THE UNIVERSITY OF TEXAS
AT AUSTIN

Computation Center

L ISP Reference Manual

CDC - 6000
o1 —>(R)
00| —>(Q R)
00 —> P QR
CCUM 2 ' \4
DEC 1975 = =

DEC 75 LISP Reference Manual

LISP Reference Manual

CbBbC - 6000

Computation Center
University of Texas at Austin
Austin, Texas 78712

LISP Reference Manual DEC 75

The Computation Center will appreciate any comments about this
manval which may be wused to improve its usefulness in Iater
editions. In comments concerning errors, additions, deletions,
or omissions, please include the date of the manual and, for each
item, the number of the page involved. Comments should be
addressed to: Editor, Computation Center, University of Texas at
Austin, Austin, Texas 78712.

ii

DEC 75 LISP Reference Manual

Acknowledgements

This manual is extensively based on the manual written by Dr.
E. M. Greenawalt for the earlier version of the UT LISP system.
The Computation Center expresses its appreciation to Robert A.
Amsler, Jonathon Slocum, and MMabry Tyson for their assistance in
revising the manual to reflect the current LISP system and for
producing a machine—readable preliminary form of the the manual.

iii

DEC 75 LISP Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION, 1

2. USING THE LISP SYSTEM, 3
2. THE LISP CONTROL COMMAND, 3
2.2 INPUT FORMAT I'OR UT LISP, ©
2.3 LISP SYSTEM OUTPUT, 11

3. DATA FORMATS, 138
3.1 INPUT FORMATS, 18
3.1.1 Lexical Classes, 13
3.1.2 Literal Atoms, 14
.1.2.1 Standard Literal Atoms, 14
.1.2.2 Special Literal Atoms, 15
1. Additional Notes on Literal Atoms, 16
me Atoms, 16
Fixed-point Numeric Atoms, 16
Floating—-point Numeric Atons, 17
Additional Notes on Numeric Atoms, 18
ssions, 19
The Dotted Pair, 10
The List, 19
3 Additional Comments on Composite S—
expressions, 20
3.1.5 Additional Input Constructs, 26
OUTPUT FORMATS, 21
INTERNAL FORMATS, 22

3.1.3

=1

3.1.4

r

.

3
ic
1
2
3
e
1
2

COCOGOUJCOCOCOZCOCOCO

2.
ri
.1.3.
. 1.3,
.1.3.
—exXp
1.4
1.4,
1.4,

Ww
Wi

3.83.1 Storage Allocation, 22
3.3.2 Free Space Data Formats, 28
3.3.83 Full-Word Space Data Formats, 24
3.3.4 Dotted Pairs and Lists, 24
3.3.5 Literal Atoms, 26
3.83.6 Numeric Atoms, 832
83.8.7 The Oblist, 32
4. TFUNCTION DEFINITIONS, 33
4.1 FUNCTION TYPES, 383
4.2 NOTATION USED IN FUNCTION DEFINITIONS, 38
4.3 ELEMENTARY FUNCTIONS AND PREDICATES, 34
4.4 LOGICAL CONNECTIVE FUNCTIONS, 40
4.5 . SEQUENCE CONTROL AND FUNCTION EVALUATION, 41
4.6 LIST MANIPULATION FUNCTIONS, 44
4.7 PROPERTY LIST MANIPULATION FUNCTIONS, 47
4.8 FUNCTIONS WITH FUNCTIONAL ARGUMENTS, 50
4.9 ARITHMETIC FUNCTIONS AND PREDICATES, 52
4,10 CHARACTER MANIPULATION FUNCTIONS, 56
4.11 DEBUGGING AND ERROR PROCESSING FUNCTIONS, 59
4.12 MISCELLANEOUS FUNCTIONS, 62
4.13 ARRAYS, 66
4.14 SYSTEM CONTROL, 67
5. INPUT/0OUTPUT, 74
5.1 FILES, 74

5.1.1 Standard System Input/Output Files, 74
5.1.2 Selected Read and Write Files, 75
5.1.8 User Access to Selected Files, 76

FILE AND BUFFER ASSOCIATIONS, 76

OUTPUT OF S-EXPRESSIONS, 79

INPUT OF S-EXPRESSIONS, 81

INPUT OF NON-S-EXPRESSIONS, 81

RANDOM ACCESS OF DISK FILES, 83

INPUT CONTROL FUNCTIONS, 84

([B) B o)
NOULA W

* .

LISP Reference Manual DEC 75

5.8 OUTPUT COTROL FUNCTIONS, 86
5.9 FILE MANIPULATION, 87
5.10 BINARY 1-0, 87
THE LISP COMPILER/ASSEMBLER, 89
6.1 ACCESS TO THE LISP COMPILER AND ASSEMBLER, 89
6.2 LCOMP - THE LISP COMPILER, 90
6.2.1 Output of the Compiler, 91
6.2.2 Theory of Operation of the Compiler, 91
6.2.3 Compiling Many Functions, 98
6.2.4 Compiling Large Functions, 96
6.2.5 Compiling Functional Arguments, 96
6.2.6 Compiling References to FEXPR-FSUBR Functions, 96
6.2.7 Tracing Compiled Functions, 96
6.2,.8 Avoiding Name Conflicts, 96
6.2.2 Redefining Standard Functions, 97
6.2.10 Using SMACRO for In-line Compilation, 97
6.3 LAP - THE LISP ASSEMBLER, 98
6.3.1 Program Format, 98
6.83.2 Symbols, 98 .
6.3.3 Address Expressions, 99
6.3.4 Instructions Recognized by the Assembler, 101
6.3.5 Pseudo Instructions of the Assembler, 101
6.3.6 Operation and Control of the Assembler, 105
6.3.7 Errors Detected by the Assembler, 105
6.3.8 Output of the Assembler, 107
6.3.9 Coding Conventions, 107

6.3.9.1 Register Conventions, 107
6.3.9.2 Calling Sequences, 108
6.3.9.3 Coding Examples, 108
6.4 THE LISP LOADER, 11¢
6.4.1 The Loading Process, 111
6.4.2 Output from READLAP, 111
FINAL COMNENTS 112

5
SP OVERLAYS, THE FORTRAN INTERFACE, AND VIRTUAL MEMORY, 113
.1 THE LISP OVERLAY, 113
2 . CREATING A LISP OVERLAY,114
3 REFERENCING A LISP OVERLAY, 114
7.3.1 Simple Loading of a LISP Overlay, 114

.3.2 Linking to a Particular Function

in an Overlay Without Return, 114
7.3.3 Llnklng to a Particular Function

in an Overlay With Return, 115

7.3.4 Hints and Warnings About LISP Overlay Use, 116
7.3.5 Erreor Return From CALLSYS, 116
THE LISP - FORTRAN INTERFACE, 117
WARNINGS ABOUT RESERVED FILE NAMES, 118
VIRTUAL MEMORY FOR FUNCTIONS, 118

UGGING THE LISP PROGRAM, 120
DAYFILE ERROR MESSAGES, 120
uT LISP ERROR MESSAGES AND THEIR MEANINGS, 120
Errors Detected During Input, 121
Errors Detected During Output, 122
Errors Detected by
File Manipulation Functions, 122
Errors Detected by the Garbage Collector, 123
Errors Detected by the Interpreter, 124
Errors Detected Within Particular
LISP Functions, 125
TO DO IF THE ANSWER IS WRONG, 127
RSTANDING THE UT LISP BACKTRACE, 129

N

E

OSSN~
M= SUIh

o

%)

dﬁ LEO Mo

E SISTERESISIC
SOB -

=
=

N

DEC 75 LISP Reference Manual

8.5 PROGRAM DETERMINATION OF ERROR TYPE, 129

9. INTERACTIVE USE, 130
9.1 INTERACTIVE 10 BEHAVIOR, 1306
9.2 INTERRUPTS, 131
9.2.1 Uses for LISP Interrupts, 131
9.2.2 Effecting Interrupts, 132
9.2,3 The Trap Function, 1833
9.3 RETURN FROM NESTED FUNCTION INVOCATIONS, 1833

APPENDIXES, 135
A. ALPHABETIC INDEX OF UT LISP SYSTEM FUNCTIONS, 135
B. LISP SUBSYSTEMS, 1490 '
C. SYSTEM VARIABLES, 141
D. COMPARISON OF UT WITH MIT LISP 1.5, 144

FIGURES

LISP Input Deck, 190

Example of LISP Qutput, 12

UT LISP Storage Allocation, 23

Free Space Data Format, 24

Storage of Dotted Pairs and Lists, 235

Binding Values to an Atom, 27

Print Image Structures, 28

Interpretation of INFO Property Value, 29

Numeric Atom Structures, 30

A Full Example, 31

An Oblist Element, 32

gu{puézof LCOMP Based on INTERSECTION Fuunction of Figure
CONTENTS OF LAPUNCH File Produced by Pass 1 of LAP Based on
INTERSECTION Function of Figure 6.1, 99

L

. s e s e

S S WWWWWWWWIvI

»

N =OENSNCHR WO

TABLES

Lexical Class Assignments, 13

UT LISP Argument Descriptors, 35

LAP Macros Defining the "LISP Machine", 94

Functions with CMACRO Properties, 925

Compiler Function Names, 97

Symbols with SYM Property in Standard LISP, 100
Instruction Set Recognized by the LISP Assembler, 102

*

A QO = bt e

o o

SN NBP

DEC 75 LISP Reference Manual

1. INTRODUCTION

This manual is a reference document for UT LISP, the
implementation of the LISP programming language developed at The
University of Texas at Austin for Control Data Corporation 6000,
7000, and CYBER 70 series computers. UT LISP is available at

many installations of these classes of machines. UT LISP is not
necessarily compatible with LISP implementations existing on
other types of computers. UT LISP is, however, a very rich

implementation and provides very powerful tools for the LISP
programmer.

This implementation is an interpretive system. A compiler is
separately available which can improve the speed of production-
type LISP programs (see chapter 6). UT LISP is awvailable to

users in both batch and conversational modes of operation.

The LISP programming language originated about 1960 when its
formalism and first implementation were developed at M.I.T. by
John McCarthy and others [1,2]. Its fundamental construct is the
recursive function applied to data structures organized as lists.
Although highly formal in structure, LISP is a very effective
programming language for applications involving structured non-—
numeric data bases and processes employing mnon—algorithmic,

heuristic methods. It is by no means restricted to these
application areas; it is a fully general programming language.
The most widespread wuse of LISP has been in artificial
intelligence research, symbolic algebraic manipulation systems,

and computer—assisted instruction.

This manual is not a primer on the LISP language. It
documents the actual behavior of the wvarious facilities available
in UT LISP. It is recommended that the beginning LISP programmer

study omne of references 3, 4, 5, or 6 (or any other suitable
introductory text) before reading bevond chapter 2 of this
manual. - Reference 7, though containing more advanced material,
also has some elementary LISP exercises. Chapter 2 gives

information about using the UT LISP system. Final definition of
the behavior of any LISP function mentioned in the referenced

introductory texts resides in the descriptions given in chapters
4 and 3.

Beginners should not be concerned over the large number of
functions available in this implementation, since most are
conveniences rather than essentials for LISP programming. The
novice user can write complete programs using only the following
functions:

a. the 4 gemneral functions: CAR, CDR, COND, and CONS,

b. the 8 arithmetic functions: PLUS (+), TIMES (%), and
DIFFERENCE (-),

c. the 3 predicates: ATOM, NUMBERP and EQ,
d. the 2 debugging aids: TRACE and UNTRACE, and
e. the 2 1/0 routines: READ and PRINT.
Together with a knowledge of the system atoms FIN, F, LAMBDA,

NIL, and T, these 14 functions enable one to re-create such

additional system functions as GREATERP, EQUAL, LESSP, LENGTH,

LISP Reference Manual DEC 75

APPEND, MEMBER, NULL, REVERSE, MAPCAR, MAPC, MAPLIST, MAP, and
SUBST (a task which would be an excellent practice exercise).

Beginners should first master the above functions and then
study the slightly more advanced routines: SETQ, SET, PROG,
RETURN, GO, PUT, GET, and the additional debugging aids TRACESET
and UNTRACESET.

Learning the functions in approximately this order will
provide sufficient mastery of the basics of LISP to support one’s
confidence while digesting the other 166 functions and 16@ atoms
listed in the appendixes.

References:

1. McCarthy, J., "Recursive Functions of Symbolic Expressions
and Their Computatlon by Machine, Part 1", Comm. of the ACM
3, April 1966, pp. 184-195.

2. McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P.,
and Levin, M. I., LISP 1.5 Programmer’'s Manual (M.I. T
Press, Cambridge, Massachusetts) 1962.

8. Weissman, C., LISP 1.5 Primer (Dickenson Publishing Company,
Inc., Belmont, California) 1967.

4. Friedman, D. P., The Little LISPer (Science Research
Associates, Menlo Park, Califormnia) 1974.

5. Siklossy, L., Let’s Talk LISP (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey) 1975.

6. Maurer, W. D., A Programmer’s Introduction to LISP (American
Elsevier, New York) 1973.

7. Berkeley, E. C., Bobrow, D. C., The Programming Language
LISP: Its Operation and Applications (M.I.T. Press,

Cambridge, Massachusetts) 1966.

DEC 75 LISP Reference Manual

2. USING THE LISP SYSTEM

The UT LISP system 1is accessible by means of a control
command. This chapter describes the LISP control command and the
formats of input to and output from the UT LISP system. It is

assumed in the following that the reader is somewhat familiar
with LISP and its form.

2.1 THE LISP CONTROL COMMAND
The LISP control command is of the form:
LISP,A=<{n1>,B=<n2>,C,E,F,G,; I=<{filename> ,K=<{n3> ,L,N,
0O=Xfilename2> ,P,S=X{filename3>,T,X=<n4>,Y,7Z,
{subsysteml> ,{subsystem2>,...,{subsystemn>.

where the parameters are described below.

Parame ter Value Meaning

A A=<{nl> Allocate <nl> percent of awvailable
space to free space and the
remainder to full-word space. <nl>

mast be in the range from 19 to 96.
Available space is defined as the
total memory size minus the size of
the LISP interpreter minus the size
of the stack minus initial binary
program space. If the S keyword
parameter is used to initialize
LISP by loading an. overlay
previously crecated by the LISP
function DEFSYS, the A keyword
parameter is overridden by the free
space allocation present when the
over lay was created.

A Not legal.

missing Allocate 92 percent of available
space to free space and 8 percent
to full-word space.

B B=<{n2> Set the stack size to <n2> words
long. If the S keyword parameter
is used to initialize LISP by
loading an overlay previously

created by the LISP function
DEFSYS, the B keyword parameter is

overridden by the stack size
present when the overlay was
created.

B Not legal.

missing Set the stack size to 1000 words
long.

C C Set conversational mode of

operation for LISP. LISP normal

input (SYSIN) is read from file
TTY. User-originated output {(WRS)
and LISP system output (SYSOUT) are
listed on file TTY using an output

LISP Reference Manual DEC 75

missing

missing

I={filenamel>

%=0 (zero)

missing

K=<{n8>

line 1length of 70 characters. If
the C keyword parameter is
specified, the I, L, O, and P
keyword parameters should mnot be
specified.

Set batch mode of operation for
LISP. LISP normal input (SYSIN) is
read from the file specified by the
1 keyword parame ter. User-
originated output (WRS) and LISP
system output (SYSQOUT) are listed
on the file specified by the O
keyword parameter with an output
line length of 182 characters.

Set expert mode. Expert mode
allows primitive operations on
atoms.

WARNING: Only users who really
know what they are doing should set
expert mode since this mode
disables error detection of
primitive operations on atoms.

Do mot allow primitive operations
on atoms, and enable all! LISP error
detection facilities.

Terminate the LISP run when any
error is encountered.

Try to recover and continue running
at the top level after am error is
encountered.

Print a message each time a garbage
collection occurs. The G keyword
parameter does. not affect the time
when the garbage collection occurs.
Do not print a message each time a
garbage collection occurs.

Read LISP normal input (SYSIN) from
file <filenamel>. If the I keyword
parameter is specified, the C
keyword parameter should not be
specified.

Not legal.

Not legal.

Read LISP normal input (SYSIN) from
file INPUT, or, if the C keyword
parame ter is specified, from file

Request that the Job field length
be changed to <n3> words. LISP
requires a field length of at least
35060@ (octal). If the S keyword
parameter is wused to initialize
LISP by loading an overlay
previously created by the LISP
function DEFSYS, the K keyword
parameter is overridden by the Job
field length present when the
overlay was created.

DEC 735

LISP Beference Manual

missing

0O=<Xfilename2>

0=0 (zero)
0

miss ing

P

S=<{filename3>

Not legal.

Do not change the Job field length.
LISP uses the current Job field
length.

List LISP source statements on the
LISP system output (SYSQUT) file
determined by the o keyword
parame ter. If the L. keyword
parameter is specified, the C, N,
and P keyword parameters should not-
be specified.

Suppress listing of LISP source
statements unless the P keyword
parameter is specified. If none of
the keyword parameters L, N, or P
is specified, the LISP source
statements are printed only in
internal format as S—-expressions.

List only user—originated output
(WRS) and LISP error messages
(SYSOUT) on the file determined by
the C or 0O keyword parameters. All
LISP system—generated output except
for error messages is suppressed.
Do not suppress listing of LISP
system—generated output.

LList user—generated output (WRS)
and LISP system output (SYSOUT) on
file <{filename2> nusing an output
line length of 132 characters. If
the 0 keyword parame ter is
specified, the C keyword parameter
should not be specified.

Not legal.

Not legal.

List nuser—-generated output (WRS)
LISP system output (SYSOUT) on file
OUTPUT wusing an output line length

of 132 characters, or, if the C
keyword parameter is specified, on
file TTY nusing an output line

length of 70 characters.

List LISP source statements and a
parenthesis level count under each
parenthesis on the LISP system
output (SYSOUT) file determined by
the O keyword parameter. If the P
keyword parameter is specified, the
C, L, and N Lkeyword parameters
should not be specified.

Suppress listing of LISP source
statements unless the L keyword
parameter is specified. If none of
the keyword parameters L, N, or P
is specified, the LISP source
statements are printed only in
internal format as S—expressions.

Initialize LISP by loading from
file {filename3d> the overlay
previously created by the LISP

#i

LISP Reference Manual DEC 75

S8=0 (zero)
S

missing

T

missing

missing

missing

{subsystemi>

function DEFSYS. <filename3> must
be a disk-resident local file. If
the 8 keyword parameter is used to
initialize LISP by loading an
overlay, the A, B, K, and X keyword
parameters should not be specified
since all storage allocation
controls (free space allocation,
stack size, Job field length, and
binary program space) are reset to
the values present when the overlay

was created. In addition, if the S
keyword parameter is specified, mo
LISP subsys tems should be
specified.
Not legal.
Not legal.

Initialize LISP with the standard
functions and atom values given in
Appendix A.

Print a timing message of the form
*TIME: <number>

after each evaluation of a top-
level expression, where <number’> is
the time in milliseconds required
to evaluate the expression.

Do not print a timing message after
each evaluation of a top—level
expression.

Allocate <n4> words at initializa-
tion to binary program space. If
the S keyword parameter is used to
initialize LISP by loading an
overlay previously created by the
LISP function DEFSYS, the X keyword
parameter is overridden by the size
of the binary program space present
when the overlay was created.

Not legal.

Allocate mno words at initialization
to binary program space.

Insert a blank 1line before each
*EVAL: ,*VALUE: , *TIME: or trace
output for a more readable listing.
Do not insert a blank line before
each *EVAL:, *VALUE: , *TIME:, or
trace output.

Simulate an interrupt when any
LISP-detected error is encountered.
The C keyword parameter must also
be specified.

Do not simulate an interrupt when
any LiSP-detected error is
encountered.

Read the LISP subsystem on local
file <subsystemi> and evaluate the
expressions in it. No more than 10
LISP subsystems may be specified.
The name of the LISP subsystem may
not be a single letter. If any

DEC 75 LISP Reference Manual

subsystem is specified, the S
keyword parameter should not be
specified.

null Not legal.

missing Do not read a LISP subsystem.

The following list summarizes these parameters alphabetically
by keyword letter:

Parame ter Function

A=<{number> Allocation control

B=<number> Stack size specification

C Conversational mode control

E Expert mode control

F Error fatality control

G Garbage collector message control
I=<{filename> Input file control

K=<number> Field length control

L Listing control

N Listing control

0=<filename> Output file control

P Listing control

S=<{filename> Initialization control

T Timing message control
X=<number> Binary program space allocation
Y Output spacing control

Z Error interrupt control

Notes on LISP Parameters

The parameters described above may appear in any order, but mno
parameter should appear more than once. If an invalid parameter
or combination of parameters !s specified. LISP aborts after
issuing the DAYFILE message

PARAMETER ERROR <letter>

- where {letter> designates the first invalid parameter.

All parameters which require a numerical value allow either an

uns igned decimal integer or an unsigned octal integer. Octal
numbers are written as a string of octal digits followed by @, B,
or K. Octal numbers suffixed by K are multiplied by 1000

(octal); for example, 5K is the same as 5000Q.

The allocation control (A) keyword parameter is used to wvary
the relative sizes of free space and full-word space in order to

fit the working storage of LISP to the program at hand. For
instance, a program which deals with many numbers needs
relatively more full-word space than a program whose main purpose
is the manipulation of lists. If one relies on the default 8

percent of total available space allocated to full-word space,
then the size of total memory necessary to get enough full-word
space may be quite large and there may be much unused free space.
An A parameter specification less than 922 allocates relatively
more full-word space to the program, which may then be able to
run in a smaller total memory than otherwise. To determine
whe ther an adjustment of the allocation control parameter is
advisable, the user should consult the output from a previous
run. At the end of every run LISP prints a summary of how many

LISP Reference Manual DEC 75

"times the garbage collector was called when free space was
exhausted and how many times it was called when full-word space
was exhausted. If the number of times it was called because of
full-word space exhaustion is significantly larger than the
number of times it was called because of free space exhaustion,
then the allocation control parameter should be decreased,
otherwise the parameter should be increased.

The stack size specification (B) keyword parameter is used to
vary the size of the stack in the LISP system. Increasing the
stack size increases the number of levels of recursion which are
allowed in the LISP program. Increasing the stack size decreases
the amount of free and full-word space available in the same

field length.

The binary program space allocation (X) keyword parameter is
used to allocate memory space for the storage of compiled LISP
code (see chapter 6) and for arrays (see section 4.13). If no
binary program space has been allocated, LISP automatically
requests more memory from the operating system. If the user
knows, however, approximately how many words of Dbinary program
space are needed, he can preallocate the space using this
parame ter and thereby save the overhead incurred when LISP
requests more space from the operating system.

Both the initialization control (S) and subsystem load control
parame ters offer mechanisms for the user to initialize the LISP
system to some set of functions and atom values other than the
standard ones given in appendix A. An overlay loaded by the
initialization control parameter is the result of a previous LISP
run and consists of all free space and full-word space that
existed at the time in that run when the DEFSYS function was

called. The initialization is performed very quickly wvia direct
reading of the file ‘into memory. A LISP subsystem has a name
which is the name of the file on which it resides. The subsystem

consists of a series of expressions which are automatically read
by LISP and evaluated before any of the user's expressions are
executed. . Appendix B discusses subsystems. The overlay
initialization procedure is very fast, but it is inflexible in
the sense that the memory allocation and total memory size cannot
be wvaried from that which was in effect at the time the overlay
was defined. On the other hand, a LISP subsystem can be loaded
into any size of memory under any allocation parameter set that
will accommodate it. The disadvantage of the subsystem is that
it requires processing (i.e., extra time) by the LISP system each
time it is loaded.

When expert mode control (E) is specified, the wuser can
perform CAR, CDR, CSR, RPLACA, RPLACD, and RPLACS operations on
atoms. Normally, these operations are prohibited by LISP and
cause an ILLEGAL: ARGUMENT error. Improper wuse of these
operations on literal atoms may cause changes in information
vital to the operation of the LISP system, and may cause the
program to fail catastrophically. Therefore, only the really
expert user who has some wvalid reason for performing these
operations should ever specify this parameter.

The actions specified by several of the control command
parameters may be turned on and off dynamically under user
control during the course of a run. The listing control is
described in section 4. 14. The garbage collector message
control, timing message control, and expert mode control
parameters may all be effected by means described in section
4.12. Input file control and output file control functions are

DEC 75 LISP Reference Manual

described in seetion 5.1.1. Error interrupt control may be
handled by means described in sectiom ©.2.

LISP requires a field length of at least 35000 (octal). All
of the memory available to the Job at the time LISP is requested
is wused by the LISP system. Therefore, no other programs (such
as compiled FORTRAN code) may be coresident with the LISP system.
Also, the total amount of working storage available to the LISP
system can be controlled by changing the field length of the job.
A field length of 50000 (octal) is recommended as a minimum
practical size of memory in which to run the UT LISP system.

Examples of LISP Commands

LISP. 1is equivalent to
LISP,A=92,B=1000, I=1INPUT, 0=0UTPUT, X=0.

LISP,F,G,P,T. is equivalent to
LISP,A=92,B=10606,F,G, I=INPUT, 0=0UTPUT,P,T,X=0.

LISP,C,G. is equivalent to
LISP,A=92,B=1060,C,G,X=0.

LISP,A=80,B=1800,E,K=77000B,X=10100B, LAP, LCOMP. is equivalent to
LISP,%R%@LgEﬁ%QO,E,I=INPUT,K=770®0B,0=OUTPUT,X=10100B,

2.2 INPUT FORMAT FOR UT LISP

A LISP program is usually composed of a simple sequence of
LISP expressions, or forms, to be evaluated. FEach form consists
of a function name or lambda expression followed by a sequence of
argument expressions, entirely enclosed in parentheses. At most
one expression is allowed on a line. Program execution is
handled by the function EVAL, the wusual "top—-level function".
EVAL is called to evaluate successive input expressions in the
order they appear. For example:

(EQ (QUOTE A) (QUOTE B)

is a proper expression for EVAL. Note that constant items in the
expression must be quoted to prevent their evaluation.

