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The programming language LISP is usually implemented via an interpreter, and a 
compiler is added later as a LISP program. However, all such production 
compilers known to the authors produce explicit instructions for the given 
computer being used. This paper describes the development of a portable LISP 
compiler in the sense that only Standard LISP functions are used ,in its 
definition and the output is a sequence of abstract machine codes, easily mapped 
to instruction sequences on current computers. The resulting code is quite 
efficient, demonstrating once again the maxim that most compiler optimization is 
largely machine ind~pendent. 
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1. INTRODUCTION 

The programming language LISP has been in ex istence for nearly twenty years 
[1J and still remains as a unique programming language from several points of 
view. For one thing it is usually implemented via an interpreter, with a 
compiler added at a later stage. Most modern LISP compilers are written in LISP 
itself and their structure can be traced from the first such compilers written 
by Maling and by Hart and Levin for the IBM 704. However, it is very hard to 
find descriptions of these compilers in the literature and most of what is 
available is sketchy or limited to basic principles or special features. The 
most complete description may be found in a recent book by Allen [2] which 
describes the basic compilation process in terms of a simple abstract machine. 
Fairly detailed descriptions of working LISP compilers we have found are by 
Saunders on his 0-32 LISP system compiler [3J, London's paper on verifying 
compilers for a subset of LISP [4], a paper by Blair on a compiler for a LISP 
system for the IBM System/360 [5J and some papers describing parts of the 
Maclisp and related compilers [6,7]. There are also descriptions of some 
experimental machine independent compilers in the literature [8,9], but our 
emphasis on high quality code in a production environment as well as portability 
gives our work a different emphasis. 

In addition, in spite of the fact that most LISP compilers are written in 
LISP, a higher level language, the code generation of past production compilers 
has been effected directly in terms of the machine instructions for the 
particular machine for which the compiler was written. There is now enough 
general experience in compiler construction, however, to suggest that the 
majority of the code generation techniques are not machine dependent, and, more 
precisely, a large number of the optimization techniques are independent of the 
particular machine for which the compiler is written [10]. This point has been 
well emphasised in the case of FORTRAN, for example [11J. 

With these thoughts in mind we decided to look once again at LISP 
compilation and determine to what degree it was possible to produce a compiler 
for Standard LISP [12] which was as machine independent as possible, but, which 
produced good quality code and was more reliable than currently ava'ilable 
compilers. The aim was to make it easy to install this compiler on top of any 
LISP system that supports Standard LISP, replacing the existing compiler (if 
any). As a result, the maintenance would be eased, and Standard LISP 
compatibility enhanced. In support of these goals we decided therefore that the 
output from this compiler would be a set of instructions for an abstract 
Standard LISP machine rather than assembly language instructions for a 
particular computer. These instructions would then (most likely) be macro 
expanded into the code for the particular target computer~ For convenience in 
this paper, we will refer to these instructions as c-macros. 

In order to ease our task in describing this compiler, we shall assume that 
the reader is familiar with LISP at the level of Allen's book [2], and, in 
particular, is familiar with his chapter on compiling. In addition, we base our 
definitions on Standard LISP and therefore assume also that the reader has read 
the Standard LISP Report [12J. To present examples of the compiler source code, 
we use the REDUCE Algol-like implementation language RLISP [13]. A subset of 
this language is also used in the Standard LISP Report. wben it is necessary to 
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illustrate particular implementation details, we shall talk in terms of specific 
LISP interpreters on two computers with which we are most familiar, namely the 
PDP-10 family (which includes the DECsystem 10 and 20) and the IBM System/360 
family (whose members and relatives amount by now to a considerable group). For 
conciseness, we shall refer to these classes of machines as the PDP-10 and IBM 
360 respectively. There are of course other LISP interpreters for these 
machines which use different protocols from those we assume here. Use of these 
interpreters would therefore require modification of our machine specific code 
to support the differing conventions. 

2. CHOICE OF PORTABLE LISP COMPILER MACROS 

In designing the architecture of our target abstract machine, we were 
naturally influenced by the machines currently at our disposal, which included 
IBM Systems 360 and 370, PDP-10s and DECsystems 20, a Burroughs B1800 and B6700, 
Univac 1108 and CDC 6600/7600. Moreover, the abstract LISP machine had to be 
consistent with the LISP interpreter implementation with which the compiler was 
to be used. After careful consideration of the facilities offered by such 
machines, and the structure of the corresponding LISP interpreters, we decided 
on an abstract machine with these general characteristics: 

a. A number of general purpose registers; 
b. A frame allocation mechanism, which provides for a stack of frames 

for storing temporary results and local variable values during a 
function evaluation; and 

c. A register saving protocol which leaves to each function the 
responsibility of saving registers that contain values required later 
in this function (usually the argument values); i.e., it is assumed 
that most function calls destroy the contents of registers. 

The model assumes that arguments of a function are passed in this set of 
general purpose registers rather than directly on a stack. The value of a 
function is assumed to be returned in the first such register. The number of 
such registers is a parameter in the model, although Standard LISP states that a 
maximum of 15 are expected. This would seem to impose a limit on the number of 
arguments permitted in function definitions, but in fact this is not the case. A 
number of possible solutions exist; the simplest is to have the last register 
contain a list of the remaining arguments. Moreover, the registers in the 
abstract machine need not be real registers in the target machine, as memory 
locations set aside for this purpose can also be used. Finally, it is rare that 
the full 15 real registers are actually used; only two or three "real" registers 
are required for acceptable efficiency. For example, in our IBM ·360 
implementation, only the first two registers in the compiler implementation are 
actual registers. The remainder are in a contiguous block of memory referenced 
through a base register. Since such registers are fixed place holders for 
expression references their use often avoids the cost of allocation and 
deallocation of frame locations. Even when registers are actually simulated by 
memory locations and thus suffer the same access times as frame references, the 
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access may in fact be_slightly faster, since no indexing is required. 

The most critical design decision which we made was clearly the choice of 
an architecture with general purpose registers rather than a pure stack. Our 
experience suggests that a pure stack design is much better suited to list 
processing in general and leads to a much simpler compiler design. However, 
machines with high speed general purpose registers appear to be with us for a 
long time to come and this biased our design in favor of a register based model. 
A stack based compiler is also under investigation as part of another project 
[14]. 

Finally, the register saving protocol chosen permits many of the frequently 
used small functions to do all their computation in registers, without having to 
use stack locations; this would not be possible in a scheme that automatically 
saves all registers on function entry, or even a scheme that saves only those 
registers that are changed by a function. It is important to note that most of 
the c-macros do not change any registers, with the instructions to load an 
explicit register, and to link to an external function being the major 
exception. 

The actual c-macros chosen are fairly straightforward and can usually be 
implemented on a given machine in one or two instructions, or via a subroutine 
call. The basic c-macros are 16 in number as follows: 

~ function entry and exit 

ENTRY name type nargs 

EXIT 

ii) frame handling 

ALLoe n 

DEALLoe n 

iii) loading and storing 

LOAD reg exp 

STORE reg floc 

indicates start of this function and declares its name, 
type and expected number of arguments. 

exits to caller of this function. 

allocate a frame of n words, where n is a non-negative 
integer. 

deallocate this frame. 

load expression "exp" into register number "reg", where 
"reg" is an integer greater than O. The allowed form 
of "exp" will be described later in Section 4.2 (ii). 

store the contents of register number "reg" in "floc", 
an integer less than or equal to 0 representing a frame 
location, or the form (FLUID <id» or (GLOBAL <id» 
representing a non local cell. Because of its common 
occurrence, the form (STORE NIL floc) is also allowed 
to store a NIL in floc. 



iv) control macros 

JUHP adr 

JUMPNIL adr 

JUMPT adr 

JUMPE adr exp 

JUHPN adr exp 

LBL adr 

!l subroutine linkage 

LINK name type nargs 
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an unconditional jump to the identifier "adr". 

jump to "sdr" if register contains NIL. 

jump to "adr" if register does not contain NIL. 

jump to "sdr" if contents of register 1 is eq to "exp" 
(eq being the LISP function of that name). 

jump to "adr" if contents of register 1 is not ~ to 
"ex p" • 

used to define an address for jumps. 

link to function "name" of type "type" with "nargs" 
arguments. The arguments are in registers 1 through 
"nargs" • 

vi) non-local variable handling 

LAMBIND regs alst 

PROGBIND al st 

FREERSTR alst 

bind the values in the list of "regs" to the--fluid 
variables named in "alst". 

bind NIL to the fluid variables named in "alst". 

restore the fluid variables named in "alst" to their 
previous bindings. 

This set of c-macros is complete enough to compile efficient code from most 
LISP definitions. However, some additional c-macros can be used on many machines 
for even more efficient code production, and these have been included as options 
in the current compiler. They are: 

JUMPC adr reg type 

JUMPNC adr reg type 

jump to "adr" if contents of register "reg" is of type 
"type" (i.e., the Condition is satisfied). 

jump to address "adr" if contents of register "reg" is 
not of type "type" (i.e., the Condition is not 
satisfied) • 

LINKE name type nargs n link to function "name" of type "type" with "nargs" 
arguments, deallocate frame of size "n" and exit to 
caller directly from "name". (i.e., compile tail 
recursion and function chains more efficiently). 
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A more complete description of these c-macros is given in Appendix A. The 
absence of CAR, CDR and so on, as c-macros does not mean that our LISP "machine" 
does not consider these of primary importance; rather, we have implemented a 
general mechanism for efficiently coding certain expressions inline (the "exp" 
in iii and iv above), which include such functions (see Section 4.2 (ii». 

With this brief description of our abstract machine in mind, we can· now 
take a look at the general structure of the compiler itself. 

3. GENERAL DESCRIPTION OF THE COMPILER 

. 3.1. Preliminary 

In general terms, the compiler is a Standard LISP program which occupies 
approximately 2000 lines of LISP code in a prettyprinted form or 1350 lines of 
RLISP code (including comments). A listing is given in Appendix B, and a 
magnetic tape of this compiler may be obtained by writing to the authors. The 
output from the compiler after assembly is expected to work in a Standard LISP 
environment, augmented by seven small functions which are required to support 
the compiled code. A description of these functions is given in Appendix C. The 
compiler module contains two entry functions compile and compd. Compile takes a 
list of uncompiled function names as argument, converts them into their c~mpiled 
equivalents and returns its argument. Compd is analogous to the Standard LISP 
function putd. It has three arguments, the function name, its type (for example, 
expr, fexpr or LISP macro) and its body. 

It compiles the body into a sequence of c-macros which are then assembled 
and the relevant code pointer stored with the function name. It returns the 
name of the function. The actual code for a given function is generated by a 
function comproc which takes two arguments, a lambda expression and a function 
name, and returns a list of c-macros. Comproc generates this code in three 
passes, with each pass a LISP function with the names pass1, pass2 and ~ass3t 
respectively. Pass1 performs a global analysis of the function body producing as 
output another LISP expression representing the function body with a more 
precise syntax (reflecting such things as variable and function type) more 
easily translated into code. Pass2 converts this expression into c-macros, 
using a recursive function comval to do the basic code generation. Finally pass3 
uses a series of optimizing functions to improve the generated code. The 
detailed structure of each of these functions is given below. 

3.2. The First Pass of the Compiler 

The very first LISP compilers written in LISP included a first pass which 
was essentially a preprocessing of the body of the function in order to make the 
actual code generation a more straightforward process. Most LISP compilers 
written since then have followed this practice. In the present compiler, the 
first pass performs the following transformations on the function body: 
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i) LISP Macro Expansion; 
ii) Non-local Variable and Constant Identification; 

iii) Non-local Variable Bi~ding; 
iv) Functional Argument Identification and Transformation; and 
v) Pseudo-function Analysis. 

The actual details of these transformations are as follows: 

i) LISP Macro Expansion 

Most LISP systems include a function type called LISP macro (not to be 
confused with c-macro), which is used to customize code: During LISP evaluation, 
a LISP macro is first evaluated once to produce a new form, and this form then 
evaluated for the value; during compilation, the new form should instead be 
compiled to generate as efficient code as possible. However, in order to make 
the code generation itself as efficient as possible, this is done completely 
before any code generation begins so that LISP macro expansion, and other 
preprocessing of the new forms need not be done during pass2. Since pass2 is 
top-down in nature, and if the LISP macro expansion was deferred, it would have 
to be performed whenever an argument involving the invocation of a LISP macro 
was examined, leading to unnecessary expansion of the same expression many times 
over. 

In addition to regular LISP macros, the first pass also considers a 
separate set of macro-like open codings of functions defined by means of a 
cmacro indicator. The corresponding property is a lambda expression which is 
folded into the relevant form by pass1. In particular, this mechanism is used to 
expand chains of cars and cdrs inline. For example, caar has the property 

(LAHBDA (U) (CAR (CAR U») 

under the cmacro indicator. 

ii) Non-local Variable and Constant Identification 

Standard LISP recognizes three different binding mechanisms for variables 
namely, global, fluid and local each of which must be handled by the compiler. 
Standard LISP conceals any differences between shallow and deep binding 
implementations of the fluid mechanism, and our compiler likewise conceals these 
"differences in the definitions of the c-macros described below. In point of 
fact, these distinctions only become important when expressions are being 
compiled since in interpreted expressions, all variables are considered fluid, 
although they are not explicitly declared as such; only in compiled functions do 
local variables become relevant. In fact, in order to generate as efficient 
code as possible, most LISP compilers consider as many variables as possible as 
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local, and consequently any non-local variables must be recognized so that their 
names may be explicitly retained during the compilation process. Consistent 
with this model, the most logical explicit declarations would be global and 
local, with fluid as the default; both global and local would then be optimizing 
declarations; global to indicate that no binding occurs for this variable (and 
hence only one fixed cell need be used to reference its value in alist models, 
as opposed to the more expensive alist search for a fluid in deep binding 
models), and local to indicate that the name of the variable need not be 
preserved and hence a single cell known only to the compiler is sufficient to 
reference it. However, since local is the most common variable type in compiled 
functions, we have followed the usual LISP philosophy of considering variables 
fluid by default in interpreted functions and local in compiled functions. This 
represents a major semantic difference between interpreted and compiled 
functions, and one which has caused many problems in LISP implementations. These 
differences are discussed further in section 6. 

As a result, each variable in the function body is inspected to ensure that 
it is local within the body or has previously been declared as non-local. If an 
undeclared non-local variable is detected, a diagnostic message "<variable> 
declared fluid" is printed and the variable so declared. Constants such as 
numbers and strings and global variables with constant values such as T and NIL 
are also quoted explicitly during this pass to make their later analysis as 
straightforward as possible. 

iii) Non-local Variable Binding 

If a fluid variable occurs in a lambda or prog list, then the old binding 
of the variable must be saved, and a new binding established for the current 
environment. The compiler handles this by assigning a frame location for each 
such variable on entry to the block (this frame location may not actually be 
used in some implementations). A c-macro (LAMBIND or PROGBIND) whose argument is 
a list of pairs of variable name and frame locations is added at the be~inning 

of the block, and a c-macro FREERSTR at the end. The intent of the binding 
c-macros then is to save the current fluid value and to replace it with the 
appropriate new value (which is either in a register or NIL). The system will 
then use the appropriate fluid value mechanism for handling the variables in the 
new block. On exit from the block, FREERSTR simply restores the old fluid values 
from where they were saved. In the case of progs, a NIL will be stored in the 
fluid cell by PROGBIND after saving the original value whereas in LAMBIND the 
relevant register value is stored (thus LAMBIND also receives a list of 
registers as one of its arguments). 

It is important to realize that the old value of the fluid variable does 
not actually have to be stored in the location left in the indicated frame 
location; rather, it is up to the implementor of LAMBIND, PROGBIND and FREERSTR 
to decide whether to use these locations. This is one reason that these three 
additional c-macros are provided when they could be expanded inline in terms of 
simpler c-macros as described in Appendix A; namely to provide maximum 
flexibility for implementors who wish to exploit additional features in their 
interpreters. For example, in our interpreter for the PDP-10, an additional push 
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down stack is employed for fluid bindings, so that the interpreter can access 
the value at any time, and to provide support for an efficient errorset and 
funarg. Alternatively, in an deep binding alist model, the LAMBIND or PROGBIND 
can consist of a push on the alist and the FREERSTR a pop off the alist, again 
with no actual saving of values in the frame. 

iv) Functional Argument Identification and Transformation 

An area that has lead to a variety of LISP implementations (and some 
controversy) is in the handling of functional arguments. It is not our intent 
here to join that controversy, but simply to provide a mechanism for handling 
such constructs in existing interpreters. If the functional argument is the name 
of a function, in pass1 the form (function <name» is replaced by the value of 
(rr~func (quote <name»). On the other hand, a lambda expression is given a name 
generated by the compiler, the expression compiled as a function of that name, 
and the generated name then treated as above. In many systems, mkfunc may simply 
be defined as: 

expr procedure mkfunc u; list('QUOTE,u); 

provided a constant environment is assumed. On the other hand, it can be a- call 
to function or funarg if the underlying LISP supports a complete functional 
argument handling mechanism. Baker's article [15] on the combination of deep and 
shallow binding schemes into a single consistent model is an illuminating 
discussion of these and related issues. 

Finally, a parameter variable in a lambda or prog form used as a function 
in the body of the definition is easily recognized by our variable analysis. 
Calls of such functions are transformed by this pass into a call to apply, so 
that their application becomes the responsibility of the interpreter. 

v) Pseudo-function Analysis 

The first pass also checks for any fexprs apart from a standard set cond, 
prog, and, or and so on, for which open coding is provided in the second pass. 
The arguments of such functions are listed together and then passed quoted to 
the second pass, to be compiled as the single argument of the fexpr; the LINK 
macro emitted in pass2 will still indicate that an fexpr is being called. For 
example, if F1 were an fexpr, then 

(F1 U V) 

would be transformed into 

(F1 (QUOTE (U V»). 
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There remains t~e problem of deciding how to process the identifiers U and 
V in this expression. Host often, they are intended to be parameters, passed by 
name, and their values found during the execution of F1. In this case, it is 
necessary to declare them fluid so that their names are not lost in the compiled 
code. On the other hand, the intent might be simply to paSS U and V as symbols, 
with no evaluation intended in F1. In this case, a fluid declaration would be 
inappropriate, although correct. For this reason, we leave it up to" the 
programmer to add whatever declarations are necessary, even though an oversight 
in this regard may lead to errors which are difficult to find. 

In many alist model interpreters, fexprs are assumed to be invoked with the 
current alist as a second argument. This has two effects: an fexpr definition 
must have a second argument appended, if needed; and, the value of alist should 
be loaded into register 2 in the appropriate cases. We will assume that the 
relevant fexpr function is defined with this second argument, or it is added by 
the Standard LISP functions df and putd if needed. We also leave to the 
implementor of the c-macros to emit the relevant (LOAD 2 (GLOBAL alist) prior to 
expanding a LINK to an fexpr. 

Thus at the end of" pass 1, only "ordinary" functions remain. In other words, 
in generating a call to a currently undefined function, the compiler assumes 
that it is an "ordinary" function in the sense that it expects exactly the 
number of arguments given and that they are all evaluated. Thus any attempt 
later to define such a function as other than of this type will lead to run time 
errors. Users must therefore be sure that all fexprs, LISP macros and so ?~, are 
defined before their call in any function being compiled to avoid such errors. 

Rather than handling each special case function explicitly in pass1, we 
associate a special pass one evaluation function with the function name, using 
the indicator pass1fn. Special cases in the second pass are similarly handled by 
an indicator compfn. This table driven structure for the compiler makes it more 
straightforward to add specific open coding for any given function, although to 
design the code for such a case requires a fairly complete knowledge of the 
various tables which the compiler uses to keep track of such things as labels 
and jumps. Also, a LISP macro is expanded in pass1 only if the function does not 
have an indicator compfn which is used later in pass2 for open coding. Thus one 
can override a LISP macro definition of a function by such indicators. 

Some earlier compilers included in pass1 a test for top level tail 
recursion which was then converted into an iterative definition. In the present 
compiler, we found it more straightforward to do such recursion removal in the 
second pass as we shall discuss later. If however a more general recursion 
removal scheme were implemented to include many of the cases discussed by Risch 
[16] for example, then such transformations would probably best be done in the 
first pass. 
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3.3. The Second Pass of the Compiler 

The basic code generation is done in the second pass of the compiler by the 
function pass2. Its definition is as follows: 

expr procedure pass2(exp); comval(exp,O); 

Comval is a recursive function which takes as arguments a LISP S-expression and 
an integer (whose role we shall describe later in Section 4.2 (iii)) and 
generates the c-macros corresponding to the input expression. These c-macros 
are not actually returned by comval but instead stored in a global variable 
codelist, since we have found it easier to manipulate the generated code in the 
later optimization steps in this manner. 

Like pass1, the design of comval is also that of a straightforward LISP 
evaluator, except that there are fewer special cases to worry about after pass1 
has processed the expression. It first checks for an atomic or tagged constant 
argument (constants are returned by pass1 as (QUOTE "expression"), in which case 
it simply loads register 1 with the value of the argument. Next it handles 
functions marked for open coding by a compfn indicator, such as cond, and, or, 
list, prog2, progn, prog, go, return and setq for which the appropriate function 
to perform the specific open coding is used. Functions defined via a lambda 
construction are next considered followed by an attempt to convert rec~rsive 

forms to iteration using the function comrec. 

For the remaining functions, the code is generated by a function call. In 
this case, the arguments of the function must be separately compiled (using a 
function comlis to perform repeated calls on comval), and the values loaded into 
the appropriate argument registers before a LINK to the function can be emitted. 
This means in general that each argument expression must be compiled and its 
value saved in a frame location, to be restored to the appropriate register 
after all argument compilations are complete. However, if the expression can be 
compiled using only the single register into which its value must ultimately be 
loaded and there are no side effects during its evaluation, then its loading may 
be deferred until all other argument compilations are complete. In particular, 
if the value of such an expression already resides in a register, the value may 
be taken directly from that register without recomputation. Such expressions 
will be referred to as having an anyreg property, and will be considered in more 
detail in Section 4.2 (ii). 

