N

- 696

v0 - W8I

P

-

D,

( I (e ’v‘ &};‘{&;r

The Structure of the Lisp Compiler

In the course of my work in algebraic symbol manipulation, I
have had the pleasure to inplement a Lisp system with
compiler for several S/360 operating systems. My
confederates in this venture were.J. Griesmer, J. Harry, and
M. Pivovonsky. In the course of that development I had the
opportunity to study the history and structure of the Lisp
compiler., It 1is my intention to pass along somé of that

information,

The first Lisp compiler was written by Robert Brayton Yith
the assistance of David Park, in  SAP for the 704, That
compiler was started in 1957 and was working in 1960 by
which time Brayton left MIT. During that interval of time a
Lisp compiler written in Lisp was implemented by Klim Maling
but that compiler was apparently dropped. The argument
advanced was that. Brayton's being  written in assembly
language, would obviously be faster. Difficulties in
maintenance developed when érayton left the project. After
Brayton and Maling, Timothy Hart and Michael Levin wrote a
compiler in Lisp which was distribtted with the 704 Lisp 1.5
system. The compiler that I am most familiar with and will

describe today is a descendant of that compiler.

The Lisp compiler has developed over the years due to

- G9h

0 - Wa!



- 96

v0 - W8I

v

4

PAGE 2

several factors:

1. The Lisp lanquage has been .refined and the compiler

has had to keep up.

2. The Lisp system was implemented on new computers
with different order codes and memory organizations,
therefore the code generation had to change.

3. Bugs were ' identified and corrected.

4, Various optimizations of the compiler itself and

the code it produces were deemed desirable.

To date none of these factors have completely receded into

the woodwork and therefore development continues,

To cite Jjust a few of the more sophisticated and active

efforts which I consider lambda calculus motivated:
GEDANKEN by J. Reynolds; PAL by A. Evans; CPL -~ Barron

et. al.; ECL by B. Wegbreit.

To these should be added the many straight Lisp 1.5 type
efforts, of which the Stanford Lisp systems, the BBN-Lisp on
PDP-10 with the TENEX time sharf&ng system, BALM on the CDC
6600 by Harrison, et al, are just a few examples., S/360 Lisp
is of this latter type and while it is likely to persist for
some years could hardly be touted as a penultimate system. I
foresee a series of modest improvements. The overridding

consideration being improvement but compatibility with the

- G9A

t0 - We!



~$0WBT596

D,

PAGE 3

large body of code that we currently have available,

It is with all this in nmind that I launch into this
presentaticn of our 5S/360 Lisp system and the structure of

its conpiler.

Firstly, the Lisp system should be understood as

having:

1. A language

2, A data-model including storage organization and
management

3. A supervisor

4, A large set of built in primitives

5. Two evaluation mechanisms, the interpreter‘and the
compi ler ' .

6, A definition schemata

All these facets are of course interesting and vital. But
today I am concerned only with the compiler and will to some
extent, assume that you are familiar with the other facets
of the Lisp systeﬁ. Moreover that you are here mainly to
learn about the organization of the compiler and are
unconcerned about other topics which I would be otherwise

happy to discuss,

The Lisp compiler is a run time function which creates named
code bodies, The effect is that new primitive operators are
introduced into the system. Such operators may have access

to global variables and are free to have global

- G9R

0 - WAI



- G96

0 - Wal

- %

2

PAGE 4
side-effects. The compiler is written in Lisp. It is rather
well understood and indeed correctness proofs of several

subset compilers have been published in 1971 by R. London.

As we are concerned with an extremely simple language with
typeless data objects, the compiler is not overly complex.
The compiler is primarily concerned with variable binding
and variable evaluation, and to that end it uses more
efficient environment models than the a-list of * the
interpreter. These environment models are in order of
efficiency: stack variables, SPECIAL variables and COMMON

variables,

It is a goal of the definition schema in this 1lisp systenm
that functions may each be defined in any order. This is a
real boon to the interactive definition process, but could

lead to a class of errors or else result in inefficient

code, The errors that I have in mind come when the number of '

arquments or their evaluation or transmission modes is

changed in a redefinition,

In fact that 1is . just what happens and furthermore is
considered tolerable., For reasons of efficiency the compiler
prefers to think that all bound variables are purely local

