R

(@

O

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
OPERATING NOTE 28,6

STANFORD LISP 1,6 MANUAL
by
Lynn H, Quam and Whitflel|d Diffle

ABSTRACT! Thils manual des¢ribes the PDP-10 LISP 1,6 system deve|oped by
the Stanfo.d A.¢lficlal Intelligence P,olecy, The manyal Ig
not a tutorlal on LISP but is Intended to supplement existing
LISP tutorfals In order to prepare one to understand and use
thlis LISP system,

This work was supported by the Advanced Research ProJects Agency of the
Department of Defense under Contract SD~183,

The views and conglusions ocontained In this document are those of the
authors and should not be Interpreted as necessarlly representing the
official policles, elther expressed or Implied, of the Advanged
Research ProJects Agency or the U,S, Government,

M

SAILON 28,6 LISP I
PREFACE

This manual ts the result of several relatively minor ghan
and addltlons to SAILON 28,4, It supercedes and replaces SAILONS

ges
1,
4, 28,2-4, and 41,

The changes ref|ect changes In LISP and may be summarized as

follows:

The allocation procedure, and LISP Initlalization have been
changed; Sectlions 2,1 and 2,2,

There are some new debugoing faci|ities In Appendix N and the
fogumentatlon for sSome old Ones has been put Into the manual,

The compiler has been revised, and Is described |n a great|y
expanded Appendix F,

)

)

SAILON 28,6 LISP ‘ti
Aoknowledameng

The STANFORD A,l, Lisp 1,6 System was orlglnally an
adaptation of one dovcloood by the Artl!tclul Intel|lgenge ProJect at

M,1,T, Since 1966, that system has been large|y rewpltten by John
Allon and Lynn Quam,

_ John R, Al|en Implemented the storage realjoccation system
which makes 1t possible for the user to chance the s]zes of the
various memory spaces, He® also desioned and coded the ed]tor ALVINE,
wrote the first |oader Interface, and generally malntained and

debugged the system, John Allen contributed the ALVINE
dooumentation In Appendlx A,

Marllyn Mullins has assisted In the preparation of the
present edltlion,

()

O

-

O

e

SAILON 28,6 LISP

TABLE OF CONTENTS
. , Pua?
Pf‘f.c.ooclcovlloolnpoonO!o'Ou'l!’l"Ololoiiﬂottototooto
Acknowledgment KRR R R N R N
Tablie of Cont'nts..........o..........-.-.'.-..o........ ‘.I

CHAPTER
1. INTRODUCTION.;lj';llll.'l!.él."'.'h"'.;';ll"l;' 1‘1

1,1 Gulide to the NOV'D....cgc;o'o'oupvv.;nou;;no;;-1;1

1,2 Gulde to the User Experlenced with Another ‘
LISp SVItOM.... st ettt enerertsneraeny 4w2

1,1 Gulide to Useful Functf .

1,4 Dooument COHV.nt'UHrooloono'o-o'ooo-tooooaoon i1=4

2, INTERACTIVE USE OF THE SYSTEM syussssnrrennnrennse 201

2,1 Using the System R RN 2%1
2,2 Special Telstype Control Churactors.-......... 2=l

30 IDENTIFIERS .;00'00.00'0lO..l.'OOO"'Q'!OQIlll.l" 3‘1

3,1 Property L'Stiooooov»noounvc|0toon00ooooo-oo0' 3?2
3,2 The OBLISTooo"oo'o-ono'ooooocovnuoo-qao....o. 3u3

3 3 Sgrlnﬂa...-............-n...o.-.....-o.n....-o Ju3

4| NUMBERSCOQUl;l..!lo..;l..|"OQCOOQOOOOQQt;lill;;Q;! 4.1

4.1 ;nt.g.r‘l;coo;otlil'llOOQIOOOOvo'Qoo;QFlyn;ﬁ)O 4;1

4.2 R.Il'.o.o....-oootooouodoorooot-chooononoonto 4e3

S, S=EXPRESSIONS ., vuvvnrevaovaosnossnsonsssnosnsconnsy 5l
6' LA"BDA EXPRESSIONS.OOOloooooocouvotl'v"ooolo;coo;o 6;1

6,1 EXPRS and SUBR"loloi'!'Ql.vl!i't.!.'l|'|!0!l0 be2
6,2 FEXPRS AND FSUBRSQQQtooo.o'ovooonobooooaooonco‘6-2
6,3 LEXPRs AND LSUBRUOl|cc00|ooo'occolﬁo’oovo'polc~6'2
6.‘ MACRO..}.ovonoo'.oooouonaoo-|cnoooo.ootunooonq 6e3

7. EVALUATION OF S'EXPRESSIONScooqoooooonoo.oo;loo;t;o-7-1

7.1 Variable B'ﬂd‘ﬂgioo.-uootn.ootoiooo-;oclo0ooy; 7?2
7.2 The A=LIST and FUNARG FORtUPO®S. s serertstsresrs 703

8, CONDITIONAL EXPRESSIONS . susrssssnsosretvonosnsenee 8ol

ons and Fonturos........ 1e3

TH

SAILON 28,6 LISP

9.

iog,

11,

12,

13,
14,

15,

16,

PREDICATEsiogﬁllt'..llCQOlIOCOO0l0!QOOOOO;OOOIII;OO 9'1‘

9.1 S'EXDPQSS‘QH Pf’dl@&t'ﬂoaooau--oootooo;ooo'oa; 9;2
9,2 Numerloal PerIOItls..........-o..o...........f9-2
) 3 Boolean Pr.d'c‘t.soc.ooo'ooono"lo!cco.'oo"lo 93

FUNCT!ONS ON S'EXPRESSIONsoootcovoo.cu.o.ooononaotoig-i

10,1 SeExpression Bullding Funotlons,.oayseneseeessdiBol
10,2 SeExpression Fragmenting Funct!onsS,,,veesessrelBe2

12,3 SeExpression Modlifying Funotlons.............10-2

12,4 SeExpression Transforming FU"Ot'Oﬂso.oolruoopliﬂ'4
12,5 S«<Expression Mappling Funct'onS|oloooololinooloig'4
19,6 SeExpression Searching FUNCtIoNS, yvsvserscsessileb
10,7 Character L'St Tranaformlnﬂ Funﬁtlonl.........10-7

FUNCT!ONS ON lDENTIFIERs'QOCOIOOIO'O.'|0'0000O000l011'1

11 i PrOD'rty L‘St Functionl...........o.........u.llui
11,2 OBLIST Functlon8.......-o.-.................-.11-2
11,3 Identifier Creating FuRct!ons,.vsseesesrerenssdlled

FUNCTIONS ON NUMBERS..-....otoonolnnto.o;.noototaloiz.l

12,1 Arithmetic FUnctlons...o..o.o.--..o.....,.,...lZél
12.2 L°°‘°a| Functlons-..-......-o.....-.........-ciznz

PROGR“MS'..OQ(QIO.!OO'lto!;!"'l..l‘.0".!00000;0;'13-1
INPUT/OUTPUTQOOIO..Olll.l'.l.IOI""Q'.'lll..l’.l;li4;1

14,1 Fle Nam’s..ooonolnoooﬂ'onl-looona'coctnlnvoool4 1
14,2 Channe| Namos..........................-o.-.o.14-1
14.3 anUtlontc|QQQOOIOOIOOOOOOOUOOOOOOCQQIOODOOIl014-1
14‘outDUt'l..‘.'..lIl.'.‘.'...".'".'.C.'..'.."14.4

ARRAYS|00l|0|'vuooo.ouuoooolooooolon!'0'000|000|00015 1
15,1 Examine and D.DOB't.oucltoco'o-tootlo00000l00015'2
OTHER FUNCTIONS. 4 ussrovovonnsnosssnsnsnsossonnensssdbol

APPENDIX A, ALVINE « by John A||‘n.|coounoooqclof|vn||i A+1
APPENDIX B, ERROR MESSAGESo'ocoovoocotooo-oocooo'popoOG Bel

APPENDIX C. MEMORY ALLOCATIONggo||.ocoo)'v'0ooljopllnjﬁ C-1
APPENDIX D. GARBAGE COLLECTIONcon;oooooovoo'on!otnnn!‘o D'l

APPENDIX E, COMPILED FUNCTION LINKAGE AND ACCUMULATOR

USAGE||unuoooo-'oooooooooooocopogcpuptjl Ewl

APPENDIX F, THE LIsSP COMPILER..nooulooonvnuooviloovonto F';
APPENDIX G. THE LISP ASSEMBLER - LA A EEE R RN G'l
APPENDIX H. THE LOADER'O0000000000ono"ioooiooiotootlll H.i
APPENDIX I, BIGNUMS « ARBITRARY PRECISION INTEGERS,,,s, lei

Iv

L)

O

SAILON 28,6 LISP

APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX
AppENDIX
APPENDIX

A USER MODIFIABLE LISP SCANNER, .y, tsqpseery Jol
sos'LINKQQ.l.t.oo!l!t!'!'.'l'i'!0!!'0000"0 '1
SOME DIFFERENCES BETWEEN THIS AND OTHER

LISPS [RN NN NN NN NN NI B RN B NI I BN BN) L-i

LisSP DISPLAY PRIMITIVES tvevensnonronnsonsns Mol

TRACEDDO'000..0000!00!000!'l'l.'icil.l'l!'! Nel

NlLE NEEE R R EEE R R R N N A N R R R E R 0'1

CONSTRUCTION OF A LISP DISK=DECTAPE SYSTEM,,Pei

'REFERENCESpQQQOOnonoovoooOonooootctn00|o.||o-'oop|ooy'pREF'1

lNDEx"OC"'.l".".0!...'...!.'.0'.!0.'0.'.l".ll'.l!'!ND‘l.

o

SAILON 28,6 CHAPTER 1 1ol
CHAPTER 3
INTRODUCT]ON

This manual fs Intended to explalin the Interactive LISP
system whioh has been developed for the PDP=10 at the Stanford
university Artificlal Intelilgence ProJect, It Is assumed that the
reader Is famillar with elther some other LISP system or the LISP 1,5
PRIMER by Clark Welssman(21],

The LISP 1,6 system described has as a subset most of the
features and functlons of other LISP 1.5 systems, [n uﬂd'tTon. there
are several new features such as an arbitrary precisfon [nteger
package, an Sw~expression editor, wup to 14 actlve 1nput.output
channels, the abli|lty to control the size of memory spages a
standard rejocating |oader to |oad assembly |anguage or eomn‘|od
programs, eto,

This system uses an Interpreters however, there Is also a
compiler whioh produces machine code, Complled functions are
spproximately 20 times as fast and take |ess memory spage,

This manual s organized In a functional manner, Flrst the
baslc data structures are desoribed; then the functions for operating
on them, The appendices present more detalled Information on the
system, Its internal structure, the compl|er, and severa| auxiliary
packages,

SAILON 28,6 " CHAPTER 1 1=2 B
1,1 Gylde to the Noylce

The user who |s not exparlienced with any LISP system |s
advised to follow the instructions be|ows

-
1) Become fami|jar with We|ssman’s LISP 1,6 Primer(2] or some
eaylvaleny Ingrodyctory LISP Manyal,
2) Learn the doocument conventlions (1,4),
3) Become syuperfictally familiar with LISP 1.6 J[dentifliers, D)
numbers and S=expressions (Chapters 3,4, and 5),
4) Understand the most useful| functions! Those preceded by
exclamation marks "!" In chapters 6 through 14,
5) Learn how to define functlions (6,1), D
6) Learn how to iInteract with LISP (Chapter 2),
7) Try somg examples, WelssmanCi] has some good prob|ems,
8) Learn what other useful functions and features are 5
avallable (1,3),
1,2 Gulde to the User Experlenced wlth Another LISP System
The user who has used another .LISP system |s advised to
follow these Instruotionsi D

1) Learn the document conventions (1,4),
2) Learn top level of LISP 1,6 |s EVAL, not EVALGUOTE,
3) Use DE, DF and DEFPROP for defining funotions, <(Sestion 11.1).,D

4) Many functions differ from those In other systems, Most
of these are noted In the Index,

5) The syntax of atoms Is different from other systems
(chapters 3 and 4), 3

6) Learn how to Interact with LISP (Chapter 2),
7) Try some exampj|es,

8) Learn what other usefu| functions and features are B
avallable (1,3),

O

O

SAILON 28,6 CHAPTER 1 13

1,3 Gulde to Usefy| Fynotions and Featyres

The following is a paptlal |Ist of yseful features and functions In
LISP 1,6 and wha¢ they might be ysefyl fo,,

L)

2)
3)
4)

5

6)

7)

8)

ALVINE (Appendix A) |8 usefu) 9or editing functions and
manipulating 1/0 fl|es,

READ has some very usefu| oontrol characters (Sectlon 14.3)}
Input/Output (Chapter 14) I8 very flexible,

One can contro] error messages (Chapter 16),

There Is a LISP compiler (Appendix F) which generates ocode

that runs approximately twenty times as fast as Interpreted
functions,

There are auxiilary files on the disk which are often useful:

filenamse use dooument
SYSISMILE f1le manlpulation Appendix 0
SYS$TRACE tracing functions Appendlx N
and setas
SYStSOSLNK rapld turn-around Appendlx K
between SOS and LISP
SYSILISPDP,LSP 111 display functions Appendix M
L]SP,CORCS,D0C) correctlons to thils
manua|

One can lond and |link LISP to nssombly and Fortran
complled programs, See Appendix H,

One can have f1les automatica|ly loaded by use of
the file INIT,LSP which |s automatically |oaded
on entry,

SAILON 28,6 Dooument Conventlons ' 1,4=1
1,4 Document Conventlons
1,4,1 Representation Conventlions

In the description of data structures, the followlng
notationa| conventlions wi|| be used,

.

recmcemeaveenenan represents a 36=bit word In
[| [FREE STORAGE with 2 18=bit
| I |- polnters,

[
reecmmeruveeem———— represents the |ast word In
| l | a llst,
{; | NIL | =

¢
rccamcmemvacem—- ’ represents a 36«b(t word In

| ' | FULL WORD SPACE.
I I : '

I LA R B X & X X L 2 A A A K K J I

1,4,2 Syntax Conventlons

A s|lghtly modlfled form of BNF [s wused to deflne syntax
equations, Optional terms are surrounded by curly brackets (and),

1,4,3 Calllng Sequence Conventions

Calling sequences to LISP functions are opresented In
S=gxpression form, with the CAR of the Se=expression belng the name of
the funotlion, An argument to a funotion Is evaluated unless that
argurent Is surrounded by aquotes (") In the oal|llng seaquence
definition, Quotes mean that the function Impllclitiy QUOTEs that
argument, ,

Exampless (SETQ "ID" V) ID Is not evaluated, but V Is
evaluated,
(QUOTE "V") V Is not evaluated,

1,4,4 Other Conventlions
The blank character (ASCII 48) |s Indlcated by "_" when
appropriate for clarlity,

A special notatlon In the left margin Is used to Indlcate the
degree of utli|ity or difficulty of each sectlion of this manuall

SAILON 28,6

mark
!

<ne mark>
»

¥

Document Conventlions 1,42

meaning
baslie
general |y usefu]

useful but more sophistioated
not general |y usefuy|

O

SAILON 28,6 CHAPTER 2 2=1
CHAPTER 2 |
INTERACTIVE USE OF THE SYSTEM
2,1 Using the System

The followling dlalog shows how to |09 Into the time=sharing system,
start the L]SP system, and Interact With the top level of ISP, Lines
beginning with perliod are typed by the wuser to the time=~sharing
system, and the Ilines beginning with astarlisk are typed to LISP. The
symbo| ¢cr> specifies carrlage=return, and $ means a|tmode,

ob

#1,F00

*C

+R LISP

FREE STORAGE = 10007 = 20000 <cr> This GIVOQ 20K of Free Storage
Instead of the usua| 10K,

FULL WORDS = 4080 = <oer> This glves the default value
of 5K,

BIN, PROG, SP, = 209p = 1220088 Thls glves 12K of Binary Program Space,

and ends the a|locatlon,

For a full dlscussion of aj|ocation
see Appendix C,

Digression?

At this point, after allocatlon and before anything elise, the

f1le LISP,LSP Is read from the system, Thls defines various macros,
recent additions to the system, bootstrap definitions for the
tunctions In the various se|f loading utli|lty flles, 7rnoo. SOSLNK,
LAP otc. In addition, If there Is a fl]e by the name INIT,LSP In the
user’s dlrectory, 't wlll be |oaded too, This enables the user to
have anything he |lkeg joaded aytomatica) |y,

To continye!

T<altmode>

T T and NIL always evaluate to themse|ves,
#(QUOTE (A B C)) <carriage returnd

(A B C) Value of QUOTE

(CONS 1 (QUOTE A)) <carrlage return>

(1 , A) Numbers a|ways evaluate t0o themse|ves
and thus need not be quoted,

<a |long seauence of outputd This output can be suppressed with *0,

SAILON 28,6

CHAPTER 2

(DEFPROP CDRQ (LAMBDA (L) (CDAR L)) FEXPR) <carriage retyrnd

CORQ

#(CDRQ CAR) <carriage returnd
(SUBR #address PNAME (#fullword))

#(DE TWICE (NUM) (TIMES 2 NUM)) <carriage returnd

TWICE

#(TWICE 3) <oarriage return>

é
>ete,?

2.2 Speclia| Teletyps Control Characters

The timeesharing

system treate

many control| characters In speclal

ways, For a comp|ete discussion of contral characters see the PDP=1p

TIME SHARING MONITOR MANUAL,

characters are used in LISP,

Teletype
+C

*0

Y

*G(BELL)

rubout

111 Display
CALL

Control| 2

| Inefeed

Control 1
|Inefeed

BS

Meaning

Stop the Job and talk to
time=sharing system,

Suppress console printout

Briefly, the following speclal econtrol

unti| an Input Ts requested.

Delete the entire Tnput

I'Ine now beling typed.
(Only with (DDTIN NIL)),

Stop the LISP Interpreter
and return control to the
top leve| of LISP, Only
effective when LISP Ts
asking for consols Input,
See INITFN (16),

Delete the |ast character
nggd. (For (DDTIN T) see

O

SAILON 28,6 CHAPTER 3 =1
CHAPTER 3
IDENTIFIERS

Identiflers are strings of characters which taken together
represent a single atomic auantity,

Syntax!

<comments> ::13¢ASCI! 32> <any seguence of characters not
Including Iine=feed> <|ine feed> '

<delImiter> 3tz (1) | CIJ | 2 I®|/|"] <blank> | <altmode> |
carriage=return | <line~feed> | <tabd | <form=-
feed>

<cha,acge,.>::= <any exyended ASCl!I cha,acye, oghe, (han nyi|
and ASCII 176>

<diglt>ti= 7111213(1415161718]9

<letterd>::= Cany character not a dlgit and not a del|imiter>

<identliflerdsii= <letterd

1=¢ldentifler> <dligit>

1= / <character>

iz {ldentifler>/{character>

H
:
!
H

Semantics:

Identiflers are normally strings of characters beginning with
a |letter and fol|owed by |etters and diglts, It |s sometimes
convenlient to create identiflers which contaln delimiters or begln
with dlglts, The use of the de|limliter "/ (s|ash) causes ¢the
followlng gharacter be taken |lterally, and the slgsh ltself Is not
part of the ldentifier, Thus, /AB |s the same as AB s the same as
/A/B,

Comments are useful for allowing descriptive text in fijes
which wil| be completely lgnored when read, Comments alsc make [t
possible to extend atoms (ldentiflers, strings and numbers) acroess
nine boundarlies without any of the characters in the comment becoming
part of the atom, ‘

ASCI1 32 cannot be typed directly Into LISP, In STOPGAP, 23
deslignates ASCII] 32, ogn the |Ine printer and II1 displays, ASCIl 32
prints as tllde "=", ASCI! 32 does not print on teletypes, (See
CHRCT |H 1401'4|)

Exarples: A /¢
a ?
FOObagz /713245
TIME=QOF=DAY /»
A1B?2 LPT:

Representation:

SAILON 28,6 CHAPTER 3 3=2

An ldentifler |s Internally represented as a dotted palr of
the following form!

identifler = T-:i-T--.-I - property |ist

which ls called an atom header,

Thus CDR of an identifler glves the property |ist of the
ldentifler, but CAR of an ldentifler glves the polnter 777777, which
{f used as an address wi|l cause an |||ega| memory reference, and an
error message, An {dentifler Is referred to In symbollc ocomputation
by the address of Its atom header,

3,1 Property Lists

The property |Ist of an Identifler Is a |ilst of pairss

(property name, property value) associated with that identIfler, The
normal kinds of propertles which are found In property |Ists are
print names, va|ues, and functlon definitions corresponding te
ldentiflers,

3.,1,1 Print Names

Every Identifler has a print name (PNAME) on lts property
nist, The print name of an identifler is a |Ist of full words, each
containing flve ASC!! characters,

Examples The ldentifler TIME=OF<«DAY would be Inltially represented
as follows! . :

PRV W BB P Wm0 e DD W w W W

atom * | =1 | | = | | [= | INTL |
heade, | ____l-..| |ecelaeal [D
¢ 4
atom 7777 OTUTTTTTTOTDTTINGL
"PNAME" [R [P DR [I
'}] b
| TIME= | | OF=DA [| YAAAA |

where A means null or ASCI! 2,

o/

Ci

o

O

S

O

G

SAILON 28,6 | CHAPTER 3 3=3
3.1,2 Speclal Ce|ls

When a vajue [s assigned an |dentifler, the property name
VALUE Is put on the ldentifler’s property Jist with property va|ue
belng a pointer vo a speclal cell, The CDR of the,.anac{al cell
(sometimes calied VALUE cel|) holds the value of the ldentifier, and
the address of & specja| ce|| remalns constant for <that Jjdentifjer
uniegg REMPROPed (11,2), ¢o enable complled fyncyiong o dl ecely
reference the values of speclial varlables, Gjloba| varlables and all
variables bound |In Interpreted functlions store thelr vajues In
special cells,

Example: The atom NIL has the following formi

atom header property |lst

1 =17 TTTTVALUE] 71 T TTTRNAME] 77 INILT
leoalaccl Joceealacl Tocalangl lacaaalaal locolaaal

. ¢ ;
| special cemmm——on e
| cell INILINIL| print | INILI
| [name [

| e e mcec——— cemeemmeee |

‘l

T NICARTT

3,2 The OBLIST

In order that occurrences of ldentifiers with the same print
names have the same Internal address (and hence value), a specla]
nist which |Is the VALUE of a global variable called OBLIST is used to
remember al| ldentiflers which READ and some other functions have
seen, For the sake of searching effliclenoy, thls |Ist has two
neve|s) the first lgvel contains sequentlially stored "buckets" whlch
are "hashed" fnto as a functlion of the print name of the [dentifler,
Eaoch bucket Is a |Ist of all dlstinct Identiflers which have hashed
fnto that bucket, Thus, (CAR OBLIST) Is the first bucket, and (CAAR
OBLIST) Is the first {dentifler of the first bucket,

3,3 Strings
Syntax:
stringitz "<any sequence of characters not containing ">"

Semantics

SAILON 28,6 CHAPTER 3 3=4

A string |s an arbltrary sequence of characters syrroynded by
double gquotes and not contalning double aquotes, Strings are
represented Identlcally to Identiflers except that strings are not
automatically INTERNed on the OBLIST, The double quotes gurrounding
strings actually baecome part of the PRINT NAME of the string unlTke
sjashes In s|ashiflied Identiflers,

Examp|es:
"I AM A STRING"
"1,3-)(S5n

o/

\J

Y

(@

(‘\

SAILON 28,6 CHAPTER 4 41
CHAPTER 4
NUMBERS

There are two syntactic types of numbers: Integer and real,

<number> ti= <{integer> | <real>
4,1 Intagers
Syntaxi
<Integer> 11m (<slgn>) <diglts> ()
<dliglts> 1= <diglt> (<diglits>)
<slgn> 11z +|-

Semantics:

The global varfable 1IBASE specifies the Iinput radix for
Integers which are not followed by "," [ntegers followed by "," are
deciral [ntegers, IBASE is Inltlally = 8, Similarly, the global
varlable BASE controls output radlix for Integers, If BASE = 12 then
Integers WIl|| print with a followlng ","» unless the global varlable
#NOPOINT = T,

Examples wlgth IBASE = 8

Tnput meaning ;

«13 = -11 = =11410
i000 = 512 2+512410

19 = 17 5 +17410

Representation:

There are three representations for Integers depending on the
numerlcal magnitude of the Integer: INUM, FIXNUM, and BIGNUM, Thelr
ranges are as follows:!