EVALQUOTE may be selected as the top—level function only by
set;}ng the //MODE ~wariable to (EVALQUOTE . 2) (see section
4. 14) .

Execution terminates when an end-of-file occurs on the normal
input file (SYSIN) or when a line whose first atom is FIN is
read. Logical record marks on any file read by LISP are ignored.

LISP functions and data may be placed in free format on input
lines in colummns 1-72. The only restriction is that an atom may
not be split between two successive lines. For details on the
syntax of literal and numeric atoms the user is referred to
section 3.1, ’

Any data that is to be read during evaluation of an expression
must immediately follow that expression on the normal input file
unless it is to be read from a different file. Figure 2.1 shows
a representative input deck ready to be processed by LISP.

LISP Reference Manual DEC 75

Figure 2.1 - LISP Input Deck

ABCD123,JOHN DOE.
XXX=PASSWORD.
JOB,TM=10,PR=19.
LISP,P,T,F,
7/8/9 - <end-of-record card>
% THIS FUNCTION RETURNS A LIST WHICH CONTAINS ALL
(DEE?%EE%?MENTS PRESENT IN BOTH OF ITS ARGUMENT LISTS%
(INTERSECTION(LAMBDA(X Y)
(COND((OR(NULL X)) (NULL Y))NIL)
((MEMBER (CAR X)Y)
(CONS (CAR X) (INTERSECTION(CDR X)Y)))
') (TCINTERSECTION(CDR XXY)))))
(

INTERSECTION "(A B C) "(A D E))
%%gTEBSECTION "X ZTZ) "“(Z 7))
6/7/8/9 — {end-of-file card>

Certain characters have special meaning when encountered in
LIgP input. They are intended to make typing input data less
tedious.

Character
(display code) Meaning

" (60B) This character causes the S—expression
immediately following it to be quoted, e.g.,
"CA) is represented internally as (QUCTE
(A)) and prints as (QUOTE (A)).

3

(64B) This character causes LISP to accept the
immediately mnext character as part of a
literal atom even if it is mnot normally
allowed, e.g., A#.B is the atom A.B .

L (61B) This character is equivalent to a left
parenthesis, but marks a closure point for a
following] character, e.g., [A) is
equivalent to (A).

] (62B) This character is equivalent to an arbitrary
number of right parentheses sufficient to
match all left parentheses wup to and
including the most recent unma tched [
character. If no [character precedes the
1, all left parentheses remaining wunmatched
in the S—-expression are matched by 1, e.g.,
(((CA] is equivalent to (((CA)))).

% .. % (T71B) Any characters between a pair of % symbols
will be treated as comments by the UT LISP
system. These include all the special
characters above. Comments may extend over
an indefinite number of 1lines, but the
closing % , must be within columns 1i-72. A
character may mnot precede the opening %
symbol, « e.g., #A..... % is mnot a legal
comment, but %..... #% is. The LISP input
routines discard any comments delimited by %

—-10-

DEC 75 LISP Reference Manual

symbols. To retain comments within defined
LISP code the COMMENT function should be
used (see section 4.83).

%7 While not a single character, two
immediately adjacent % characters have the
meaning that the S-expression currently
being input should be discarded. LISP will
request input again. This capability is of
primary benefit to the conversational user
who may need to discard an erroneous S-
expression which extends over several lines.

Also, if EVALQUOTE is being used as the top—level function, the
occurrence of the atom STOP as the second half of a doublet
cancels the current evaluation. This feature is of greatest
value to conversational users who need to recover from a typing
error in the first half of the doublet.

2.3 LISP SYSTEM OUTPUT

When LISP begins execution, it first sends a version message
of the form:

UT LISP - VER. <number> ({date)

to the Job’s DAYFILE. Here {number> is the wversion number of the
LISP system and <date> is the date it was assembled. These items
allow the user to determine which version of LISP he is using.

Following the printing of the version message, LISP begins
execution of the user program.,

For each expression executed, LISP produces output to inform
the user what expression was evaluated and what result was
obtained. At the beginning of each evaluation LISP prints a line
containing

*EVAL:

or whatever is appropriate for the top-level function in use.
This line is a signal that the top—-level function has begun
operation. (In conversational mode this is a signal that LISP is
ready for the wuser to enter new information.) Following this
line, the expression which is currently being evaluated is

printed. If a 1listing control parameter is present on the
control card, then an exact image of what was read on the source
lines is printed. If 1listing control is mnot on, then the

expression is printed by the normal LISP printing function.
Expressions whose function is DEFINE are normally supressed if

listing control is not on, since they are frequent and
vo luminous, and the user should be acquainted with their content
already. Next LISP prints a line containing

*VALUE:
This line signals the completion of evaluation and is followed by
the result of the evaluation. If the T control command parameter
was specified, the timing message is then printed. Then LISP

begins the sequence of output for the next evaluation. Any
printed output produced by the evaluation itself precedes the
*VALUE: message. Figure 2.2 shows as an example the output
produced by the input deck shown in figure 2.1. ’

11.

LISP Reference Manmual DEC 75

If the output suppression parameter (N) had been supplied on
the control command, none of the output of figure 2.2 would
appear. Only user-originated output and/or system error messages
would appear in that case.

Figure 2.2 Example of LISP Output

*EVAL:
% THIS FUNCTION RETURNS A LIST WHICH CONTAINS ALL
THE ELEMENTS PRESENT IN BOTH OF ITS ARGUMENT LISTS%

éDEFINE “a
éINTERSECTIONéLAMBDAéX Y;
(COND((OR(NULL X) (NULL Y)>)NIL)
4 56 7 77 76 5
((MEMBER (CAR X)Y)
56 7 7 6
(CONS (CAR X) (INTERSECTION(CDR X)Y)))
6 4 77 8 8 765
(TCINTERSECTION(CDR X)Y)))))
5 6 7 7 65 432
))
10

*VALUE:
(INTERSECTION)

*TIME: 11

*EVAL:

(INTERSECTION "(A B C) "(ADE))
0 1 1 1 10

*VALUE:
(4)

*TIME: 8

*EVAL:

(INTERSECTION (X Z T Z) "(Z Z))
0 1 1 1 10

*VALUE:
(Z 2)

*TIME: 8
*EVAL:
GARBAGE COLLECTIONS: @ 0

12

DEC 75 LISP Reference Manual

3. DATA FORMATS

The LISP programmer needs to be aware of the formats of data
treated by LISP. This chapter describes the external and
internal representations of LISP data.

3.1 1INPUT FORMATS

Programs and data for LISP have the same format, that of the

S-expression. Input to LISP must be presented in the form of
line images. Lines may be of any length, but UT LISP does not
read more than 72 columns of a line. Reading of each line is

terminated at column 73 or the first odd—-numbered column after
the last non—-blank character on the line, whichever occurs first.

3.1.1 Lexical Classes

The significance of a character read by LISP is determined by
the lexical class to which that character belongs, and each
character belongs to some lexical class. The standard lexical
classes are shown in table 83.1.

Function CHLEX (see section 5.7) may be wused to change the
lexical c¢lass of any character. By so doing, one can change the
meaning of a character when it appears in input data. For
ins tance, if the lexical class of the character @ were changed
to O, then the : would be regarded as the end-of-line signal by
LISP, and no information beyond the : would be read.

Table 3.1 Lexical Class Assignments

Lexical Display

Class Code Members
] 00 end-of-1line
1 letters except E and Q
2 33-44 digits 06 - 9
3 any characters not in some other class
4 05 E
5 21 Q
6 45 +
7 46 -
8 53 8
9 71 % (percent sign or down arrow)
10 65 # (pound symbol or right arrow)
11 61 [
12 62]
13 51 (
14 52)
15 57 . (period)
16 55-56 , (blank and comma)
17 60 " {equivalence sign or double—quote)
18 special (no members - see section 3.1.2.3,
item 2)

13

LISP Reference Manual DEC 75

3.1.2 Literal Atoms

A literal atom 1is one of the basic types of S—expression.
Literal atoms are represented in input and output data by strings
of contiguous characters. For processing, literal atoms are
objects which may be the constituents of larger S-expressions.
The character string which represents the literal atom on
external media is called the print name of the literal atom and

serves to distinguish one literal atom from another. The
particular constituent characters of the print name normally have
no significance to the LISP processor. A literal atom may

"contain up to 80 characters in its print name.

3.1.2.1 Standard Literal Atoms

A standard literal atom is ome which can be read by the normal
LISP READ function and whose print name will be an exact image of
the character string used to represent it. The syntax of a
standard literal atom is given by the rules:

1. The first character may be chosen from lexical classes
1-8 or 18.

2, The remaining characters, if any, may be chosen from
lexical classes 1-9 or 17 except that if the first
character is in class 8, the second character may mnot
be.

3. The character string selected by rules 1 and 2 must not
be interpretable as a numeric atom (see section 3.1.3).

4. The character string must be preceded by a member of
lexical class @, 9, or 11-17.

5. The character string must be followed by a member of
lexical class 6, 11-16, or 18.

If we assume the standard lexical class assignments given in
table 3.1, these rules plus the input format rules given earlier
state that a standard literal atom is any string of 1-30 non-
blank characters wholly contained on one line; does mot start
with 88, %, #, [, 1, (,), period, comma, or "; does not contain
a #, r, 1, ¢,), period, comma, or blank; and is not
interpretable as a number.

Examples:

Valid Invalid

A 1234

+B A.B

12847 X#Y

812 "p
ALONGATOM CA)

BCD%XYZ A LONG ATOM

— 14,_

DEC 75 LISP Reference Manual

3.1.2.2 Special Literal Atoms

Special literal atoms have print names which do not obey the
syntax rules for standard literal atoms. A syntactic mechanism
is provided for specifying 1literal atoms with completely
arbitrary print names. There are two categories of special
literal atoms.

Category A:
Category A special literal atoms are denoted by;
1. The first two characters are from lexical class 8.

2., The third character is a delimiter and is chosen from
lexical classes 1-18.

3. Following the third character is a string of ©0-30
characters chosen from lexical c¢lasses 1-18, but not
including the delimiter defined by rule 2.

4. The last character is a copy of the delimiter defined by
rule 2.

5. The atom must be preceded by a member of lexical classes
0, 9, or 11-17.

The character string defined in rule 3 is the print name of
the atom.

Examples: (Assuming class assignments of table 8.1)

888(.) B has the print name (.)
88A123A has the print name 123
88 (XYZ(has the print name XYZ

Category B:

Category B special literal atoms are formed according to the
rules for siandard literal atoms. However, any character not
allowed in an atom under the rules of section 3.1.2.1 may be
included if that character is prefixed by a character from

lexical class 10. The effect of a class 10 character is to
cause the immediately following character to be treated as
class 1, regardless of its actual class membership. The

characters from class 10 so used are not themselves counted as
members of the print name of the atom. If the class 10
character occurs in column 72, it is considered to be followed
by a blank.

Examples: (Assuming class assignments of table 3.1)

#(#,#) has the print name (.)
A#.B has the print name A.B
#123 has the print name 123

LISP Reference Manual DEC 75

3.1.2.3 Additional Notes on Literal Atoms

1. Eguivalence of print names is the mechanism for determining
whe ther two external representations are the same atom. This
means that the same atom can be represented in several ways
in the input to LISP. For example:

XYZ
BBBXYZS
#X#Y#Y,

are all the same atom.

2. Lexical class 18 has a special significance. A member of
class 18 serves as a terminator of atoms and may also be a
first character. This class is intended to facilitate 1input
of such things as punctuation in normal English text. For
example, suppose the period were placed in class 18. Then
the sedquence

DOG.

in the input to LISP would be read as the atom DOG and the
atom whose print name is the period. To achieve this effect
without class 18 we would have to input

DOG #.

3. If a string of characters intended to be a literal atom
exceeds 30 characters, it will be truncated to the first 390
characters with no indication to the user.

4. Literal atoms are represented uniquely in the memory of a
LISP program. All references to a given literal atom in LISP
data structures refer to the same representation.

5. Appendix C lists those atoms initialized by the LISP system.
These should be used only for their intended purposes. For
exampé?, T should not be reset by the user or used as a PROG
variable.

3.1.8 Numeric Atoms

A numeric atom 1is another atomic type of S-expression.
Numer ic atoms are used in much the same way as literal atoms, but
have a numeric value associated with them instead of a print
name . There are two categories of numeric atoms: fixed-point
and floating—point.

3.1.8.1 Fixed-point Numeric Atoms

The two categories of fixed—point numeric atoms are decimal
integers and octal numbers. These two types are distinguished
syntactically both omn input and output, but may be used
interchangeably as arguments of functions operating on fixed-
point numbers.

Decimal integers are constructed according to the rules:
1. The first character may be an optional sign chosen from

lexical class 6 or 7. Unsigned numeric atoms are
assumed to be positive.

16.

DEC 75

2.

3.

4.

Examples:

Octal
1.

4.

6.

Examples:

3.1.3.2

LISP Reference Manual

After the optional sign is a string of not more than 15
members of lexical <c¢lass 2 which form an integer not

exceeding 281,474,976,710,635 (2%%48 - 1).

The numeric atom must be preceded by a member of a
lexical class &, 9, or 11-17.

The numeric atom must be followed by a member of lexical
class 0, 9-14, or 16-18.

(Assuming class assignments as in table 3.1)

Valid Invalid

1235 1273

-6095 -7563406981005723
+360001 '

numbers are constructed according to the rules:

The first character may be an optional sign chosen from
lexical class 6 or 7. Unsigned numeric atoms are
assumed to be positive.

After the optional sign is a string of not more than 20
members of lexical class 2 restricted to the digits 0-7.

Following the digit string there must be an occurrence
of a character from lexical class 5 (normally a @).

Following the class 5 character there may be an optional
uns igned decimal integer. This integer is the number of
bits by which the bit string represented by the octal
digits is to be shifted left (end around) to form the
final number.

The numeric atom must be preceded by a member of lexical
class 0, 9, or 11-17.

The numeric atom must be followed by a member of lexical
class 0, 9-14, or 16-18.

(Assuming class assignments as in table 3.1)

Valid Invalid
-7Q 8Q

14Q3(or 140Q) 12345670123456701234567Q
—FTTTITVIT7Q

(or TOTITTICTTA30)

Floating—point Numeric Atoms

Floating—point atoms are constructed according to the rules:

1.

The first character may be an optional sign chosen from
lexical class 6 or 7. Unsigned numeric atoms are
assumed to be positive.

..._17...

LISP Reference Manual DEC 75

2. After the optional sign there must be one or more
characters from lexical class 2. These form the integer
part of the number.

3. Following the integer part there may be an optional
fraction part consisting of one character from lexical
class 15 and one or more characters from lexical class

2.

4. An exponent part may follow the fraction part and must
follow the integer part if there is mno fraction part.
The exponent part consists of a character from lexical
class 4 followed by a signed or unsigned integer. The
exponent part represents the power of 10 by which the
number is multiplied.

5. The numeric atom must be preceded by a member of lexical
class 6, 9, or 11-17.

6. The numeric atom must be followed by a member of lexical
class &, 9-14, or 16-18.

Examples: (Assuming class assignments as in table 3.1)

Valid Invalid
1.28 8.
4E3 2
-6.2E-8 456
+0.7E+6 2E

3.1.3.3 Additiomal Notes on Numeric Atoms

1.

A numeric atom is associated with a 60-bit memory word which
holds the binary representation of its value. Character
strings representing numeric values outside the normal range
for numbers in the CDC 60600 machines will be converted into
binary incorrectly without warning to the user.

Numeric atoms are stored separately in the computer memory.
Each occurrence of a numeric atom creates a mnew data
structure in memory, even if the value is the same as one
encountered previously.

Although lexical class assignments can be made different from
those in table 3.1, only the characters 0-9 can be correctly
interpreted as digits in class 2. If other characters are
used in class 2 they will convert to numeric values in a
strange wavy.

If a character string whose initial elements resemble a
numeric atom is encountered, LISP processes the string as a
number until the syntax rules for numeric atoms are wviolated.
At that point, the character string will be interpreted as a
literal atom. For instance, the string

6.24A
would be read as a standard literal atom. This is the only

way in which standard literal atoms can be created with a
class 15 character embedded in the print name.

=18~

DEC 75 LISP Reference Manual

3.1.4 S-expressions

Atoms are basic symbolic data units of LISP. They may be
combined into larger data structures called S-expressions. An
atom by itself is the most primitive type of S—-expression. 8-
expressions may appear in input text in a completely free—-form
manner except that atoms may not be split between 2 lines. Two
types of composite S—-expression are distinguished, one being a
shorthand for a common form of the other.

3.1.4.1 The Dotted Pair

Dotted pairs are the most primitive form of composite S-
exgression. They are represented in input text according to the
rules:

1. The first character is a member of lexical class 13.

2. Next comes any S—-expression. This is.called the CAR of
the dotted pair.

3. Then there must appear a character from lexical class
15.

4. Next comes any S—expression. This is called the CDR of
the dotted pair.

5. Finally there must appear a character from lexical class
14.
6. The components may be separated optionally by any number

of characters from lexical class 16.

Examples: (Assuming class assignments as in table 3.1)

Valid Invalid
(A.B) (.A)
((X.NIL).NIL) (B.)
((A.B) . (C.(D.E))) (C.D.E)
(1 . 2 (1.2)

3.1.4.2 The List

Dotted pairs whose only atomic CDR part is the atom NIL occur
very frequently in LISP - so frequently, in fact, that a
shorthand notation has been developed. These dotted pairs are
called lists. By definition, the atom NIL is the empty list and
can be represented by (). If we replace by () all occurrences of
NIL in a dotted pair and then delete all matching sets of
parentheses which are immediately preceded by a dot (deleting the
dot also), we get the corresponding list notation for the dotted
pair. For example,

(A.((B.(C.NIL)) . (D.(E.NIL))))

is equivalent to

C A. (CB. ¢ C. (). ¢ D. C E.)))))

-10—

LISP Reference Manual DEC 75

which is equivalent to

(A(BO) DE

More formally, a list is defined by:

1. The first character is a member of the class 13.

2. Next come zero or more separate S—expressions, each
separated by an arbitrary number of characters from
lexical class 16.

3. The last character must be a member of lexical class 14.

According to the class assignments of table 8.1, these rules mean
that a list is simply a sequence of S-expressions separated by
blanks or commas and surrounded by parentheses.

3‘1.

1.

4.3 Additional Comments on Composite S—expressions

Each composite S—-expression causes a new data structure to be
built in memory, even if the same S-expression has been
encountered previously.

Lists must be enclosed by balanced pairs of symbo ls
consisting of one character from class 13 and one from class
14. The elements of a list may themselves be lists, which
often results in a large number of class 14 characters
appearing together at the end of a list. As a convenience to
the user, the class 13 character of a list may be replaced by
a character from class 11 ([) and any or all of the class 14
characters by one character from class 12 (]1). Semantically,
class 11 is equivalent to class 13. Also, a class 12
character is equivalent to any number of class 14 characters
in a manner such that all class 13 characters between the
class 11 and the class 12 characters will be properly
matched. For example,

[CA(B(C(D]
is equivalent to

(CA(B(C(D)))))

5 Additional Input Constructs

Comment information may appear any place in the input text
that an S-expression may appear. A comment is any string of
characters bracketed on both sides by a character from
lexical class 9. Such comments appear on any listing of the
LISP input text, but are never translated inte any kind of

data structures in memory.

The semantics of LISP functions reguires that lists of the
form:

(QUOTE S-expression)

appear frequently. As a shorthand notation, the LISP input
procedures convert any S—expression preceded by a character
from lexical class 17 into the above form internally. That

is, using the class assignments of table 3.1,

-20—

DEC 75 LISP Reference Manual

"S-expression
is equivalent to 4
(QUOTE S-expression)

3. A mixed notation that is not purely dotted pairs or lists is
possible. If one applies the process for converting dotted
pairs to lists given in section 3.1.4.2 to a dotted pair
whose atomic CDR is not NIL, the result is mixed notation.
For example,

(A.(B.(C.ID))
is equivalent to

(A BC.D)

LISP can also read this form of notation.

3.2 OUTPUT FORMATS

LISP can output only S—-expressions. All LISP output is in the
form of line images. The user can specify the maximum length of
‘the output lines .for any file (see section 5.2) and he can force
the first n colunns of the lines to be blank. As characters are
formatted into a line image, an intermnal pointer is kept to the
position where the next character will be placed on the line. A
new line is started whenever the current line is filled or the
next atom cannot fit on the current line.

By using the character manipulating functions of section 4.10,
the formatting functions of section 5.8, and the printing
functions of section 5.3, the user can construct virtually any
kind of formatted output he desires. The LISP printing functions
each print an entire S-expression under the following formatting:

1. Each S-expression begins at the position specified by
the internal pointer at the time printing starts.

2. A literal atom is represented in output by the character
string that is its print image. Under user control the

syntactic marks controlling special atom recognition may
be reinserted (see section 5.3).

8. Fixed point numeric atoms are converted using an
appropriate technique from binary to character
representation and are printed without leading =zeros.
The letter @ is always used as the octal number
indicator. A number following the Q indicates a binary
power of two multiplier (a binary left shift); for
example, 106=100Q.

4. Floating point numeric atoms are converted from binary
to character form according to the format parameters
most recently set by function NFORMAT (see section 5.8).
These formatting parameters specify the number of digits
to be printed before and after the decimal point, and
unless otherwise set are both 5. If the number falls in
the range established by those parameters it is printed
without an exponent part. If it does mot fall in that
range it is printed with only one digit preceding the
decimal point and followed by an E and the appropriate
exponent.

-21-

LISP Reference Manual DEC 75

5. Composite S-expressions are always printed in list
format with parentheses as delimiters and blanks as
separators. Mixed notation is used if the S—expression
has a non—-NIL rightmost CDR (see section 8.1.5, item 3).

6. New lines are started only when a line is completely
filled or when an atom will not fit on the current line.

See section 4.14 for some additional controls which may affect
output formats.

3.3 INTERNAL FORMATS

All data manipulated by LISP wultimately resides in the
computer memory. In this section, we discuss the various
internal forms in which data may occur.

3.3.1 Storage Allocation

UT LISP uses all of the memory available to it. This total
storage area is allocated into several different portions.
Figure 3.1 shows the storage allocation.

The 1/0 buffers and program code areas are the fixed portions
of LISP. These areas include all the code for the execution of
LISP programs. Free space is the main area in which the internal
forms of S—-expressions are stored. Full-word space is used to
hold character strings for atom mames and the binary values of
numer ic atoms. The stack is an area used for holding the LISP
program stack which enables recursive execution. Binary program
space is used to contain compiled LISP functions and to contain
LISP arrays. The size of each area is allocated at the beginning
of LISP execution and, except for binary program space, remains
fixed for the duration of execution. The field length, and
consequently binary program space, is increased to accommodate as
much code or as many arrays as desired, up to the limit imposed
by the operating system.

The initial sizes of the areas shown in figure 3.1 depend on
the following values:

FL. - Field length

B - Value from B parameter, LISP control command
(default value = 1000)
A - Value from A pafameter, LISP control command
(default value = 92)
X = Value from X parameter, LISP control command
(default value =
For these vwvalues, the initial sizes of the wvarious areas are

def ined to be:

Program code and

1/0 buffers: C = 84000 (octal) changing with
version
Binary program space: X=X
Stack: B =B

22

DEC 75 LISP Reference Manual

(FL - C - X - B) % A/100
Full-word space: Y=FL-C-X-B- 7

Free space: Z

All of the area below the point marked F in figure 8.1 is
overlaid by FORTRAN overlays and the area below the point marked
L is overlaid by LISP overlays (see chapter 7).

Figure 3.1 UT LISP Storage Allocation

O =
| I/0 Buffers |
| | C
: Program Code |
|
L e e
| [
I |
[I
: Free Space | Z
I
I |
| I
| Full-Word Space | Y
| |
| |
} Stack | B
|
[I
I Binary Program Space ! X
{1 -~—-———riii-—r—--r - ————

3.3.2 Free Space Data Formats

Every word in free space is used according to the format shown
in figure 3.2. In each 60-bit word the three rightmost fields
each occupy 18 bits and are used almost exclusively to hold
pointers (addresses) to other words in free space or full-word
space. These fields are named CSR, CAR, and CDR, from left to
right. The leftmost bit of the word (bit 59) is used as a mark
bit to indicate an active element of a data structure during the
process of garbage collection. When garbage collection is not in
progress this bit is always 0. A one-bit field (bit 54)
indicates that the word is the header of an atom if the bit is
set to 1. A two-bit tag field (bits 58 and 57) is used to
distinguish among the wvarious types of atoms. Bits 56 and 53 are
unused and may contain anything.

S-expressions are represented in memory by sets of free space
words linked together by pointers in the CSR, CAR, and CDR fields

of the words. Internally, any S—expression is identified by the
address of the first memory word in its structure. It is these
addresses which are actually manipulated by the programs. In

subsequent sections, more detailed pictures will be given of the
various types of S-expression data structures.

23.

LISP Reference Manual DEC 75

Figure 3.2 Free Space Data Format

1 S et T s S (. S e o et St S B St o ot et S St ot S G S G St S e o et P G e e e s W i S S G Gt S o B

e Atom indicator bit (1 bit)
I it Unused field (2 bits)
[P Tag field (2 bits)

Garbage collector
mark bit (1 bit)

38.3.3 Full-Word Space Data Formats
Each 60-bit word in full-word space is used to hold a 60-bit

object. An obJect is either a binary number or a string of up to
106 six-bit characters. Binary numbers are either one’s
complement integers or they are floating point numbers in the
standard CDC 6006€ representation. Character strings of fewer

than 10 characters are stored left-jJustified with zero bit fill.

