. i.e. their application 

should be understood as meta-combination. 

COND LAMBDA 

EXIT MLAMBDA 

FR*CODE QUOTE 

FUNARG RETURN 

FUNCTION SEQ 

GO SETQ 

LABEL 

The syntax and semantics for these built in meta operators is now given. 

FUNARG 

(FUNARG e sd)t is a funarg or expression closure. 

Semantics: 

The value of the funarg is the value of e evaluated in the environment of sd. 

The application of the funarg is the application of its expression-part e in the environment of 

its sd. Free variables of e resolve to the bindings .of the context in which the funarg was 

formed, including the lexical variables of that context. 

t The notation (FUNARG e sd) is ·used for the case (e J e sd) where the value of e J is FU­

NARG; similarly for the other basic operators. 

g:3 
Ul;-

cr::-
~~ 

~= 
.. 

L 



"':":-'':.'' 

7 

The Abstractions LAMBDA, MLAMBDA and FR*CODE: 

An abstraction-exp may be a lambda-exp or an mlambda-exp or an operator-code-exp: 

LAMBDA 

(LAMBDA bv body) is a lambda-expo 

where bv, the bound-variable part is {c I (FLUID id) I (LEX id) I id I (bv J • bv2) } 

and body is an e. 

Semantics: 

Evaluates to (FUNARG (LAMBDA bv body) sd) 

where sd captures the current context, including lexical bindings. This closure ,is ordinary­

applicable to a list of values. A lambda-exp also is ordinary-applicable, as are [bpi. 

\Vhen a closed lambda-exp is applied to argument values, the meaning is obtained by evaluating 

body in the context of sd augmented with the bindings formed by the conformation of bv onto 

the list of values. Conformation consists of pairing components of the value list with the 

corresponding variable declaration in bv. 

For variables named in the bound-variable part, the variable-declaration form (FLUID id) is 

required if other than lexical access is to be permitted. 

In the case of the application of a lambda-expression that is not closed, the current state 

provides the initial context. This is equivalent to reevaluating the lambda-expression a,nd 

applying the resulting funarg. 

~1LAMBDA 

(MLAMBDA bv body) is an mlambda.;.exp. 

Semantics: 

Evaluates to (FUNARG (MLAMBDA bv body) sd), where sd captures the current context. 

This closure is macro-applicable to an argument. A mlambda-exp is also macro-applicable as 

are mbpi. In the case of macro-composition the argument is the combination form whose rator 

is the macro. 

____ &O~- ,IBM'- 04-- __ : 
---- -----



The meaning of the macro-application of a closed mlambda-exp is obtained by evaluating body 

in the environment of sd augmented with the bindings formed by the conformation of bv onto 

the argument. In the case of the macro-application of a mlambda-exp that is not closed the 

current state provides the initial context. 

A macro composition entails macro-application and the subsequent evaluation of the resulting 

form. The result of the macro-application is treated as though it were written instead of the· 

macro composition form. 

FR*CODE 

(FR*CODE e2 [-lisr lap-code) is an operaror-code-exp. 

Semantics: 

When interpreted, as if e2 were written instead; when compiled, as determined by the lap-code. 

The reader may view this as a window into the hell of assembly language semantics, which is 

offered to overcome the mistakes of the designers. 

SETQ 

(SETQ id e2 ), is an explicit assignment. 

Semantics: 

Updates the current environment E so that the value of e2 becomes the value componen~ of 

E{id}, the binding of id. 

FUNCTION 

(FUNCTION e2) is a closure-expression. 

Semantics: 

Evaluates to (FUNARG e2 sd) where sd captures the current state. 

__ ~-IB~~:-~·OC __ . 

L, 



--.~ . 

.... 
-' 

--.-------

9 

QUOTE 

(QUOTE s-exp) is a quoted s-expression. 

Semantics: 

Evaluates to s-exp, a Symbolic-expression. This term (also s-expression), is used to denote the 

class of LISP data objects. 

" ... quotations playa role analogous to Godel numbers in other formal theories." (Morris)t 

COND 

(COND (p [q]) ... ) is a conditional expression, 

each predicate p is an e, and 

each consequent q is an e. 

Semantics: The predicates p of the predicate-consequent clauses are evaluated sequentially 

until a non-NIL value is obtained. Then the consequent expression of that clause, if present, is· 

evaluated as if it were written instead of the conditional-expression (side effects may have 

occurred); otherwise, the value is the value of the non-NIL predicate. If no clause has a 

non-NIL predicate, the value is NIL. 

SEQ 

(SEQ s ... ) is a statement-sequence-expression where each statement s is a: 

statement-label lag which is an id, or 

program-statement p-s, an e which is not an ide 

Semantics: 

Each p-s is evaluated in sequence in the statement context of the statement-labels. A state­

ment context gives meaning to statement-labels. A statement-sequence that occurs as a 

program-statement (i.e. within another statement-sequence) will append its own label-context 

t James H. Morris, "Lambda-calculus Models of Programming Languages," PhD thesis, 

MAC-TR-57, Project MAC, Massachusetts Institute of Technology, Cambridge, Massachu­

setts, (1968) p. 35. ( 



10 

to that of the surrounding context. A statement-sequence that occurs in "'expression context" 

creates its own "statement context". The value of the statement-sequence is the value of the 

last p-s. Exit-expressions and go-statements can alter the normal sequence of evaluation. 

GO 

(GO tag) is a go-statement. 

Semantics: 

If the go-statement occurs as a program-statement and the lag occurs in the context of the 

current statement-sequence-expression, then the sequential execution of program-statements 

proceeds with the' statement following the tag, rather than the statement folJowing the 

go-statement. 

In the case where a go-statement occurs not as a program-statement but as an expression, then 

an "'out of statement context GO error" results. 

In the case that the tag does not occur in the current statement context, the go-statement is 

evaluated as though it were written instead of the current statement-sequence-expression 

(excepting that side effects may have occurred). That is, one can go to the surrounding 

statement contexts so long as the current statement-sequence-expression was itself a program­

statement p-S, etc. 

EXIT 

(EXIT { id I ps } ) is an exit-expression. 

