
Interface Between the Bookkeeper and Code Generators

8/22/82
9/26/82
9/29/82
10/1/82
10/7/82
11/10/82
12/21/82
2/ 6/83
2/12/83
4/10/83
9/10/83
10/02/83

Definitions

Source operation
An individual NADDR operation like (IADD X Y Z).

Machine operation
An Individual machine operation like (+38 Rl R2 R3)

Machine Instruction
A set of machine operations to be done In one cycle.

Source group
The set of nachlne Instructions generated for a source operation.
Empty cycles in between instructions are indicated with no-ops.

Schedule
An ordered list of nachlne Instructions.

USE NADDR operation
An NADDR pseudo-op of the forn:

(USE (varl loci) (var2 loc2) (vara Iocs) ...)

which says that the given variables are live at that point in the
program and that following code needs then in the corresponding
locations (a variable nay have several locations). A USE
should contain all the variables live at the point where it occurs
in the prograa.

DEF NADDR operation
An NADDR pseudo-op of the fora:

(DEF (varl loci) (var2 loc2) (var3 loc3) ...)

which says that the given variables are live at this point in the
prograa and that previous code has left thea in the corresponding
locations (a variable nay have several locations). A DEF should
contain all the variables live at the point where it occurs in the
program.

Join cut-point
A Join cut-point Is a point in a schedule where the bookkeeper wishes
to rejoin another trace. A Join cut-point at cycle n partitions the
nachlne operations In the schedule into three parts:

A. All the operations whose source groups are completely contained
In cycles 1 through n-1.

1
PS :<C.S.BULLDOG.DOCUMENTATION.TEST>CODE-GEN

f

B. All the operations whose source groups are completely contained
In cycles n and later.

C. Operations whose source groups Include operations in both cyclea
n-1 and n.

Join cut-point boundary
The boundary between operations in A and operatlona in B union C.

Split cut-point
A split cut-point la a point in a schedule where the bookkeeper wishes
to place a split. A split cut-point at cycle n partitions the nachlne
operations In the schedule into three parts:

A. All the operations whose source groups are completely contained
in cycles 1 through n.

B. All the operations whose source groups are conpletely contained
In cycles n+i and later.

C. Operations whose source groups Include operations in both cycles
n and n+1.

Join cut-point boundary
The boundary between operations in A union C and operations In B.

Assumptions

A source conditional Junp nay compile into a several-machine-operation
source group, but the nachlne operation actually doing the Jump is last
in the group.

The code generator does not need to worry about merging in nachlne
operations copied as a result of a split or Join (we'll punt).

A schedule never need live longer than a single pick trace/generate code/
bookkeep pass. The bookkeeper records ALL Infornation it wants to survive.

Moves need not be Included in any source group unless they are In between
two other operations in the sane group, or unless they are storing array
elements back in their hone, or unless they are the moves generated as
a result of an assignment statenent.

Arrays and input/output variables have hone aenory locations represented
symbolically by their names.

For now, writes to array elenents aust be stored in their hone after each
operation. These moves Bust be part of the source group causing the write.
Reads froa array elements should always be done fron their none.

No array references will appear in USE or DEF pseudo-ops.

What the Bookkeeper Hands a Code-generator for Each Trace

A list of source operations in source order, and corresponding bookkeeper
records. There nay be one DEF pseudo-op at the beginning and one USE
pseudo-op at the end. Also passed are the list of live variables at the
beginning and the end of the trace, and the list of variables live on

2
INTERFACE.DOC.6

c
the off-trace edge of each conditional Jump.

What a Code-generator Returns For a Trace

A schedule. The functions defined on a schedule are discussed below.

Bullshit Schedule Functions

Here is the Important infornation needed by the bookkeeper. Given a
schedule, a cut-point, whether the cut is a Join or a split, the
source-order nunber of the source operation causing the Join/split, we
need:

1. Source operations that have noved below/above the Join/spit.
2. The live variable definitions (DEF) at a split cut-point boundary;

the variable uses (USE) at a Join cut-point boundary.
3. The upper or lower half (relative to the cut-point) of those source

groups which were partitioned by the cut-point.

Lisp Implementation of the Interface

Guiding principles
All functions are to be true Lisp functions, not macros or record
accessors.

Except for a schedule, the code generator should not return any objects
represented as vectors or records. Everything should be lists or
symbols. This will guarrantee that no "stray" pointers will be
accidentally stored away, preventing objects fron being gc'ed. It
will also help us understand exactly what infornation crosses the
Interface boundaries.