3.3.4 Dotted Pairs and Lists

Dotted pairs and lists are represented in storage by free
space words which have zero in the tag field and in the atom
indicator. A dotted pair is represented by a single such word
whose CAR field contains a pointer to the CAR part of the dotted
pair and whose CDR field contains a pointer to the CDR part of
the dotted pair; the CSR field is not used.

A list is represented by a set of words in free space, one for
each element of the list. The CAR field of each word contains a
pointer to an element of the list, and the CDR field of each word
but the last contains a pointer to the next free space word in

the list. The last word of a list contains a pointer to the atom
NIL in its CDR field.

Diagrams showing examples of these structures are shown in
figure 3.8. In these figures the convention of representing a

pointer to an atom by writing the name of the atom in the field
is used.

Note: In fi
field, mark bi
as one 2-digit

gure 3.3 and the following figures the tag
t, atom indicator, and unused bits are shown
octal number.

24

DEC 75

1.

2.

3.

4.

LISP Reference Manual

Figure 3.3 Storage of Dotted Pairs and Lists

(DOTTED . PAIR)

00 DOTTED| PAIR
(A . B) . C0C)
00 ’ C
l
\Vi
00 A B

(A LIST) = (A . (LIST . NIL))

00

—

00

LIST

NIL

((WITH) (SUB) LISTS) = ((WITH . NIL) . ((SUB .

NIL) .

(LISTS . NIL)))

00

00

> 00

LISTS

NIL

00

WITH| NIL

00

SUB

NIL

-~

LISP Reference Manunal DEC 75

3.83.5 Literal Atoms

A literal atom is a fairly complex structure which has
components in both free space and full-word space. The first
word of a literal atom, <called the atom header, has the atom
indicator bit set to 1 and the tag field set to 0. The CSR field
of the atom header points to the property list of the atom. Each
atom has at least two attributes: PNAME, with a value which is a
structure representing the print image of the atom, and INFO,
with a wvalue which qualifies the print image. (Note: UT LISP
atoms usually share INFO property—-list cells. Therefore the
"expert" wuser who is directly manipulating property lists must
take <care mnever to concatenate property lists with other
structures without making a copy of the INFO cell.) FEach element
of the property 1list contains a pointer to the indicator (or
attribute) in its CSR field, a pointer to the associated value in
its CAR field, and a pointer to the next property list element in
its CDR field.

The CDR field of the atom header contains a pointer to the S-
expression which is the current value bound to that atom when it
is accessed by LISP as a variable. A special pointer to an atom
with an empty print image is stored here when the atom is not
actually bound to any wvalue.

The CAR field of the atom header contains a pointer to a list

of other ~values bound to the atom in higher—level contexts. In
an unbound atom the CAR field of the header points to the header
itself. Figure 8.4 shows the changes which occur in an atom

header as successive values are bound to it.

Figure 3.5 shows the different structures which occur for
representing an atom’s print image. Figure 3.6 shows the
interpretation of the value associated with the INFO property.
This particular value is mot a pointer to some S—expression.

Finally, figunre 8.8 shows a complete literal atom structure.

DEC 75 LISP Reference Manual

Figure 3.4 Binding Values to an Atom

Given the function definitions:

function A: (LAMBDA (X) (B (CDR X))
function B: (LAMBDA (X) (C (CDR X))
function C: (LAMBDA (X) X)

)
)

the figures below show the header for atom X during evaluation of the
expression:

(A (QUOTE (P Q R)))

1. Before Entry to A

|
L-{>|Oll o w] (v = atom with empty name)

property list

2. Before Entry to B
[o1T |

property list [00] 1 1 | o |
I

[\ | —t+(®QR)

3. Before Entry to C

j{o1] , | | —r—P>@QR

\‘1001

property list

v | —F—>@aQRr)
3
[00]] | [o]

4. After Entry into C

>0l) | | ——D®)

property list {00] I \\Q | —F+—>@Q R)

T [—+>¢en
X
oo T T]

_27..

LISP Reference Manual DEC 75

Figure 3.5 Print Image Structures

1. Atom With Print Image of 1-10 Characters

eo e 00| PNAME I —_—T > e
ooy O 0 I
.. free space _____
6 full-word space
characters 1l-n

2. Atom With Print Image of 11-20 Characters

cee 00| PNAME I —_—t >
00 0
l [___._free space
--------------------------- b-“---_------------- """ full-word space
characters 1-10

characters 11-n

3. Atom With Print Image of 21-30 Characters

... |00|PNAME —l ~...
V
00
| [__._free space ____
----------------- Tt ----?$--‘-—-~--'--------- full-word space
characters 1-10

characters 11-20

v

characters 21-n

-28—

DEC 75 LISP Reference Manual

Figure 3.6 Interpretation of INFO Property Value

00| INFO|value| NIL

IA{Al |

6 bits which denote the number
of characters in image.

6 bits which, if nonzero, denote
the delimiter character used with
category A special literal atom.

6 bits which, if nonzero, indicate
a category B special literal atom.

—20-

LISP Reference Manual DEC 758

Figure 3.7 Numeric Atom Structures

1. Floating Point Numeric Atom

free space

full-word space

binary floating point number

2. Integer Numeric Atom

free space

- . - . - - e - " W . " . " " =" - - = " . o o - P S = S S W e S wm e em = e e m e s = w e em e e W

full-word space

binary integer

3. Octal Numeric Atom

- - o v - o " . - - . - = - . . . - > S e e S e SN G e G R S S S B SH Gn AT G WS P G SO MmN e en wn e M UV e e -

full-word space

binary integer

_30__

DEC 75 LISP Reference Manual

Figure 3.8 A Full Example

The list (EASY) is shown with atom EASY also drawn in detail. FASY is shown
as having no value, but having attribute C with value 3.

‘ EASY
00 | NIL ()

the
l-—{:> 0l | w atom

J] EASY
00| C — 1~/ 00| PNAME — 1|00 INFO| 4 NIL
\Y
r>21 NIL ool O 0
the number 3
______________________ free :space
--- full-waord
S ce
v V
3 0501233100... J'

2z

LISP Reference Manual DEC 75

3.3.6 Numeric Atoms

All numeric atoms are two—-word structures. The
numeric atom header is a free space word with the atom indicator
bit set to 1 and the tag field containing 1, 2, or 8 to denote
floating point, integer, or octal, respectively. The CSR field
of the numeric atom header points to a word in full-word space
which contains the binary value of the number. The CAR field
always ©points to the header, and the CDR field always points to
NIL. Figure 3.7 shows the structures in detail. The only
difference between integers and octal numbers is that the print
rougines print one as a decimal number and the other as an octal
number.

3.3.7 The Oblist

The "oblist" is a special list maintained by the LISP input
routines and is deserwving of special mention. FEach literal atom -
in the LISP system appears somewhere in the oblist, and as a
result the input routines can always determine if an atom being
read already exists. This mechanism enables LISP to maintain the
unique storage of literal atoms. '

The oblist is a list of 128 sublists called "buckets". As
each literal atom is read, its print image is used to generate a
number between ©® and 127, thus selecting one of the buckets of
the oblist. The atom will be in only the bucket so selected.

To facilitate searching by print images, the elements of the
buckets have a special structure as shown in figure 3.9.

The oblist is normally available to the LISP program as the
value of wariable OBLIST.

Figure 3.9 An Oblist Element

00 1 .. a bucket

01 atom header

__~...-> 00| PNAME [>eoe property list

AR

print image

-89

DEC 75 LISP Reference Manual

4. FUNCTION DEFINITIONS

All LISP programs are built by function composition; that is,
the user defines functioms which in turn call on other functions,
either user—-defined or defined in the LISP system. This chapter
describes precisely most of the functions defined in UT LISP.
Some functions are described in chapters 5, 6, 7, and 9, as
appropriate. These function descriptions should serve the user
as his definitive guide to their use.

4,1 FUNCTION TYPES

There are four function types in UT LISP, distinguished by the
names EXPR, SUBR, FEXPR, and FSUBR. Functions of type EXPR and
FEXPR are stored in the machine as lambda expressions to be
executed in an interpretive manner. Functions of type SUBR and
FSUBR are stored in the system as machine code which is executed
directly by the computer when requested. User functions are
generally of type EXPR or FEXPR and the functions defined within
the LISP system are always of type SUBR or FSUBR. Functions of
type EXPR and SUBR are functions of a fixed number of arguments.
Furthermore, when such a function is called, the argument
expressions appearing in the calling expression are evaluated
before they are given to the called function. Arguments of a
SUBR may be omitted from the right, and the missing arguments are
supplied as NIL. Functions of type FEXPR and FSUBR, on the other
hand, can have an arbitrary number of arguments in the calling
expression and those arguments are not evaluated before they are
given to the called function. FEXPR and FSUBR functions are also
sometimes called "special forms".

LISP functionms may be further classified as normal functions,
pseundofunctions, or predicates. Normal functions receive some
arguments, perform some manipulation on those arguments, and
return a value which depends on the manipulation performed.
Pseudofunctions receive some arguments and perform some side—

effect operation (i.e., an operation that changes some of the
internal data structures of the LISP program) rather than some
manipulation upon the arguments. Since all LISP functions must

return some value, a pseudofunction also returns a wvalue, but the
value may bear no relationship to the arguments which were given
it. A predicate is a function which receives some arguments and
returns a value of either true or false, depending on some
relationship that holds among the arguments. In LISP, falsity is
always represented by the atom NIL and truth is represented by
anything other than NIL. Some predicates do in fact return the
atom *¥T* as the value for truth, but the user should endeavor mnot
to use this fact.

4.2 NOTATION USED IN FUNCTION DEFINITIONS

The function descriptions in this manual are given using EVAL
notation. For example:

(CONS <s1> <s2>)

which indicates that CONS is a function of two arguments, either
of which may be any arbitrary S—expression. In the text of this
‘manual LISP function mnames and system variables are always
capitalized. In descriptions of the arguments expected by the
function, < > brackets are used to delimit argument codes (see

-39~

LISP Reference Manual DEC 75

table 4.1), with [] brackets denoting argument subseripts which

are not simple integers. When a function can accept an arbitrary
?umber of arguments, the ellipsis (...) 1is used to indicate this
act.

In general, a function has certain restrictions on the types
of arguments it may receive. The descriptors given below
incorporate these restrictions through a shorthand mnotation.
Where one of the descriptors given in the table below appears in
the list of arguments of a function definition, the argument
actually supplied to the function must obey the characteristics
defined for that descriptor. Notice that if the arguments to a
function are evaluated (as in all SUBRs and in certain indicated
FSUBRs), the descriptor defines what the result of that
evaluation must be, whereas if a function does not evaluate its
arguments, the descriptor defines what must literally appear in
the code. If the restrictions are not met, the LISP system will
probably detect an ILLEGAL ARGUMENT or ILL-FORMED ARGUMENT error.

Each function description given in the remainder of this
chapter includes the name of the function, the types of arguments
the function expects, the classifications of the function, and a
precise description of the action of the function.

The functions are grouped into subsections according to

overall purpose. Within each group, functions are described
first and predicates last, with the most commonly wused of each
type given first. An alphabetical index of functions is given in

appendix A.

4.3 ELEMENTARY FUNCTIONS AND PREDICATES

The elementary functions and predicates comprise the LISP
primitive functions and predicates on which the language is based
and the most commonly-used nonprimitive functions and predicates.

(CAR <nats>)
normal; SUBR
CAR returns as its value the left part of the dotted pair
which is the result of evaluating its argument. In list
terms, it returns the first element of the list. It
retrieves the <wvalue stored in the CAR field of the non-
atomic S-expression which is its argument.

(CDR <{nats>)
normal; SUBR
CDR returns as its value the right part of the dotted pair

which is the result of evaluating its argument. In list
terms it returmns the rest of the 1list after the first

element is deleted. It retrieves the value stored in the
CDR field of the non-atomic S-expression which is its
argument.

-834-—

DEC 75

Type
Descriptor

{boolean>

{character>
{exp>

<filename>

{fInumber>
{fixnumber>

{ fnexp>

{function’>
{fw>

{fwl>
<lat>
{letter>

<list>

{litatom>

{nats>
{number>

{s>

LISP Reference Manual

Table 4.1 UT LISP Argument Descriptors

The argument must be either a literal atom or
a numeric atom.

The argument may be any S—expression, but it
will be interpreted as a truth value: NIL is
equivalent to false; anything else is
equivalent to true. :

The argument must be a literal atom whose
name is a single character.

The argument must be some LISP expression

which can be evaluated by EVAL.

The argument must be a literal atom
containing at most seven letters and digits,
starting with a letter.

The argument must be a floating—point numeric
atom.

The argument must be a fixed-point numeric
atom (either integer or octal).

The argument must be a functional expression.
Either it must be the name of a function
preceded by QUOTE or FUNCTION, or it must be
a lambda expression preceded by QUOTE,
FQUOTE, or FUNCTION.

The argument must be a function name, lambda
expression or label expression.

The argument must be a single full word, that
is, a word in full-word space.

The argument must be a list of full words.
The argument mast be a list of literal atoms.

The argument must be a literal atom whose
name is a single letter (A...7Z).

The argument must be a list or NIL, the empty
list. By 1list is meant a non—atomic S-
expression whose rightmost CDR is NIL, i.e.,
whose top—level printed representation
contains no periods.

The argument must be a single literal atom.

The argument must be some non—atomic 8-
expression.

The argument must be a numeric atom of any
type.

The argument may be any arbitrary S-
expression.

35.

LISP Reference Manual DEC 75

(CSR <nats>)

(CAAR
(CADR
(CASR
(CDAR
(CDDR
(CDSR
(CSAR
(CSDR
(CSSR

normal; SUBR

CSR retrieves the value stored in the CSR field of the non—
atomic S—expression which is its argument.

{nats>)
{nats>)
{nats>)
{nats>)
<nats>)
{nats>)
{nats>)
{nats>)
{nats>)

(CAAAR <{nats>)

(CSSSSSSSSR <nats>)

(CONS

(LIST

normal; EXPR

Multiple CAR-CDR-CSR functions are allowed and may contain
up to & A’s, D’s, or S’s between the C and R to denote a
sequence of CAR, CDR, or CSR operations. The sequence of
operations is applied in right—to—left order, 1i.e., (CPDAR
{nats>) is equivalent (CDR (CAR <nats>)). Users may find
the NTH function more useful for combined forms composed of
a CAD...DR sequence.

K<sl> <s2)
normal; SUBR

CONS builds a new S—expression. It constructs the dotted
pair (Ksl> ., <s2>) by obtaining a new word from free space
and storing its first argument into the CAR field of the
word =and 1its second argument into the CDR field of the
word. CONS is the fundamental function for building new S-
expressions.

{sl1> <s2> ...<slnl1>)
normal; FSUBR

LIST takes an arbitrary number of arguments and constructs
a new list such that <sl1> is the first element, <s2> is the
second element, and so on. If no arguments are given the
value is NIL.

(COMMENT <sl1> 2> ... <slnl>)

pseudofunction; FSUBR

COMMENT is a do-nothing function which provides a
convenient means of retaining comments within a defined
LISP program. COMMENT evaluates none of its arguments, and
always returns NIL.

-86-—

DEC 75

LISP Reference Manual

(QUOTE <s>)

normal; FSUBR

QUOTE is essentially a do—-nothing function. It receives
its argument wunchanged and returns as its value that same
argument. QUOTE is wused to prevent evaluation of S-—
expressions which serve as data internal to a2 LISP function
definition. Within a LISP function, most literal atoms are
evaluated as wvariables and lists are evaluated as function
calls. When QUOTE precedes an atom or an S—-expression, it
is a signal to the interpreter that these things are not to
be evaluated as wvariables and function calls, but instead
are actual constant data of the function.

(FQUOTE <s>)

(SET <

(SETQ

normal; FSUBR
FQUOTE is identical to QUOTE with the exception that when

compilation is occurring, the compiler compiles the
argument of FQUOTE as a function and does not compile the
argument of QUOTE. Therefore, in functions which are to be

compiled, FQUOTE should appear only before lambda
expressions.

atom> <exp>)
pseudofunction; SUBR

SET is the principal value-assignment function. Its first
argument must evaluate to an atom and the value of the
second argument is made the value of the atom. The wvalue

of SET 1is its second argument, or the new value which was
assigned.

{atom> fexp>)

pseudofunction; FSUBR

SETQ is similar to SET except that the first argument of
SETQ is quoted. That is, the first argument is the actual

atom which will have its value assigned. The wvalue
returned by SETQ is its second argument, or the mew value
which was assigned to the wvariable. For example,

(SET&@ X Y)

is equivalent to

(SET (QUOTE X) YD

(RPLACA <nats> <{(s>)

pseudofunction; SUBR
RPLACA replaces the CAR field of its first argument with a

pointer to its second argument. This function modif%es
existing list structure in memory, and should be used with
caution. 257 The ~value returned by RPLACA is its first

argument, which has been modified by the action of RPLACA.

37.

LISP Reference Manual DEC 7¢5

(RPLACD <nats> <s>)
pseudofunction; SUBR

RPLACD replaces the CDR field of its first argument with a
pointer to its second argument. This function modifies
existing list structure in memory. RPLACD should be used
with caution as it may be used to create circular lists,
which may cause difficulty with other processes. The value
returned by RPLACD is its first argument, which has been
modified by the action of the function.

(RPLACS <nats> <(s>)
pseudofunction; SUBR

RPLACS replaces the CSR field of its first argument with a
pointer to the second argument. This function is the only
function which allows the user to place information into
the CSR field. It modifies existing list structure in
memory and therefore should be used with caution. The
value returned by RPLACS is its first argument, which has
been modified by the action of the function.

(ATOM <s>)
predicate; SUBR

ijther a literal atom

ATOM returns true if its argument e
if its argument is any

i
or a numeric atom. It returns false
other expression.

S

(EQ {s1> <s2>)
predicate; SUBR

EQ returns true if its two arguments share the same memory
location. It returns false under any other circumstances.
Literal atoms are stored uniquely in the LISP system so
that their equality may be determined by this simple
comparison of machine addresses. Since no other type of S-
expression is stored uniquely, an EQ comparison of other
types usually fails.

(EQN <s1> <s2>)
predicate; SUBR

EQN is similar to EQ except that it also works for numeric
atoms. It returns true either if its two arguments are E@Q
or if they are two mnumeric atoms which have the same
numeric value. The two numbers may be of different. types.
EQN returns false under all other circumstances.

38

DEC 75

LISP Reference Manual

(EQUAL <s1> <(g2>)

(= <s1

(NULL

> <s2>)
predicate; SUBR

EQUAL returns true if its two arguments are equivalent S-
expressions. Two S-expressions are equivalent if they are
both the same literal atom, if they are two numbers with
the same wvalue, or if they are two non—-atomic S-expressions
composed of the same atoms in corresponding positions.
EQUAL returns false if its two arguments are not equivalent
S—-expressions. = is a synonym for EQUAL.

<s>)
predicate; SUBR
NULL returns true if its argument is the atom NIL. It

returns false under all other circumstances. NULL is a
logical negation operator.

(NUMBERP <s>)

predicate; SUBR

NUMBERP returns its argument if the argument is a number of
any type. It returns false if its argument is any other
kind of S—expression.

(MEMBER <s> <list>)

(MEMQ

predicate; SUBR

MEMBER searches the top level of <1list> for an element
EQUAL to <s>. If such an element is not in the <list>, the
value of MEMBER is NIL. If it is present, the wvalue of
MEMBER is the remaining portion of the list beginning with
the element sought.

<{s> <1list>)
predicate; SUBR
MEMQ is identical to MEMBER in all respects except that

MEMG@ uses EQ instead of EQUAL when testing for the equality
of <s> with a member of <list>.

(ALPHAP <litatoml> <litatom2>)

predicate; SUBR

ALPHAP compares the print names of its two arguments and
returns true if the first argument alphabetically precedes
the second argument. It returns false if the first
argument alphabetically follows the second or if they are
the same atom. The collating sequence of the CDC 60069
series display code is used to de termine the
alphabetization.

-39 —

LISP Reference Manual DEC 75

(GRADP <s1> <s2>)
predicate; SUBR

GRADP returns true if its first argument resides at a lower

memory address than its second argument. It returns false
if its first argument resides at the same or higher memory
address than the second argument. This function can be

used as an arbitrary but consistent ordering predicate for
literal atoms since a given literal atom will always reside
at the same address during the course of one LISP run
unless removed from the oblist (see REMOB, section 4.12).
Non—-atomic S—-expressions and numbers may have many copies
present in memory during the course of omne run and each

copy will reside at a different address. Thus, users
should be certain GRADP is comparing the addresses of the
same desired copies if it is used to order such
expressions. The function EQN will detect different
copies.

(A+ <s1> <(s2>)
(A- <s1> <s2>)

normal; SUBR

A+ (or A-) returns an S—expression whose address is the sum

(or difference) of the addresses of <sl1> and <s2>. An
error occurs if the resulting expression would cause a mode
error.

4.4 LOGICAL CONNECTIVE FUNCTIONS

The 1logical connective functions are wused to form complex
Boolean expressions from simple predicate expressions.

(NOT <s>)
predicate; SUBR
NOT is in every way equivalent to the predicate NULL. It
is the logical inversiom operator. It returns true if its

argument is false or returns false if its argument is true.

(AND <expl> <exp2> ... <explnld)}
normal; FSUBR

AND evaluates each of its arguments in turn until it
encounters the first argument which is false or until it
evaluates all of its arguments. If all of its arguments
evaluate to true the value of AND is the value of <explnl>

(which is true). If one argument is false the wvalue of AND
is false. Expressions following the first false expression
are not evaluated. If there are no arguments the wvalue of

AND is true.

._4,@_

DEC 75 LISP Reference Manual

(OR <expl> <exp2> ... <explnl>)
' normal; FSUBR

OR evaluates each of its arguments in turn until it finds
the first argument which has a true value. If one of its
arguments is true, then the wvalue of OR is the wvalue of
that argument. If none of its arpguments is true, then the
value of OR is false. Arguments following the first true
argument are not evaluated. If no arguments are present
the value of OR is false.

4.5 SEQUENCE CONTROL AND FUNCTION EVALUATION

The functions of this section are used to control the sequence
of execution of expressions in a LISP function by providing
conditional and iterative control structures. Also included are
functions which enable the user to construct and evaluate his own
functions and expressions at run—time.

(COND (<boeleanl> <exp> ... <exp>)
(<{boolean2> <exp> ... <exp>) ...
({booleanlni> <exp> ... <exp>))

normal; FSUBR

COND is one of the major functions of LISP. Most user-
defined functions are defined in terms of a COND—-expression

(conditional expression). COND provides a conditional
control structure similar to that provided by the IF
statement in ALGOL. The arguments of COND are lists

containing at least one S—expression each. COND proceeds
as follows: <booleanl> is evaluated and if it is true then
the remaining S-expressions (if any) in the list containing
{booleanl> are evaluated in left—to-right order. If
<booleanl> is false, then <boolean2> is evaluated and if
{boolean2> is true the S-expressions following it (if any)
are evaluated. This process continues for <boolean3>,
{booleand>, etc., until either some <{booleanl il> is true or
all <booleanl[il>’s have been evaluated as false. In any
case the wvalue of COND will always be the value of the last
S—-expression evaluated under its control. The wvalue of
COND with no arguments given is NIL.

(SELECT <exp> (<expl1l,11> <expl[1,21> ... <Kexpll,nll>)
(Kexp[2,11> <expl[2,21> ... <expl2,n2]1>) ...
(<explm, 11> <expim,21> ... <explm,nlmll>)
<explm+11>)

normal; FSUBR

SELECT allows the selection of a particular 1list of
expressions to be evaluated depending on the value of the
first argument of SELECT. It proceeds as follows. The

first argument, <exp>, is evalunated. Its value is then
compared successively to the values of Cexpl1,11>,
<expl2,11>, <Kexpl3,11>, ve., until the wvalue of <exp>
equals the value of <expli,1]. For that i, each

<expli,21>, <expli,31>, ..., <expli,nlil> is evaluated and
the value of <expli,nl[ill> is returned as the <wvalue of
SELECT. SELECT is very similar to COND in this respect, in
that once a test is successfully completed, SELECT

41

LISP Reference Manual DEC 75

evaluates an arbitrarily large number of associated
expressions, returning the value of the last expression so
evaluated. If the value of <exp> is mot equal to the value
of any <expli,11>, i=1,...,m, then the value of <explm+1l>
is returned as the value of SELECT.

(PROG2 <expl> <exp2>)

pseudofunction; SUBR

The value of PROG2 is the wvalue of <exp2>. This function
is used to perform two actions where LISP normally allows
only omne.

(PROGN <expl> <exp2> ... <explnl>)

(PROG

pseudofunction; FSUBR

PROGN evaluates each of its arguments in turn and the value
of the last argument is returned as the wvalue of PROGN.
This function is used to perform a simple sequence - of
actions where LISP normally allows only one.

{lat> <s1> <(s2> ... <slnl>)

pseudofunction; FSUBR

The PROG expression is used to form iterative functions.
The first argument is a list of atoms which serve as

temporary variables within the PROG expression. The
remaining arguments are either literal atoms or else they
are expressions to be evaluated. Literal atoms serve as
labels and the expressions serve as statements of a
sequential programming language. PROG proceeds by first
assigning the value NIL te each of the temporary wvariables.
It then evaluates each <sl[il> unless it is an atom. An
atom is skipped and the expressions following it are
evaluated, one after the other. The use of the GO function

allows the sequence of execution to be altered (see below).
The value of a PROG expression is NIL if all the <sl[il>’s
are executed without encountering the RETURN function. If
RETURN is encountered, the value of the argument of RETURN
is the value of the entire PROG expression. GO and RETURN
may be executed in other functions which are called by the
function containing a PROG expression, provided none of
these functions has been compiled (see chapter 6).