Semantics: 

The main purpose of EXIT is to leave the current statement-label context. If the exit­

expression occurs as other than a program-statement the value of the expression is the value of 

the operand. In the case that the exit-expression does occur in statement context: 

Case 1: If the operand is a identifier it is treated as a variable and not a statement-label. The 

value of that variable becomes the value of the statement-sequence-expression. 

Case 2: If the operand is not an identifier it is treated as though it were the last p-s of the 

current statement-sequence-expression. Note: (EXIT (GO A» would not leave the current 

statement-label context if A were defined withi~,·the current statement context. 

___ ~- IB~·~o.f:_: 

c· 
i·' 

(:. 

l. 



11 

RETURN 

(RETURN el ) is a return-expression. 

Semantics: 

e2 is evaluated and its value becomes the value of the current ordinary application, or (EVAL e 

sd) expression, or macro application, whichever has the more immediate scope. RETURN 

returns its value back to the point at which the binding context of the environment E could 

possibly have been different. 

EXIT takes control out of the current tag context (unless its operand ps switchs control first) 

and RETURN takes control out of the current binding context (contour). 

LABEL 

(LABEL bl' body) is a label-expression. 

Semantics: 

The main purpose of this operator is to provide a way of denoting structures with cyclical 

references in them. This is important if you wish to define some functions that are closed with 

respect to some environment, and mutually recursive with respect to each other. t 

The following example was used by Steele and Sussman+ to illustrate the LABELS operator in 

SCHEME. Here their example is rendered in the syntax and semantics of LISP /370. A global 

procedure COUNT counts the atoms of a tree structure sans terminal NILs. COUNT uses two 

local, closed, mutually recursive functions, namely COUNTCAR and COUNTCDR. 

t For those interested in mathematical logic, we can make the allusion that label-expressions 

are a programmer's approximation to Y, the general fixed point finding function. The 

programmer should not be overwhelmed by these allusions to mathematical logic. Y merely 

assures the mathematician of the existen'ce of a solution to recursive equations. 

+ Guy Lewis Steele J r. and Gerald Jay Sussman, "The Revised Report on SCHEME A Dialect 

of LISP", AI MEMO 452, Artificial Intelligence Laboratory, Massachusetts Institute of 

Technology, Cambridge, Massachusetts, (197r p. 4. 

__ &OS=- I B M~ __ 04~ __ . 



I . 

(SETQ COUNT 

(CDR 

12 

(LABEL (COUNTCAR • COUNTCDR) 

(CONS 

(LAMBDA (L) 

(COND 

( (ATOM L) 1) 

( (PLUS (COUNTCAR (CAR L» (COUNTCDR (CDR L» » ) ) 

(LAMBDA (L) 

(COND 

( (ATOM L) (COND ( (NULL L) 0) (1») 

( (PLUS (COUNTCAR (CAR L» (COUNTCDR (CDR L» » ) ) ) ) ) ) 

Having evaluated the body of the LABEL expression with respect to an environment in ~hich 

the elements of bv were bound to dummy pairs, those pairs are updated with the corresponding 

components of the value of body. This is done under the assumption that the value of body is 

an object of the same shape as bv. 

( 

. ~ -

In the example we rely on the list nature of the funargs produced by the lambda-expressions. E:-. 
Thus the initial value of body was a pair of funarg lists; the dummy pair that was the value of 

COUNTCAR had its CAR component replaced with FUNARG and its CDR component 

replaced with «LAMBDA ... ) sd) from CDR of the first funarg. Similarly for COUNTCAR 

using the components of the second funarg list. The net result is a pair of funargs whose 

environments contain bindings with references to funargs that are access equivalent to 

themselves. Each function is closed with respect to an environment in which CARCOUNT 
o ,; 

and CDRCOUNT are both bound to the equivalent closed function. ' 

·r 
\ 

G6~. I 8'M:. ~:.' n A=-- . ..-~---,. 

Lt 



13 

BASIC FUNCTIONS 

The following identifiers are recognized as basic function operators fro i.e. their ordinary~ 

application is understood: 

APPLX FLOATP NUMBERP 

ATOM FRP PAIRP 

BITSTRINGP -~ GENSYMP PLEXP 

CALL IDENTP RPLACA 

CAR LINTP RPLACD 

CDR LISTP SET 

CONS MDEFX SMINTP 

EO MRP STATE 

EVAl NTUPLEP STATEP 

EVAL NULL STRINGP 

FIXP VECP 

Of the above, the following are ordinary-applicable but defined by very special rules: 

APPLX, CALL, EVAl, EVAL, MDEFX, SET, and STATE. 

(APPLX fn list) 

APPLX performs the ordinary-application of its first operand value to the list of values that is 

the value of the second operand. Lexical variables are accessible during this application. 

(CALL oJ ••• fn) 

CALL applies the value of its last operand to the list of values formed by evaluating its earlier 

operands. Lexical variables are inaccessible during this application. 

(MDEFX fn form) 

MDEFX is like APPLX except it performs a macro-application. It does not reevaluate the 

resulting expression as is the case for evaluating combinations that are macro compositions. 

_ 005=~ IB~:--04- : 
_.----------,~.::- .. - .- _ -.:--:'---:---:=.---:=-'----

~)= 
,~ 

01;-

tr= 
~~ 

--A:: 

. ".-



14 

(EVAl e) 

EV A 1 evaluates its one operand value with respect to the current environment. Lexical 

variables are accessible during this evaluation. This weakens (to some extent) the degree of 

protection that lexical variables might otherwise enjoy. An improved design should consider 

plugging such lexical leakage. 

(EVAL e sd) 

EV AL evaluates its first operand value with respect to the context of the state which is the 

value of its second operand. 

SET is like SETQ except it evaluates its first operand, which must have an identifier as value . 

Lexical variables are accessible for this assignment. • 

(STATE [glollot [glolstl]) 

STATE captures the current state, or a modified form of it in the case that optional arguments 

were supplied. The value is a state descriptor sd which denotes the state in which the STATE 

operator was applied. 