INUM Inl <K K Is usual|ly 2*16
FIXNUM Ks Inl <235
BIGNUM 2435 < Inl

Representation of INUMs:!

INUMs are sma|l [ntegers represented by polnters outslide of
the normal LISP addressing space, INUMs are addresses |n the range
2t18=2K to 2+18=2, The INUM representation for zero i3 a =z 2¢18~Kel,

SAILON 28,6

CHAPTER

Exampjes INUM

=(K=1)

-1
)
1

Kol

Representation of FIXNUMs}

FIXNUMs are represented by |Ist

Atom heador

- TFIXNOM]
|

- W ws e l

4 42

Representation

(K=1)

i

2¢18=K=1
1

Ked

aa’anr e
+ +u

structure of the fo|lowling form!

-y o G S W T A W A
|« | vajue |

cmel N aanaa |

where value Is the 2’'s complement representation of the fixed polnt

number,

Examples?

+1000000004+8

~140000003248

Representation of BIGNUMS

IETARE

T =11 e

BIGNUMs are represented by |Ist

Posltive BIGNUMs -

Negatlve BIGNUMg -

JFIXNUM| |+ [000120020000 |

LXK B K X R RN X X L A X N N X X X R

[FIXNUM| | 1776377777746

SR DI I D |

structure of the following forms:

i3
wwpmpi. g -- L - e WP -

[POSNUMI = | | |« | INIL]

[N DA R DOV D R A B

‘ ‘ ‘ 1

TNE7TT TN 77T

R R D |

TNEGNEMT "= T 1. T« 1. INIL®

|cemmomlacal laen 220 Toolaasl
' .

I'Né'f’f] I-EE""'T

o wn oo - - D @ -

(¥

M.

(F\-

M

M

(M

SAILON 28,6

CHAPTER 4 4=3

where Ns! are positive 36 blt Integers ordered from |east to most
slgniflcant, The valye of a BIGNUM Is

sign ® (Ne¢@ + 2¢35 N, + 2¢35#2 N2 + ,,, + 2¢35n Nin)

Note: BIGNUMs are not normal|ly a part of the interpreter, Appendlx H
gescrlipesS thg procedures for loading the BIGNUM package.

4,2 Reals
Syntax?
<real>

{exponent)

Examplos!

3,14159
*1lg=3
-196,37E4
2,3
-EQSE"]-

Restrictionst

tiz (<slgn>) <Kdiglts> (#) <exponent>

11z (Calgn>) (<dlgltsd) #« <Kdigitsd {(<exponmentd)
112 £ (Cslgn>) <diglits>

meaning

+3,14159

+0,001

«-1963720,0

+2,3

-3,0

The radlx for real numbers Is always decimal, A real numbepr x
must be In the (approximate) range:

1p+-38

< Ix|l <€ 19++38 or x = 0

A real number has approximate|y elght significant digits of accuracy.

Representation:

atom header

-1 |-
I l

LR X B K K K R X X.J
P

where value 1Is In
representation,

PDP=6/10 2's

LR R R R R K R g

TFLONUM] | = | valye |

complement tfloating point

[

o

SAILON 28,6 CHAPTER 5 5«1
CHAPTER 35
S=EXPRESSIONS

Syntax:
<atom> 1:= ¢identifier> | <string> | <number>

{S=expression> {:3 <atom>
112 (<S=axpression |istd>(#{S=expressiond})
33 () = NIL
{S=expression |jstd i1tz {S=expressjiond
115 (S=gxpressiond> <S=expression |ist>

Representation!

S=expression representation
(A, (B, C)) < T AT
¢
1778°17¢7]
(CA . B) (€, DYEY =1 1 1T=T1 "1 77=TENLI
| I I | I .
¢ ¢
T7A°17B"1 T ¢ 10]
(U B I D
- .- - -6—

(A B, C) - 7
|

Exceptlionst

The ldent!fier NIL I|s the identifler whlech represents the
empty list, 1,e,, (),

&

.

™

SAILON 28,6 CHAPTER 6 6~1
CHAPTER 6

LAMBDA EXPRESS]ONS

LAMBDA expresslions provide the means of constructing
Computational procedures (often called fupctions: subrout7n930 or
procedures) , hlich compute ans,ers ,hen values are assigned to thelr
parameters, A LAMBDA expression can be bound te an ldentifler so
that any reference to that ldentifler In functional context refers to
the LAMBDA expression, In LISP 1,6 there are severa| types of
function definltion whigh determine how arguments are poumnd to the
LAMBDA expression, The following Is a LAMBDA expressiont

! (LAMBDA "ARGUMENT=LIST"™ "BODY")

LAMBDA defines a funoction by specifying an ARGUMENT=LIST,
which ls a |lst of identlflers (except for LEXPRs, see 6,3) and a

BODY, whlich Is an S-expression, LAMBDA expressions may have mo more
than five arguments If they are to be complled,

‘Examples: (LAMBDA NIL 1)

This LAMBDA exprassion of no arguments always
eva|uates to one.

(LAMBDA (X) (TIMES X X))

This LAMBDA gxprgssion ComputeS the Squarg of
1ts apgument, If x |s a numbe,, Othe,wige an eprop
wil] result,

¥ (LABEL "ID" "LAMBDA=EXPR")

LABEL creates a temporary name [D for [ts LAMBDA expression,
This makes It posslible to construct recursive functions wlith
temporary names,

Example:

(DE REVERSE (L)
((LABEL REVEVSE1
(LAMBDA (L M)
(COND ((ATOM L) M)
(T (REVERSE1 (CDR L) (CONS (CAR L) M))))))
L NIL))

LAMBDA expresslions are evaluated by "blnding"” actual
argurments to dummy varlables of the LAMBDA expression, (see Chapter
14) then sevaluating the bodY Inside the LAMBDA axpression wlith the
current dummy variaple bindings, However, actual arguments to LAMBDA
expressions are hgndled in a varlety of ways, Normal|y, there Is a
one~to=one c¢orrespondence between dummy varlables and actual
arguments, and the actual arguments are evaluated before they are .

SAILON 28,6 CHAPTER 6 =2

boynd, However, there are three specla] forms of fynction definition
which differ In their handling of actua| arguments,

! 6,1 EXPRs and SUBRs

| An EXPR 1s an lIdentifier which has a LAMBDA expression on Its
property |lst with oproperty name EXPR, EXPRs are evaluated by
binding the values of the actual arguments to thelr corresponding
dumry varlables, DE (see 11,1) I|s ussfu| for deflining EXPRs, The
compliad form of an EXPR |s a SUBR, |

Exampies?

(DE SQUARE (X) (TIMES X X))
(DE #MAX (X Y) (COND ((GREATERP X Y) X) (T Y)))

6,2 FEXPRs and FSUBRs

A FEXPR s an'identlfler whieh has a LAMBDA expression of eone
dummy varjable on Its property |Ist with property name FEXPR, FEXPRs
are eovajuated by binding the actual argument |ist to the dummy
varlable without evaluating any arguments, DF (see 11,1) Is wuseful
for defining FEXPRS, The complied form of an FEXPR |s an FSUBR,

Examples!

(OF LISTQ (L) L)
(LISTQ A (B) C) = (A (B) C)
(LISTQ) = NIL
(DF DEFINE <L)
(MAPC (FUNCTION (LAMBDA (X) (PUTPROP (CAR X)
(CADR X)
(QUOTE EXPR))))
L)
(DEFINE (LEQ (LAMBDA (x Y) (OR (LESSP x v)
(EQUAL X Y))))
(GEQ (LAMBDA (X Y) (OR (GREATERP X Y)
- (EQUAL X Y)))))

6,3 LEXPRs and LSUBRs

An LEXPR Is an EXPR whose LAMBDA expression has an atomic
argument "|lst" of the form:

(LAMBDA "I1D" "FQORM™)

LEXPRs may take an arbl!trary number of actua| arguments whioh are

evaluated and referred to by the special function ARG, 1D is bound
vo the number of arguments which are passed, The complled form of an
LEXPR Is an LSUBR,

(ARG N)

\J

o

"SAILON 28,6 CHAPTER 6 6=3
ARG retyrns the yal, e of the Nth argyment to an LEXPR,
Examplel

(DE MAX N
(PROG (M)
(SETQ M (ARG N))
L (SETQ N (SUB1 N))
(COND ((ZEROP N) (RETURN M))
((GREATERP (ARG N) M) (SETQ@ M (ARG N))))
(GO L))
(MAX 1 1,2 4 3 =50) = 4

(SETARG N V)
SETARG sets the value of the Nth argument to V and returns V,
6,4 MACROs

A MACRO !s an !dentifier which has a LAMBDA expression of one
dumry Vvarlable on |ts property |Ist with property name MACRO, MACROs
are evaluated by blinding the |ist containing the macro name and the
actual argument |ist to the dummy varlable, The body In the LAMBDA
expression |s evaluated and should resu|t In another "expanded" form,
In the Interpreter, the expanded form Is evaluated, In the compller,
the expanded form |g complled, OM(see 11,1) Is useful for defining
MACROs,

Examples:?

1) We could define CQONS of an arbltrnry number of arguments by!

(DM CONSCONS (L)

(COND ((NyLL (CDDR L)) (CADR L))
(T (LIST (QUOTE CONS)
(CADR L)
(CONS (QUOTE CONSCONS) (CDDR L))))))

(CONSCONS A B C) would call CONSCONS With L = (CONSCONS A B
C), CONSCONS then forms the |1st (CONS A(CONSCONS B €)), Evaluating
thls will agaln cal| CONSCONS Wlith L = (CONSCONS C), CONSCONS wil|
filnally return C,

The effect of (CONSCONS A B C) {s then (CONS A (CONS B C)),

2) We could defline a function EXPAND which is more generally useful
for MACRO expanslion:

(DE EXPAND (L FN?
(ConND C((NULL (CDR L)) (CAR L))
(T (LIST FN (CAR L) (EXPAND ¢CDR L) FNI)))))

SAILON 28,6 CHAPTER 6 6=4
Then we could define CONSCONS!
(DM CONSCONS (L) (EXPAND (CDR L) (QUOTE CONS)))

It should be noted that MACROs are more genera| than FEXPRs
and LEXPRs, 1In fact the previous definitions can be replagced by the
following MACROs:

(DM LISTQ@ (L) (LIST (QUOTE QUOTE) (CDR L))))
(DM MAX (L) (EXPAND (CDR L) (QUOTE #MAX)))
(MAX A B C D) would expand toy
(#MAX A (%MAX B (#MAX C D)))

3) (#EXPAND L FN)
(#EXPANDL L FN)

#EXPAND and #EXPAND1 are MACRO expanding functions used by PLUS,
TIMES, etc, They are equivalent to:

(DE SEXPAND (L FN) (#EXPANDL (REVERSE (CODR L)) FN))
(DE #EXpANDL (L FN)
(COND ((NULL (CDR L)) (CAR L))
(T (LIST FN (#EXPANDL (CDR L) FN) (CAR L)))))

Example:
With PLUS defined as

(DM PLUS (L) (*EXPAND L(QUOTE #PLUS)))

(pLUS A B C D) expands to!
(#PLUS (#PLUS (#PLUS A B) C) D)

‘ /\ ,WU

&

o~
* e

SAILON 28,6 CHAPTER 7 gt
CHAPTER 7
EVALUATION OF S=EXPRESSIONS

This chapter describes the heart of the LISP interpreter, the
mechanism for eva|uating S~expressions,

! (#EVAL E)
(EVAL E)

«EVAL and EVAL (see 7,2) evaluate the vajue of the
S~express|on E,

Examplasg?

(EVAL (LIST (QUOTE ADD1) 3)) = 4

The top level of LISP Isg?
(PROG NIL
L (PRINT (EVAL (READ))) (TERPRI!) (GO L))

! (APPLY FN ARGS)

APPLY eva|uates and binds each S=expression In ARGS to the
corrasponding arguments of the function FN, and returns the value of
FN, See 7,2,

Example:
(APPLY (FUNCTION APPEND) (QUOTE ((A B) (C D)))) = (A B C D)
! (QUOTE "EM)
OUOTE returns the S=expression E without evaluating 1t,
(FUNCTION "FN")

FUNCTION 1Is the same as QUOTE In the Interpreter, In the
compller, FUNCT]ON causes the Se-expression FN to be c¢ompliled, but
QUOTE generates an S=expresslon constant, See #FUNCTION in 7,2 for
the speclal FUNARG feature,

The folnowing function defimitlions J|ack some detalls but
explain the essence of EVAL and APPLY, The A-LIST feature of these
functlons Is not shown, but wil| be explalned in 7,2,

(DE FVAL (X)
(PROG (Y)
(RETURN
(COND ((NUMBERP X) X)
(CATOM X) (COND ((SETQ Y (GET X (QUOTE VALUE)))
(COR Y))
(T (ERR (QUOTE (UNBOUND VARIABLE)))))

SAILON 28,6 CHAPTER 7 702

((ATOM (CAR X))
(COND ((SETQ Y (GETL (CAR X) (QUOTE EXPR FEXPR MACR0))))
(COND ((EQ (CAR Y) (QUOTE EXPR))
‘ (APPLY (CADR Y)
(MAPCAR (FUNCTION EVAL) (CDR X
((EQ (CAR Y) (QUOTE FEXPR)
(APPLY (CADR Y) (LIST (COR x))))
(T (EVAL (APPLY (CADR Y) (LIST X))))))
((SETQ Y (GET (CAR X) (QUOTE VALUE)))
(EVAL (CONS (CDR Y) (CDR X))))
(T (ERR (QUOTE (UNDEFINED FUNCTION))))))
(T (APPLY (CAR X) (MAPCAR (FUNCTION EVAL) (CDR X))))

(DE APPLY (FN ARGS)
(COND (CATOM FN)
(COND ((GET FN (QUOTE EXPR))
(APPLY (GET FN (QUOTE EXPR)) ARGS))
(T (APPLY (EVAL FN) ARGS))))
(¢EQ (CAR FN) (QUOTE LAMBDA))
(PROG (2)
(BIND (CADR FN) ARGS)
(SETQ 2 (EVAL (CADDR FN)))
(UNBIND (CADR FN))
(RETURN 2)))
(T CAPPLY (EVAL FN) ARGS))))

The functions BIND and UNBIND Impiement varlable bindings as
described In the next sectlion,

&« 7,1 Varlabl|e Bindjings

This section attempts to explaln the different <types of
varlable bindings and the difference between [nterpreter and compli|ler
bindlings,

e 7,1,1 Bound and Free QOcourrences

An ococurrence of a varfabj|e Is a "bound occurrence” [f the
varlable 1s a varfable In any LAMBDA or PROG contalnimg the
occurrence 80 long as the ocourrence |s not contalned In a FUNCTIONAL
ergument whioh |s contained In the defining LAMBDA or PROG, The
defining LAMBDA or PROG |Is the Inmnermost LAMBDA or PROG which
oontains the varlabje In |ts parameter |ist,

Exampleg?

(LAMBDA (X) (TIMES X Y))
X has a bound ocCurrenCg.
Y hag a free gcoyppence,

(LAMBDA (Y 2) (MASCAR (FUNCTION (LAMBDA(X) (CONS X Y)))2)
X and Z pavg on|y bound oCCurrences. _ _
Y g bgund gy the sutepr LAMBDA nna free In the Innep,

v,

I

SAILON 28,6 CHAPTER 7 73
#» 7,1,2 Scope of Bindings

A variable bound In & LAMBDA or PROG |s defined during the
dynamic executlon of the LAMBDA or PROG, Free occurrences of
variables are defined !f and only 1f elther the varlable [s globally
defined or the varlable 1Is bound In any LAMBDA or PROG whieh
dynamically contains the free occurrence, A variable |s globally
defined [f and only If [t has a Value at the top levp| of Isp,
variables can be globally defined by SE7Q at the top |eve|,

« 7,1,3 Speclal Variebles

In complled functlons, any varlable whilch Is bound In a

LAMBDA or PROG and has a free occurrence elsewhere must be declared
SPECIAL (APPENDIX E)y,

Examp|e:

(LAMBDA (A B)
(MAPCAR (FUNCTIQN (LAMBDA (X) (ConS A X))) B))

The varlable A whlch has a free occurrence must be declared
SPECIAL If the outer LAMBDA expression Is to be compf|ed,

¢« 7,1,4 Binding Mechan!isms

All varlables tn Interpreted functlions, and SPECIAL variab|es
In compijed funotions store thelr values [in SPECIAL (or VALUE) cel|s,
These varlables are bound at the entry to a LAMBDA or PROG by saving
thelr previous values on the SPECIAL pushdown |ist and storing thelr
mew values In the SPECIAL coi|s, All references to these variabjes
are dlrect|y to thelr SPECIAL <c¢e|ls, When the LAMBDA or PROG |s
exited, the old valuss are restored from the SPECIAL pushdown |ist,

In complled functlions, all varlabjes not declared SPEC]AL are
stored on the REGULAR pushdown |lst, and the SpECIAL celis (1f they
exist) are not referenced,

7,2 The A«LIST and FUNARG Features

The A=LIST which Is used In some LISP systems to Implement
recursive varfable bindings does not exlist here, but Its effects are
simulated through a special A=LIST feature, The functlions EVAL and
APPLY allow an extra |aSt argument to be passed whigh Ts elther a
nist of palred Identiflers and values (|lke an A=LIST) or a4 "bindling
context polnter”,

In the case of an A=LIST second argument, EVAL and APPLY wl]|
blnd the speclal cejls of the varlables In the A-LIST to thelr
specifled values, saving thelr previous bindings on the speclal
pushdown |lst, When EVAL and APPLY return, the variable bindings are
restored to thelr previous values,

SAILON 28,6 CHAPTER 7 7=4

A "pinding c¢ontext polnter" (BCP) s & poifnter Into the
SPECIAL PUSHDOWN LIST deglanating a level 1n rsoursive verlable
binding, When EVAL and APPLY recelve a BCP as thelr second argument,
all SPECIAL (VALUE) CELLS are restored to the values they had ax the
vime the BCP was generated, This then causes EVAL and APPLY to
reference these variables In the blnding context which ex{sted at the
vime of BCP generation, This feature primarjly |s usefu| tc prevent
variable name conf|icts when wuslng EVAL, APPLY, and funotional
arguments, As with the A=LIST, when EVAL and APPLY exlt, the
previous bindings are restored,

There are two ways to generate a BCP!