(GO <litatom>)

pseudofunction; FSUBR

GO is used to control execution sequence within a PROG
expression. Its argument is not evaluated and must be omne
of the labels which appears in the PROG expression.
Execution of GO caunses the execution of the PROG expression
to be continued with the statement immediately following
the label which is the argument of the GO. GO may mnot be
used to branch out of a PROG expression, but may transfer
control only within the most recently occurring PROG
expression. GO has no value as such.

DEC 75 LISP Reference Manual

(RETURN <s>)
pseudofunction; SUBR

RETURN causes LISP to exit a PROG expression. The argument
of RETURN is made the value of the entire PROG expression.
RETURN may be executed within a non-PROG expression which
is evalunated wunder the control of a PROG expression, in
which case LISP exits from the PROG expression.

(EXIT <litatom> <exp>)
pseudofunction; SUBR

EXIT causes LISP to exit the most recent call to the user-—
called function <litatom>. EXIT evaluates <{exp> a second
time. This second evaluation takes place in the context
before the call to <litatom> rather than in the context of
the call to EXIT. EXIT returns the resulting value as the
value of the function <litatom>. EXIT differs from RETURN
in that EXIT returns from <litatom> to the function which
called <litatom> independent of whatever PROG expressions
have been entered. EXIT is equivalent to:

(RETFROM (NTHFNBK <litatom> 1) <exp>)

{EVAL <exp>)
normal; SUBR

EVAL evaluates its argument a second time. The wvalue of
this second evaluation of <exp> is returned as the wvalue of
EVAL. Variables within the expression will be evaluated in
the context in which the call to EVAL is made.

Example:
(EVAL (QUOTE COMMA)) =

(APPLY <{function> <{list>)
normal; SUBR

The <1list> is a list of arguments for the <{function> which
is the first argument of APPLY. The value of APPLY is the
value obtained by applying <function> to <list>. The first
argument must be either a function mname or a lambda
expression and if it is a function name, the function must
be of type EXPR or SUBR. If a {function> of type FEXPR or
FSUBR is given to APPLY then an UNDEFINED FUNCTION error

will occur even though the function is in fact defined.
(EVALQUOTE < function> <list>)

normal; SUBR

EVALQUOTE is similar to APPLY in that it applies <functiomn>

to <list>. However, EVALQUOTE allows the function to be of

type FEXPR or FSUBR as well as EXPR or SUBR. The result of

the application of <functiomn> to <list> is the value of
EVALQUOTE.

43

LISP Reference Manual DEC 75

(EVLIS <1list>)
normal; SUBR

EVLIS expects its argument to be a list of expressions. It
evaluates these expressions one at a time from left to
right and returns a list whose elements are the respective
values of the expressions.

(FUNCTION <function>)
pseudofunction; FSUBR

The argument of FUNCTION is expected to be a function name
or a lambda expression. This function ‘is required in
certain very special cases to prepare an environmment for a
functional argument being passed to another function. Its
value is a so—called "funarg" expression.

(LABEL <litatom»> <lamhda expression>)
form

LABEL is a form which binds the <lambda expression) to
{litatom> in a manner such that during execution of the
{lambda expression>, if <litatom> is applied as a function
and has no standard definition (EXPR, etc.), then <lambda
expression> is used as the function definition. LABEL is
used to permit a name to be given to a temporary, recursive
expression.

4.6 LIST MANIPULATION FUNCTIONS
List manipulation functions are the principal means for
dealing with S-expressions. Operations of construction, copying,
reversal, and combination are possible.
(LENGTH <s>)
normal; SUBR
The argument of LENGTH may be either an atom or a list. If
the argument is a list, then the value of LENGTH is the
number of elements in the list. If the argument is an
atom, the wvalue of LENGTH is =zero.
(NTH <list> <fixnumber>)
normal; SUBR
NTH returns the {fixnumber>th top-level element in <list>.
{fixnumber> must be strictly positive and less than or

equal to the number of elements in <list>. (NTH <list> 1)
is equivalent to (CAR <list>).

- 44—

DEC 75 LISP Reference Manual

(COPY <s>)
normal; SUBR

COPY .copies its argument. That is, it returns an entirely
new list structure occupying different memory words and
equivalent to the original S—-expression.

(REVERSE <list>)
normal; SUBR

REVERSE returns a new list whose top—level elements are the
same as the elements of its argument but are reversed in
order. Sublists of the list are not themselves reversed.

(REVERSIP <list>)
pseudofunction; SUBR

REVERSIP performs an in-place reversal of a list. The
value of REVERSIP is the same <list> as its argument, but
that list has been internally modified so that the top—
level elements appear in reverse order.

(APPEND <1list> <s>)
normal; SUBR

The first argument of APPEND must be a list. The second
argument normally is a list, but does mnot have to be.
APPEND jJoins its two arguments together such that the
resulting new list contains the elements of both arguments
with the elements of <list> appearing before the elements
of <s>. The first argument is copied with the terminal NIL
replaced by a pointer to <(s>.

(NCONC <1list> <s>)
normal; SUBR

NCONC is similar to APPEND in that it Joins its two
arguments into a single S-expression. NCONC actually
modifies <list> to replace the terminal NIL with a pointer
to <m>. The ~wvalue of NCONC is its first argument, as
modified by the action of the function. This can be
contrasted with the ~value of APPEND which creates a new
list structure and does not modify either of its arguments.

(CONC <1listl> <1list2> ... <listlnl>)
normal; FSUBR

CONC is similar to NCONC in that it concatenates its
arguments into a single list. However, CONC accepts an
arbitrary number of lists and returns <listl>, internally
modified to be the concatenation of all of the lists in the
order that they were presented. CONC modifies the existing
list structure of all its arguments except the last.

45

LISP Reference Manual DEC 7?5

(PAIR <(listi> <(1list2>)
normal; SUBR

PAIR matches its two argument lists together, returning a
resulting list whose length is equal to the length of its
shorter argument. Each element of the resulting list is a
dotted pair whose CAR is the corresponding element of
<{listl> and whose CDR is the corresponding element of
<list2>., Thus, the first elements are paired, and the
second elements are paired, and so forth.

(EFFACE <s> <{list>)
normal; SUBR

EFFACE removes the first occurrence of the item <s> from
iiist>. EFFACE modifies the existing structure of the
st.

(SUBLIS <list> <s>)
where <list> is an expression of the form
(({s1> | <s2>) (s3> . <s4>) ... (Ksln—-11> . <slnl>))
normal; SUBR

SUBLIS receives a list of dotted pairs, as indicated, for
its first argument and an arbitrary S-expression as its
second argument. The wvalue of SUBLIS is the result of
substituting the right part of a dotted pair for every
occurrence of the left part of the dotted pair in <s>, the
second argument of SUBLIS. Thus, SUBLIS allows the
simultaneous substitution of a number of items in an
arbitrary S—-expression. SUBLIS does not modify existing
memory structure. SUBLIS creates a new structure
containing the various substitutions, but does not copy any
unchanged substructure.

Example:

(SUBLIS "

(CA
= (

(A . DB . 2)(C . 3)) "(A(BC B A))
1 (2 3 2)

(
2) 1)
(SUBST <sl1> <s2> <(s83>)
normal; SUBR
The value of SUBST is the result of substituting <sl1> for
all occurrences of <s2> in <s3>. SUBST does not modify
existing list structure. SUBST creates an entirely mnew
list structure containing the substitutions, but does not
copy any unchanged substructures.
Example:

(SUBST "A "B "(A (B C B) A)) = (A (A C A) A

—46—

DEC 75 LISP Reference Manual

4.7 PROPERTY LIST MANIPULATION FUNCTIONS

Every literal atom in the system has =a property list
associated with it. The property list contains items of
information about, or properties of, the atom. Users may assign
properties of their own choice to atoms. Each property is

characterized by an indicator, which is itself a literal atom and
which def ines what property is being mentioned, and by a walune
for that property, which may be any S-expression. The indicators
INFO, PNAME, EXPR, SUBR, FEXPR, FSUBR, §8YM, CMACRC, SMACRO,
CSUBR, and CFSUBR have special meaning to the LISP system itself
and should be avoided or used with care. Property lists do not
have the same structure as ordinary lists (see chapter 3) and
should be manipulated only by the following functions.

(PUT <litatoml> <litatom2> <s>)
pseudofunction; SUBR
If <s> is non-NIL, PUT searches the property list of

{litatoml> for an occurrence of the indicator <litatom2>.
If <litatom2> is found then PUT replaces the old associated

value with <s>. If the indicator is not found PUT places a
new element on the property list with indicator <litatom2>
and value <{s>. If <(s> is NIL, the associated indicator Iis

removed from the property list, if present; i.e., PUT calls
(REMPROP <litatoml> <litatom2>). The value of PUT is its
first argument.

(GET <litatoml> <litatom2>)
normal:; SUBR

GET is the inverse of PUT. GET searches the property list
of <litatoml> for a property list element whose indicator
is <litatom2>. The wvalue of GET is the wvalue associated
with that indicator if the indicator is present. Otherwise
the wvalue of GET is NIL. GET should not be used to obtain
the PNAME property of an atom if the PNAME is going to be
used with the character manipulation functions (see section
4.16) . Instead, the function GETPN (see below) should be
used.

(DEFLIST <s> <{litatom>)
where <{s> is an expression of the form

(({litatoml> <s1>) (Klitatom2> <s>) ...
(<litatomlnl> <slnl>))

pseudofunction; SUBR

DEFLIST is used to simultaneously assign a new property to
a number of different atoms. The first argument is a list
of sublists, each of two elements as shown above. The
second element of each of the sublists is placed on the
property list of the first element of the sublist as the
value of a property whose indicator is the second argument
of DEFLIST, that is, <litatom>. The value of DEFLIST is a
list of the <litatom[il>’s which appear in the first
argument; that is, a list of all of the atoms to which the
new property has been assigned by DEFLIST.

- 47—

LISP Reference Manual DEC 75

(DEFINE <(s>)
where <s> is an expression of the form

(({litatoml> <s1>) (<litatom2> <s2>) ...
({litatomlnl> <slnl>))

pseudofunction; SUBR

The argument of DEFINE is equivalent in form to the first
argument of DEFLIST, with the exception that the second
element of each of the subliste should be either the name
of a function or a lambda expression. DEFINE makes <s[il)
a property of <litatomlil> with the indicator EXPR. The,
primary purpose of DEFINE is the definition of LISP
functions. DEFINE is equivalent to a call on the function
DEFLIST with the second argument being the atom EXPR. The
value of DEFINE is a list of the atoms which have received
the function definitions.

(DEF ({litatoml> <latl> <s1>) ({litatom2> <lat2> <sd>) ...
({litatomlnl> <latlnl> _ <slnl>))

pseudofunction; FSUBR
DEF acts exactly as;

(DEFINE "((<1litatoml> (LAMBDA <latl> <sl1>)})
(<{litatom2> (LAMBDA <lat2> <s2>)) ..
({litatomlnl> (LAMBDA <latlnl> <s[n1>))))

It thus is a convenient abbreviated form of DEFINE which
eliminates the need to explicitly state the LAMBDA flag for
each <litatom[il> function defined.

(DEFF (<Klitatoml> <latl> <s1>) ({litatom2> <lat2> <s2>) ...
({litatominl> <latlnl> <slnl>))

pseundofunction; FSUBR

DEFF is similar to DEF with respect to its abbreviated call
upon DEFINE. However, DEFF defines <litatoml> through
{litatomlnl> as FEXPRs rather than EXPRs (see section 4.1).

(GETD <litatom>)
pseudofunction; SUBR

GETD returns the functional definition of <litatom> by
GETting the ~value associated with the EXPR or FEXPR
indicator on <litatom>’s property list. GETD also forces a
retrieval of the function <litatom> from the disk if
{litatom> has previously been the argument of a call to
DISKOUT (see section 7.6 on the LISP wvirtual memory
facility for functions). If <litatom> does not have an
EXPR or FEXPR indicator omn its property list, GETD returns
NIL. Thus system functions with SUBR or FSUBR definitions
are not retrieved by GETD.

—-48—

DEC 73 LISP Reference Manual

(PUTD <litatom> <s>)
pseudofunction; SUBR
PUTD replaces the definition of {litatom> associated with
its EXPR or FEXPR indicator by <s>, using the same
indicator already on <litatom>. If <litatom> does mnot have
an EXPR or FEXPR definition, PUTD does nothing. The ~wvalue
of PUID is always its first argument.

(QKEDIT <litatom> <sl1> <s2>)
pseudofunction; SUBR
QKEDIT substitutes <sl1> for <s2> within the definition of
any EXPR or FEXPR function <litatom>. QKEDIT is equivalent
to

(PUTD <litatom> (SUBST <s1> <s2> (GETD <litat)))

(GETPN <litatom’)
normal; SUBR
GETPN returns the PNAME oproperty of the <litatom>
structured as a list of full words; that is, a list whose
CAR fields point directly to the full words which contain
the characters of the print name of the <litatom>. Such =

list structure is necessary for manipulation by some of the
functions defined in section 4.10.

(REMPROP <litatoml> <litatom2>)
pseudofunction; SUBR

REMPROP removes the property whose indicator is <litatom2>
from <litatoml>. The wvalue of REMPROP is <litatoml>.

(FLAG <lat> <litatom>)
pseudofﬁnction; SUBR
FLAG PUTs the property indicator <(litatom>, with the

associated value *T%, on the property list of each of the
atoms in <lat>. The value of FLAG is NIL.

"(REMFLAG <1lat> <litatom>)
pseudofunction; SUBR
REMFLAG removes all occurrences of the indicator {litatom>

from the property list of each of the atoms in <{lat>. The
value of REMFLAG is always NIL.

49

LISP Reference Manual DEC 75

(PROP <litatoml> <litatom2> <fnexp>)
normal; SUBR

PROP is similar to GET in action. The property list of
{litatoml> is searched for the indicator <litatom2>. If
such a property is found, the entire property list of
{litatoml> beginning with property <litatom2> is returned
by PROP. If {litatom2> is not an indicator on the property
list of <(litatoml>, then <fnexp>, which must be a function
of no arguments, is applied and the value returned by PROP
is the value of <{fnexp>.

4.8 FUNCTIONS WITH FUNCTIONAL ARGUMENTS

These functions all sequentially scan a list, performing an
operation on the list with each scanning operation. The
operation to be performed is specified by a functional argument.
Thus these functions have wvariable semantics. Although FUNCTION
must be used with functional arguments for some user—defined
functions, it is never necessary with these functions.

(MAP <list> <{fnexp’>)
pseudofunction; SUBR

MAP applies the functional expression <fmexp> to <list>,
then to (CDR <list>), (CDDR <list>), and so on, until
{fnexp> has been applied to all non-NIL CDRs of <list)>.
{fnexp> miast describe a function of only one argument. The
value of MAP is always NIL. MAP is always used to perform
some kind of side effect computation.

(MAPC <list> <fmnexp>)
pseudofunction; SUBR

MAPC is similar to MAP except that it applies <fnexp> to
successive CARs of <list> instead of to the entire <{list)>.
Thus MAPC first applies <{fnexp> to (CAR <(list>), then to
(CADR <1list>) and so on until some CD...DR of <list> is
NIL. MAPC always returns NIL as its wvalue (compare this
with the definition of MAPCAR).

(MAPLIST <1list> <fnexp>)
normal; SUBR

MAPLIST is similar to MAP except that its value is a list
of each of the wvalues produced when <{fnexp> is applied to
successive CDRs of <list>. These elements are CONSed
together as they are generated. <fnexp> must be a function
of only one argument.

Example:

(MAPLIST "E?

B C (LAMBDA (X) (CONS X NIL))))
= (A B))

DEC 75

LISP Reference Manual

(MAPCON <1list> <{fnexp>)

normal; SUBR

MAPCON is similar to MAPLIST except that the value is the
list which results from concatenating the individual
results of applying {fnexp> to successive CDBs of <list>.
This implies that each value returned by the <fnexp> must
itself be a list or else erroneocus results may occur when
the elements are concatenated together. <fnexp> must be a
function of only one argument.

Example:

(MAPCON "(A B C) (FQUOTE (LAMBDA (X) (CONS X NIL))>))
= ((AB OB O

(MAPCAR <1ist> <fnexp>)

normal; SUBR

MAPCAR is similar to MAPLIST in that it returns a list of
the results of the individual applications of <fnexp>.
However, <fnexp> is applied at each step to CAR of the
successive CDRs of <(list> instead of to the CDR itself.
{fnexp> must be a function of only one argument.

Example:

(MAPCAR "(A B C) (FQUOTE (LAMBDA (X) (CONS X NIL))>))
= ((AY(B)(CY)

(SEARCH <1list> <{funexpl> <{fnexp2> <fnexp3>)

normal; SUBR

SEARCH applies <fnexpl> to <list> and successive CDRs of
<{list> until it happens that the value of <{fnexpl> is true.
If this condition occurs, then SEARCH applies <fnexp2> to
the remainder of <list> at that time. If the entire list
is exhausted without any application of <{fnexpl> giving a
true value, then <fnexp3> is applied to NIL. SEARCH is
therefore used to apply some function to a portion of the
list depending on a condition which must be met by some
element of the 1list. Each <fnexp> must be a function of
only one argument.

Example:

(SEARCH "((A . D(B ., 2)(C . 3))
(FQUOTE(LAMBDA(X) (EQ@ (CAAR X) "B)))
(FQUOTE(LAMBDA(X) (CDAR X)))
(FQUgTE(LAMBDA(X)(ERROR "(SEARCH FAILURE)))))

(SASSOC <s> <list> <{fnexp>)

normal; SUBR

SASSOC searches its second argument (which must be composed
from non-atomic elements) for an element whose CAR is EQUAL
to <s>. If such an element is found, the value of SASSOC
is that element. Otherwise, the function <fnexp> of no

51

LISP Reference Manual DEC 75

arguments is applied and its value returned as the value of
SASSOC.

Example:

(SASSOC "B "((A . 1)(B . 2)(C . 3)) NIL) = (B . 2)

4.9 ARITHMETIC FUNCTIONS AND PREDICATES

All of the functions described in this section must receive

numeric atoms as their arguments. There are three types of
numbers in LISP: octal numbers, integers, and floating-point
numbers. Octal numbers and integers are not distinguished for

arithmetic operations; both are considered to be fixed ©point.
They differ only in their printed representation. All of the
arithmetic functions may accept either fixed-point or floating
point inputs or a mixture of the two. The result is floating
point if any of the inputs are floating point and is fixed ©point
otherwise.

(ADD1 <number>)
normal; SUBR
ADD1 increments <number> by 1 and returns the incremented
value as its result. A fixed-point result is of integer
type.

(SUB1 <number>)
normal; SUBR

SUB1 decrements <number)> by 1 and returns the decremented
quantity as its value. A fixed-point result is of integer

type.
(PLUS <{number> <number> ... <number’)
{+ <{number> <number> ... <{number>)

normal; FSUBR
PLUS evaluates all its arguments and returns as its value

their sum. A fixed—-point result is of integer type. + is
a synonym for PLUS..

(DIFFERENCE <{numberl1> <number2>)
(- <{numberl> <{number2>)
normail; SUBR
DIFFERENCE returns as its value the difference {numberl> -

{number2>. A fixed-point result is of integer type. - is
a synonym for DIFFERENCE.

-52—

DEC 75 LISP Reference Manual

{MINUS <number>)
normal; SUBR
MINUS returns the negative of its argument. A fixed-point
result is of integer type.
(TIMES <number> {number> ... <number>)
(% {number> <number> ... <number>)
normal; FSUBR
TIMES evaluates all its arguments and returns as its wvalue

their product. A fixed-point result is of integer type.
is a synonym for TIMES. :

(QUOTIENT <number1> <{number?2))
(/ {number 1> <number2>)
normal; SUBR

QUOTIENT re turns as its value the quotient of

{number 1> /<number2> . The quotient of two fixed-point
numbers is the integer part of the quotient and is of
integer type. Thus, QUOTIENT(I 2) returns the value 0. /

is a synonym for QUOTIENT.

(REMAINDER <number1> <{number2>)
normal; SUBR
REMAINDER returns as its wvalue the remainder of the
division <{number1>/{number2>. The remainder is calculated
by the usual formula:
remainder = dividend - (/quotient/ * divisor)
where /quotient/ is the greatest integer contained within
the quotient. A fixed-point result is of integer type.
(DIVIDE <numberl> <number2>)
normal; SUBR
DIVIDE returns as its value a list of two numbers wherein
the first element is (QUOTIENT <numberl> <{number2>) and the
second element is (REMAINDER <numberl> <number2>).
{RECIP <number>)
normals; SUBR
RECIP returns as its value the reciprocal of its argument.
That is, it is equivalent to (QUOTIENT 1 <number>). The

reciprocal of any fixed-point quantity larger than one is
an integer =zero.

...53...

LISP Reference Manual : DEC 75

(MAX <number> <number> ... {pnumber>)
normal; FSUBR
MAX evaluates all its arguments and returns as its value
the algebraically largest <{nmumber> in the set.

(MIN <number> <{number> ... <number>)
normal: FSUBR
MIN evaluates all its arguments and returns as its value
the algebraically smallest <{number> of the set.

(LOGAND <number> <number> ... <{number>)
normal; FSUBR
LOGAND evaluates all its arguments and returns their bit-
by-bit logical product <(logical AND). Each <{number’> is
treated as a 60-bit quantity. The wvalue of LOGAND is
always of octal type.

(LOGOR <number> <{number> ... <number’>)
normal; FSUBR
LOGOR evaluates all its arguments and returns their bit-by-
bit logical sum (inclusive OR). Each <{number> is treated
as a 60-bit quantity. The value of LOGOR is always of
octal type.

(LOGXOR <number> <{number> ... <number>)
normal; FSUBR |
LOGXOR evaluates all its arguments and returns their bit—
by-bit logical difference (exclusive OR) with association
to the left. Each <number> is treated as a 60-bit
quantity. The wvalue of LOGXOR is always of octal type.

‘(LEFTSHIFT <{number> <fixnumber>)
normal; SUBR

LEFTSHIFT performs a shifting operation on its 60-bit first

argument. <fixnumber> is a shift count of the mnumber of
bits <number> is to be shifted. If the shift count is
positive the shift is left, end—around circular. If

negative the shift is right, end-off with sign extension.
The result of the LEFTSHIFT function is always of octal

type .
(FIX <flnumber’>)
normal: SUBR

The wvalue of FIX is the largest integer contained in the
floating point number. The value is of integer type.

54,

DEC 75 LISP Reference Manual

{FLOAT < fixnumber>)
normal; SUBR
FLOAT returns a floating—point number whose wvalue is the
same as that of the fixed-point argument. <fixnumber> must

be less than 2%%48 in magnitude for this function to give
the proper result.

(OCTAL <number>)
pseudofunction; SUBR
OCTAL converts its argument into a number of octal type.
The print image of the resulting number is the octal
representation of the original value. No conversion from
floating point to fixed point is made. OCTAL actually

modifies its argument directly. It does not make a copy of
the argument.

(RBANDOM <number>)
normal; SUBR

RANDOM returmns a new random number in the range ©-1 each

time it is called with a zero argument. If called with an
argument between ® and 1, it returns that argument, as its
value, and on subsequent calls with a 0 argument, it will

return new random numbers belonging to a new sequence begun
by the call with a nonzero argument.

(ZEROP <number>)
predicate; SUBR

ZEROP returns <number> as its value if its argument is a
numeric zero. It returns false otherwise.

(ONEP <number>)
predicate; SUBR
ONEP returns <number> as its value if its argument has the

value 1 (either fixed-point or floating—point). It returns
false if its argument is not equal to 1.

(MINUSP <number>)
predicate; SUBR
MINUSP returns <{number> as its value if its argument is a
negative number. It returns false if its argument is a

positive number. Only the sign of the number is tested.
Therefore, MINUSP returns true if <{number> is -0.

-55—

LISP Reference Manual DEC 75

(FIXP <{pumber>)
predicate; SUBR

FIXP returns <number> as its value if its argument is a
fixed-point number (either an integer or an octal number) .
It returns false otherwise.

(FLOATP <number>)
predicate; SUBR

FLOATP returns <{number> as its value if its argument is a
floating-point mnumber, or false otherwise. :

(LESSP <{numberl1> <{number2>)
(< <numberl> <{number?2>)

predicate; SUBR

LESSP returns true if <numberl> is strictly less than
{number2>, or false otherwise. If either of the arguments
is floating point, the comparison uses floating-point
arithmetic. < is a synonym for LESSP.

(GREATERP <{numberl1> <{number2))
(> <numberl> <{number2>)

predicate; SUBR

GREATERP returns true if <{numberl> is strictly greater than
<{number2>, or false otherwise. If either of the arguments
is floating point, the comparison uses floating—point
arithmetic. > is a synonym for GREATERP.

4.10 CHARACTER MANIPULATION FUNCTIONS

Normally in LISP, one is not concermed with the constituents
of the atomic symbols, as atoms are treated as indivisible units.
However, it is occasionally necessary to decompose an atom into
its constituent characters or to build an atomic symbol from a
group of individual characters. The functions described in this
section assist in these operations.

A character in LISP is represented by a literal atom whose

print name is the single character. Thus, the characters may be
manipulated by any of the functions which may be used to
manipulate atomic eymbols. This means also that there is a
difference between single digit numbers and the literal atoms
whose names are the digit characters. The user should keep this
difference in mind. There exists an internal buffer into which

up to 120 characters mayv be placed. This buffer is useful for
accumulating characters which are being used to construct atoms,
and this buffer is manipulated by some of the functions described
in this section.

