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ABSTRACT: This paper describes in cutline the structure and use of
REDY Cn, e program designed for large-scale algebraic compus
tations of interest to appli=d math rematiclans, pﬁjsicists
and ensinesrs, The2 capabilities of the system include:

1) expansion, ordering and recductiorn of *at onal functions
of poiynomials,

} dymbolic differentiation,

) substitutions for variables and expressione apaearlng
in other expressicns,

) simplification of symbeclic determlnants and matrix

3)

£ N

expressions,
tensor and non-commubative slgebraic calculetions of
interest tc high energy physicists.

N

In addivicn te the synbolic opsrations of addition, sub-
“traction, multiplicaticn, d1x ision, numerical exponentiation
eand differentiation, it is possible for the user to add new
operators esnd define rules for their simplification. Deri-
vaticns of thess operators msy elso be defined,

The program is written completely in the language LISP.1.5
and is orgenized so as to minimize thz2 effort required in
transferring from one LISP system to another.

Some particular problems which bave arisen in usirng REDUCE
in a time-shar vironment are glso discussed.
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have proved capable of extension so that ahy problem involving manipulation of

SECTION i: INTRODUCTION

Many of the day to day problems which confront applied mathematicians
involve extensivc algebraic or'non-numcricél calculation. Such problens may
range.from the evaluaticn of analtizal solutions to complicated differential
or integral equations on one hand, itc the~calculation of ceefficients in a powe;
serles expancicn or the computation of the>dérivative of a complicated functlon
on the other. The diffcrence between these tws classes of problcems is obvious;
in the former case, no straightforward aigorithm exists whicli will guarantee a
solution, and indeed an analytic ferm for fhe solution mayAnoi even exist. On
the other hnnd, algoritlms do exist for the solution of problems such as series
expansion an& differentiation, and so a correct answer may always be found
provided the fesenrcher possessce sufficient timq perserverance and accuracy to
carry the more complicated problems through free of error. Many examples of this
type of proglem may be found in physics and engineering. Calculations of ggneral
relativistic effects in planetary motion, stfuctural design calculations, and
many of the calculations associnted with elementary particle physlics experiments

at high energy nccelerators, to name a few, may demand many man-months or even

. years of work hefore a uselul and error-free ansver can be found, even though

the operantions involved are quite straightforward.
The REDUCE system which is vescribed here has been designed with the latter

type of problem in view. Although nT?«A@AEy_designed for batch processing
computer systcums, 1t has been found to be far more useful when used in an
interactive, time-shared environment, and it is this form in particular which

will be discussed here. Historically,l the system was designed for the special

problems which arc encountered in elementary particle physics, but the techniques
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1) expnnsion, ordering ind reducticn of rational functicns of polyromials,

large algebraic express!,~ Ly known algorithmic methede ie readily handled. So
far, physicists anc¢ desdgi engd-eerec have been the princible users of the system
ae it exists at Sinnford Univereluy,

The basic problems which the presént gyatem le capatle of solvirg include:

2} symbolic diiferentintion,
3} subslitutions for varinbles and expressione appearing in other expressions,
k) simplifiéatidn of symbellc determinants ahd matrix expressicns,
5) tensor and non-commtative algebraic caléulatibns of interest to high

energy physicists.rr | »
This is by nc means a complete lisl, and several other speclal features of the
system will be described in the course of the paper.

The RBIRICE system hag pcon entirciy pregrammed in LISP 1.52 a language

designed especinlly [or symbol manipulation. The advantage of using such a
language ic that il is possible to develop a system which is easily capable of

modification or cxtension wnd is also relatively machine independent. Thus it

has proved pocsible to use the REDUCE system at several IBM 7090 installations,
on the time-shared AH/FS0-32 of‘System Development Corporation; and.the time-
shared PDP-0 of Gtanford Artificial Inte}ligence Pro&ect. A system for the IBM
260 serles wiil wlso be nvailable in the near future.