If an FEXPR |s defined with two arguments, then the second
argument wil| be boynd to the SPECIAL PUSHDOWN LIST leve| at the tlime
the FEXPR Is called,

The second way to generate a BCP [s with #FUNCTION,
(#«FUNCTION "FN")
#*FUNCTION returns a |Iist of the following formi
(FUNARG FN # <BCP>)

where BCP Is the SPECIAL PUSHDOWN LIST leve| at the time »FUNCTION Is
called, Whenever such a functlonal form |s used In funotional
oontext, al| SPECIAL blndings are restored to the values they had at
the tlime #FUNCTION was evaluated, When the functlona| apgument has
been ApplLYed, the previous bindings are restored as with the AsLIST,

The use of FUNARGS |s discussed further by Robert Saunders(3].
Example using the BCP feature:

(DF EXCHANGE (L SPECPDL)
(PROG(Z) (SETQ Z(EVAL (CAR L) SPECPDL))

(APPLY (FUNCTION SET)
(LIST (CAR L) (EVAL (CADR L) SPECPDL)
SPECPOL)

(APPLY (FUNCTION SET)
(LIST (CADR L) 2
SPECPDL)))

In thls example, the use of the extra argument SPECPOL has only one
effect: to avold confliicts between Internal and externa| varlables
wl/th names L and SPECPDL,

(EXCHANGE L M) wl|| ocause the vajues of L and M to be
exchanged, The varliable | In EXCHANGE s not referenced by the ocails

on skt

@

)

SAILON 28,6 CHAPTER 8 : 8e=1
CHAPTER 8
CONDITIONAL EXPRESSIONS

A conditiona| expression has tne following formg
! ‘COND "‘1!1 3‘102 [] 0‘1'n*1’

(42,1 0832,2 ,,s 9$2,N42)

LI |
(esm,1 e6¢m2 ,,, 0ém,nasm))

where the edl,]’s are any S-expressions,

The esl,1's are considered to be predicates, |,e,, evaluate
vo a truth value, The eé¢!,1’s are evaluated starting with esl,1 ,
042,11 4 etc,y» uUntl| the first esk,1 |s found whose value fs mot NJL.
Then the corresponding e¢ks2 @é¢k,3 ,,,e%k)nék are evaluated
respectively and the value of eik,nik |s returned as the value of
COND, It Is permissible for né¢k =1, |n which case the va ue of eé¢k,1
Is the value of COND, If all esl,1 evaluate to NIL,» thenm NIL 1s ¢he
vajue of COND,

Examp|es?

(DE NOT (X) (COND (X NIL) (T)))

(DE AND (X y) (CoND (X (CgND (Y T)))))

(DE OR (X y) (COND (X T) ¢y T)))

(DE IMPLIES (X Y) (COND ¢X (COND (Y T))) (T)))

o~

SAILON 28,6 CHAPTER 9 | 9-1
CHAPTER 9
PREDICATES

Predlcates test S~expressions for partlicular valuesg, forms,
or ranges of values, Al predicates described In this chapter retur:-
either NIL or T <corresponding to the truth values false and true,
unless otherwise noted, Some predjcates cause error messages or
undefined results when applied to S-expressions of the wrong type,
such as (MINUSP (QUQTE FOO)),

! (ATOM X)

The vajuye of ATOM s T If X is elther an Identifier or &
number’ N]L otherwlise,

Examples: (ATOM T) =
(ATom 1,23) =
(AToM (QUOTE (X Y
(ATOM (CDR (QUoTE

NI

~
-~
~
Hu
—

! (EQ X Y)

The value of EQ Is T If X and Y are the same pointer, !.,e.,
the same |nterna| adaress, Identiflers on the OBLIST have uniaue

addresses and therefore EQ wllil be T if X and Y are the same
ldentifler, EQ wil| also return T for eaquivalent INUMS, since they
are represented as addresses, However, EQ wil|l not compare equlvalent

numbers of any other kind, For non-atomic S=expressions, EQ fs T if x
and Y are the same pointer,

Exarpless (EQ T T) = T
(EQ T NIL) = NIL
(EQ (QUOTE A? (QUATE B)) s NIL
(EQ 1 1,9) = NIL
(EQ 1 1) =T
(EQ 1,2 1.,M = NIL

(EQUAL X Y)

The value of EQUAL is T It X and Y are ldentice!
Seexpressions, EQUAL c¢an also test for equa|ity of numbers of mixed
vypes, EQUAL Is eaulivalent to:

(LAMBDA(X Y) (COND ((EQ X Y) T)
(CAND (NUMBERP X) (NUMBERp Y))
(zEROP (#DIF X y)))
(COR (ATOM X)(ATOM Y)) NIL)
(CEQUAL (CAR X) (CAR Y))
(EQUAL (CDR X) (CDR Y)))))

SAILON 28,6 CHAPTER § 9w2 D)
Examp|es! (EQUAL T T) x T

(EQUAL 1 1) x T

(EQUAL 1 1.,2) = T

(EQUAL (QUOTE (A B)) (QUOTE (A B))) s 7 |

(EQUAL (QUOTE (T)) T) s NIL »,

! 9,1 S~Expression Predlcates
(NULL L) T if and only 1f L s NIL.
(MEMBER L1 L2) T if and only If L1 |s EQUAL to a top |evel element of L2

MEMBER Is equivalent to!

(LAMBDACLL 12) (COND (CATOM L2) NIL)

((EQUAL L1 (CAR L2))T)
(T(MEMBER L1 (CDR L2))))) 2

Examples? (MEMBER (QUOTE (C D)) (QUOTE ((A BX(C DYE))) s T
(MEMBER (QUOTE C)(QUOTE (C)))) = NIL

(MEMQ L1 L2) = T {ff L1 Is EQ to a top |eve| element of L2,

D
MEMQ |s equivajent to;
(LAMBDA(L1 L2)CCOND ((ATOM L2) NIL)
((EQ L1 (CAR L2)) T
(T(MEMQ L1 (CDR L2))))) 3
Examp|es? (MEMQ (QUOTE (C DX)(QUOTE (¢(A B)(C D) E))) = NIL
(MEMQ (QUOTE A) (QUOTE (Q A B))) = T
! 9.2 Numerical Predlicates
(NUMEBERP X) =T If X is a number of any type)
= Nf| otherw!se
(ZEROP X) =TIt X |s zero of any numerical type
= apror If X |s a non=numerical quantity
= Nyl otherwise 5
(MINUSP X) T If X |s a negative number of any type

error If X I8 a nonenumerical quantity
NIL otherwlise

T {f X and Y are numbers of any type and X > Y,
error If elther X or Y I3 not a number J
NiL otherwlise

(#GREAT Y X)

(#GREAT X Y)

(#«LESS X V)

.

(GREATERP Xe¢1 X2 ,,.Xép)

(LESSP X

! 9,3 Bo

truth va

(NOT X)

(AND X1

Note:

(OR X+1

Note:

SAILON 28,6 CHAPTER 9 9=3

T It (#GREAT X+l X&¢2) and
(GREAT X442 X¢3) and
(*GREAT Xen=1 X&n)

LY

= error If any X¢| is a non-numerical

qual| ity
= NIL otherwlse
s1 X42 4., Xeén) = (GREATERP Xin Xénel oo, Xei)

Other numerical predicates may be defined as fo|lows:

(DE FLOATP (X) (COND ((EQ X (PLUS X 2)INIL)
((Eg (CADR X) (QUOTE FLONUM)) T1)
(T NIL)))

(DE FIXP (X) (NOT(FLOATP X)))

(DE ONEP (X) (ZEROP (DIFFERENCE X 1)))

(DE EVENP (x) (ZEROP (REMAINDER X 2)))

olean Predicates

The Boolean predicates perform |ogical operations on the
lues NIL and T, A non=NIL va|ue [s considered egqual to T,

2 T If X is NIL
= NJL otherwise

T If all Xs| are non=NIL
NIL otherwl!se

Xe2 ,4eXén)

(AND) = T, AND evaluates Its arguments from |eft to right
unt (! either NIL Is found In which c¢ase the remalning
arguments are not evaluated, or unti| the |ast argument
ls evaluated,

X2 44y Xén) = T |{f any X¢| |s non=NIL
= Nil. otherwlse

(OR) = NIL, OR evaluates !ts arguments from |left to rlght
untl| elther non=NIL I8 found In which case the remaining
arguments are not evaluated, or unti| the last argument {s
eva|uyated,

¥

)

M

™

SAILON 28,6 CHAPTER 12 ig~-1
CHAPTER 10
FUNCTIONS ON S=-EXPRESSIONS

This chapter describes functions for bullding, fragmenting,
oodifylng, transforming, mapping, and searching S-expresslions, as
we||l as some non-standard functions on S-expressions,

! 18.1 S~Expression Byl|ding Functlons
({CONS X Y)

The value of CONS of two S-expressions |Is the dotted palr of
those Seexpresslons,

Example: (CONS (QUOTE A) (QUOTE B)) = (A,B)

Note: See Appendix D for Information on functlions associated with
CONSIng, such as SPEAK, GCGAG, and GC,

(XCONS X Y) = (CONS Y X)
(NCONS X) = (CONS X NIL)
(LIST Xé1 4., Xén) = (CONS X1 (CONS X2 ,,,(CONS X4n NIL),,.))

List evaluates al| of its arguments and returns a |Ist of
thelr values,

Exarplest (LIST)Y = NIL
(LIST (QUOTE A)) = A
(LIST (QUOTE A) (QUOTE B)) = (A B)

(#APPEND X Y)

(DE #APPEND (X Y)
(COND ((NULL X) Y)
(T (CONS (CAR X) (#APPEND (CDR X) Y)))))

(APPEND X+1 X#2 ,,,Xén) = (#APPEND Xé¢1 (#APPEND X4¢2 ,,,(#APPEND Xin NILJ.,..)

Example: (APPEND) = NIL

(APPEND (QUOTE (A B)) (QUOTE (C D)) (QUOTE (E))) = (A B © |

¢ 18,2 S-Expression Fragmenting Functlons
(CAR L)

The CAR of a non-atomic S-expression Is the first element of
that dotted palr, CAR of an atom I|s undefined and w!l| usually cause
an lllegal memory reference,

SAILON 28,6 CHAPTER 10 1g=-2
(COR L)

The COR of a non-atomfc S-expression I|s the second (and last)
element of that dotted opalr, The CDR of an Iidentifier Iz Its
property Ilst, The COR of an INUM causes an |||egal memery
reference, The CDR of any other number 1|s - the |ist structure
representation of that number,

Examples? (CAR (QUOTE (A B C))) = A
(CAR (QUOTE A)) Is 1!]|ega]
(CDR (QUOTE (A B C))) = (B C)
(COR (QUOTE A)) Is the property |lst of A
(CDR (QUOTE (A))) =a NIL

CAAR, CADR,,.,s» CDDDDR

All of the ocomposite CAR=CDR functlions with up to four A's
and D’s are avallabje,

Examples! (CADR X) s (CAR (CDR X))
(CAADDR X) = (CAR (CAR (CDR (CDR X))))

(LAST L)

LAST returns the |ast part of a |ijst according to the
following definition:

(DE LAST (L)
(CoND ((ATom (CDR L)) L)
(T (LAST (COR L))

Examples: (LAST (QUOTE (A B C))) = (C) = (C,NIL)
(LAST (QUOTE (A B , C))) = (B,C)

s 10.3 S=Expression Modlfylng Functlions

The followlng functions for manipulating S-expressions differ
from al| others In that they actual|y modlfy existing Ilst structure
rather than construct!ng new |Ist structure, These functlons should
pe Used With gaution since It Is easy to greate structurses whtgh wiil
confuse or destroy the Interpreter,

(RPLACA X Y)

Rep|aces the CAR of X by Y, The value of RPLACA |s the modified
S=expression X,

Examplet (RPLACA (QUOTE (A B C)) (QUOTE (C D))) = ((C D) B ¢C)

w

\

. _/‘w.‘

s

SAILON 28,6 ‘ CHAPTER 12 19-3
Representation:

X o« TTRTTTCT

4

T7B™T™"°T = TTCTTRICT

BEFORE S O AN Y R D B
Y .1 C 1l I+ 1D INILI
RN I B
X <1 A1 T =181 T=TCINLI
(5 S OO RSN R DU D
¢4
Y - 1C 1 T TDINICI

(RPLACD X Y)

RPLACD replaces the CDR of X by Y, The value of RPLACD Is
the mrodiflied S~expresslion X,

(NCONC X1 X42 44, Xin)

NCONC Is similar Iin effect to APPEND, but NCONC does not copy
mnlst structures, NCONC modifles |!st structures by replaclng the
nast element of X+¢1 by a pointer to X+¢2, the |ast e|ement of X2 by a
polnter to X3, etc, The value of NCONC Is the modifled |ist Xei,
which |s the concatenation of X&il, X2, ,,,, Xén,

Examplest (NCONC) = NIL
(NCONC (QUOTE (A B)) (QUOTE (C D))) = (A B C D)

Representation!

Xet ~ | A 1 T ~ T7BINILT
BEFORE ([D [
Xe2 = | C 1 [= 1D INILI
| 1o _| N
Xei = 1 A1 1 ~181 |
AFTER [B [N
: |
|smmeemcam——- —
—-‘ -------------

Xs2 » 1 €7 "7 -~ T D INICI
[|

SAILON 28,6 CHAPTER 19 ip-4
10,4 S-Expression Transforming Fynctlions

The followina functions transform S=expressions from one form to
another,

(LENGTH L)

LENGTH returns the number of top=leve| elements of the |Ist
L. LENGTH |s equlvajent to:

(DE LENGTH (L)
(COND ((ATOM L) 9)
(T (ADDY (LENGTH (COR L))))

(REVERSE L)

REVERSE returns the reverse of the top leve| of |Ist L,
REVERSE |s equivajent to!

(DE REVERSE (L) (REVERSE1 L NIL))
(DE REVERSE 1 (L M)
(COND ((ATOM L) M}
(T (REVERSEL1 (CDR L) (CONS (CAR L) M)}

(SUBST X Y S)

SUBST substitutes S~expression X for al| EQUAL occurrences of
Se=gxpression Y |In Se-axpression S, SUBST Is equivalent to:

(DE SUBST (X Y §)
(COND ((EqUAL Y §) X)
((ATOM S) S)
(T (CONS (SUBST X Y (CAR S))
(SUBST X Y (CDR §))))))

Note! (SUBST @ 2 X) [s useful| for creating a copy of the |ist X,

Exampleo} (SUBST 5 (QUOTE FIVE) (QUOTE (FIVE PLUS FIVE IS TEN)))
= (5 PLUS 5 IS TEN)

12,5 Se=Expresslion Mapping Functlons

The folnowing functions perform mapplings of |ists accordling
vo the functiona| arguments supplled,

(MAP FN L)

MAP applies the functlon FN of one argument to |Jst L and to

successive CDRs of [untl| L |s reduced to NIL, The vajue of MAP s
NIL, MAP |s equlvalent tos

()

N

(‘\

SAILON 28,6 CHAPTER 10 12=5
(DE MAP (FN L)
(PROG NIL
L1 (COND C((NULL L)CRETURN NIL) M)
(FN L)
(SETQ L (CDR L))
(GO L1
Example: (MAP (FUNCTION PRINT) (QUOTE (X Y 2))) =
PRINT? (XY 2)
PRINT: (Y 2)
PRINT: (2)
PRINT: NIL

(MAPC FN L)

MAPC is ldentical to MAP except that MAPC appllies function FN
vo the CAR of the remalning Iist at each step, MAPC is equivalent to:

(DE MAPC (FN L)
(PROG NIL
L1 (COND ((NULL L)(RETURN NIL)))
(FN (CAR L))
(SETQ L (CDR L))

(GO L1)))
Examples (MAPC (FUNCTION PRINT) (QUOTE (X Y 2))) =
PRINT! X
PRINT! Y
PRINT! 2
PRINT: NIL

(MAPLIST FN L)

MAPLIST app|les the function FN of one argument to |Ist L and
vo successlve CDRs of L wuntil L Is reduced to NIL, The value of
MAPLIST is the |ist of values returned by FN, MAPLIST is equlvalent
Vo

(DE MAPLIST (FN L)
(CoND CONULL L) NIY)Y
(v (CONS (FN L) (MAPLISy FN (CDR L))))

Examp|es: (MAPLIST (FUNCTION CAR) (QUOTE (A B C D))) = (A B C D)
(MAPLIST (FUNCTION REVERSE) (QUOTE (A B C D))) =
(b C B A) (D C B) (D C) (D))

(MAPCAR FN L)

SAILON 28,6 CHAPTER 10 10-6 2

MAPCAR |s ldentical to MAPLIST except that MAPCAR app|les FN

vo the CAR of the ,emalning Ilst at each ste,, MAPCAR lg egqulvaleng
vo!

(DE MAPCAR (FN L) _ 2
(COND (¢(NULL L) NIL)
(T (CONS (FN (CAR L)) (MAPCAR FN (CDR L))))))

~ Examples! (MAPCAR (FUNCTION NCONS) (QUOTE (A B C D))) s ((A) (B) (C) ¢
(MAPCAR (FUNCTION ATOM) (QUOTE ((X) Y (Z)))) = (NIL T NIL)

3
10,6 S=Expression Searching Functlons
(ASSOC X L)
ASSOC searches the |lst of dotted palrs L for a palr whose 3
CAR Is EQ to X, If such a pelr Is found It |s returned as the vajue
of ASSOC, otherwise NIL Is returned, ASSQC Is equivalent to!
(DE ASSOC (x L)
(ConND C(NULL L) NIL)D
((EQ x (CAAR L)} (CAR L)) 5
(T (ASSOC X (CDR L))
Examples (ASSOC 1 (QUOTE ((1,0NE) (2,TW0)))) = (1,0NE)
(SASSOC X L FN)
SASSOC searches the |ist of dotted palrs L for a palr whose)
CAR Is EQ to X, If such a palr Is found It Is returned as the vajue
of ASSOC, otherwise the value of FN, a funotion of no arguments, |s
returned,
(DE SASSQOC (X L FN) S
(COND ((NULL L) (FN))
((EQ X (CAAR L)) (CAR L))
(T (SASSOC X (CDR L) FN)I))
Example: (SASSOC 2 (QUOTE ((1,0NE) (2.,TWO)))
(FUNCTION (LAMBDA NIL (QUOTE LOSE)))) = LOSE 2
10,7 Character List Transforming Functions
(EXPLODE L)
EXPLODE transforms an S=axpression into a |lst of slngle 2

character Ildentiflers Identical to the sequence of charagters whlch
would be produced by PRINC,

Examplel (EXPLODEC (QUOTE (DXx_/=_0Y)))
= (/(DXxX/ ./ =/ _0YN)

O

G

e

.

SAILON 28,6 CHAPTER 17 197
(FLATSIZE L) = (LENGTH (EXPLODE L))

(MAKNUM L)

MAKNUM transforms a |lst of single character ldentifiers
(actually takes the first character of weach Identifier) inte an
Swexpression ldentical to that which would be produced by READInNng
those characters, MAKNAM however does not INTERN anmy of the
{dentifiers In the S-expression it produces,

Examples: (MAKNUM (QUOTE (A P P L E))) = APPLE
(MAKNAM (QUOTE (//7_/)))) = /)

(READLIST L)

READLIST is identical to MAKNAM except that READLIST INTERNs
all| identiflers In the Seexpression it produgces, READLIST Is the
noglical inverse of EXPLODE, i,e,,

(READLIST (EXPLODE L))
(EXPLODE (READLIST L))

nu
—

C\

O

O

[‘\

N

[
AN

SAILON 28,6 CHAPTER 11 11-1
CHAPTER 11
FUNCTIONS ON IDENTIFIERS

There are three baslec types of functions on fjdentlfiers:

those whilech manipulate thelr property lists, those whigch create mew
fdentifiers, and those which contro| thelr membership In the OBLIST,

NOTE: Al functions described In tnls chapter whigch expect an
fdentifier as one (or more) of Its arguments wi|| give elther
erroneous results, or an error gondition |f any Seexpression other
than an identifler is supplled,

11,1 Property LIst Functions
(GET I P)

GET is a fynctlon whlch searches the property |ist of the
fdentifier | looking for the property name whioh |s EQ to P, If such
a property name Is found, the value assoclated wWith It {s returned as
the value of GET, otherwlse NIL Is returned, Note that confuslion

exists If the property Is found, but Its value Is NIL, GET Is
equlivalent to:

(DE GET (I P) (COND ((NULL (CDR 1)) NIL)
((EQ (CADR [) P) (CADDR 1))
(T (GET (CDDR 1) P))))

(GETL I L)

GETL is another function which searches property |Ists, GETL
searches the property |ist of the Identifler | |Jooking for the flrst
property which 1Is a member (MEMQG) of the Iist L, GETL returns the
remaining property |ist, Including the property name [f any suygh
property was found, NJL otherwise, GETL I!s equivalent to:

(DE GETL (I L) (COND ((NULL (COR I)) NIL)
((MEMg (CADR 1) L) (CDR 1))
(T (GETL (CDDR I) L))))

(PUTPROP [V P)

PUTPROP 1s a functlon which enters the property name P wWlith
property value V Into the property |ist of identifler I, If the

property name P Is already In the property Ilst, the o|d property
value s replaced by the new one; otherwlse the new property name P
and Its value V are placed on the beglinning of the property I|ist,

PUTPROP returns V,
(REMPROP [P)

SAILON 28,6 CHAPTER 11 11=-2

REMPROP remoyes the property P from the property |Ist of
ldentifler !, REMPROP returns T |f thero was such & property, NIL
atherwlse,

SET and SETQ are used to change the values of varjables whlch
are bound by efther LAMBDA or PROG, or variables ,hich are bound
globajly, (See 7,1), ~

* (SET E V)

SET changes the value of the Identifler specifled by ¢the
expression E to V and returns to V, Both arguments are evajuated,

Note! In compiled functlions, SET can be used on|ly on globally bound
and speclal varlables,

! (SETQ "JD" V)

SETQ@ changes the value of D to V and returns Vv, SETQ
evaluates V, but does not evajuate D,

(DEFPROP ™" myw wpw) s (PROG2 (PUTPROP (QUOTE 1) (QUOTE V) (OUOTE
P))(QUOTE 1))

DEFPROP !s the same as PUTPROP except that It does not
evaluate Its arguments, and DEFPROP returns I,

Example: (DEFPROP POSP (LAMBDA (X) (GREATERP X 2)) EXPR)
(DE "ID" "ARGS" "BODY™)

DE places the form (LAMBDA ARGS BODY) on the property |ist of
1D under property EXPR, If ID previous|y had any of the oproperties
EXPR, FEXPR, SUBR, FSUBR, LSUBR, or MACRO, then DE w!l| return the
nlat (I0 REDEFINED), Otherwlse, DE returns 1D,

(DF "ID" "ARGS"™ "BODY")
Same as DE except defines & function with FEXPR property.
(OM "]ID" "ARGS" "BODY")
- Same as DE except deflines a MACRO,
11,2 OBLIST Functions

(INTERN 1) « m
INTERN puts the identifler I In the gpproprligte bugket of
0BLIST, If the ldentifier Is aready a memper of the OBLIST, then
INTERN returns a pointer to the ldentifler already there, Otharwl|se,
INTERN returns I,

M

(f“\

N

M

SAILON 28,6 ‘ CHAPTER 11 11=-3

Note: INTERN Is only necessary when an ldent|{fler whlgch was created

by
GENSYM, MAKNAM, or ASCI! needs to be unfquely stored,

(REMOB "Xe1® "X42 ,,, "Xén")

REMOB removes al|l of the Identiflers Xé¢l, X¢2, ,,, » Xén from
the OBLIST and returns NIL, None of the X+¢i’s are evaluated,

Exarple: (REMOB FO0Q BAZ)

11,3 ldentifler Creating Functions

The following functions create new Identliflers but do not
INTERN them onto the OBLIST.