The special function cases handled by comval through compfn indicators vary 
in complexity. Some are quite simple, such as prog2 and progn, in which case 
each argument is evaluated sequentially by comval so that the value of the last 
remains in register 1. For setq, the second argument is evaluated and a STORE 
c-macro is emitted to store register 1 in the location of setq's first argument, 
which is either a variable whose location is known or for which an access 
function can be inserted by the loader (global or fluid). Other cases, such as 
cond, are much more complicated. However, a fairly complete account of the 
general principles involved in compiling conditional expressions is given in 
Allen's book [2J, so we shall not repeat that discussion here. 
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One of the most interesting examples of special case function handling 
occurs in compiling any expression where a boolean value is needed [17J. In 
many cases, the truth or falsity of such expressions indicates the need for 
branching in the program flow, (for example in a conditional expression), rather 
than a need for the actual value. As a 'result, such expressions (involving and, 
or, not, etc) are compiled by general functions combool and comtst, reminiscent 
of the optimized boolean code generator in the original 709 compiler. These use 
two fluid variables; fn to keep track of whether we are in an "and" or "or" 
situation, and switch to determine under what conditions a branch is necessary. 

Comtst takes two arguments; the boolean expression, and a label. Comtst 
generates a jump to this label if required, otherwise the program flow is 
assumed to continue. If the variable switch is true, comtst generates this jump 
when the value of the expression would be true. If switch is false, then 
transfer occurs on the falsity of the expression. This enables the compilation 
of top level tests involving null (or not) to be trivially performed; one simply 
negates switch and considers the argument of null instead. 

In the general case, therefore, comtst uses the values of the variables fn 
and switch to determine whether a JUMPT or JUMPNIL c-macro should be added at 
the appropriate points in the generated code. However, like comval, it also 
considers special cases, such as eq, for which it generates a JUMPN or JUMPE 
c-macro. A test is also made for an indicator comtst on functions seen by 
comtst. This allows for the open coding of other functions in boolean 
expressions at the implementor's desire. For example, to test for expre~sions 
tagged in a simple way (such as atoms and numbers in most systems) and to- set up 
the necessary transfer instructions can often be done in a way which leaves the 
results in the compiler registers unchanged. For this reason the optional 
c-macros JUMPC and JUMPNC mentioned earlier are available as compiler c-macros. 
If the expression analysis indicates that the value of the boolean expression is 
required in some register, or must be saved in the function's frame, then its 
value must be loaded after the expression is compiled. This could be done by 
having combool first call comtst and then append a subsequent load of T or NIL 
into the required location at the appropriate points in the code. However, our 
studies have shown that more compact code usually results if such expressions 
are compiled by direct calls to the relevant boolean functions (e.g. eq, null, 
etc.) than by open coding, since the direct call of a function usually generates 
less instructions than the test c-macro followed by the necessary loads of T and 
NIL. 

The compilation of prog is messy but straightforward. A fluid variable 
golist is used to keep track of labels, and interrogated during the compilation 
of a go form to ensure that the label exists in the current prog. A return label 
is also generated for the compilation of return forms (which are compiled as a 
load of their argument and a jump to this label). Frame locations must also be 
allocated for local variables in the prog and these variables initialized to NIL 
by the generation of the appropriate STORE c-macro. Other constructs are then 
compiled by sequential calls to comval. 

Finally, a lambda expression is compiled essentially as an "open coded" 
function with the arguments loaded into registers like a normal function call. 
The function body is then compiled using comval. In the current compiler we 
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have restricted the number of arguments in a lambda expression to maxnargs, the 
maximum number of arguments allowed in a function. It should be noted however, 
that as with arguments to a function, we do not really have to impose this 
restriction; we can once again use the last register for' a list of the remaining 
arguments, or these remaining arguments can be placed directly in new frame 
locations beyond those already allocated. 

The c-macros for the allocation and deal location of a function's frame are 
added by comproc after the code for the body of the function is generated and 
the optimizations discussed in the next section have been completed. An ALLOe 
is attached at the beginning of the code sequence even for a frame of size 0, 
since some implementations must always mark their own push down stack at this 
point. A DEALLOe is attached at the end of the code sequence as long as not all 
exits terminate in a LINKE. Finally, after this is done, an ENTRY c-macro is 
added at the beginning and an EXIT at the end (again only when all exits do not 
terminate in a LINKE) to complete the code generation. 

4. CODE OPTIMIZATIONS 

With this simple definition of comval, it is possible to generate our 
c-macros from any given LISP input. However, a quick perusal of the output 
reveals many inefficiencies in the generated code sequence. For example, 
consider the following function compiled in this manner: 

symbolic procedure lstchr(u,v); 
if null(cdr(u» then car(u) • (NIL. v) 
else car(u) • (list(lstchr(cdr(u) ,v» • NIL); 
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Using the open coding of the basic LISP functions we have described in the 
previous section. the c-macros generated by comval for this function are as 
follows: 

(ENTRY LSTCHR EXPR 2) 
(ALLOC 3) 
(STORE 1 0) 
(STORE 2 -1) 
(LINK CDR EXPR 1) 

(JUMPNIL L 1) 
(JUMP L2) 
(LBL L1) 
(LOAD 1 0) 
(LINK CAR EXPR 1) 

(STORE 1 -2) 
(LOAD 1 (QUOTE NIL) ) 
(LOAD 2 -1) 
(LINK CONS EXPR 2) 
(LOAD 2 1) 
(LOAD 1 -2) 
(LINK CONS EXPR 2) 
(JUMP L3) 
(LBL L2) 
(LOAD 1 0) 
(LINK CAR EXPR 1) 
(STORE 1 -2) 
(LOAD 1 0) 
(LINK CDR EXPR 1) 
(LOAD 2 -1) 
(LINK LSTCHR EXPR 2) 
(LOAD 2 (QUOTE NIL» 
(LINK CONS EXPR 2) 
(LOAD 2 (QUOTE NIL» 
(LINK CONS EXPR 2) 
(LOAD 2 1) 
(LOAD 1 -2) 
(LINK CONS EXPR 2) 
(JUMP L3) 
(LBL L3) 
(DEALLOC 3) 
(EXIT) 

• 

for a total of 37 c-macros. As explained earlier, positive integers in the 
arguments of a LOAD or STORE denote compiler registers and 0 or negative 
integers denote frame locations. 

An immediate problem with the code generation so far is evident from a 
study of this c-macro sequence, namely that the code is generated in a very 
local manner, by processing the function body expression by expression. The 
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need for optimizations in the code generation process is therefore obvious. 

The optimizations we consider in this compiler may be divided into three 
general categories: 

Optimizations arising by specific open coding of various functions; 
- Optimizations which result from a knowledge of global information 

collected during the compilation process; and 
Optimizations arising by post code generation modification of the 
c-macro sequence. 

Before describing these optimizations, it is important to understand that 
any given optimization can save either in execution time or in the number of 
instructions generated, or both. When a conflict arose we preferred to save 
instructions at the expense of increased execution time rather than vice versa, 
because space for compiled code is usually the more critical resource in the 
large scale LISP applications of particular interest to us. 

Since very little is written in the literature about the mechanics of such 
optimizations for LISP compilation, although their use in other language 
compilers is well understood, we shall discuss each of these in some detail. A 
review of the more formal aspects of such optimizations can be found in [18,19]. 

4.1. Optimizations Arising from Open Coding of Functions 

i) Preliminary 

It is clear that the overall cost of linking to functions in LISP is very 
high since most LISP programs are constructed from a large number of relatively 
small functions. Therefore, one obvious optimization is the use of open coding 
of such functions whenever possible. Even the very earliest LISP compilers open 
coded the LISP constructs such as cond, prog, go, return and the boolean 
functions, because they are fexprs and would lead to very inefficient code if 
they were not open coded. We have already considered some of these in Section 
3.3. In these cases not only does the open coding avoid explicit calls to these 
functions but it also generates less code. Most of the functions open coded do 
not use all registers, often only one or two, so that the code needed to save 
registers for a general function call is eliminated; also, information on the 
register contents is available after the open coded call, permitting further 
savings in later code segments. 

The current compiler provides specific functions for open coding 15 such 
functions, namely and, cond, go, list, map, mapc, mapcan, mapcar, mapcon, 
maplist, prog, prog2, progn, return and setq. In addition to this method of 
open coding which uses the compfn indicator, there are three other mechanisms in 
use. The first of these, involving boolean compilation, was also discussed in 
Section 3.3, namely the use of an indicator comtst to tag certain functions 
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which can be open coded in boolean tests. An example of such open coding is eq, 
although in the IBM 360 compiler atom and numberp are also handled in this 
manner. The next mechanism recognizes that many simple functions such as ~ 
and cdr, have no side effects and can, in fact, be loaded by direct instructions 
into any register. Such functions are given an indicator anyreg whose 
corresponding property is a pattern for the replacement of the function. For 
example, car in our PDP-10 implementation has the pattern (HLRZ x y) and in· the 
IBM 360 implementation (L x 0 (RO y». (Here "x" represents the result register 
for the (CAR exp), and "y" refers to the register, constant or frame location of 
the anyreg "expft). This mechanism is discussed in more detail in Section 4.2 
(ii). 

The third mechanism is used when the function can be handled inline, but 
fixed registers are needed. The normal comlis argument preparation is executed, 
but instead of simply LINKing to the function, a property under the indicator 
open is used to "replace It the (LINK fn type n) by the appropriate inl ine code. 

ii) Optimized CONS Compilation 

Since the basic functions car, cdr, atom and eq can usually be implemented 
in one or two instructions using the techniques we have described so far, it is 
worth asking whether the fifth basic function, cons, can also be implemented in 
an optimal manner. Unfortunately, cons takes several instructions to remove 
cells from and update the free storage list, apart from updates of a ~ 
counter or calls on the garbage collector. It is therefore usually impractical 
to have open code for this function. However, it is fairly easy to add to the 
interpreter efficient implementations of the functions 

symbolic procedure ncons u; u • NIL; 

and 

symbolic procedure xcons(u,v); v • u; 

In terms of these, chains of cons calculations (such as in one form of list 
evaluation) can be compiled with a minimum of register loading activity. 
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For example, the form (list u V W), if expanded into 

(cons U (cons V (cons W NIL»), 

compiles to: 

(LOAD 1 -2) 
(LINK NCONS EXPR 1) 

(LOAD 2 -1) 
(LINK XCONS EXPR 2) 
(LOAD 2 0) 
(LINK XCONS EXPR 2) 

where we assume U in frame position 0, V in -1 and W in -2. Because of the 
frequent use of cons in LISP, this particular special case optimization is of 
some importance. 

We do not use this method of list compilation in the current compiler, 
however. Instead, a function comlist converts a calIon list into a call_on one 
of the functions ncons, list2, and so on, themselves compiled using the 
optimizing ~. This produces more compact code in general than any other open 
coding for list that we know. In addition, this technique could be extended 
even further by defining (xlist2 U V) to be (list2 V U) etc, to mimic the cons 
case. However, this latter option has not been explored in the current 
compiler. For more than five arguments to list which occurs very rarely in most 
LISP progran~ing, the compiler uses the cons expansion for the additional 
arguments. 

4.2. Optimizations Which Depend on Global Information 

The next general class of optimizations we consider are those which depend 
on the gathering of global information during the code generation in pass2. 
Those considered in the current compiler are as follows: 

i) Maintaining Register Status 

A very important optimization involves keeping track, as much as possible, 
of the expressions stored in each register at each stage of the compilation. 
This requires a detailed analysis whenever a branch occurs so that the 
differences in the registers after the branch can be recognized. The utility of 
this optimization is clearly enhanced by open coding since a link to an 
arbitrary function destroys all knowledge of the previous contents of the 
registers. However, since most of the functions supported by Standard LISP, 
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even those which are --not open coded, tend to be wr i tten in assembl y language in 
a manner which uses very few of the compiler's registers, it is possible to use 
flags onereg and tworeg to indicate that such functions use only the first one 
or two registers respectively and therefore keep a little more register 
information around when they are used. Such information could also be generated 
during the compilation of a function and stored with it for later use. We do not 
however collect such "history" information in the current compiler, although it 
is a possibility for a future version. 

ii) Deferred Register Loading 

Another optimization of great importance is already encountered in the 
implemented form of comval. Since our function linking mechanism requires that 
each argument be loaded into its appropriate register, it is useful to determine 
whether the value of an expression can be loaded directly into that register 
without the intermediate need of any other compiler registers in the process. A 
variable whose value may be found in another register or in the current frame is 
obviously of this type, as are fluid variables and quoted expressions. However, 
as discussed in the previous section, most LISP implementations allow for a 
class of functions (usually simple ones such as ~ and cdr) which also have 
this property. The general test for this property is therefore handled by a 
function anyreg, which looks for the indicator anyreg on the property list of 
sucb functions. Comval therefore checks first for such a property before-going 
on to the other cases. If the expression has this property, its loading is 
deferred for direct loading later, since it will not destroy any other registers 
already loaded. 

As a result, the allowed expressions <exp> which may occur in a LOAD, JUMPE 
or JUMPN c-macro can be one of the following: 

- a number <= 0 giving relative frame position of a local variable; 
- a number > 0 which denotes the register where the argument can already 

be found; 
- (QUOTE <S-expression»; 
- (FLUID <literal atom» or (GLOBAL <literal atom»; or 
- «function><exp» where <function> has an anyreg property, and <exp> 

is another allowed expression. 

A complication arises when one attempts to defer register loading during 
the evaluation of the list of arguments of an ordinary function. The majority 
of LISP interpreters employ a left-to-right argument evaluation in this case, 
and it is possible that the value of a variable in one argument may change in 
the evaluation of a subsequent argument. If we defer the loading of the value of 
the former variable until the latter argument has been evaluated, the incorrect 
value will be loaded, as in F(X, X:=Y). In addition, if other side effects such 
as printing are required during the argument evaluation, then these too must 
occur at the right time. As a result, we also require that functions tagged 
anyreg have no side effects so that their deferred loading is possible. To 
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ensure that the argument evaluation occurs in the correct order where necessary, 
comlis calls anyreg with a second argument consisting of a list of all remaining 
arguments to the function. In other words, the enforcement of a LISP 
left-to-right argument evaluation protocol requires that an argument evaluation 
only be deferred if 

- it is a quoted expression; and 
- it is anyreg and the remaining arguments are all anyreg or cannot 

change variable values. 

Since such deferred loading can really save a lot of instructions, and it 
is difficult in general to know whether a given function changes the value of a 
variable or not (it might do a rplaca on it, for example), another possibility 
is to ignore the left-to-right evaluation protocol. In fact, some compilers do 
this automatically, leading at times to unexpected results. As a compromise, we 
resolve this problem by means of a global variable *ord. If *ord is true, then 
left-to-right evaluation is enforced usually leading to extra code being 
generated. The default setting of *ord is false, so it is up to the user to set 
this variable to true if left-to-right argument evaluation is needed in any 
function evaluation. 

iii) Avoiding Unnecessary Loads 

The use of the knowledge of the current contents of the registers which we 
maintain in regs permits us to avoid many redundant LOADs during the code 
generation. However, this is a rather local optimization and does not permit the 
elimination of unnecessary LOADs in loops and other large structures. Some such 
LOADs can be removed by post code generation optimization as discussed in 
Section 4.3 but further attempts at such code elimination would require the use 
of a much more graphical analysis of the function body than we have attempted in 
the current compiler. However, another class of redundant LOADs arises from the 
fact that LISP requires every function to return a value, and a compiler must 
follow this protocol unless it is known that the value is not really needed. To 
determine if this is in fact true, and thus avoid the generation of an 
unnecessary LOAD, requires keeping status information to determine whether the 
value of a particular calculation is actually required. This controls the 
loading of NILs inside nested progs, the loading of NILs for unterminated conds, 
and so on. For this purpose, we introduce a status variable as the second 
argument to comval. This variable can take the following five values: 

0 top level in function body 
1 - lower level but value required (in register 1) 
2 - lower level but value not required 
3 - top level in prog 
4 top level in a prog which is top level in a~. 
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This thorough handling of expression status allows us to avoid loading 
values if they are not really required (i.e. when status> 1). In addition we 
can recognize a non-terminating cond expression (i.e. one with a missing else 
clause) and return NIL as the default ter'mination if status < 2. Finally a prog 
within a prog need not load a NIL (or any anyreg, or no-side-effect expression) 
if one "drops through" (or in any return at such a level). 

As a result of this analysis, several restrictions in some previous 
compilers have been removed in this version. In particular, a go or return 
statement may appear anywhere within a ~ where a value is not required. For 
example, a ~ at a second or lower level in a cond, as in 

(cond «null u) (cond «null v) (go A»»), 

is permitted in a prog, but (FN (go A» is not. 

Finally, knowledge of the fact that we are at the top-level of a function 
is used in comrec to aid in the detection of tail recursion. 

iv) Avoiding Unnecessary Stores 

-
It is also possible to eliminate many unnecessary STOREs generated during 

the compilation process by keeping track of the subsequent use of the stored 
values in later computations. This requires maintaining global information 
across segments of code, since STOREs will have to be inserted in the code 
sequence some distance before the subsequent LOAD that needs the stored value. 
Two global lists are therefore maintained for this purpose; stlst and slst. The 
former maintains a list of all STOREs emitted during the code generation 
process, mainly to enable certain post code generation optimizations to be 
performed. Slst is more relevant here; it is a list of all stored identifiers 
which have not yet been used. Whenever a variable is loaded it is removed from 
slst. On the other hand, when a STORE is emitted, slst is checked to see if a 
previous unused STORE of the identifier has been made. If so, the previous store 
is replaced by a NOOP c-macro which can be later removed in the third pass. (We 
do not consider the NOOP c-macro in our "official" set, since it is purely 
internal to the compiler. P~other c-macro in this category used in the compiler 
listing is CODE, which can be used for crutch coding on specific machines when 
needed). Of course, when we lose control of our variable layout, such as when a 
label is encountered, slst has to be set to NIL. Even in this case, though, a 
preanalysis of the code to check label usage could prevent the loss of this 
information, although we do not attempt this in the current compiler. 

Another optimization of some importance, especially in small functions, 
involves keeping track of whether a function's formal parameters can be directly 
loaded from the registers as initialized on entry to a function. Such variables 
are maintained in a separate register list, iregs and only stored in the frame 
when we encounter a situation where the registers are possibly used. In this 
manner, we can defer the storing of these values as long as possible, and, in 
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some cases, never need to store them at all. 

v) Optimizing Control Structures 

Because of the local nature of the code generation, it is quite easy to 
generate a sequence like 

(JUMPNIL L1) (JUMP L2) (LBL L1). 

Such sequences can in fact be optimized by the general peephole mechanism 
to be described in Section 4.3 (i). A more difficult case involves sequences 
such as 

(JUMP L1) ••• (LBL L1) (JUMP L2) ••• 

To remove such redundant jumps in an efficient manner and to perform 
several other similar optimizations requires keeping track of all labels and 
jumps in the generated code, in preference to the less efficient process of 
searching for them in the whole code body. Consequently, whenever a LBL c-macro 
is first generated a table entry for that label is made in the list lblist. 
Whenever any kind of jump is made to that label, the unique reference to the 
jump c-macro list is added to the table associated with that label by a function 
addjmp. 

If one now emits the jump to L2 in the above sequence, addjmp can determine 
that a label precedes it and rename all references to label L1 to refer to L2. 
The preceding label L1 can then be eliminated. In addition, if the previous 
c-macro is not a JUMP, a jump to L2 is inserted. Similar ccnsiderations can be 
made by the function addlbl which adds a label to the code; if the preceding 
entry in the code is a label, then all references to it can be renamed to the 
new label which is then inserted in its place. 

4.3. Optimization of the Generated Code Sequence 

There are a large number of optimizations which can be performed on the 
code sequence generated by pass2. These optimizations are all lumped together 
in the present compiler in a function pass3. This is the most unsatisfactory 
part of the current compiler because most of these optimizations are ad hoc in 
nature. However, many of these could probably be handled by a general 
pattern-matching program which would enable the optimizations to be expressed in 
a more natural manner. This approach is a topic for continuing research, and we 
have made some progress in the context of pattern-match program transformations, 
a general "optimizing" compiler-compiler, and efficient "hashed" pattern 
matchers [20,21]. The use of pattern-like target code optimizations in the "PO" 
optimizer of Frazer [22] is an example of this. 

We have investigated a number of such optimizations as described below. 
However, the potential list is much larger than this and will no doubt grow as 
more and more patterns are discovered in the generated cod~. 
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i) Peep-hole Optimization 

A wide class of optimizations arise from replacing local sequences of 
instructions by fewer instructions. This process is often referred to as 
"peephole optimization" [23J. These optimizations differ from the others in. this 
paper which are more structural in nature and usually depend on global 
information collected during the second pass for their efficient implementation. 
There are. in fact. three possible classes of peep-hole optimizations we could 
consider in our compiler model namely: 

a. Replacing sequences of c-macros by other c-macros; 
b. Replacing sequences of c-macros by explicit instructions for the 

given machine; and 
c. Replacing sequences of explicit instructions by other instructions. 

If one is interested in preserving the machine independence of the compiler 
output, then only the first class of optimization can be carried out in the 
c-macro generation phase. However, since all these classes of optimization 
start from a list of c-macros or instructions and result in a list of c-macros 
or instructions, the same mechanism can be used for all three since we assume 
that the loader program can handle a mixed stream of instructions and c-macros. 
Our implemented compiler therefore considers these all i~ one pass although it 
would be possible to divide them into separate passes if c-macro portability 
were a requirement. Alternatively, to output truly portable c-macros one can 
simply omit optimizations in class (b) and (c) above from the appropriate table. 

The peephole optimizations which we consider are performed by a function 
peephole. This function looks at each entry on the generated code list (actually 
considered in the reverse order since this is how it is passed from pass2). It 
checks for an indicator optfn on each c-macro considered. If this is found, the 
corresponding property is applied to the code sequence at that point, and, if a 
valid pattern is found, the code is replaced by the improved code sequence. 

As an example of an optimization in the first class, consider the sequence 
of c-macros 

(JUMPNIL L1) (JUMP L2) (LBL L1) 

which is often generated during a conditional expression compilation. The 
recognition of this sequence and its replacement by the shorter sequence 

(JUMPT L2) (LBL L1) 

is performed by a function lblopt, whose name is found under the indicator optfn 
on the property list of LBL. This optimization is applied to any of the testing 
c-macros, .each of which has a conjugate c-macro for the opposite test. 
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ii) Optimizing the LINK c-macro 

As we mentioned earlier, most of the c-macros we use may be implemented in 
a few instructions on most machines. However, in most cases the LINK c-macro 
must be implemented as a subroutine in the interpreter. Since such a subroutine 
can provide several entry points for the compiler, we investigated reducing the 
number of c-macros generated by providing several varieties of LINK c-macro. 
The two most common sequences encountered for which such code reduction is 
possible are 

(LINK fn type nargs) (JUMP L1) ••• (LBL L1) (DEALLOC n) (EXIT) 

- and 

(LOAD 1 n) (LINK fn type nargs). 