The modified form of the current state may differ only in the global environment gloE 

component of the environment E. This component is used only when the normal components 

of E (the bindings created by the application of abstractions) have been exhausted during the 

search for the most recent binding of a variable. Thus, gloE gives the global-binding. 

The sd may be used as an argument to EV AL to provide the environment of that state as the 

binding context for the evaluation. 

Application of an sd causes the saved state to continue .. In that case the sd is applied to an 

expression whose value appears as the value of the STATE operator (by convention, usually 

not a saved state). In other words, the operator STATE gives an sd as value when saving, and 

some other message value if continuing. 

_~~ IBM.~-~04-_._· 
--:~-

( 

'-

(. 

L 
" 



15 

The optional arguments glonot and glolst describe the modifications to the gloE. 

A gloE is a special object with two components: 

glonol, the 'not present' prescription. 

is a pair (gloval • gloalo) where 

gloval is NIL or else a two argument function 

from an id and the gIO/SI of the current gloE. to the s-exp value for 

that variable in this global environment. 

gloalo is NIL or a three argu.qtent function 

from s-exp. id. and glolsl to globnd values. Often the side effect 

of updating glolsl is accomplished. 

glolst. the global data list structure environment, is 

({glodal I globnd} • {glo/sl I glolrm}) • 

where globnd, the global binding, is a pair (id • s-exp), 

where glodal, the global own data. is any s-exp which is not-a pair, 

where glolrm. the global environment terminator, is {NIL I sd}. 

PRIMITIVE OPERATORS FOR DATA PROCESSING 

ATOM 

CAR 

CDR 

CONS 

EQ 

RPLACA 

RPLACD 

THE SINE QUA NON 

These familiar operators are defined elsewhere. As the compiler and interpreter have special 

understandings about what it means to apply these, they are not completely redefinable. Other 

important primitives are defined by binary programs and are subject to redefinition by the 

user. 



16 

LISP /370 supports the following aggregate data types: 

Reference vectors 

Selector Structures 

Character strings 

Bit strings 

Word vectors 

Vectors of floating point numbers 

Pairs (lists) 

The fundamental operators for accessing, updating, allocating and type testing predicates are 

all provided. These operators are defined elsewhere. 

READ and PRINT 

(PRINT e [stream]) 

Causes the characters of the canonical representation of the value of its first argument to be 

written to a stream. The nature of streams will be described in a later section. 

The value of print is the value of its first argument. 

Canonical Representation 

An s-exp is: 

[label] feb I idb I combination} 

where label is {label-name = }, 
where label-n~me is {%Ldigif/ ... digitn } where 1 ~n~8, 

and id € ID the set of identifiers (names), 

and c € C the set of constants, 

and combination = ( comp+ b [b • b comp ]) :t: 
where comp is {label-name I c I id I combination I {label comp} } 

Notice that the term list was avoided and combination was used instead. This may be helpful 

in avoiding the common misconception that LISP is just a list-processor! 

--~= 
. '\' 

1--

c' 



17 

One of the -goals of LISP /370 is to enTich the class of data types supported. The output 

canonical syntaxes for constants and identifiers (names) are defined below. 

A constant cis: 

{decimal-number I applicative-constant I nil I ranked-array I selector-structure} 

where decimal-number = {integer I floating-point} 

where integer = [sign] digit+ 

where-sign = {+ I -} 
where digit = {O 11 12 131415 1617 1819} 

where floating-point = integer • digit. .. [E decimal-number] 

where applicatire-constant = { bpi I mr I fr I sd } 

where bpi = t 
where mr = { LAMBDA I MLAMBDA I QUOTE I SETQ 

. FUNCTION I LABEL I COND I SEQ I GO 

EXIT I PROGN I RETURN I FR*CODE.} 

where fr = {fix-ur I mult-ur} 

where fix-ur = {EV Al I f..1DEFX I APPLX I EV AL I SET 

I CLOSURE I ... } 
Comment: Many more basic operators that take definite 

numbers of arguments will fall into this class. 

where mult-ur = {STATE I CALL I ... } 
Comment: Many more basic operators that take indefinite 

numbers of arguments will fall into this class. 

where sd = (no syntactic form available or intended) 

where nil = 0 

:I: x· b is used to indicate zero or more x separated by blanks. 

x+ b is used to indicate one or more x separated by blanks. 

,... is used as a metalinguistic set difference operator. M"'N for the complement of N in M; all 

points of M not in N. 

t IndIcates not fully supported. 

r------ -:---------



18 

where ranked-array = {~'ector I string} 

where . }'ector = {pointer- vector 

[loating-point-vector} 

intermediate-integer-rectar 

where pointer-~'ector = < compo b > 
where intermediate-integer-vector = ~oI< integer- b > 
where floating-point-~'ector = ~bF < floating-point- b > 

where string = { character-string I bit-string} 

where character-string = 
{ , charn ' I <?rbchr-capacity' charn t 

where chr-capacity-n > 3 

and chr-capacit)' = 1 +4i where i E {J 2 ... J 
where char = {ehr I I anychrJ 

where ehr E CHR = IANYCHR '" ttl n 
where ANYCHR is the set of all characters available 

where bitstring = 

%B [capacity] { , hex· , I :[content-Ien] , hex· , } 

where capacity = 8+32i where i E {J 2 ... } 

Comment: capacity is present if there is an excess' of 

32 bilS over the content-len. 

where content-len = digit+ 

Comment: content-len is present if the number of bits 

contained is not a multiple of four. 

where hex 

{O 1112131415161718191 AlB 1 C 1 D IC lEI F} 

where selector-structure = %S( compo b [b. b bit-string]) t 

An id is: {no rid I gensym } 

where norid E txt {non-num id-chr ... H 
where non-num E {UID-CHR '" DIGln '" I <}b J J Ilanychr} 

where id-chr = {XE HANYCHR ....., IDDELIMJ ....., t I II I I anychr} 

where iddelim = {b I ( 1 ) 1 <I >} 

where gensym = %Ggennum 

where gennum = digit+ 

(READ [stream]) 

Causes the characters of one entire s-expression to be read from a stream. 

t Indicates not fully supported. 

