
PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 1

Date:
To:
From:

Institute for Mathematical Studies in the Social Sciences
Stanford University

MEMORANDUM

July 26, 1983
Peter Hirsch

Subject:
Tryg Ager, James McDonald
Yorktown LISP

This memorandum conveys the results of our experimentation with
Yorktown LISP during one week in July, 1983.

We became familiar with the Yorktown LISP system, ran timing
tests to compare its performance to PSL, and considered it both from a
technical and a user point of view. The most important of our findings
is the comparative timing data, where PSL is faster in execution of
both interpreted and compiled code. The second important way PSL
differs from Yorktown LISP is in strategies employed to implement and
maintain the system. PSL is written in itself and uses an
implementation technology based on compilation to abstract machines;
Yorktown LISP uses conventional methodology where a handcoded assembly
language kernel is supplemented by derived functions written in LISP.

1. Performance Data

The performance data presented here is from a series of
"spectral tests" designed to isolate and evaluate performance on
individual components of a LISP system, such as consing, evaluation,
different kinds of function calls, arithmetic, and pointer
manipulation. These tests are standardly used to compare LISPs on
different machines and are written in straightforward code, so they
were easily converted to Yorktown LISP.

Both PSL and Yorktown LISP have special fast arithmetic
functions. We were careful to use fast- versions- - err-- functions in
Yorktown LISP whenever PSL did so. Although PSL does not have fast CAR
and CDR operations, we used Yorktown's QCAR and QCDR. We set Yorktown
compiler switches for non-interruptible code and to the maximum
optimization level to get the fastest code the Yorktown compiler could
deliver.

The results are given in Table 1 at the end of this report.
They show that compiled PSL and Yorktown LISP are comparable on list
traversal and list creation. PSL is four to five times faster than
compiled Yorktown LISP on the arithmetic and recursion tests.

PSL is thirty times faster on function calls done via EVAL and
APPLY; four to five times faster on normal function calls.
as in APL, long LISP programs tend to have many calls to small
functions.

The PSL system used for these tests is a prototype whose code
is entirely machine-independent. No optimizations of the code
generated by the machine-independent compiler has been done for the IBM
implementation. This prototype PSL, when run on a 3081, is already 10%
faster than PSL on the CRAY-1. In situations where speed is critical
and a bottleneck can be identified, PSL makes it easy to hand-optimize
selected functions. Therefore the final imp~ementation of PSL should be

PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 2

somewhat faster than the times reported here.

Performance of Interpreter.

We also compared the performance of the PSL and Yorktown
interpreters. When we tried to run timing tests of interpreted code we
found execution of code by the Yorktown interpreter to be an order of
magnitude slower than interpreted PSL code. Interpreted times are in
Table 2 at the end of the report.

The poor performance on interpreted code is a serious weakness
of Yorktown LISP, since most LISP program development is done with
interpreted code.

2. Portability.

PSL stands for "Portable Standard LISP." With respect to
portability, there are fundamental differences between Yorktown LISP
and PSL. While it is true that a relatively small handcoded
interpreter can be recoded more easily than a large interpreter, and
therefore is "more portable;" this is a strategy which was tried for
years by the developers of PSL and abandoned in favor of PSL
techniques.

PSL is written in PSL, and was designed with the DEC-20 and VAX
architectures in mind. Nevertheless the porting to 370 architecture
resulted in performance superior to handcoded LISP systems. This
result is contrary to popular wisdom which says that writing in
assembly code is the way to achieve efficiency.

The porting of PSL to other machines by Utah and HP has also
indicated that excellent performance along with extremely rapid
conversion to new hardware can occur with PSL. It is important to
remember that the compiler is identical for all implementations.
Porting to new hardware is a matter of mapping instruction sets, not
writing a language translator or solving algorithmic
PSL design changes and maintenance flow down to all implementations.
Since the language ports so thoroughly, applications can be absolutely
identical on different machines.

We do not see how a handcoded interpreter can contend with the
rapid changes in hardware or operating systems likely to occur in the
future.

PSL is a powerful systems development tool in its own right.
It would be possible to alter PSL code generators so a half-bootstrap
implementation of a Common LISP could be done. PSL has already been
used to half-bootstrap PSL itself onto half a dozen different machine
architectures and/or operating systems.

3. Comparison with Other LISP Dialects.

Yorktown LISP is an eclectic system, having features from both
INTERLISP and MACLISP and others all its own. There are some aspects of
Yorktown LISP which we perceive as fundamental difficulties, others
which are minor flaws, and other features of great interest.

a. As with INTERLISP, functions are edited, maintained, and
filed primarily as list structures from within LISP. MACLISP and its
derivatives, including the LISP machines, use general-purpose editors
and a traditional concept of file.

b. Like
concept of LISP

INTERLISP it completely implements the theoretical
(as defined by the lambda calculus) including the

paul
Sticky Note
Missing words?

PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 3

FUNARG idea. The cost of FUNARG, which complicates function calling,
is considerable as is shown in the tables of performance times on the
Eval tests and the GTSTA-GO and GTSTB-Gl tests, each of which tests a
different kind of LISP function call. No other popular LISP dialects
emphasize these extended control structures.

c. Unlike Franz LISP and ZETA LISP, Yorktown does not have
"flavors" or other object-oriented features which promise to become
prominent in future LISP applications. Object-oriented programming
captures important semantic intuitions, just as structured programming
captures key algorithmic intuitions.

d. It does not seem to have a package system orientation of
MACLISP where a package implies its own name space. This is a feature
advocated by Common LISP and found in PSL. It prevents variable and
function name clashes when code from various sources is combined in one
complex application.

e. Yorktown LISP is pervaded by slightly different versions of
essentially the same function. We think that this makes performance
considerations intrude too much into the domain of high-level
programming. For example CAR and CDR have fast varieties with
different names. We think it is wrong to have to change the name of
such key functions to get improved performance. A compiler switch is a
better way.

f. The break and trace tools are quite adequate. The Break
feature gives useful information in readable form and was very helpful
whenever we used it. We did not stress-test the break package, so it is
not clear what happens in extreme situations such as stack overflow.

g. The editing environment, LEDIT,answers directly to current
interests in programming environments. First of all, we were
disappointed to find that LEDIT was not a full-screen editor.
Interaction with LEDIT had the feeling of a line editor with extended
output-only capabilities. EMACS, XEDIT, and other modern editors allow
both command input and direct alteration of the displayed text.

Second, we believe that LEDIT, in emphasizing the editing of
LISP structure as such, is both too restrictive and not in accord with
the preferences of the LISP community. In point of fact, most LISP
programmers use EMACS as their editing tool, even when structure
editors are available.

The editing of LISP code raises interesting issues because
there are always two perspectives on any LISP structure: as text
composed of characters, words, lines, and paragraphs or as structure
composed of atoms, lists, and functions. For example,

(LIST (FNl ARGl) (FN2 ARG2) (FN3 ARGl ARG2))

can be viewed as eight words plus punctuation, as a four-element list,
or as a three-argument function call.

Because of this duality of representations, it is desirable to
be able to manipulate it as structure per se, or as just characters.
So the best environment will have both text and structure editing
capabilities, freely intermixable. Currently, only the LISP Machines

PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 4

(LM2 and Symbolics) provide the full power of both approaches. EMACS
gives strong text and limited structure capability. Yorktown gives
elaborate structure editing but minimal text capability.

h. Documentation. We were able to make sense of the
documentation, despite the author's wry disclaimers, but recommend a
thorough reorganization and rewriting to make the documentation
reasonably accessible to a broad audience. Much attention should be
paid to the problem faced by a first-time user of Yorktown LISP. In
particular, guidance on the use of files and I/0 facilities is obscure.
Because Yorktown LISP uses neither standard CMS file concepts nor
traditional LISP I/0 functions, it is especially important that the
documentation contain examples showing how to read and write files, and
that all the relevant functions and parameters are illustrated.

In the documentation of individual functions, the organization
seems haphazard, in the sense that esoteric and extended-capability
functions are intermixed and not distinguished from the essential
kernel of LISP routines. For example, the description of CASEGO, a
derivative function which emulates the computed goto of FORTRAN and is
unique to Yorktown LISP, is inserted between the descriptions of COND
and AND.

In general, the documentation is organized as a reference
manual. It lacks a users guide and introductory tutorial material
normally associated with highly interactive systems. Much theoretical
material is at the beginning of the manual, but properly belongs in an
accompanying theoretical document.

i. Human factors. We noticed several things about the user
interface of Yorktown LISP.

There seems to be no end-of-line concept in the LISP
reader. It is necessary to type FOO <space> <enter>
to get the value of FOO.

The minimum response time in the editor is very slow.
E.g., evaluating NIL takes 5 seconds. Things that
simple should happen instantaneously.

Useful constructs such as DO, FOR, REPEAT, and WHILE
are not found in the manual.

The Yorktown stringizer (') and quotizer (") are the
reverse of usual LISP conventions.

There should be a simple, unparameterized function
for reading a file of LISP functions prepared
straightforwardly in XEDIT.

The program starts slowly and destructively alters
the virtual machine environment.

4. Comparison of PSL and Yorktown LISP.

We conclude with some additional points of comparison between
PSL and Yorktown LISP, with attention to the acceptability of PSL to
the academic community.

PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 5

a. A LISP which will
compact and efficient. On
found in academic settings,
Even on large machines,
restrictions on the size of

be used in teaching situations should be
the small 4300 series machines, frequently
anything above 1 megabyte is not feasible.
timesharing constraints usually require
user programs.

PSL on IBM has been engineered to be a compact, streamlined
system. The PSL interpreter and compiler can run in about one
megabyte. Yorktown LISP as received would not run in less than three
megabytes. There is also evidence that Yorktown LISP uses space less
efficiently than PSL. For example, the performance tests were run in
PSL using a heap with 40,000 free items and required four garbage
collects. The same series in Yorktown LISP with 350,000 free items in
the heap required seven garbage collects.

b. There already is a nucleus of a PSL community on IBM
systems. At this time the most widely used LISP on IBM is Utah
Standard LISP which supports the REDUCE algebra system. REDUCE is an
essential tool for many research physicists and applied mathematicians.
The Stanford 1980 revision of Utah Standard LISP is in regular
university use, both standalone and in a sophisticated CAI application.
PSL is a direct descendant of UTAH Standard LISP and is upward
compatible with it.

c. There is qualitative evidence of the acceptability of PSL
for various academic, research, and commercial purposes. Its use at
Utah and Stanford is established. It is the distribution base for
REDUCE on VAX and DEC-20. It will be be used by several hundred MIT
students this fall. A program in PSL will be used to teach logic to
about 300 Stanford undergraduates each year. There is lively interest
in PSL at both HP and Apollo. ---- ------··- -----··-· ····· ·-···-·-·· ··

d. PSL has some untapped teaching advantages. Since it
embodies a high-level systems-oriented sub-dialect (SYSLISP) it can be
used for instruction about machine architectures, memory management
systems, and instruction set design.

e. Because of PSL's portability, new work produced in PSL on
IBM systems can migrate to the established AI and LISP community.
Migration of existing non-PSL to IBM PSL is more problematic, requiring
compatibility packages. Where Yorktown LISP necessarily requires
compatibility or emulation for migration in either· direction, PSL
stands a reasonable chance of becoming a transparent system.

In summary, we have shown that PSL is faster than Yorktown LISP.
We have argued that it is better. We attribute the superiority of
PSL to its clean, coherent, and modern design principles. The fact of
the matter is that a machine-independent design is outperforming
handcoded counterparts on the IBM architecture.

Table 1: Performance of Compiled Code for PSL and Yorktown LISP

Spectral Test PSL Yorktown

PSL-YKT DOC Al dated 86/05/12 13:54:07 Page 6

EMPTYTEST-10000
GEMPTYTEST-10000
CDRlTEST-100
CDR2TEST-100
CDDRTEST-100
LISTONLYCDRTESTl
LISTONLYCDDRTESTl
LISTONLYCDRTEST2
LISTONLYCDDRTEST2
REVERSETEST-10
MYREVERSElTEST-10
MYREVERSE2TEST-10
LENGTHTEST-100
ARITHMETICTEST-10000
EVALTEST-10000
TAK-18-12-6
GTAK-18-12-6
GTSTA-GO
GTSTA-Gl

.024

.371

.577

.342

.205
1.607
2.330
2.985
3.726

.380

.372

.352

.596
1.117
4.254

. 772
2.577
1.938
2.008

.098

.878

.469

.473

.272
4.176
4.873
4.153
4.666

.174

.329

.324

.443
5.097

120.849
3.360
9.861

62.553
63 .177

Table 2: Performance of PSL and Yorktown Interpreters

Since the interepreted tests take so much longer, the parameters
of the test functions were reduced by one and sometimes two orders of
magnitude. Because of this no attempt should be made to compare
compiled times above with the interpreted times below.

Spectral Test

EMPTYTEST-1000
GEMPTYTEST-1000
CDRl TEST-10
CDR2TEST-10
CDDRTEST-10
LISTONLYCDRTESTl
LISTONLYCDDRTESTl
LISTONLYCDRTEST2
LISTONLYCDDRTEST2
REVERSETEST-10
MYREVERSElTEST-10
MYREVERSE2TEST-10
LENGTHTEST-100
ARITHMETICTEST-100
EVALTEST-500
TAK-12-6-3
GTAK-12-6-3
GTSTA-GO
GTSTA-Gl

Interpreted PSL Interpreted Yorktown

1.137 11. 233
1.164 11. 305
1.181 16.195
1.183 12.940

.682 8.820

.986 12.160
1.030 15.853
1.125 15.298
1.039 18.584

.051 .196
2.023 29.186
2.050 25.835

.261 1.243
1.184 10 .592

.921 12.190
1.477 6.721
1.500 6. 734
1.905 21. 395
2.212 21.308