By replacing the first case by the c-macro (LINKE fn type nargs n), we can 
eliminate the jump, and in some cases the label and DEALLOC c-macro if all exits 
from the function are via LINKEs. The second case could be replaced by the 
c-macro (LINKL fn type nargs n), which eliminates the LOAD. However, this second 
option has not been included in the current compiler. The check for the LINKE 
c-macro is made by the function fixlinks. 

In the implementation of these linking c-macros, it is usually necessary to 
place information about fn, nargs, etc. in a data word. If the additional space 
needed to store the additional arguments in LINKE (and LINKL) takes as much 
space as the c-macro eliminated, there is clearly no advantage in using them. As 
a consequence, the use of LINKE is optional under control of the boolean 
variable *nolinke. LINKE is however used for example in our implementation on 
the PDP-10 which uses a stack for return addresses, and so permits a direct jump 
to the function, letting it return to the caller directly. 

iii) Eliminating Common Chains of Code 

Another useful optimization is possible if one keeps careful track of JUMPS 
during the code generation. For this purpose, all jumps are added with their 
preceding code to a list jmplist. A post-code generation function fixchains is 
now used as follows: Each such code chain which terminates in an explicit JUMP 
is checked against all other code chains for any which terminate in the same 
jump and have common c-macros preceding the jump. If sucr chains are found with 
at least two common c-macros, then the initial chain is truncated to the pOint 
where the chains differ, and a jump inserted in the first chain to a label added 
at the point of divergence in the second. Although this makes the code 
marginally slower (because of the inclusion of the jump), it is clearly shorter 
than previously. 

In searching for such common chains of code, we only look for the first 
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matching chain to the one under study. In principle, it would be better to 
search all matching jumps for the largest such chain, but a study of our test 
code showec that little was gained by such a search and so it was not included. 

The importance of the technique of common code chain elimination was 
stressed to us by Bill Wulf, and is discussed in detail in the description of 
the BLISS compiler [24]. 

iv) Optimizations Dependent on Having Only One Reference to a Label 

Another advantage of keeping close track of all labels, and jumps to them, 
as described in Section 4.2 (v), is that we can easily determine in the final 
fixup stage if a label is actually referenced at all (if not, there will be no 
jump entries in the table) or only once, in which case some additional 
optimization is possible. For this scheme to work, it is of course necessary to 
remove jumps from the table, if optimization removes them from the code list. 
This is accomplished by a function remjmp. 

One such optimization recognizes that the sequence 

(JUHPx L1) <M1> ••• <Mn> ••• (LBL L1) <M1> ••• <Mn> 

may be shortened when the JUMPx (a conditional jump c-macro) is t~e only 
reference to the label and <M1> through <Mn> are c-macros which do not use 
register 1. In this case, the sequence can be replaced by 

<M1> ••• <Mn> (JUMPx L1) ••• (LBL L1) 

Another optimization performed in the case of only one reference to a label 
is in fact an elementary form of loop invariant recognition and removal. A 
common sequence of code in this case is 

(LBL L1) (LOAD 1 n) ••• (STORE 1 n) (JUMP L1). 

Since the LOAD is unnecessary after the JUMP, it may be taken outside the loop. 
If the c-macro preceding the label is also (LOAD 1 n), we can eliminate a LOAD. 
It is worth noting, however, that this code sequence suggests the use of a while 
or repeat loop in the source, which can be better compiled direct (as mentioned 
by Wirth regarding PASCAL compilation). 

v) Frame Contraction 

It is possible for the compiler to store a value in the frame and then 
never use it again. Since all such unused stores are present in slst as 
explained in Section 4.2 (iv), one action of pass3 is to remove any such stores 
from the code sequence. However, the removal of these and other redundant stores 
during the code generation may also make the effective frame smaller by creating 
unused positions in it. To remove these holes in a more efficient manner than 
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searching the whole code body requires keeping all references to frame positions 
in a list, and updating their positions in the frame if any holes are found. 
Such frame contraction is performed by the function fixfrm. 

vi) Use of Registers in Place of a Frame 

In functions which do not need a LINK c-macro, or which link only to 
functions which use no registers apart from their argument registers (which we 
identify by flags as mentioned in Section 4.2 (i» or which terminate in a LINK 
as the last c-macro before returning (i.e., only LINKEs), it is possible to use 
registers, if available, in place of frame locations for the storage of 
temporary results. If no registers are available, then fixed locations in memory 
could be used instead, although this is not done in the current compiler. 
Besides providing faster access (if registers are used), this alleviates the 
need for frame allocation and deal location in the case when all frame locations 
are replaced in this manner. This check is also made in the function fixfrm. 

It is instructive to see what happens to our test function lstchr when 
these optimizations are applied. The result is the code: 

(ENTRY LSTCHR EXPR 2) 
(ALLOC 1) 
(STORE 1 0) 
(LOAD 1 (CDR 1» 
(JUHPT L 1) 
(LINK CONS EXPR 2) 
(JUMP L2) 
(LBL L 1) 
(LINK LSTCHR EXPR 2) 
(LINK NCONS EXPR 1) 
(LINK NCONS EXPR 1) 
(LBL L2) 
(LOAD 2 (CAR 0» 
(LINKE XCONS EXPR 2 1) 

a total of 14 c-macros now instead of the original 37 and with a frame size of 1 
rather than 3! We have however done this at the expense of introducing more 
complex arguments in the c-macros, which consequently increases the complexity 
of the 'code generation process on the target computer. 

We leave it to the reader to see how these optimizations came about uSing 
the techniques we have described here. 
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5. FURTHER OPTIMIZATIQNS NOT IMPLEMENTED IN CURRENT COMPILER 

The problem with compiler projects is that there are always further 
improvements which can be made to any current version, so that in some sense, 
such a project is never finished. However, in the interests of potential users 
of this compiler, we decided to "freeze" it at the point described in this 
paper, and to leave any further improvements for later versions. We have already 
mentioned in this paper some possibilities for improvement"such as a pattern 
driven post code generation optimization. There are undoubtedly a large number 
of specific post code generation fixups for given computers which could be added 
fairly easily using such a pattern driven mechanism. However, there are in 
addition a number of general enhancements possible which we are currently 
studying and, in the interests of completeness, we present below those we 
consider of most importance. 

5.1. Optimization of Arithmetic Expressions 

LISP is notoriously slow at arithmetic, mainly bec?use of the cost involved 
in converting a LISP number to its machine representation on entry to each LISP 
numerical routine. In addition, all type checking is done at run time. Such 
calculations can be significantly speeded up by recognizing that a given block 
contains only arithmetic operations and doing the number conversion only on 
entry and exit from the block. Such improvements require the addition of 
arithmetic c-macros to our set, and additional frame or garbage collection 
operations. An implementation of such optimizations is in fact available in the 
Macl isp compiler [7]. ~le have al so tested such optimizations, by means of a 
preprocessing type checking phase [25,26], rather than in the compiler itself. 
This makes the addition of the arithmetic code improvements fairly modular using 
the open coding techniques available in the current compiler. We expect to make 
this extension available in the near future. 

5.2. Block Compilation 

Another significant optimization that has been partially explored is the 
process of compiling a set of related functions at one time. It is an observed 
fact that such "modules" provide only a few of the functions as entry points to 
the external environment; the rest of the functions serve only to provide 
support for the module. By analyzing the entire set as a single entity, many 
more opportunities for shared code and open coding arise. Certain functions are 
used only once, and can be moved inline, others can be more efficiently compiled 
knowing the environment in which they will be called. This work will be 
discussed further in a later paper. 
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5.3. Generalizations of Current Compiler c-macros 

There are several situations where the c-macro sequences would become 
significantly shorter if the restriction to testing on register 1 were removed 
from the various testing c-macros. The most obvious generalization is to 
replace testing on this register by a test on the general expression allowed as 
an argument in the JUMPE and JUMPN c-macros. With this generalization, the 
relevant c-macros would take the following forms: 

(JUMPNIL adr exp) 
(JUMPT adr exp) 
(JUMPE adr exp1 exp2) 
(JUMPN adr exp1 exp2) 
(JUMPC adr exp type) 
(JUMPNC adr exp type) 

To implement this generalization would require the use of an auxiliary 
register (or registers) in general to compute the expression being tested. If a 
particular machine implementation required one of the compiler registers to be 
used for this purpose, then this would have to be saved and restored as part of 
the computation. Since some of the machines we are interested in have few real 
registers, we did not implement these generalizations in the current compiler. 
However, in some functions, especially small ones, the results could be 
dramatic. For example, consider the function defined by: 

symbolic procedure mkex u; 

if mode eq 'symbolic then u else mkex1 u; 

Assuming mode to be fluid this function currently compiles to: 

(ENTRY MKEX EXPR 1) 
(LOAD 3 1) 
(LOAD 1 (FLUID MODE)) 
(JUMPN L 1 (QUOTE SYMBOLIC)) 
(LOAD 1 3) 
(JUMP L2) 
(LBL L1) 
(LOAD 1 3) 

(LINK MKEXl EXPR 1) 
(LBL L2) 
(EXIT) 

However, with the c-macro generalizations above, this would become: 
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(ENTRY MKEX EXPR~1) 
(JUMPN L1 (FLUID MODE) (QUOTE SYMBOLIC» 
(LINK MKEX1 EXPR 1) 
(LBL L1) 
(EXIT) 

Again, in this vein, one could replace the LOAD and STORE c-macros by a 
single c-macro MOVE having the form: 

(MOVE exp1 exp2) 

Thus (LOAD reg exp) and (STORE reg floc) would then become special cases of this 
single c-macro. 

To generalize this process still further, one could provide for anyreg 
functions which take more than the one argument provided for in our current 
implementation. However, there is no practical reason why two or more argument 
functions couldn't be used. In particular, some of the binary arithmetic 
functions could benefit from such an extension, especially in an open coded 
arithmetic model. We would also have to address the problem of register 
allocation more carefully, to take take full advantage of these two-register 
anyregs. 

5.~. Graphical Analysis of the Function Structure 

A final modification of the compiler, which would be the most radical 
change of those discussed so far, would be to do a complete graphical analysis 
of the function structure before any code was generated. By such means, register 
and frame layout could be determined on a global rather than a local basis, and 
a more thorough analysis of labels, loops and chains of common code would allow 
for even greater optimization. Applications of such analyses to other languages 
have been already described in the literature [10,11,18,27] and would apply 
equally well here. 

6. SEMANTIC DIFFERENCES BETWEEN INTERPRETED AND COMPILED CODE 

A clear goal of this compiler is to produce optimal code, and, in order to 
achieve this, some semantic differences between interpreted and compiled code 
are required. Depending on the specific implementation of the c-macros and 
underlying LISP, . these include: 

- local variables are not referenced by name, so we must declare 
non-local variables explicitly, otherwise an error can result; 

- LISP c-macros and fexpr functions must be defined before compiling a 
function in which they are used; 

- in interpreted expressions, the arguments of a function are usually 
eV81uated from left to right; the order in compiled expressions is 
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essentially arbitrary. (Unless of course *ord has been set to true 
during the relevant compilation); 

- the compatibility of the number of arguments supplied to a function 
and the number expected is not checked in open compiled expressions 
and this too can lead to errors; 

- open coded anyreg functions such as car, cdr and so on, do not check 
for the correctness of the data supplied; and 

- the functions that are open compiled may not be traced or redefined 
with respect to a compiled function, which must therefore be 
completely recompiled to effect such changes. 

Of course, most of these differences could be eliminated in the compiled 
code at the cost of additional instructions, and less efficient evaluation. but 
in the interest of efficiency we forego compatibility on the above points. 

7. THE LOADER 

In any given machine implementation of this compiler. there still remains 
the problem of designing the compiler c-macro expander, assembler and loader for 
the code we have generated. LISP assemblers (called LAP), are usually written in 
LISP, and the c-macro expansion can be easily accomplished at the same time. 
The LAP assembly and loading task remains quite machine dependent, of c~urse, 
because there are many details, such as instruction lengths, determination of 
word boundaries and so on, which depend on the machine. Nevertheless, an 
essentially portable assembler and loader has been described in Standard LISP by 
Frick [28], and we refer the reader to this paper for a general discussion of 
the principles involved. 

8. HISTORY OF THE IMPLEMENTATIONS 

A few words on our method of implementing this compiler. We started with a 
working compiler in LISP using Stanford LISP/360 on an IBM System/360. This was 
translated by machine into REDUCE syntax [29J and made more structured by the 
insertion of while statements where possible. The resulting program was much 
more transparent as a result. All code generation was then replaced by "machine 
independent" c-macros and the resulting code produced from compiling a wide 
range of programs studied. Several inefficiencies were apparent which were then 
corrected by improvements in the compiler itself. We then determined how to 
implement the c-macros themselves in fewer instructions by appropriate changes 
to the interpreter. The results of this was a compiler which produced 
approximately 20% fewer instructions in compiling? large program (REDUCE [30]). 

Our next step was to move this compiler to the PDP-10 using LISP 1.6 as the 
embedding LISP system. A comparison of the code sequences produced with the 
existing compiler revealed many further inefficiencies in the portable version. 
To remove these required a major restructuring of the code generation phase of 
the compiler. In addition, the c-macros were modified to be simpler in 
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implementation and to provide a more natural LISP machine. Eventually we were 
able to produce code a little more efficient than the LISP 1.6 compiler we had 
used previously. Reimplementing the revised compiler on the IBM 360 gave a 
further 15% code improvement for a total of 35% since the project began. 
Further improvements since that time have taken this number to over 40%. The 
code produced on the PDP-10 in compiling a large program such as REDUCE is now 
at least 10% shorter than that produced by any other LISP compiler (such as·that 
for ~~clisp) on this machine. Implementations of REDUCE under both Standard LISP 
and Maclisp show also that the running time of the former is no worse than that 
latter, although interpreter design differences make it hard to compare actual 
compiled code running times in the two systems. 

After these initial implementations, the compiler was then installed by 
Cedric Griss on a Univac 1108 using a LISP system from the University of 
Wisconsin. A further implementation was also made on a CDC 7600 using a LISP 
interpreter from the University of Texas. The feedback provided by these 
experiences told us where to improve the description of the implementation and 
also of remaining trouble spots in the compiler (suet as fluid variable binding, 
for example) which were then corrected. In addition, the code produced in these 
cases was again significantly shorter than that produced by existing LISP 
compilers on those machines. 

It should be stressed that each improvement was tested against the previous 
version which was known to work. This way we could isolate bugs in the 
improvements themselves and correct them quickly. Software refinement _~eally 

works! It also goes without saying that working interactively on a PDP-10 rather 
than in batch mode on an IBM 360 was also a decided advantage. 

The most recent implementation was completed in the summer of 1978 by David 
Dahm on a Burroughs B6700. This particular implementation is rather 
interesting, in that a completely new LISP interpreter was written following the 
Standard LISP Report very closely; most functions are compiled from the LISP 
definitions given in the Report, and the target language is ALGOL, rather than 
machine code, as is the case for all of the other LISP systems for which our 
compiler has been implemented. ~me work has also been done by one of ui (MLG) 
on a FORTRAN based system, with the compiler emitting FORTRAN. This language is 
far less suitable than ALGOL, since recursion must be simulated in some way, 
usually violating the FORTRAN standard. 

9. SAMPLE STATISTICS 

We present in this Section some sample statistics 
performance of this compiler on the PDP-10 and the IBM 360 
Standard LISP interpreters on these machines. 

relating to 
using the 

the 
Utah 
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9.1. Resource Requirements for Loading Compiler 

The whole compiler module is in two parts, exclusive of the loader; namely 
the part which generates the machine independent c-macros, and that part which 
defines the c-macros as explicit machine instructions. In the following table 
we therefore show numbers for both these parts in order to give a realistic 
indication of the resource use of the compiler. We show the number of eight bit 
bytes needed for both binary program and heap to load the compiler on both 
machines. On the PDP-10, we assume 4.5 bytes per 36 bit word, and on the IBM 
360, 4 bytes per 32 bit word. However, it should be noted that a heap cell is 
4.5 bytes on the PDP-10 and 8 bytes on the IBM 360. 

Module 

Portable Compiler 
c-macro Definition 

Total Compiler 

Lines of Rlisp 

PDP-10 IBM 360 

1350 
335 

1685 

1350 
240 

1590 

Heap Space 

PDP-10 IBM 360 

8200 
6545 

14745 

9200 
7040 

16240 

Binary Code Space 

PDP-10 IBM 360 

20140 
5110 

25250 

24020 
4072 

28092 

The main uses of the heap are for identifiers and tables used by the 
compiler. Each new literal atom takes a minimum of 27 bytes on the PDP-10 and 
24 bytes on the IBM 360. 

9.2. Compiler c-macro Measurements 

The static and dynamic compiler c-macro distributions were investigated on 
the PDP-10 for two cases, the compiler self-compilation and a standard test set 
of algebraic calculations using REDUCE. The relevant percentage distributions 
are shown in the table below, with the c-macros ordered roughly by their 
relative rankings. It should be noted that the c-macros JUMPC and JUMPNC do not 
occur as they are not used in the PDP-10 implementation. In addition, ALLOC 0 is 
not counted in these statistics. 
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_.- . Dynamic c-macro Usage for TeEt Examples 

C-MACRO ! Static Distribution ! Dynamic Distribution 
Compiler Algebra Compiler Algebra 

LOAD 37.22 35.61 37.21 31.16 
LINK 18.55 18.02 14.52 15.54 
STORE 11.23 11.28 10.52 12. 14 
JUMPNIL 5.22 5.76 9.31 10.85 
LBL 9.68 10.36 3.87 3.20 
ENTRY 2.82 2.33 5.24 4.35 
EXIT 1.85 1.65 3.70 2.67 
ALLOC 1.79 1.55 2.22 2.89 
DEALLOC 2.66 3.34 3.27 4.13 
JUMP 3.95 3.78 3.35 3.05 
JUMPT 1. 68 2.75 1. 73 6.60 
LINKE 1.40 2.06 1. 54 1.70 
JUMPN 1.21 0.82 2.08 0.80 
JUMPE 0.18 0.57 0.49 0.90 
FREERSTR 0.28 0.06 0.47 0.01 
LAMBIND o. 14 0.02 0.45 0.01 
PROGBIND 0.111 0.04 0.03 0.00 

TOTAL 100.00 100.00 100.00 100.00 

that the c-macro usage is completely dominated by LOAD, with all 
place. Of course, some c-macros such as LINK and LAMBIND for 

example require more code space and time than others such as JUMP and simple 
LOADs. On the other hand, the LOAD usage includes calls to car, cdr and so on, 
which are handled by the anyreg mechanism and so can be quite expensive on 
occasion. Therefore, on the whole, the above statistics are a reasonable 
measure of both space and time usage. 

We notice 
LINKs in second 

We also notice that there is little difference between the static and 
dynamic profiles, nor between the compiler self-compilation and the algebraic 
calculations. Our statistics are therefore similar to those found with other 
compilers and other test cases [31]. 

10. CONCLUSIONS 

The benefits of writing our compiler in a portable manner should be 
obvious; the code is carefully written to isolate the machine dependent and 
machine independent optimizations, making implementation and maintenance much 
simpler. In particular, a given optimization either applies to all versions, or 
just to some of them. By having only a single compiler for all systems, we have 
been able to avoid the wasted effort of reimplementing essentially the same 
code; rather we can concentrate on generalizing any optimizations found for one 
system so that they improve all compilers in a relatively machine independent 
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way. What has been even more surprising to us has been the fact that the 
resulting compiler is smaller and more efficient than most existing production 
compilers; rethinking the compilation problem in terms of an abstract machine 
has not been an idle exercise. 
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APPENDIX A: The Portable Compiler c-macros 

In this Appendix, we provide a detailed description of the compiler 
c-macros, and illustrate their implementation by 0 discussion of existing 
implementations on the IBM 360 and the PDP-10. The~e machines are sufficiently 
different that their description should be an adequate guide for anyone 
interested in implementing this compiler on a new machine. For completeness, a 
listing of the relevant c-macro expansion files for these two machines is given 
in Appendix B. In presenting these details, we assume that the reader has 
sufficient familiarity with these two machines to understand the instructions 
used on each; it is not our intent to teach assembly language programming for 
the two machines! Complete details on these instructions can be found in [32,33] 
and the manufacturers' manuals. 

A.1 General Principles 

We assume the existence of a set of abstract registers on the target 
computer up to a maximum set by the particular implementation. However, to be 
consistent with Standard LISP, 15 registers should be available. We also assume 
the existence of a contiguous region in memory which can be indexed in some 
manner from a base point. This region is normally called a push down list or a 
push down stack in LISP and is used to store the compiled function frames. This 
region is assumed to be scanned by the garbage collector. 

On the IBH 360, the first two abstract registers are real registers, 
addressed symbolically as A and Q, and the remainder a fixed block of memory 
addressed via an index register. This notation of course reflects the influence 
of the original IBM 709 design on the particular interpreter being used. The 
push down stack is a contiguous block of memory used by both the interpreter and 
compiled functions. A register PDL points to the first word in a given 
function's frame, and a second register, PDS, points to the next free word in 
the push down stack. NIL is contained permanently in a register NILR, useq also 
as the base register for atom addressability. 

On the PDP-10, the first five registers are real registers and correspond 
to registers 1 to 5 in the machine. The remainder are in a contiguous block of 
memory. The push down stack is also a contiguous block of memory used by both 
interpreter and compiled functions. A register P points to the last word used 
on the push down stack. Only one stack register need be used on this machine, 
since unlike the IBM 360, one is permitted to index in the negative direction. 
Register 0 contains the value of NIL, and 0 is also the "address" of NIL. 

With the exception of LOAD, LINK and LINKE, the c-macros are assumed not to 
change any of the compiler registers. LOAD must only change the register being 
loaded. In general, LINK is assumed to change all registers unless the function 
linked to is flagged onereg, in which case only register 1 is assumed changed, 
or tworeg in which only registers 1 and 2 are assumed changed. Since LINKE 
includes an exit, it is irrelevant what it does to the registers, except, of 
course, that it, like LINK, must return its value in register 1. 
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The c-macros themselves are normally implemented as functions in LISP so 
that they may be called recursively if needed, and of course compiled. They 
also have a flag Me on their property lists. The loader is assumed to know 
about this flag, and to apply the definition of such functions to the arguments 
provided. The value of each c-macro is a list of LAP instructions equivalent to 
the original c-macro, produced in the correct sequence for loading. The general 
format of the LAP instruction is left unspecified, but will probably be an atom 
or list (see Frick's discussion of the portable LISP loader for a comprehensive 
format [28]). 