The plan of 1his paper is as follows. In Section 2, a description of the
bagic slructurce ol the system 1s given, explaining the methods employed in
simplifyine ccxprecnions :nd representing the cimplified results. The actual
ingtructions which the user is given for this simplification are described in
Section 4, and some re@arks on the use and design of the system for time-shared

operation are piven finally in Section 4.
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/ () 'SECTION 23 BASIC STWWCTURE OF THE SYSTEM

~' Af A REDUCE program consiste 5f e set of functional instructions which are
evaluated sequentisliy by a computer. Examples of such instrucﬁions are shown
in Fig. 1 snd the results of o calculation in ¥ig. 2. The complete description
° . of the elements of the language end the operation of the syastem are given in e

e User'’s Manualj and only a brief regume will be given4here. Essentially, the
arguments of the functionnl instructions are expressions, which in turn are
seguences of numbérs, variables operators and standard delimiters (such as commas
and parénthcass)u “Allowed numbers in REﬁUCE stateménta follow FORTRAN convenilons
N essentinlly, and mny Le real or integer. Variables conéiaﬁ.of one to twenty-four
alphﬁnumeric characters the first of which must be alphabeéic- Operators in
‘ the syatem arc of two types; infix_operators, which occur between their -
. i argunento; such as the standard FORTRAN operators #% % / - + = , and prefix
operators, wiich occur at the head of thelr erguments ‘ag in normal mathematical(

functions, e.g. LOG (logarithms to base e), DET (the determinant operator)

and DF, the differential operator. Thus in Fig. 1 DET ((X+Y,X-Y), (X**2 - 2%y,

3%X)} 1 presents the 2 X 2 determinant

X+y X-y

x2-2y 3x

and DF(X¥*Z-3*X.X) the derivative of x% - 3x with respect to x.
Although the average user of the REDUCE system need know nothing about
LIGP, a fewv bLasic facts are necessary in order to understand how the system

opcrates. Vo shall assume here that the reader is at least acquainted with

.“
]

iist notation ae used in most list-processing systems, but not with all the

deteils of LISP.
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The input of an expression to the RERUCE system 1s normally in a ]."OR'PIUHN;.
like form as shown in thc exampl2s in Fig. 1. ‘The first action of the gystem
is to convert thi- cxpression into a standard LISP prefix form, wherc all

operators are writien in profix form (using verbal forms for infix symbols to

[}
Ay

avoid confusicn) and an opsrator with its idst of arguments becomes a ilst of

that operator and its arpuments. Thus the erpression X-3%X* 005(Y) for
example would become (PINS X (MINUS (TIMES 3 X (COS Y)))).

. The ﬁmjority of the simplification code in the system has been desipgned
to handle rationnl functionsof polynomials. The concept of uimplifi_cution oi“
an arbitrary alrebraic éxprcss'ion rcmnihs one of the most controve;'sial subJjects
in mathematics, but for the class of problems for which the REDUCE syotem io
designed, basic simplification (or .rcduction) is first achieved by expansion of
the expression by the removal of brackets ang application of the multinomial
theoram. If we tqstrict our discussion for the timé being tq rational functions

of multivariable polynomials with integer coefficients » then such a reduction

is clear-cut and anambijuous.

The oxpansion operation reduces an expression to a pair of standard
forms which reprusent the mmmerator and denominator of the expression respectively.
The standard form used has undergone considerable modification since the first

: 1 .
system was develeoped™ and now is a recursive form similar to that described by

i . .
Coliinc. This representntion has the advantage of faster manipulation and more %
compnet representation of expressions than was achleved with the distributive g
¥
2
form deseribed in Ref. 1. %
Opecifically, an expression in n  variables f(xl...xn) is written as 3
i power gerices in one variable whose coefficents are themselves functions of :
. K
n-1 variables. Thus : T
my 4
4

., \
P(x3,%20 0 0Xy) =
=1

(1)

' 1
£i(xae . axp)x;
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- The pol&nominl cocfficiento are themsclves expanded in a like manner, and the

represcntation continued until only integers remain. In Bacchus normal form,

using the LISP dotied pair notation the REDUCE standard form is:

(stnndard form) ::

{integer) [({standard term) + {standard form })

(standard term} :: = ({otandard power ) - {standard form))

{standard power):: = ({variable) . {non-zero positive integer))

Thue a standard term represents one term in the power series Eq. (1), and a

standard power represents a varluble roised to a positive integer power.

Standard powers are stored uniquely, but no attempt is made to compact the’

storage used by other expressions.

hAn ordering convention based on the machine locaticn of the variable atoms

in core is used to decide the position of a variable in this form. Thus two

.equal polynomiais will have the same standard form.

