D March 18, 1969

A LISP DBBUGGING SYSTEM

By L. H. Quam

Interactive debugging systems with breakpoints have historically
been limited to assmebly language programming. The most familiar of these
is DDI, developed originally for the PDP-1. The development of such systems
for higher level languages such as LISP is greatly simplified if one
assumes that programs (functions) are interpreted. The reason for
this is that the breakpoint system must modify the original function dsfin
definitions, and modifi;ktion of a compiled program is much more difficuit
than of an interpreted program.

As with other debugging systems, the LISP debugging system allowss
the user to capture control of his program at specified points(called
breakpoints) during its execution., Having captured control, the user may
examine the state of variables in his program, modify functions, change
breakpoints, evaluate expressions, and if desired, continue its execution.,

The main feature of the debugging system is the ability to set
breakpoints around S-expresions in interpreted functions. To create
a breskpoint, the use;'must specify tosthe breakpoint editor the function
to edit Juse (EDBRK <function mame>?§ and which S-expression to put
the breakpoint around. The breakpoinﬁgaitor has commands which allow =
the user to move a pointer around within his function and to search
for S-expressions. When the pointer has been positioned to the
desired S-expression, the B command will create a breakpoint around it

by replacing the original S-expression with:

(BREAKPT B#n S-expression)

A breakpoint is activated when the LISP interpreter evaluates
the breakpoint, ie., the form describédiaboves:prWhenca breakpoint is
sctivated, the breakpoint system evaluates a condition (predicate)
associated with the breakpoint which if true specifies that the breakpoint
is to be interactive. A non-interactive breakpoint activation returns
the valus of the S-expression as if no breakpoint had been there.

An interactive breakpoint activation allows the user to examine the
states of PROG, LAMBDA, and global variables, create and destroy breakpoints,

editefunctions, and evaluate S-expressions.,

'BREAKPOINT EDITOR COMMANDS

In the following section, 1 will refer to a positive integer,
s will refer to an S-expression, and ¢ will refer to the S-expression

currently pointed to.

n> RIGHT DMove the pointef n S-expressions to the right{

n< LEFT Move the pointer n S-expressions to the left,

ny/... DOWN Move the pointer down n levels in parenthesié.

dK:J- BZ., ig{sets the pointer‘to fhe CAR of q, the S~expression
pointed to.

nA up+ Move the poigter up n levels in parenthesis. .

) Eg., 1§i$eté the pointer to the list which contains

q as a top level element.

In the <,>,¥, and 2 commands n=1 is assumed if n is not specified.
A V :
Ss SEARCH Search to the right of the pointer for the first occurrence

of the S-expression s.

B BREAKPOINT Construct a breakpoint around g, the S-expression
pointed to. The S-expression must be one which the
interpreter can evaluate., That isy breakpoints are not
permitted around PROG labels, PROG and LAMBDA variable
lists, and function names., B initializes the the breakpoint
condition to T, and the variable list to the.LAMBDA and PROG

variables surrounding the S-expression.

- Is INSERT Insert s befgre qe. ; :

YS Lerin d S q’(J er % » ‘ ‘ a\e’

D DELEIE Delste fiu S oupressiins I ”ow:-.) +ho paater,

Rs REPLACE Replace q by s. :

P PROCEED Proceed from the current breakpoint, or eRitnfrom EDBRK, the
breakpoint editor.

&s EVALUATE fivaluate (and print) Buo o-e

" aVs VARIABLES Set the variable list for breakpoint n to s.

This is the list of variables which are printed

23 dnter

when a breakpoint is activated into interactive
mode, N

nCs CONDITION Set thg condition for breakpoint n to s.
This condition determinés whether a breakpoint
becomes interactive.

nk KILL Kill (remove) breakpoint n,

In the V, C, and K Qommands, if n is not specified, then the cufrent

breakpoint is assumed.

W WHERE Print the S-expression pointed to.

BREAKPOINT SYST&EM OUTPUTS

To reduce the volume of output by the breakpoint system, all

S-expressions are printed to only a few parenthesis levels in depth.

This depth is determined by:the variable DJPLEV., A non-atomic

S-expression at depth DJPLEV is printed as 2,

Example/ with DEPLEV = 2:

(LAMBDA (X) (CONS 1'(CONS X NIL)))

will print as:

(LAMBDA (X) (CONS 1 &))

When the breakpoint system is entered, if the breakpoint

condition evaluates, to true, then the interactive breakpoin£ system

twsect: U

is entered,/and the'following information is printed:

A)

With arteletype (or a display whd'without the LISP display package)
1) The location of the breakpoint is printed as follows:
¥%Y0U ARE IN <name of function>

2) Global variables {deterfiihed by the Iist DJGVL) are printed
in the form:

<variable name> = <value>
3) LAMBDA and PROG variables (elements of the variable list
associated with the breakpoint) are printed as above.
L) The S-expression currently pointed to by the breakpoint
editor is printed. (ﬁ#;:{the breakpoint system is entered,
the pointer is initialized to point to the breakpoint.)
5) Whenever the E,and Prdormmands are used, the following is printed:

<S-expression> = <value>

AV X s

6) Whenever the <, >, ¥, ¥, B, K, S, D, I, and R commands are used,

the resulting S-expression pointed to is printed.

B) With a III display and the LISP display package (LISPDP),

'

the screen is partitioned as follows:

«) <breakpoint location> 1) <global variables> 1
;) <context around the **) <LAMBDA and PROG variables>
breakpoint> 3) <last n expressions evaluated>

<tty page prihter>

——

1) Global variables are printed as in A2,
2) LAMBDA and PROG variables are printed as in A3,
3) The last few (determined by the variable DJMVLL))
S-expressions evaluated by the E and P commandsm:- are, f’l"{"j s '“;‘____éms.'
4) The location of the breakpoint is printed in the following form:

*%%YOU ARE AT <name of function> <name of breakpoint>
5) The immediate context of the breakpoint (the list which contains

the S-expression pointed to as a top level selement) is displayed as follows:

(<lst element>
<2nd element>

-2 <S-expression pointed to>
<last element>)

6) Whenever the E command is used, parts 1,2, and 3 are regenersted.
AV X
7) VWhenever the <, >, ¥, 76, B, X, S, D, I, ;nd R commands are used,

part 5 is regenerated.

USE OF THE BREAKPOINT SYSTEM

ALt 2000 vy ts

To load the breakpoint system into a core image do: 4

“ n B} AR '/’r".; i At/ﬂ'&).

(INC (INPUT SYS: LAP (DEBUG.LAP)))
If using the displays, load the LISP display packagij Z,foaﬁft
The following functions are the only top level functions needed

by the user:

(BKINIT) Initialize the breakpoint system. This must be evaluated
after the breakpoint sysﬁem is loaded.
(EDBRK <name of function>) Enter the breakpoint editor to coéhsbruct

breakpoints in the specified function. The P command exits from EDBRK,

(UNBREAK , <list of function names>) Remove all breakpoints from

all specified functions,

MR 4

	page0001.tif
	page0002.tif
	page0003.tif
	page0004.tif
	page0005.tif
	page0006.tif
	page0007.tif