In describing the c-macros, the following argument conventions are used: 

LABL 
NREG 
REG 
REGS 
NAME 
TYPE 
NOARGS 

N 
Loe 
FLOC 
A~T 

E~ 

A.2 The cmacros 

<id> representing a label for jumps 
{<integer> > 0 representing a register} 
<integer> > 0 representing a register 
list of REG 
<id> representing a function name 
EXPR I FEXPR 

NIL 

<integer> >= 0 representing the number of arguments in a 
function 
<integer> > 0 representing the number of frame locations 
<integer> <= 0 representing a frame location 
LOe I (FLUID <id> ) I (GLOBAL <id> ) 
list of pairs of form «id> LOe) representing a fluid 
variable name and a frame location for storing its 
previous value 
REG I FLOC I (QUOTE <S-expression» I «afn> EXP) 
where <afn> is the name of a function with an anyreg 
property. 

ENTRY(NAME:id,TYPE:id,NOARGS:integer):list 

This c-macro sets up an entry point for the function named NAME. The 
actual details of this are usually deferred to the loader. 

On the IBM 360. the loader associates a code pointer with the function 
named NAME under the indicator TYPE. This association is usually deferred until 
the code assembly is complete in case a function referenced by the loader is 
being redefined. In addition, a subroutine call is issued to set up register R3 
as the base register of the function, and set PDL to PDS. Moreover, given that a 
subroutine call is needed anyway, the common cases of ALLoe 0 through ALLoe 3 
are included by means of special case subroutines. 

On the PDP-10, the loader associates a code pointer with the function named 
NAME under the indicator TYPE. As above, this association is deferred until the 
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code assembly is complete. 

EXIT():list 

This c-macro causes a transfer back to the calling function. 

On the IBM 360, a link register R2 must be restored before the branch can 
take place. As a result, this c-macro is implemented as a subroutine call of 
the form «CNOP) (BC 15 48 (RO R12))). The instruction CNOP tells the loader 
that the next instruction must be assembled at a full word boundary in order to 
make the code end with a full word. The offset 48 references the internal exit 
subroutine in the interpreter. On the PDP-10, the single instruction (POPJ P) 
causes the return address to be picked up from the location addressed by the P 
register and the relevant transfer made. 

ALLOC(N:integer):list 

N is assumed non-negative. If N=O then NIL is returned. Otherwise the 
value is a list of instructions which allocate a frame of length N on the push 
down stack and check to see that the bound on the stack is not exceeded. 

For N>O, the instructions generated on the IBM 360 do the following: If 
N=1, the instruction (BXH PDS K4 0 (R12)) advances the PDS pointer one word and 
gives an error if the end of the push down stack is passed. If N>1, then the 
following instructions are generated: 

(LA PDS [4*N-4] (RO R12)) 
(BXH PDS K4 0 (RO R12)) 

where the value of the expression in the square brackets is used. To make 
this operation fast, register K4 has been dedicated to store the constant 4, and 
R12 used for the address of the relevant trap handler. 

On the PDP-10, the sequence ALLOC(1), STORE(1,O) can be done by the single 
instruction (PUSH P 1), so this can be used for N=1 with or without the STORE 
in the c-macro sequence. The hardware stack bound check deals with the overflow 
case on this machine. The sequence ALLOC(2), STORE(1,0), STORE(2,-1) can be 
done by the two instructions (PUSH P 2) (PUSH P 1). Otherwise the P register is 
advanced N words, using (ADD P (C 0 0 N N)), and an instruction issued to make 
sure that the stack bound is not exceeded. 

DEALLOC(N:integer):list 

N is assumed non-negative. If N=O then NIL is returned. Otherwise, the 
value is a list of instructions which remove a frame of N words from the push 
down stack. 

For N>O, all that is required on the IBM 360 is the instruction 
(LR PDS PDL). However, since EXIT must be effected by a subroutine call, the 
sequence DEALLOC(N), EXIT() is also done by a subroutine call which includes the 
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above instruction in addition to the EXIT sequence. 

On the PDP-10 the P register is reset to a position N words less than its 
current position using the instruction (SUB P (C 0 ° N N». (This is faster than 
N calls of (POP P 1), even for N=1). 

JUMP(LABL:id):list 

This c-macro generates an unconditional jump to the location specified by 
the c-macro LBL(LABL). 

On the IBM 360, this is the single instruction (BC 15 LABL) , which limits 
addressability to 4K bytes. On the PDP-10, the instruction (JRST 0 LABL) is 
used. 

JUMPNIL(LABL:id):list 

This c-macro generates a jump to the location specified by the c-macro 
LBL(LABL) if the value of the contents of register 1 is NIL. 

On the IBM 360, the instructions generated are «CR A NILR) (BC 8 LABL». 
On the PDP-10, «JUMPE 1 LABL», using the fact that a pointer to NIL is stored 
in register 0. 

JUMPT(LABL:id):list 

This c-macro generates a jump to the location specified by the c-macro 
LBL(LABL) if the value in register 1 is not NIL. 

On the IBM 360, the instructions generated are «eR A NILR) (BC 7 LABL». 
On the PDP-10, «JUMPN 1 LABL». 

JUMPE(LABL:id,EXP:any):list 

This c-macro generates a jump to the location specified by the c-macro 
LBL(LABL) if the value of register 1 is to eq to EXP. 

On the IBM 360, instructions are first generated to set up a condition 
code, and a final instruction (BC 8 LABL) issued to complete the transfer. The 
initial code is generated as follows: If EXP is register 2, then (CR A Q) is 
issued. If EXP is any other number (we assume register 1 is not possible!) then 
an instruction of the form (C A <location of EXP» is issued. Otherwise the 
load c-macro is used to load EXP into an auxiliary register R1, followed by the 
instruction (CR A R1) to set up the condition code. 

On the PDP-10, code is generated to compare register 1 with exp, and a skip 
if not eq is emitted to avoid a following (JRST 0 LABL) , using (CAMN 1 exp) or 
(CAIN 1 (QUOTE <S-expression»). If the anyreg expression requires a register 
for its computation, an auxiliary register (D) is used, by first loading the exp 
into D via LOAD(D,exp) and then emitting «CAMN 1 D) (JRST 0 LABL». 

JUMPN(LABL:id,EXP:any):list 



39 

This c-macro g~nerates a jump to the location specified by the c-macro 
LBL(LABL) if the value of register 1 is not ~ to EXP. 

On the IBM 360, the same instructions are generated initially as for the 
JUMPE c-macro, and the instruction (BC 7 LABL) finally issued to complete the 
transfer. 

On the PDP-10 the process is exactly the 
(CAME 1 exp) or (CAIE 1 (QUOTE <S-expression») is 
(JRST ° LABL) if register 1 ~ exp. 

JUMPC(LABL:id,REG:atom,NAME:id):list 

same 
used 

as 
to 

for JUMPE, but 
skip around the 

NAME in this case is the boolean function being tested for (e.g., atom or 
numberp). If the contents of REG satisfy the NAME test, then this c-macro 
generates a jump to the location specified by the c-macro LBL(LABL). 

On the IBM 360, if REG is 1 or 2, then the c-macro expands into the 
sequence (TM <reg> <mask» (BC 14 <labl», where the <mask> is appropriate to 
the boolean function NAME. If REG is any other register, then a load of REG 
into the auxiliary register R1 is first generated, followed by the above 
sequence with <reg> now R1. This c-macro is not currently used on the PDP-10, 
although it will be possible when a new version of the loader is installed [28]. 

JUMPNC(LABL:id,REG:atom,NAME:id):list 

As for JUMPC, NAME is the boolean function being tested for. If the 
contents of REG do not satisfy the NAME test, then this c-macro generates a jump 
to the location specified by the c-macro LBL(LABL). 

On the IBM 360, if REG is 1 or 2, then the c-rnacro expands into the 
sequence (TM <reg> <mask» (BC 1 <labl», where the <mask> is appropriate to the 
boolean function NAME. If REG is any other register, then a load of REG into 
the auxiliary register R1 is first generated, followed by the above sequence 
with <reg> now R1. This c-macro is not currently used on the PDP-10. 

LBL(LAEL:id):list 

This c-macro generates a label in the instruction sequence in a format 
recognized by the loader. 

On both the IBM 360 and the PDP-10, the code sequence (LABL) is issued to 
put the atom LABL in the instruction list. 

LOAD(REG:atom,EXP:any):list 

This c-macro loads the register REG with the value of the expression EXP. If 
EXP is one of <reg>, <loc>, (QUOTE <S-expression>, (FLUID <var» or 
(GLOBAL <var», the loading is usually direct. otherwise the instructions to 
load the form «afn><exp» must be issued first before the loading can be 
completed. 
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On the IBM 360, if the loading is to registers 1 and 2, it can be direct. 
Otherwise, the expression is loaded into an auxiliary register R1, and then 
stored in the location reserved for the register REG, unless EXP is 1 or 2 as 
noted below. The decoding of EXP for the various cases is as follows: 

reg: 

loc: 

If EXP is 1 or 2, then if REG is or 2, the 
instruction (LR REG EXP) is issued, otherwise 
(ST EXP <location of REG» is produced. If EXP is 
greater than 2, then the instruction sequence 
begins with (L x <location of EXP», where x is A, 
Q, or R1, depending on whether an auxiliary 
register had to be used. 

the instruction sequence begins with 
(L x <location of EXP» as above. 

(QUOTE <S-expression»: If EXP is (QUOTE NIL), then the instruction 
sequence terminates with (LR x NILR), otherwise 
«L x EXP) (AR x NILR». The AR instruction is 
necessary since all quoted expressions use NILR as 
their base register. 

(FLUID <var» 

«afn><exp»: 

(GLOBAL <var»: 
The instruction sequence begins with «L x EXP) 
(L x 0 (NILR x»). The latter instruction is 
necessary to pick up the car of the fluid/global 
cell where the actual value is stored. 

The anyreg property for <afn> is assumed to be 
(LAMBDA (X Y) <list of instructions», where the 
parameters X and Y refer to the register and frame 
location respectively. Hence if the <exp> is a 
<loc>, a substitution of the appropriate register 
and frame location is made in the lambda body. On 
the other hand, if <exp> is not a <loc>, an open 
property is sought for <fn>, with the form 
(LAMBDA (A) <list of instructions». In this 
case, a LOAD of <exp> is made to the appropriate 
register, after which the list of instructions in 
the open property with the parameter A replaced by 
the appropriate register is added to the 
instruction sequence. 

On the PDP-10, the process is even simpler than above: EXP can always be 
directly loaded to registers 1-5 (using REG itself as an intermediate register 
for anyreg expressions); for REG>5, auxiliary register D is used for a 
LOAD(D, EXP) , followed by (HOVEM DREG). The relevant sub-cases are: 
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(FLUID var) or (GLOBAL var) 
loc 
reg' 
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-> (MOVEI reg (QUOTE <S-expression»; 
-> (MOVE reg (FLUID var»; 
-> (NOVE reg loc P); 
-> (MOVE reg reg'). 

where reg is the register name corresponding to REG. 

STORE(NREG:atom,FLOC:any):list 

If NREG is NIL, then NIL is stored in FLOC, otherwise the contents of 
register NREG are stored in FLOC. If FLOC is of the form (FLUID <var» or 
(GLOBAL <var» then a store into the appropriate cell must be passed to the 
loader. It is assumed that the loader knows how to handle such forms. If FLOC 
is a non-positive integer, then a store into the appropriate frame location is 
generated. 

On the IBM 360, NIL is permanently stored in a register named NILR, and 
need not be handled as a special case. Therefore, if NREG is NIL, 1 or 2, the 
store can be direct from the appropriate register. If FLOC is a frame location, 
this sequence has the form «ST nreg [-4*FLOC] (RO PDL»), where nreg is the 
symbolic name for NREG and the value of the expression in the square brackets is 
used. If NREG is one of the other forms, the code sequence is 
«L M (FLUID var» (ST nreg 0 (NILR M») where M is another auxiliary register. 
On the other hand, if NREG is 3, 4 and so on, then the contents of the_memory 
location reserved for the relevant register are first loaded into the auxiliary 
register R1, and this register then stored as above. 

On the PDP-10, NIL again is permanently stored in a register, namely 0, and 
is therefore also not a special case. So if NREG is NIL, or 1 through 5, the 
store is again direct from the register. If FLOC is a frame location, the 
instruction sequence generated has the form «MOVEM nreg FLOC P», if it is one 
of the other forms, the sequence is «MOVEM nreg FLOC». If NREG>5, then an 
auxiliary register is again used to load the contents of the memory location 
reserved for NREG, and this then stored as above. 

LINK(NAME:id, TYPE:id,NOARGS:integer):list 

If NAME has an open indicator, then an open coded sequence of instructions 
for the link is generated. The general format of the open property is the list 
of instructions which replace the link. Otherwise a general function calling 
sequence is produced. 

On the IBM 360, the general linking mechanism requires that several 
registers be saved on entry to a function and restored on exit. Therefore, the 
linking is done via a subroutine rather than a direct set of instructions. In 
addition, except for a class of atoms whose location is known, a data word is 
also generated along with the link cell to provide the name of the function to 
the linking subroutine. 

On the PDP-10, the general linking can be done 
Unimplemented User Operation (UUO), named n CALL" : 

by using a single word 
(CALL noargs (E name». This 
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form therefore limits "noargs" to 0 through 15. However, since register 15 is 
used to indicate fexprs, a maximum of 111 arguments can be permitted in a 
function. 

LINKE(NAME:id,TYPE:id,NOARGS:integer,N:integer):list 

This c-macro is equivalent to the sequence of c-macros: 

LINK(NAME, TYPE , NOARGS) 
DEALLOC(N) 
EXIT(). 

However, since DEALLOC does not affect any registers, its position may be 
exchanged with the LINK c-macro. If LINK followed by EXIT can then be done in 
one instruction or one subroutine call, the resulting code is shorter then the 
above sequence. 

On the IBM 360, this c-macro is not used (being inhibited by setting 
!*nolinke to true), since the EXIT instruction is used to determine the 
beginning of the function data block which immediately follows this point. 

On the PDP-10, the LINK and EXIT sequence can be performed by another 
single word UUO: (JCALL noargs (E name». 

LAMBIND(REGS:list,ALST:list):list 

This c-macro, and its associated c-macros PROGBIND and FREERSTR, involve a 
large number of instructions if open coded. It is therefore recommended that 
these be implemented as subroutines, particularly if the underlying LISP uses a 
fairly complex fluid mechanism. The action for a simple shallow binding model 
can be described in terms of the other c-macros using an auxiliary register R as 
follows: 

while REGS do 
{LOADeR, FLUID(caar ALST»; 
STORE(R, cdar ALST); 
STORE(car REGS, FLUID(caar ALST»; 
ALST : =cdr ALST; 
REGS :=cdr REGS} ; 

Note that additional operations might be required to satisfy the error 
handling, or fluid mechanism. 

In other words, the elements of REGS are paired with those of ALST to give 
an effective triple «reg>,<var>,<loc». For each triple, the contents of the 
fluid variable <var> are stored in <loc> (to be restored later by FREERSTR), and 
the contents of <reg> then stored in the fluid cell. 



43 

On both the IBM 360 and the PDP-10, this c-macro is implemented as a 
subroutine call. On the PDP-10, an additional special pushdown stack, indexed by 
a register SP is used, and the frame location is not needed at all. A 
«CALL 0 (E LAMBIND*» is followed by an appropriate number of (0 reg var) 
words; a pair «var> <value-of-var» is pushed onto the special stack by 
LAMBIND, and STORE(reg,(FLUID var» performed. After all of ALST has been 
processed, a mark is pushed onto the special stack to indicate the size of "this 
binding set. 

PROGBIND(ALST:list):list 

Like LAMBIND, this c-macro is best implemented as a subroutine call. Its 
simple shallow binding action is as follows: 

while ALST do 
{LOAD(R, FLUID(caar ALST»; 
STORE(R, cadar ALST); 
STORE(NIL, FLUID(caar ALST»; 
ALST := cdr ALST} ; 

In other words, for each pair «var>,<loc» in ALST, the value of the fluid 
variable <var> is stored in <loc> and a NIL then stored in the fluid cell of 
<var>. 

On both the IBM 360 and the PDP-10, this c-macro is implemented as a 
subroutine call. On the PDP-10, a set of words containing (0 0 var) for each var 
follow a (CALL 0 (E LAMBIND*»; NIL is represented by register 0 in the first 
argument position indicating that a STORE(NIL,(FLUID VAR» is to be performed on 
each variable. 

FREERSTR(ALST:list):list 

This c-macro 
binding to describe. 

whil e ALST do 

is the easiest of the three c-macros handling free variable 
Its action for simple shallow binding is as follows: 

{LOAD(R, cadar ALST); 
STORE(R, FLUID(caar ALST»; 
ALST := cdr ALST}; 

On both the IBM 360 and the PDP-10, this c-macro is implemented as a 
subroutine call. On the PDP-10, the mark pushed onto the special stack by 
LAMBIND or PROGBIND is used to indicate how many (var value) pairs to pop off 
for unbinding. Thus only a «CALL 0 (E FREERSTR» is emitted. 
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To conclude this Appendix, we show the actual LAP instructions generated 
for our test example (lstchr). We notice in this case that the total code sizes 
are fairly similar in spite of the differences in the machine architectures. In 
fact, over a large number of samples we find that the number of bytes of code 
used in the IBM and DEC implementations are within 15% of each other. 

C-MACROS 

(ENTRY LSTCHR EXPR 2) 
(ALLOC 1) 
(STORE 1 0) 
(LOAD 1 (CDR 1» 
(JUMPT L 1) 

(LINK CONS EXPR 2) 
(JUMP L2) 
(LBL L 1) 
(LINK LSTCHR EXPR 2) 
(LINK NCONS EXPR 1) 
(LINK NCONS EXPR 1) 
(LBL L2) 
(LOAD 2 (CAR 0» 

(LINKE XCONS EXPR 2) 

Total Bytes: 

PDP-10 

(PUSH P 1) 

(HRRZ 1 0 1) 
(JUHPN 1 L 1) 

(CALL 2 (E CONS» 
(JRST 0 L2) 
L1 
(CALL 2 (E LSTCHR» 
(CALL 1 (E NCONS» 
(CALL (E NCONS» 
L2 
(HLRZ@ 2 0 P) 

(SUB P (C 0 0 1 1» 
(JCALL 2 (E XCONS» 
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(BAL R3 ENTERCC) 
(BXH PDS K4 0 (RO R12» 
(ST A 0 (RO PDL» 
(L A 4 (RO A» 
(CR A NILR) 
(BC 7 L 1) 
(BALR R2 R 12) 
(BC 15 L2) 
L1 
(BAL R2 174 (RO R12» 
(BAL R2 116 (RO R12» 
(BAL R2 116 (RO R12» 
L2 
(L Q 0 (RO PDL» 
(L Q 0 (RO Q» 
(EAL R2 120 (RO R12») 
(BC 15 60 (RO R12» 

S6 

The various BALs in the IBM 360 code reference interpreter subroutine calls 
to a set of common functions, such as cons, or a routine for referencing a 
recursive entry to the function being defined. 
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APPENDIX B: Listing of the Compiler 

In this Appendix, we present a complete listing of the portable compiler 
and its supporting compiler c-macro definition files for the IBM 360 and the 
PDP-10. The listing is accordingly divided into three parts; the portable 
compiler itself, the c-macros for the IBM 360 and the c-macros for the PDP-10. 
The only difference between this listing and the distributed form of these 
programs is that in the latter case, the character & is prefixed to most 
internal function names and an asterisk to all compiler c-macro names to prevent 
possible name clashes during execution. These characters are omitted in the 
listings below and throughout this paper. 