(GENSYM)

GENSYM Increments the gensrated symbo| counter and returns a
new identifler specifled by the counter, The GENSYM counter s
iniftialized to the Identifler G@R22, Successive executions of
(GENSYM) wlil| return,

Gooeol, GARB2, GEBB3, ..,
(CSYM "1")

CSYM inltja|izes generated symbo! counter to the identifler
I, and returns !, CSYM does not evaluate Its argument,

Example: (CSYM ARYD2) = ARYQO
(GENSYM) 5 ARYP1
(GENSYM) = ARYD2
Etcl
(ASCII N

ASC]] creates a2 single character Identifier whose ASCI! print
name equals N,

Examplet (ASCI] 101) !s an Identifier with print name "A",

Q)

M

SAILON 28,6 CHAPTER 12 12«1
CHAPTER 12
FUNCTIONS ON NUMBERS

There are two types of functlions which operate on numbers to
create new numbers: arlthmetic and loglcal,

! 12,1 Arlthmetlic Functions

Unless otherwise noted, the following arithmetic fumctions
are deflned for poth Iinteger, real and mixed combinations of
arguments, and evaluate all thelr arguments, The result s real| If
any aroument s rgals, and INnteger [f all arguments are integer, Most
arithmetic functions maY caWse ovVerfloWw whlgh oproduces an error
message, .

(MINUS X) T =X

(#PLUS X Y) 2 X + Y

(PLUS X1 X2 ,., Xn) g X1 + X2 + ,,, * Xn
(«D]JF X Y) = X = Y

(DIFFERENCE X1 X2,,.,Xn)

X1 = X2 = 444 =Xn
(#TIMES X Y) 2 X # Y
(TIMES X1 X2 ,44 XN) a X1 #« X2 # ,,, & Xn
(#QUO0 X Y) = X/ Y

X1 /7 X2 / +4s /7 Xn

(QUOTIENT X1 X2 ,,,Xn)

For Integer arguments, #QUO and QUOTIENT glve the Integer
part of the real| quotient of the arguments,

Examrples: (#QUO 5 2) = 2
(#QUO =5 2) = =2

(REMAINDER X Y) ,,¢ X = (X /7 Y) & Y
Note:t Remalnder {s not deflined for rea| arguments,
(DIVIDE X Y) = (CONS (QUOTIENT X Y) (REMAINDER X Y))

(GCD X Y) GCD returns the greatest common divisor of the JIntegers X
and Y, ’

(ADD1 X). = X
I

1 (SUB1 X) = X = 1
(ABS X) z |

SAILON 28,6 CHAPTER 12 12-2
(FIX X) retyrns the |argest Integer not greater than X,
Examp|es: (FIX 1) = 1

(F1x 1,1) = 1

(FIX =1,1) = =2 not =1

Other arithmetle functions not defined In the LISP lntcrnreter
can be deflined as fol|ows!

(FLOAT X) = (#PLUS X 2,8)
(RECIP X) = (QUOTIENT 1 X)

(SIGN X) = (COND ((RZEROP X) @)
((MINUSP x) =1)
(T 1))

(ROUND X) = (TIMES (SIGN X) (FIX (PLUS (ABS X) @,5)))

Exarpless (ROUND ,5) = 1
(ROUND ,49) = 0
(ROUND =,49) = @
(ROUND «35,1) = =35

(MIN X Y) = (COND ((LESSP X Y) X) (Y))
(MAX X Y) = (COND ((LESSP X Y) Y) (X))

Examp|es: (MINUS 1) s =1
(MINUS =1,2) = 1,2
(PLUS 1 2 3,1 = 6,1
(PLUS 6 3 =2) s 7
(DIFFERENCE 6 3 1) s 2
(TIMES =2 2,2) = -4,0
(QUOTIENT & 2) ® 2
(QUOTIENT 5,0 2) s 2,5
(QUOTIENT =5 2) = 2 '
(REMAINDER 5 2) s 1
(REMAINDER =5 2) z =]
(REMAINDER 5,0 2) = undefined
(ABS =32,5) s 32,5
(FIX 32,5) z 32,
(FIX =32,5) =

-33,

12,2 Loglca] Functlons

The following functions are [ntended to operate on INUM and
FIXNUM arguments, but thelr results are not defined for BIGNUM or
FLONUM (rea|) arguments,

(BOOLE N X1 X2 ,,, Xn)

¢

C\

(\

®

SAILON 28,6

BOOLE cayses a
lts arguments, The
operations to perform,

For n = 2, gach

N result

2 9

1 AisinBet
2 ;¢IAB+!
3 Bl

4 ;$'AB$'
5 At

6 Asl 2 B
7 AslvBat

For n > 2, BOOLE ts def

CHAPTER 12 12=3

36 blt Boolean operation to be performed on
value of N speclfles which of 16 Boolean

bltéel In (BOOLE N A B) |s defined:

N result

10 Asl A Bl

11 Avl E Bel

12 Asl

13 AuivBal

14 éal

15 AslVBa|
o 16 AslvBael

17 1

ined:

(BOOLE N ,,, (BOOLE N (BOOLE N X1 X2) X3) ,,, Xn)

(LSH X N)

LLSH performs a

negative, X wli| be shifted right,

fliled with zeros,
Examples with IBASE = 8

(BOOLE 1 76 133
(BooLE 1 76 133
(BOOLE 12 13 @)
(BOOLE 7 7 12)
(LSH 15 2)

(LSH 15 =2)
(LSH =1 =2)

logtecal |eft shift of N places on X, If n |Is
In both cases, vacated blts are

32

38
777777777764
17

64

3
177777777777

)
70)

#oan uuann

®

O

SAILON 28,6 CHAPTER 13 13=-1
CHAPTER 13
PROGRAMS

The "program feature" allows one to wrlite ALGOL=|Tke
sequences of statamants with program variagbles and labels,

(PROG "VARLIST" "BODY")

PROG Is a fyunction which takes as arguments VARLIST, a |Ist
of program varlabjes which are Inltlalized to NIL when the PROG Is
entered (see 7,1), gnd a BODY which Is a |1st of labels (whigch are
igentiflers) ang statgmgnts Which arg non=atomjc S=gXpressfons, PROG
evalyates ltg stagtements 'n sequ®nce unt!| eithe, a RETURN or GO Is
evaluated, or the 1ist of statements |s eyxhausted, In whlch the va|ue
of PROG Is NIL,

(RETURN X)

RETURN causes the PROG contalning It to be exlted with the
value X.

(GO "ID")

GO causes the sequence of <control wlthin a PROG to be
transferred to the next statement following ¢the Jabel 1D, In
Interpreted PROGs, |f ID Is non-atomic, It |s repeated|y evaluated
unt!!l an atomlic value Is found, However, In complled PROGs, ID |Is
evaluated on|y once, GO cannot transfer Into or out of a PROG,

Note: Both RETURN and GO should on|y occur efther at the top leve|
of a PROG, or In compositions of COND, AND, OR, and NOT which are at
the top leve| of a PROG,

Exarple: The function LENGTH may be defined as followst

(DE LENGTH (L)

(PROG (N)
(SETQ N 2)

L1 (COND ((ATOM L) (RETURN NJ)))
(SETQ N (ADD1 N))
(SETQ L (CDR L))

(GO L1)))
(PRCGZ2 X+1 X2 0y Xeén) nSS'

PROG2 wevaluates al| expresslons X+l X¢2 ,,. X*n, and returns
the value of X2,

L_/)

O

~

SAILON 28,6 CHAPTER 14 14=1
CHAPTER 14
INPUT/OUTPUT

14,1 Flle Names

Syntax: <fl|ename =~ |[st> <device=name>

<fllaname=|ist><{devige~nams>
<f1lename=|igt><file - name>

o o

*e we oo
ee e e

<device =« name t1se <ldentifler)
11z (<atom><atomd>)

<fl|ename> ti= <{identifler>
135 (<ldentifler> ., <idoentlfler>)

Semantlcs! .
A device=name Is elther an Identifler ending with c¢olon (1)

which 1s the nameg of some Input or output device, or a |Ist
contalning a project-programmer number which Implicltly specifles the
d'Skl

A fllename is e{ther an ldentifler which specifies a fl|lename
with a blank extensjon, or a dotted palr of filename and extension,
In both cases the filename applles to the most recently (to the left)
speclfled device=name,

14,2 Channe| Names

Channel| names can optionally be assigned to files gselected by
the functlons INPUT and OUTPUT, A channe| name Is any identifler
which |s not folnowed by a colon, If no channel| name I|s specified to
INPUT or OUTPUT then the channe| name T is assumed, The channel name
NIL specifles the teletype In the fungctions INC and OUTC, Up to 14
ohannels may be acti{ve at any time,

14,3 Input
14,3,1 Sejection and Control
(INPUT “CHANNEL" , "FILENAME=LIST™)

INPUT releases any flle previously Initiallzed on the
chanrel, and inltializes for Input the first file specified by the
filename=|lst, INPUT returns ¢the channe| |f one was specifled, T
otherwise, INPUT does not evaluate Its arguments,

(INC CHANNEL ACTION)

INC selects the specifled channrel for input, The ghannel NIL
selects the teletype. [f ACTION = NIL then the previous|y selected
‘nput flle Is not released, but only deselegteds If ACTION = T then
that flle 18 relgasedr makling the previous|ly selegted ohannel

SAILON 28,6 CHAPTER 14 14=2 D
avallable, At the top level, ACTION need not be spec!fled,

The Input fumctions In 14,3,3 recelve input from the selected
Input channel, When a file on the selected channel ls exhausted, ,
then the next flje In the fllename=|list for the channel |Is D
Inftialized and Input, until| the f{lename=-|ist Is exhausted, Then
the teletype Is automatically selected for Input and (ERR (QUOTE
SEOF$)) Is called, The use of ERRSET around any functions which
accept Input therefore makes [t possible to detect end of flje, If
no ERRSET Is wused, control returns to the top Jevel of LISP, INC
evaiuates Its argumgnts, and returns the previous|y selected ochanne| D
name,

In order to READ from mu|tiple Input sources, separate
channels should be initia|lzed by INPUT, and INC oan then select the
appropriate channe| to READ from,

Example: The folnowing show a falrly typical sort of manipulation of two
flies at oncs,

(LAMBDA (FILE)
(PROG (CHAN1 CHANZ2 EXPR1 EXPR2)
(SETQ CHAN1 (INPUT DSKt FO00))) sinjti{al{2g¢ FOO with channg| namg T
(SETQ CHAN2 (EVAL (LIST ®INPUT (GENSYM) @DSKi FILE)))
tthlis t1)e Is alven & GENSYM chappne| nape to prevent
wlgh any exisging channels
LOOP (INC CHANL NIL) iselect flrst ochannel
(SETQ EXPR1 (READ)) jread an expression from FOO)
(COND ((EG EXPRL (QUOTE «EOF#)) (GO EXIT1))) jend of flrst f1102°>
(SETQ EXPR1 (CAR EXPR1)) jundo effect of ERRSET
(INC CHAN2 NIL) jopen second channe| _
(SETQ EXPR2 (ERRSET READ)) iread an expression
(COND ((EQ EXPR2 (OQUOTE «EOF#)) (GO EXIT2)) jend of this f|e?
(CATOM EXPR2) (GO ERROR))?) jread error?
(SETQ EXPR2 (CAR EXPR2)) jundo effect of errset J
(AR RN RN R R A R B A BN B A

process In EXPR1 and EXPR2

AEREEEEREE IR I RN B R B N B AN A I

(GO LOOP)
ERROR jerror routine .
EXITY jexit when flrst file ends flrst D
EXIT2 ;exit when sencond flle ends first
ete,
(DSKIN , "FILENAME=LIST™) 5

In loading a file Into a LISP program, It Is not normajly
necessary to make use of the full generality avallable |n INC and
INPUT, The function DSKIN is supplied for this purpose, [t has the
same effect as doing INC and INPUT on Its arguments, except that no
channel name I|s admissible, and no device name |s required, The 5

)

Ch

O

O

SAILON 28,6 ' CHAPTER 14 14=3

channe| namg wi|| a|ways be T, and ‘0SK’ Wl || pe Supplied as a deVv|ge
name, !f none Is glven,

Examples
(DSKIN FOO DTA3: BAR (1,JMC} (SIMU,MAN))

will READ the files FOO from DSK:, BAR from DTA3: and
SIMU,MAN from the disk area (1,JMC],

When reading an input flle, It is sometimes desirable t0 Knmow

the page and |tne being read from, PGLINE returns the dotted palr
(page numpber , |Ine number) for the selected Input file, The page
number is appllcaple only to STOPGAP files, If the fl|le has no |ine
numkters, PGLINE wil| always return (1 , 2),

14,3,2 Te|letype Input Control

When Input |s from the tel|etype, READ Is terminated by elther
an entire S~expression or by an Incomplete S~expression fo|lowed by
altrode, A|tmode has the effect of typing a space followed bY the
appropriate number of rlght parens to complete the S~expresslion.
This feature |s particularly useful when an unknown number of right
parens are needed or when n (DDTIN NIL) mode,

(DDTIN X)

DDTIN s a functlon which selects teletype Input mode, Wlth
(DDTIN NIL), and typing to READ, READCH, or TY!, a rubout will delete
the last c¢haracter typed, and control U (+U) wl]|| delete the entlire
last ilne typed, Input [s not seen by LISP untlil elther a|tmode or
carriage return Is typed,

With (DDTIN T) and typ!ng to READ, a rubout wW!|| dejete the
entlire S~expression belng read and start reading agaln,

Note: (DDTIN T) Is not recommended when the time=sharing system [s
swapping, since the program Is reactivated (and hemce swapped
Into core) after every character typed,

14.303 InDUt Transfef

! (READ)

READ causes the next S-expression to be read from the
selected Input device, and returns the (nterna| representation of the
S=exnpression, READ uses INTERN to guarantee that references to the
same identlfler are FQ,

READ wl|| accept any S-expression whlch conforms to the
following syntax:

SAILON 28,6 CHAPTER 14 14=4
Syntax:?
{readab|e® S-axpr> <atom>
@¢readable S~expr)
(¢readable S~expr|ist)
{(.<readab|eS=expr>))

ts [<unbalanced S=expression |latd]
t= () z NIL

oy n

-
>
]

{readable S-oxpr |Ist) 1= {readable S~expr>
1i3 <{readab|e Swexpr><readable S=
expression |1st>

Semantlics:

The delimiter "a" designates that the followlng readable
S=expression |as to be quoted,

Examples! @A means (QUOTE A)
@(®A B) means (QUQTE ((QUQTE A) B))
@RA means (qUOTE (QUOTE A)))

The de|imlters "[" and ")" operate as "super-parentheses", A
rpight bracket "]" wil|| close al| open left parentheses ")" up to the
matching left bracket "[", 1If there Is no matching |eft bracket, |t
will close the entire S~expression as does a|tmode, No syntax Is
glven for unbalanced=S=expression=|{st, but It Is Intended to mean an
S~expressjon=|1st which Is |acking one or more right parentheses,

Exampled (COND C(ATOM X) (REVERSE(CDR YILT(APPEND Y 2)
(COND ((ATOM X) (REVERSE(CDR Y)))(T(APPEND Y 2)))

(READCH)

READCH causes the next character to be read from the se|ected
Input device and returns the corresponding single character
ldentifliepr, READCH also uses INTERN,

(TYd

TY] causes the next charactar to be read from the se|ected
Input device and returns the ASCII code for that character,

A functlon TEREAD whleh 1lgnores a|| characters until a
nine=feed Is seen cagn be deflned:!

(DE TEREAD NIL

(PROG NIL
L (COND ((EQ (TYI) 12) (RETURN NIL)))
(GO0 L))

O

C

SAILON 28,6 CHAPTER 14 14«5
14,4 Output

14,4,1 Se|ection ang Control
(QUTPUT "CHANNEL" , "FILENAME=LIST")

OUTPUT Initia|izes for output on the specifled c¢hanne| the
single fi|e specified by the fl|ename«|[st, OQUTPUT does not evaluate
lts arguments, and returns the channel name |[f specified, T
otherwlise,

(OUTC CHANNEL ACTION)

oUTC selects the Specifled channe| for output, The ohannel
NIL selects the teletYpe» The output functions In 14,4,3 transfer
output to the selected output channel,

1f ACTION = NIL, then the previously selected output flle s
not closed, but on|y deselected, If ACTION = T then that file Is
closed, |,e,, an end of flle |Is written, OUTC evaluates Tts
argurments and returns the previous|y selected channe| name. At the
vop level, ACTIgN need not be speclfled,

Examplest (At the top |evel)

(OUTC (OUTPUT LPTH) T)
(QUTC NIL T)

(OUTPUT FOO DSK: BAgz)
(OUTC (QUOTE FO0O) NIL)

(LINELENGTH N)

LINELENGTH 1s wused to examime or change the max|mum output
ninelength on the selected output channel, If N = NIL then the

current ||lnelength |s returned unchanged, otherwise the |Inelength |s
changed to the value of N which |s returned and must be an {nteger,

(CHRCT)

CHRCT returns the number of character poslitions remaining on
the output |Iine of the selected output channe],

When characters are output, |I|f CHRCT Is made negatlve, an
ASC1] 176 followed by a carriage=return and a |ine~feed are output,
These characters are completely Ignored on {nput, (Ses Chapter 3),

14,4,2 Qutput Transfer
! (PRIN1 &)

PRIN1 causes the S-expression S to be printed on the sel|ected
output device with no npreceding or following spaces, PRIN1 also
Inserts slashes ("/v) before any characters 1In Identiflers whlch

SAILON 28,6 CHAPTER 14 14-6

would be s8syntactlically Incorrgct otherw|se (see Chapter 3), Double
guotes around strings are printed,

(PRINC 8)

: PRINC Is the same as PRINL1I except that no slashes are
Inserted and double guotes around strings are not printed,

(TERPRI X)

TERPR] prints a carrlage=return and |Ine-feed and returns the
value of X, X may be omitted if the value of TERPR! |s not used,

Examples (PRINC(TERPRI X))

|s the same as
(PROG2 (TERPRI)(PRINC X))

! (PRINT §)
s (PROG2 (TERPRI)
(PRINL §)
(PRINC (QUOTE/_))}
(TYO N)

TYO prints the character whose ASCII value |Is N, and returns
N,

)

O

O

O

SAILON 28,6 | CHAPTER 15 1g=1
CHAPTER 15 |
ARRAYS
(ARRAY "[D" TYPE B41 B42 ,,. Bén) ng 5,

ARRAY Is a functlon which declares an array with name ID, and
places an array referencing functlion on the property Iist of ID, TYPE
determines the type of an array as fo|lows:

TYPE INITIAL VALUE ARRAY ELEMENT

T NIL LISP S=expressions stored as
pointers; 2 pepr word,

NIL 2,0 REAL numbers stored one per word In
pDp=6/12 floating polint representation.

36,) 36 blt 2/s complement Integers stored
1 per word,

P<n<36, @ n blt positive Integers packed
(36,/n] per word,

B¢l Bé¢2 ,,, Be¢n are array subsorlipt bounds which should evaluate to
elther positive integers S¢i,» or to dotted palrs of Integers (L+f ,
Usi) where Le1SUst, Which spec!fy lower and Upper subscript bounds as
fol|ows?