If fractional powers of variables or expresslons are encountered during

" reduction, then a new variable is created to represent that powey and the user
informed, ensuring that no fractional powers remain in the standard form. Like-

wise, any rezl numbers encountered are usually converted to the ratio of two

integers, unless the user specifies otherwise.
& >

An exiension of this baslc representation to include cther operators is

made In a particularly cimple (but not the most general) manner. Ton each

operator (infix or prefix) there corresponds a simplification funstion which is
called during

reduction of the expression to standard forms. If a new operator

cimplification function may transform its arguments in two different

ways. First, 1t may convert the expression completely into operators already in

(2.1)
(2.2)

(2.3)
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ghe system, leaving no functlons of the new operator for further manipuldtion.
This 16 truc of the simplification functions connected with the baslc fafix
operntors becnusé the standard form doés not include these operators explicitly.
It is plso true of an operator such as DET, for example, becnuse the relevant
simplificaticn function calculates the eppropriate determinunt, and the operator
DET no Jonger appearc. On the other hand, the simplifilcation process may leave
some resciduni f'uncticng of the new operator. For example, if the operator COS

is addcd lo represent the cosine of Its argument; then CNS(X) would remain after

I

- simplification {as (COS ) in LISP notabion) unless & rule for the reduction of

cosines (into exponentials, for example) were introduced. These residual
functions arc termed kernels and are stored uniquely. Subsequently, the kernel
is carried through the caleulation us a variable unless speclal transformations
on thie opernter rre introduced at a later stage.

To incinde kernels in our standard form representation, we simply replace
Eq. (2.3) by
{standard power) :: = ({kerrcl) - {non zero positive integer)) (2.3')
and rdd:

{kerrnel} :: = {variable) | ({operator) . {simplified list of arguments)) (2.4)

The simplification functions necéseary to deal with a new overator are
mosl cotvenienily written directly in LISP.F However, REDUCE does have provision
for the inclusion of simple rules for'reuuétion of new operators, and an example
of such n rulc is given in FPig. 1b.

ihe simplification functions assoclated with the expansion of polynomiala
and the calculuticn of derivaiives, determifxants and matrix operations are all

examples of strailghtforward algorithms which are easy to pregram in LISP. In
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particular, the recursive nature of the language allows these élgorithms to
apply tc eny cize or complexity of expression. There are practical limitavv
however on the size of expressions which the system can handle, as no use of
;econdary sterase devicos is mnde éuring a calculation. Rules for the
differentiatiéh of 2 nevw ope:ator may aleo be added as shown again in Fig. 1b.

Most ol cihe operators used in the representation of problems in high

energy plivsica roquire further reduction after the original expression has been

convertec Lrte stanaard forms. Opecial routines have been written to deal with
the explicit prooicro which occur in thie further simplification. Qthner

problems zlico arise 1n this clase of calculaticns because a certain amount of

non-commutaiive aigebra is encountered, but this is handled in a way which

weuld porervalize if Tfurther coperators of thls type were encountered.

SECTION 5 - - PUNCTIONAL INGTRUCTIONS

There are at present approximately forty functional instructions available

te Lhe HIUCE propramer and deseribed in the User's Mnnuul.3 Although these

in""""“":‘.}i e Ty

shre oerform a variety of tasks, they may be divided roughly into two
clasces; mrocest instructions (or processes) which perform symbelic operations

F I o . ew 4
on Lhedr arfuments

and output results tc the user, and declaration instructions

whilel nexfomm v vardety of service operations pricr to the call of a process

ingiruction; sveh oo setting flags controlling output and setting up replacement

tables. Frocess dngiructions may alco add to replacement tables as a by-product

of ihedir culculation.

It Iz Zmposcible within the scope of this paper to describe each
Ingtruction in detnil and so this section will concern its=1f rather with some

of the more lmpeortant facets of the system and the instructions which have been
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designed to handle them; viz., substitutions, input - output, simplification

functions,'nnd ndding new instructions.
3.1 Substituilonc . :

An importﬁnt clnagss of instructlons in any algebraic simplification system
are those which define substituticns for variabies and expressions appenring
during the caleulation. Ideally, it chould be possible to replace every occur-
rence of o given expreséion  f(a,b..X,y,..) by another expression g(;,b..x,y..),
where a,b.. stand fer fixed and X,y.- for arbitrary expressions. Thus to
quote an cxwnple often used, if the cystem knows that sina(x) + cos®(x) = 1,
where x  is arbitrary, Lhen an occurrence of sin2(33+2cos(y))fcosa(§n+2coe(y)),
possibly dn an expanded form, should be rcﬁlaced by 1. '"is general maiching

.3t te the author®s knowledpe, has not been solved in a manner

te be used in iarge scale calculations, and most systems there-

ibfulcongromizglaL some point in the types of substitutions allowed.