~- IBi~~04'~ . __ fYl.:- . ____ _ 

c 

--
~= 



, . 

~.-

19 

The value of READ is an internal data structure which is update equivalent to the one 

represented by the characters, except for gensyms. Gensyms are never interned like the normal 

identifiers and READ preserves their EQ-ness only locally. For each gensym, unique to the 

s-expression representation that READ scans, a new internal gensym is allocated. 

READ accepts representations in output canonical form but is prepared to be somewhat liberal 

with regard to blanks, content-len. chr-capacity. and dots. 

ACCESS EQUIVALENCE 

(EQUAL x y) 

Two non-composite objects are EQUAL if they have the same canonical representation. For 

composite arguments, EQUAL implements access-equivalent equality testing. This means that 

two structures are EQUAL if every part of one structure which can be reached by a compos­

ition of accessing functions is EQUAL to the corresponding part of the the other structure, 

and that part can be reached through the same composition of accessing functions. Intuitively, 

two structures are EQUAL if they denote the same (possibly infinite) tree. 

Caution: Two expressions that are EQUAL may not be computationally equivalent. For 

example: 

(EQ (QUOTE %LI =(A»(QUOTE °1<)LI) is true in any context, and 

(EQ (QUOTE (A»(QUOTE (A») is false in any context. 

_ &E)5=. IBr\f·-04~ __ : 
- -- - -- ------- - -. ----=:---".--:-- -~ - ---:-:_- .-1----:.--:- --.... -

--A: 



20 

UPDATE EQUIVALENCE 

(UEQUAL x y) 

This is a generalized update-equality testing function applicable to any LISP object in the same 

sense as EQUAL. It differs from EQUAL in that for two structures to be UEQUAL. not only 

must corresponding parts of the structures be EQUAL through the access functions. but there 

must be the same number of unique parts and, if any of~hese parts were to be updated in one 

structure, the result would be EQUAL to the result of performing the same update on- the 

other structure. 

Intuitively, two structures are UEQUAL if and only if they denote equivalent rooted directed 

graphs, i.e. if they denote EQUAL structures which also have the same acyclicaI and cyclical 

sharing structure. 

... 

. ~- IBM~=_~. 

( 

( .~ .... 
\.:.. 



;~ .-

21 

- THE LISP/370 DESTRUCTIVE STREAM FACILITY 

In St9Y and Strachey[ 1] streams were proposed as vehicles for the transfer of information in 
systems. In this system we copy their concept to a large extent. 

Burge[2J has posited an even more abstract and general stream model in which destructive 
streams are a special case. We can recognize the Stoy and Strachey model as this interesting 
special case. A destructive stream is a stream which has private storage within itself which 
undergoes updating. This allows successive items of a stream to occupy the same storage. In 
Burge's'more general model ordinary streams are applicable functions, are not 'destructive', 
are retainable and capable of backup. In his model "A stream is a functional analog of a 
coroutine [3. 4] and may be considered to be a particular method of representing a list in 
which the creation of each list element is delayed until it is actually needed. ". 

In LISP these abstract streams are definable. but we choose to suggest a data-structure model 
for streams and basic stream-data-structure manipulation facilities. We choose to use a 
data-structure, instead of using functionals, for reasons of efficiency and to allow updating. 
The stream data structure is simply a pair, the first element of which is the current item at the 
head of the sequence. the second element of which serves to define the rest of the sequence. 

A stream is ( heads • rests) where, 
heads is the next item of the stream which can be any s-exp, and 
resls serves to define the rest of the stream and is either: 

a stream, 
or a special stream description <rfn bd asc [any .. . J>, 

where rfn the stream dependent function is an e, 
and bd the fast-buffer description is NIL in the case of slow-streams, 

or < SIring begindex curindex endindex> for fast-streams of characters, 
where begindex the beginning index is a IO I 1 I _ .. }, 
and curindex the current character index is a {O I I I ... }. 
and endindex the boundary index is a {O I I I ... }, 

and asc the associated-slales which is an a-lisl, 
and any is any stream dependent information that the user provides, 

or olher, a stream terminator which is any non-vector alom. 

I. 1. E. Stoy and C. Strachey. "OS6-An Experimental Operating System for a Small 
Computer." Computer J. 15, No.2. 117 and No.3. 195 (1972) 

2. W. H. Burge. "Stream Processing Functions" IBM J. Res. Develop. 19, 12 (1975). 
3. M. E. Conway. "Design of a Separable Transitiori-diagram Compiler." Commun. ACM 6, 

396 (1963). 
4. A. Evans. "PAL-A Language Designed of Teaching Programming Linguistics." Proc. 

23rd ACM Coni., 395 (1968). 

--------------------- -----



22 

The basic primitives for streams are: 

(EQ (CDR stream) stream) 

This tests if 'stream' is the empty stream. 

O;bLl=(<}oLI • %Ll) is a representation of an empty stream. 

Thus, the empty stream is one which is incapable of emitting anything but th~ stream 
itself. 

Note: In this paper the labels used to convey EQ'ness have scope extending 
over the entire equation in which they are used. 
For example in: g{%Ll=(a • b)} - °/oLl=(c • d) it is meant that °/oLl is 
updated. 

Consider the following fast stream which is not empty but is nearly so: 
%Ll=(%Ll • <rfn <string 0 n n> 0» where a subsequent application of NEXT 
will produce %Ll =(%Ll • %Ll). The interpretation of this stream is that- it is a 
unit stream with end-of-line as its last item. The stream itself will serve not only as 
stream terminator (as rests) but also as end-of-line indicator when it appears as 
heads. 