B.1 The Portable Compiler Code 

COMMENT general functions used in this compiler; 

Sy}lBOLIC PROCEDURE ATSOC(U,V); 
IF NULL V THEN NIL 

ELSE IF U EQ CAAR V THEN CAR V 
ELSE ATSOC(U,CDR V); 

SYMBOLIC PROCEDURE EQCAR(U,V); NOT ATOM U AND CAR U EO V; 

GLOBAL '(ERFG!*); 

SYMBOLIC PROCEDURE LPRI U; 
IF ATOM U THEN LPRI LIST U 

ELSE FOR EACH X IN U DO «PRIN2 X; PRIN2 " n»; 

SYMBOLIC PROCEDURE LPRIE U; 
«LPRI ("*****" . IF ATOM U THEN LIST U ELSE U); 

ERFG!* : = T; 
TER PR I ( ) > > ; 

Sy}1BOLIC PROCEDURE LPRIM U; 
«TERPRI(); LPRI (n***" • IF ATOM U THEN LIST U ELSE U); TERPRI(»>; 

SYMBOLIC PROCEDURE MKQUOTE U; LIST('QUOTE,U); 

SYMBOLIC PROCEDURE REVERSIP U; 
BEGIN SCALAR X,Y; 

WHILE U DO «X := CDR U; Y := RPLACD(U,Y); U := X»; 
RETURN Y 

END; 

SYMBOLIC PROCEDURE RPLACW(A,B); RPLACA(RPLACD(A,CDR B) ,CAR B); 

COMHENT the following two functions are used by the CONS open 
coding. They should be defined in the interpreter if 
possible. They should only be compiled without a COMPFN 
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for CONS; 

SYMBOLIC PROCEDURE MCONS U; U • NIL; 

SYMBOLIC PROCEDURE XCONS(U,V); V • U; 

COMMENT Registers used: 
1-MAXNARGS used for args of link. Result returned in reg 1; 

COMHENT c-macros used in this compiler; 

COMMENT The following c-macros must NOT change regs 1-MAXNARGS: 

ALLOC nw 
DEALLOC nw 
ENTRY name type noargs 

EXIT 
JUHP adr 
JUHPNIL adr 
JUMPT adr 
JUMPE adr exp 
JUMPN adr exp 
LBL adr 
JUMPNC adr exp type 
JUMPC adr exp type 
LAMBIND regs alst 
PROGBIND al st 
FREERSTR alst 
STORE reg floc 

allocate new stack frame of nw words 
deallocate above frame 
entry point to function name of type type 

with noargs args 
exit to previously saved return address 
unconditional jump 
jump on register 1 NIL 
jump on register not NIL 
jump on register 1 equal to exp 
jump on register 1 not equal to exp 
define label 
jump to adr if exp is not of type type 
jump to adr if exp is of type type 
bind free lambda vars in alst currently in regs 
bind free prog vars in alst 
unbind free variables in alst 
store contents of reg (or NIL) in floc 

COMMENT the following c-macro must only change specific register 
being loaded: 

LOAD reg exp load exp into reg; 

COMMENT the following c-macros do not protect regs 1-MAXNARGS: 

LINK fn type nargs 
LINKE fn type nargs nw 

link to fn of type type with nargs args 
link to fn of type type with nargs args 

and exit removing fr~me of nw words; 

FLAG('(ALLOC DEALLOC ENTRY EXIT LOAD STORE LBL LINK 
LINKE JUt1P JUMPE JUHPN JUMPT JUMPNIL JUMPC 
JUMPNC LAMBIND PROGBIND FREERSTR), 

'MC); 

COMMENT variable types are: 

LOCAL 
GLOBAL 

allocated on stack and known only locally 
accessed via cell (GLOBAL name) known to 
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loader at load time 
accessed via cell (FLUID name) 
known to loader. This cell is rebound by LAMBINDi 
PROGBIND if variable used in lambda/prog list and 
restored by FREERSTR; 

COHMENT global flags used in this compiler: 

! * MODULE 

!*NOLINKE 
!*ORD 
!*PLAP 
!*R21 

indicates block compilation (a future extension of 
this compiler) 
if ON inhibits use of LINKE c-macro 
if ON forces left-to-right argument evaluation 
if ON causes LAP output to be printed 
if ON causes recursion removal where possible; 

GLOBAL '(!*MODULE !*NOLINKE !*ORD !*PLAP !*R21 !*SAVEDEF); 

COMMENT global variables used: 

DFPRINT! * 
ERFG!* 
MAXNARGS 

name of special definition process (or NIL) 
used by REDUCE to control error recovery 
maximum number of arguments permitted; 

GLOBAL '(DFPRINT!* ~~XNARGS); 

MAXNARGS := 15; %Standard LISP limit; 

COMMENT fluid variables used: 

ALSTS 
EXIT 
FLAGG 
FREELST 
GOLIST 
IREGS 
IREGS 1 
CODELIST 
CONDTAIL 
LLNGTH 
NAME 
FNAME 
NARG 
REGS 

REGS1 
LBLIST 
JMPLIST 
SLST 
STLST 
STOMAP 
SHITCH 

alist of fluid parameters 
label for *EXIT jump 
used in CO~1TST, and in FIXREST 
list of free variables with bindings 
storage map for jump labels 
initial register contents 
temporary placeholder for IREGS during branch compilation 
code being built 
simulated stack of position in the tail of a COND 
cell whose CAR is length of frame 
name of function being currently compiled 
name of function being currently compiled, set by COMPILE 
number of arguments in function 
known current contents of registers as an alist with 
elements of form «reg> • <contents» 

temporary placeholder for REGS during branch compilation 
1 ist of label word s 
list of locations in CODELIST of transfers 
association list for stores which have not yet been used 
list of active stores in function 
storage map for variables 
boolean expression value flag - keeps track of NULLs; 
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FLUID '(ALSTS EXIT FLAGG FREELST GOLIST IREGS IREGS1 CODELIST CONDTAIL 
LLNGTH .NAME FNAME!* NARG REGS REGS1 LBLIST JMPLIST SLST STLST 
STOMAP SWITCH); 

FLAG('(EXPR FEXPR MACRO) ,'COMPILE); 

COMMENT Function types to compile; 

SYMBOLIC PROCEDURE COMPILE X; 
BEGIN SCALAR EXP,FNAME; 

WHILE X DO 

END; 

«FNAME := CAR X; 
EXP := GETD FNAME; 
IF NULL EXP THEN LPRIM LIST(FNAME,'UNDEFINED) 

ELSE COMPD(FNAME,CAR EXP,CDR EXP); 
X : = CDR X» 

SYMBOLIC PROCEDURE COMPD(NAME,TYPE,EXP); 
BEGIN 

IF NOT FLAGP(TYPE,'COMPILE) 
THEN «LPRIM LIST("UNCOMPILABLE FUNCTION",NAME,"OF TYPE", 

TYPE) ; 
RETURN NIL»; 

IF NOT ATOM EXP 
THEN IF !*MODULE THEN MODCMP(NAHE,TYPE,EXP) 

ELSE IF DFPRINT!* 
THEN APPLY(DFPRINT!*, 

LIST IF TYPE EQ 'EXPR 
THEN 'DE • (NAME • CDR EXP) 

ELSE IF TYPE EQ 'FEXPR 
THEN 'DF • (NAME • CDR EXP) 

ELSE LIST('PUTD,MKQUOTE NAME, 
MKQUOTE TYPE, 
MKQUOTE EXP» 

ELSE BEGIN SCALAR X; 

RETURN NAME 

IF TYPE MEMQ '(EXPR FEXPR) 
THEN PUT(NAME,'CFNTYPE,LIST TYPE); 

X := 
LIST('ENTRY,NAME,TYPE,LENGTH CADR EXP) 

. COMPROC(EXP, 
IF TYPE MEMQ '(EXPR FEXPR) 

THEN NAME); 
IF !*PLAP THEN FOR EACH Y IN X DO PRINT Y; 
LAP X; 
%this is the entry point to the assembler. LAP 
%must remove any preexisting function definition; 
IF ex := GET(NAME,'CFNTYPE» 

END; 

AND EQCAR(GETD NAME,CAR X) 
THEN REMPROP(NAME,'CFNTYPE) 
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END; 

SYMBOLIC PROCEDURE COMPROC (EXP, NAHE) ; 
%compiles a function body, returning the generated LAP; 
BEGIN SCALAR CODELIST,FLAGG,IREGS,IREGS1,JMPLIST,LBLIST, 

LLNGTH, REGS, REGS 1 ,ALSTS, EXIT, SLST, STLST, STOMAP, 
CONDTAIL,FREELST, 
SWITCH; INTEGER NARG; 

LLNGTH := LIST 1; 
NARG := 0; 
EXIT := GENLEL(); 
STOMAP := '«NIL 1»; 
CODELIST := LIST ('ALLOC • LLNGTH); 
EXP := PASS1 EXP; 
IF LENGTH CADR EXP>MAXNARGS 

THEN LPRIE LIST( "TOO MANY ARGS FOR COMPILER IN", NAME); 
FOR EACH Z IN CADR EXP DO «FRAME Z; 

NARG := NARG + 1; 
IF NOT NONLOCAL Z 

THEN IREGS := 
NCONC(IREGS, 

LIST LIST(NARG,Z»; 
REGS := 

NCONC(REGS,LIST LIST(NARG,Z»»; 
IF NULL REGS THEN REGS := LIST (1 • NIL); 
ALSTS := FREEBIND(CADR EXP,T); 
PASS2 CADDR EXP; 
FREERSTR(ALSTS,O); 
PASS3(); 
RPLACA(LLNGTH,1 - CAR LLNGTH); 
RETURN CODELIST 

END; 

SYMBOLIC PROCEDURE NONLOCAL X; 
IF FLUIDP X THEN 'FLUID ELSE IF GLOBALP X THEN 'GLOBAL ELSE NIL; 

FLUID '( VBLS) ; 

SYMBOLIC PROCEDURE PASS1 EXP; PA1(EXP,NIL); 

STI1BOLIC PROCEDURE PA1(U,VBLS); 
BEGIN SCALAR X; 

RETURN IF ATOM U 
THEN IF CONSTANTP U OR U HEMQ '(NIL T) THEN MKQUOTE U 

ELSE IF U MEMQ VBLS THEN U 
ELSE IF GLOBALP U OR FLUIDP U THEN U 
ELSE «MKNONLOCAL U; U» 

ELSE IF NOT ATOM CAR U 
THEN PA1(CAR U,VBLS) • PALIS(CDR U,VBLS) 

ELSE IF (X := GETD CAR U) 
A~TI CAR X EQ 'MACRO 
AND NOT GET(CAR U, 'COBPFN) 
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THEN PA1(APPLY(CDR X,LIST U),VBLS) 
ELSE IF X := GET(CAR U,'CMACRO) 

THEN PA1(SUBLIS(PAIR(CADR X,CDR U),CADDR X),VBLS) 
ELSE IF CAR U EQ 'COND 

THEN 'COND 
• FOR EACH Z IN CDR U 

COLLECT LIST(PA1(CAR Z,VELS), 
PA1(MKPROGN CDR Z,VBLS» 

ELSE IF CAR U MEMQ '(GO QUOTE CODE) THEN U 
ELSE IF CAR U EQ 'LAMBDA 

THEN 'LAMBDA 
• LIST(CADR U,PA1(MKPROGN cnDR U, 

APPEND(CADR U,VELS») 
ELSE IF CAR U EQ 'FUNCTION 

THEN IF ATOM CADR U THEN MKFUNC CADR U 
ELSE MKFUNC COMPD(MKNAM NAME,'EXPR,CADR U) 

ELSE IF CAR U EQ 'PROG 
THEN 'PROG 

• (CADR U • PAPROG(CDDR U,APPEND(CADR U,VBLS») 
ELSE IF X := GET(CAR U, 'PA1FN) THEN APPLY(X,LIST(U,VBLS» 
ELSE IF CFNTYPE CAR U EQ 'FEXPR 

AND NOT GET(CAR U,'COMPFN) 
THEN LIST(CAR U,HKQUOTE CDR U) 

ELSE IF CAR U MEMQ VBLS OR FLUIDP CAR U 
THEN LIST('APPLY,CAR U,PALIST(CDR U,VBLS» 

ELSE CAR U • PALIS(CDR U,VBLS) 

SYMBOLIC PROCEDURE PALIS(U,VBLS); 
FOR EACH X IN U COLLECT PA1(X,VBLS); 

SYMBOLIC PROCEDURE PAPROG(U,VBLS); 
FOR EACH X IN U COLLECT IF ATOM X THEN X ELSE PA1(X,VBLS); 

SYMBOLIC PROCEDURE MKNONLOCAL U; 
«LPRIM LIST(U,"declared fluid"); FLUID LIST U; LIST('FLUID,U»>; 

SYMBOLIC PROCEDURE MKNAM U; 
%generates unique name for auxiliary function in U; 
INTERN COMPRESS APPEND(EXPLODE U,EXPLODE GENSYM(»; 

Sy}1BOLIC PROCEDURE MKPROGN U; 
IF NULL U OR CDR U THEN 'PROGN • U ELSE CAR U; 

UNFLUID '(VBLS); 

COMMENT CMACRO Definitions for some functions; 

COMMENT We do not expand CAAAAR and similar functions, since fewer 
instructions are generated without open coding; 

DEFLIST('«CAAR (LAMBDA (U) (CAR (CAR U»» 
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( CADR (LA~1BDA (U) (CAR (CDR U»» 
(CDAR (LAMBDA (U) (CDR (CAR U»» 
(CDDR (LAMEDA (U) (CDR (CDR U»» 
(CAAAR (LAHBDA (U) (CAR (CAR (CAR U»») 
( CAADR (LA~1BDA (U) (CAR (CAR (CDR U»») 
( CADAR (LAMBDA (U) (CAR (CDR (CAR U»))) 
( CADDR (LAMBDA (U) (CAR (CDR (CDR U»») 
( CDAAR (LAMBDA (U) (CDR (CAR (CAR U»») 
( CDADR (LAMBDA (U) (CDR (CAR (CDR U»») 
( CDDAR (LAMEDA (U) (CDR (CDR (CAR U»») 
(CDDDR (LAMEDA (U) (CDR (CDR (CDR U»») 
(NOT (LAMBDA (U) (NULL U»»,'CMACRO); 

SYMBOLIC PROCEDURE PASS2 EXP; COMVAL(EXP,O); 

SYMBOLIC PROCEDURE COMVAL(EXP,STATUS); 
%computes code for value of EXP; 
IF ANYREG(EXP,NIL) 

THEN IF STATUS>1 THEN NIL ELSE LREG1(EXP,STATUS) 
ELSE COMVAL1(EXP,STOMAP,STATUS); 

SYMBOLIC PROCEDURE COMVAL1(EXP,STOMAP,STATUS); 
BEGIN SCALAR X; 

IF ATOM EXP THEN IF STATUS<2 THEN LREG1(EXP,STATUS) ELSE NIL 
ELSE IF NOT ATOM CAR EXP 

THEN IF CAAR EXP EQ 'LAMBDA 
THEN COMPLY(CAR EXP,CDR EXP,STATUS) 

ELSE LPRIE LIST("INVALID FUNCTION",CAR EXP) 
ELSE IF X := GET(CAR EXP,'COMPFN) THEN APPLY(X,LIST(EXP,STATUS» 
ELSE IF !*R2I AND CAR EXP EQ NAME AND STATUS=O AND NULL FREELST 

THEN COMREC(EXP,STATUS) 
ELSE IF CAR EXP EQ 'LAMBDA 

THEN LPRIE LIST( "INVALID USE OF LAMBDA IN FUNCTION", NAME) 
ELSE IF CAR EXP EQ 'CODE THEN ATTACH EXP 
ELSE CALL(CAR EXP,CDR EXP,STATUS); 

RETURN NIL 
END; 

SYMBOLIC PROCEDURE ANYREG(U,V); 
%determines if U can be loaded in any register; 
%!*ORD = T means force correct order, unless safe; 
IF EQCAR(U, 'QUOTE) THEN T 

ELSE (ATOM U OR GET(CAR U,'ANYREG) AND ANYREG(CADR U,NIL» 
AND (NULL !*ORD OR A~~REGL V); 

STI1BOLIC PROCEDURE ANYREGL U; 
NULL U OR ANYREG(CAR U,NIL) AND ANYREGL CDR U; 

SYMBOLIC PROCEDURE CALL(FN,ARGS,STATUS); 
CALL1(FN,COMLIS ARGS,STATUS); 

SYMBOLIC PROCEDURE CALL1(FN,ARGS,STATUS); 
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%ARGS is reversed list of compiled arguments of FN; 
BEGIN INTEGER ARGNO; 

ARGNO := LENGTH ARGS; 
LOADARGS(ARGS,STATUS); 
ATTACH LIST('LINK,FN,CFNTYPE FN,ARGNO); 
IF FLAGP(FN,'ONEREG) THEN REGS := (1 • NIL) CDR REGS 

ELSE IF FLAGP(FN,'TWOREG) 
THEN REGS := (1 • NIL) • DELASC(2,CDR REGS) 

ELSE REGS := LIST (1 • NIL) 
END; 

SYMBOLIC PROCEDURE DELASC(U,V); 
IF NULL V THEN NIL 

ELSE IF U=CAAR V THEN CDR V 
ELSE CAR V • DELASC(U,CDR V); 

SYMBOLIC PROCEDURE COMLIS EXP; 
%returns reversed list of compiled arguments; 
BEGIN SCALAR ACUSED,Y; 

WHILE EXP DO 
«IF ANYREG(CAR EXP,CDR EXP) THEN Y := CAR EXP • Y 

ELSE «IF ACUSED THEN STORE1(); 
COMVAL1(CAR EXP,STOMAP, 1); 
ACUSED := GENSYM(); 
REGS := (1 • (ACUSED • CDAR REGS» • CDR REGS; 
Y := ACUSED • Y»; 

EXP := CDR EXP»; 
RETURN Y 

END; 

SYMBOLIC PROCEDURE STORE1; %Marks contents of register 1 for storage; 
BEGIN SCALAR X; 

X := CADAR REGS; 
IF NULL X OR EQCAR(X,'QUOTE) THEN RETURN NIL 

ELSE IF NOT ATSOC(X,STOMAP) THEN FRAME X; 
STOREO(X, 1) 

END; 

SYMBOLIC PROCEDURE COMPLY(FN,ARGS,STATUS); 
BEGIN SCALAR ALSTS,VARS; INTEGER N,l; 

VARS : = CADR FN; 
ARGS := COMLlS ARGS; 
N := LENGTH ARGS; 
IF N>HAXNARGS THEN LPRIE LIST ("TOO MANY LAMBDA ARGS IN ", NAME) ; 
LOADARGS(ARGS, 1); 
ARGS := REMVARL VARS; % The stores that were protected; 
I := 1; 
FOR EACH V IN VARS DO «FRAME V; 

REGS := REPASC(I,V,REGS); 
I : = I + 1»; 

ALSTS := FREEBIND(VARS,T); %Old fluid values saved; 
I : = 1; 
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FOR EACH V IN VARS DO «IF NOT NONLOCAL V THEN STOREO(V,I); 

COMVAL(CADDR FN,STATUS); 
FREERSTR(ALSTS,STATUS); 
RSTVARL(VARS,ARGS) 

END; 

I : = I + 1»; 

STI1BOLIC PROCEDURE COMREC(EXP,STATUS); 
BEGIN SCALAR X,Z; 

LOADARGS (COHLIS CDR EXP, STATUS) ; 
Z := CODELIST; 
IF NULL CDR Z 

THEN LPRIE LIST("CIRCULAR DEFINITION FOR",CAR EXP); 
WHILE CDDR Z DO Z := CDR Z; 
IF CAAR Z EQ 'LBL THEN X := CDAR Z 

ELSE «x := GENLBL(); RPLACD(Z,LIST('LBL • X,CADR Z»»; 
ATTJHP X 

END; 

SYMBOLIC PROCEDURE LOADARGS(ARGS,STATUS); 
BEGIN INTEGER N; 

N := LENGTH ARGS; 
IF N>HAXNARGS THEN LPRIE LIST ("TOO MANY ARGUMENTS IN", NAME) ; 
IF STATUS>O THEN CLRREGS(); 
WHILE ARGS DO 

END; 

«LREG(N,CAR ARGS,CDR ARGS,STATUS); 
N:= N - 1; 
ARGS := CDR ARGS» 

SYMBOLIC PROCEDURE LOCATE X; 
BEGIN SCALAR Y,VTYPE; 

IF EQCAR(X,'QUOTE) THEN RETURN LIST X 
ELSE IF Y := RASSOC(X,REGS) THEN RETURN LIST CAR Y 
ELSE IF NOT ATOM X THEN RETURN LIST (CAR X • LOCATE CADR X) 
ELSE IF VTYPE := NONLOCAL X THEN RETURN LIST LIST(VTYPE,X); 

WHILE Y := ATSOC(X,SLST) DO SLST := DELETE(Y,SLST); 
RETURN IF Y := ATSOC(XtSTOMAP) THEN CDR Y ELSE LIST MKNONLOCAL X 

END; 

SYMBOLIC PROCEDURE LREG(REG,U,V,STATUS); 
BEGIN SCALAR X,Y; 

IF (X := ASSOC(REG,REGS» AND U MEMBER CDR X THEN RETURN NIL 
ELSE IF (Y := ASSOC(REG,IREGS» 

AND (STATUS>O OR MEMLIS(CADR Y,V» 
THEN «STOREO(CADR Y,REG); IREGS := DELETE(Y,IREGS»>; 

ATTACH ('LOAD. (REG. LOCATE U»; 
REGS := REPASC(REG,U,REGS) 

END; 

SYMBOLIC PROCEDURE LREG1(X,STATUS); LREG(1,X,NIL,STATUS); 
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SYMBOLIC PROCEDURE PALIST(U,VBLS); 'LIST. PALIS(U,VBLS); 

COMMENT Functions for Handling Non-local Variables; 

SYMBOLIC PROCEDURE FREEBIND(VARS,LAMBP); 
%bind FLUID variables in lambda or prog lists; 
%LAMBP is true for LAMBDA, false for PROG; 
BEGIN SCALAR FALST,FREGS,X,Y; INTEGER I; 

I := 1; 
FOR EACH X IN VARS DO «IF FLUIDP X 

THEN «FALST := 
(X • GETFFRM X) • FALST; 

FREGS := I • FREGS» 
ELSE IF GLOBALP X 

THEN LPRIE LIST("CANNOT BIND GLOBAL ", 
X); 

I := I + 1»; 
IF NULL FALST THEN RETURN NIL; 
IF LAMBP THEN ATTACH LIST('LAMBIND,FREGS,FALST) 

ELSE ATTACH LIST('PROGBIND,FALST); 
RETURN FALST 

END; 

SYMBOLIC PROCEDURE FREERSTR(ALSTS,STATUS); %restores FLUID variables; 
IF ALSTS THEN ATTACH LIST('FREERSTR,ALSTS); 

SYMBOLIC PROCEDURE ATTACH U; CODELIST := U • CODELIST; 

SYMBOLIC PROCEDURE STOREO(U,REG); 
%marks expression U in register REG for storage; 
BEGIN SCALAR X; 

X := 'STORE. (REG. GETFRM U); 
STLST := X • STLST; 
ATTACH X; 
CLRSTR U; 
IF ATOM U THEN SLST := (U • CODELIST) • SLST 

END; 

SYMBOLIC PROCEDURE CLRSTR VAR; %removes unneeded stores; 
BEGIN SCALAR X; 

IF CONDTAIL THEN RETURN NIL; 
X := ATSOC(VAR,SLST); 
IF NULL X THEN RETURN NIL; 
STLST := DELEQ(CADR X,STLST); 
SLST := DELEQ(X,SLST); 
RPLACA(CADR X,'NOOP) 

END; 

COMMENT Functions for general tests; 

STI4BOLIC PROCEDURE COMTST(EXP,LABL); 
%compiles boolean expression EXP. 
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%If EXP has the same value as SWITCH then branch to LABL, 
~otherwise fall through; 
%REGS/IREGS are active registers for fall through, 
%REGS1/IREGS1 for branch; 
BEGIN SCALAR X; 

WHILE EQCAR(EXP,'NULL) DO 
«SWITCH := NOT SWITCH; EXP := CADR EXP»; 

IF NOT ATOM EXP AND ATOM CAR EXP AND (X := GET(CAR EXP,'COMTST» 
THEN APPLY(X,LIST(EXP,LABL» 

ELSE «IF EXP='(QUOTE T) 
THEN IF SWITCH THEN ATTJMP LABL ELSE FLAGG := T 

ELSE «COMVAL(EXP, 1); 
ATTACH LIST(IF SWITCH THEN 'JUMPT 

ELSE 'JUMPNIL,CAR LABL); 
ADDJMP CODELIST»; 

REGS 1 : = REGS; 
IREGS1 := IREGS»; 

IF EQCAR(CAR CODELIST,'JUMPT) 

END; 

THEN REGS := (1 • ('(QUOTE NIL) • CDAR REGS» • CDR REGS 
ELSE IF EQCAR(CAR CODELIST,'JUMPNIL) 

THEN REGS1 := (1 • ('(QUOTE NIL) • CDAR REGS1» • CDR REGS1 

COMMENT Specific Function Open Coding; 

SYHBOLIC PROCEDURE CONANDOR (EXP, STATUS); 
BEGIN SCALAR FN,LABL,IREGSL,REGSL; 

FN := CAR EXP EQ 'AND; 
LABL := GENLBL(); 
IF STATUS>1 

THEN BEGIN SCALAR REGS1; 
TSTANDOR(EXP,LABL); 
REGS := RMERGE2(REGS,REGS1) 