-56—

DEC 75 LISP Reference Manual

(CLEARBUFF)
pseudofunction; SUBR

This function of no arguments clears the internal buffer
and resets the counter of its contents to zero. The value
of CLEARBUFF is NIL. This function should be executed

before any of the other functiens which affect the buffer
are used.

(PACK <character>)
pseudofunction; SUBR

PACK places the character which is its argument into the
next sequential position in the intermnal buffer, following
all characters which have previously been placed there.

The value of PACK is NIL.

(MKNAM)
pseudofunction; SUBR

MKNAM returns as its value a list of full words created
from the contents of the intermal buffer. The characters
are taken from the buffer ten at a time and placed into
full words containing up to ten display character codes.
The last full word is filled with zero bits if necessary.
The resulting list is one whose CAR fields point directly

to the full words containing the character codes. This
type of 1list structure is mot a normal LISP list. The
internal buffer is ¢leared after this function is
completed.

(INTERN <fwl>) or (INTERN <litatom>)
pseudofunction; SUBR
The argument of INTERN can be either a <fwl> or a

<litatom . INTERN searches the oblist for amn atom whose
print image matches <fwl> or <litatom. If such an atom is

found, INTERN returns that atom. Otherwise, INTERN puts
<litatom> or an atom it creates from the <fwi> on the
oblist and returns this atom as its value.

(NUMOB) -
pseudofunction; SUBR

NUMOB expects the internal buffer to contain a sedquence of

characters defining a number. The syntax of the numbers is

the same as if the characters had been punched on a data

card. The value of this function is the LISP number which
corresponds to that character representation. If the

characters in the buffer do not form a legal LISP number,

then NUMOB returns as its value a literal atom whose print

name contains those characters but is not INTERNed. The
buffer is empty after this function is completed.

-5%7—

LISP Reference Manmal DEC 75

{ UNPACK < fw>)
pseudo function; SUBR
The argument to UNPACK must itself be a full word; that is,

a memory word containing up toe tem display code characters,
filled with zero bits if fewer than ten characters are

present. The +wvalue of UNPACK is a list of literal atoms,
one atom for each character contained in the argument of
UNPACK. The print names of the literal atoms in the list

correspond to the character codes in the fulil word.

(IMAGEL <atom> <boolean>)
pseudofunction; SUBR

IMAGEL returns the integer length of the printed
representation of <atom>. If <boolean> is false, the image
used is the mnormal printed image. If <boolean> is true,
the image used includes any delimiter or escape symbols
necessary to reproduce a readable form of the atom. This
function facilitates formatting printed output.

(NUMTOATOM <number>)
pseudofunction; SUBR

NUMTOATOM creates and returns a literal atom whose print
name is equivalent to the representation {number> would
have if printed. The literal atom is mnot placed omn the
oblist. The format wused for floating—point numbers is
under the control of NFORMAT (see section 5.8).

(COMPRESS <lat> <boolean>)
péeudofunction: SUBR

{lat> must be a 1ist of single—character atoms. If
{boolean> is false or omitted, COMPRESS creates and returns
an atom identical to the result of a READ of the same
characters as from an input file. That is, if the
characters are a legal numeric representation, a numeric
atom is returned; otherwise, a standard literal atom of the
first 88 characters, created according to the syntax of
section 8.1.2.1, is returned. If <boolean’> is true, then
special characters which would ordinarily terminate the
reading of an atom from the input file are included in the
first 389 characters of the atom returned. If <boolean> is
true, the atom is INTERNed; otherwise it is not.

Examples:
(COMPRESS "(A B #., #, #,)) = AB
(COMPRESS "(A B #, #, #,) T) = AB.,.
(EXPLODE <atom>)
pseudofunction; SUBR

EXPLODE returns a list of single-character atoms which if
concatenated are equivalent to the print image of <atom>.

.58

DEC 75 LISP Reference Manual

{atom> may be either numeric or literal. EXPLODE is the
inverse of COMPRESS, i.e.,

(COMPRESS (EXPLODE <atom>) T) = <atom>
(LITER <s>)
predicate; SUBR
LITER returns <{s> as its value if <s> is a literal atom

whose print name is a single alphabetic character (A-7).
The wvalue of LITER is false in all other circumstances.

{(DIGIT <s>)
predicate; SUBR

DIGIT returns <s> as its value if (8> is =a literal atom
whose print name is a single numeric character (0-9). The
value of DIGIT is false under all other circumstances.
Notice0 ;hat DIGIT is false for the single—-digit numeric
atoms -9.

- (OPCHAR <s>)
predicate; SUBR
OPCHAR returns <s> as its value if (s> is a literal "atom

whose ©Pprint name is one of the single characters +, -, /,
or ¥, OPCHAR returns false under all other circumstances.

4.11 DEBUGGING AND ERROR PROCESSING FUNCTIONS

These functions are used to give the user some control over
the operation of the LISP system or to enable him to obtain more
information about the operation of his functions.

(ERROR <s>)
pseudofunction; SUBR
ERROR causes a recoverable error to occur. The argument to
ERROR appears as part of an error message printed in
response to this function. The message is:

kkxckk ERROR: <s>

Continuned execntion of the current top—level expression is
suspended unless the ERROR function is executed wunder the
control of an ERRORSET (see below). This function has no
value as such.

-50-—

LISP Reference Manual ' DEC 75

(DIE <s>)
pseudofunction; SUBR
DIE behaves much like ERROR (see above), except that it is
irrevocably fatal and causes the LISP run to terminate.
{s> is printed as part of a message:

tyett KILLED: <s>

(ERRORSET <exp> <booleanl> <boolean2>)
pseudofunction; SUBR

ERRORSET is a function which allows the LISP system to
recover from a recoverable error without terminating the

execution of the current top—-level expression. The first
argument of ERRORSET is evaluated a second time. If no
error occurs during the evaluation, then the result of

ERRORSET is a list of the wvalue of the expression. If an
error does occur during the evaluation the result of
ERRORSET is NIL. If a computation causes a recoverable
error to occur, the system returns to the point at which it
entered the last ERRORSET function. {booleanl> controls
the printing of the error message in response to the error
detected. I1f <{booleanl> is true the error message is
printed; if false, the error message is mnot printed.
{boolean2> controls printing of the backtrace with the
error message. If both <booleanl> and <{boolean2> are true,
the backtrace is also printed. Note that ERRORSET is a
SUBR; therefore the result of evaluating <exp> is passed to

ERRORSET as its first argument. If ERRORSET is to be
passed an expression to be directly evaluated, <{exp> must
be the QUOTEd form of this expression. This case is
particularly important since ERRORSET does mnot cause

recovery from an error produced before it receives the
value of <exp>.

Example: (use of ERRORSET to detect unbound variables)

If the wvariable BETA is bound to the wvariable ALPHA, but
ALPHA has no wvalue, then

(ERRORSET "BETA) = (ALPHA)
(ERRORSET BETA) = NIL
(ERRORSET "ALPHA) = NIL

and (ERRORSET ALPHA) would produce an unbound variable
error message.

{ TRACE <1lat>)
pseudofunction; SUBR

TRACE FLAGs the property list of each of the atoms in the
<lat> with the indicator TRACE. Subsequently, for a
function of type EXPR and SUBR whose name was so flagged,
the actual arguments supplied to that function are printed
every time that function is entered, and the actual ~value
resulting from that function is printed every time the
function is exited. This feature enables the user to get a
complete history of the activity of a selected set of
functions. To be effective, the TRACE indicator must be

—-60—

DEC 75

LLISP Reference Manual

placed on the property list of frunctions after those
§?Ections have been defined. The wvalue of TRACE is always

The format of the printing is as follows:
[<xx>] ARGUMENTS OF <name>

This line is printed each time a traced function is
entered. <name> represents the name of the function. <xx>
is a two—character code which is changed every time a new
"ARGUMENTS OF" message appears and is designed to enable
the user to tell which occurrence of a call on the function
ie being described. The <xx> begins with A and sequences
through Z, etc., up to ;3. Following this 1line, each
argument received by the indicated function is stated on a
separate line. The 1ine

[<xx>] VALUE OF <name>

is printed each time a traced function is exited. <{name>
represents the name of the function which is being exited.
The actual value returned by the function at this point is
printed beginning on the mext line. These two messages
appear in pairs, EFvery function that is entered must
ultimately be exited. The indicator <{xx> is used to mateh
the corresponding function entry and exit lines, since
these lines may be separated by many pages of output if
extensive tracing is used. Although tracing of functions
can be wvery wuseful in the debugging process, the user is
cautioned to be economical in his use of tracing as the
extra printing consumes both time and paper. If too much
tracing is done the user may receive a large amount of
output which has too mich detail.

(UNTRACE <1lat>)

pseudofunction; SUBR

UNTRACE is the inverse of TRACE. It removes the flag TRACE
from the property list of each atom in the <lat> . Any of
those atoms which are function names will subsequently mnot
be traced when applied as a function. The wvalue of UNTRACE
is always NIL.

(TRACESET <lat>)

pseundofunction; SUBR

The atoms in the <lat> should be the names of functions
which are composed of a PROG expression. These functions
are marked in such a way that while they are in control,
every execution of a SET or SETQ causes a message to be
printed, showing the value assigned to the variable at that
point in time. The message consists of the variable name
followed by an equal sign followed by the wvalue which was
assigned to that wvariable. This process is useful for
tracing the intermnal operation of functions written using
PROG expressions. If any atom in <lat> is not the mname of
a function with a top—level PROG, then that atom is not
processed. An error message is generated after the entire
{lat> is processed. The wvalue of TRACESET is its unchanged
argument. SET and SETQ tracing continues downward through

-61-

LISP Reference Manual DEC 75

all called functions until another PROG expression which is
not TRACESET is emntered.

(UNTRACESET < 1lat>)

(LOOK

4.12

pseudofunction; SUBR

UNTRACESET 1is the reverse of TRACESET. The atoms in the
{lat> should be the names of functions composed of PROG
expressions. UNTRACESET removes the marks set by the
TRACESET function so that subsequent execution of those
functions will no longer cause the printing produced by the
TRACESET. By the wvalue of UNTRACESET is its unchanged

argument.

{fixnumber>)
normal; SUBR

{fixnumber> is treated as a machine address. LOOK returns
an octal number whose value is equal to the contents of the
designated loeation. There is no restriction on what
address may be looked at except that it must be within the
bounds determined by the current field length.

MISCELLANEQUS FUNCTIONS

These functions provide the user with various capabilities for
affecting or gaining information about the system cperation.

(TEMPUS)

CTMD

(DATE)

pseudofunction; SUBR

This function of mno arguments returns an integer wvalue
which is the TM time in milliseconds since the LISP run was
begun. TEMPUS is initialized to =zero whenever a new
control command c¢all to LISP is entered. TEMPUS is not
reinitialized by the use of overlays.

pseudofunction; SUBR

TM returns an integer equal to the number of milliseconds
of TM time the Job has used so far. TM time differs from
TEMPUS time in that TM time includes all work dome by the
user during the current batch Job or since logging in,
regardless of whether this time was spent running LISP. TM
time thus reflects the operating system’s view of the
user’'s computer use, rather than LISP’s view.

pseudofunction; SUBR
DATE re turns a special literal atom containing 10

characters of display code formed (left to right) from: a
blank, the first two digits of the current date, a second

—-62—

DEC 75

(TIME)

LISP Reference Manual

blank, the first three letters of the current month, a
third blank, and the last two digits of the current year
(e.g., an atom equivalent to $8/ 04 JUL 76/ for the date
July 4, 1976).

pseudofunction; SUBR

TIME returns the current time of day as a special literal
atom of 10 characters, composed from left +to right as

fotlows: a blank, two digits representing the current hour
(24 hour basis), a period, two digits representing the
number of minutes after the hour, a second period, two

digits representing the number of seconds after the minute,
and a final period (e.g., 2:31 PM would be equivalent to

88/ 14.31.00./).

(DEADSTART)

pseudofunction; SUBR

DEADSTART returns an integer equal to the number of
milliseconds elapsed since the last machine deadstart.

(TMLEFT)

pseudofunction; SUBR

TMLEFT re turns an integer equnal to the number of
milliseconds left for the current Jjob. TMLEFT is useful
only to batch programs; it returns 0 whenever called from
an interactive program.

(SECTORS)

(PP)

cP)

pseudofunction; SUBR

SECTORS returns au integer equal to the number of disk
sector transfers performed by the curreunt Job.

pseudofunction: SUBR

PP returns an integer equal to the number of PP seconds
used by the current Job. This value is determined by the
operating system and is not specifically related to LISP
use of PP time.

pseudofunction; SUBR

CP returns an integer equal to the cumulative number of
milliseconds of CP time used by this Job. CP is determined
by the operating system and is not initialized to zero at
the beginning of the LISP run.

—-63—

LISP Reference Manual DEC 75

(RECLAIM

(FULL)

(FREE)

pseudofunction; SUBR

This function of no arguments causes a garbage collection
to occur whether it is needed or not. The value of RECLAIM
is always NIL. If the Garbage Collector Message Control
(7/GC) is in effeect (see sections 4.14 and 2.1), then a
line is printed showing the number of words collected by
the garbage collector.

pseudofunction; SUBR

This function of mo arguments returns an integer result
which is the number of full words currently avialable.
This function consumes one full word and one free word each
time it is called.

pseudofunction; SUBR

This function of no arguments returns an integer wvalue
which is the number of free words currently available.
This function consumes one free word and one full-word each
time it is called.

(REMOB <litatom> <boolean>)

(ADDR

pseudofunction; SUBR

This function removes its argument <litatom> from the
oblist provided (1) <litatom> is not a special LISP system
atom, or (2) {boolean> is true and <Klitatom is mnot
internally referenced by the LISP system. The net effect
is that if the atom is mot a member of any other list
struc ture in memorvy, then the words comprising that atom
will be collected during the next garbage collection.
Fur thermore, if subsequently an atom with the same name is
read, an entirely new atom will be created and the old one
will mnot be assumed. The value of REMOB is <litatom> if
the <litatom> was removed from the oblist, or NIL
otherwise.

{s>)

pseudofunction; SUBR

This function returns as its value an octal number which is
a representation of the address of <s>. ADDR enables one

to determine the actual machine address of any given S~
expression.

—64—

DEC 75

LISP Reference Manual

(ADDRP <{s>)

predicate; SUBR

ADDRP returns <s> if <{s> is actually an address outside of
the free space and full-word space memory areas. This
counld be the case if (s> points into the LISP interpreter,
the push—down stack, or binary program space. If <g> is an
address within free space or full-word space, ADDRP returns
false. Thus, ADDRP returns false if <s> is an -
expression.

(CENSYM < letter>)

pseudofunction; FSUBR

GENSYM creates an entirely mew literal atom each time it is
called. The 1literal atom has ' a name of the form <xnnnnn’>
where <{x> is a single letter and <nnnnn> is an integer.
The letter wused to compose the name is the argument of
GENSYM. Each time GENSYM is executed with an argument
{letter>, it returns the next atom in the sequence for that
letter. If GENSYM is executed with no argument, the atom
generated is the mext in the sequence started by the last
execution of GENSYM with a <letter> argument. FEach atom in
the sequence differs from the previous one by having the
integer part of the name incremented by one. If no
argument is ever specified for GENSYM the letter G is used.
The atoms created by GENSYM are not placed on the oblist.
Therefore, if anm atom with the same name is subsequently
read, it will not correspond to the atom created by GENSYM.
sers mnust therefore save the names of all GENSYM created
atoms in order to reference them. These names can be saved
easily by binding some wvariable to the wvalue returned by
GENSYM, or by keeping such values in a list or accessible
via known property list indicators.

Examples: (assuming the calls are made in the order given
below)
(GENSYM) = G00601 (first call)

(GENSYM T) = T060001
(GENSYM) = T00602
(GENSYM G) = G00002

(ALIST)

pseudofunction; SUBR

This function of no arguments creates an association list
which shows all wvariable bindings at the time the function-
is called. The function proceeds by scanning the oblist
and creating z dotted pair for every atom which currently
has a binding. Each pair consists of the atom dotted with
its binding. Thus a call on this function returns a dotted
pair list reflecting the current evaluation.environment of
the LISP system.

-65—

LISP Reference Manual DEC 75

(BACKTRACE)
pseudofunction; SUBR

This function of mno arguments returns a list of the current
indicators on the system stack. See sections 8.2 and 8.4
for a description of these items.

4.13 ARRAYS

Although the primary data structure of LISP is the linked
list, an array structure is useful in many problems. UT LISP
provides a primitive array capability. Array storage is
allocated in Dbinary program space (see section 8.3.1) with two
array elements per word. FEach array element can be a pointer to
an arbitrary S-expression and is preserved during garbage
collection. Memory allocated to an array cannot be reused by
LISP for other purposes.

(MKARRAY <litatom> <list>)
where <list> has as its value an expression of the form
({fixnumber1> <fixnumber2> ... <(fixnumberlnld>)
pseundofunction; SUBR

MKARBRAY defines and allocates an n-dimensional array whose -
"name" is {litatom>. Each {fixnumberlkl> is a dimension of

the array such that elements of the array are indexed in

the [kKlth dimension by values of 0 through

({fixnumberl[kl> - 1). A pointer to the array space is

placed on the property list of {litatom> with the indicator

ARRAY. Each array element is initialized to NIL. The

value of MKARRAY is NIL. The total number of elements in

the array is the arithmetic product of all the

{fixnumbertkl> for k=1,n.

(SETEL <litatom> <list> <{s>)
where <{list> has as its value an expression of the form
(<fixpumberl1> <fixnumber2> ... <fixnumberinld>)
pseudofunction; SUBR

If the <litatom> has anm ARRAY property, SETEL stores the S-
expression {s> into the element indexed by the 1list of
subscripts in the second argument. Fach subscript may
range from €@ to (ilkl - 1), where ilk] is the wvalue of the
fklth dimension used in the call to MKARRAY which allocated
the array. If fewer subscripts are used than are def ined
by the dimensionality of the array, the effect is as though
they were omitted from the right and values of ©® are used
in their places. For example, if A is a two—dimensional
array, (SETEL "A "(1) NIL) is equivalent to (SETEL "A "(1
@) NIL). The value of SETEL is <{s>, the third argument.
In the interest of speed of access no validity checking is
performed on the subscript list.

66

DEC 75 LISP Reference Manual

(GETEL <litatom> <list>)

where ¢list> has as its value an expression of the form
(<{fixnumberl> <fixnumber2> ... <fixnumberinl)>)
pseudofunction; SUBR

If <litatom> has an ARRAY property, CGETEL returns the wvalue
stored in the element indexed by the list of subscripts in
the second argument. All conventions regarding treatment
of subscripts are the same as defined for SETEL above.

(CLARRAY <litatom>)
pseudofunction; SUBR

If <litatom»> has an ARRAY property, CLARRBAY resets all
elements of the array (regardless of dimensions) to NIL.
The value of CLARRAY is always NIL. If <litatom> does not
hawve an ARRAY property, an illegal argument error results.

4.14 SYSTEM CONTROL

It is often desirable to be able to change certain aspects of
LISP’s behavior while a Job is running, particunlarly those set by
control command parameters. In UT LISP these controls are
effected by means of a set of system—defined variables and user~
callable functions. The function LISTING effects control of the
L, P, and N control command parameters. The wvariables //EXPERT,
//FATAL, ~-/GC, //TIMING and //ZAP control the E, F, G, T, and Z
parame ters, respectively. Several other variables of the system
may also be set or interrogated by user programs at any time.
Users are hereby warmed to avoid using the names of these
variables within their own functions except for the purposes
described.

The descriptions of the LISTING function and these system
variables are given below.

(LISTING <s>)
pseudofunction; SUBR

" This function simulates the L, P, and N parameters of the

LISP control command. If the argument is the atom P, then
subsequent top-level expressions or doublets are listed
with parenthesis counting. If the argument is the atom L,

then subsequent top—level expressions or doublets are
listed without a paremnthesis count. If the argument is
the atom N, then only user-originated output and error
messages appear on SYSOUT. If the argument is anything
else, then subsequent top—-level expressions or doublets

are printed by LISP, but not in source image form. The
value of LISTING is its argument. LISTING with an
argument of P has no effect if SYSIN and SYSOUT are the
same file, e.g., when LISP is used interactiwvely.

67

LISP Reference Manual ’ DEC 75

//7MODE - toplevel function
Value: ({functiom> . {fixnumber>)
Pefault value: (EVAL . 1)

{function> 1is the function which is evaluated at each step
of the main looep of LISP. <fixnumber> is the number of
arguments expected by that function. The <fixnumber> is
used to control the main loop input mechanism so that the
correct number of S-expressions are read from SYSIN before

evaluating <{function> with these arguments. If one of the
S-expressions read is the atom STOP, the main loop ignores
any others already read and starts over. If the first S-

expression is the atom FIN or if the end-of-file on SYSIN
is read, the main loop terminates. When the LISP system is
first called by control command, //MODE is initialized to
(EVAL . D). If //7MODE is set to some value of incorrect
format, LISP prints an appropriate error message. In batch
mode this error aborts the program.

//INPUT - interpreter input function
Value: <expression’

Default value: (INPUT (QUOTE SYSIN))

{expression> should be some LISP expression which when
evaluated reads information from SYSIN and returns an S+

expression corresponding to the information read.
{expression> is evaluated as many times as given by (CDR
//7MODE) at each step of the main loop. If <expression>

returns the atom STOP, FIN, or SEOFS, the main loop
interprets those atoms as described under //MODE above.

//70UTPUTA - interpreter echo output function
Value: < function>

Default value:

(LAMBDA (=====/////)
(OR (AND (NOT (ATOM =====/////))
(EQ (CAR =====/////) (QUOTE DEFINE)))
(QUTPUT ~//SYSOUT =====/////7 NIL)))
The <function> must be a function of one argument. This

function is used to print each of the S—-expressions read by
the interpreter input function when the listing control
parame ters specify printing.
/70UTPUTB - interpreter result output function
Value: <functiond
Default value:
(LAMBDA (=====/////) (OUTPUT //SYSOUT =====/////))
The <{function> must be a function of one argument. This

function is wused to print the result of each top-level
evaluation.

68

DEC 75 LISP Reference Manual

//PLEVEL - print level control
Value: < fixnumber>
Default value: 65536 (i.e., 2%%16)

{fixnumber> defines the number of 1levels of parenthesis
nesting which is oprinted by the system output routines.

Information deeper in the structure is not printed, but is
represented by *% in the output. Variation of the print
level can be very useful for cases in which the structure
of a list is desired, but its detailed contents may be
uninteresting.

Examples:

For //PLEVEL = 0,

S-expression Printed Representation
ATOM E3 S
X $esk
(A B QO #k
(COND ((NULL X Y)) E3 S
For ~/PLEVEL = 1,
S—expression Printed Representation
ATOM ATOM
(X) (K3K)
(A B O sk skl keR)
(COND ((NULL 3 Y)) (k% kck)

For ~/PLEVEL = 2,

S—-expression Printed Representation
ATOM ATOM
(X (X0
(A B Q) (A B Q)
(COND ((NULL X> 7)) (COND (k% k%))

Z//PLIMIT - list length print control
Value: <fixnumber>
Default value: 65536 (i.e., 2%%16)

{fixnumber> defines the number of elements of a list which
will be printed by the system output routines. if //PLIMIT

has wvalue <n>, the first <n> elements of each list are
printed and if there are more than <n>, an ellipsis "..."
will be printed to indicate their ab%ence This control is

useful when it is desired to reduce debugging output.

69

LISP Reference Manual DEC 75

Examples:

For //PLIMIT = @,

S-expression Printed Representation
aTOM atom
(A B Q) ()

For //PLIMIT = 1,

S-expression Printed Representation
(ABO® Ao T
For //PLIMIT = 2,

S—expreésion Printed Representation
((ABOXYZ PD Q) (AB . O(XY ...) .0

//TPLEVEL - trace print level control
7//TPLIMIT — trace list length print control

Value: <fixnumber>
Default value: 4
These controls function in the same way as //PLEVEL and //PLIMIT,

respeectively, but are effective only when trace information is
being printed.

//PCSR - CSR field print control

Value: <boolean>

Default value: NIL

When //PCSR is true, the system output routines print the
contents of the CSR fields of nonm—atomic S—expressions. If the
CSR field of a word contains an S-expression, it is printed
between % characters, and immediately preceding the contents of

the CAR field of that word.
Example:

Structure

—————— 1t —— — 370 ot o7 o — — (oo o Tt — ——— s o s o T T S e s S o o e S

——————— i g o 1t o s G st o — ———— o —— —— L D | U UNY Sy,

(%ZX% A %Y% B %Z7% C)

70—

DEC 75 LISP Reference Manual

//TIMING - timing message control
Value: <boolean>
Default value: NIL
When //TIMING is true, the message
*TIME: <number>

Is printed after each top-level evaluation.

{number> is

the mnumber of elapsed milliseconds for that evaluation.
//TIMING is set true when the T parameter appears on the

LISP control command.

//8AVING - result saving control
Value: <boolean>

Default value: NIL

When //SAVING is true, LISP automatically binds the result
of each top—level evaluation to the atom PREVIOUS. This
allows the result to be used conveniently in the subsequent

evaluation.

//7G6C — garbage collector message control
Value: <boolean>

Default value: NIL

When //GC is true, each time a garbage collection occurs a

message is printed:

/7777 GARBAGE COLLECTED: <nl1> <n2’>

{nl> is the number of free—-space words recovered and <n2>
is the number of full words recovered. //GC is set true
when the G parameter appears on the LISP control command.