(NEXT stream) 

NEXT is a function from streams to streams, which for specific types of streams 
produces as value the argument stream updated. NEXT is most efficient for fast 
streams. The action of NEXT is defined by the following rules: 

next{ %Ll=( heads. {other I %Ll})} - °/oLl=(%Ll. °/oLl). 

next{ <}oLl=(x y. z)} - °/oLl=(y. z). 

next{~'OL] = (11 eads • <rfn 0 x ... »} - rfn{%Ll}. 

next{O;{>Ll=(heads. °/oL2=<rfn °/oL3 x ... >)} 
where O;{>L3=<string begindex curindex endindex> 

- rfn{%Ll} if curindex ~ en din dex , and heads = %Ll, 

- %Ll=(%Ll . %L2) if curindex ~ endindex, and heads =F %Ll, 
(This illustrates the production of end-of-line symbols) 

otherwise - %Ll=(y • %L2=<rfn °/oL3 x ... » 
where L3 = <string begindex curindex+ 1 endindex> 
and y = fetchchar{string ; curindex} . 

___ ~- 18 M -- 04:: ____ ~-

Co,' 

. .. -



23 

(WRITE s-exp stream) 

write{x; °/oLI = (y • °/oL I)} ... %LI = (x • NIL) . 

write{x;O/oLl=(y • z)} ... °/oLl=(x y • z) 
where z is other or a stream that is not EO to °10 L 1. 

write{~;9i)LI =(y • <rfn 0 z ... >)} ... rfn{x;<YoLI}. 

write{x;%LI=(y. °/oL2=<rfn °loL3 z ... >)} 
where °10 L3 = <string begindex curindex endindex> 

... °/oLI =(x • °/oL2=<rfn °loL3 z ... » 
where <JbL3=<storechr{ string; curindex; xl begindex curindex+ 1 endilldex> 

if curilldex < endindex, and x is a character, 

otherwise ... rfn{x;%Ll} . 

(TEREAD stream) 

teread{%LI=(O/oLI • y)} ... %LI=(OloLl • y) . 

For x #= °/oLI : 

teread{%Ll=(x. {other I %LI})} ... °loLI=(O/oLl • %LI} . 

teread{ %LI =(x • stream)} ... %LI =(%Ll • cddteread{stream}}) . 

teread{OloLl=(x. %L2=<rfn 0 x ... >)} ... %Ll=(%Ll • %L2}. 

teread{OloLI=(x • faststream)} ... %Ll=(%LI • faststream') 

(TERPRI stream) 

where faststream' is faststream with curindex updated to the value of 
endindex. 

terpri{x} = terprix{x;x}. 

terprix{x;OloLl=(y. {other I %Ll})} ... x . 

terprix{x;(y • stream)} ... terprix{x; stream} . 

terprix<x; %Ll=(y • <rfn z .. :>)} ... rfn{x;OloLl} . 

&65=~ IB~' ~04- ___ ~ . 
-----",-. --.::::- :-;..7-"::-------



24 

Some Distinguished Streams 

LISPIT the console input stream. LlSPIT is a fluid variable with the fonowing initial value: 

O/oLl =(%LI • < Jispitin < nil 0 0 0> asc NIL» 
where asc=«DEVICE • CONSOLE)(MODE • I)(QUAL • V». 

After the file is activated: 

%LI = (item • < lispitin < string beg cur end>asc p-]ist» 
where p-list denotes a system dependent I/O control block. or NIL 
and lispitin is an input console stream dependent function which is capable of activat­
ing the file when the p-list field contains NIL. 

The function lispitin achieves system independency by special calls to system dependent portals 
for all system dependent computation. Activating this stream consists of: 

1. Bui]ding an input console p-list in a system dependent manner. 

2, Determining the console Jinelength (also system dependent) and allocating string, a 
lisp character vector used to provide an input area for the terminal line. The capacity 
of string is sufficient to hold the determined maximum input Iinelength. and its 
contents-length reveals how many it actually holds. 

3. Initializing beg to 0, cur and end to IineJcngth. 

4. App]ying lispitin to the now active stream. 

When lispitin is applied to an active stream it causes a system dependent console input 
operation to refill string, resetting string-length to the actual number of characters read. setting 
end to that number also, and setting beg to zero and cur to one. If the number of characters 
read was zero the stream becomes: 

%L!={%Ll • <Jispitin <" 000> asc p-list» 
otherwise: 
%L 1 =(co • <Iispitin < 'co ... cend _1 ' 0 1 end> asc p-Jist». 

LISPOT the console output stream. 

LISPOT is a fluid variable with the following initial value: 
%LI =(%LI • <Iispotout <NIL 0 0 0> asc p-list» 

where asc=«DEVICE • CONSOLE)(MODE • 0», and p-list=NIL, 
and lispotout is similar to Jispitin except it needs Jess information to build the p-]ist. 

After %LI is activated by lispotout by write{c;~-oLl} it becomes: 

c-·: 



25 

%Ll=(c. <Iispotout < string 0 1 end> asc p-list» 
where end is the system dependent preferred console output line-length and string is 
• c' . The capacity of string is end characters. 

Where lispotout works in much the same manner as lispitin. One peculiarity of lispotout (and 
hopefully any output stream which is inactive) occurs when the initial write is in effect a 
TERPRI. 

write{%Ll;%Ll=(%LI • <lispotout <NIL 0 0 0> asc NIL>)} 
- %Ll=(%Ll • <lispotout <string 0 0 end> asc NIL» 

where string= " but has_qpacity for 'end' characters. 

User Stream Definition Facilities 

(DEFIOSTREAM asc linelen position) 

DEFIOSTREAM produces as value a fast-stream which interfaces with the rea) input/output 
devices. . 

The actual stream produced is system dependent but the operation of saving a lisp system and 
bringing it up- on another operating system entails the reactivation of all such streams; in which 
case they may become defined for the new system. The user would have to contrive to have 
the actual files moved and converted if that were necessary. 

The parameters of DEFIOSTREAM are as follows: 

'asc' is an a-list, i.e. (property ... ) 
where property is: 

{(FILE. {('fname' ['ftype' ['fmode']]) I 'dsname'}) I 
(DEVICE • CONSOLE) } or, 

(RECFM • {F I V}) or, 

(MODE • {I I INPUT I 0 I OUTPUT}) or, 

(QUAL • 
if CONSOLE input then {S I T I U I V I X} 
if CONSOLE output then {LIFO I FIFO I NOEDIT} 

The value of the FILE property may be either character string, as indicated. or identifier, in 
which case the identifier pname is used. 