END 
. ELSE BEGIN 

IF STATUS>O THEN CLRREGS(); 
EXP : = CDR EXP; 
l'IHILE EXP DO 

«COMVAL(CAR EXP,IF CDR EXP THEN 1 ELSE STATUS); 
%to allow for recursion on last entry; 

IREGSL := IREGS • IREGSL; 
REGSL := REGS • REGSL; 
IF CDR EXP 

THEN «ATTACH LIST(IF FN THEN 'JUMPNIL 
ELSE 'JUMPT,CAR LABL); 

ADDJMP CODELIST»; 
EXP := CDR EXP»; 

IREGS := RMERGE IREGSL; 
REGS := RMERGE REGSL 

END; 
ATTLBL LABL 

END; 
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SYMBOLIC PROCEDURE TSTANDOR(EXP,LABL); 
BEGIN SCALAR FLG,FLG1,FN,LAB2,REGSL,REGS1L, 

TAILP; 
%FLG is initial switch condition; 
%FN is appropriate A~~/OR case; 
%FLG1 determines appropriate switching state; 
FLG : = SWITCH; 
SWITCH : = NIL; 
FN := CAR EXP EQ 'AND; 
F LG 1 : = F LG EQ F N ; 
EXP : = CDR EXP; 
LAB2 := GENLBL(); 
CLRREGS() ; 
WHILE EXP DO 

«SvIITCH := NIL; 
IF NULL CDR EXP AND FLG1 

THEN «IF FN THEN SWITCH := T; 
COMTST(CAR EXP,LABL); 
REGSL := REGS • REGSL; 
REGS1L := REGS1 • REGS1L» 

ELSE «IF NOT FN THEN SWITCH := T; 
IF FLG1 

THEN «COHTST( CAR EXP, LAB2); 
REGSL := REGS1 • REGSL; 
REGS1L := REGS • REGS1L» 

ELSE «COMTST(CAR EXP,LABL); 
REGSL := REGS. REGSL; 
REGS1L := REGS1 • REGS1L»»; 

IF NULL TAILP 
THEN «CONDTAIL := NIL. CONDTAIL; TAILP := T»; 

EXP := CDR EXP»; 
ATTLBL LAB2; 
REGS := IF NOT FLG1 THEN CAR REGSL ELSE RMERGE REGSL; 
REGS 1 : = IF FLG 1 THEN CAR REGS 1L ELSE Rt1ERGE REGS 1L ; 
IF TAILP THEN CONDTAIL := CDR CONDTAIL; 
SWITCH : = FLG 

END; 

PUT('AND, 'COMPFN, 'COMANDOR); 

PUT('OR,'COMPFN,'COMANDOR); 

SYMBOLIC PROCEDURE CONCOND(EXP,STATUS); 
%compiles conditional expressions; 
%registers REGS and IREGS are set for dropping through, 
%REGS1 and IREGS1 are set for a branch; 
BEGIN SCALAR IREGS1,REGS1,FLAGG,SWITCH,LAB1,LAE2,REGSL,IREGSL, 

TAILP; 
EXP : = CDR EXP; 
LAB1 := GENLBL(); 
IF STATUS>O THEN CLRREGS(); 
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FOR EACH X IN EXP DO «LAB2 := GENLBL(); 
SWITCH : = NIL; 
IF CDR X THEN COHTST( CAR X, LAB2) 

1update CONDTAIL; 
ELSE «COMVAL{CAR X,1); 

ATTACH LIST('JUMPNIL,CAR LAB2); 
ADDJHP CODELIST; 
IREGS 1 : = IREGS; 
REGS 1 : = (1 • '( QUOTE NIL) • 

CDAR REGS) • CDR REGS»; 
IF NULL TAILP 

THEN «CONDTAIL := NIL. CONDTAIL; 
TAILP := T»; 

COMVAL(CADR X,STATUS); 
1 Branch code; 
%test if need jump to LAB1; 

IF NOT TRANSFERP CAR CODELIST 
THEN «ATTJMP LAB1; 

IREGSL := IREGS • IREGSL; 
REGSL := REGS. REGSL»; 

RE GS : = REGS 1 ; 
%restore register status for next iteration; 

IREGS : = IREGS 1 ; 
IREGS 1 : = NIL; 

%we do not need to set REGS 1 to NIL since all COHTSTs 
%are required to set it; 

ATTLBL LAB2»; 
IF NULL FLAGG AND STATUS<2 

THEN «LREG1('(QUOTE NIL),STATUS); 
IREGS := RMERGE1{IREGS,IREGSL); 
REGS := RMERGE1(REGS,REGSL»> 

ELSE IF REGSL 
THEN «IREGS := RMERGE1(IREGS,IREGSL); 

REGS := RMERGE1(REGS,REGSL»>; 
ATTLBL LAB 1 ; 
IF TAILP THEN CONDTAIL := CDR CONDTAIL 

END; 

SYMBOLIC PROCEDURE Rt1ERGE U; 
IF NULL U THEN NIL ELSE RMERGE1{CAR U,CDR U); 

SYMBOLIC PROCEDURE RMERGE1(U,V); 
IF NULL V THEN U ELSE RMERGE1(RMERGE2(U,CAR V) ,CDR V); 

STI1BOLIC PROCEDURE RMERGE2(U, V); 
IF NULL U OR NULL V THEN NIL 

ELSE (LAMBDA X; 
IF X 

THEN (CAAR U • XN(CDAR U,CDR X» 
• RMERGE2(CDR U,DELETE(X,V» 

ELSE RMERGE2(CDR U,V» 
ASSOC(CAAR U,V); 
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FLAG( t (JUMP LINKE ERROR),' TRANSFER) ; 

PUT ( t COND, t COMPFN, 'COMCOND) ; 

SYMBOLIC PROCEDURE COHCONS(EXP, STATUS); 
IF NULL (EXP := CDR EXP) OR NULL CDR EXP OR CDDR EXP 

THEN LPRIE "MISMATCH OF ARGUMENTS" 
ELSE IF CADR EXP='(QUOTE NIL) 

THEN CALL('NCONS,LIST CAR EXP,STATUS) 
ELSE IF EQCAR(RASSOC(CADR EXP,REGS),1) 

AND ANYREG(CAR EXP,NIL) 
THEN CALL1('XCONS,COMLIS REVERSE EXP,STATUS) 

ELSE IF ANYREG(CADR EXP,NIL) THEN CALL('CONS,EXP,STATUS) 
ELSE CALL1('XCONS,REVERSIP COMLIS EXP,STATUS); 

PUT ( 'CONS, 'COMPFN, ' COMCONS) ; 

SYMBOLIC PROCEDURE COMGO(EXP,STATUS); 
< <CLRREGS () ; 

IF STATUS>2 THEN «ATTJMP GETLBL CADR EXP; SLST := NIL» 
ELSE LPRIE LIST(EXP," INVALID"»>; 

PUT( 'GO, 'COMPFN, 'COMGO); 

sn4BOLIC PROCEDURE COMLIST(EXP,STATUS); 
%we only support explicit functions up to 5 arguments here; 
BEGIN SCALAR M,N,FN; 

EXP : = CDR EXP; 
M := MIN{MAXNARGS,5); 
N := LENGTH EXP; 
IF N=O THEN LREG1{'(QUOTE NIL),STATUS) 

END; 

ELSE IF N>M THEN COMVAL(COMLIST1 EXP,STATUS) 
ELSE CALL(IF N=1 THEN 'NCONS 

ELSE IF N=2 THEN 'LIST2 
ELSE IF N=3 THEN 'LIST3 
ELSE IF N=4 THEN 'LIST4 
ELSE 'LIST5,EXP,STATUS) 

SYMBOLIC PROCEDURE LIST2(U,V); U • (V • NIL); 

SYMBOLIC PROCEDURE LIST3(U,V,W); U • (V • (W • NIL»; 

SYNBOLIC PROCEDURE LIST4(U,V,vl,X); U • (V • (vi. (X • NIL»); 

STI1BOLIC PROCEDURE LIST5(U,V,W,X,Y); U • (V • (W • (X • (Y • NIL»»; 

SYMBOLIC PROCEDURE COMLIST1 EXP; 
IF NULL EXP THEN '(QUOTE NIL) 

ELSE LIST('CONS,CAR EXP, 'LIST. CDR EXP); 



PUT ( 'LIST. 'COMPFN, 'COMLIST); 

SYMBOLIC PROCEDURE PAMAP(U,VARS); 
IF EQCAR(CADDR U,'FUNCTION) 

THEN (LAMBDA X; 
LIST(CAR U, 
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PA1(CADR U,VARS), 
HKQUOTE (IF ATOM X THEN X ELSE PA 1 (X, VARS) ) ) ) 

CADR CADDR U 
ELSE CAR U • PALIS(CDR U,VARS); 

PUT ( , MA P, 'P A 1 F N, 'P AMA P) ; 

PUT ( 'MAPC, 'PA 1FN, 'PAMAP); 

PUT('MAPCAN, 'PA1FN, 'PAMAP); 

PUT ( 'MA PC AR, 'P A 1 F N, 'P AMA P) ; 

PUT ( 'MA PC ON, 'P A 1 F N, , P AMA P) ; 

PUT('MAPLIST, 'PA1FN, 'PAMAP); 

SYMBOLIC PROCEDURE COMMAP(EXP,STATUS); 
BEGIN SCALAR BODY,FN,LAB1,LAB2,LAB3,TMP,MTYPE,RESULT,SLST1,VAR,X; __ 

BODY := CADR EXP; 
FN : = CADDR EXP; 
LAB1 := GENLBL(); 
LAB2 := GENLBL(); 
MTYPE := 

IF CAR EXP MEMQ '(MAPCAR MAPLIST) THEN 'CONS 
ELSE IF CAR EXP MEMQ '(MAPCAN MAPCON) 

THEN «LAB3 := GENLBL(); 'NCOHC» 
ELSE NIL; 

CLRREGS() ; 
IF MTYPE THEN «FRAME (RESULT := GENSYM(»; 

IF NULL LAB3 THEN STOREO(RESULT,NIL»>; 
FRAME (VAR := GENSYM(»; 
COMVAL( BODY, 1); 
REGS := LIST LIST(',VAR); 
IF LAB3 THEN «STOREO(VAR,1); FRAME (TMP := GENSYH(»; 

COMVAL('(NCONS 'NIL),1); 
STOREO(RESULT,1); STOREO(TMP,1); 
LREG1(VAR,1»>; 

ATT JMP LAB2; 
ATTLBL LAB 1 ; 
STOREO(VAR, 1); 
X := IF CAR EXP MEMQ '(MAP MAPCON MAPLIST) THEN VAR 

ELSE LIST('CAR,VAR); 
IF EQCAR(FN,'QUOTE) THEN FN := CADR FN; 
SLST1 := SLST; %to allow for store in function body; 
COMVAL(LIST(FN,X) ,IF MTYPE THEN 1 ELSE 3); 
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IF MTYPE 
THEN «IF LAB3 THEN «ATTACH LIST('JUMPNIL,CAR LAB3); 

ADDJMP CODELIST; 
ATTACH '(LOAD 2 1); 
LREG 1 (TMP, 1) ; 
STOREO(TMP, 2); 
ATTACH '(LINK NCONC EXPR 2); 
ATTLBL LAB3» 

ELSE «LREG(2,RESULT,NIL,1); 
ATTACH '(LINK CONS EXPR 2); 
STOREO(RESULT,1»>; 

REGS := LIST (1 • NIL»>; 
SLST := XN(SLST,SLST1); 
COt1VAL(LIST( 'CDR, VAR), 1); 
ATTLBL LAB2; 
ATTACH LIST('JUMPT,CAR LAB1); 
ADDJMP CODELIST; 
IF MTYPE 

THEN COMVAL(LIST(IF LAB3 THEN 'CDR ELSE 'REVERSIP,RESULT),1) 
ELSE REGS := LIST LIST(1,MKQUOTE NIL) 

END; 

• 
STI1BOLIC PROCEDURE XN(U,V); 

IF NULL U THEN NIL 
ELSE IF CAR U MEMBER V THEN CAR U • XN(CDR U,DELETE(CAR U,V» 
ELSE XN(CDR U,V); 

PUT ( , MAP, 'COMPFN, 'COMMAP); 

PUT( 'MAPC, 'COMPFN, 'COMMAP); 

PUT ( 'MAPCAN, 'COMPFN, 'COMMAP) ; 

PUT( 'MAPCAR, 'COMPFN, 'COMMAP); 

PUT ( 'MAPCON, 'COMPFN, 'COMMAP); 

PUT ( 'MAPLIST , 'COMPFN, 'COtv1MAP) ; 

STI4BOLIC PROCEDURE COMPROG(EXP,STATUS); %compiles program blocks; 
BEGIN SCALAR ALSTS,GOLlST,PG,PROGLIS,EXIT; INTEGER I; 

PROGLlS := CADR EXP; 
EXP : = CDDR EXP; 
EXIT := GENLBL(); 
PG := REMVARL PROGLlS; %protect prog variables; 
FOR EACH X IN PROGLlS DO FRAME X; 
ALSTS := FREEBIND(PROGLIS,NIL); 
FOR EACH X IN PROGLlS DO IF NOT NONLOCAL X THEN STOREO(X,NIL); 
FOR EACH X IN EXP DO IF ATOM X 

THEN GOLIST := (X • GENLBL(» • GOLlST; 
WHILE EXP DO 

«IF ATOM CAR EXP 
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THEN «CLRREGS(); 
ATTLBL GETLEL CAR EXP; 
REGS := LIST (1 • NIL»> 

ELSE COMVAL(CAR EXP,IF STATUS>2 THEN 4 ELSE 3); 
IF NULL CDR EXP 

AND STATUS<2 
AND (ATOH CAR EXP OR NOT CAAR EXP HEMQ '( GO RETURN» 

THEN EXP := LIST '(RETURN (QUOTE NIL» 
ELSE EXP := CDR EXP»; 

ATTLBL EXIT; 
IF CDR FINDLBL EXIT THEN REGS := LIST (1 • NIL); 
FREERSTR(ALSTS,STATUS); 
RSTVARL(PROGLIS,PG) 

END; 

PUT ( 'PROG, ' COMPFN, 'COMPROG) ; 

SYMBOLIC PROCEDURE REMVARL VARS; 
FOR EACH X IN VARS COLLECT REMVAR X; 

SYMBOLIC PROCEDURE REMVAR X; 
%removes references to variable X from IREGS and REGS 
%and protects SLST; 
BEGIN 

FOR EACH Y IN IREGS DO IF X EQ CADR Y 
THEN «STOREO(CADR Y,CAR Y); 

IREGS := DELETE(Y,IREGS»>; 
FOR EACH Y IN REGS DO WHILE X MEMBER CDR Y DO 

RPLACD(Y,DELEQ(X,CDR Y»; 
RETURN PROTECT X 

END; 

SYMBOLIC PROCEDURE PROTECT U; 
BEGIN SCALAR X; 

IF X := ATSOC(U,SLST) THEN SLST := DELEQ(X,SLST); 
RETURN X 

END; 

SYMBOLIC PROCEDURE RSTVARL(VARS,LST); 
WHILE VARS DO 

«RSTVAR(CAR VARS,CAR LST); VARS := CDR VARS; LST := CDR LST»; 

SYMBOLIC PROCEDURE RSTVAR(VAR,VAL); 
BEGIN 

FOR EACH X IN IREGS DO IF VAR EQ CADR X 
THEN «STOREO(CADR X,CAR X); 

IREGS := DELETE(X,IREGS»>; 
FOR EACH X IN REGS DO WHILE VAR MEMBER CDR X DO 

RPLACD(X,DELEQ(VAR,CDR X»; 
CLRSTR VAR; 
UNPROTECT VAL 

END; 
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STI1BOLIC PROCEDURE UN PROTECT VAL; %restores VAL to SLST; 
IF VAL THEN SLST := VAL. SLST; 

SYMBOLIC PROCEDURE COMPROGN(EXP,STATUS); 
EEGIN 

EXP : = CDR EXP; 
WHILE CDR EXP DO 

«COMVAL(CAR EXP,IF STATUS<2 THEN 2 ELSE STATUS); 
EXP := CDR EXP»; 

CO~1VAL( CAR EXP, STATUS) 
END; 

PUT('PROG2, 'COMPFN, 'COMPROGN); 

PUT ( 'PROGN, 'COMPFN, 'COMPROGN); 

SYMBOLIC PROCEDURE COMRETURN(EXP,STATUS); 
«IF STATUS<4 OR NOT ANYREG(CADR EXP,NIL) 

THEN LREG1(CAR COMLIS LIST CADR EXP,STATUS); 
ATT JMP EXIT»; 

PUT('RETURN, 'COMPFN, 'COMRETURN); 

STI4BOLIC PROCEDURE CCMSETQ(EXP,STATUS); 
BEGIN SCALAR X; 

EXP := CDR EXP; 
IF STATUS>1 AND (NULL CADR EXP OR CADR EXP=' (QUOTE NIL» 

THEN STORE2(CAR EXP,NIL) 

END; 

ELSE «COMVAL(CADR EXP,1); 
STORE2(CAR EXP,1); 
IF X := RASSOC(CAR EXP,IREGS) 

THEN IREGS := DELETE(X,IREGS); 
REGS := (1 • (CAR EXP • CDAR REGS» • CDR REGS» 

SYMBOLIC PROCEDURE REMSETVAR(U,V); 
%removes references to SETQ variable U from regs list V; 
IF NULL V THEN NIL 

ELSE (CAAR V • REMS1(U,CDAR V» • REMSETVAR(U,CDR V); 

SYMBOLIC PROCEDURE REMS1(U,V); 
%removes references to SETQ variable U from list V; 
IF NULL V THEN NIL 

ELSE IF SHEHQ(U,CAR V) THEN REMS1(U,CDR V) 
ELSE CAR V • REMS1(U,CDR V); 

SYMBOLIC PROCEDURE SMEMQ(U,V); 
%true if atom U is a member of V at any level (excluding 
%quoted expressions); 
IF ATOH V THEN U EQ V 

ELSE IF CAR V EQ 'QUOTE THEN NIL 
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ELSE SMEMQ(U,CAR V) OR SMEMQ(U,CDR V); 

SYMBOLIC PROCEDURE STORE2(U,V); 
BEGIN SCALAR VTYPE; 

REGS := REMSETVAR(U,REGS); 
IF VTYPE := NONLOCAL U 

END; 

THEN ATTACH LIST('STORE,V,LIST(VTYPE,U» 
ELSE IF NOT ATSOC(U,STOMAP) 

THEN ATTACH LIST('STORE,V,MKNONLOCAL U) 
ELSE STOREO(U,V) 

PUT ( 'SETQ, 'COMPFN, 'COMSETQ) ; 

COMMENT Specific Test Open Coding; 

PUT('AND, 'COMTST,'TSTANDOR); 

PUT('OR,'COMTST,'TSTANDOR); 

SYMBOLIC PROCEDURE COMEQ(EXP,LABL); 
BEGIN SCALAR U,V,W; 

U : = CADR EXP; 
V : = CADDR EXP; 
IF U MEMBER CDAR REGS THEN W := COMEQ1(V,U) 

ELSE IF V MEHBER CDAR REGS THEN W : = COMEQ1 (U, V) 
ELSE IF ANYREG(V,NIL) THEN «COMVAL(U,1); W := LOCATE V» 
ELSE IF ANYREG(U,LIST V) 

THEN «COMVAL(V,1); W := LOCATE U» 
ELSE «U := COMLIS CDR EXP; W := LOCATE CADR U»; 

ATTACH «IF SWITCH THEN 'JUMPE ELSE 'JUMPN) 
• (CAR LABL • W»; 

IREGS1 := IREGS; 
REGS 1 : = REGS; 
ADDJMP CODELIST 

END; 

SYMBOLIC PROCEDURE COMEQ1(U,V); 
IF ANYREG(U,LIST V) THEN LOCATE U 

ELSE «COMVAL(U,1); LOCATE V»; 

PUT('EQ, 'CCMTST,'COMEQ); 

SYMBOLIC PROCEDURE TESTFN(EXP,LABL); 
%generates c-macros JUMPC and JUMPNC; 
BEGIN SCALAR X; 

IF NOT (X := RASSOC(CADR EXP,REGS» THEN COMVAL(CADR EXP,1); 
CLRREGS (); 
ATTACH LIST(IF SWITCH THEN 'JUMPC ELSE 'JU~~PNC, 

CAR LABL, 
IF X THEN CAR X ELSE 1,CAR EXP); 

REGS 1 : = REGS; 



ADDJHP CODELIST 
END; 

COt-lMENT Support Functions; 

SYMBOLIC PROCEDURE MEMLIS(U,V); 
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V AND (MEMB(U,CAR V) OR MEMLIS(U,CDR V»; 

SYMBOLIC PROCEDURE MEMB(U,V); 
IF ATOM V THEN U EQ V ELSE MEMB(U,CADR V); 

SYMBOLIC PROCEDURE RASSOC(U,V); 
IF NULL V THEN NIL 

ELSE IF U MEMBER CDAR V THEN CAR V 
ELSE RASSOC(U,CDR V); 

SYMBOLIC PROCEDURE REPASC(REG,U,V); 
IF NULL V THEN LIST LIST(REG,U) 

ELSE IF REG=CAAR V THEN LIST(REG,U) • CDR V 
ELSE CAR V • REPASC(REG,U,CDR V); 

SYMBOLIC PROCEDURE CLRREGS; %store deferred values in IREGS; 
WHILE IREGS DO 

«STOREO(CADAR IREGS,CAAR IREGS); IREGS := CDR IREGS»; 

SYMBOLIC PROCEDURE CFNTYPE FN; 
BEGIN SCALAR X; 

RETURN IF X := GET(FN,'CFNTYPE) THEN CAR X 
ELSE IF X := GETD FN THEN CAR X 
ELSE 'EXPR 

END; 

SYMBOLIC PROCEDURE GENLBL; 
BEGIN SCALAR L; 

L := GENSYM(); 
LBLIST := LIST L • LBLIST; 
RETURN LIST L 

END; 

S~1BOLIC PROCEDURE GETLBL LABL; 
BEGIN SCALAR X; 

X := ATSOC(LABL,GOLIST); 
IF NULL X THEN LPRIE LIST(LABL," - MISSING LABEL _H); 
RETURN CDR X 

END; 

SYMBOLIC PROCEDURE FINDLBL LBLST; ASSOC(CAR LBLST,LBLIST); 

STI4EOLIC PROCEDURE RECHAIN(OLBL,NLBL); 
% Fix OLBL to now point at NLBL; 
BEGIN SCAL~R X,Y,USES; 