//ZAP - error interrupt control
Vélue{ {boolean> or <fixnumber>
Default value: NIL
If ~/ZAP is non—NIL, then an interrupt

is simulated

whenever an error occurs (see chapter 9 for a discussion of

interrupts). If the value of //ZAP is a <{fixmnumber> in the
range 1 to 12, the corresponding interrupt function is
used. If 7//ZAP is non—NIL but not a <fixnumber>, interrupt

1 is simulated. When //ZAP has a non—NIL value the system
performs as though the user had specified the 7Z control
command parameter upon calling LISP (see section 2.1). The

//7ZAP variable has no effect unless SYSIN and
the same file, e.g., in conversational mode.

-71-

SYSOUT are

LISP Reference Manual DEC 75

//EXPERT - expert mode control
Value: <boolean>
Default value: NIL
//EXPERT allows the user to change the expert mode control
parameter from inside LISP (see section 2.1). Setting
7/ /EXPERT to true allows primitive operations to be
performed on atoms and is equivalent to specifying the E
parameter on the LISP control command. Setting //EXPERT to
false disables expert mode.

//FATAL - error fatality control
Value: <boolean>

Defanlt value: NIL

Setting //FATAL to true causes any subsequent error in the
user’s program to terminate execution. Setting the //FATAL
variable to true achieves the same result as specifving the
F parameter on the LISP control command (see section 2.1).
If //FATAL is set to false, mnormal error recovery
procedures will be in effect.

//SYSIN - system input file control

See function SYSIN (section 5.1.1)

//SYSOUT - system output file control
See function SYSOUT (section 5.1.1)

//CODEMIN - minimum in-core code control

//CODEMAX - maximum in-core code control

See function DISKOUT (section 7.6)

72—

DEC 75 LISP Reference Manual

The LISTING function and system wvariables described above
actually effect control of UT LISP. That is, a call to LISTING

or resetting some wvariable’s value has an immediate effect on the

operation of LISP. Below are described several system wvariables
which can be used to gain information about UT LISP. Their
values are useful, but changing them does mnot affect the

operation of LISP.

Variable Value

//RDS name of currentlv-selected read file
//WRS name of currently-selected write file
/7/FL current field length

~/GFR number of free—space words recovered in

last garbage collection

77/7GFU number of full words recovered in last
garbage collection

7//NFR number of garbage collections which have
occured due to free—space exhaustion

//NFU number of garbage collections which have
occurred due to full-word space
exhaustion

//FRS number of words in free space

//FUS number of words in full-word space

//8TS number of words allocated to the stack

-73—

LISP Reference Manual DEC 75

5. INPUT/OUTPUT

LISP provides an extensive set of functions which give the
user facilities for input and output of LISP S-expressions and
general data on any disk or tape file within the operating
sys tem. With these functions the wuser can perform rather
complicated file manipulation operations. Funetions are
described in this chapter using the same notation as in chapter

5.1 FILES

All input/output in the operating system is done wvia files of
information. LISP regards a file as a contiguous string of lines
terminating with an end-of-file and having a position pointer.
Although the operating system can structure files into logical
records, LISP completely ignores this structure; thus ends-of-
records are invisible to the LISP input/output system. Files are
named and their names are represented within LISP by litera
atoms whose print representations are character strings obeying
the usual file-name syntax of the operating system; i.e., one to
seven letters or digits, beginning with a letter. Within the
operating system, certain file names are specially designated to

have particular sources or destinations. Usage of these files
within LISP conforms to these system designations. These files
are:

File Name Normal Source/Destimnation

INPUT Cards from card reader

OUTPUT Line printer

PUNCH 80-column Hollerith punched cards

PUNCHB Co lumn binary punched cards

All data read or written by LISP input/ontput functions is in
the form of display coded line images obeying the wusual system
conventions. The input routines assume line images of 72 columns
or fewer. If a line being read is longer than 72 columns, all
information beyond columm 72 is ignored by the LISP system.
Under program control, the line length allowed for output lines
is changeable.

The operating system defines an attempt to read a file
immediately after writing on that file to be an error. LISP
keeps a record of the last type of operation performed on a file
and always performs =a rewind operation any time a read is
requested when the last operation was a write. Thus the user can
write information on a file and immediately read that file from
its beginning.

‘5.1.1 Standard System Input/Output Files

At anv time, several files may be known and usable by LISP.
Two of these files are designated as the standard system
input/output files. The standard input file is the one from
which the LISP main interpreter loop reads the program
expressions or doublets. The standard output file is the one on
which the LISP main interpreter loop writes the results of
expression or doublet evaluations and also all error messages.

-7 4—

DEC 75 LISP Reference Manual

These standard input and output files are known by the
pseudonyms SYSIN and SYSOUT, respectively. SYSIN and SYSOUT are
each equivalenced to some other file which is the file actually
read or written. This equivalencing is under program control.
No matter what files are being wused for the standard system

input/output, they may be referenced by the names SYSIN and
SYSOUT.

If not otherwise specified, SYSIN is initially equivalenced to
INPUT and SYSOUT is initially equivalenced to OUTPUT. The input
file control and output file control parameters on the LISP
control command can be used to initialize SYSIN and SYSOUT to
other file names. The conversational mode LISP control command
parameter, C, equivalences both SYSIN and SYSOQOUT to file TTY.

SYSIN and SYSOUT can be equivalenced to other files by means
of the SYSIN and SYSOUT functions described below.

(SYSIN <filename> {character>)
pseudofunction; SUBR

SYSIN makes {filename> the new standard input file and
enters the main loop of LISP. The next expression will be
read from <filename>. The SYSIN function makes a stack of
filenames given in successive calls to SYSIN, so that when
the end of the new SYSIN file is read, the stack is popped
and the SYSIN file reverts to the last previous wvalue.
Thus the SYSIN function may be used to initiate the input
of a chain of files, with the SYSIN file eventually
returning to its first definition. (Note: Such a chain
mist mnot require opening more than six files altogether.
See section 5.2.) The second argument of SYSIN provides
listing control for the new SYSIN file. If the <{character>
is L, P, or N, the new SYSIN file will be listed or not as
though the L, P, or N parameters appeared on the LISP
control command (see section 2.1). 1If the <{character> is
S, the listing controls in effect at the time SYSIN is
called will be in effect for the new SYSIN file. If the
{character> is anything else, all listing control flags are
cleared. SYSIN binds the atom <filename> to the LISP
variable //SYSIN. SYSIN returns *¥T¥ as its wvalue.

{SYSOUT <filename>)
pseudofunction; SUBR
SYSOUT makes <filename> the new standard output file. It
takes effect immediately, and the value of SYSOUT will be
written on {filename>. The function SYSOUT returns as its
value the name of the old SYSOUT-equivalenced file. SYSOUT
binds the atom {filename> to the LISP wvariable //SYSOUT.
5.1.2 8Selected Read and Write Files

At all times, one file is designated the selected read file

and omne the selected write file. In general, those LISP
functions which read information read from the current selected
read file, and those functions which write information write on

the selected write file.

-75-

LISP Reference Manual DEC 75

Initially, the selected read and write files are the same as
SYSIN and SYSOUT, respectively. Execution of functions SYSIN
and/or SYSOUT has mo effect on the selected read and write files,

however. These files may be changed by functious RDS and WRS as
described below.

(RDS <{filename>)
pseundofunction; SUBR ,
RDS makes <filename> the new selected read file. It

returns the previous selected read file name as its wvalue.
BRDS binds the atom <filename> to the LISP wvariable //RDS.

{WRS {filename>)
pseudofunction; SUBR

WRS makes <filename> the new selected write file. It
returns the previous selected write file as its value. WRS
binds the atom <filename> to the LISP wvariable //WRS.

5.1.3 User Access to Selected Files

The user may at any time determine which files are currently
selected by evaluating the system variables //SYSIN, //SYSOUT,
//RDS, //WRBS. These wvariables are always bound to the filenames
currently selected (also see section 4.14).

Variable Default Value

/7SYSIN SYSIN filename currently selected as SYSIN
//8SYSOUT SYSOUT filename currently selected as SYSQUT
7/ /RDS SYSIN currently selected read file

/7 WRS SYSOUT currently selected write file

5.2 FILE AND BUFFER ASSOCIATIONS

There must be 2a buffer area associated with each file
currently in use by LISP. The standard LISP system reserves six
file buffer areas to accommodate up to six active files at omne
time. It is not possible for the user to access more than six
files at any given time. Under program control, however, the
file buffers may be detached from files and attached te¢ other
files so that a total of more than six files may in fact be wused
during the course of a run.

The act of associating a buffer with a file and defining
certain characteristics of the file is called "opening" the file.

Unless stated otherwise, all functions described in other
sections of this chapter "open" the files they manipulate using
default wvalues for the file characteristics. If the user wishes
to explicitly "open" a file or define its characteristics, the

function GPEN is used.

..76.

DEC 7?5

(OPEN

LISP Reference Manual

{filename> <list>)

where <list> has as its value an expression of the form
((Kel> . Lv1>) (Ke2d . <v2>) ... (Kelnl> . <vInl>))

pseudofunction; SUBR

OPEN finds an available buffer and associates it with

{filename>. OPEN returns <filename> as its value. The
second argument of OPEN is a list of file characteristics
to be set. They are chosen from among the following:

ECHO LENGTH SCR

ECHOP MARGIN RANDOM

Descriptions of these file characteristics are given below:

ECHO
Value: NIL or non-NIL
Default value: NIL
If value is non—-NIL, then each 1line

(o]
echoed on SYSOUT as the file is read. N
echo-printing.

f the file is
IL turns off the

ECHOP
Value: NIL or non—-NIL
Default value: NIL
If ~wvalue is non-NIlL, each line of the file is echoed on

SYSOUT as the file is read, and a parenthesis count is
also printed for each line. NIL turns off this option.

LENGTH
Value: <{fixnumber>
Default value: 70 (interactive) or 132 (batch)

The maximum ountput line length for this file is
{fixnumber> characters. {fixnumber> should be less than
136.

MARGIN

Value: < fixnumber>

Default value: & (interactive) or 1 (batch)

Each line output to this file will have <fixnumber>
blank characters appended to the left. Since the blanks

occupy the leftmost <fixnumber> positions of the line,
only LENGTH -~ MARGIN characters can b« output on a line.

-7~

LISP Reference Manual DEC 75

SCR

Value: NIL or non-NIL
Default value: NIL

Defines <{filename> as scratch mode if the value is non-
NIL. Scratch-mode files are never written to disk so
long as the information written on them does not exceed
the capacity of the buffer. Scratch mode is cancelled
if the buffer overflows or if the function ENDFILE is
executed. For short files which do mnot need to be
preserved at the end of a run, scratch mode
significantly speeds access.

RANDOM
Value: NIL or non—-NIL
Default value: NIL

If the wvalue is non—-NIL, the file is defined to be
accessible by the random—access [/C functions described
in section 5.6. //RDS, //WRS, //SSYSIN, and //SYSOUT
may not be RANDOM.

Any characteristics not otherwise specified when th
file is first opened (either by calling OPEN or by calling
some 170 function) are set to the defaunlt wvalue. Once a
characteristic is defined, it can be changed only by
explicitly specifying the change in a subsequent <call to
OPEN. Any number of calls may be made to OPEN to change a
file’s characteristics dynamically.

For example:
(OPEN "ATOM "((SCR . T)))

makes the file ATOM a scratch-mode file. Later execution

of
(QOPEN "ATOM)

does not cancel the scratch mode. To cancel scratch mede,
it is necessary to execute

(OPEN "ATOM "((SCR . NIL)))
(CLOSE <filename>) '
pseudofunction; SUBR

CLOSE dissociates the specified file from its buffer.
{filename> 1is returmed by CLOSE as its wvalue. After the
buffer has been dissociated from its file, it is awvailable
for re—use for some other file. If the file being "closed"
was last wused for output purposes, an end—-of-file mark is
written on the file. Any "closed" file still exists on the
disk and may be "opened" again later. //SYSIN and //SYSOUT
may not be closed.

The user may determine what files are "open" at any time by
executing function OPENFILES.

78.

DEC 75 LISP Reference Manual

(OPENFILES)
pseudofunction; SUBR

OPENFILES returns a list with one element for each file

presently "open" to LISP. Each element is itself a list of
the form:

({filename> ((Lcl1> . <¥13)(Kec2> . <¥2>) ... (clnl . vI[nld)»)

where each of the (Kclil> . <¥[il>) ©pairs indicates the
current value of one of the characteristics of a
{filename>.

5.3 OUTPUT OF S-EXPRESSIONS

The functions PRINT, WRITE, PRIN1, and TERPRI are used to
output LISP S-expressions on the current selected write file.
Function OUTPUT can be used to output an S-expression to an
arbitrary file. The S—-expression is 'writfen on as many lines as
are required, governed by the margin and line length of the file
being written. Formatting of numeric atoms is completely
antomatic, but may be controlled to some extent by use of the
function NFORMAT (see section 5.8). If the output functions are
given something to write which is not an S—-expression, they print
in its place:

#{ nnnnnn>
where <{nnnnnn> is the octal value of the actual pointer received
by the output function.
(PRINT <s> <boolean’>)
(WRITE <s> <boolean>)
pseudofunction; SUBR
The wvalue of PRINT is <{s>. PRINT writes the S-expression

<{s> on the current selected write file. Writing commences
on the current line of that file and extends over as many

lines as necessary. PRINT always terminates the line so
that the next S—-expression written on the file will begin
on a new line. If <boolean> is false, the S—expression is

printed using the print names of its component atoms. If
{boolean> is true, any atoms with nonstandard print names
are written with the appropriate delimiters inserted so
that the atoms may subsequently be read by the LISP input
functions. WRITE is a synonym for PRINT.

(PRIN1 <s> <boolean>)
pseudofunction; SUBR
PRIN1 behaves exactly as PRINT, except that it does mnot
terminate the 1line after writing the S—-expression.

Successive calls on PRINI cause several S-expressiouns to
(possibly) be printed on the same line.

_79...

LISP Reference Manual DEC 75

{PPRINT <{s> <{booleand)
pseudofunction; SUBR

PPRINT "pretty-prints" the S—expression <s> on the current
selected write file. The wvalue of PPRINT is <s>. If
{boolean> is true, any atoms with nonstandard print names
are written with the appropriate delimiters inserted so
that the atoms may subsequently be read by the LISP input
functions. PPRINT operates exactly as PRINT, except that
the output is neatly formatted for easy readability by the
use of appropriate indenting for nested sub-expressions and
special conventions for the printing of LAMBDA, COND and
PROG expressions. PPRINT cannot print non—-S-expressions.

Example:

(PPRINT //0UTPUTA T) would print:

(%ég?DA (====2=/////)
(AND (NOT (ATOM =====/////))
(EQ (CAR =====/////) "DEFINE))
(OUTPUT //8YSOUT =====/////)))
(TERPRI)

pseundofunction; SUBR

The wvalue of TERPRI is NIL. TERPRI terminates the current
line on the current selected write file, so that the next

S-expression written on the file will begin a new line. A
call on PRIN1 followed by a call on TERPRI is equivalent to
a call on PRINT. If mnothing has been written on the

current line, the effect of TERPRI is to skip a blank line.

(OUTPUT <filename> <{s> <booleand>)
pseudofunction; SUBR

The wvalue of OUTPUT is <{(s>. OQUTPUT writes <s> on file
{filename’. With respect to that file, the action of
OUTPUT is the same as PRINT. OUTPUT does mnot change the
selected write file. The definition of OUTPUT is
equivalent to:

(OUTPUT < filename> <s> <booleand) =
(PROG(A) (SETQ A (WRS <filename>))
(PRINT <s> <boolean>)(WRS A)(RETURN <&>))

(OUTPUTI <filename> <s> <boolean>)
pseudofunction; SUBR
QUTPUT! behaves exactly as OQUTPUT, except that it does mot
terminate the line after writing the S-expression.

Successive calls on OUTPUT1 cause several S-expressions to
(possibly) be printed on the same line.

-80-

DEC 75 LISP Reference Manual

(TTYCOPY <filename>)
pseudofunction; SUBR

ITYCOPY allows the interactive CRT user to have a copy of
all subsequent terminal interaction written to <filename).
This is especially wuseful if one has a conversational
program and desires to selectively save samples of its

output for later use. A call to TTYCOPY with any legal
filename as an argument turns on the dual output mode such
that all terminal interaction is also printed on
{filename>. TTYCOPY may be turmned off by calling (TTYCOPY
NIL). Turning off the duwal output mode also performs a

CLOSE of <{filename> (see section 5.2).

5.4 INPUT OF S-EXPRESSIONS

The functions READ and INPUT are used to read LISP S-
expressions from files. Each call of one of these functions
reads the next available complete S-“expression on that file,
consuming as many lines of the file as necessary. When the
complete S—expression has been read, the file is left positioned
so that the next READ request will continue scanning the line on
which the previous S—-expression ended. Thus there may be more
than one S—expression on a line. No more than 72 columns of each
line are scanmned.

(READ)
pseudofunction; SUBR

READ reads the next S-expression from the current selected

read file and returns that S-expression as its value. If
there is mno next S—expression on the file, the atom EOF
is returned as the value of READ. If the end-of-file is

detected while READ ing a list, an "unmatched left
parenthesis" error occurs.

(INPUT <filename>)
pseudofunction; SUBR

INPUT operates in the same manner as READ except it reads
from file <filename>. INPUT does not change the selected
read file. The definition of INPUT is equivalent to:

(INPUT <filename>) =
{(PROG (A X)) (SETQ A RDS <filename>))
(SETQ X (READ)) (RDS A) (RETURN X))

5.5 INPUT OF NON-S-EXPRESSIONS

It is often necessary to read information which is mnot in the
form of S-expressions. LISP provides very primitive facilities
for reading such data one character at a time. It is up to the
user to employ the ~wvarious character—-manipulating functions
described in section 4.10 to reform the data into meaningful
objects. A character which is read by these functions is
returned as the literal atom which has that single character as
its print image. Users should carefully note that digits (0, 1,
2, ..., 9) read as characters are returned as Iliteral atoms

N

81

LISP Reference Manual DEC 75

(equivalent to $$3%08, $$818,..., 888%9, respectively) and are
consequently not equivalent to the single—~digit numbers. The
function NUMOB must be wused if it is desired to utilize the
numeric values of numbers read as characters.

Users should also note that line images as stored on files by
the operating system are variable in length. The operating
system truncates all lines by removing trailing blanks, leaving
an even number of characters followed by an end-of-iine marker.
LISP considers the end-of-line to occur at column 73 or when the
end-of-1ine marker is encountered, whichever occurs first.
Therefore users should not use column counts to determine when
lines are terminated.

(READCH <boolean>)
(ADVANCE <boolean>)
pseudofunction; SUBR
READCH (ADVANCE is a synonym) returns the mext character

from the current selected read file if its argument is NIL;
with each such call the input position is advanced one

co tumn. If the argument of BEADCH is non-NIL, the input
position is backed up two columns before reading, to allow
the previous character to be read again. This backing—up

function of READCH cannot go bevond the beginning of the
current line and any attempt to do so causes the atom SEORS$
to be returned as the value of READCH. @$EORS$ is also
returned by READCH when it detects the end-of-line. If the
end—-of—-line is reached, the next call on READCH
automatically sequences the input position to the beginning
of the next line and the first character on that line is
returned by READCH. The atom 8EOF$ is returmned by READCH
if it advances the input position beyvond the last line of

the file.

Example:

Given the input line,
ABCD

then, in sedquence,

(READCH NIL)
(READCH NIL)
(READCH NIL)

(READCH NIL) = A
(READCH NIL) = B
(READCH NIL) = C
(READCH T) = B
(READCH T) = %

= C

=D

({ STARTREAD)
pseudofunction; SUBR

STARTREAD moves the input position to the beginning of the
next line of the current selected read file whether or mnot
the current line has been entirely scanned. The value of
STARTREAD is the first character on the new line.
Subsequent calls on READCH will continue scanning the mnew
line. Contrary to some LISP implementations, UT LISP does

-82-

DEC 75 LISP Reference Manual

not require STARTREAD to be called bhefore the first call on
READCH. STARTREAD returns the atom $FEOF% if there is no
next line on the file.

(TEREAD)
(ENDREAD)

pseudofunction; SUBR

TEREAD (ENDREAD is a synonym) immediately advances the

input position to the end-of-1line of the current 1line of

the current selected read file. The value of TEREAD is

always the atom S8EOR$. After a call orn TEREAD, the next

?all on READCH will read the first cheracter on the next
ine.

5.6 RANDOM ACCESS OF DISK FILES

Ordinarily, LISP I/0 is done in a purely sequential manner.
It is sometimes useful, however, to be able to reference
information stored at known positions on a disk file. UT LISP
provides two functions which allow S-expressions to be referenced
in random sequence from a disk file.

Any file which is going to be used for random access must be

"opened" with the random option specified. Any file so
designated may also be read sequentially using the ordinary LISP
input functionms. Each such read operation commences at the

current position of the file.

Random access operations require the use of a "disk address"
to specify the desired position within the file. The LISP random
access functions use a word address, and regard the file as a
linear sequence of character—-filled words. A file written
sequentially may be referenced randomly by svecifving a word
address.

The addresses employed by these functions are not LISP objects

themselves. A suggested way to handle them is to assign an
‘atomic key to each S—-expression to be randomly written. The
address returned by BANOUT can then be saved on the property list
of the key, for subsequent wuse in a RANIN call. For maximum

efficiency on any given file all RANOUT ocperations should be
performed before any RANIN operations.

(RANOUT <filename> <{s> <booleand)
psendofunction; SUBR

RANOUT positions <filename> to its extreme endpoint and
then if <boolean> is true, no further action occurs. If
<boolean> is false, BRANOUT then performs an (QUTPUT
{filename» <{s> <boolean>) operation. The S—-expression <s>
is written on the file. The value returned by RANOUT is
the address within the file after the positioning
operation. Note that this address is not a LISP number and
is not necessarily a pointer to a wvalid S—expression.

..83.._

LISP Reference Manual DEC 75

(RANIN <{filename> <address> <{boolean>)
pseudofunction; SUBR

The second argument of RANIN is a disk address of the same
form as that returmed by RANOUT (i.e., it is mnot a LISP
number). The file {filename> is positioned to that address
and then, if <boolean> is true, no further action occurs.
If {boolean> is false, RANIN performs an (INPUT <filename>)
operation. The value of RANIN is the S-expression thus
read. A subsequent <call on INPUT or READ for this file
without an intervening RANIN or RANOUT will commence at the

position in the file immediately following the S—-expression
read by RANIN.

(ROUT <filename> <s> <booleand)
pseudofunction; SUBR

ROUT operates in the same way as RANOUT except that ROUT
returns a LISP octal number for the address within the file
of the beginning of the S—expression. The use of ROUT thus
requires more storage (for numbers) than RANOUT, but may be
more convenient for the user.

(RIN <filename> <fixnumber><{boolean>)
pseudofunction; SUBR

RIN operates in the same way as RANIN except that RIN
requires an octal number (as returned by ROUT) as its
second argument.

5.7 INPUT CONTROL FUNCTIONS

UT LISP provides a limited amount of control over the input
process. Functions are provided for skipping input colummns or
for tabbing to a particular column. Also, a function is provided
for changing the lexical significance of individual characters so
that a nonstandard syntax can be emploved.

(ISPACE <number>)
pseudofunction; SUBR

ISPACE positions the input pointer of the current selected
read file forward by <number> columns. ISPACE does not
skip beyond the actual end or before the ‘actual beginning
of the current line. The value of ISPACE is the «column
number of the next column to be read after the skipping has
been done. If the argument to ISPACE is less than or equal
to @ no skipping is done. Thus ISPACE(Q) gives the present
column position on the input line.

(ITAB <number>)
pseudofunction; SUBR

ITAB positions the input pointer of the current selected
read file to the column specified by its argument. If the

-84-

DEC 75 LISP Reference Manual

present column number is greater than or equal to the
argument of ITAB no positioning is dome. The value of ITAB

is the number of the next columm to be read after

positioning has been done. ITAB does not move the
pointer beyond the actual end of the present line.

(CHLEX {character> <fixnumber>)
pseudofunction; SUBR

Each character in the system character set belongs to

the
input

some

lexical class (see section 3.1.1). The lexical class of a
character determines how the character is interpreted by

the input functions, as discussed in chapter 3. In certain
very special cases it may be desirable to change the
lexical class of a particular character. This is done by

the function CHLEX. The first argument must be a si
character literal atom. The second argument mnmust

ngie—
be a

positive integer in the range 1-18, designating the number

of the desired new lexical class of the character. The
change takes effect immediately for the next input
operation. Any character may have its lexical class
changed any number of times. Unpredictable results will be
obtained, however, if non-digit characters are assigned to
the class of digits. The wvalue of CHLEX is the mnumber of
the previous lexical class of the character.
Lexical Class Assignment Codes
Lexical Display
Class Code Members

) 006 end-of-1ine

1 letters except E and Q

2 33-44 digits 0-9

3 any characters not in some other class

4 05 E

5 21 &

6 45 +

7 46 -

8 - 53 $

9 71 % (percent sign or down arrow)

10 65 # (pound svmbol or right arrow)

11 61 [

12 62 1

13 51 (

14 52)

15 57 . (period)

16 55-56 , (blank and comma)

17 60 " (equivalence sign or double—quote)

18 special (no members — see sectionm 3.1.2.8,

item 2)

-85-

LISP Reference Manual DEC 75

5.8 OUTPUT CONTROL FUNCTIONS

UT LISP provides a limited amount of control over the output
process in addition to that previously described. Functions are
pr;;ided for intraline spacing and for formatting floating point
numbers.

(OSPACE < fixnumber>)
pseudofunction; SUBR

OSPACE issues {fixnumber> blanks to the current line of the
current selected write file, starting at the current column
?osition. OSPACE does not space beyond the defined 1ine
ength of the file. The value of OSPACE is the number of
the output column in which the next output item will begin.
Arguments of OSPACE which are less than or equal to 0 will
not cause spacing to be performed. Thus, OSPACE(8) will
give the current column number as its value.