From Lho discussion in the previous section, it is readlly seen tha£
subsiiistione onn be officienlly implemented for variables, powers of variables,
kernels sng powvers of kernels; all of théh are stored uniquely. Substitutions
onn by omelde heZTore, durdng and after reducfion to standard forms, and the system
decides o some coxtent the most effective point.at which to make the substitution.
Thic dondiaion is alse under the user's control, althcush experience has shown that
the sysiem g a8 ood al making, a wise decision as the general user. The main
polnt Is ihal the sive of intermediate expressicns formed during calculation

)

under control, and so substitutions for expressions which involve

a lot of Luraw In thedr expansion are usually best made as late as possible.
Tmoaliitlion to those substitutions mentloned above, the system also

permdts substitutlions for products of explicit kernels, or expressions which
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reduce to this form. Furthermore, aﬁy operator which has an'explicit replace~
ment, in terms of functions of other operators is considered as a variable whose
replacement is ¢ fﬁnctional expression. 4An example of such a replacement occurs
ag an argameni of the instruction MAKE in Fig. la.

One basie smbiguity in the general_substitution problem involves the
distinction bétwccn oxplicit substitution of the relevant expression and global
substituiion Qhorevor‘thc cxpression can be separated out. For example, glven
that  sin®{x) + cosZ(x) = 1, should 2cos®(a)+elnZ(a) be replaced by 1+cos®(a),
2-2in"(n) or Ieoft unchangzed? Tﬁc cholce made con often influence the compactness
or symm-try structure of the result.

A good example of this is glven in Fig. 3

which sheows Lwo expressions which arc exactly equivalent, but differ significantly

~t
—
:
ot}
tde
~
N

and sayrretyy.  This example will be discussed further in the next section.
REIACE dzen moe o ddstdnction, as far as powers of varlables and kernels are
concorned, hetween o general substitution and a substitution for fhe explicit
power. TFor @xaﬁwlé, LB I%%2 = -1 vimplies that I¥*3 = -I and I**h.z 1

and so on L ir an instruction for substitutions in standard forms), while

MATCH D%z = -3 vould have no effect on other powers. Examples of these

e o nise glven in Fig. 1.

M

2 Intute=Ouimit

- ———— S

ionew Atcoradhic mmber of instructions are available to help the user
goileve clariiy In outpul Irom tie system. Tt has often been pointed out that
The diasdard inpuc nnd cutput devices for computers such as key-punches, type-
wriLore ;P;uL;ﬁz uevices, are lnadeguate fcr representation of mathematical
exprosulons i on form most nearly equivelent to stendard mathemafical notation.
Ureover, cxpesienze has shown that the REDUCE'expréacion format using FORTRAN

83500l 1s rendily underctandable by most engineers and physicists, provided
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that a certain amount of spacing is used in the display. One very simple aid
to clarity consists bf puttiing a numbicr of npuceé on each side of en infix
operator inversely propertional to the precedence of that operator. ‘Factoring'
.of an expression by separatics .ach power of a given variable or varisbles, and
listing one term to each line, rl1so improve readibility in many cases. The
latter format ic very convenient if ihe output is read out onto a secondary
storage device, cdiled by hind, and then read»bépk into the computer for
further procccsinn. ‘In this mrwer, the gomputef becomes a mathemﬁtical
scralcn~-pad, and ié uniimportauz appliéation of the systemjwhen used in a
time-ghared environmment as discussed in the nexc section.

Quitc often, 2lgo, a problem requires exiensive numerical calculation
after a certain amount of non- umerical processing has been undertaken. REDUCE
may also be used fcr this purposc, but as arithmetical operations are rather

slow, faciliiics are provided for producing output in the form of & FORTRAN

soUYCEe program.

.3 Girplificeiion Instructlons

The nexti class of instructions which we shall briefly consider here are
those connentied wizh-nhe ’simpiificatibn' of exéressions. The principal
instruciion of ihis type is SIMPLIFY (or SM) whose main purpose is to reduce ite
argrmen’ by oxpuansion and collection of terms to a palr of standard forms,
performing any subosiitutione which have been decléred prior to its call, storing
the angwer for later use 1L nceded and then printing the results. Examples of
the use of Lhds insLructlon are shown in Fig., 1. As an aid to time-shared
operaticn, ihe resulte of a call of SIMPLIFY are always kept until the next
cull in cage the user decides on seeing the results to process them further, or

to store them for later use. Most of the other instructions concerned with
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s8implification are used for this further processing of output from SIMPLIFY.