(unless othervise informed) for which it has an efficient

which allows for more efficient <code but makes the;f
1

programmer identify those variables which may .be used free

by some called function.,

2

-~ {
stack model. As you can see this is an incorrect assumption{7cyﬁ

)

fm'fﬁ
P

7
W R
i

- GAR

Y0 - WAlI



- G96

v0 - W8l

PAGE 5

Another incorrect assumption that this compiler thrives on

is that a call to a currently undefined function is a call

to a function that expects exactly the numnber of arguments
given and that it expects them evaluated. This is not so bad
in the case the function remains undefined as a run time
error occurs. Also any attempt to define it as other than

the assumed class can give rise to an error,

The compiler thus.assumes that the user declares his f;ee
variables correctly and compiles his unusual functibns
before any calls to it are coméiled. The three modes for
variables that the compiler uses are:

1. stack variables.

2. SPECIAL variables.

3. COMMON variables., '
The implementations of each of these are:

1. Stack variable -- A stack cell is reserved for each
bound variable occuring in the lambda-expression, these
cells are filléd in at entry to the code body with the
arguments of the function. A stack cell 1is allocated
‘for each program variable found as bound variables in
embedded PROGs, these are initialized +to VNIL at
function entry. Temporary variables are created by the
conmpiler itself. All of these cells are accessable

only to the current activation of the code body in

question.

- GaR

-Wg!

$0



- 696

v0 - N8I

iy

PAGE 6

Hmh-memqw

Low memory temp,

Arga!

Argy!

Afgz

PDL"

RET

- REL
-PDL“,

Fig. 1
2, SPECIAL variables -- This mode is used for those

variables declared SPECIAL at compile time. A value
cell is associated with the identifier which denotes a

variable. At binding time the contents of the stack

cell allocated to that bound variable is exchanged with

the contents of the value cell. Subsequent references
and assignments are to the value cell. At function
return time these two cells are exchanged again, thus

restoring the former values.,

The implementation of SPECIAL variables 1is quite
efficient but inadequate in the following cases.,
1. The downward FUNARG:
A functional arqument is passed which uses a
free variable which has been bound again in‘the
environment the functional value is applied.

2. The upward FUNARG:

- GAp

PO - wg!



-~

- G696

0 - W8I

R

PAGE 7
A functional value is returned which has a
free variable which has a different binding when
that value is applied,
For these cases the full power of the COMMON variable
mode is necesséry. The Lisp interpreter has access to
SPECIAL values only if no variable by that name occurs

on the a-list,

3. COMMON variables ~-- This is the nost correct
variable model used because it uses the a-list in a
manner isomorphic to the use by EVAL. The embodiment

is to have a stack cell point to the name-value pair on

the a-list. Evaluation of such a variable is a LOAD and“

a CDR. Assignment is a LOAD and a RPLACD. When COMMON
variables are bound (activated), the a-list is

augmented by appending that name-value relationship

cell, At deactivation time the a-list is restored to

its former value, In those functions which use a
COMMON variable free, or for that matter any undeclared
operand free variable, the a-list is searched at
binding (activation) time and a'stack cell is made to
point to the appropiate name-value cell.

*““V‘,‘K
4

—F T
— YT

Tz
| T k—eTY

[]
*

c.,.(,/.g ﬁcof&,nfz/c‘uan Vovibly Z ot X

- GaR

v0 - We!



- §96

v0 - W8I

LT 1

PAGE 8

Fig.

The COMMON variable mechanisms of the compiled code are
more efficient than those of the interpreter except
that free variables which are mentioned but not used do
get extra attention., The COMMON mechanism is 1less
efficient than the stack or SPECIAL - variable

mechanisns., It is more correct however.

The <compiler treats ordinary operator nanmes like free
variables and compiles the code to:

1. Evaluating the arguments.

2. Transmit the arguments. ,

3. Do a subroutine jump indirectly through the SPECIAL

value cell of that identifier.
It is the users responsibility to see that any operator that
deviates from the ordinary class receive properties which
the compiler may know before any function which calls it is

-

compiled.

Many of these defaults and responsibilities were put in as
aids to the interactive program development, but are in fact

the sources of some errors.

It is interesting to note that in Brayton's early compiler,
the "compile before or along  with" conventions were rigidly

enforced, A function not satisfying those requirements

- GaR

PO - Ng!



v

vO-WHI-G86 T T T
D,

PAGE 9

didn't compile,

Despite my earlier promise that I would concentrate strictly
oh the structure of the compiler I should 1like to describe
the Lisp language. My argument is that even those of you
who are expert at Lisp need to knov precisely what Lisp I am

concerned with.