'linelen' is linelength if required, else NIL. For input files, the user supplied lineJen is passed 
to a system dependent portal and the portal gives back a number (possibly the same one) 
which is used as the actual size of the buffer string which is allocated at activation time. This 

--A': 



26 

parameter does not specify a truncation column. For output streams linclen determines both 
string size and end index. 

'position' is a linenumber which defines the starting position if required else NIL. 

What follows are some examples of operating system interface streams, their definition and 
use. 

defiostream{asc;72; I} 
where asc = «FILE XXX LISP)(RECFM • V)(MODE • I) . 

... °/oLI=('?tbLI • <filein <NIL 072 72> asc NIL I» 

Comment: Defines an input stream from the file system. The number 72 is the users idea of 
the length of the longest record. For most operating systems the actual file characteristics will 
take precedence. 

next{ <}loLl =(%LI • <filein <NIL 0 72 72> asc NIL I>)} 
... %LI =(co • <filein <°/0 120'co ... C99' 0 I 100> asc p-list 2» 

where the string 'co ... C99' in this instance has. 100 characters but has a capacity for 120 
characters because 120 was determined to be the actual longest record of the file. 

where p-list is a system dependent I/O control block designation and will not be ex­
plained. 

This illustrates normal behavior of next when curindex?:.endindex and Jzeads is the stream itself, 
and the line read in is not empty. 

If the first line were empty: 
next{°/oLl} ... o/oLI=(O/oLI • <filein <" 0 0 0> asc p-Iist 2» 
and similarly for subsequent empty lines. 

On end of file: °/oLI =(O/oLI • °/oLl) . 

defiostream{asc;72; I} 
where asc=«FILE YYY LIST)(RECFM • V)(MODE • 0» 

Comment: Defines an file system output stream. In the ca·se that an old output file exists, its 
existence is to be ignored as much as possible. The longest record that we wish to write is 72 
characters. 

Initially the above definition gives rise to: 

%Ll=(%Ll • <fileout <" 0 0 72> asc NIL 1» where" has capacity for 72 charac­
ters. 

~- IBM-~~~--04~ ! 
- - - ---.-

~ , 

I 



27 

write{co;<}oLl=(°!t>Ll • <fileout<" 0 0 72>asc NIL I>)} 
.... %LI=(co • <fileout <'co' 0 I 72> asc p-list 1» 

However. 
write{%Ll;~t>LI=(%Ll • <fileout<" 0 0 72>asc NIL I»} 
.... %Ll=(%LI • <fileout <' '00 72> asc p-list 2» 

THE INTERRUPT SYSTEM 

Interrupts are responses to external or asynchronous events. The event that causes the 

interrupt communicates this to LISP by updating some shared storage structures. LISP polls to 

see if any interrupt has occurred. It does this at times when it has a "clean state". 

If an interrupt is pending a DISPATCHER is called. The interrupt service function is dis­

patched for the highest priority pending interrupt whose priority is greater than the current 

level of priority of the interrupted process~ 

The global variable EXTERNAL-EVENTS-CHANNELS has a value which is a vector whose 

kth element is a function of no arguments. which should be the service function for interrupts 

of type k. See Table I, for the detailed definition for each channel. This vector is a LISP 

reference vector and normal vector operations may be used on it, with cautio'n! 

The function S,ERRORLOOP is most commonly employed as the service function. Its LISP 

source is in ERROR LISP370 but a brief description is in order. 

Basic1y a READ, EVAl, PRINT loop. One can exit normally to resume the interrupted 

process by incanting (FIN e). One can do a UNWIND which is an non-local goto to the 

nearest error catcher; as S,ERRORLOOP itself has such a catcher one must signal it to do an 

UNWIND by (UNWIND 11) where n>O. The action of UNWIND should reset the current 

priority level to 0 and turn the polling back on. Uncontrolled continuation (applying states) 

from high priority interrupts could cause ]OSS of sensitivity to lower priority interrupts. 

S,ERRORLOOPI is just like S,ERRORLOOP except it doesn't have it own error catcher. It is 

used when the system is seriously out of space. 



2R 

Table 1. The External Events Channels 

Channel I 

Service Expression Definition or Explanation 
Number I 

f------- -+------ ---------------- ---------- -- - - - -- -------------
i 

o • Not really a channel. Reserved for future use. 
r------ -- ~--- -------- --- ---------- - --------- ----------------- -- --------

i Currently, UNUSED-CHANNEL I 
1 

. \vith priority 1. 
'- ------~------------ - ----------------------- ------------

2 

: EXTERNAL-INTERRUPT = 

(LAMBDAO(S,ERRORLOOP 16 "EXT" (STATE») 
J 

: has priority 3. 
----------~---------------------------------------------------------

. ALARMCLOCK 

3 ; Not yet provided timer interrupt with priority I. ------------ ----- ---- ---------- ----------------------
I 

iOUT-OF-STACK= 
I 

i (LAMBDAO(S,ERRORLOOPI 17 "STACK-FULL" » 4 

i has very high priority 5. 
----~I-------------------------- --- ------------------------------

: OUT -OF-HEAP = 

i (LAMBDAO(S,ERRORLOOPI 18 "HEAP-FULL" » 
I 

5 
: has very high priority 5. 

~---+-------- ---------- -------------------------- ---

IRECLAIM 
6 I . modest ___ p_r_io_r_it--,,-y __ 3_. _______________________________________ _ 

I 

7 
i Currently, UNUSED-CHANNEL 7 

I with priority 1. 
t------r-----

8 ... n I Currently unallocated. 

TRAPS 

Traps are program, or endogenous, events that happen synchronously. Like external events 

they are divided into classes and each program event is associated with a program events 

service channel. Unlike external events they may receive operands, and may return a value. 

A principal use for program events is error handling. Errors are detected and various program 

event channels are used to provide error servicing. Several classes of errors occur in LISP: 

_ ~- I B M __ -_04:.. ______ _ 

( 



29 

1. LISP machine check --- The LISP state is not recoverable and the error is uncor­

rectable. The only user actions possible correspond to debugging in the micro-code 

(with respect to the fiction of there being a LISP machine), stopping or abnormal 

termination, and resetting or restart. No user service channels are provided for errors 

of this class. 