Bé¢l LOWER BQUND UPPER BOUND LENGTH
Se ! 1) S+ = Sél
(Lel 4 Usl) Lo Vsl Usl=lLel « &

The elements of an array are referenced by!
(<array named> Is1 142 ,,, 1én) where L¢J < i¢J < Vs,

The ARRAY subscrlipts |+J must be Integers, References to memory
nocations outslde of the area reserved for the array are prohiblted
and will cause an l|legal memory reference message, Array e|ements
are stored In BINARY PROGRAM SPACE,

Examples:

1) To declare a 1 dimenslional array CHARS of 7 bit characters and
with subscripts 1 to 501 '

(ARRAY CHARS 7 (QUOTE (1 , 52)))

The first e|ement of CHARS |s referenced:

SAILON 28,6 CHAPTER 15 15-2
(CHARS 1)

2) To declare a 2~dimensional array A of REAL numbers and wlth
subscripts @ S | ¢ N, @ € J < My

(ARRAY A NIL N M)

3) To declare a 1-dimensional array FOO of S=expressions and with
subseripts =K $ | € K

(ARRAY FOQO T (CONS (MINUS K) K))
#(EXARRAY "ID" TYPE B¢l Be2 ,,, Bén) N £ 5,

EXARRAY |s identical to ARRAY except that array e|ements are
stored In the body of a subroutine |oaded by the LOADER (see Append!x
H), and exarray e|ements are not |nitialized, The array refaranc7nq
subroutine Is stored |n BINARY PROGRAM SPACE as with ARRAY, EXARRAY
searches symbo| tab|es as does GETSYM (see Append!x H),

Note: Both ARRAY and EXARRAY consume BINARY PROGRAM SPACE, If
there s [nsufficlent room there (see Appendix C) the error message
"BINARY pRQGRAM SpACE EXCEEDED" wll| result,

(STORE ("1D" (41 {42 ,,, lén) value)

STORE chanmges the vajue of the specifled array ejement to
value, and returns vajlue,

Note! STORE evaluates |ts second argument flrst,
Examples: WIth the arrays declared previously!

(STORE (FQOO £) (QUOTE (A B)))

(STORE (FOO (BAZ L)) 1)
(STORE (A I J) (A J 1))
(STORE (CHARS 1) 17)

15,1 Exam|ne and Deposlit
(EXAMINE N)

EXAMINE returns as an Integer the contents of memory |ocation
N,

(DEPOSIT N V)

DEPOSIT stores the Integer V In memory location N and returns
vV,

L/

v

O

O

SAILON 28,6 CHAPTER 16 16=1
CHAPTER 16
OTHER FUNCTIONS
(TIME)

TIME returns the number of mi||Iseconds your Jjob has computed
since you logged Into the system,

(ERRSET E "F™)

ERRSET evalyates the S~expression E and !f no error oOCCurs
durlng Its evaluation, ERRSET returns (LIST E), 1If an error occurs,
then the error message w!|| be suppressed If and only If F % NIL, and
NIL s returned as the value of ERRSET, If the function ERR Is
called durlng evajuation, then no message |Is printed and ERRSET
returns the value returned by ERR,

The folnowing example shows the use of ERRSET to keep trylng
vo iritisallZe the |imne printer untl| it [s available:

(DE LPTGRAB NIL

(PROG NIL
L (COND ((ATOM(ERRSET (QUTPUT LPT:) T))
(WAIT) (GO L)))))

where WAIT s some functlon (such as the time=sharing sleep UUO)
whigh causes & delay,

(ERR E)

ERR returns the value of E to the most recent ERRSET, or to
the top leve| of LISP tf there Is no ERRSET,

(#RSET X) flag = NIL initlally

#RSET sets a special flag In the Interpreter to the value of X, and
returns the previous value of the flag, Normaj|y, with (#RSET NIL),
wher an error occurs, speclal varlables are restored to their top
nevel values from the speclal pushdown |ist, and ¢the top |level
READ=EVAL=PRINT loop |s entered,

With (*RSET T), speclals are not restored, neither pushdown
nist Is changed, and the READ=EVAL-PRINT Joop s entered, This makes
!t possible to examlne the varliable bindings Immediate|ly after an
error message has been printed, To restore special bindlngs to thelr
vop level values and return to the top level, type a bell (=), oOr
evaluate (ERR),

(BAKGAG X)

SAILON 28,6 CHAPTER 16 lg=2

BAKGAG sets a speolal flag In the Interpreter to the value of
X and returns the previous setting of the flag, Only If the flag *#
NIL when an error occurs, then a backtrace Is printed as a series of
function calls, determined from the regular pushdown I|ist, starting
trom the most recent functlion oca|l, If X Is an Integer, then X
specifles the number of regular pushdown |Ist words to [nclude the
backtrace, If X 1Is T, then the entire regular pushdown [lst [s
backtraced to the most recent ERRSET, The format for printing 18

printout meaning
fni=fn2 Functlon 1 oajjed function 2
tnl = EVALARGS The arguments to fni are belng
svaluated .
before entering function 1,
fni « ENTER The function 1 Is entered,
? - fnt Some internal LISP functlon called

function 1,

Note! The BACKTRACE printout |s often confused by oompl|ed function
calls of the form (RETURN (Fop X)) which Is complied as ‘
(JCALL (E FO00)) whieh can be changed to (JRST entrance to
FOO0),
which Wi]| not show up In the BACKTRACE,

(INITFN FN)

INITFN selects the functlon of no arguments FN as an

Inttlallzation function whioh Is evaluated after a LISP error return
vo the top leve| has occurred or whenever a BELL is typed, INITFN
returns the previous|y se|lected Inltialization functlion,

Initiallzation functions are useful Wwhen |t Is desirable to
change the top leve| of LISP, For Instance,

(INITFN (FUNCTION EVALQUOTE))
cayuses the top |eve| to become EVALQUOTE Instead of EVAL,

@)

SAILON 28,6 APPENDIX A A=t
APPENDIX A
ALVINE
by John Ajlen

ALVINE Is a LISP edftor which Is very convenlent for
interactive debugaing, ALVINE allows one to edit both functlion
definitions and S-.expression values, ALVINE Is characterlzed by the
simprniclity with which one can correct a parenthesis mismateh and make
context searches and replacements, This simplicity arises from the
data structure ALVINE uses to represent an Seexpression, All
S~gxpressions are f|lattened Into a |Ist of atoms Including the atems
%LP, %RP and %D whlech represent "(", ")" and ",", Because of thls
representation, ALVINE |ooks more |lke a string type text ed]ter with
the sma||est unit of resolution belng a single atom op S=expression
de|imiter (XLP %RP or %D),

ALVINE has a pointer whlch can move through the string belng
edited, The editing functions affect only the string to the rlght of
the polinter,

ALVINE also contalns functions for manipulating {mput-outpout
tfiies, and GRINDEF which |s useful for printing function definltions,

ALVINE 1!s not ordinarl|y a resident part of the LISP systenm,
but Is automatically |oaded whenever the functlion ED is cal|ed,

(ED X)

ED loads ALVINE If it Is not already |loaded, If X = NIL then
the edltor |s entered, If X = T, the edltor Is not entered, This Is
useful to load GRINDEF wlthout entering the edlitor,

From the top |eve| of LISP, (ED) |s the same as (ED NIL).
(SPRINT X Y 1)

SPRINT prints S=expresslion X 1In a speclial format whlch
autoratically |Indents according to parenthesis |evel|, Whenever any

sub-S=expression of X cannot flt entlrely on the same printing |Iine,
vhen 1Its sube-S=-gXpressions are printed on separate |jnes wlth
matching indentation, The parameter Y specifies the Inltlal left

hand column Indentation, SPRINT wuses CHRCT and LINELENGTH to
determine the number of characters remaining on the print |ine,

(GRINDEF “F1" "F2" ,,, "Fn")

GRINDEF Is used to print the definitions of functlons and

values In DEFPROP format, GRINDEF uses SPRINT to print function
definitions In a highly readable format, GRINDEF prints all

SAILON 28,6 APPENDIX A A=?2

properties of the ldentiflers F1, F2, ,,, Fn which are Tn the |Tst
XX%L which |s Initliallzed to EXPR, FEXPR, VALUE, MACRO and SPECIAL,

Example? (GRINDEF PLUS)

(DEFPROP PLUS
(LAMBDA (L) (#EXPAND L (QUOTE «PLUS)))

MACRO)
Description of the Command Structure

Each oommand to ALVINE consists of a single character
(possibly preceded by a number) fol|owed by a string of arguments,
These commands modlfy the text string presentiy occupying ALVINE’s
buffer, When text |s Introduced to ALVINE a polnter ([s attached
preceding the flrst obJect In the buffer, ALVINE’S commands al|ow
the user to move this polinter through the ©buffer, ALVINE’s text
oo?lfylng commands on|y affegt the string to the rlght of this
polnter,

In the following command descriptions, "pointer stping" wli||
mean the string ¢to the right of the polnter, and "S" Yll mean an
altmode, A|| of the commands which allow a repetition argument n
assume 1 [f n Is omitted,

COMMAND MEANING DESCRIPTION

A Al Print the buffer string, No

attempt |s made to make the
output pretty,

B Balanced? Examines the number of parens
In the buffer string, Returns
the count of |eft and right
parens |f unbalanced’ otherwl!se
rep|les "BAL",

nC Count For readabi|lty, the commands "D",
"M, MM, "¢", "S", and "W", wil
print an Inltla| segment of the
polnter buffer, "nC" sets the
length of this printing segment
to n obJects,

nD Delete Deletes the first n "obJects"
to the rlght of the polnter,

nE Expunge Deletes the first n Seexpressions
to the right of the polnter,

W

W

SAILON 28,6

F x ylz

Gx

nM

P x

Flle

Get

Insert

Match

Put

APPENDIX A A=3

GRINDEFS the identlflers referred

to by x on device y usling flle

name z, If X is a |lst of Identifle
then each e|lement of x |8 GRINDEFed
If x Is an atom, then the value of
X |s used as a |!st of atoms to
GRINDEF,

G will| convert an S-expression

with name x into ALVINE form, move
It Into the ALVINE buffer and
Inlftialize the pointer to the left
hand end of the buffer, GET l|ooks
on the property |lst of x for the
first property In the |[ist %X%XL
which |s Initiallzed to (FEXPR

EXPR VALUE MACRO SPECIAL), %%%L
may bg SETQeq globa|ly 88 desired:
G alsg Knows abput TRACEd fUnCQ'onS
and wli| handle them properly.
ALVINE format was described ear|ler
as a single |eve| |ist of atoms
including the speclal atoms XLP,
XRP, %D,

Insert comes In two flavors!

1, I1%x$: Insert "x" Immediately
to the right of the pointer,

2. Ix%y$: Insert "y" after the
first occurrence (ln the polinter
string) of the string "x», "x"
may be a complete string or
descrlbed by e|ilpsis as "w,,,2"
It "x" |s % then "y" is introduc
to the editor as the current
string,

Move the polnter n S<-expressions

to the rlght of the current polnter
position, If n |ls negative, move n
S-expresslions left, If there Is no
such S=expression the polnter Is not
moved and the be|| |{s sounded,

Converts the edltor string from
ALVINE format to an S-expregslon and
puts It back on the property |lst

of X wlth the appropriate property, |

SAILON 28,6
Qx

RxSy$

nSx$%

Uxylz

ny and n<

<follows P>

Replace

Search

Unflle

vomlt

Where?

t

APPENDIX A A=4

Same as P except no function name
need be specifled, 0 puts the
S=expression In the ed|tor buffer
back on the property |[st of the
Identiflier the last G specified,

Replace the first occurrenge of
Wy by nyn AS W]th "I" nyn may
be descr|bed ellth?callys and It
"y* Is %, the flrst ocourrence of
"x" |ls deleted,

Search for the nth oceurrence of
the string "x" (In the pointer
string), If found, the polnter is
moved to the beginning of the string
following that occurrence, If |ess

~than n occurrences are |ocated, the

polnter [s positioned after the
last such occurrenge, If none are
found the polnter s not moved,

If "x" |s not glvan, 1,e,, "nSS",
then the |ast glven searche=string
ts used,

READs and defines the functlons
spec!fled by the |Tst x from
device y wusing 2z as a fl|e name,
If x 1|s an atom, then the value

of x 1Is used as & |ist functlon
names to READ, U prlnts the names
of the functions as It defines them,
The specified fl|e must be In
GRINDEF format,

Print the flrst bajanced paren
section to the right of the polnt
In pseudo GRINDEF format.,

Prints the beginning of the polnter
string,

These commands are dual} ¢they move
the string pointer "n" obJects to
the rlght or left respectively,

1f "n® |a such that either the |eft
or right end of the string would be
exceeded, the polnter Is set to
that extreme and "bell" |s typed,

To reset to the extreme l|eft of
the string "@<" may be used,

O

SAILON 28,6 APPENDIX A ‘A-S

This command returns controel to
LISP, ALVINE’s buffer Is |eft
intact, and returning to ALVINE,

the user wli| find the pointer at
the left hand end of the o|d string,

Bel | Be|| may be used durfng any command

to return control to ALVINE'’s
. command=||{sten=|o0o0p,

AN EXAMPLE OF ALVINE

. and § rasbectively.‘

Note! Bell, space and alt~mode are represented by «,

(ED)

.
I %X $(DEFPROP TEST (LAMBDA $: the string bounded by "$" |s Introduced to
ALVINE

»

AS
(DEFPROP TEST (LAVWBDA ;5 print the entire ALVINE buffer
&
B®

2LPS
@ RPS
»

I LAMBDA % (X) (CAR Y) EXPR) $; append the string bounded by "$" to the
buffer ‘

»

B%
4LPS
3 RPS

»*

1 CAR Y $)% ; add the deflicient rlght paren

} the fo|lowing commands
would also have the same
b1, "1, "1 $)8v
i 2, "sysn, | $)§
BS
BAL
%

Vs
(DEFPROP TEST (LAMBDA (X) (CAR Y))EXPR)

L
P TEST®; convert ALVINE string to LISP function

[]

t ;3 exlt ALVINE

SAILON 28,6 APPENDIX A A=6

T$; now ta|kinmg to LISP

T

(TEST (QUOTE(A B)))

Y

UNBOUND VARIABLE=EVAL 3 LOSE
(ED) } re=enter ALVINE,

W$
(DEFPROP TEST; "G" need not be executed since the buffer jg a|ways left Inta.
»

RX $ YS$

»
P TSw 3 flush Incorrect "put" command by typing bell, (wr)

[

PTEST $; redefine TEST

[]

L}

(TEST (QUOTE(A B)))%) try agaln
A } win

(ED)

»

5> 8

(Y)

. ,

5C $; change print count
»

M $

(CAR Y))

L]

E $
.

A S

(DEFPROP TEST (LAMBDA (Y))EXPR)
.

W $

JEXPR)

.

g < $

v (DEFPROP TEST(

[]
R TEST ,..) X
»
AS
(DEFPROP)EXPR) } same effeot byi
1, "SDEFPROP §", "gD"

L

O

SAILON 28,6 APPENDIX B Bwq
APPENDIX B
ERROR MESSAGES

The LISP interpreter checks for some error condlitions and

prints messages accordingly, Many erroneous condlitions are nmot
tested and resu|t In elther the wrong error message at some J|ater
time, or no error message at al|l, In the |atter case the system has
screwed you (or Itself) without complaining,

When error messages are printed, |t Is usually dlifffeult to
determine the function which caused the error and the functions which
called 1t, In this situation, (BAKGAG T) wll| turn on the BACKTRACE
flag which causes the helrarchy of function calls to be primted as
described In the next sectlon, '

The following Is an alphabetical |isting of error messages,
thelr cause, and In some cases, thelr remedy, Some error messages
print two |1nes, such as:

FOO
UNBOUND VARIABLE =~ EVAL

These messages are des¢cribed Jast (n the |isting, and are of the
formi

X <{message>
BINARY PROGRAM SPACE EXCEEDED

ARRAY, EXARRAY, or LAP has exceeded BINARY PROGRAM SPACE,
ALLOCATE more BPS next tlme,

CAN’T EXPAND CORE

INPUT, OUTPUT, LOAD, or ED falled to expand corse, Your Job
s too large,

CAN’T FIND FILE = INPUT

The Input file was not found, You probably forgot to glve
the file name extension, or a |egal name |lIst,

DEVICE NOT AVAILABLE

INPUT or OUTPUT found the speclfled device unavaliable, Some
other Job |s probably using it,

DIRECTORY FULL

The dlirectory of the output device is full,

SAILON 28,6 APPENDIX B Be=2
DOT CONTEXT ERROR

READ does not |lke dots adJacent to parens or other dots,
F!LE‘IS WRITE=PROTECTED

OUTPUT found that the specified fl|§ Is write=protected,
FIRST ARGUMENT NON=ATOMIC = PUTPROP

An attempt was made to PUTPROP onto a non=lident!ifjer,
GARBAGED OBLIST

Some member of - the OBLIST has been garbaged, You are In
troubje,

ILLEGAL DEVICE

INPUT or OUTPUT was attempted to elther a non-ex|stent dlvlée
or to a device of the wrong type, 1,0,y INPUT from the
| Imneprinter,

ILLEGAL OBJECT = READ

READ obJects to syntactically Incorrect S=expressions,
INPUT ERROR

Bad data was read from the se|acted device,
MORE THAN ONE S=EXPRESSION = MAKNAM

MAKNAM and READLIST obJeot to a |Ist whioh constitutes the
characters for more than one S=expression,

NO FREE STG LEFT

All free storagde Is bound to the QBLIST and protected cells
(such as |lst ARRAY cel|s}, and bound varlables on elther the
REGULAR or SPECIAL pushdown |Ist, Unbinding to the top leve|
will wusually release the storage, If you are In a blnd for
more free storage, try to REALLOC as described !n APPENDIX C,

NO FULL WORDS LEFT

All full words are being used for print names and numbers,
The problem and Its solutlion are simi|ar to FREE STG,

NO 1/0 CHANNELS LEFT

SAILON 28,6 APPENDIX B Be3

INPUT or QUTPUT falled to find a free 1/0 channe|, There s
a maxIimum of 14 active !/0 channe|s, ‘
NO INPUT = INC

n attempt was made to se|ect a channe| for Input with INC
which was not Inltlalized with INPUT,

NO LIST « MAKNAM
MAKNAM and READLIST obJect to an empty |Ist,

'NO OUTPUT = OUTC

An attempt was made to select a channel| for output with OUTC
which was not Initlallzed with QUTPUT,

NO PRINT NAME =~ INTERN

INTERN found a member of the OBLIST whiech has no print name,
You are In trouble,

OUTPUT ERROR

Data was {mproper|y written on the se|ected output device,
Possibly a write-|locked DECTAPE,

OVERFLOW

Some arlthmetic function caused overf|ow = elther fixed or
floating,

PDL OVERFLOW FROM GC = CAN’T CONTINUE

There Is not enough regular pushdown Jist to finlsnh garbage
collectlon, You |ose, Try to REALLOC as daescrlbed In
APPENDIX C,

READ UNHAPPY = MAKNAM

MAKNAM and READLIST obJect to a |Ist which Is not an entire
Seexpression,

REG PUSHDOWN CAPACITY EXCEEDED SPEC PUSHDOWN CAPACITY EXCEEDED

A pushdown |ist has overflowed, This Is usually caused by
non=termingtion of recgirsjon, Sometimes You need to ALLOCATE
or REALLOC more pushdown |list,

TOO FEW ARGUMENTS SUPPLIED =~ APPLY TOO MANY ARGUMENTS SUPPLIED ~
APPLY

SAILON 28,6 APPENDIX B Bed

APPLY cheoks al| calls on (nterpreted functjons for the
ppopep nymbe, of apguments,

X MADE ILLEGAL MEMORY REFERENCE

The functlon X referred to an [|jega| address, Usually
caused by taking the CAR or CDR of an atom or number,

X NONeNUMERIC ARGUMENT

Arithmetlc funotions requlire that their arguments be numbers,
X PROGRAM TRAPPED FROM

An 1llega| [nstruction was executed !n function X,
X UNBOUND VARIABLE - EVAL

EVAL trled to evaluate an identifier and found that Tt had no

value, You probably forgot to QUOTE some atom te initiallze
It

X UNDEFINED COMPUTED GO TAG IN

A GO In some complled function had an undefined |abel.
X UNDEFINED FUNCTION X UNDEFINED FUNCTION = APPLY

The function X |Is not def(ned,
X UNDEFINED PROG TAG = GO

A GO In some Interpreted functlion had an undefined label.,

SAILON 28,6

APPENDIX ¢ c-1
APPENDIX C
MEMORY ALLOCATION

The LISP 1,6 system has many different areas of memory for

storing data which

can independent|y vary In size, Some LISP

applicatlons demand |arger allocatlions for these areas than others,
To allow users to adJust the slzes of these 2zreas to thelr own needs,
a merory allocation procedure exlists,

C.1 Summary of Storage A|locatlon Areas

BINARY PROGRAM SPACE
FREE STORAGE

FULL WORD SPACE

BIT TABLES

REGULAR PUSHDOWN LIST

SPECIAL PUSHDOWN LIST
EXPANDED CORE

SPECIAL PUSHDOWN LIST

T
|
|
I
I
I
!
Memory map I REGULAR PUSHDOWN LIST
I =
I
|
I
I
I
I
|
|
I
|
[

for the L]ISP
1,6 system

- -

------------------ LR RN R R

Area for compiled functions and arrays,

Area for LISP nodes,

Area for print names and numbers,

Area for the garbage co||ector,

Area for all function cal|ls and non=
speclal variables In compi|led fumctlons,

Area for Interpreted variables and speclal
varjables,

Area for [/0 buffers, ALVINE, LOADER, and
any loaded programs,

TOP OF CORE

BIT TABLES

.................. - e

I
I
|
FULL WORD SPACE :
I
I

BOTTOM OF CORE

SAILON 28,6 APPENDIX ¢ c=2
Cs2 ALLOCATION

When the LISP system |s In!tlally started, |t asks the wuser
vo specify the slze of each of Its varlous spaces as fo||ows,

FREE STORAGE = 10p0g =

FULL WORDS = one foyrth of free storage =

BIN, PROG, SP, = 20p0 =

REG, PDL = 1002 + one sixteenth of free storage =
SPEC, PDL = 1000 + one s!xteanth of free storage 3
OBLIST SIZE = 177 =

The number given In between the equal signs s the defaylt
size which LISP wil| use If no number !s supplied, As shown above,
for some spaces It wl|| vary with the sizes of others,

There are threes basic responses to any of these
questionsi

1) A carrlage return wl|| cause the default value
to be used,

2) A number fol|owed by a carrlage return w!||
produce a space of that slze,

3) An altmode In place of a carrlage return
will result Tn the remalnder of the questions
balng skipped and the al|ocation procedure
being ended,

C,3 REALLOC

It you have an exl|sting LISP core Image but have exhausted
one of the storage areas, It |5 possible to Inorease the sfze of that
area using the real(ocation procedure, Flrst, expand core with the
vime sharing system command CORE and then rewenter the LISP core
Image with the START command, For example, If the orlginal core size
was 20K, you could lncrease It by 4K as followss

*C

+START

»
Wwhen you rea|locate a core Image, a|l| additlonal core Is allccated
as fol|lows?