To that end I present a syntax description of Lisp as I see

it.

vSyntax of LISP

els: {%hd} aconsMntorvaﬂaMename
FLL//\N,J\%%’}\ ('d"} body). where body Is an e
( LABEL id e)
(SETQ id e)
(COND (p q*) where p, q are e

(PROG (id*) s*)

Id

(GO id) }%' v
where s s (RETURN e) ?i-pww ' R
{COND (p s)*) G ) w3l L/ )1 Ll N
e : " ("},,,,;,W..... - h
(FUNCTION e)
(QUOTE s-exp)
(rator rand*) where rator, rand are e,

J
-

- GOR

0 - WAl



G696
D,

$0 - W8l

& v i

PAGE 10
A Lisp expression e is:
€ a constant,
id a variable name or identifier.
(Lambda-op bv body) a lambda-expression or procedure
bv the bound variables is either id or (id*), and

body is an e.

(LABEL id e) a label-expression,
(SETQ id e) assignment.
(COND (p g) ¥) a conditional-expression

where the predicate p is an g, and
the consequent g is an e.
(PROG pv s*) a ptogram-expression

where pv the program-variable part is (id*), and

each statements s is a: |
igggl which is an id, or '
(Go ig) a go-statement, or
(RETURN e) a return-statement, or
an e, or
(COND (p s)*) a conditional-statement.

(PUNCTION e) .

(QUOTE s~expre$sion) a quoted s—-expression.
(cator rand*) a combination

wvhere the operator rator is am g, and

each operand rand is an e.

It should be noted that except for constants and variables

- G9A

¥0 - Wa!



e POCWETTS96 T T T T
. T) .:

PAGE 11
every Lisp expression 1is a combination. Some of these

combinations are distinquished for semantic reasons.

Semantics in Lisp 1is usually given by describing an
interpreter (EVAL ¢ a) where ¢ has been described and a is
an environment which gives meaning to free variables. The
environment a is an ordered set of name-value relationships

which is most generally répresented as an a-list.

As an aside I should 1like to mention my own bias that an
interpreter described as a S,E,C,D transform is even more
illuminating, Such transforms were described by P. Landin in

1964, (see appendix A for such a semantics presentation)

It is well known that Lisp requires a minimal set of data
primitives for its own self-description. To define EVAL in
Lisp we require only the following additional primitives:

(EQ x y) identity.

(ATOM x) the atom predicate.

(IDENTP x) the identifier predicate,

(CAR x) - and (CDR x) the selectofs.

l(RPLACD x y) and (BPLACA x y) the storing functions,

and an allocation function like CONS.

The fact that very little is required to understand Lisp and
the fact that it is self described and self implemented has

allowed the users to play with its semantics., Lisp has not

been very self protective, Some examples of such introduced

semantics are macro-expressions and .code-expressions.

-GB8R

0 - W8I



- §96

0 - W8I

e -

PAGE 12

A macro-expression m-e 1is simply a combination vhose rator
is understood to be the name of a macro definition function
ndef. The value of a macro-expression .is giVen by: (EVAL

(mndef m-e ) a) .

A code-expression is a combination of the form:

-’
s

(CODE instr*) where the instr are LAP instructions,

ks

Both macro and code expressions are intended as compilation
tricks but EVAL could handle them. In practice EVAL handles
macro's but not code-expressions,

Skipping any further discussion of semantics I believe we
should be in a position to follow a structural déscription

of the compiler,

Each named procedure is compiled by a Lisp function COMIX

wvhich has the following structure:

comiX
CQM P‘\ ‘t_
one
) Funclion
MDEF - conz
4 : I - Pro (X ¥74
Expand : waeed —free
oW\ Funclion
facvo's
L Li " | Ganerate
tsp o Lisp Aumél’
Code
Teansformaliong

PAssoAEC 4 PRASC LAPIGO

[

cas .

__v0- 8L



- 90 - WNET-996 -

PAGE 13
COM1X calls MDEF which expands all the Lisp macros, COM1X is
recursively called for certain procedure-valued expressions.
In which <case a separate function is creéted and then

referenced by the “containing" function.