Machine operation
A list in "assnebly language" form, e.g. (+38 R6 R4 R7)

Lisp Inteface Functions

(GENERATE-CODE LIVE-BEFORE SOURCE-RECORD-LIST LIVE-AFTER)

Generates code for a trace, returning a schedule. SOURCE-RECORD-LIST
is a list of tuples of the forn:

(SOURCE-OPERATION TRACE-DIRECTION BOOKKEEPER-RECORD OFF-LIVE)

SOURCE-OPERATION is an NADDR operation and BOOKKEEPER-RECORD is a
record that should always be associated with SOURCE-OPERATION. The
code generator never looks Inside a BOOKKEEPER-RECORD. TRACE-DIRECTION
Is aeanlngul only if SOURCE-OPERATION is a conditional lump; It tells
which way the Jump is going on the trace (LEFT or RIGHT).

If the operation Is a conditional Junp, then OFF-LIVE is the list
of live variables on the off-trace edge.

LIVE-BEFORE and LIVE-AFTER are lists of the variables that are live
on entrance to and exit froa the trace.

3
PS :<C.S.BULLDOG.DOCUMENTATION.TEST>CODE-GEN-]

r
There may be one DEF at the beginning of a trace; if it la present
it contains the locations of all variables live at the beginning.
There nay be one USE at the end of a trace; if it is present, it
contains the locations of all variables live at the end.

(SCHEDULE:LENGTH SCHEDULE)

Returns the length of a schedule.

(SCHEDULE: [] SCHEDULE I)

Returns the nachlne operations scheduled at cycle I as a list of pairs
of the forn:

(MACHINE-OPERATION BOOKKEEPER-RECORD)

The BOOKKEEPER-RECORD is the one corresponding to the source operation
for which MACHINE-OPERATION was generated. It nay be () for nove
operations which don't have any associated source.

The schedule indices I are 1-based.

(SCHEDULE:JOIN SCHEDULE I)

Returns a list of the forn:

(USE-OP PARTIAL-SCHEDULE)

where USE-OP la a USE pseudo-op describing variable uses at the Join
cut-point boundary at cycle I, and PARTIAL-SCHEDULE is a schedule
containing operations in the upper half of source groups spanning
the cut-point. "Upper half" neans cycle 1-1 or earlier.

The USE should contain a location for every variable live on the
off-trace edge of the Join. The code generator Is responsible for
keeping track of which variables are live at each point in the
schedule, using the trace and the live infornation handed to it by
GENERATE-CODE.

The schedule Indices I are 1-based. If I Is one nore then the length
of the schedule, then a USE giving the variable locations for the
end of the trace should be returned.

(SCHEDULE:SPLIT SCHEDULE I JUMP-NUMBER)

Returns a list of the forn:

(DEF-OP PARTIAL-SCHEDULE)

where DEF-OP is a DEF pseudo-op describing variable definitions at
the split cut-point boundary at cycle I, and PARTIAL-SCHEDULE is a
schedule containing operations in the lower half of source groups
spanning the cut-point. "Lower half" neans cycle 1+1 or later.

The DEF should contain a location for every variable live on the
off-trace edge of the split. The code generator is responsible for
keeping track of which variables are live at each point in the
schedule, using the trace and the live infornation handed to it by
GENERATE-CODE. The live-off list for each split handed in by

:NTERFACE.DOC.6

p c
GENERATE-CODE is not sufficient; e.g. if a use of a variable moves
below a split, it Is now live on the off-trace edge of the split.

JUMP-NUMBER (1-based) Identifies a particular Junp within the cycle.
The DEF should contain a location for every variable that is live
on the off-trace edge of the Jump.

The schedule indices I are 1-based. If I is one nore than the length
of the schedule, then a DEF giving the locations of all the variables
at the end of the trace should be returned (JUMP-NUMBER is ignored).

Some More Details of USE and DEF

The trace scheduler guarrantees that a DEF has exactly one predecessor,
which is already compacted, and one successor, which is unconpacted. A
USE has exactly one successor, which is compacted, and possibly nany
predecessors, all of which are unconpacted.

If the code generator Is handed a DEF at the beginning of the trace, the
USE ejected at the beginning of trace nust contain the exact locations
specified in the DEF — no fewer and no less. If a variable location
is bound by a DEF at the beginning of the trace, the code generator cannot
eject a USÉ at the beginning requesting that variable in some other
location.

If there la no DEF at the beginning of a trace, the code generator can
eject a USE that puts the variables in any locations it wants.

What If a variable is live on entrance to the trace and on exit, but the
variable is not referenced anywhere on the trace Itself? The code
generator will have to nake up a location for It. For example:

A is live on entrance
opl
op2
op3
A is live on exit

The codegenerator would nake up a location for A to "hold it during the
trace", and then eject (USE (A loc)) at the beginning and (DEF (A loc))
at the end. The codegenerator can be smart and notice that If there is
a (USE (A loc)) handed to It for the end of the trace. It can probably
use loc to hold A during the trace.