174 for ful| word space

1/64 for each pushdown |Ist,
~the remainder to free storage and bit tables,

SAILON 28,6 APPENDIX C | C-3

C.4 Blnary Program Space

The realjogcatlon procedure does not Increase the size of
binary program space, However, It Is possible to Increase blnary
program space by expanding core with the CORE (C) command and settlng
BPORG and BPEND to the beginning and end of <the expanded area of

core, For example, {f you now have 32K of core and want 4K more BPS,
fo the fojlowing:

(EXCISE) to eliminate 10 buffers
+C

,CORE 36

«START

#«(SETQ BPORG (TIMES 32, 1@224,))

#(SETQ BPEND (PLUS BPORG 4295,1))

Note: If you use the realjocatlion procedure after having
expanded core for any opurpose, It wll| real|ocate this
additiona| core for Its own purposes, thus destroying ¢the
contents of the expanded core,

The followlng are the standard causes for expanslion of core:

1) wusling 1/0 channels,
2) wusing the LOADER =(LOAD),

3) expanding core for more binmary program space,
4) ysing (ED),

e

'
L

SAILON 28,6 APPENDIX D D=1
APPENDIX D
GARBAGE COLLECTION

All LISP systems have a functlon known as the garbage
Collectogr, Thlg functlion analyzesg the englpe gtate of |lgt stpucture

which Is pointed to by elther the OBLIST, the regular pushdown |ist,
the speclal pushdown |Ist, |Ist arrays, and a few other speclal
cells, By recurslive|y marking all words on free and ful| word

spaces whliech are pointed to In this manner, It !s possible to
determine whlch words are not polnted to and are therefore garbage,
Such words are collected together on thelr respective free storage
nists, ‘

(GC)

GC causes a garbage col|ection to occur and returns NIL,
Normally, a garbage col|ectlion occurs only when elther fres or full
word space has been exhausted,

(GCGAG X) flag = NIL Initlally,

GCGAG sets a speclal flag In the [nterpreter to the value of
X, and returns the previous setting of the flag, When any garbage
collection occurs, if the flag # NIL, then the following Is printed:

elther FREE STORAGE EXHAUSTED
or FUuLL WORD sPACE EXHAUsTED
or nothing
followed by x FREE STORAGE, y FULL WORDS AVAILABLE

where x and y are nymbers In octal,
(SPEAK)

SPEAK returns the total number of CONSes which have been
executed In this LISP core Image,

(GCTIME)

GCTIME returns the number of mil|iseconds LISP has spent
garbage collecting in this core Image,

It I|s possible to determine the |engths of the free and full
word free storage |ists by:

(LENGTH (NUMVAL 15+¢8)) = |ength of free storage ||st
(LENGTH (NUMVAL 1648)) = |ength of fu|| word |{st

U

e

e

-

)

SAJLON 28,6 APPENDIX E Eel
APPCNDIX E
COMPILED FUNCTION LINKAGE AND ACCUMULATOR USAGE

This appendix s intended ¢to explaln the structure of
complled functlions, function calls, and accumulator usage, This
discussion Is relevant only If one intends to Interfage hand coded
functions or possib|y functions generated by anmother system (such as
FORTRAN) wlth the |I1SP system, In such a case, |t s highly
recormended that one examine the LAP code generated by the L[ISP
compliler for some familiar functions,

ACCUMULATOR USAGE TABLE

s means "sacred" to the I[nterpreter

p means "protectad" dyring garbage collection

NIL =@ 8)p Header for the atom NIL,

A = 1 D Results from functions, 1st arg to
functions

B s 2 o] 2nd arg _

C = 3 p 3rd arg

AR1L = 4 p 4th arg

AR2A = 5 p 5¢h arg

T = 6 p used for LSUBR |Inkage

TT s 7 p

Ti8 = 10 P rarely used in the Interpreter

) = 11 rarely used In the Interpreter

D z 12

R s 13 v

P = 14 $»p regular pushdown ||st polnter

F z 15 8)p free storage |ist polnter

FF s 16 S)p full word 1ist polnter

sP = 17 8D speclal pushdown |ist polnter,

TEMPORARY STORAGE

Whenever a LISP functlon Is called from a complled funmctlien,
It is assumed that all accumulators from 2 through 13 are destroyed
by the function unless It s otherwise known, Therefore, |ocal
varlables and parameters In a compllied function shoul|d be saved in
some protected cells such as the regular pushdown |1st, The PUSH and
POP instructions are convenlent for this purpose,

SPECIAL VARIABLE BINDINGS

Speclal variables In complled functlons are bound to special
celis by!

SAILON 28,6 APPENDIX E E=2

PUSHJ P, SPECBIND
@ nél, varsl
@ ne2, vars2

start of funoctlon code,

SPECBIND saves the previous values of varsl on the special pushdown
nlst and blinds the contents of acoumulator né¢| to eagh var¢l, The
vars| must be polnters to speclial cel|s of Ident|flers, Any nélsp
causes the vars!l to be bound to NIL,

Speclal variables are restored to thelr previous values byt

PUSHJ P,SPECSTR

which stores the vajues previously saved on the speclial pushdown |Tst
In the appropriate special cells,

NUMBERS

To convert the number In A from Its LISP representation to
machIne representation use:

PUSHJ P,NUMVAL

which returns the value of the number In A, and Its type (elther
FIXNUM or FLONUM) In B,

To convert the number In A from Its machine representation to
LISP representation use e|lther!

PUSHJ P,FIX1A for FIXNUMS
or PUSHJ P,MAKNUM with type In B,

Both of the above functlons return the LISP number In A,
FUNCTION CALLING UUODS

To allow ease In |linking, debugaing, and modifylng of
complled funetions, all compl|ed functions cal| other functions wlth
speclal opcodes called UUOs, Several categorles of functlion calls
are distingulshed:

1) Calls of the form (RETURN (FOO0 X)) are called terminal ocalls
and aessentlally "Jump" to FOO,

2) Ccalls of the form (F X) where F Is a computed func:ion name
or functional argument Is ocalled a functional ¢all,

The functlon calling YuosS aret

non=terminal terminal

)

M

M

&

) B 8

SAILON 28,6 APPENDIX E E=3
non=fynctional CALL n,ft JCALL nmof
functional CALLF n,t JCALLF not

where f |8 elther the address of a complled function or a pojnter to

vhe Identifler for the function, and n specifles the type of functlion
being called as fol|ows}s

nsgo to$ specifies a SUBR call With n arguments
n s 16 speglifies g LSUBR ggal|
ne 17 speglflies a FSUBR calls

The function calllng UUQs are defined in MACRO byi

OPDEF CALL [34B8]3

OpDEF JCALL [35B8)
OPDEF CALLF 36883
OPDEF JCALLF [37B8)

(NOUUO X) flag = T Inltially

NOUUO sets a speclal flag In the complled functlon calling
mechanlsm to the value of X and returns the previous setting of the
flag, Compl|ed functlons initially call other functions with functlon
calling UuUOs which "trap" Into the UUO mechanism of the interpreter,
Ordinarl |y, such functlion calls Involve searching the property |JTst
of the funection beling called for the functional| property, and then
(depending on whather the functlon |Is complled or an Seexpression)
the function is called, '

It the NOUUQ flag Is set to NIL, then the overhead im calllng
a corpiled function from a complied function can be e|[minated by
replacing the CALL by PUSHJU and JCALL by JRST, CALLF and JCALLF are
never changed,

However, there are several dangers and restrictions when
using (NOUUQ NIL), Once the YUO’s have been replaced by PUSHJ’'’S then
it Is not possible to redefline or TRACE the function being called,
1t Is therefore recommended that comp!led functlions be debugged wlith
(NOUUO T,

SUBR LINKAGE

SUBRs are comp!|led EXPRs which are the most common type of
function, Consequent|y, conslderable effort has been made to make
ninkage to SUBRs efficlient,

Arguments to SUBRS are supp|ied in accumulators 1 through n,
the flrst argument in 1, There Is a maximum of 5 arguments to SUBRS.,

To cal| a SUBR from compl|ed code, use call Nn,FUNC, where n
is the number of arguments, and cal| Is the appropriate UUO,

SAILON 28,6 APPENDIX E Eed

The result from a SUBR Is returned In A(= 1),
FSUBR LINKAGE '

FSUBRS recejve one argument In A and return thelr result in
A, FSUBRs which use the A=_IST feature call

PUSHJ P, ®AMAKE

which generates In B a number enceding the state of the speclal
pushdown polnter, To call a FSUBR, use cal| 17, FUNC, here ocall Is
the approprlate UUO,

LSUBR LINKAGE

LSUBRs are simllar to SUBRs except that they aljow an
arbltrary number of arguments ¢o be passed, To cal| a LSUBR, the
tollowlng sequence |s used:

PUSH P, Cretl jreturn address
PUSH P, argl }ist argument

PUSH P, aran jnth and |ast argument
MOVN! T,n jminus number of arguments
cal| 16,func jthe appropriate UUO

ret?t }the LSUBR returns here

When & LSUBR Is entered, |t executes!
JSP 3J,«LCALL

which Inltlalizes the LSUBR, A W|l| contaln n, The ith argument
can be referenced by

MOVE Ay, =1=1(P)
Exit from an LSUBR with
POPJ Py .

which returns to #LCALL to restore the stack,

U

o

I

o

SAILON 28,6 | APPENDIX F Fe1
APPENDIX F
THE LISP COMPILER
by Whitfle|d DIiffle

The LISP compiler Is a LISP oprogram which transforms LISP
functions deflined by S=-expressions Into LAP assemb|y code, This can
be |oaded Into blnary program space by LAP (LISP Assemb|y Program), a
?omblnad assembler and |oader, Which produces absolute machine code

n core,

Complled functions are approximate|y twenty times as fast as
interpreted functlions, Compl|ed functlions alsSo take uUp (ess memory
space and relleve the garbage collector from marking functlon
definitions, In a very large system of functions, this last point Is
particularly significant,

The LISP compller exists as the system program COMPLR, and ls
called by the Incantatlon ‘R COMPLR,’ Once started, It |s spoken to
in the same dlalect as any other LISP,

USE OF THE COMPILER
(COMPL , "FILENAME - LIST™)

The funoction COMPL takes as arguments an assortment of flle
names and device names In precise|y the same way as the functlon
DSKIN, The defau|t device to be used for input In the event that
none Is supplied In the argument sequence !s glven by the value of
vhe varlable INDEvV, There Is no provislon for specification of an
output devigce In the argument sequence, If the output !s wanted on
some device other than the user’s disk area, the varlabl|e QUTDEV must
be set to Indlcate thls deslre, Al| error messages and gomments are
normally dlrected to the teletype, They can be sent to some other
device by setting +¢the varlable LISTING, Files produced by the
compller have the f}|ename extensjon [AP,

Examples:
(COMPL FQOO sYS: TRACE)

wll|] compile the flle FOO from the users disk area
and the file TRACE from the system area to produce

the flles FOO,LAP and TRACE,LAP on the users disk
area,

(SETQ INDEV (QUOTE DTA2:1)) (SETQ OUTDEV (QUOTE (2,DAV)))
(SETQ LISTING (QUQTE (DSK3: CMPMSG)))
(COMPL HAT SYS: SMILE)

SAILON 28,6 APPENDIX F Fe2

will compile the flle HAT from DTA2t and the fl|e
SMILE from SYS: to produce the f!les HAT,LAP and
SMILE,LAP on the disk area [2,0AV], Al| compller
messages wl|| appear as the f||le CMPMSG on the
user’s disk area,

PREPARING FILES FOP COMPILATION

In preparing a file for compl|ation there are several things
that the user |s we|| advised to bear In mind,

1) All normal functlon defining functlons are acceptable to the
compller, Functions defined by DE, DF, and DOEFPROP, and macros
defimed by DEFPROP or DM, Wl || be correct|y understood,

2) Any functlon which ls unknown to the compl|er when It Is first
obliged to generate a call thereto, wi|| be assumed to be an EXPR or
SUBR, If a flle contalns a function of any other type whleh s
called by a function defined ear|ler in the fi|e, |t must be declared
vo the compller with one of the statements: (DEFPROP fun T #FSUBR)
or (DEFPROP fun T «_SUBR) so that the compl|er wi|| know how to set
up Its arguments,

3) Any varlable whlch occurs free In any functlon must be dec|ased
SPECIAL prlor to the definition of any functien whieh blnds T|t,
Thls may he done with a statement of the form ‘(DEFPROP var T
SPECIAL),’

4) As macros are functions which are actually executed at complle
time, thelr definjtions must occur earller In the f]|e than any
function which appeals to them, If this |s not done, the macro wll|]
be mistaken for an undefined EXPR,

COMPILER MESSAGES

As the comp|ler goes about Its business, |t wil| make various
comments and complajnts about your codse, '
1) As the compi|ation of each function |s compjeted, Its name wil| be
vyped on the te|etype wlthout carriage return, Any other message
Wil be stood off by carrlage returns above and be|ow,

2) Whenever the compl|er dlscovers a free varlable which has not been
declared speclal, !t declares It, At the end of any funetlon In
which It found such variables It wi|l print out the message: :

(SPECIAL varl var2 etc.).

3) If a prog variable Is unused In a function the compller wli| orint
the message (UNUSEDPROGVAR varname), It will also declare ¢the
varlable speclial on the theory that |f |t was not used there, |t must
have been used somewhere 6(Se,

oM

-

SAILON 28,6 ' APPENDIX F F=3

4) Many minor errors |n user gode Wil | unfortunately 90 undetected.
Any sérlous 8rror will produce the pegsage #USER ERROR* f,||qwed by a
description of what was wrong, Thlis wl|| halt the compljer,

5) The error message #COMPJLER ERROR* Indicates a bug [n the compiljer,

Please report this to Whitfleld piffle,

6) when the compij|er has finished, it wll| type out the name of the
flie, the number of words of c¢code produced and the time taken,
Followlng these wil| be |Ists of any functlons called but mot definmed

in the fl|e and any auxiliary functlons the compl|er generated,

USING COMPILED CODE

As LAP |s self |oading, the loading of complled fj|es Is ¢the
same as for interpreted functlons, The allocatlions must be changed,
however, to reflect the passage of the code from free storage to
binary program space, The correct slZe of the |atter |s the slze of
the program as stated at the end of compllation, plus the |ength of
lap which Is about 500(8) words,

The fol|nowing example |[||ustrates varlous aspects of the
compller’s behavior, We show a collection of functlons, the LAP
code generated from |t, and the comments made by the compl|er In the
process,

THE FUNCTIONS

(DM FIRST (L) (CONS ® CAR (CDR L))) imacro defined at beginmning

(DEFPROP IT T SPECIAL) ispecja| declaration
(DEFPROP MAPCONS Jthe inmnternal |ambda
(LAMBDA (IT LIST) tbecomes a separate function
{MAPCAR (FUNCTION }thus the varjable IT must
(LAMBDA (X) } pe made speclal

(CONS IT X))
LIST))
EXFR)

(DEFPROP COUNTM
(LAMBDA (SEXPR)

(PROG (COUNT) ithe varlab|g COUNT has not bgen
(SETQ COUNT 2) jdeclared gpecial apnd wi|| be treaged
(COUNTL SEXPR) jas local

(RETURN COUNT))
EXPR)

(DE COUNTYL (SS)
(COND ((ATOM SS) NIL)
(T (INCR COUNT) Jhere It Is discovered to be special
(COUNTL (FIRST SS)) }but too |ate ,

SAILON 28,6 APPENDIX F Feq
(COUNTL (CDR SS)))))

(DE SCALE (NO) jthis varlable |s found to
(TIMES NO SCALEF)) jbe speclal, in good time

(DF SETQQ (L) (SET (CAR L) (CADR L))

(SETQ SCALEF 3) jthis wil| be output unchanged

THE RESULTING LAP

Inote that the macro definltion and the special declaratlion have
Jbeen gobbled up by the compller,

(LAP MAPCONSG@220 SUBR) jthis Is the function
(MOVE 2 (SPECIAL IT)) jgenerated by the
(JCALL 2 (E XCONS)) jInternal lambda
NIL }In MAPCONS

(LAP MAPCONS SUBR)
(JSP ¢ SPECBIND)
(8 2 (SPECIAL IT))
(MOVEI 1 (QUOTE MAPCONSGR222))
(CALL 2 (E MAPCAR))
(JRST B SPECSTR)
NIL

(LAP COUNTM SUBR)
(PUSH P 1) s1this code s In error
(PUSH P (c 2 @ (QUOTE @) 2)) tdue to the fallure
(CALL 1 (E COUNT1)) jto make COUNT special
(MOVE 1 2 p)
(SUB P (C 2 @ 2 2))
(POPJ P)
NIL

(LAP COUNT1 SUBR)
(PUSH P 1)
(CALL 1 (E ATOM))
(JUMPE 1 G@229)
(MOVED 1 (QUOTE NIL))
(JRST 2 Gp228)

GP229 (MOVE 1 (SPECIAL COUNT)) Jreference to the speclal
(CALL 1 (E INCR)) svarlable COUNT, which has
(HLRZa 1 2 P) inot peen bound proper|Y

(CALL 1 (E COUNT1))

(HRRZe® 1 2 P)

(CALL 1 (E COUNTL))
Gp228 (SUB P (C2 02 11)

(POPJ P)

NIL

\.‘
(]

)

@

0

SAILON 28,6 APPENDIX F F=5

(LAP SCALE SUBR)
(MOVE 2 (SPECIAL SCALEF)) JSCALEF |s g free variable
(fCALL 2 (E #TIMES)) lgorrectl|y detected
NIL

(LAP SETQQ FSUBR)
(HRRZ@ 2 1)
(HLRZ@ 2 2)
(HLRZ® 1 1)
(JCALL 2 (E SET))
NIL

(SETQ SCALEF 3) ;this was unchanged by compllation
THE COMPILER’S OPINION
MAPCONSGP220 MAPCONS COUNTM

(SPECIAL COUNT) Jspeclal found too |ate
COUNT1
(SPECIAL SCALEF) jspeclal found In time

SCALE SETQQ
(CMP , CMP) COMPILED 41 WORDS 3 CONSTANTS 1 SECONDS

UNDEFINED FUNCTIONS
INCR

GENERATED FUNCT]ONS
MAPCONSGU220

o/

s

)

I

[

SAILON 28,6 APPENDIX G G=1
APPENDIX G
THE LISP ASSEMBLER =~ LAP

LAP Is a primitive assembler designed to |oad the output of the

compiler, Normaliy, |t !s not necessary to use LAP for any other purpose,
LAP Is sel|f |oading,

The format of a compiled funotlion In LAP Is:
(LAP name type)
<sequence of LAP Instructions>
NIL

where name |s the mame of the function, and type |s either SUBR, LSUBR,
or FSUBR,

A LAP Instruction Is elthers
1, A l|abel which Is a non=NIL identifier,
2, A |lst of the form
(OPCODE AC ADDR INDEX)
a, The Index fle|d Is optional,

b, The opcode is elther a PDP=6/10 |nstruction

whicgh !s defined to LAP and optionally suffixed
by @ which designates Indlrect addressing, or
a number which specifies a numerical opcode,

¢, The AC and INDEX flelds should contaln a number
from @ to 17, or P which deslignates register 14,

d, The ADDR fleld may be a number, a jabel, or a
|1st of one of the fo|lowlng forms:

(QUOTE Swexpression) to reference |lst structure,

(SPECIAL Xx) to reference the vajue of
Identifler x,

(E) to referenge the function f,
(C OPCODE AC ADDR INDEX) to reference a |lteral cons

For example, the fumction ABS could be deflned:

SAILON 28,6

APPENDIX G

(LAP ABS SUBR)

(CALL 1 (E NUMVAL))
(MOVMS @ 1)

(JCALL 2(E MAKNUM))
NIL

G=2

(W]

v

P

M

™

SAILON 28,6 APPENDIX H N=1
APPENDIX H
THE LOADER

A modified version of the standard PDP=6/10

MACRO-FAIL=FORTRAN |cader Is avaljable for use in LISP, One can call
the noader Into a LISP core Image at any time by executingi

(LOAD X)

When a # [|s typed, you are |In the (LOAD X) loader, and ¢the |oader
comrand strings are expected, AS soon as an a|tmode Is typed, the
noaader finlshes and ex!ts back to LISP.