COM2 controls the conpilation of a . properly macro-expanded
named lambda-expression. There are three parts to this

compilation namely, PASSONE, PHASEZ2, and LAP360.
PASSONE performs such Lisp to Lisp transformations as:

1. Recursion removal \

2. Free variable identifid&§ion

3. Introduction of binding ﬁechaniSmsA

4, Elimination of indefinite number of arguments
5. Elimination of FLAMBDA operators '

6. Remoﬁe operand procedure-valued expressions

7. Introduce interpreter calls for delayed

evaluation conditions

!

R (LAGEL id ¢) G Lo
: .
" : halidd
Compile . . (Pﬁoﬁ
Separately , _ (") &™)
Cow
¢ 3
e
Alorm

PAassonNeE

- GOR

0 - W81



- 696

v0 - W8I

L2

PAGE 14
Fig (see appendix B for greater detail on PASSONE,)

PHASE2 recgéves a much simplified lambda-expression fronm

"PASSONE, It produces a list of LAP (List Assembly Progran)

instructions which is meant to be the execution equivalent
of the lambda-expression., PHASE2 creates the code. It Knows

what to do for:

(QUOTE s-expression) constants

(SPECIAL id)

(SETQ id e) o assignment
(COND (P Qq) *) » ’conditionals
(PROG pv s*) program - blocks
(RETURN e) programn returhs
(GO id) go-tos '
(AND eX*) o
{(OR e¥*)
(*CODE instrx*) code-expressions
((LAMBDA (id*) e) e) ' lambda-exp operator
(id e*) " calls
§
PHASE2 also generates the code for variablg binding é:
prologues and variable restores on value return epilogues. z
H



} o PAGE 15
|
|

‘ ' N - ) ‘([‘;MBBA
\(‘\ - v € )

’ - (o i)

» —/7

{see appendix C for greater detail on PHASE2)

LAP360 is a very simple minded 2-pass assembler. The only.

interesting faq{t worth mentioning is that it finally

resolves special variables, quotes and function calls.

- G96

0 - Wa!



D

- 696

© 90 - W8l

oy %

PAGE 16
References
Reynolds, J. C., GEDANKEN, A Simple Typeless Language
Based on the Principle of Completeness and the

Reference Concept. CACM 13, 5 (1970) 308-319
Evans, A., PAL - a 1lanquage designed for teaching
programming linguistics, ACM 23rd National Conference,

Aigust 1968,

Barron, D., et al., The main features of CPL, Computer

Journal 6, 2, July 1963,

Landin, P., The Mechanical Evaluation of Expressions,

Computer Journal 6, 4, 1964,

London, R. L., Correctness of ¢two compilers for a Lisp

subset, Artificial Intelligence Memo AIM-151, Stanford

University, October 1971,

Wegbreit, B., The ECL programming system, Aiken
Computation Laboratory (Harvard University, 1971 (in

preparation));

- G9R

$0 - Wga!



APPENDIX A, Semantics ---

PAGE 17

- GOR

Y0 - W8I



PAGE 18

¢

965 - IBM- 04

R

965 - IBM - 04



PO - WHT-5906

APPENDIX B,

PAGE 19°

PASSONE transformations ---

- G9R

v0 - W8I



PAGE 20

T " . oy ¥ - V—

(\ Herative form recursion removal .=

OB L | :

trlam| (LABEL x (LAVBDA (idy... Id,)

©
3 (COND{(pq)I(p- (xa....a; l)} n; b] ) ) ~ »:/[
o, il in e ver w o~ cc/ 2
3 z“m‘ [ v ) bz of ot~ clncel ogrecind,
'g - trlam[_(LABELx (L{\.MBDA (id ... idn) _ (CO(’]{']O/‘J "m’) ! WG;MJ”‘/
8 (REE () ] Yot LT,
g (COND {(p(RETURN 1| 6 (60 g '} ) | yee ilmn o @_u) |
Joi (SE1Q 0y 3y) ... (SETQ gy 1) (GO g T |
b Cwet e u JM' 7?#—'1
o (SETQ id) g;) ... (SETQ idy, g,,) (60 go)))); h] "6""
' co = (sc’m'm. var )
I Y T T T e et ™\ /‘
Asoans
{{/ Vv & b bt sl
(omeon vev )/ Y comun *
(Sfcctﬁf(, var) \ r’{ ”i';"""‘/
(,g v it Lloid JF wre b
') Prem vav - ‘

———

TJMq[T ; b] = (Quore *T)

—Lémﬂ[F J:] = (Quore wid) ,
Y[ 75 6] = (QuoTe x) F dmi a el
’&60»«[(0%’:) ] = - (quoTe %)

triam{_ (LABEL x (LAMBDA bv (PROG ...))); b]