3.4 Adding Kew Inetructions

One disadvantage of an internctive system is that it 1s neceasarilv
sequential in operation, and thereforé thé idea of program loops and transfers
to earlier statements is rather alien to this concept. However, there are many
circuhstances in which e series of operations is repeated several times, and
to facilita*e this, érovision 1s made in REDUCE for the user to write his own
instructions in a Tormat essentially.the same as an ALGOL 60 procedure and then
call for the evaluation of this iﬁstructicn. Tils facility 1s very limited at
ﬁfesent, but the next ver516n 6f the system will include.mosf of the Jﬁmp end

loop statements available in ALGOL. For example, the code in Fig. lc computes

the first twenty ILegendre polynomials for any desired argument.

SECTION 4. ON-LINE OPERATION

It should bLe apparent from our discussion so far that an algebraic

manipulation system achieves its greatést effectiveness if used in a highly

interactive man-machine environment. The steps which the user takes in solving

a probicm very often depend on the results of preceeding calc&lationa and so a
complete 'program' in the conventional sense is often impossible to write

& priori. llowever, interactive use of the REDUCE system poses some problems

which are not encountered 1n.batch processed operation. First is the need to
proVide cufficientbsafeguards so that the user cannot destroy partial results
by making a mistake in input at some point in the calculation. Ideally, the

results of nll steps in the :alculation shéuld be kept, but this would impose
imposeible burdens on the system if very large expressions are handled. As a

«

compromise measure, REDUCE has been constructed so that all assignments of -
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variables, rcplaccmenis and rules etc. cannot be chnnged by a catastrop:ilc error

in a éubccqucnt cnlculation (unlcoﬁ, of coursc, the user explicitly aucks for

their removal by misiake), and this lins proved an ddedunte saflcguard so far.
‘ Secondly, the standard teletypewriter terminal which most timc-shafing
systcms employ has proved quiic inadequate as an output device for the very large,
| expressions often encountcréd in the probiems handled by the sysicm. An obvious
colution is ihic usc of CRT displays wilh suiltable editing programs, but little
progress has becn mnde in providing such devices cheap cnough for general use.

A partial é01ution is ic ngk the system te print porticns of the output, or to

store the outpué on tapu or disc und'inépcct it with an edillny program. -Alterna- .-%
tively the whole output could be printed on a line printer at”a ccniral inétnllntion %

for later colleciion, but in the latter case much advantage of the interactive

operntion is lost.

liowever, Lhesce are mincr problems compared witn the great advantages
wiich Uime=sharced opcration offers to the user. An example of the effective use

of such a gystem is given in Fig. 5. Figure 3a is the result of a calculation

produced dircetly by the compuler. It co

4
nia

ntains eleven variables,; of which only

six are independent. The relaticns between these variables are shown in Fig. 3b.

Fipare 3¢ shows an cquivilent expression produced after scveral hours of hand

manipulalion amd further reduction in the computer. This is not simply a matter

of expressing all varinbles in itcrms of an independent set, because it can be
scen from the compaclness and symmetry of the final expression that it was

vetler Lo use more tlum gix variables. To guess the correct transformations

for Lids rceduction is semetlhing

i PR PR e s

of an art and it is difficult to see how to

program Lhis in a form suitable for the computer. Presumably a'beginning step
must be Lo proyram Lthe computer for factorization of polynomials or computation

of Lhe preatest common divisor of twc expressions. Considerable progress in

I a8 Sk i A b A4
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(.) these areas has been made over the last few yeara, and REDUCE does in fact have

. - the latest grentest common divisor aligorithm of Collinsb avalinble to the user

if desired. lowever, the algorichm is still inadequate for efficient handling

of the very large expressions encountered’ in many problems, and so a lot @ore

work will be necessary in this arca before a practical routine can be developed.
The mcthod used 1n oblaining the expression in Tig. 3¢ from 3a was to

use the computer as a scratch pad for checkinb the accuracy of hand manlpulations

or-the effect of substitutions on small portions of the cxprcssi::n. It is very

important that this type of' reduction is ponsible, beeruse an ‘answer' consisting

of lmndredés or thousands of terms provides iitii-_ insipght into tike structure

of a problem.  Unless compact recsults are achievable, one has to roise the

question whether the whole calculati%m might have b‘neer. better performed

. - ) k nwmrically. Quite often the final result is a curve whiéh redicts or corpares

with expev-ix entnl conditions, .:m(l the algebraic reduction is used as a means

of gaining insight into the factors det;erm:bxing that curve. Interactive man-

machine computation of vhe required expressions may prove an important factor

in obtaining this insiyht.