X := FINDLBL OLBL; 
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Y := FINDLBL NLBL; 
RPLACA(OLBL,CAR NLBL); % FIX L VAR; 
USES : = CDR X; % OLD USES; 
RPLACD(X, NIL); 
RPLACD(Y,APPEND(USES,CDR Y»; 
FOR EACH X IN USES DO RPLACA(CDR X,CAR NLBL) 

END; 

SYMBOLIC PROCEDURE MOVEUP U; 
IF CAADR U EQ 'JUMP 

THEN «JMPLIST := DELEQ(CDR U,JMPLIST); 
R PLA CW ( U , CDR U ) ; 
JMPLIST : = U • JHPLIST» 

ELSE RPLACW(U,CDR U); 

SYMBOLIC PROCEDURE ATTLBL LBL; 
IF CAAR CODELIST EQ 'LBL THEN RECHAIN(LBL,CDAR CODELIST) 

ELSE ATTACH ('LBL • LBL); 

SYMBOLIC PROCEDURE ATTJMP LBL; 
BEGIN 

IF CAAR CODELIST EQ 'LBL 
THEN «RECHAIN(CDAR CODELIST,LBL); 

CODELIST := CDR CODELIST»; 
IF TRANSFERP CAR CODELIST THEN RETURN NIL; 
ATTACH ('JUMP. LBL); 
ADDJMP CODELIST 

END; 

SYMBOLIC PROCEDURE TRANSFERP X; 
FLAGP(IF CAR X EQ 'LINK THEN CADR X ELSE CAR X,'TRANSFER); 

SYMBOLIC PROCEDURE ADDJMP CLIST; 
BEGIN SCALAR X; 

X := FINDLBL CDAR CLIST; 
RPLACD(X,CAR CLIST • CDR X); 
JMPLIST := CLIST • JMPLIST 

END; 

SYMBOLIC PROCEDURE REMJMP CLIST; 
BEGIN SCALAR X; 

X := FINDLBL CDAR CLIST; 
RPLACD(X,DELEQ(CAR CLIST,CDR X»; 
JMPLIST := DELEQ(CLIST,JMPLIST); 
MOVEUP CLIST 

END; 

SYMBOLIC PROCEDURE DELEQ(U,V); 
IF NULL V THEN NIL 

ELSE IF U EQ CAR V THEN CDR V 
ELSE CAR V • DELEQ(U,CDR V); 



------------------------------------~------
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SYMBOLIC PROCEDURE FRAME U; %allocates space for U in frame; 
BEGIN SCALAR Z-; 

STOMAP := LIST(U,Z := CADAR STOMAP - 1) . STOMAP; 
IF Z(CAR LLNGTH THEN RPLACA(LLNGTH,Z) 

END; 

SYHBOLIC PROCEDURE GETFRM U; 
(LAMBDA X; 

IF X THEN CDR X ELSE LPRIE LIST( "COMPILER ERROR: LOST VAR" t U» 
ATSOC(U, STOMAP); 

SYMBOLIC PROCEDURE GETFFRM U; 
BEGIN SCALAR X; X := GETFRM U; FREELST := X • FREELST; RETURN X 
END; 

COMMENT Post Code Generation Fixups; 

SYMBOLIC PROCEDURE PASS3; 
BEGIN SCALAR FLAGG; %remove spurious stores; 

FOR EACH J IN SLST DO «STLST := DELEQ(CADR J,STLST); 
RPLACA(CADR J,'NOOP»>; 

FIXCHAINS () ; 
FIXLINKS(); 
FIXFRM() ; 
ATTLBL EXIT; 
IF FLAGG 

THEN «IF NOT !*NOLINKE 
AND CAAR CODELIST EQ 'LBL 
AND CAADR CODELIST EQ 'LINKE 

THEN RPLACA(CDR CODELIST, 
LIST('LINK,CADADR CODELIST, 

CADR CDADR CODELIST, 
CADDR CDADR CODELIST»; 

%removes unnecessary LINKE; 
ATTACH ('DEALLOC • LLNGTH); 
ATTACH LIST 'EXIT»; 

PEEPHOLEOPT() ; 
FIXREST( ) 

END; 

S~1EOLIC PROCEDURE FIXCHAINS; 
BEGIN SCALAR EJMPS,E~1PS1,P,Q; %find any common chains of code; 

IF NOT CAR CODELIST='LBL • EXIT THEN ATTLBL EXIT; 
CODELIST := CDR CODELIST; 
IF NOT CAR CODELIST='JUMP • EXIT THEN ATTJMP EXIT; 
EJMPS := REVERSE JMPLIST; 
WHILE EJMPS DO 

BEGIN 
P : = CAR EJMPS; 
EJt1PS : = CDR EJMPS; 
IF CAAR P EQ 'JUMP 

THEN «EJMPS1 := EJMPS; 



END 
END; 
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WHILE EJMPS 1 DO 
IF CAR P=CAAR EJMPS1 AND CADR P=CADAR EJMPS1 

THEN «REMJMP P; 
FIXCHN(P,CDAR EJt1PS1); 
EJMPS 1 : = NIL» 

ELSE EJMPS 1 : = CDR EJMPS 1» 

SYMBOLIC PROCEDURE FIXLINKS; 
%replace LINK by LINKE where appropriate; 
BEGIN SCALAR EJMPS,P,Q; 

E~1PS := JMPLIST; 
IF NOT !*NOLINKE 

END; 

THEN WHILE E~1PS DO 
BEGIN 

P : = CAR EJMPS; 
Q : = CDR P; 
EJHPS : = CDR EJMPS; 
IF NOT CADAR P EQ CAR EXIT THEN RETURN NIL 

ELSE IF NOT CAAR P EQ 'JUMP 
OR NOT CAAR Q EQ 'LINK 

THEN RETURN FLAGG := T; 
RPLACW( CAR Q, 

'LINKE 
(CADAR Q 

REMJMP P 
END 

ELSE FLAGG : = T 

• (CADDAR Q 

• (CADR CDDAR Q • LLNGTH)))); 

SYMBOLIC PROCEDURE FINDBLK(U, LBL); 
IF NULL CDR U THEN NIL 

ELSE IF CAADR U EQ 'LBL AND TRANSFERP CADDR U THEN U 
ELSE IF GET(CAADR U,'NEGJMP) AND CADADR U EQ LBL THEN U 
ELSE Flt/DBLK( CDR U, LBL); 

PUT( 'NOOP, 'OPTFN, 'MOVEUP); 

PUT('LBL,'OPTFN,'LBLOPT); 

STI~BOLIC PROCEDURE LBLOPT U; 
BEGIN SCALAR Z; 

IF CADAR U EQ CADADR U THEN RETURN REMJMP CDR U 
ELSE IF CAADR U EO 'JUMP 

AND (Z := GET(CAADDR U,'NEGJMP)) 
AND CADAR U EQ CADR CADDR U 

THEN RETURN «Z := Z • (CADADR U . CDDR CADDR U); 
REHJMP CDR U; 
REMJMP CDR U; 



ELSE RETURN NIL 
END; 
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RPLACD(U,Z • (CADR U • CDDR U»; 
ADDJMP CDR U; 
T» 

SYMBOLIC PROCEDURE PEEPHOLEOPT; 
% 'peep-hole , optimization for various cases; 
BEGIN SCALAR X,Z; 

Z := CODELIST; 
WHILE Z DO 

END; 

IF NOT (X := GET(CAAR Z,'OPTFN» OR NOT APPLY(X,LIST Z) 
THEN Z : = CDR Z 

SYMBOLIC PROCEDURE FIXREST; 
%checks for various cases involving unique (and unused) labels 
%and sequences like (JUMPx lab) M1 .•• Mn ••• (LAB lab) M1 ••• Mn 
%where Mi do not affect reg 1; 
BEGIN SCALAR LABS,TLABS,X,Y,Z; 

WHILE CODELIST DO 
«IF CAAR CODELIST EQ 'LBL 

THEN «LBLOPT CODELIST; 
IF CDR (Z := FINDLBL CDAR CODELIST) 

THEN «Y := CAR CODELIST • Y; 

• CDDR CODELIST»; 

IF NULL CDDR Z 
AND TRANSFERP CADR Z 
AND CAADR Y EQ 'LOAD 
AND NOLOADP(CDADR Y, 

THEN «IF 

CDR ATSOC(CADR Z, 
JMPLIST) ) 

NOT NOLOADP(CDADR Y, 
CDR CODELIST), 

THEN RPLACW(CDR CODELIST, 
CADR Y 

• (CADR CODELIST 

RPLACW(CDR Y,CDDR Y»> 
ELSE «IF NULL CDDR Z 

AND CAADR CODELIST EQ 'JUMP 
AND GET(CAADR Z,'NEGJMP) 

THEN LABS := 
(CADR Z • Y) • LABS; 

IF TRANSFERP CADR CODELIST 
THEN TLAES := 

(CADAR Y • Y) 
~ TLAES»»» 

ELSE IF GET(CAAR CODELIST,'NEGJMP) 
AND (Z := ATSOC(CAR CODELIST,LABS» 

THEN «X := CAR CODELIST; 
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CODELIST := CDR CODELIST; 
Z : = CDDR Z; 
WHILE CAR Y=CAR Z 

AND (CAAR Y EO 'STORE 
OR CAAR Y EO 'LOAD 

AND NOT CADAR Y=1) DO 
«CODELIST := CAR Y • CODELIST; 

RPLACW(Z,CADR Z . CDDR Z); 
Y : = CDR Y»; 

CODELIST := X • CODELIST; 
Y := X • Y» 

ELSE IF CAAR CODELIST EO 'JUMP 
AND (Z := ATSOC(CADAR CODELIST,TLABS» 
AND (X : = 

FINDBLK(CDR CODELIST, 
IF CAAR Y EQ 'LBL THEN CADAR Y 

ELSE NIL» 
THEN BEGIN SCALAR W; 

END 

IF NOT CAADR X EO 'LBL 
THEN «IF NOT CAAR X EO 'LBL 

THEN X := 
CDR RPLACD(X, 

vi : = 

('LBL. GENLBL(» 
• CDR X); 

GET(CAADR X, 'NEGJMP) 
• (CADAR X • CDDADR X); 

REMJMP CDR X; 

RPLACD(X,W • (CADR X • CDDR X»; 
ADDJMP CDR X» 

ELS EX: = C DR X; 
W : = NIL; 
REPEAT «W := CAR Y • W; Y := CDR Y» 

UNTIL Y EO CDR Z; 
RPLACD(X, NCONC( ~l, CDR X»; 
REMJMP CODELIST; 
TLABS := NIL; %since code chains have changed; 
CODELIST := NIL. (CAR Y • CODELIST); 
Y := CDR Y 

ELSE Y := CAR CODELIST • Y; 
CODELIST := CDR CODELIST»; 

CODELIST : = Y 
END; 

SYMBOLIC PROCEDURE NOLOADP(ARGS,INSTRS); 
%determines if a LOAD is not necessary in instruction stream; 
ATOM CADR ARGS 

AND (CAAR INSTRS EO 'LOAD AND CDAR INSTRS=ARGS 
OR CAAR INSTRS EO 'STORE 

AND (CDAR INSTRS=ARGS 
OR NOT CADDAR INSTRS=CADR ARGS 
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AND NOLOADP(ARGS,CDR INSTRS»); 

SYMBOLIC PROCEDURE FIXCHN(U,V); 
BEGIN SCALAR X; 

WHILE CAR U=CAR V DO «MOVEUP U; V := CDR V»; 
X := GENLBL(); 
IF CAAR V EQ 'LBL THEN RECHAIN(X,CDAR V) 

ELSE RPLACW(V,('LBL • X) • (CAR V • CDR V»; 
IF CAAR U EQ 'LBL THEN «RECHAIN(CDAR U,X); MOVEUP U»; 
IF CAAR U EQ 'JUMP THEN RETURN NIL; 
RPLACW(U,('JUMP. X) • (CAR U • CDR U»; 
ADDJMP U 

END; 

SYMBOLIC PROCEDURE FIXFRM; 
BEGIN SCALAR HOLES,LST,X,Y,Z; INTEGER N; 

IF NULL STLST AND NULL FREELST THEN RETURN RPLACA(LLNGTH t 1); 
N := 0; 
WHILE NOT N<CAR LLNGTH DO 

«Y := NIL; 
FOR EACH LST IN STLST DO IF N=CADDR LST 

THEN Y := CDDR LST • Y; 
FOR EACH LST IN FREELST DO IF N=CAR LST THEN Y := LST • Y; 
IF NULL Y THEN HOLES := N • HOLES ELSE Z := (N • Y) • Z; 
N : = N - 1»; 

Y : = Z; 
IF CAAR Z>CAR LLNGTH THEN RPLACA(LLNGTH,CAAR Z); 
WHILE HOLES DO 

«WHILE HOLES AND CAR HOLES<CAR LLNGTH DO HOLES := CDR HOLES; 
IF HOLES 

THEN «HOLES := REVERSIP HOLES; 
FOR EACH X IN CDAR Z DO RPLACA(X,CAR HOLES); 
RPLACA(LLNGTH, 

IF NULL CDR Z OR CAR HOLES<CAADR Z 
THEN CAR HOLES 

ELSE CAADR Z); 
HOLES := REVERSIP CDR HOLES; 
Z : = CDR Z > > > > ; 

%now see if we can map frame to registers; 
N := IF NARG<3 THEN 3 ELSE NARG + 1; 
IF FREELST OR NULL REGP CODELIST OR CAR LLNGTH<N - MAXNARGS 

THEN RETURN NIL; 
FOR EACH X IN STLST DO RPLACW(X, 

LIST( 'LOAD, 

v/HILE Y DO 

N - CADDR Xt 

IF NULL CADR X 
THEN '(QUOTE NIL) 

ELSE CADR X»; 

«FOR EACH X IN CDAR Y DO NOT CAR X>O 
AND RPLACA(X,N - CAR X); 

%first test makes sure replacement only occurs once; 



y : = CDR Y»; 
RPLACA(LLNGTH, 1) 

END; 

SYMBOLIC PROCEDURE REGP U; 
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%there is no test for LAMBIND/PROGBIND 
%since FREELST tested explicitly in FIXFRM; 
IF NULL CDR U THEN T 

ELSE IF CAAR U MEMQ '(LOAD STORE) 
AND NUMBERP CADAR U AND CADAR U>2 

THEN NIL 
ELSE IF FLAGP(CAADR U,'UNKNOWNUSE) 

AND 
NOT (IDP CADADR U 

THEN NIL 
ELSE REGP CDR U; 

AND (FLAGP(CADADR U,'ONEREG) 
OR FLAGP(CADADR U,'TWOREG» 

OR CAR U='JUMP • EXIT) 

FLAG('(CODE LINK LINKE) ,'UNKNOWNUSE); 

sn1BOLIC PROCEDURE CODE U; EVAL U; 

PUT ( 'JUMPN, 'NEGJMP, 'JUMPE); 

PUT ( 'JUMPE, 'NEGJMP, 'JUMPN); 

PUT('JUMPNIL,'NEGJMP,'JUMPT); 

PUT ( 'JUMPT , 'NEGJMP, 'JUMPNIL); 

PUT('JUMPC,'NEGJMP,'JUMPNC); 

PUT( 'JUHPNC, 'NEGJMP, 'JUMPC); 

COMMENT Some arithmetic optimizations to reduce the amount of code 
generated; 

SYMBOLIC PROCEDURE PAPLUS2(U,VARS); 
IF CADDR U=1 THEN LIST('ADD1,PA1(CADR U,VARS» 

ELSE 'PLUS2 • PALIS(CDR U,VARS); 

PUT('PLUS2,'PA1FN,'PAPLUS2); 

SYMBOLIC PROCEDURE PADIFF(U,VARS); 
IF CADDR U=1 THEN LIST('SUB1,PA1(CADR U,VARS» 

ELSE 'DIFFERENCE. PALIS(CDR U,VARS); 

PUT('DIFFERENCE,'PA1FN,'PADIFF); 

SYMBOLIC PROCEDURE PALESSP(U,VARS); 
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IF CADDR U=O THEN LIST('MINUSP,PA1(CADR U,VARS» 
ELSE 'LESSP • PALIS(CDR U,VARS); 

PUT('LESSP, 'PA1FN,'PALESSP); 

COMMENT removing unnecessary calls to MINUS; 

sn4BOLIC PROCEDURE PAMINUS(U,VARS); 
IF EQCAR(U := PA1(CADR U,VARS) ,'QUOTE) AND NUMBERP CADR U 

THEN MKQUOTE ( - CADR U) 
ELSE LIST('MINUS,U); 

PUT('MINUS,'PA1FN,'PAMINUS); 



73 

B.2 Compiler c-macro definitions for the IBM 360 

COMMENT VALUES FOR COMPILER GLOBAL VARIABLES AND FLAGS; 

MAXNARGS := 22; 

!*NOLINKE := T; 

!*ORD := NIL; 

!*PLAP := NIL; 

!*R21 := T; 

SYMBOLIC PROCEDURE MKFUNC FN; 
«IF !*HOLDDEF AND GET(FN,' !*SUBR) 

THEN «PUT(FN,'SUBR,GET(FN,, !*SUBR»; REMPROP(FN,' !*SUBR»>; 
MKQUOTE FN»; 

COMMENT C-MACRO DEFINITIONS FOR IBM 360; 

COMMENT ENTRY is handled by the loader; 

SYMBOLIC PROCEDURE EXIT; '«CNOP) (BC 15 48 (RO R12»); 

SYMBOLIC PROCEDURE ALLOC ml; 
IF NW<4 THEN NIL 

ELSE LIST('LA,'PDS,4*NW - 4,'(RO PDS» 
• '«BXH PDS K4 0 (R12»); 

SYMBOLIC PROCEDURE DEALLOC NW; 
IF NW=O THEN NIL ELSE LIST '(LR PDS PDL); 

SYMBOLIC PROCEDURE LOAD(REG,EXP); 
IF NUMBERP REG 

THEN IF REG=1 THEN LOAD('A,EXP) 
ELSE IF REG=2 THEN LOAD('Q,EXP) 
ELSE IF EXP=1 7HEN LIST LIST('ST,'A,!*ARG REG,'(RO R13» 
ELSE IF EXP=2 THEN LIST LIST('ST,'Q,!*ARG REG,'(RO R13» 
ELSE IF EXP='(QUOTE NIL) 

THEN LIST LIST('ST,'NILR,!*ARG REG,'(RO R13» 
ELSE APPEND(LOAD('R1,EXP), 

LIST LIST('ST,'R1,!*ARG REG,'(RO R13») 
ELSE IF NUMBERP EXP 

THEN IF NOT EXP>O THEN LIST LIST('L,REG, - 4*EXP,'(RO POL» 
ELSE IF REG=EXP THEN NIL 
ELSE IF NUMBERP EXP 

THEN IF EXP = 1 
THEN IF REG EQ 'A THEN NIL 

ELSE LIST LIST('LR,REG, fA) 
ELSE IF EXP=2 
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THEN IF REG EQ tQ THEN NIL 
ELSE LIST LIST(tLR,REG,'Q) 

ELSE LIST LIST('L,REG,!«ARG EXP,'(RO R13» 
ELSE LIST LIST('LR,REG,EXP) 

ELSE IF CAR EXP EQ 'QUOTE 
THEN IF EXP='(QUOTE NIL) THEN LIST LIST('LR,REG,'NILR) 

ELSE IF ORDERP(CADR EXP, 'FLOAT) 
THEN LIST LIST('LA,REG, 

LOGX CADR EXP - LOGX NIL, 
'(RO NILR» 

ELSE LIST(LIST('L,REG,EXP),LIST('AR,REG, 'NILR» 
ELSE IF CAR EXP EQ 'FLUID 

THEN LIST(LIST('L,REG,EXP),LIST('L,REG,O,LIST('NILR,REG») 
ELSE IF ATOH CADR EXP AND NOT CADR EXP>O 

THEN (LAMBDA X; 
SUBLIS (PAIR (CADR X, LIST(REG, - 41 CADR EXP», CADDR X» 

GET(CAR EXP,'ANYREG) 
ELSE (LAMBDA X; 

IF NULL X 
THEN REDERR LIST("INCOMPLETE MACRO DEFINITION FOR", 

CAR EXP) 
ELSE IF CADR EXP=1 

THEN SUBLIS(PAIR(CADR X,LIST(REG,'A»,CADDR X) 
ELSE IF CADR EXP=2 

THEN SUBLIS(PAIR(CADR X,LIST(REG,'Q» ,CADDR X) 
ELSE APPEND(LOAD(REG,CADR EXP), 

SUBLIS(PAIR(CADR X,LIST(REG,REG», 
CADDR X») 

GET(CAR EXP, 'OPEN); 

SYMBOLIC PROCEDURE LINK(FN,TYPE,NMARGS); 
%LINKE is not used in the IBM system; 
BEGIN SCALAR Y; 

RETURN IF FN EQ LNAME 

END; 

THEN LIST LIST('BAL,'R2,4«FRAMESIZE+170,'(RO R12» 
ELSE IF Y := GET(FN,'OPEN) THEN !*OPEN Y 
ELSE LIST('(CNOP), 

'(BAL R2 56 (RO R12», 
LIST('AC,LOGZ(FN,NMARGS») 

SYMBOLIC PROCEDURE STORE(REG,SLOC); 
IF NULL REG THEN STORE('NILR,SLOC) 

ELSE IF NUMBERP REG 
THEN IF REG=1 THEN STORE('A,SLOC) 

ELSE IF REG=2 THEN STORE('Q,SLOC) 
ELSE APPEND(LIST LIST('L,'R1,!*ARG REG,'(RO R13», 

STORE ( 'R 1, SLOC» 
ELSE IF ATOM SLOC THEN LIST LIST('ST,REG, - 4*SLOC,'(RO PDL» 
ELSE L1ST(L1ST('L, 'M,SLOC),L1ST('ST,REG,O,'(N1LR M»); 

SYMBOLIC PROCEDURE LAMBIND(REGS,ALST); 



BEGIN SCALAR X,Y; 
X := PAIR(REGS,ALST); 
WHILE X DO 
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«Y := APPEND(Y,STORE(CAAR X,CADDAR X»; X := CDR X»; 
RETURN APPEND(Y, 

, (CNOP) 
• ('(BAL R2 20 (RO R12» • !*FLUIDVEC ALST» 

END; 

SYMBOLIC PROCEDURE PROGBIND ALST; 
'(CNOP) • ('(BAL R2 40 (RO R12» • !*FLUIDVEC ALST); 

SYMBOLIC PROCEDURE FREERSTR ALST; 
'(CNOP) • ('(BAL R2 24 (RO R12» • !*FLUIDVEC ALST); 