. trlam[ (LABEL x (LAMBDA bv (P**G ... n);g

trlam [ (LABEL x (LAMBDA bv body); b]
= (LABEL x (LAMBDA bv { trform]_ body; by b] /
(PROG pv A Space
alist-save ‘
common-var-bind
free-var-bind .

v0 - W8I - GaR

special-var-bind

(SET trform| body; b tﬂ
Q g, trfo m[ y V\//,,.,

special-restore

alist-restore

- (RETURN g,) ) }

where pv 5 ({ga ‘empty} g, free*)



- 90 - WdT - 996

m

tLD/(h-MY(bco /w—«:\’m)s b] : .
el o b i oA ps,
‘ oL ci’d/w/ “o T SuBR oo §x¢R,
= ( wof 'C:Olo-»mfmnf{; A]*)

'&[o-\-m[(iop W.ﬂ-“)', b] .
b f w o&d/««,/ a0 FouBR o1 Feafr
= (! (QuoTe asnt)™)
Bfon [(id cand®)s b] .
whan I & ,%M ao  JULZx- oo EAPRE-
= (Coe (LI’ST - ’Gé/m[rané{j L)J.'-)) .
t%}un[(aj mruj*)) L] '
e & & Z‘e/m/ a® FIGLR»~ o1 Féafor
= (W (13T (Quore md)¥))
ﬁjcw\ [(tc? s ¥) ) 5] -
e o/ o .42’/’6« &b o ¢‘,,u«;/ o CTwmcH ,
= (A??LX 'blo/mq[w/)bj (LisT G‘{w[,u..,/]y‘l))
‘KoT'L% U9 Mmnto q.\au,..uvt: Mm.

trform [ (SETQ 10 e); b
- {(RPLACD 14 ¢) / (SETQ (SPECIALId) &) /
(SETQ id e) ]  where e'=trform [ e;b])

trform [ (COND (p q1*);b]
* (COND ftrform_ p;b] trform[q;t_)] )*)

trform[ (60 id) ; b) = (GO id)

trform [ (AND p*);b] = (AND trform[ p;b]* )

“trform [ (OR p*)+b] * (OR telorm [p;b]*)

trform [ (FUNCTION e); 5] = (FUNC (QUOTE comp[[e:g] ) $ALISTY

trform{ (*CODE instr*) ; b] = (*CODE instr* )
. '

PAGE 21

0 - WA - 63



- 990

vU " Wwdli

~

trform[ (P**G pv s*) ; b]

- trprog[ (PROG pv 5*) ; b]

tform [ (PROG (id, ... idy) s*) ; b]
- trprog | (PROG (id; .., id,) (SETQ id, (QUOTENIL))
o+ (SETQ idy JQUOTENILI) s*)5b]

trform{ &- exp; b] = (FUNC (QUOTE comp[[ A-exp: g] ) $ALIST)

trprog [ (PROG pv s°); )

= (PROG pv"
-

alist-save

common-var-bind

free-var-bind

special-var-bind

(SETQ g, (PROG pv' ")
. special-restore

alist-restore

(RETURN g}

where pv' = (g, coms® spec® free*)
- pvt o=y - [Eoms‘ U spect U free‘_]

PAGE 22

trform [( (LABEL id e) rand* ) ; b] :
+ trform[ (trlam [ (ABEL id ¢); ] rand®) ; ]

trform [ ((FUNCTION e) rand*);b] =
* triorm[ (e rand*) ; b)

trform [( (QUOTE s-exp) rand*) ; b)
= triorm [(s-exp rand*) ; b)

trform [ ( (*CODE istr* ) rand*); b)
"= ({°CODE instr) trform[ rand;b]*) .

trform [ ( (rator rand * ) rand™) ; b]
= (APPLX trform [ (rator rand * ) ; b]
{LIST trform rand'; b * ))

trform [((LAMBDA (id®) body) rand*) ; b]
- ttrlam[ (LABEL g (LAMBDA (id®) body) ) b]
tn‘orm[ rand;b]‘ ).

trform[_ ( (LAMBDA id body) rand* ) ; b]
- dtrlam| (LABEL g (LAMBDA (id) body) ) ; b]
(LIST trform rand;b *))

‘trform[ ({ FLAMBDA (id®) body) rand®) ; b)

"= tram[ (LABELg (LAMBDA (id*) body)) ; b]
(QUOTE rand)* ) :

trform[ ( (FLAMBDA id body) rand* ) ; b)
« (trlam [ (LABEL g (LAMBDA id body)) ; b]
(QUOTE (rand*)))

- GOR

22702

0 - WE8!