The |oader |s placed in expanded core, If X = NIL then
noaded programs are placed In expanded core, otherwise (Jf X # NIL)
vhey are placed in BINARY PROGRAM SPACE,

The loader removes [tseif and contracts core when It s
finished, In the fo|lowing discussion a "RELOC" program wil| raefer to
any program which Is sultable for loading with the |oader, The
output of FORTRAN, MACRO or FAIL |s a RELOC program,

(EXCISE)

EXCISE contracts core to Its |ength after ALLOCATION or the
last START, Thils removes 1/0 buffers, and a|l| RELOC programs,

(#GETSYM S)

*GETSYM searches the DDT symbol| table for the symbel| S and |f
found returns Its value, otherwise [t returns NIL,

(GETSYM WP® nw§uin wgu2n "Sup")

GETSYM searches the DDT symbo| table for each of the symbo|s S¢i

and places the value on the property |ist of Ss| under property P,
Example: (GETSYM SUBR DDT)

Thils causes DDT to be defined as a SUBR |ocated at the value
of the symbol DOT,

Note! In order to Joad the symbo| table, elther /S or /D must be
typed to the |oader, sSymbo|s which are declared INTERNAL are
a|ways In the symbo| table without the /S or /D, In the case
of multiplyY deflined SYmpo|Ss) lievr a SYMpO| USed |n more than
one RELOC program, a s8symbo| declared INTERNAL takes
precedence, the last symbol otherwlse,

(#«PUTSYM S V)

SAILON 28,6 APPENDIX H H=2

#»PUTSYM enters the symbo| $§ Into the DDT symbo| table wlth
value V,

(PUTSYM ®X4L" "Xe2" ,, "Xén")

PUTSYM s used to place symbols [n the DOT symbo| table, If
X¢i Is an atom then the symbo| X¢I| |s placed In the symbo| table wlth
its vajue pointing to the atom Xé¢l, If Xl [s a Ilst, the symbel In
(CAR X¢1) |ls placed fn the symbol| table wlth Its value (EVAL (CADR
xel)), PUTSYM s uyseful for maklng LISP atoms, functlons, and
varifables avallable to RELOC programs, Symbo|s must be defined wlth
PUTSYM before the LOADER |s used, '

Examples! (PUTSYM BPORG (VBPORG (GET (QUOTE BPORG)(QUOTE VALUE))))

defines the Identifier BPORG and Its value ¢ell VBPORG, A RELOC
program can reference the value of BPQRG byt

MOVE X,VBPORG

(PUTSYM (MAPLST (QUOTE MAPLST)) (NUMBERP (QUOTE NUMBERP)))
(PUTSYM (MEMQ (GET(QUOTE MEMQ) (QUOTE SUBR))))

A RELOC program wou|d call these functions as fo||ows:

CALL 2,MAPLST

CALL 1,NUMBRP
PUSHJ P,MEMQ or CALL 2,MEMQ

An example of a simple LISP compatible MACRO oprogram to
compute square roots using the FORTRAN |lbrary,

TITLE TEST
Paié
A=zl
B=2

EXTERN MAKNUM,NUMVAL,SQRT,FLONUM

LSQRT: CALL 1, NUMVAL
MOVEM A,AR1
MOVE A,[XWD @2,BLT13]; SAVE THE AC’S
BLT A,BLT1+417
JSA 16,SQRT
JUMP 2,AR1 ;SOP TO FORTRAN
MOVE @,AR1
MOVE A,CXWD BLT1 ,01
BLT A,17
MOVE A,AR31
MOVEI B,FLONUM
JCALL 2,MAKNUM
AR1: . D

\J

I

-\

£

(’\

SAILON 28,6
BLT1:¢ BLOCK 2@
END

APPENDIX H

He3

™

[

SAILON 28,6 APPENDIX 1 -1
APPENDIX 1
BIGNUMS - ARBITRARY PRECISION INTEGERS

. LISP numbers have always been second class cltizens, In the
séense that wuplike gtrlings (pplnt names) pumbers have had a maximum
nength, In the PDP-6/12 LISP system there is an optiona| arbitrary
precislon Integer npackage which extends the |ength of LISP integars
from 36=-blts to any length,

To load the BIGNUM system, execute the fo|lowing at the top
neve| of LISP:

#(INC(INPUT SYSt (BIGNUM,LSP)))
<gEQUENCE OF OutPuUT>

#(LOAD T)#SYSiBIGNUMS

<LOADER TYPES BACK>

»(APNINIT)

and then your core |(mage Wl|| perform arbltrary precision Integer
operatlions wusing the standard LISP arithmetic functions which were
redefined by APNINIT,

It |s possible to load the BIGNUM package at any tIme unless
you have already executed compiled functlions Wwith (NouUg NIL)» In
Which case You must reconstruct Your core Image.,

Cr

~

[

SAILON 28,6 APPENDIX J J=1
A USER MODIFIABLE LISP SCANNER
by Lynn Quam

LISP uses a table driven scanner, whose table may be modifled

by the user for the purpose of imp|lementing scanners for oOther
nanguages, For simplictty, the functions for constructing the scanmer
table inltlajly give an ALGOL type scanner, that |3 the ALGOL
definitions for ldentifiers, strings and numbers (except for pOWers
of ten), The ALGOL table may be modifled by using additional
functions to include additlormal characters In Identifilers, and to
specify delimiters for strings,

Jy1 FORMAL DEFINITIQONS

Je1:1 ldentiflers

Syntax!

comment t1t= (a comment~start fol|owed by any sequence of
characters ending In a comment=end)

diglt R A L T A

netter 1z wWAM | onBw |] nEN | nagn | wb" | ,,, | "z]
extra-letter

character $:1= (any ASCI! character other than null, rubout,

and commentestart)
(any character not a |etter and not a dlglt)
|etter
tdentifier dliglt
identiflier |etter
slashifled character
ident!fler slashifled character

delimriter

we e ®e o8 oo oo
ee ®5 ee s oo se

H o a & 1 i

Semantlics!

In the above syntax, under|ined symbo|s can be speclfled by
the user, For Instance, comment=-start and comment-end could both be
specifled to be double quote ("), If It |Is desirable to Inciude
follar and percent slgns In ldentlflers, then both of these
characters shou|d be extra-jetters, Slashiflers make It possible ¢to
include any delimiter In an ldentifler, For example, 1f question
mark |s the slashi{fier (?) and It |s deslrable to Include ¢the
character (+) in the |dentiflier V as V+, then one should siashify the
plust V?+,

Js1.2 Strings
Syntaxt

string t:t= (a strimg-start fo|lowed by any sequence of
characters ending In a string-end)

SAILON 28,6 APPENDIX ¥ J=2
Semantics
String=start and string=end are specifiable,
Jil1:3 Numbers
Syntax!

Same as spec|fied In Chapter 4, except that |eading slgns (+
or =) In numbers are treated as de|imiters,

Jy2 DESCRIPTIONS OF THE SCANNER MODIFYING FUNCTIONS

In the fo|lowing descriptions, all characters are specifled
by thelr numerloa| ASCIl value, For example, in octal, blank Is 4p
and A |Is 1031,

(SCANINIT comment-start comment=end string=start string=end siashifler)

SCANINIT modifles the LISP scanner to be an ALGOL~type
scanner with specia) delImiters for comments and strings, SCANINIT
must be called before any of the other scanner functlons,

(IGNORE x)

LETTER specifles to the scanner that x Is not to be returned
as a de|Imlter from scan, but Instead wil| be Ignored, However, X
wilil stl)l function as a separator between [dentifier and numbers,

For example, carriage=return, |ine-feed, tab and blank are wuseful
characters to lgnore as de|imiters,

(LETTER X) ‘ ,
Letter specifles to the scanner that X is an extra=|etter,
and thus allows X to be In an Identif|er,

(SCAN) | , ,

SCAN reads an atom or delim|ter and sets the value of the
global varlable sSCAyvAL to the value read, and returns a numper
corresponding to the syntactlc type read as fo||ows!

Syntactlic type Value of SCAN Value of SCNVAL

Identifler 0 the uninterned ldentiftler
string 1 the string
number 2 the value
delImiter 3 the ASCII value of the
delimiter,
(SCANSET)

SCANSET mogifies the LISP sganner In READ acoording to the
user specliflcatlons, Evaluate (SCANSET) before calling SCAN,

o

)

)

~

SAILON 28,6 APPENDIX J J=3
(SCANRESET)

SCANRESET uynmodifles the LISP scanner to |ts norma| state,
and must be called before READ wl || work properly again once SCANSET

s used, Use INITFN to cal| SCANSET after errors,
J¢3 USING THE MODIFIABLE SCANNER

The scanner modifying functions are not a norma| part of the
LISP system and must be expllcltly |oaded Into a LISP core image,
The followlng steps indicate how to provide the oproper Interface
between LISP and the scanner, |oad the scanner, and !Imitiallze the
scanner tab|es,

(SETQ SCNVAL NIL)
(PUTSYM (SCNVAL (GET (QUOTE SCNVALI(QUOTE VALUEX)))

(LOAD) SYS:SCANS

(GETSYM SUBR SCANINIT LETTER JGNORE SCAN SCANSET
SCANRESET)

(SCANINIT 21 73 42 42 45)

<th|s mgkes comments start with > and with semigojon,
strings start and end with double quotes ("), and
percent (%) |s the s|ashifler>

To uyse the scanner, one myst flrst call the SCANSET, Once
SCANSET has been ca|led, the normal LISP functlon READ no longer
behaves In a normal fashion, since READ wi|| now use ihe modifled
scanner tables, Care must be taken to ca|l SCANRESET before ocalllng
READ,

SAILON 28,6 APPENDIX K Kei
APPENDIX K
SQS=LINK

by Whitfle|d Diffle

The SOSLINK ppogram Is anm ald to debugging Interpreted LISP

functions, which al|ows rapld turnaround In the ‘test-editetast’ laop
of debuggling, It Is famous for the two functlona FILEIN and EDFUN
which behave as fol|ows,

(FILEIN , "FILENAME-L]IST")

The way In which this function takes Its arguments differs
on|y from DSKIN in that all files must come from the user’s owm dlsk
area,

When a flle is |oaded with FILEIN, Information !s saved for
each fungtlion defined In the flje teliing what flie It came from and
on what page and |ine |t was deflined, Initially, ¢this information
wliil only be saved for atoms which are deflned to be EXPRS, FEXPRS,
or MACROS, If the user Wishes to have It saved for asome other
property, for examp|e VALUES, he can achleve this effect by putting
the property SWAPIT on the property |ist of the Indicator he Wwished
vo have so honored, In thls case by putting the property SWAPIT on
the property |Ist of the Indicator VALUE,

(EDFUN "FUN" "PROP™)

This functlion Is used In the environment created by FILEIN,
1t will eall In the system edlitor, SOS, with Its attentlon focused on
the functlon FUN, At the same time, It wlll save a copy of the
user’s LISP and prepare for a qulck return to this copy, Once the
editor has been started the function definition may be edlted In ¢the
usual way, It should be noted, however, that although edits may be
made to other parts of the flle, onjy the definitlon of FUN wl|l be
mnoaded on return to LISP,

1f FUN has more that one property for which file Informatlion
ls belng saved, It may be necessary to use the second argument PROP
of EDFUN In order to specify which one |s desired,

Wwhen edliting has been finished, and a return to L]SP I's
wanted, It |s only necesgsary to type the command G to SO0S, A sayed
copy of the wuser’s LISP wl|l be started and the single functlon
definition which s modified will be re|oaded,

As jong as no global mod!fications are made to the flle, thils
process may be repeated Indefinftely, Such actions as renumbering
the file are discouraged, however,

(W]

N

SAILON 28,6 APPENDIX L L=1
APPENDIX L
SOME DIFFERENCES BETWEEN THIS AND OTHER LISPS
by Whitfle|d Diffle

1) The top leve| of this system does not use EVALQUOTE as do many
systems, However, EVALQUQTE may be defined as fo|lows!

(DE EVALQUOTE NIL
(PROG NIL
L (TERPR])
(PRINT (EVAL (CONS (READ) (MAPCAR
(FUNCTION (LAMBDA (X) (LIST (QUOTE QUOTE) X)))
(READI)

(GO L))
The top leve| of LISP 1,6 |s equivalent to!
(PROG NIL
L (TERPR])
(PRINT (EVAL (READ)))
(60 L))

2) The order of the apguments In the varlous functlons
MAP» MAPCAR etc, Is functlon flirst, |Ist second,
rather that the reverss as In many systems,

3) There are certaln differences even between Stanford
LIsp and other DEC system LIsps,

a) the commagnt charagter |s ascl! 32

b) proJect proarammer numbers are palrwords

In whicgh each half holds up to three
rlght adjusted sixblt characters,

¢) The new debugolng package depends on system
features only aval|able In the Stanford system,
This debugging package |s described In Appendix K,

. M

M

5

SAILON 28,6 APPENDIX M Mey
APPENDIX M

LISP Display Primlitives

by Lynn Quam

A set of display primitives are now avallable for LISP users,
Thesse primitives use the features In the D, poole dlsplay sServige
subsystem, Users should be fami|lar with sectlon I!.,D0,8 of Sailon
55, and SAILON 29,

The following display primitives allow the user to enter
display commands [nto "the" current display buffer, The contents of
this buffer are not seen untll the user executes ¢the "SHOW"
primitive,

(AIVECT X Y) draws an abso|ute (nvisible veector to (X,Y),
(AVECT X Y) draws an abso|ute visib|e vector to (X,Y),
(APT X Y) draws an endpolnt vector to (X,Y),

(RIVECT X Y) draws a rejative [nvisible vector to (X,Y),
(RVECT X Y) draws a relative visible vector to (X,Y),
(RPT X Y) draws a rejative endpoint vector to (X,Y),

(GVECT X Y OP S!ZE BRT) assembl/es display processor opcode <OP>
with X, Y, SIZE, BRT flelds specifled,
E,9,, (GVECT 2 @ 46 1 2) draws a Zero |ength
Invistible veotor and sets the character slze to 1,

(LOCATE) returns the poslition of the last word put

In the dlsplay buffer,
(DJUMP N) stores a display processor Jump to locatlon n,
(DJSR N) stores a display prooessor subroutine call| to

nocatlon n,

(FIXUP X Y) stores y Into the Jump (or JSR) address at
nocatlon X,

All of the above commands return the referred to display buffer
address,

(SHOW N) the current display buffer is displayed on
"nlece of glass" (N),

(KILL N) erases "plece of glass" (N),

(CLEAR) erases the current display buffer,

(DTYOS) selects the display buffer for character

output from LISpP. (TYO, PRINT, ETC,)

SAILON 28,6 APPENDIX M Me2
(DTYOU) unselects charagter output to the dlisplay putfer.

DTYOS and DTYOU make [t possible to define a printing funotioni
(DE DPRINC (L) (PROG NIL (DTYOS) (PRINC L) ¢(DTYOU) (RETURN L))

(CHINIT CHSIZ LINELENGTH LEFTMARGIN)
Initia|i1zes {nterna| perameteprs for DTYOS so that
text will be dlgplayed wlfh .lzo <CHSIZE> and wligh
Iine |ength and loft margin specified,

To use these primitives, use the fojlowing joading seaquence:

(INCCINPUT SYSt (LISPDP,LSP)))
<seQuente Of output>

(LOAD <NIL o ™)

#SYSILISPDPS

<loader output>

#«(DISPINIT)

<now You oan use the dlsplay>

a

~

SAILON 28,6 APPENDIX N Ned
APPENDIX N
TRACE
by Lynn Quam and Whitfle|d Diffle
1. FUNCTIONS FOR DEBUGGING FUNCTIONS

Three different types of debugging alds are aval|able: TRACE,
TRACET and BREAK,

A) TRACE and |ts aux!|lary functions UNTRACE and RESET a|low ohe to
oonitor the entrance to and ex!t from "traced" functions, (Warninmg:
wse. (NOUUO T) wlith complied functions) when a "traced" function is
entered,

(ENTERING <(recurslion depth> <Kfunoctlon name>) <(valuyes of
arguments)> |s typed, When ex|ted,

(LEAVING <recurslon depthd <functlon named) <Cresultd s
vyped,

(TRACE <|Ist of namesd) FEXPR causes al| functions In I|lst of names

to be "traced", TRACE resturns a |ist of names of those
functlons which ware previous|Y not traced,

(UNTRACE <I1st of names>) FEXPR |s the Inverse to TRACE, [,e,, It
restores each functlon to Its previous untraced state,

(RESET) EXPR causes a|l recurslion depth counters to be reset to
zZero, Only necessary when a traced functlon I8 abnrormally
ex|ted,

B) TRACET and !ts aux!|lary functions UNTRACET SLST and USLST al|ow
one to monlitor a|l SET’s or SETQ’s to atoms selected for by SLST,
When such a SET or SETQ occurs,

SET <atom name> <value>) or
SETQ <atom name> <value)

!s printed, (Warning = use (NOUUO T) with complled functions)
(TRACET) EXPR turns on SET=SETQ monitoring,
(UNTRACET) EXPR turns off SET=SETQ monltoring,

(SLST <|lst of atoms>) FEXPR appends <|lat of atomsd> to the |ist of
monltored atoms,

(USLST <Il1st of atomsd> removes each atom from |ist of monitored
atoms, '

SAILON 28,6 APPENDIX N N=2

C) (BREAK <comment> <expression>) FEXPR |s useful for observing
the state of varlable bindings within |ambda expresslons
and progs, When BREAK |s eantered, (BREAK , <ocomment>)

s printed, BREAK then enters a READ=EVAL=PRINT |oop
unt!| an atom whigh |s the vajue of the atom #BPROCEED®
s typed to READ, This atom will Inttially be P>, but may
be changed by setting the value of #BPROCEED#, BREAK then
exlts with <value),

SAION 28,6 APPENDIX o
APPENDIX O
| SMILE
by Lynn Quam and Whitfie|d Diffie

1, FUNCT]ONS FOR USING OUTPUT DEVICES

(LPT) EXPR |s used to start an output flle on the |ine printer,
It does

(PROG NIL (QUTC (QUTPUT LPTI) T)
(LINELENGTH LPTLENGTH)
(QUTTIME))
where OUTTIME prints a heading, time and date.

(OFF) EXPR |s used to end an output flle, It does

(PROG NIL (PRINT T)

(OUTC NIL T
(LINELENGTH TTYLENGTH))

(LPTOUT <expr=llst>) FEXPR Is used to create an entire output
tile on the |Ineprinter, 1t does

(PRQG NIL (LPT) : .
(MAPC (FUNCTION EVAL) <expr=Iist>)
(OFF))

Examp|es: (LPTOUT (GRINL ALLFNS))
(LPTOUT (PRINT OBLIST) (PRINT F00))

(DSKOUT <fl|e name> <expre|lst>) FEXPR Is used to create an
entire output flle on disk fi|e DSK: <file=named,LSP,
It sets |fnelength to LPTLENGTH, and evaluates al |
expressions fn <expr=|ist>, then does (OFF),

Examp|et (DSKOUT NEWFNS (GRINL NEWFNS))

I1, OTHER USEFUL FUNCTIONS

(GRINL <atomd) FEXPR causes a|l atoms In the |Ist (<atom>
<value of atom>) to be GRINDEFed,

For examp|e, (GRINL ALLFNS) wll] cayuse ALLFNS and every funmction
which has been deflined by DE, OF, or DM to be GRINDEFed,

GRINDEF uses the aux!llary functlons SPRINT, HUNOZ, PANL,

and PPOS,

SAJLON 28,6 APPENDIX O 0=2

(GETDEF <device name> <f!|e name> <|lst of function names>)
FEXPR needs seleoted fungtion definitions from
spegiflied disk tiler ang prints the Names of
those fOUnd. GETDEF P.turﬂs LAAE

Example: (GETDEF DSKi NEWFNS SIZE FOOBAZ)

(TIMER <Cexpression |Istd) FEXPR returns the execution time
In mi|I{seconds of the expressions in the
expression |lst,

Examp|et (TIMER ¢GC) (GC)) returns the number
of mi|)1seconds necessary to do 2 garbage
collectlons,

(EDIT <atomd <old> <newd>) FEXPR causes al| ocourrences of <o|d>
s=expression to be replaced by <new> s~expression
In some property of <atomd>, The property to
change |s selected as followsy

(1) EXPR
(2) FEXPR
(3) ¢lrst property on property |[st,

Examp|et (EDIT OFF TTYLENGTH 10%)

Woul|d oharge OFF tot

(DEFPROP OFF

(LAMBDA NIL (PROG NIL (PRINT T) (OUTC NIL T
(LINELENGTH 185))) EXPR)

EDIT returns T If a change was made, Otherwlise NIL,

I

m

=

M

SAILON 28,6 AppENDIX P pel
APPENDIX P
CONSTRUCTION OF A L!SP DISK=DECTAPE SYSTEM

by Lynn Quam

LIST OF FILES, TYPES AND DESTINATIONS

FILES TYPE DESTINATION
LISP,MAC MACRO STEPS 2,5 LISP,DMP
NOADER,MAC MACRO STEPS 3,5 LISP,LOD
SYMMAK ,MAC MACRO STEPS 4,5 LISP,SYM
ALVINE ,MAC MACRO STEP 6 LISP,ED
LISP,LSP LISP STEP 5 LISP,LSP
COMPLR LISP STEPS 8,9 COMPLR,CMP
LAP LISP STEP 5 LAP
SMILE LISP STEP 5 SMILE
GRIN L1Sp STEP 5 GRIN
TRACE LISP STEP 5 TRACE

DISK DECTAPE

The following conventions
will be madse:

DTAS = dectape whepe system
wli|l| be created

DTA] = dectape where source
fliles are

DTAT = deotape for temporary
files

Also, make the fo|lowing
assignmentt

+ASSIGN DTAS: DSK:t

SAILON 28,6 APPENDIX P Pe?
1) Assemb|e with MACRO-1D

LISP,RELeLISP,MAC OTATILISP,REL&DTAI{LISP ,MAC

LOADER,REL«LOADER,MAC DTATILOADER,REL«DTAIILOADER,MAC
SYMMAK,REL~SYMMAK ,MAC DTATSSYMMAK,REL*DTA] 1 SYMMAK ,MAC
ALVINE ,REL*ALVINE ,MAC DTATSALVINE,REL«DTAI1ALVINE ,MAC

2) To generate the LISP INTERPRETER

R LOADER
L1SPS *DTATILISPS

+C
+SAVE DSKIL]SP 10 +SAVE DTASILISP 10

3) To generate the LISP LOADER
R LOADER
*_0ADERS | *DTATILOADERS
+C
+START

<Thls oreates the mode 17 flle DSKILISP,LOD opr DTASILISP,LOD>

4) To generate the LISP LOADER SYMBOL TABLE
R LOADER

#DSKILISP/J,DSKtSYMMAKS 'DTATILISP/J;DTATlSYMHAKS
*C
+START
<This creates the f]|e DSKILISP,SYM> or <DTATi{LISP,SYM>
5) Copy to DSK or DTAS the following f!]es!
LISP,LSP, SMILE, GRIN, TRACE, and LAP
Now |f using DECTAPE do: ,ASSIGN DTASISYS!I

SAILON 28,6 APPENDIX P Pe3
6) To generate ALVINE
R LISP
FREE STORAGE = 1000p = <a|tmode)
(INCCINPUT DSK:C(ALVINE.LSP))) #(INCCINPUT DTAIS(ALVINE,

LSPY))
» (LOAD) #» (LOAD)
« ALVINE § # DTAT: ALVINE $

« (GETSYM SUBR ALVINE)

» (ALVINE)
<Thls creates the fl|e DSK: LISP,ED> or <DTAS: LISP,ED>

Copy the fl|e LISP,ED to SYS
7) To complle the LISP compliler!
7a) If there Is an o|der revialen of the compiler, do
+R COMPLR <¢cr>
and go to step 8,
7b) If there Is not an older verslion of the compller, do
R LISP 32
FREE STORAGE = 10902 = <a|tmode>
«(INCC(INPUT DSK:COMPLR)) #«(INC(INPUT DTAL: COMPLR))
<this Ioads everything>
and go to step 8,
8) Actual| compllation of the LISP COMPILER
(SETQ INDEV (QUOTE DTAI:t))
#» (SETQ OUTDEV (QUOTE DTAT:))
s (COMPL COMPLR)

{random messages>

*C

SAILON 28,6 APPENDIX P

<Thls generates the f|le DSK: COMPLR,LAP> or <DTAT:
9) To |oad the compi|ed LISP COMPILER,

R LISP 3P <er>

FREE STORAGE = 100@p = 20080

FULL WORDS = 4000 = 4p20

BIN, PROG, SP, = 18p0 = 14080

COMPLR,LAP>,

REG, PDL = 10200 + one aixtesnth of free storage s 2000

SPEC, PDL » 10900 + one sixteenth of free storage = 1000

OBLIST SIZE = 177 = 475

(INCCINPUT SYSt LAP DSKi #(INC(INPUT SYSt LAP DTAT:
(COMPLR,LAP))) (COMPLR,LAP)))
s (EXCISE)
(NOUUO NIL)
*C
+SAVE DSKi COMPLR +SAVE DTASt COMPLR

Copy the fl|e COMPLR,DMP to SYS!

M

O

SAILON 28,6 REFERENCES
REFERENCES
1, John McCarthy, et al|,, LISP 1,5 Programmer’s Manua|
(Cambridge, Mass,, MIT Press, 1962),
2, Clark Welssman, LISP 1.5 Primer, (Dickenson Pub|ishing
COo 1967),
3, Robert A, Saunders, "LISP = On the Programming System",

In Edmond C, Berk|ey and Danle| G, Bobrow (eds,),
The Programming Language LISP; 1Its Operatlon and
App|llcetions, 2nd edlitlon, (Cambridge, Mass,, The
MIT Press, 1966), p.54,

REF=1

INDEX IND-1

SAILON 28,6

INDEX

A AN A AN AM O AT T NN O MY v
& ¢ ¢ ¢ 8§ B OB S E OF QR OB ¥ OB ORORBGE OB DO [N N I |
NANRNOCAOANVVINFHRONO T aNODOLZaw asv o
i 3 HArivd ovi - i i !t
b] —
llllllllll [e e e o @& & @ o o © o o P
Lo o | =
llllllllll o o o o o 0 e o o v e s a0
, [3
............... @ Q & ¢ ¢ o & a s O
i on [}
® e & & & e & & ¢ ¢ o o & & o o e & & o o o oM
aE | =
............... B & © o ¢ & o o « O
[o
!!!!!!!!!!!!! E O @« ¢ ¢ ¢ o ¢ o
« O [
............... “ & e o e e » o o
[BN o) o
ooooooooooo e « O e o o & o & =
— ~ > C
........... e a0k o e o o o o o9
O O « E =
« o & & & o ¢ & o o e § e e L e o e o s e eP
= e
e o o o} e © ¢ o e e TV U & o 80O © © « o o & =« [-]
+ I [= [
o o & o f o e3> o e e NN ¢ o0 o = ¢ o & o o [
[C —— o 0 E
- - e = E e« e O o . —e— e e 0 e & e & & e e
3 Lo [3% < @ e E n
> & o aP & e @ o e o o o0 O e & & o ® o = E 4
.~ > [4} > 4 [}
e o o o @ ® a4 oD am—oe— o o NP © ® & & =« o ®—
-— (] c cC O O -_
« o o o f @ «D) e = o4 £) * e & & = o = o
o o o o (W] o Wt a o
[+ 2 4 oo oaxoaoacom D mDOIaa o xox o m
m @ D2DOD0OmMO @ ®Omma@m 8 274X @m -@moO@Mm>D
oD NULWMWIIWMDDODIOD A NMAaCSIWIDID «sDDO W
ww L2 1L umumvnmnm > A>> LUV ML
a (&) x> xa
— Z > > — O <€ SJwWwoOouLuXx a0
~ W | ¥V . | L= O FTOOWZ 2 ZIX a 0 0O
NO—~00 00O XLWMWOXY NLOOWOoOWODX -« x
OO0 JZ0 0 0xnNnrraada—0oo0nrXran -«<0OQIxXO
CIA 9T AT A DT ODOMOODOL =DV D
J J),)

AN INNNNNNAAN Tl vl AN

T 8 s ¢ ¢ 2 0 OB BRGE BCNNE S OB OE OB ORI OEEOEOE OB

VBT ITricrdiNANANAS I sYxOOOOORNINNINTO®

Hrird A A A A A v ! it -

L o]

oooooooooooooooooooooooo

llllllllllllllllllllllll

.- o o & ©* = & ©© & &5 = & © - o - & o o & a & & o

- & = ® & & & ® o & & » ® e & & &« & e o & *» =

................. T o o e = o
]

............... X o o & & =
[o]

...... - o > = & > > - > @ = o o o & -

OOOOOOOOOO ®« o © o o o o o @ e o o o

............... 4> e @ e e =
| =

llllllllllll *» o o o o o @O e o o o -
3

OOOOOOOO N o © ¢ ¢ o o © o o3 o o o o o
*» o

OOOOOOOO C o o & o = o © o o & © o o o o
o «

llllllll £ © ¢ @« e o & o o o e« o o o e
3 ©

........ M o © o o ¢ & o o afl e o o & -
[= o

llllll S & o & & o o & o o O & o & &
o

|||||||| C e © @ © o « © &« oth =« «a « = =

o o o x O o o (24 o o o

oOrooarooaomMmMooraoo oo ra oo o a

MOOM@OMOODODOI20@IDX m>XoOdMao DOm OI2|mmm

DUVUDDVLWMDWUM DOV LWOWDODOD D WMOND W!MD DD

N VLLNVLIVLLOVLOVLMNL 2TVL VBV

(Y]
(&

Z (]

a ad Lj > L W

- O c tal — Z<WWOO

P o wm (il -) <z P4 —i tat = Vo O

U e O a o o' - J T (72 DO BD gy & Al o QU R]

Z> L a L > x (7 oo oxadadaOO0Q

OO QW WiWhw T VOO0 OXd a>XxX XX XX

DOOCCOO0OOOCOOCO00 WL LW LW WL W W
J J U)

INDEX IND-2

SAILON 28,6

)]
N NATONN NN
s ¢ 5 38 8 818
VCOXITNWTD
Lo R} -4
- -
-
-
-
lllllll -
........
L e e e e e e e e ® e e e e
o
a 1 4 o
x m X m
Caf 32 > =)
a ww w
w
Lad s
xz mn
Z << X e
ez <DV
@ Q@ tad « Z
a X _ 1 _ X X X<«
X al ¢ et 2ms o _§
L b i L B fa L

"
MO I A A A A A AT N AN A A F A vt N A AT NS AN TN NND A A DOTODOANNDNONNN
s 2 8 8 %8 % F G OO QB CE S 2 ¢ SO-80 0 R R S S 2 B O DR RTE RS R R O B2 BB R OB OB
TXLWAANMNONOO AN ATIM qqeMYTOoYT TR OcoYTEINLNORELMLIBE R REROO
-t L o] vl et -4 kR - v - Lo - i vt i i
ll
ll
......................... e & & & ® o & © & ® e & & e e o & > e s o
&« © & o o & 6 & o e & & & & & e e o & o o e 6 & & e 6 o e 6 & & o S 6 S O e e e e & o @ e« o
- [
lll [= *» o
- TS 2 2
........................... - o & o o o o o o o S * o
- o
""""""""""""""""""" *® o ®© ®» o o o o o o§P o o & o © S 6 & o o e - o
- [] F 4 g
..................... - *« ®© o & © 6 o ow—= o o © o s o o o o o o - - e
- < — []
& ® & @ ¢ ¢ & © ¢ & & o * e ® ¢ e ®© e o o o e @ ®© e o ®© & o e ©o o & e o o & ®© o © = =3 - o
- © - 3z = = :
""""" ® o © & & o & & eod® o & & ¢ & o b o0 * o & ¢ e o o 6 o o o - »
- [
..................... @ e T © o » o © & o oV o P o o o o o o = o o o -
» o c » -
lllllllllllllllllllll L o & & ¢ & ¢ o o o @O o€C o o o ¢ ¢ o o o o> < =
® — ® | = o J
...................... E o o @ o ¢ ¢ o o o) o E o o o & o & o o =+ O (e N«]
o | [| - 3 -~ W s
-> & & & e ® & o o v O o e = B oo = o & &« @ o o = G o o o o o o o o o o eSS s
[= > 3 (=8 > []
. e e & o o e o e & ®o e e e ® o & o o o & =u & o @ e o e o o e o e = 4 o g o e o o o e o o - - ® o
| = @ -~ s n
- o o o o o o o of em—— o o o o & o wu o e o ff © & ¢ o o o ¢ o o o) pus s]
w
-
oz oo Ol o (] [
[4 GuWwrraraaooaoaaocamamdD or & oo [+ 4 xroa oo xoroaocaocora
[24] D2XaoaomooaxX220> 3 [0 31 o e | [24] oo o Dmm Mmoo @om o mom
=2 MNMODODIODDDIIDDIDDIDODULMam 20 0m = 20« 2W!W 3D 2DO09D9DDDD3 3
[12] LOMNONVLIVUVLVOVLLE L> NG WL w nmxE N BUBOOOBOEOWYV
[: 4
<
- | [+ e o
< 'R} -
Zz Z [+ 1 Lad (&]
oo o L (. [+ 4 = -
= (& N and W x x s Ll — =z Lt Z B8 x (%) X X xwmo
Dxix - O X > > —Ow - Lt Ood 30 | gl * W« U | xo O <« o= Lal
Z0O0OO0B <O < > N Swm <ZWNZ IO WWLWDr-OMmoa WO oxZ=Z [S X & N ¥, N2
ox>OHOZzZ=Z OCOFFZ+- K-+ LW WO —A FFDNDIMZ2NXZNa«aIDUXYoO0aoaxTXxE
SJOMIDOD D200V WWLWWOOHrEMOZZZZZA<AA4idWUidrr—0ONNAdAAadAd < <ld
Lk bl ULOOCOOOOCUVUUAAOOVsercrorssorreos S _JF_ 3 3 3 .35 32 3.1 3 F T TITITXITFXTETX

INDEX IND=3

SAILON 28,6

""""

THTNM AN NN MITITNANNDNNO AN AN A AT A ST MDIMOCNMND N AASNNN
§ ¢ § 8 % S8 ¢ 2 5 2 5 B B B B S B 2 ST OB OB RO OE R OE BB OV D OB OGS OB ¢ 2 2 8 3 ¢ 8 8 B B OB
NN WOTOILMOTTITNUNMITIIMMMNMAIANNTITEN MEBERRR«@O IO LW
(o] a2l vivivtid o R o R Ko R -4 “Tvivivdi i Lalala Ro R o B 4
llllllllllllllll @ e o o o o e ®» & e & ® e © e & © ® o & e o e & ®© ° e & s © v - o
[=
................ O e o o o = - & ®& e e e &6 & = * *© ® e & O & ®© © © 6 o ¢ & o o =
—_ +
llllll ® & @ & o o & o o o o o @) e & e ¢ o f @ o o © e o6 o o & ® 8 & e e & e ®© ®© e ®© o e ® e o s -
/] [
00000000000000 e o & o @ e e & & o L. ® ® & ® @ @ 6 & & &6 & ®©® o e o © © w v o o
[L] @
................. Q & @ 647 o G © o ® © & & ®© o o & O e & ® S o S ® e © 6 & o & o s
x | = -
® & & & ® o e e o & v =& o o & & e - @D o ¢ e D e o ¢ ° & & & & o e o = - o & o & = & & & o =
] £ O
*® @ €& & & & &6 o 6 o o e & o o o>) & &« 3 &« o o e o o o ® & & & & & ¢ & & o & & & o = o
-3 o ”
* & & 6P e & & e e = & o e o = = € = o ot of§P o o & & o e e & & e e & & e " & & © e o o o
P-4 [-_— [[=
- o o = e ® o o e o % e = e o o o o o e @ ® ®© o & o o & o o & e & e ® 6 &« &« & o & & =
© o 2] 793 E
® o o o e 4P o o o 2 o e o e e o - P - - e) @ o @& e o o o & o o o - o o & o o o s & s -
© » o0 o
e ®© o o T eV o & o o o o @ & - B o1 o 0 o3 ot o o o o o6 6 o o ° o o 6 & e o & © °© ° o
[[+» [=t [5 [,] »
e o o« o N oN © o ¢ © o o o o = C 6O oeo— eQd e o ff o ®« « ® ® » & o o ®» ®» o 6 o ® o & s o
-— -— [) | - - 3 -~ @
® & ¢ e-~ o-— o o & o o ®© o o = £ - - - e 0D o o FE o o o o o o & o s o = (3 o e o o o o =
] [2 L4 -— "n 3 [T¥]
*® o &6 G Sem o & ® o o ® e o » N o off o« X wt. o =M o o o =« ©« o 6 o =« o ¢ o » o = o & =
» = o a o @ (. L
® ® & Gs~ Pa= o6 o & & @ & e & @ o— «ff e— o UV e o G © ¢ & » » & ¢ » o & » @ * o * e o e
[= [= —_ (V] - [0
® e e eve mam— & & & ® e o & o & C e @ = o« @ =0 =« o o « « « =« « =« » =« & b T Y
o Ll Wwa o O o oo [¢ 4 [+ 4
x oM Jaiaxa @ Oooaxxmoo @xrocomon racaocaxorocoacoaoaaodaoaaoaaoaoaaxa o
m@OOmn IJOomom [s4JNs o U R Js « Juw Ja s W &] mom@o>ODm OxXDO0oomaoommMmDOoaoomoomomoom DO mEX
DD WNDa«DD D 20« WnMDODOVNID< 2OD03DOW!mD DQWWUMC«DIDIDDODOMODOX2DOIDIDDIDIDO2II W D> >
DV ITON>S>LOVIWM NND>LL 0L X DVDONVBLWYW DL LTOVOOLNLONOWLWDOBOLLLODOOVO WL »nww
-
w
— =z
-5 o
o -
> - — w (o]
a - Qa z w O a Lt w zZ @
[+ N xx o 5+ - w x O X 9%} I re2Z o Z0NC0O 0 (&) BV] — -
nwvmowm o LW << 2 Z Wt O+ N Wi > L} Od— OO - oaoxooo a axx mw
DO ZZ 2 0> OQR —~VITZZZO004A04MNMFFOOOCLSOO WIDWILSAIW <« O <00
Z2Z00 3D 20X XX 2 FHE 1D A= 000 FOOAAACSITITIIWNFD _JI_10NFF - XL Wl
=DV~ 00DDD2ODOOXDIOO N ZOXrrrrrao>D>IO DWW LWWUWUULLLGTWUWWACACR
YFFIZZ222zZz2z2200000000000000000 0O rr ROt nNnnng
Y Y, o) o U U .

[-
4+ e e o =
(o]
C = « =« «
o
w oo
WD
S22 W;m
a Ut
R 8
>
[+ 4
L ¢
>
U QU 3
< < (&]
——s Z Ll Z
OO e (X +—
Wwaxoo
oaar-r
yanonumBvwm
J

INDEX IND=4

SAJLON 28,6

M M
ST MDA AOsSecdcicd T ONNAN
a ¢ 8 ¢ 8 8¢ 0 ¢ S BB O B D
N oeoTOoCNZZoTenNhaOo
Lo] Lo] laXalsl Lo R) -
® e ® o e e ® ® o @ o e ®» o o
- & e o o o o & o o - - & o o
."'.-.'l.!l,".
0"".'0"00'.0.0
'.'.'..'!'.-A.IC'
* o & o & & & e o & & o o s e
- & & o o o & o o e o o o e =
- - & & o & o @ v s o - o
-
- o e ® © ®© o o o e & o o o
(24
- e o4 o o » o & o o e o o -
e« o oV o o ¢ o o ¢ o o o o
- >
o o o e o fC o o o & e o . e
—_ ®
®« o oa— o o FE o ¢ o o o o o =
« 3
..... W > & © &« ¢ © o
L o4 [
o ® ow= o o @ o o ¢ o & o o o
| o
- @& eom— o o C o &« & ¢ &« o o -
L o
[+ 4 I3 xroaaaaxcaa o
m M 2oL Xoa Mo O m o
pes DICIDIIDDA WX DD Z2233
v B>UOInlLnom U3
(o}
=z
——
a
[V]
: -
- [o m
- : & [R R] Waoa
i X Vv AW oo D Z O
@ @M EITFTFALAA4~0 JXOQOT
2203 Wivere X @ > > €« XKV W
B OO = >>XN

) ™ M
NN Tt A T T AT AT Ml Nl vl
S # 8 ¢ 8 5 ¢ B 0 8 B GGG B0 R B B O
TLWEBNNOCOONITIOCOLWOTNINON
-4 Lo K L,] i vt
...... - - - - - - - - L 2 -
. o & o ¢ o ¢ o ® 0o o oo - o & o =
* o ®© o ® © * * ® o ® 6 v o ® o o O
*® & & @ & e & & ® e & o @ & o e o -
- - - - - - - - ® ® o » o » & o o o
lllllllllllllll
CP.'.”-'.". > o o -
- - .]
........... -e & o ope o
= =z -
- o ® o o o o > o ®o o e - o o -
: (=4 o]
* ® & ¢ & & & ¢ e > e oP o e oP
- ® ® & e & o o v °o o - TV o o «TOT o
[J o
............ N e ¢ o N o
............ ” - ‘,.' -
- «
- - - - - - - - ® - - " — - - - — -
» »>
| = [4
.......... L - - L p— -
[+ 4 [TV
raocaocac oo arDDxacaoxa
FOOOOMDODOMION _O@oomom
BB OAOANDLOBDLBLLOBILOLS>VBOOVGOVOM
-4
O |
o OO —X P-4 =
[N -4 ZZr>+_3 - > w
¥ X laf LA COWNC INO VW - W
AL <00 Z-WadoOrr0OWXx
OXTA~>XXIDODWEOLO 2D e
WO WWiia. OO 3 320 0400+
(“BE 2N Bk Bk BN S BN BRIk BE BN Bk BN AR BE BN 2

()

M

	Preface
	Acknowledgement
	Contents
	1. Introduction
	2. Interactive Use of the System
	3. Identifiers
	4. Numbers
	5. S-Expressions
	6. Lambda Expressions
	7. Evaluation of S-Expressions
	8. Conditional Expressions
	9. Predicates
	10. Functions on S-Expressions
	11. Functions on Identifiers
	12. Functions on Numbers
	13. Programs
	14. Input/Output
	15. Arrays
	16. Other Functions
	Appendices
	A. ALVINE by John Allen
	B. Error Messages
	C. Memory Allocation
	D. Garbage Collection
	E. Compiled Function Linkage and Accumulator Usage
	F. The LISP Compiler by Whitfield Diffie
	G. The LISP Assembler - LAP
	H. The Loader
	I. BIGNUMs - Arbitrary Precision Integers
	J. A User Modifiable LISP Scanner by Lynn Quam
	K. SOS-LINK by Whitfield Diffie
	L. Some Differences Between This and Other LISPSs by Whitfield Diffie
	M. LISP Display Primitives by Lynn Quam
	N. TRACE by Lynn Quam and Whitfield Diffie
	O. SMILE by Lynn Quam and Whitfield Diffie
	P. Construction of a LISP Disk-DECtape System by Lynn Quam
	References
	Index