2. Uncorrectable error --- The LISP state is well defined, but there.is no meaningful 

recovery. In such cases user channels are invoked but if the channel attempts to return 

a value an automatic unwind occurs. 

3. Correctable error --- The LISP state is clean and it is possible to proceed if the 
user service channel provides a value. 

See Table 2, for more explicit details for each channel. There are distinctions that are not a 

property of the service expression but rather how it is invoked. Consult the Program Descrip­

tion and Operations Manual (SH20-2076-0) and listings for details about ERROR, ERRORR, 

ERR2, ERR4 and such if you become mystified. 

Most program events run by causing the nth element of PROGRAM-EVENTS to be applied to 

n, the arguments and the current state. The current implementation of most of the error 

channels is to call S,ERRORLOOP, the break state supervisor. 

_.~ IBM:::OC __ .~. 
-- ~ .. --- -~.--~-.~-_-~- .• _ _ _-- r- -

--li:: 



30 

Table 2. The Program Events Channels 

Ch Value of 
Value Expected No:: Purpose. Explanation, and Initial value ? ARGS? 

~~-------.- -----.----- -_.- .------- _._.- --_._----
. No current purpose. 
; Initial. value NIL. ; 

n.a. n.a. 
-~----' - -_._._--- ._- -----+--------- ----.-.~----_.- --.------~ 

I 

! "FR DOMAIN ERROR" e which user supplies 
2 S RO LOO (al·,·an ur) fl' ; Initially: .ER R P or reeva uatlOn. 

f--- -~---- -------.... --- -. -. -- . ---------. --~ ------------- .-- .•.. -- .. ------ - ------- -

: "NON-CONFORMAL MACRO APP " «rator I 
: e which user supplies 

: Expect user to supply expression for correct rand, .. ) x) : for reevaluation 
3 : value of the macro application. or to where x is as the value of the 

i (UNWIND). : macro being ; I' , 
.. _~.iI))~~~!y:_~_.~~R_9~~Q9E ______ . __ . . _____ L-.yJ?pli~~:_~_: __ ~~cro ~~~a_t~~ 

! "NON-CONFORMAL APP " , (at" .an x) 
4 I Expect user to supply expression for correct I where x is i e which user supplies 

! value of the application. or to (UNWIND), ! function being! for reevaluation. 
~ __ --4IInitiaIlY: S.ER~OR~O_<2~ .. ___________ .. --+~Iied. ___ : ___ . _________ _ 

,"DYNAMIC MACROS NOT ALLOWED 'I ! 
I Attempted to apply a macro to computed i (a 1•• .an x) 

5 i operands. . i where x is e which user supplies 
for reevaluation. 

I
' Expect user to supply expression for correct i macro being 
value of the application, or to (UNWIND). i applied. 

1
nitiallY: S,ERRORLOOP . J .+-_. ______ . ____ . __ 

"APP OF THE INAPPLICABLE" I i 
Application of a constant or expression that j ! 
evaluates to itself. I (at" .an x) II 

6 Usually means undefined (i.e. inapplicable) i where x is ,e which user supplies 
function. II constant being I for reevaluation. 
Expect user to supply expression for correct I applied. j 

value of the application, or to (UNWIND). I 
Initially: S,ERRORLOOP I i 

----+-I-"N--ON-SD 2N~-A~~ " I· -,---

I

! EV AL or CLOSURE was not given an sd as I Ev;:0 ~here ! 
second argument. . I --- ! e which user supplies 

7 I Expect u;er to supply expression for correct I y was
d 

I for reevaluation. 
I suppose to ' 

value of the evaluation, or to (UNWIND). I b d ! 
I Initially: S.E~RORLOOP II e as. . 

J 'ARITHMETIC ROUTINE ERROR" (a] ... an x) 
8 Expect user to supply expression for correct where x is e which user supplies 

value of the evaluation, or to (UNWIND). routine being for reevaluation. 
L Initially: S,ERRORLOOP applied. 

._---

-

__ .&E@-IB-M~_. 

c·· 

(-

c 



31 

c-- -,-------- --.--------- -----------:- -----------

i "OUT OF STATEMENT CONTEXT GO " 
i GO expression occurred out of statement: 
I -

9 i context. : 
I Expect user to supply expression for correct 1 

! value of the evaluation. or to (UNWIND). ! 

(GO sl-lab) 

e which user supplies 
for reevaluation. 

(probably not 
dynamically 
correctable) 

: Initially: S,ERRORLOOP 1 
----~---- ----~,--------~ ----------

~ "NO SUCH LABEL TO GO TO " ! 
! i' 

: (GO sl-lab) in statement context has no i 
l corresponding label. ! 

10 ; User is placed in break loop but control will' 
! not return to the offending i 
,statement context. instead an UNWIND will; 
i occur. i 

(GO sf-lab) n.a. 

: Initially: S,~~~_9J~_h9_Q!' _______ . ____ L _______ ---+ ____ ,--_____ _ 

i" 1ST ARG TO SET NOT ID " 
: Attempted assignment to a non-id. i (y x SET) II h' h I' 

11 : Expect user to supply expression for correct j where y is not I e w
f 

IC uselr s.upP les 
i . I'· I or reeva uatlOn. : value of the evaluatIOn, or to (UNWIND). - an ,d. . 

____ ~ltially: S,ERROR~OOP -L -1--- _________ _ 
IIlUSER CALLED ERROR WI RETURN! ! 

I 
EXPECTED " I I 
The explicit call to ERROR channel. I ! 

I The argument is provided in the expression I I e which user supplies 
) 2) s-exp , 

I (ERROR mes . i I for reevaluation. 
I Expect user to sup?ly expression for correct! 
: value of the evaluatIOn, or to (UNWIND). 'I I 
I Initially: S,ERRORLOOP 

'---If-"NON_CONFORMAL LABEL-EXP "I I 
i Non-conformal label-expo I e which user supplies 

13 Expect user to supply expression for correct, label-exp 

I 
' for reevaluation. . 

value of the evaluation, or to (UNWIND). 

i nitially: S.ERRORLOOP 

--- I "USER CALLED ERROR W / UNWIND I 
EXPECTED " ,. 