PAGE 23

APPENDIX C. PHASE2 code generations =--

~
comval [(id rand,'): stomap; name) for I >2
comval[ id; stomap; name] .
=L AC Iocate. [id] [stomap} ) *( comval [ randy; stomap; gJ s
’ STAC ' :
where stomap = {(d; (PDL4K)) (id;_, (PDL 4] M...) (STAC locate [ g;]fstomap'] )
o J : comval[randz; stomap; 92] :
(PDL 4k) is the stack address for the local {ST AC locate [92] [stomap:]) :
bound varlable Id; . : - ,
] . )
.comval[(QUOTE s-exp); stomap; néme] : : comval[ randn;» stomap; g”] :
: | (STAC locate [g,) [stomap']) :
= (L AC (QUOTE s-exp)) (L AC locate [g,][stomap*]}) :
. : (L MQ locate [g,] [stoamp']) :
comval [(SPECIAL id); stomap; name] (LA PDLO Iocate[gﬂ[stomap‘]) :
* (L AC (SPECIAL id)) (CALL id n) )
. _ |
comval[ { (LAMBDA {id)...id,) body) e ... e); stomap; name] " . comval[ (COND (p; ei).)‘ stomap; name]

.= f{comval [el; stomap; 91] :

- ey st HE'
(STAC locate [ id,] [ stomap']) ({ comval [ p;; stomap; g;) .

, (CR AC NIL)
- | - BNE .
comval[en: stomap; gn] , { {BE} 0 (LABEL gn,l” :
(STAC locate[ Idn] [Stomap'] ) : - comval[ei; stomap; namej :
comval { body; " stomap'; name] ) 6 0 WABELnamel)
where stomap = ( (id; (PDL 4K} (id;., PoL4fk-1]))... ) - 9,1
' | | :
and stomap' = S :
n siompp afx+np... tig, tPOL 4[k+1])) tid; (PDL 4K )... ) forb=d...®
 ttidy poLafk+n]).... Gy POLafk+1] 1)t (POLAK) .. )

- GaR

t0 - WAl



- G96

" 90 - W8I

eyl

~

comval[(PROG pv s'); stomap; name)

where stomap = { (idj (PDL 4k) ) (idj-l (PDL d[k-lj N )

" comprog[ (s*); pv; name

® ey Cp... €y name) where ¢; Isa list of code for s;.

(s") is created from (s*) by substitution of g;
for each label; in (s°) ' ‘
stomap' is created from pv= (id; idy...) and
stomap., '
The code for each s' In (s"*) is createds.
ifatom[s']-—ys' , .
if s'=(GO Iabeli) —>(B O (LABEL gi))
if ' = (COND (p s)*) — comcond | (tps)*); NIL]
else comval{_s';‘stomap'; g]
The label name is placed at the end of all this code.

PAGE 24

- G9B

0 - WAI



LA B Enddd

LA

High-memory

Low memory [

-PDL S—-—)
called function

~ PDL"

PAGE 25

STACK PLAN 72 -2

’ temp, -

fem
ATk

Argg

2
Arg,"
PDI* 1

REL*

ABS =—>

PDLO
emove4[1+k+3] 8)

- (LA R 0 afi+k+3]))

{ (L RI2 (PDLOO)) |

(LCR R14 R14)

[Cr13 (PoLO 4)) ]

(AR R14 PDL)

{STM REL (R14 0) PDL )

' ' AC
MC»
R12
RI3

(LR REL RE1)
(LR PDL R14)

©" (S R14 (E PDLMAX) )

(CR R14 ABS)
(BNH 0 (E STKOUT) )
(XFER K)

(NILOUT k I}

- GOR

0 - WAl



330

© VU T vvdl

(XFERE k)
k<5 —> ().

e;se mMve (PDL,28) 4[k-4] (PDLO 16) )

INILouT k 1)
it =0 —» ()
=1 —> (STNIL (PDL 4k +12))
=2 = (STNIL (PDL 4k +12)){STNIL (PDL 4k + i3):

else —» (STNIL (PDL 4k-+ 12)) ‘
(MVC (PDL 4k + 12) 4[4 -1] (PCL & - 16))

PAGE 26

- GaR

+0 - W8!