Tem—
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Figure 1:

-Figure 2:

Figure 3:
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FIGURE CAPTIONS

Typical scements of a RJITUCE prosram. a) - Fxpansion of‘ an
expression in order to examine the coefficicnte of the various
powers of x and y.' '

b) Calculation of e sccond order partisl derivative with respect
to x and y of an expression involving operators not already
in 'systcm.

¢) Calculation of the firsi twenty Legendre polynowials of x2-2x.
Output from calculation of example in Pig. 1(b}.

Example of using REDUCE in an interactive mode. a) Expressicn
initially produccd by computer.
b) Relations between variables.

¢) Final result produced by hand and machine.
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‘FACTOR X, Y §
_ MAKE F1(X,W,Z) = X#*24Y##24{WHHD-ZHH2 |
X1 = F1(X,5,L), X2 = Fl(x—M,sp,pP) $
SM F= R¥*DXRP¥#2¥X1¥X2 + 2*M*R**2*RP*SP*(-(X-M) * COCAP - Y*SINAP) ¥X1
- 2%MX¥R¥RP**2*DF ( DET ((X+Y,x~-*f),(>:**2-2¥y, X)) ,%)
DI( 3#X%%2-3%X,X) $
LET RP = XM $ X = 0, XP = kL, ILD**2 = 2 & MATCII LF**2xM¥*2 =-‘:x+y)*'*2 $

SMF $

RULE SIN (-X) = -8IN(X), coo(-X) = CO3{x}, Sm{X+Y) = SIN(X)*ca(Y) +
COS{X)*0IR{Y), COG(X1Y) = COS{X)*COS{Y)-SIN(X)*SIN{Y) §
Dx-_:r\:w DF(SIN(K),X) ~ COG(X),I{Con{x},x} = ~SIN(Z) §

SDMPLIFY DF(SIN(X-3*X*COS(Y)),X,Y) &

{b)’

INGPRUCTION LEGENDRE X$ BEGIN

INTEGER M; VARIABLIE V1,V2,V; LABEL Ll$
Sk M-2%

ST V1=1$ OKP V2 = X$

L1: SEP V = (2-1/M)%X*ve-(1-1/M)*v1$
SKI' M = M+l$

OIP V1 - V2§ OBF V2 = V$

IF M = 11 TN FLOATIT BLSE IF M - 20 THEN RETURN
CBLGE o ro 1%

IEND

LEGENDRE X*%2 ~ 2%X$

(c)

FIGURE 1
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Je

8

LISTIT §

RULE SIN(-X)z =SIN(X), COS(-X)= COS(X),
SIN(X+Y) = SINCX)I*COS (Y)+COS (X)ASIN (V) ,
COS (X+Y)= COS (X)*COS(Y)-SINCXI*SIN (V)%

"DERIV DF(SIN(X3 X)= COS(X), DF(COS(X),X>= ~SIN(X)3

SIMPLIFY DF (SIN(X=3#K+C0S(Y)),X,Y3 §

9. * X % SITN(X) % COS(Y) % CO3(3, x X % COS{YI) % SIN(Y)
3¢ * X % SINCX) % COS(3., = X * COS(Y)) #* SINCY:
Je¢ * X = COSCY) *x COS(X) x SIN(g. * X * COS(Y)) * SINCY)
3o % X x COS(A) % SIN(3. * X * COSCY)} * SINCY:
3.

*

SINMXY * SINC3. * X * COS(Y)) % SINCYS

® .