14 ERROR with explicit unwind provided. 
Expect user to look around at his state. I 
Initially: S,ERRORLOOP i 

_._--------

s-exp n.a. 

--



32 

Summ~ry ana Future Directions 

This document should have supplied some of the necessary information that the PDOM 

neglected. It will not serve as a good primer for to LISP370. Little attempt was made to 

justify the choices made in the design. It describes the available LISP /370 system and not our 

experimental design studies. Those topics must be left to some future papers. 

Acknowledgements 

The author has benefited greatly from the conversations and contributions of Arthur C. 

Norman, Martin Mikelsons, Allen L. Brown. Vincent J. Kruskal. Jean RivJin, Richard W. 

Ryniker, Bill Burge, Andrew P. Black, and Cyril N. Alberga who was my co-worker and 

sharpest foil. 

~. IBM·· .-nic---
-- ~ -----

l' 



c 

( 

( 

33 

BIBLIOGRAPHY 

There are a number of surveys and reports justifying LISP. The following may be useful: 

• John McCarthy, "Recursive Functions of Symbolic Expressions and their Computation 

by T\-1achine," Communications of the Association for Computing A-fachinery, vol 3, 

1960, and "A Basis for a tvlathcmatical Theory of Computation." in Proceedings of 

~VeSlern Joint Computer Conference. 1961. The original papers on LISP. 

• D. G. Bobrow. and B. Raphael. "New Programming Languages for AI Research," 

Association for Computing Machinery Computing Surveys. vol. 6 no. 3. September 1974. 

• Carl Engelman, Engineering of Quality Software Systems (Towards allana~vs;s of the 

LISP Programming Language). NTIS Report no. RADC-TR-74-325. Volume IV. U. S. 

Govt. Accession No. ADI A-007 769. 1975. 

There are a number of LISP textbooks. The following, in particular. may be of interest: 

• C. Weissman. LISP 1.5 Primer, Dickenson Publishing Company, Belmont. California, 

1967. 

• Laurent Siklossy. Let's Talk LISP, Prentice-Hall, Englewood Cliffs. New Jersey, 1976. 

• John R. Allen, Anatomy of LISP, McGraw-Hili, New York, 1978. An outstanding new 

hook. 

• W. D. Maurer, A Programmer's Introduction to LISP, American-Elsevier Publishing 

Company, Inc., New York, 1973. 

• D. P. Friedman, The Lillie LJ SPer, Science Research Associates, Inc., Palo Alto, Calif., 

1974. A programmed text approach to teaching elementary recursion. 

LISP programmers manuals: 

II John McCarthy et ai, LISP 1.5 Programmer's Manual. M.LT. Press, Ca~bridge. 

Massachusetts, 1965. 

• David A. Moon, MACLISP Reference hfanual, Project MAC. Massachusetts Institute 

of Technology, Cambridge, Massachusetts, 1974. 



i4\ " _ 

34 

• Warren' Teitelman, INTERLISP Reference Manual, available from Xerox Palo Alto 

Research Center, Palo Alto, California, or Bolt, Beranek and Newman, Cambridge, 

Massachusetts, 1974. 

LISP /370 Documents available through your local IBM Branch Office: 

• "Availability Notice", Program Number 5796-PKL. 

• 
• 
• 

"Program Description/Operations Manual", SH20-2076-0. 

"Marketing Guide", Number ZZ 20-4287, IBM INTERNAL USE ONLY. 

Jon L. White, LISP /370: A Short Technical Description of the Implementation, 

Submitted to SIGSAM Bulletin, also included in "Marketing Guide Number". 

AI general: 

• Patrick Henry Winston, ARTIFICIAL INTELLIGENCE, Addison-Wesley Publishing 
Company, Reading, Massachusetts, 1977. A source book on AI, with chapters on 

LISP. 

C
" 

", 

--~: 
, '\' 

( 

L. 


	Blair-LISP_370_C_and_F-19790001_a
	Blair-LISP_370_C_and_F-19790002_a
	Blair-LISP_370_C_and_F-19790003_a
	Blair-LISP_370_C_and_F-19790004_a
	Blair-LISP_370_C_and_F-19790005_a
	Blair-LISP_370_C_and_F-19790006_a
	Blair-LISP_370_C_and_F-19790007_a
	Blair-LISP_370_C_and_F-19790008_a
	Blair-LISP_370_C_and_F-19790009_a
	Blair-LISP_370_C_and_F-19790010_a
	Blair-LISP_370_C_and_F-19790011_a
	Blair-LISP_370_C_and_F-19790012_a
	Blair-LISP_370_C_and_F-19790013_a
	Blair-LISP_370_C_and_F-19790014_a
	Blair-LISP_370_C_and_F-19790015_a
	Blair-LISP_370_C_and_F-19790016_a
	Blair-LISP_370_C_and_F-19790017_a
	Blair-LISP_370_C_and_F-19790018_a
	Blair-LISP_370_C_and_F-19790019_a
	Blair-LISP_370_C_and_F-19790020_a
	Blair-LISP_370_C_and_F-19790021_a
	Blair-LISP_370_C_and_F-19790022_a
	Blair-LISP_370_C_and_F-19790023_a
	Blair-LISP_370_C_and_F-19790024_a
	Blair-LISP_370_C_and_F-19790025_a
	Blair-LISP_370_C_and_F-19790026_a
	Blair-LISP_370_C_and_F-19790027_a
	Blair-LISP_370_C_and_F-19790028_a
	Blair-LISP_370_C_and_F-19790029_a
	Blair-LISP_370_C_and_F-19790030_a
	Blair-LISP_370_C_and_F-19790031_a
	Blair-LISP_370_C_and_F-19790032_a
	Blair-LISP_370_C_and_F-19790033_a
	Blair-LISP_370_C_and_F-19790034_a
	Blair-LISP_370_C_and_F-19790035_a