SYMBOLIC PROCEDURE LBL ADR; LIST ADR; 

SYMBOLIC PROCEDURE JUMP ADR; LIST LIST('BC,15,ADR); 

SYMBOLIC PROCEDURE JUMPE(ADR,EXP); 
APPEND(JUMP1 EXP,LIST LIST('BC,8,ADR»; 

SYMBOLIC PROCEDURE JUMPN(ADR,EXP); 
APPEND(JUMP1 EXP,LIST LIST('BC,7,ADR»; 

SYMBOLIC PROCEDURE JUMPT ADR; LIST('(CR A NILR),LIST('BC,7,ADR»; 

SYMBOLIC PROCEDURE JUMPNIL ADR; LIST('(CR A NILR),LIST('BC,8,ADR»; 

SYMBOLIC PROCEDURE JUMPC(ADR,REG,TYPE); JUMP2(ADR,REG,TYPE,1); 

SYMBOLIC PROCEDURE JUMPNC(ADR,REG,TYPE); JUMP2(ADR,REG,TYPE,14); 

COMMENT Additional c-macros in IBM 360 implementation; 

FLAG('(!*DEALEXT !*SAVE !*UNSAVE !*LM !*STM),'MC); 

SYMBOLIC PROCEDURE !*DEALEXT NW; 
IF NW)O THEN '«CNOP) (BC 15 60 (RO R12») ELSE EXIT(); 

SYMBOLIC PROCEDURE !*SAVE X; 
LIST('ST • (X • '(0 (RO PDS»),'(BXH PDS K4 0 (R12»); 

SYHBOLIC PROCEDURE !*UNSAVE X; 
LIST('(SR PDS K4),'L . (X. '(0 (RO PDS»»; 

SYMBOLIC PROCEDURE !*LM LOC; 
IF LOC)O THEN LIST LIST('LM,'A,'Q,!*ARG LOC,'(R13» 

ELSE LIST LIST('LM,'A,'Q, - 4*LOC,'(PDL»; 

STI1EOLIC PROCEDURE !*STM LOC; LIST LIST('STM,'A,'Q, - 4*LOC,'(PDL»; 
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COMMENT one instruction test c-macros for IBM 360; 

PUT ( 'ATOM, 'COMTST, 'TESTFN); 

PUT( 'NUMBERP, 'COMTST, 'TESTFN); 

COHMENT Aux il iary routines used by the c-macros; 

SYMBOLIC PROCEDURE !*OPEN U; 
IF CAR U EQ 'LAMBDA THEN SUBLIS(PAIR(CADR U,LIST('A, 'A», 

CADDR U) 
ELSE U; 

sn~BOLIC PROCEDURE JUMP1 EXP; 
IF ATOH EXP 

TH~N IF NOT EXP>O THEN LIST LIST('C,'A, - 4*EXP,'(RO PDL» 
ELSE IF EXP=2 THEN '«CR A Q» 
ELSE LIST LIST('C,'A,!*ARG EXP, '(RO R13» 

ELSE APPEND(LOAD('R1,EXP) ,'«CR A R1»); 

SYMBOLIC PROCEDURE JUMP2(ADR,REG,TYPE,BCSWITCH); 
BEGIN SCALAR X; 

TYPE := 
CDR ASSOC(TYPE, 

X .-. -

, ( (ATOM . 128 ) 
(NUMBERP • 192) 
(LOGP • 208) 
(FLOATP • 224) 
(BIGP. 200»); 

LIST(LIST( 'TM,O, 
IF REG=1 THEN '(A) ELSE IF REG=2 THEN '(Q) ELSE '(M), 
TYPE),LIST('BC,BCSWITCH,ADR»; 

RETURN IF REG<3 THEN X ELSE LIST('L,'M,!*ARG REG,'(RO R13» • X 
END; 

COMMENT Open-coded functions for ANYREG optimization. 
OPEN for replacement of LINKx after set up of args. 
ANYREG to avoid doing LINK+set up •• can do all in 1 register; 

DEFLIST('«CAR (LAMBDA (A) «L A 0 (RO A»») 
(CDR (LAMBDA (A) «L A 4 (RO A»») 
(LIST2 «BAL R2 16 (RO R12»» 
(LIST3 «BAL R2 44 (RO R12»» 
(ACONC «BAL R2 84 (RO R12»» 
(ATOM «EAL R2 88 (RO R12»» 
(CONS «BALR R2 R12») 
(FLAGP «BAL R2 96 (RO R12»» 
(GET «BAL R2 100 (RO R12»» 
(l~CONC « BAL R2 104 (RO R 12»» 
(NUMBERP «BAL R2 108 (RO R12»» 
(TERPRI «BAL R2 112 (RO R12»» 
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(NCONS «EAL R2 116 (RO R12»» 
(XCONS «BAL R2 120 (RO R12»» 
(REVERSIP «BAL R2 124 (RO R12»» 
(IDP «BAL R2 52 (RO R12»» 
(STRINGP «BAL R2 32 (RO R12»» 
(PUT «BAL R2 28 (RO R12»» 
(EQUAL «BALR R2 R11»»,'OPEN); 

DEFLIST('«CAR (LAMBDA (X Y) «L X Y (RO PDL» (L X 0 (ROX»») 
(CDR (LAMBDA (X Y) «L X Y (RO PDL» (L X 4 (RO X»»», 

'ANYREG) ; 

COMMENT The vectors created by the following routine have a series 
of 4-byte words with the H-O bit on. Thus the end of a 
vector is signalled by a word without the bit on. Therefore 
these vectors may NOT be followed by an instruction whose 
op-code is 80X or greater: BXH, BXLE, LM, STM, TM, etc. In 
other words, the 81 and SS instructions need a NOPR spacer in 
user-written code, but this is not a problem for the present 
compiler. Note that this H-O bit makes the AC list produced 
here look, when printed by a TRACE, like 'AC. garbage, 
because the print routines think it's an atomhead; 

sn1BOLIC PROCEDURE !*FLUIDVEC ALST; 
% ALST is list (var , loc) where loc = 1:128; 
EEGIN SCALAR B,LL; 

WHILE ALST DO 
«B := 128 - CADAR ALST; 

IF B<256 
THEN LL := 

(' AC 
• (LOGZ(GET(CAAR ALST, 'FLUID) ,B) 

• (CAAR ALST • B») 
• LL 

ELSE REDERR LIST(CAR ALST,"out of range in FLUIDVEC"); 
ALST : = CDR ALST»; 

RETURN LL 
END; 

COHMENT optimizations for IBM 360 use; 

SYHBOLIC PROCEDURE RETOPT U; 
IF EQCAR(CADR U, 'DEALLOC) 

THEN RPLACW(U,('!*DEALEXT • CDADR U) • CDDR U) 
ELSE NIL; 

PUT('EXIT, 'OPTFN, 'RETOPT); 
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B.3 Compiler c-macro definitions for PDP-10 

COMMENT GLOBAL VARIABLE VALUES A~~ FLAGS FOR PDP-10 VERSION; 

!*NOLINKE := NIL; 

!*ORD := NIL; 

!*PLAP := NIL; 

!*R2I := T; 

MAXNARGS := 14; 

COHMENT general functions; 

SYMBOLIC PROCEDURE HKFUNC FN; MKQUOTE FN; 

COMMENT c-macros for PDP-10 Implementation; 

SYMBOLIC PROCEDURE ALLOC NW; 
IF NW=O THEN NIL 

ELSE IF NW=1 THEN LIST '(PUSH P 1) 
ELSE LIST(LIST('ADD,'P,LIST('C,O,O,NW,NW»,'(213 P 85 16»; 

SYMBOLIC PROCEDURE DEALLOC NW; 
IF NW>O THEN LIST LIST('SUB,'P,LIST('C,O,O,NW,NW» ELSE NIL; 

SYMBOLIC PROCEDURE EXIT; LIST '(POPJ P); 

SYMBOLIC PROCEDURE LOAD(REG,EXP); % Uses R as extra reg; 
IF REG=EXP THEN NIL 

ELSE IF NUMBERP REG AND REG>5 
THEN IF IDP EXP OR NUMBERP EXP AND EXP>O THEN STORE(EXP,REG) 

ELSE IF EXP='(QUOTE NIL) THEN STORE(NIL,REG) 
ELSE NCONC(LOAD('R,EXP),STORE('R,REG» 

ELSE !*OP2EXP(REG,EXP,'(MOVE • MOVEI»; 

SYMBOLIC PROCEDURE SUBPLIS(X,Y,Z); SUBLIS(PAIR(X,Y),Z); 

SYMBOLIC PROCEDURE LINK(FN,TYPE,NOARGS); 
MKLINK(FN, TYPE, NOARGS,-1 , 'CALL); 

SYMBOLIC PROCEDURE LINKE(FN,TYPE,NOARGS,~l); 
MKLINK(FN,TYPE,NOARGS,ffii,'JCALL); 

STI4BOLIC PROCEDURE MKLINK(FN,TYPE,NOARGS,NW,CALL); 
BEGIN SCALAR B,Y; 

B := NW<O; 
IF (Y := GET(FN,'OPEN» AND (B OR NOT FLAGP(FN,'NOPENR» 

THEN «Y := !*OPEN Y; 
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IF NOT B 
-"THEN Y : = 

APPEND(Y,LIST(LIST('DEALLOC,~~),'(EXIT»»> 

ELSE «Y := 
LIST LIST(CALL, 

IF TYPE EQ 'FEXPR THEN 15 ELSE NOARGS, 
LIST( 'E,FN»; 

IF ml>O THEN Y := LIST('DEALLOC,NVl) • Y»; 
RETURN Y 

END; 

SYMBOLIC PROCEDURE !*OPEN U; 
IF CAR U EO 'LAMBDA THEN SUBPLIS(CADR U,'(1 1),CADDR U) ELSE U; 

SYMBOLIC PROCEDURE STORE(REG,SLOC); % Uses R as extra reg; 
BEGIN SCALAR OP,PQ; 

IF NUMBERP SLOC 
THEN (IF SLOC>5 THEN SLOC := 'EXARG • (SLOC - 6) 

ELSE IF SLOC<1 THEN PQ := '(P» 
ELSE IF EQCAR(SLOC,'GLOBAL) THEN SLOC := 'FLUID. CDR SLOC; 

IF NUMBERP REG AND REG>5 
THEN RETURN IF IDP SLOC OR NUMBERP SLOC AND SLOC>O 

THEN LOAD(SLOC,REG) 
ELSE NCONC(LOAD('R,REG), 

LIST (' HOVEM • (' R • (SLOC • PQ»»; 
OP := IF REG THEN 'MOVEM ELSE «REG := 0; 'SETZM»; 
RETURN LIST (OP • (REG. (SLOC • PQ») 

END; 

SYHBOLIC PROCEDURE LAMBIND(RGLST ,ALST); 
%produces the parameter list for binding; 
BEGIN SCALAR X,Y; 

ALST := REVERSE ALST; 
RGLST := REVERSE RGLST; 
WHILE ALST DO 

«IF NULL RGLST THEN X := 0 
ELSE «X := CAR RGLST; RGLST := CDR RGLST»; 

Y := LIST(O,X,LIST('FLUID,CAAR ALST» • Y; 
ALST : = CDR ALST»; 

RETURN '(CALL 0 (E LAMBIND!*» • Y 
END; 

SYMBOLIC PROCEDURE PROGBIND ALST; LAMBIND(NIL,ALST); 

sn~BOLIC PROCEDURE FREERSTR ALST; '«CALL 0 (E !*SPECRSTR!*»); 

STI1BOLIC PROCEDURE LBL ADR; LIST ADR; 

SYMBOLIC PROCEDURE JU~1P ADR; LIST LIST(' JRST, 0, ADR); 

SYMBOLIC PROCEDURE JUMPE(ADR,EXP); 
NCONC(!*OP2EXP(1,EXP, '(CAMN . CAIN» ,LIST LIST('JRST,O,ADR»; 
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SYMBOLIC PROCEDURE JUMPN(ADR,EXP); 
NCONC(!*OP2EXP(1,EXP,'(CAME • CAIE»,LIST LIST('JRST,O,ADR»; 

SYMBOLIC PROCEDURE !*OP1EXP(REG,U,OPS); 
%OPS=(direct • immediate). 
%When not MOVE, uses D and R as extra reg; 
IF NUMBERP REG AND REG>5 

THEN NCONC(LOAD('R,REG),!*OP2EXP('R,U,OPS» 
ELSE !*OP2EXP(REG,U,OPS); 

SYMBOLIC PROCEDURE !*OP2EXP(REG,U,OPS); 
%OPS=(direct • immediate). When not HOVE, uses D as extra reg; 
%REG is never an extended register; 
IF ATOM U 

THEN IF IDP U OR O<U AND U<6 THEN LIST LIST(CAR OPS,REG,U) 
ELSE IF U>5 THEN LIST LIST(CAR OPS,REG, 'EXARG • (U - 6» 
ELSE LIST LIST(CAR OPS,REG,U,'P) 

ELSE IF CAR U EQ 'QUOTE THEN LIST LIST(CDR OPS,REG,U) 
ELSE IF CAR U EQ 'GLOBAL THEN LIST LIST(CAR OPS,REG, 'FLUID • CDR U) 
ELSE IF CAR U EQ 'FLUID THEN LIST LIST(CAR OPS,REG,U) 
ELSE IF NOT CAR OPS EQ 'MOVE 

THEN NCONC(LOAD('D,U) ,LIST LIST(CAR OPS,REG,'D» 
ELSE BEGIN SCALAR X,Y,Z,A; 

X := 'ANYREG; 
IF ATOM (Y := CADR U) 

THEN IF IDP Y THEN X := 'OPEN 
ELSE IF Y<1 THEN Y :: Y • '(P) 
ELSE IF Y>5 THEN Y :: LIST ('EXARG • (Y - 6» 
ELSE X := 'OPEN 

ELSE IF CAR Y EQ 'GLOBAL THEN Y := LIST ('FLUID. CDR Y) 
ELSE IF CAR Y EQ 'FLUID THEN Y := LIST Y 
ELSE «X := 'OPEN; Z := LOAD(REG,Y); Y := REG»; 

IF NOT (X := GET(CAR U,X» 
THEN LPRIE LIST("Incomplete macro definition for", 

CAR U); 
RETURN NCONC(Z,SUBPLIS(CADR X,LIST(REG,Y),CADDR X» 

END; 

SYMBOLIC PROCEDURE JUMPT ADR; LIST LIST('JUMPN,1,ADR); 

SYHBOLIC PROCEDURE JUMPN IL ADR; LIST LIST ( , JUMPE, 1 t ADR) ; 

COMMENT Peep-hole Optimization Tables; 

SYHBOLIC PROCEDURE STOPT U; 
%this has to use fact that LLNGTH is offset during code generation; 
IF CDAR U='(1 0) AND CADR U='(ALLOC 0) 

THEN «RPLACA(U,'(PUSH P 1»; RPLACD(U,NIL»> 
ELSE IF CDAR U='(2 -1) 

AND CADR U='(STORE 1 0) 
AND CADDR U='(ALLOC -1) 
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THEN «RPLACA(U, '(PUSH P 1»; 
RPLACA(CDR U,'(PUSH P 2»; 
RPLACD(CDR U,NIL»>; 

PUT( 'STORE, 'OPTFN, 'STOPT); 

COMHENT Some PDP-10 dependent optimizations; 

SYMBOLIC PROCEDURE PAEQUAL(U, VARS); 
(LAMBDA(X, Y); 

IF EQVP X OR EQVP Y THEN 'EQ 
ELSE IF NUMBERP X OR NUMBERP Y THEN 'EQN 
ELSE 'EQUAL) 

(CADR U, CADDR U) 
• PALIS(CDR U,VARS); 

PUT('EQUAL,'PA1FN,'PAEQUAL); 

SYMBOLIC PROCEDURE EQP U; 
%EQP is true if U is an object for which EQ can replace EQUAL; 
INUMP U OR IDP U; 

SYMBOLIC PROCEDURE EQVP U; 
%EQVP is true if EVAL U is an object for which EQ can 
%replace EQUAL; 
INUMP U OR EQCAR(U,'QUOTE) AND EQP CADR U; 

SYMBOLIC PROCEDURE PAMEMBER(U,VARS); 
(LAMBDA(X, Y); 

IF EQVP X THEN 'MEMQ 
ELSE IF NOT EQCAR(Y,'QUOTE) THEN 'MEMBER 
ELSE BEGIN SCALAR A; 

A : = (y : = CADR Y); 
WHILE Y AND A DO «A := EQP CAR Y; Y := CDR Y»; 
RETURN IF A THEN 'MEMQ ELSE 'MEMBER 

END) 
(CADR U, CADDR U) 

• PALIS(CDR U,VARS); 

PUT ( 'MEMBER, 'PA 1FN, 'PAMEl-1BER); 

SYMBOLIC PROCEDURE PAASSOC(U,VARS); 
(LAMBDA(X, Y); 

IF EQVP X THEN 'ATSOC 
ELSE IF NOT EQCAR(Y, 'QUOTE) THEN 'ASSOC 
ELSE BEGIN SCALAR A; 

A : = T; 
Y : = CADR Y; 
WHILE Y AND A DO «A := EQP CAAR Y; Y := CDR Y»; 
RETURN IF A THEN 'ATSOC ELSE 'ASSOC 

END) 
(CADR U, CADDR U) 
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• PALIS(CDR U,VARS); 

PUT('ASSOC, 'PA1FN, 'PAASSOC); 

COMMENT Some more special compiling functions; 

FLUID '(REGS IREGS); 

SYMBOLIC PROCEDURE COMAPPLY(EXP,STATUS); % Look for LIST; 
BEGIN SCALAR FN,ARGS,N,NN,XX; 

EXP := CDR EXP; 
FN := CAR EXP; 
ARGS : = CDR EXP; 
IF CFNTYPE FN EQ 'FEXPR 

THEN LPRIE LIST(FN,"IS NOT AN EXPR FOR APPLY"); 
IF NULL ARGS 

OR CDR ARGS 
OR NOT EQCAR(CAR ARGS,'LIST) 
OR (NN := (N := LENGTH CDAR ARGS»>MAXNARGS 

THEN RETURN CALL('APPLY,EXP,STATUS); 
ARGS := REVERSE (FN • REVERSE CDAR ARGS); 
ARGS := COMLIS ARGS; 
STORE1(); 
FN := CAR ARGS; 
ARGS := CDR ARGS; 
IF STATUS>O THEN CLRREGS(); 
WHILE N>O DO 

«LREG(N,CAR ARGS,CDR ARGS,STATUS); 
ARGS := CDR ARGS; 
N : = N - 1»; 

ATTACH ('LINKF • (NN • LOCATE FN»; 
REGS := LIST (1 • NIL) 

END; 

FLAG('(LINKF) ,'LINK); 

PUT('APPLY, 'COMPFN, 'COMAPPLY); 

SYMBOLIC PROCEDURE LINKF(NARGS,FNEXP); 
!*OP2EXP(NARGS,FNEXP,'(CALLF!@ • CALLF»; 

SYMBOLIC PROCEDURE COMRPLAC(EXP,STATUS); 
BEGIN SCALAR FN,X,Y; 

FN := IF CAR EXP EQ 'RPLACA THEN '!*RPLACA ELSE '!*RPLACD; 
EXP := COMLIS CDR EXP; 
Y := IF CAR EXP = '(QUOTE NIL) THEN NIL 

ELSE IF Y := RASSOC(CAR EXP,REGS) THEN CAR Y 
ELSE «LREG('TT,CAR EXP,CDR EXP,STATUS); 'TT»; 

IF STATUS<2 
THEN «IF Y=1 THEN LREG(Y := 'TT,CAR EXP,CDR EXP,STATUS); 

LREG1(CADR EXP,STATUS»>; 
ATTACH (FN • (Y • LOCATE CADR EXP» 
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END; 

STI1BOLIC PROCEDURE !*RPLACA(REG,EXP); 
!*OP3EXP(REG,EXP,'«RPLCA! • RPLCA) • (HRRZS! • HRRZS»); 

STI1BOLIC PROCEDURE !*RPLACD(REG,EXP); 
!*OP3EXP(REG,EXP,'«RPLCD! • RPLCD) • (HLLZS! • HLLZS»); 

SYMBOLIC PROCEDURE !*OP3EXP(REG,EXP,OPS); 
IF REG THEN !*OP1EXP(REG,EXP,CAR OPS) 

ELSE !*OP2EXP(O,EXP,CDR OPS); 

PUT('RPLACA, 'COMPFN, 'COMRPLAC); 

PUT('RPLACD, 'COMPFN, 'COMRPLAC); 

COMMENT Declaring additional c-macros in PDP-10 implementation; 

FLAG('(LINKF !*RPLACA !*RPLACD),'MC); 

COMMENT Open-coded functions for ANYREG optimization. 
OPEN for replacement of LINKx after set up of args. 
ANYREG to avoid doing LINK+set up •• can do all in 1 register 
NOPENR flag avoids using open in LINKE: shorter, but slower; 

PUT('CAR,'OPEN,'(LAMBDA (X Y) «HLRZ X 0 Y»»; 

PUT('CDR,'OPEN,'(LAMBDA (X Y) «HRRZ X 0 Y»»; 

FLAG('(RPLACA RPLACD),'NOPENR); 

PUT('CAR,'ANYREG,'(LAMEDA (X Y) «HLRZ!@ X • Y»»; 

PUT('CDR,'ANYREG,'(LAMBDA (X Y) «HRRZ!@ X • Y»»; 
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APPENDIX C: Additional Functions Needed for Run Time Support of Compiler 

In addition to the functions defined in the Standard LISP Report, the code 
produced by this compiler requires the use of seven additional functions for run 
time support. These functions are defined below in RLISP syntax, and should 
therefore be loaded with any compiled code run in a Standard LISP environment. 
Since these functions are defined as part of RLISP itself, they need not be 
loaded separately if that language is used. 

SYMBOLIC PROCEDURE NCONS U; U • NIL; 

SYMBOLIC PROCEDURE XCONS(U,V); V • U; 

SYMBOLIC PROCEDURE LIST2(U,V); U • V • NIL; 

SYMBOLIC PROCEDURE LIST3(U,V,W); U • V • W • NIL; 

SYMBOLIC PROCEDURE LIST4(U,V,W,X); U • V • W • X • NIL; 

SYMBOLIC PROCEDURE LIST5(U,V,W,X,Y); U • V • W • X • Y • NIL; 

SYMBOLIC PROCEDURE REVERSIP U; 
BEGIN SCALAR X,Y; 

WHILE U DO «X := CDR U; Y := RPLACD(U,Y); U := X»; 
RETURN Y 

END; 
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