COS(3. = X % COS(Y)) * COS(X) * SINCY)

FIGURE 2




* QR * PR+ 2, *x RS *x QT * PRx»42,

N

M2, %

(2. * RSx*2, x RT * QR+ 2, * RS#%2, * RT * PR - 2, % RS¢*2,
* PT * QR + 2. % R5xx2, * QT *x PR + 2, ¥ RS * RT+»42, * QX +
R

2., * RS * RT*#2, % PR - e » RS x RT » PS % PR + 2. ¥ RS = R
T « PT * PR - 2. ¥ RS * RT % &S5 & GR - 2, * S * RT * @T # QR

+ 2. * RS * PS *x QR x PR + 2. ¥ RS %« PT & QR#+Z, + 2. *# RS
% PT * QR x PROP! + 2. * RS * PT * QIR * PROF2 + 2. * RS = QS°
- 2. % RS #.GT * PR * PROPI

- 2. * RS * QT % PR * PROP2 + 2, % RS = QRv*a, * PR + 2. %
RS * QR x FRx*x%Z, - 2. x RT%%2, % PS * QR + 2, &% RT##2. % 05 =
PR - 2. * RT x PS % QR%%2, - 2. % RT = PS5 % QR * PRCPI -

2. * RT * PS * QR x PROPZ2 - 2. * RT = PT ® QR * PR - 2, x T *
@S * PR¥%x2. + 2, » RT = 05 % PR = PROPI + 2. # RT %= QS * PR *
PROP2 - 2. % RT * QT % QR =* PR -+ 2. * RT # @R*%2, % PR +

2. * RT * QR =« PP**a ) '

- 2. * RS+x%2, *x PT % QT % QR - 2e %X }S** 2. * PT x QT * PR

+ 2. * RS » RT % PS % QT = QR - 2. * RS % RT % PS * QT * PR -
.4, * RS * RT * PS % QR * PR + RS % RT * PS * QR % PROPI - 2
* RS * RT *» PT % QS % @R + 2. * RS % RT % PT % QS # PR - 4, *
RS * RT = PT « Qk * PR+ ‘RS % RT % PT % QR * PROP! - 4, = RS
* RT *» QS * QR * PR - RS * RT *-QS * PR * PROPI - 4, # RS % RT
* QT * QR #* PR - RS * RT * QT * PR * PROPI 4 A, %x.RS » PS % P
T * QT * QR + 2. + RS # P3 * PT % QR4«%2, - 4, » RS = PS # QT%x
2. * PR - 2. * RS % P’S » @T = QR x PR + 4, * RS x PTHx2, * QS
* QR - "4, * RS * PT = Q5 *= QT % PR + 2. * RS * PT # Q5 * GR *-
PR - RS = PT * GR x PR x PROP2 = 2, * RS * QS * QT % PR#x2,

- RS * QT = QR * PR * PROP2 + 2. * RT%+2, % PS x QS * QR + 2
« * RT*x2, » PS % QS % PR - 4, * RT * PS»%2, * QT * QR - 4, *
RT x PS x PT « QS = QR + 2. * RT x PS % PT % QR*%2, + 4, % RT
* PS *x QS * QT * PR + 2., * RT = PS % QT * QR % PR + RT » PS %
QR * PR * PROP2 + 4, * RT * PT x QS%%2, % PR - 2. * RT 4« PT %
QS * QR x PR - 2. ¥ RI #» 0SS = QT x PR%x%Z2, + RT » QS » QR = PR
* PROP2) 7/ ( ) ' '

2. * RS = RT * QR * PR * PRHROP: % PROPZ)

o~

o

PIGURE 3
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PROP1 =

PROP2

QR
s

(]

I

Qr

]

(2. * (PS

2¥PR - 2%P5 + 2%PT
PROP1 + 2%RG - 2*RT
PR+ RS - R¥
e+ PR~ KT

PS - PR - RS

(v)

+ QI)4%2, 4+ 2. % (PT + QS¥%%x2, + (RS +

RT)%%x2, + (PR 4+ QRI=x2,) * ({RS » PR 4+ RT % QR) % (FS +

Qn? -
* ((PS +
. ¥ (RS x QR
RS) * (PS
Q@S> * (RS
S + RT3
RS * RT)

(RS x QR + RT x PR} % (P71 + 853 - 8, # Mrx2,.

QT)x*x2, * (RS * PR + RT =% @QR) + PT +  QSI*%Z
+ RT x PR) - (RT - IS) = (PR * QR - RT *
+ PT + QS + &7 - (PS + QTY % (PT +
+ RTY = (PR +  @R3 + - (PR » @R + RS %= RT>» % (R
* (PR + QRIY 7 ( = . Be * PROPL % PROFP2 % PR % QR *

(e}

FIGURE 3
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