(OTAB <fixnumber>)
pseudofunction; SUBR

OTAB positions the current selected write file so that the
next item output will begin in column <fixnumber>. OTAB
does not space beyond the defimnmed line length of the file.
Arguments of OTAB which are less than the current colummn
position do not cause spacing to occur. The wvalue of OTAB
is the number of the output columm in which the next item
output will begin. Column numbering begins with 1 in the
columm immediately following any margin of blanks specified
for the file. Thus, the tabbing functions independently of
the margin.

(NFORMAT < fixnumber1> <fixnumber2>)
pseudofunction; SUBR .

The first argument to NFORMAT specifies the number of
digits which are to precede the decimal point when floating
point numbers are subsequently output; the second argument
specifies the number of digits to follow the decimal point.
Both arguments must be integral and their sum cannot exceed

16, - If their sum does exceed 16, the second argument is
reduced if possible. The details of how number formatting
is determined are given in section 3.1.3. Default values

of B and 5 are assumed for the numbers prior to the first

call to NFORMAT. The wvalue of NFORMAT is NIL.
Example:
The number 23.123 is printed as
23. 12360
under the standard format. After (NFORMAT 2 2) is

executed, the number is printed as

23.12

-86—

DEC 75 LISP Reference Manual

5.9 FILE MANIPULATION

The remaining input/output functions of UT LISP are those for
file manipulation. These provide for the usual cases.

{ABOLISH <filename>)
pseudofunction; SUBR

ABOLISH closes the file given as its argument and then
returns the file to the operating system, releasing the
disk space or tape unit assigned to the file. The file can
no longer be referenced. The ~wvalue of ABOLISH is its
argument.

(ENDFILE <filename>)
pseudofunction; SUBR

ENDFILE writes an end—-of-file on <filename>. If the file
was OPENed as a scratch-mode file, ENDFILE cancels the
scratch—-mode and forces the file to be written on disk. If
subsequent writes are made on a disk file, the end-of-~file
is changed to a system end-of-record. The wvalue of ENDFILE
is its argument.

(REWIND <filename>)
pseudofunction; SUBR

REWIND causes the named file +to be repositiomned at its
beginning. If the file is already rewound, it is mnot
disturbed. The wvalue of REWIND is its argument.

5.10 BINARY 1.0

Normally all input and output performed by LISP is done in CDC
6000 series display code. Occasionally a user may wish to read
or write multiplexor (MUX) images consisting of five 12-bit
characters packed per word, or to perform [/0 using binary
vectors. The function LEFTSHIFT provides the capabilty for
manipulating such binary information within LISP. The following
two functions provide capabilities for an interactive program to
perform I/0 operations with such binary information on the file

TTY.

(INBIN)
psendofunction; SUBR

A call to INBIN initiates the reading of binary information
from the terminal. All information read by LISP in this
mode is stored five characters per word, as 12-bit
maltiplexor images. INBIN terminates when the user inputs
a carriage return or other line terminator. The total
number of characters cannot exceed 48. The wvalue of INBIN
is a 1list containing the packed binary words which were
read. These binary words can be printed properly at the
terminal as characters only if the binary output function

OUTBIN is used.

87

LISP Reference Manual DEC 75

(OUTBIN <fwl>)
pseudofunction; SUBR
OUTBIN outputs its argument to the interactive terminal
file TTY as 12-bit multiplexor images. OUTBIN assumes the

<fwl> is composed of binary information, packed in the form
described under INBIN. The wvalue of OUTBIN is its

argument.

Example:

The following sequence initiates a read on the same 1line
on which X is printed at the interactive terminal.

(PRIN1 X) (QOUTBIN NIL) (READ)

—-88-—

DEC 7?5 LISP Reference Manual

6. THE LISP COMPILER/ASSEMELER

The previous chapters have deseribed the structure of UT LISP
and the functions it provides. These facilities are most often
employed by the wuser through interpretive execution of his
functions. The UT LISP interpreter provides easy and effective

use with good error control and diagnostic facilities.
Interpretation rumns slower, however, than the same functions
would execute +when coded directly in machine language. Also in
the interpretive execution mode, the wuser cannot use the

nnderlying machine in ways not defined by the built—in functions
of the LISP system.

The LISP compiler is available to those wusers who wish +to
increase execution speed to as much as 2-7 times that of
interpretive execution. The compiler translates LISP function
definitions into an intermediate form which can bhe assembled into
machine code by the LISP assembler.

The LISP assembler is normally used in conjunction with the
LISP compiler, but it is also available for separate use. The
LISP assembler enables users to write assembly language programs
which make full untilization of the underlying machine.

6.1 ACCESS TO THE LISP COMPILER AND ASSEMBLER

The LISP compiler and assembler are very large programs and
are relatively infrequently wused. For these reasons, they are
not provided as part of the standard LISP system. Ins tead, they
are maintained as LISP subsystems (see appendix B) on the
operating system library. '

Two subsystems are required:

LAP - contains the LISP assembler program and
necessary initialization codec.

1o
-+
1]

LCOMP - contains the LISP compiler and
initialization code.

These programs were themselves written in LISP and then self-
compiled. They are loaded into binary program space in exactly
the same way as user—compiled code.

To obtain the compiler, the following control command is
recommended:

LISP,E,A=80,B=1800,LCOMP,LAP,X=10100B.

with a field length of at least 77000 octal. Other parameters of
the defined parameter set may also be wused if desired. The
values of the A and B parameters are guidelines. The X parameter
indicates the amount of compiled code loaded by LAP and LCOMP.
Loading other compiled code may require increasing the field
length of the Jjob. '

The assembler can be used by itself. To obtain only the
assembler, the following control command is recommended:

LISP,E,A=806,B=1800,LAP,X=-2600B.
with a field length of 74000 octal. The porameters shown on the

89.

LISP Reference Manual DEC 75

control command above are required, and others of the defined
parameter set may also be used if desired.

The control commands given here define minimal configurations
for these prograns. As such, they may be used in either
interactive or batch mode for the compilation/assembly of small
functions (approximately 15 lines of LISP or fewer, depending on
function complexity). The compilation/assembly process is a
heavy wuser of memory, particularly full-word space, and frequent
garbage collection is necessary. Users of the compiler/assembler
should carefully observe the functioning of the system on their
particular programs and adjust the field length and/or allocation
control parameter to improve performance in their individual

cases. Because of restrictions on the maximum field length of
interactive Jobs, not all functions <c¢an be compiled in
interactive mode. Batch use of the compiler/assembler is

therefore recommended for medium or large functions.

The control commands shown above initiate the process of

loading the compiler and/or assembler. This loading process
takes approximately 8 seconds of TM time béfore any processing of
user input takes place. Two messages are printed during the

loading process:
Ckeesk LISP ASSEMBLER — VERSION x.x kdekkek)
Crxek LISP COMPILER - VERSION x.x ki)

These are printed as each subsystem starts loading, and =x.x is
the number of the current wversion. If these two messages fail to
appear, assistance should be sought from a consultant. :

6.2 LCOMP - THE LISP COMPILER

Once loaded, the LISP compiler is activated by executing the
function COMPILE in the form:

- (COMPILE <1lat>)

The atoms given in the <lat> are names of functions which were
defined before the activation of COMPILE. COMPILE expects these
atoms to have lambda-expressions stored on their property lists

with either the EXPR or the FEXPR indicator.

COMPILE transforms each lambda-expression into an intermally
represented assembly—language program, constructed from a set of
macros representing the machine language of an idealized LISP

machine. After this translation, the compiler automatically
activates the assembler, which then expands the macros into
machine language of the CDC 6000 machines. As will be described
later, the wuser has the options of immediately loading the

resulting machine code into memory, saving the machine code on a
file, or simply discarding it (see section 6.3.6).

The result of compilation must be held entirely in memory. It
may be a very large 1list structure, so the compiler must be
provided with at least enough memory to compile the Ilargest
function in the list given to it.

The compiler itself detects mo errors. Any functiom presented

to it will be compiled. The compiler does automatically call the
assembler, however, and compiled code for an illegal function
almost always produces errors detected by the assembler. The
errors are described in section 6.3.7. The value returned by the

...90..

DEC 75 LISP Reference Manwal

function COMPILE is the list of function names given to it as its
argument. If any of the names in the list was not defined as a
function, its entry in the list is replaced by the message:

({name> IS NEITHER FEXPR NOR EXPR)

See section 6.2.2 below for further discussion of the
compiler’s operation.

6.2.1 Output of the Compiler

In addition to the value it returns and the compiled code it
produces, the compiler also produces some printed output for each
function it compiles. The compiler alwavys produces the
following:

(<{name> <number>) ' <{name> is the function name .
{number> is the number of words of
free space occupied by the lambda-—
expression.

(COMPILE-TIME = <t1>) <tl> = time (milliseconds) in
compiler.

(PASS1-TIME = <t2>) <t2> = time (milliseconds) in first
pass of assembler

(LENGTH <number>) {number> = length (in words) of
compiled code

(LAP-TIME = <t3>) (t3> = time (milliseconds) in
assembler

(ORIGIN <number>? {number> = address of start of code
in memory

(TOTAL-TIME = <t4>) <t4d> = time (milliseconds) in

compiler and assembler

Each of these items is on a separate line. The first two and the
last are produced by the compiler. The other four are actually
printed by the assembler.

Optionally, a listing of the compiled code may be obtained,
controlled by the wvariable PRNTIFLAG. If PRNTFLAG has a non—-NIL
value, a neat listing of the compiled code 1is produced. Fig.
6.1 shows an example. If PRNTFLAG has the value NIL, no listing
is produced. PRNTFLAG is initialized to NIL during the loading
of the compiler.

6.2,.2 Theory of Operation of the Compiler

The UT LISP compiler has been designed so that there are no
restrictions on its use. Any function that executes properly
interpretively and which on any function <call includes all
arguments whether required or mnot will compile and execute
properly. There are no restrictions on variable references or on
interaction between compiled and interpreted functions.

As the compiler processes a function, it generates a list of
macro calls in the form of a program to be assembled by LAP.
Each of the macros represents a specific operation of a "LISP
machine", and is predefined when the compiler is loaded into the

_91...

LISP Reference Manual DEC 75

Figure 6.1

Output of LCOMP Based On
INTERSECTION Function of Figure 2.1

(skxxx LISP ASSEMBLER - VERSION 1.5 k)
(kkkkk LISP COMPILER — VERSION 1.5 k)

*EVAL:
(SETQ PRNTFLAG T

*VALUE: *Tx

RXEVAL:
(COMPILE (QUOTE (INTERSECTION)))

(INTERSECTION 52Q)

(MAIN INTERSECTION SUBR)
(SAVE76 INTERSECTION 1)
(BINDVARS (X Y) 2)
(VALUE 1 X)
(NULL 1 1)
(OR 1 RGOGO1)
(VALUE 1 Y)
(NULL 1 1)
RO0GOO1 (COND 1 C00001)
(SETAK 1 NIL)
(JUMP E00001)
C00001 (VALUE 1 X)
(CAR 1 1)
(VALUE 2 Y)
(CALL MEMBER 2)
(COND 1 C00002)
(VALUE 1 X)
(CAR 1 1)
(SAVE 1 3)
(VALUE 1 X
(CDR 1 1)
(VALUE 2'Y)
(CALL INTERSECTION 2)
(SETA 2 1)
(UNSAVE 1)
(CONS 1 1 2)
(JUMP E00001)
C00002 (VALUE 1 X)
(CDR 1 1)
(VALUE 2 V)
(CALL INTERSECTION 2)
E00001 (UNBINDVARS 1)
(UNSAVE76)
(JUMPB6)

(COMPILE-TIME =516)
(PASS1-TIME =138)
(LENGTH 43Q)
(LAP-TIME =240)
(QRIGIN . 74073Q)
(TOTAL-TIME =756)

*VALUE:
(INTERSECTION)

—92-

DEC 75 LISP Reference Manual

system. Some examples of these macro calls are shown in figure
6.1. The meanings of most of them are given in table 6.1 below.

The compiler is imnitially given a lambda-expression to
process. For the lambda-expression the compiler first generates
the LAP header element, and then code for binding arguments to

variables (if any) and for reserving space on the stack. Then
code is generated to evaluate the expression forming the third
element of the Ilambda—-expression. Following this code the

compiler generates code to wunbind wvariables (if any) and to
return to the calling function.

The bulk of the compilation process is involved in generating

code to evaluate expressions. If an expression is a number, code
is generated to place a pointer to the number in a register. If
an expression is a variable ({litatom>), code is generated to
place the wvalue of the variable in a register. If an expressin
is of the form

({functionname> {argl> <arg2> ... <arglnl>)
where each {arg> may itself be an expression, the compiler

recursively compiles each <arg> in left-to-right order and then
generates code to apply {functionname> to those values.

The most commonly used LISP functions whose machine—code
realizations are short are known to the compiler and are compiled

in line in the resulting program. These functions are
represented in the code by macros whose names are the same as the
functions they realize (e.g., CAR, CDR, etc.). Each such

function is identified by having the property CMACRO on its
property list. The value associated with this property is a
function which performs the necessary code generation. Table 6.2
gives a list of the functions known in the standard compiler.

All other functions referenced in the expression cause a CALL
maero to be gemnerated. This macro creates a calling sequence to
the mnamed function, which is assumed to bhe defined elsewhere.
The execution of an actual function call is considerably slower
than execution of an in-line function.

Whenever the compiler encounters an expression whose
{functionname> is FUNCTION or TFQUOTE, it assumes that the
expression contains a lambda-expression which is a sub—-function
of the one being compiled. This sub-function is compiled
separately given an internally-generated name, and its code is
appended to the end of the code is generated for the entire
function. Such sub-functions can be identified by the occurrence
of an initial ENTRY macro call.

This brief and simplified description of the operation of the
compiler accounts for most of its activity. The description is
offered here in the belief that some understanding of the
compiler’s operation will facilitate its use and the preparation
of good programs. For further details the reader is referred to
reference [1] at the end of this chapter.

6.2.3 Compiling Many Functions

When compiling many functions it is better to define Just a
few of them at a time, immediately compiling them after defining
them. After the compilation, the function definitions should be
deleted. For a given field length specification, this process
reduces the storage required for function definitions and gives

-03-

LISP Reference Manual DEC 75

Table 6.1

LAP Macros Defining the "LISP Machine"

Macro mname

(AND <i> <loc>)

(BINDVARS <lat> <{n>)

(CALL <name> <n>)

(COND <i> <loc>)

(FCALL <name> <1list>)

(FREE <i>)

{FUNARG <i> <{named)

(GO <loc>)

(JUMPB6)

(OR <i> <loe>)

(PROGINIT <loc> <lat>)

(SAVE <i> <3

(SAVE7?6 <name> <{m>)

(SETA <i> <3>)

(SETAK <i> {constant?>)

Meaning

Controls sequencing of the AND

function based on the ~wvalue in

register <i>. If register <i>

g?ntiins false, control transfers to
oc) .

Controls binding of wvalues to the <n>
variables in the <lat>.

Sets up calling linkage to function
{name> with {n> parameters.

Controls sequencing of the COND
function based on value in register
<id>. If register <i> is false
control transfers to <loc>.

Sets up calling linkage to an FSUBR
or FEXPR <name>, with the {list> of
arguments.

Obtains a word from free space,
leaving a pointer to it in A<{i>.

Establishes function <{name> as a
functional argument in register <i>.

Implements the GO function.
Exits from a function.

Controls sequenc ing of the OR
function depending on the value in
register <i>. If register <i>
contains something not false, control
transfers to <loec>.

Initializes a PROG éxpression where
{lat> is the list of PROG wvariables
and <loec> is the exit address.

Saves register <i> in the <J>th
position of the stack relative to its
top.

Saves the function <{mame> and returns
information on the stack and reserves
<n> words of temporary storage.

Sets register <i> equal to register
<3>.

Sets register <i> to a {constant>.

~04—

DEC 75 LISP Reference Manual

(SETQ <{mame> <i’>) Sets the value of variable <{name> to
the content of register <i>.

(UNBINDVARS <i>) Unbinds the most-recently bound 1list
of variables. Register <i> is

preserved during the operation.

(UNSAVE <i> <g>) Retrieves the value from the <3>th
position on the stack and puts it in
register <i>.

(UNSAVE76) Prepares stack for function exit.

(VALUE <i> <wvar>) Retrieves the value bound to wariable
{wvar?> and places it in register <i>.

({fnname> <i> <{J> <K> ...} Implements the LISP system function
{fnname>. Register <i> is always the
result register and registers <{J>,
<k>, ..., are the arguments of the
function.,”

Table 6.2
Functions with CMACRO Properties

ADVANCE NOT
AND NULL
ATOM NUMBERP
CALLSYS OR
CAR OUTPUT
CDR PRINT
CSR PRIN1
CONC PROG
COND PROGN
CONS PROG2
DEFSYS QUOTE
EQ READCH
ERRORSET RETURN
FIXP RPLACA
FLOATP RPLACD
FQUOTE RPLACS
FUNCTION SET

GO SETQ
LIST WRITE
MINUSP ZEROP

-05—

LISPY Heference Manual DEC 75

more working space for the compiler. If this process is not
used, a larger field length is required.

6.2.4 Compiling Large Functions

It is entirely possible that some large functions may not be
compilable in any reasonably—sized field length. Such functions
mist be split into smaller independent pieces.

6.2.5 Compiling Functional Arguments

Functional arguments in expressions mav be designated in three

ways !
(QUOTE <function>)
(FQUOTE < function>)
(FUNCTION <function>)

- The forms using QUOTE and FQUOTE behave identically except that
when the compiler sees FQUOTE, the <function> expression
following is compiled as a sub-function. A functional argument
designated by QUOTE cannot reliably be distinguished from any
other quoted expression so it is mot compiled. The advantages of
compilation are lost in this case. Whenever ©possible, FQUOTE
should be used to designate functional arguments.

The form using FUNCTION also causes the {function> expression
to be compiled as a sub—function. This form, however, gemnerates
a large amount of code for environmental preservation and hence
is expensive in both space and time. FUNCTION serves a vwvery
special -purpose and is needed in only a very few cases (see
section 4.5).

6.2.6 Compiling References to FEXPR-FSUBR Functions

When the compiler generates a calling sequence to a function,
the calling sequence is of EXPR-SUBR type or of FEXPR-FSUBR type,

depending on the type of the referenced function. If the
referenced function is as yvet undefined, an EXPR-SUBR calling
sequence is assumed. Therefore, all user—defined FEXPR-FSUBR

functions must have those property indicators at the time when
references to them are compiled.

6.2.7 Tracing Compiled Functions

Compiled functions can be traced in the usual manner, provided
the function TRACE is called after the functions are loaded but
before they are used. Once compiled functions are executed,
internal Ilinkages have been constructed, and tracing cannot be
initiated.

Since SETOs are compiled in line, the function TRACESET has mno
effect on compiled functions.

6.2.8 Avoiding Name Conflicts

The compiler is itself a LISP program containing a number of
LISP functions. If the user defines a function whose name is the
same as one of the compiler functions (see table 6.3), then the
user’s function may well be used instead of the compiler function
when the compilation is attempted. This situation usually causes

-06—

DEC 75 LISP Reference Manual

highly chaotic results. Compiler function names for the most
part have a period (.) as their second character and are not too
likely to cause comnflicts.

Table 6.3

Compiler Function Names

COMPILE IF OPDEF INE
DATA LAP PUNCHMAC
ENTRY MACRO VFD
A.DJOBJ1 C.LIST O0.PTIMIZE
A.SER C.COMPRESS* P.ADCNT
A.SMAC2 - C.COMPRESS P.AD
A.SMAC C.ONCER P.ASS1
C.ANDOR C.PRINT P.C

C. ARGS:* C.SPEC P.MAP
C.ARGS I.NCR R.EVERSIP
C.COND L. ISTER S.PACE2
C.FARGS M. ACPROC 5. VREG
C.FNCALL M. ATCH2 S.YSMAC
C.FNFORM M. ATCH T.IMER
C.FN 0.BJ1ADDP T.RANS
C.FORHM 0.BJ1ADD T.ZCNT
C.LABEL C.BJIFIX U.NSVRG
C.LAMBDA 0.PCODE

€.2.9 Redefining Standard Functions

Occasionally there is a need for a user to define his own

versions of functions already defined in LISP. If the redefined
function is one of those in the list of table 6.2, the compiler
still generates code for the built—-in definition, and does not
generate a call to the user’s new version. To circumvent this
difficulty, it is merely necesary to remove the CMACRO property
from those fuuctions affected. The compiler then generates a

call to the function instead of expanding it in line.

The CMACRO property may be removed from anyv of the functions
in table 6.2 except:

COND FUNCTION GO PROG RETURN
If the CMACRO property ‘is removed from these functions, the
resulting compiled code will not be correct.
$.2.10 Using SMACRO for In-line Compilation
The in-line compilation of short functions such as CADR, CDDR,

etc., may be forced by using SMACRO. If a function name has an
SMACRO property whose wvalue is a lambda-expression, the lambda-—
expression is compiled in line. Functions such as CADDR, etc.,

are not compiled in line unless the user generates appropriate
SMACRO expressions for them.

-977—

LISP Reference Manual DEC 75

6.3 LAP - THE LISP ASSEMBLER

The LISP assembler is a general two-pass assembler with macro
and conditional assembly capabilities. It is most frequently
called from within the LISP compiler, but may be called directly.

The assembler is called by:
(LAP <s1> <s2>)

where <{s1> is the program to be assembled and <s2> is an initial
symbol table. Program formats are described below in section
6.3.1. The initial symbol table is msually NIL, but in special
cases may be a list of dotted pairs, each pair being a literal
atom and a numeric value to be associated with that symbol.

The value returned by function LAP is the final symbol table
of the assembly in the form of a list of dotted pairs.

Pass 1 of the assembler produces an intermediate form of the
program with all operation codes and register numbers decoded.

is intermediate form may be saved on a file for subsedquent use
and/or it may be further processed by pass 2 of the assembler and
loaded into memory for execution. Pass 2 evaluates address
expressions and finishes processing the function.

The intermediate form produced by pass 1| may be a very large
expression, so sufficient memory must be made available,
especially in full-word space. The user is cautioned to observe
very carefully the use of memory during assembly of his programs
and to adjust the LISP parameters accordingly.

6.3.1 Program Format
A program to be assembled by LAP is always in the form of a

list. Machine instructions and assembler pseudo—-operations are
themselves sublists in the program. Atomic elements in the
program list serve as .labels in the program. 1f several atoms
appear consecutively in the list, they all label the same
instruction. Ewvery program must begin with a MAIN pseudo-
operation. An example assembly is shown in figure 6.2.

6.3.2 Symbols

Any literal atom may be used as a symbol in a program so long
as it is not confused with some part of an operation.

The special symbol + when used as a label means to force the
next instruction to be in the left-most bits of the next word to
be assembled. If the previous word is not full, it is filled
with pass instructions.

The special symbol % when used as an operand in an address

expression stands for the address of the word containing the
instruction being assembled.

-08—-

DEC 75 LISP Reference Manual

Figure 6.2

Contents of LAPUNCH File Produced by Pass 1 of LAP
Based On INTERSECTION Function of Figure 6.1

(MAIN 6 ((INTERSECTION SUBR 0Q)) ((ROOGOO1 . 12Q) (CO00O01 . 14Q)
(Co0002 . 34Q) (E0006061 . 37@)) 43 ((611@51 ((QUOTE
INTERSECTION))) (612051 (1)) (10854 (SAVE?6FR)) + (611851 ((QUOTE
(X Y)))) (1954 (BINDIT)) (511531 ((QUOTE X))) 5311048 + (60621048
(- (QUOTE NIL))) (511851 (¢ QUOTE NIL))) (52051 ((+ % 1)))
(5011048 (+ 1)) (6011048 (- (QUOTE NIL) 1)) (51851 (R00001))
(511051 ((QUOTE Y))) 5311048 + (6021948 (- (QUOTE NIL))) (511051
((QUOTE NIL))) (52Q51 ((+ *x 1))) (5081148 <+ 1)) (6011048 (-
(QUOTE NIL))) (41051 (CO00GO1)) (511951 ((QUOTE NIL)Y)) (4@54
(E00001)) (511851 ((QUOTE X))) 5311021122Q30 5311948 (512051
((QUOTE 7Y))) 5322048 (VFD 12 (196) 18 (LINKIT) 1 (@) 11 (2) 18
((QUOTE MEMBER))) (6611Q48 (- (QUOTE NIL))) (41@51 (C000982))
(511951 ((QUOTE)))5311021122Q30 531107461033 (5167048 (+ (+
PDSTACK 3))) (511@51 ((QUOTE X¥X))) 531105311Q33 (512051 ((QUOTE
Y))) 5322048 + (VFD 12 (1Q@6) 18 (LINKIT) 1 (9) 11 (2) 18 ((QUOTE
INTERSECTION))) 5421048 (5117Q48 (+ (+ PDSTACK 3))) 5311048
74610747202062212667Q 541Q51 (6211048 (- (QUOTE NIL))) + (7211@48
(- (QUOTE NIL))) + (311048 ((+ * 1))) (1054 1)

1
5410054600530101016Q3 (4Q54 (E06G001)) + (511851 ((QUOTE X)))
(GARBAGE 53110531133 (512Q51 ((QUOTE Y))) 5322048 + (VFD 12
(1@6) 18 (LINKIT) 1 (©) 11 (2) 18 ((QUOTE INTERSECTION))) 6411048
+ (615051 ((+ =x 1))) (4Q54 ((APPLLG)) 5611948 (5157Q48 (+
PDSTACK)) 6365048 215226375Q33 (26Q51 (6))))

6.3.3 Address Expressions

Some machine instructions require the specification of an 18-
bit quantity in the address part. LAP allows these quantities to
be specified in the form of expressions. A LAP address
expression may have any of four forms:

" a) a number
b) a svmbol (literal atom)
c) a QUOTEd S-expression (e.g. "(A B Q)
d) (Koperator> <expressionl> <{expressionZ>)

If the expression is a number, the value placed in the
instruction is the value of the right-most 18 bits of that
number. The number may be positive or negative.