5
PS :<C.S.BULLDOG.DOCUMENTATION.TEST>CODE-GEN-INTERFACE.DOC.6

p
Disanbiguator Interface for the Codegenerators

10/ 6/82 revised Jre
11/10/82 revised Jre
3/ 4/83 revised Jre

The trace picker picks out individual traces fron the NADDR program and
hands the traces one at a tine to the code-generator. The code-generator
treats the trace almost like a basic block, building a data-precedence
DAG fron it, with nodes representing source operations and edges the values
produced and consuned by the operations. In order to build the DAG, the
code-generator must know which operands refer, or might refer, to the
same locations. For example,

A[I] := X + Y

Z := Z • A[J]

A[I] and A[J] nay or nay not refer to the sane nenory location.

The DAG-bullder of the code-generator presents the source operations of
a trace one-by-one to the disanbiguator, and the disanbiguator replies
with which operations are data predecessors and the reason why they are
predecessors.

The DAG builder wants conservative answers; everytlme it thinks two
operands reference different locations, it should be 100ÎJ sure. If It
isn't sure, then it assumes two operands may reference the same location.

Here is the interface to the disanbiguator:

(START-TRACE)
This signifies to the disanbiguator that the code-generator Is about
to start building a DAG from the next trace. The Individual operations
of the trace are presented via the function below.

(PREDECESSORS SOURCE-OPERATION TRACE-DIRECTION PTR)
Presents the next source operation froa the trace to the disanbiguator.
PTR is meaningful only to the code-generator and is what is returned
to later signify that this operation Is a predecessor. TRACE-DIRECTION
is meaningful only if SOURCE-OPERATION is a conditional Jump, and
tells which way the J nap will go on the trace.

Returns the list of all previous operations on the trace that night
be data predecessors of this operation and why they are data
predecessors.

The result Is a list of subllsts, each subllst of the forn:

(PRED REASON SOURCE-OPERAND SOURCE-TYPE PRED-OPERAND PRED-TYPE)

PRED is a code-generator pointer that describes sone source operation
that SOURCE-OPERATION data-depends on.

REASON is one of 'CONDITIONAL-CONFLICT. 'OPERAND-CONFLICT, or
•POSSIBLE-OPERAND-CONFLICT :

CONDITIONAL-CONFLICT is returned for cases where PRED is a
conditional Jump above SOURCE-OPERATION (in source order) and
SOURCE-OPERATION Bight write a location that is live at the top
of the other leg of the Juap.

OPERAND-CONFLICT is returned when It is known that an operand

1
PS :<C.S.BULLDOG.DOCUMENTAT10N>DISAMB.DOC.3

P
of SOURCE-OPERATION is exactly the same as an operand of PRED,
and that the use of the operands conflict (read after write, write
after read, write after write).

POSSIBLE-OPERAND-CONFLICT is returned when it Is known only that
an operand of S0URCE-0PERATON might be the same aa an operand
of PRED, and that the use of the operands night then conflict (read
after write, write after read, write after write).

PRED-OPERAND and SOURCE-OPERAND are numbers that identify the
conflicting operands of the corresponding source operations (first
operand, second operand, etc.). Operands are numbered fron left to
right starting at 1. In the case of CONDITIONAL-CONFLICT, PRED-OPERAND
will be ().

SOURCE-TYPE and PRED-TYPE are either 'READ, 'WRITTEN, or
'CONDITIONAL-READ, and specify whether that operand was read, written,
or read on the off-trace edge of a conditional Junp.

The result nay contain several references to PRED.

To keep the Interface as simple as possible, the NADDR source prograa
la represented as before, a list of NADDR source operations:

((IADD X Y Z)
(ISUB F G H)
...)

Each NADDR source operation Is an "atomic object"— that Is, EQ tests
will be used to deteralne equality of two source operations. For example,
the two operations constructed below are NOT the same:

(LIST 'IADD 'X 'Y *Z)
(LIST 'IADD "X "Y *Z)

This lets us represent source operations Just as themselves. I.e. as Lisp
"pointers". The disanbiguator nay need some kind of hash table to map
these "pointers" or list structures onto other Infornation.

The disanbiguator, because it is dealing with NADDR programs with at least
1000 operations, must use fairly efficient algorithms. For example. It
would not be sufficient to use linear search to nap the source operations
onto Internal data structures.

The following functions are In this Interface because they are related
to picking traces and bookkeeping. The bookkeeper calls these functions,
not the code generators, and the functions can be called at any tlae after
the disanbiguator has analyzed the prograa.

(OPER:LIVE-IN OPER)
Returns the list of scalar variables live on entrance to operation
OPER.

(0PER:LIVE-OUT OPER)
Returns the list of scalar variables live on exit fron operation OPER.

(0PER:LIVE-0UT-0N-EDGE OPER DIRECTION)
Returns the list of scalar variables live on entrance to one of OPER's
successors. DIRECTION is LEFT or RIGHT, selecting either the left
or right auccessor of OPER.

2