If the expression is a symbol, the value is determined by:

1) The ‘value associated with the symbol on the LAP symbol
table, if any. Otherwise

2) The value associated with one of the indicators SYM,

: SUBR, FSUBR on the property list of the symbol. If the
symbol has more than one of these properties, the one
most recently put on the atom is used.

The ~values associated with SUBR and FSUBR properties are the
addresses of the entry points of the named machine—coded
subroutine. Linkage to such subroutines can thus be effected
merely by naming them in the address field of an appropriate Jump
instruction. Values associated with a SYM property are generally
addresses of important locations within the LISP system which
need to be accessed by the assembly—-language routines. Table 6.4
gives a list of symbols with SYM properties defined in the

—-09 -

LISP Reference Manual DEC 75

standard LISP system. The symbol % is treated specially in the

evaluation

an expresslon and always evaluates to the current

location within the program.

BINDIT

BPROG

CIO

FGARBAG-

FULLLIS

GARBAGE

LINKIT

PDERR
PDSTACK

PROGINIT

SAVE76ER

SYSTEM

Table 6.4

Symbols with SYM Property in Standard LISP

Use/meaning

—— et o e

Unbinds a list of variables previously bound and
saved on the stack. Can be used during exit
from a function.

Binds a list of wariables to the argument wvalues
sent by the <calling function. The 1list of
variables is saved on the stack with indicator
VMARK. '

Location of cell containing the address of the
next available word in binary program space.

Entry point of a routine for <calling CI0O for
input/output. Enter wvia RJ, with FET location
in B2 and CI0O code in X0.

Entry point to the garbage collector wused whena
full space is used up.

Location of the pointer to the next available
full-space word.

Entry point to the garbage collector used when
free space is used up.

Entry point to a dymamic linkage routine which
will 1ink a machine—coded routine to another
regardless of whether the called routine is
machine—coded or interpreted.

Location of error routine for stack overflow.
Location of the bottom of the stack.

Makes a standard entry to a PROG.

Entry point to a routine which constructs a
stack header element and stores it onm the stack,
optionally reserving extra space on the stack.
Entry point to a routine for making system
requests. Enter via RJ, with formatted request

in X6.

-100-

DEC 75 LISP Reference Mannal

If the expression is a QUOTEd S-expression, the walue used in
the instruction is the actunal address of the S-expression, and
the S-expression is not evaluated further. For instance, the
expression CAR evaluates to the address of the machine subroutine
for the CAR function, but the expression "CAR evaluates to the
address of the atom CAR itself.

If the expression is of the form (Koperator> <expressionl)
{expression2>), the values of {expressionl> and <{expression2) are
combined according to the specified operator. The permissible
operators are + and - . The expression is evaluated as a full-
word value and then finally truncated to 18 bits.

The entire expression may be optionally preceded by a + or -
sign.

6.3.4 Instructions Recognized by the Assembler

A complete set of CDC 6000 series central processor
instructions is recognilzed by LAP, with mnemonic codes of the
instructions being the same as those recognized by the COMPASS
assembler [2].

Each instruction is represented by a list whose first element
is the mmnemonic operation code. Remaining elements are register
designators, register numbers, and operator svmbols. Register
numbers are always enclosed in parentheses, and operator symbols
must be separated from adjacent atomic symbols by at least one
blank. Table 6.5 gives a list of the instructions and shows the
forms that they may take.

It is assumed that any user of the LISP assembler is already
familiar with the machine operations, and no further discussion
of them will be given here.

6.3.53 Pseudo Instructions of the Assembler

The LISP assembler, like most assemblers, employs pseudo
instructions to supply it with certain information about the

program and to handle storage allocation. here are six pseudo
instructions recognized by LAP. Thewvy are described below by
giving the form of the pseudo instruction followed by a

description of its function.

(MAIN <name> < type>)

The MAIN pseudo instruction must appear at the beginning of
each program to be assembled. <name> is a literal atom which is
the name by which this program will be known. {name> is also
treated as though it were a label on the first instruction of the
program. <type> specifies the type of property the code is to be
given. {type> may be omne of: SUBR, FSUBL, or SYM. If it is
SUBR or FSUBR, then the program is a LISP-callable function. If
type is SYM, then it is not LISP-callable but may contain code or
data which may be referenced by other hand—-coded programs. The
address of the first word of +the program is placed on the
property list of <{name> with indicator <{type>.

-191-

DEC 75

LISP Reference Manual

Table 6.5
The Instruction Set Recognized by the LISP Assembler

-
-

In the following

w

(S

A
g1

&S
H

&
19}

Les
- ® O
S ot
8 ®w
Ll)]
& o
W+ -
| PR ="
255
£

S+ m
[<I-N)]
® O
N
o 0N
- g
nmow
olC
o =
ORI
-

[}
L e e d
sgad
0oQ
nmwnn
(ORI
| TR T
jargoRget
QU Q
[N P
4

- A
i
v

an alternate form has B{(jlor B(Kk) omitted,

cases where

is assumed.

all

In
B(®)

Alternate
Form(s)

Form(s)

Standard

Operation
Code

.
e
of
v

-~ A~~~

A A A

. e

v v v

B e

= EINN

N’ A

PN
]
'

BRRBBRRERT

vVvVvVVvvvvae v

N Ran Nan R R N e Nan Xean Ran
PaSialiar Rar Rar RerRar RarRar Bar Lol

Pl o e e e N e S

A X XXM
aENJOERERS
SNEZAZ~OA R

A A R S i

S ~NNFIN O
—AIRMNRMNONMNNF
000@0000@@

(J) <k>)

J)

(LT B(i) B(J)) <k>)

Liird

~ e~
==
~
anfaa]
~ e~~~
e e e Ran Ran kan)
- QR
SEP TR
ppaalaiaie
545 4 5 X
- E NP
N N’ e’ N’ N’ e
_——
o~~~ Y™ P e Y an Ran
LN NN N’ v’ e NSNS N
O 0 P et Ty R
XX ¥+ 2 2 ad o 4 DX X G
*+_) o~~~ mmmmmm+_+_
-~ kbkk))

o N X X 2 ettt an Tan Tan Xan e X an Xen an Xan Wan Ran W

e R R R e L R R e S S R S R R

e Loy Rar N RSV R NS ol ettt

K T 1]]~ emmmmmmKXpgX

e R N N e X e T an N an N Ran Tan o Xan X Xan Ran Xan Ran Kan Ras e
el omd prel ol orml erl ord ord orel o el o ol ol erd oref ovel ovd oy o
o B it

PERK RS PG PG R] P P P XX X
jsnf=efanfonfonfaafanfanth Lo | S =] =]

((((((((((((((((((((

-162-

DEC 75

Operation

Code

35
56
57

60
61
62
63

64
65
67
70
71

72
73

74

75
rers

LISP Reference Mannal

Standard
Form(s)

X X X

~~

A
NN #%¥%1+1 +

puie puit it pude Juit it i padd it pudo
. Nt N N N N N N N St
P A e T an
e e N N N N N e

Qi o = o

e ke
Tl
XN R

@

ACi) X(

(SACi) A(g) + B(K))

mmnm
zEz

o W an W an Wan'
munanwmn
TEmE
R an Wan Wan
e e uie jude

ot Nt N’ Nt

~
£2)
=
~
ey
s
>
~
[
~
+

R

S’ N’

mefleeiing

P Xan Wany

[Y

N e N’
+

(SBCi) A(y) -
(SB(i) B(]) +
(SB(i) B()) -
(SX(i) ACy) <
(SX(i) B()) <
(SX(i) X(3) <
(SX(3i) X(J) +

Table 6.5 (contd.)

Alternate

Form(s)

(SACi)

—— e st ot e

<k>)

(SGA(C1) X(31))

(SAC1)

(SA(1)
(SACi)

(SB(1i)
(SB(1)
(SAC1)
(SB(1i)
(SB(1)

(SBf i)
(SB(1)
(SB(i)
(SB(1)

(SXC1)

(SX(1)
(SX(i)

(SX(1i)
(SB(1i)

B(k) + X(3))

ACI)
Bl + AC3))

- B(k) + A(g))
B(1))

- B(K))

- B(KY + B(yg))

<(k>)

XCa)
B(K) + X(3))

ACy))
B(K) + A(J3)}

- B(K) + A(g))
B(3))

- B(K))

- B(k) + B(3))

<k>)

XCa))
B(k) + X(3))

ACg))
B(%) + A(g3))

- B(K) + A(3))
B(3))

- B(k))

- B(k) + B(j))

LISP Reference Manual DEC 75

(ENTRY <{name> <type)>)

The ENTRY pseudo instruction is similar io MAIN. It appears,
however, within a block of code instead of at the begirning. It
defines a secondary entry point of type <type> and name <named.
The code following ENTRY may be referenced by <name> and may in
turn reference instructions or data common to it and the program
named in the MAIN pseudo instruction.

(MACRO <{name> <lat> <instl> Kinst2> ... <instlnl>)

Pseudo instruction MACRO defines a macro instruction for use
in assembling the current program. <name> is the mname of the
macro ; {lat> is a list of literal atoms which are thec symbols to

be replaced when the macro is expanded. <instl> ... <instlnl>
are machine instructions, pseudo instructions, and/or macro
instructions which define the body of the macro. Each

substitutable parameter must be a distinct element of the S-
expression defining the macro body.

A macro is used by placing the form:
({name> <s1> <s2> ... <slnl>)

anywhere an instruction might appear. <sl> ... <s[nl> are 8-
expressions which are substituted into a copy of the macro body
for the substitmtable parameters in one—to—one correspondence.
After substitution, the macro body is inserted into the program
instead of the macro instruction and then assembled.

A MACRO pseudo instruction may appear anywhere in the program
so long =as it precedes the first use of the macro. Macros
defined by the MACRO pseudo instruction are purely local to the
program being assembled and must be redefined for use in other
programs.

Example:
When the macro deifinition:

(MACRO XX (I V))
(SACI) (QUOTE V))
(SACD X(ID)))

is referenced by:

(XX 3 ANATOM

the macro definition is expanded to the code:

(SA(3) (QUOTE ANATOM))
(SA(3) X(3))

(IF (<p[1]1> <instl1,11> ... <instl1,ml>) ...
(<plnl> <instln,11> ... <instln,ml>))

The IF pseudo instruction provides a conditional assembly
capability. Each <pl[il> 1is an expression, and the <imstli,gl>
are LAP instructions. The (pl[il> are evaluated wusing standard
LISP evaluation rules until omne is found to be true. The set of
instructions following the first true <p[il> is assembled at this
point. If no <pl[il> is trume, then no instructions are assembled.

- 104~

DEC 75 LISP Reference Manual

IF is most often used inside macro definitions, and the <p[il>
generally are functions of the arguments substituted into the
macro when it is expanded.

(DATA <expression>)

The DATA pseudo instruction defines a full-word data constant.
{expression> is an expression of the form defined in section
6.3.3, and is evaluated according to the rules given there. It
is left as a full-word wvalue, however, and not truncated to 18
bits. Each DATA pseudo instruction allocates and defines one
word of storage.

(VFD <nl[11> (Kexpl1]>) <nl2]1> (Kexpl21>) ... <nlml> (Kexplml>))

The VFD pseudo instruction defines the contents of one
computer word, placing several wvalues into specifiable fields
within the word. Each <nl[il> is a simple integer which defines a
field width. The <expl[il> following each <nl[il> is an expression
of the form described in section 6.3.3. Each <(explil is
evaluated and truncated to <mlil> bits. The resulting values are
then concatenated in order and placed in the allocated word. The
sum of all <nlil> may not exceed 60. If the sum of the <nlil> is
less than 6@, the packed values are stored in the high order bits
of the word and the lower order bits are filled with zeros.

6.3.6 Operation and Control of the Assembler

The assembler performs a first pass over the program, and

optionally a second pass. During the first pass, instructions
are decoded and the operation codes and register numbers are
reduced to numeric gquantities. Also during the first pass,

macros are expanded and the symbol table is comnstructed.

The -second pass, if requested, evaluates address cxpressions
and actually places the program code into memory.

The second pass is performed only if the variable LOADFLAG is
not NIL. LOADFLAG is initialized to NIL when the assembler is
loaded. If LOADFLAG is NIL, then assembly and error detection
only through pass 1 takes place.

The intermediate code form produced by the action of the first
pass may be saved on a file for subsequent processing by pass 2
(see description of READLAP, section 6.4). If wvariable LAPUNCH
has a non-NIL wvalue then that wvalue is assumed to be the name of
a file on which the intermediate code is to be written. If the
value of LAPUNCH is NIL, then the intermediate code is not saved
on a file. If the value of LAPUNCH is PUNCHB, the intermediate
code is punched on binary cards with an end-of-record separator
between functions. LAPUNCH is initialized to OUTLAP.

6.3.7 FErrors Detected by the Assembler

The assembler is capable of detecting certain errors in the
program being assembled. Each error causes a message to be
printed. The wvarious messages are given below with an
explanation of their meaning.

-165-

LISP Reference Manual DEC 75

Errors Detected in Pass 1

<instr> HAS UNRESOLVED REGISTER NUMBER

{instr> is the instruction be ing processed. The
instruction specifies a non—-numeric valuz for a register
number .

<instr> INCORRECT HEADER ELEMENT

C{instr> is not a MAIN pseudo instructiom and it should be.

{symbol1l> IS NOT A LEGAL OPERATION
{symbol> has been used as the operation code in an

instruction, but it is mnot defined as a machine
instruction, a macro instruction, or a pseudo instructicn.

{symbol> IS MULTIPLY DEFINED
{symbol> has been used more than once as a label in the
program.

{instr> HAS SYNTAX ERROR
{instr> has a legal operation code, but its form is
unrecognizable.

{instr> ILLEGAL ENTRY
{instr> is an ENTRY pseudo imnstruction which has occurred
without a MAIN pseudo instruction preceding it.

{instr> HAS NON-NUMERIC ARG
{instr> is a VFD pseudo instruction which has a non-numeric
value where a field width is expected.

{instr> HAS MORE THAN 60 BITS DESIGNATED
{instr> is a VFD pseudo instruction in which the field

widths total more than 60 bits.

Errors Detected in Pass 2

ILLEGAL ADDRESS EXPRESSION (EVALK) :<exp>
ILLEGAL ADDRESS EXPRESSICON (EVALJ) :<exp>

{exp> is an address expression which is somehow mnot
permissible. In the first case, <exp> is an expression
preceded by something other than a plus or minus sign. In
the second case, <{exp> either contains an invalid operator
or is an undefined symbol.

-106-

DEC 75 LISP Reference Manual

If any errors are detected during pass 1, the irtermediate
code is not written onto a file, if such action was requested.
If any errors are detected by either pass 1 or pass 2, the code
is not loaded into memory. The message:

¢(n> ERRORS IN LAP ASSEMBLY

is printed if any errors were detected, where <m> is the number
of errors.

6.3.8 Output of the Assembler

Aside from the intermediate form of the code which may be
written to a file, and the symbol table which is returned as the
value of LAP, there is ~wvery little printed output from the

assembler. The four lines of output produced by the assembler

have already been shown in section 6.2.1. They give statistical

information about the assembly. They are:

(PASS1-TIME = <t1>) <tl1> = time (milliseconds) spent in
assembler first pass.

(LENGTH <number>) {number> = length (in words) of the
assembled code.

(LAP-TIME = <2>) {t2> = total time (milliseconds) spent
assembling.

(ORIGIN <number>) {number> = address of {first word of

code in memorvy.

<t2> includes loading time if loading was performed. The ORIGIN
is zero if the code was mot actually loaded. :

6.3.9 Coding Conventions

The user who wishes to write an assembly language function
which can communicate with the rest of LISP needs to know certain
things about the internal workings of LISP. A brief survey of
important topics is given here. Users who need more knowledge
should consult with the Computation Center personnel responsible

for LISP.

6.3.9.1 Register Conventions

. .

Two registers have predetermined and fixed meanings within

LISP. They are:
Register Use

— s e ot o et ———

A0 Always contains a pointer to the next
available free—space word.

B? Always contains a pointer to the current
top of the stack. BY + PDSTACK is the
location of the top, and BY decreases as
new items are added to the stack.

Assembly langmage programmers should always make sure these
meanings are preserved over any programs they write.

-107-

LISP Reference Manual DEC 75

6.3.2.2 Calling Sequences

All LISP functions are entered by direct Jumps, not by the
return—Jump instruction. On entry to the function, register B6
contains the appropriate return address for the function, so that
function exit is accomplished by a

(JP B(6))

instruction. If another LISP function is called during the
course of this one, then the valwme in B6 must be saved and
restored.

Arguments are passed to LISP functions in registers Al-A5S.
For a SUBR function, Al-A4 contain the first four arguments,
while A5 contains a pointer to a list of any remaining arguments;
for an FSUBR, Al contains a pointer to a list of all arguments.

Any wvalue computed by the functionm is expected to be in
register Al on exit from the function. .

6.3.9.3 Coding Examples

1) Saving information on the stack

(SB(1) "<function—name>)
(SB(2) <n>)
(RJ SAVE76ER)

The above code sequeznce saves the {function—name>, B6, and
B? on the stack in the expected form so that the {function-—
name> can appear in the backtrace (see section 8.4) if an
error occurs within the function. If <n> is greater than
&, <n> words are allocated below the top of the stack for
use in saving other information. The stack configuration
after execution is:

<== B7+PDSTACK

A
=4
[
=]
o
v
=
~J
=
(<))

ot S S B S ot S St o B S S S St e o e o e T S Pt . e A o e S S S

AN
=
v
3
g
[= N
0]

The value of B7 saved in the top word is that wvalue B7 had

before the additional entry was made. Other data to be

stored on the stack may be referenced by the address
" expression.

B(7) + (+ PDSTACK i)
where i = 1 to <m>.

It is recommended that this code sequence be executed at
the beginning of each LISP-callable function.

Information saved on the stack must be explicitly
removed before exiting the function.

-1068-

DEC 75 LISP Reference Manual

2) Restoring the stack

(SA(i) B(7) + PDSTACK)

(SB(6) X(i))

(AX(1) (18)) (i in range 1-5 inclusive)
(Y X(i))

This code sedquence restores B6 and B7 to their wvalues
stored at the top of the stack. Other data on the stack
mist be retrieved by knowing their positions relative to
B7.

. 3) Binding wvariables

(SB(1) "Clist—of—-variables>)

(RJ BINDIT)
Execution of this code binds all the arguments passed in
Al1-A5 to the atoms contained in the list of wvariables. The
arguments can then be referenced as the values of those
variables. BINDIT places a pointer to the 1list of
variables on the stack and decrements B? by 2. Variables

bound in this way must be explicitly unbound before leaving
the function.

4) Accessing the value of a wvariable

(SA(i) "<wvariable>) (i in range 1-7 jinclusive)
(SACi) X(i))

This code places the wvariable’s value into register A(i).

5) Unbinding wvariables

+ (SB(3) (+ * 1))
(EQ APPLLG)

This code retrieves the list of ~wvariables saved omn the
stack and unbinds each atom. Register B7 is incremented by
2., This code destroys the contents of Al.

6) Calling a SUBR or FSUBR

(code to put arguments in A1-AS5)

+ (SB(6) (+ x 1))
(EQ <name>)

-109-

LISP Reference Manual DEC 75

7) Calling an EXPR

(code to build a list of arguments in A2)

(SA(1) "<name>)
+ (SB(6) (+ x 1))
(EQ@ APPLY)

8) Getting a word of free space

ot et et e S st . i, S et ot e ot s S S B Gt i i S i St o St S e

(SA(i) A(®)) {i in range 1-5 inclusive)
(SA(0) X(i))

+ (NZ X(i) (+ =% 1))
(RJ GARBAGE)

This operation must be performed in this manner. At the end of
the sequence, register A(i) contains a pointer to the free word,
which can now be used, and A® has been properly updated.

%) Get a word of full space

o s et et G S St et S o T S S o et St et Bt i et et e

(SA(i) FULLLIS) (i in range 1-5 inclusive)
(SAC1) X(i)»)
(BX(g3) X(i)) (3 equals 6 or 7)
(SA(y) FULLLIS)
+ (NZ X(i) (+ *x 1))
(RJ FGARBAG)

This operation must be performed exactly as indicated. At the
end of this sequence, the address of the full-space word, which
can now be used, is in register A(i). .

1¢) Exiting a function

——— e o b ot i it o S o St St S et o

(JP B(6))

Prior to executing this instruction, it will be necessary to
ensure that B% contains the same value it had on entry to the
function. '

6.4 THE LISP LOADER

This section explains how compiled and/or assembled code is
placed into memorvy. If the ~wvariable LOADFLAG is non-NIL at
assembly time, the assembler automatically c¢alls the loader
during its second pass over the program. However, to use the
- intermediate form of code which has been saved on a file, the

-loader must be called by use of the LISP function READLAP.
READLAP is an FSUBR function which may have @&, i1, or 2

. arguments:

{READLAP <filename> <lat>)
(READLAP <filename’)
(READLAP)

{filename> is the unquoted name of a file from which READLAP is

-110-

DEC 75 LISP Reference Manual

to read functions in the intermediate form produced by LAP. If
the <filename> 1is omitted, then READLAP reads from the cwrrent
system input file (SYSIN). The <lat>, if given, is a list of
function names whose definitions may appear in the set to be
loaded, but which are to be ignored if encountered. This feature
is useful to avoid loading superceded functions without having to
regenerate the entire file of functions of which they may be a
part.

READLAP begins reading at the current position of the

indicated file. Each function is read and pass 2 of the
assembler is performed on it, loading the functions into memory
one after the other. Reading stops when the end-of-file is

?ncountered or when the atom //ENDLAP is read, whichever occurs
irst.

6.4.1 The Loading Process

Pass 2 of the assembler evaluates address expressions and
combines completely assembled instructions into full-word units.
As each word of information is completed it is stored into the

next available word of binary program space (see chapter 3). If
there is not sufficient memory remaining in binary program space
to accommodate a fumnction, a request is made to the operating
system to allocate more memory. Such requests are made in

miltiples of 1600 (octal) words.

A known amount of binary program space can be allocated in
LISP by means of the X parameter on the control card. If the
needed amount is known, this option can be used to avoid making
requests on the operating system.

6.4.2 Output from READLAP

As each funciion is read, its name is printed by READLAP. The
names are printed across the page, as a record of the functions
loaded. ’

If pass 2 of the assembler detects errors, the error messages

- given in section 6.3.7 are printed. The lIast function name
printed before the error messages is the name of the functiomn in
which the errors were detected. If any errors occurred, the
message:

TOTAL ERRORS = <{number>

is then printed. Any function in which an error was detected is
not loaded into memory.

After all functions have been processed, the following message
is printed:

TOTAL LOAD TIME = {number>

{number> is the total time in milliseconds spent im the loading
process. ~

-111-

LISP Reference Manual DEC 75

The ~value returned by READLAP is a list giving the entry
points and names of all functions loaded. The list contains the
entries in the reverse order of their actual loading. The form
of the list is:

(((<{name> <type> <address>)
({name> <type> <address>) ..
({name> <type> {address>))
({({name> <type§)<address>) “ee

Each sublist contains the names, types and addresses of all entry
points to omne function.

6.5 FINAL COMMENTS

The compiler and assembler are themselves large programs which
get loaded into binary program space. There is no way to reuse
the space they occupy. It is usmally wise, therefore, to compile
and assemble in one LISP run, saving the intermediate code, and
then to load and execute the functions in a separate LISP run.

If several runs of the compiler and assembler are expected, it
may be wise to generate and save a DEFSYS of the system
immediately after loading LAP and LCOMP.

LCOMP may be loaded separately from LAP if space is at a
premium. Setting PRNTFLAG to true causes a listing of the
compilation result to be output to //WRS, If this listing is
slightly altered to the form acceptable by LAP and if the macros
which begin the LCOMP file are loaded, then the output of the
compiler may be assembled in a second pass.

References:

1. Cohagan, W. L., A LISP Compiler/Assembler System for the CDC
6400/6600. Master's Thesis, University of Texas at Austin,
1671,

2. Conirol Data 6008 Series Computer System/ 6008 Compass Version
‘ 2 Reference Manual, Pub. No. 60279960.

-112--

DEC 75 LISP Reference Manual

7. LISP OVERLAYS, THE FORTRAN INTERFACE, AND VIRTUAL MEMORY

This chapter describes the facilities in UT LISP which answer
the following three questions:

1) How <c¢an a LISP program be saved for future use so that
it does mot have to be reloaded from source language
input each time? .

2) How can a large LISP program be partitioned with dynamic
linkage of the pieces during execution?

3) How can a FORTRAN program be used in conjunction with a
LISP program?

All three of these capabilities exist in UT LISP. The first two
questions are answered by the use of LISP overlays, the third by
use of the FORTRAN overlay system.

7.1 THE LISP OVERLAY

In chapter 3 we indicated that the memory allocated to =a
running LISP program is divided into several distinct areas. All
user—defined programs and data reside in an area of memory which
starts at the address following the interpreter code and extends
to the address specified by the field length. This area plus a
small amount of memory containing pointers and system status
information constitutes the LISP overlay area and can be written
onto a disk file at the user’s command.

The overlay is written onto the file as two logical records.
The first record contains all system status information including
the field length in effect at the time of overlay definition, the
return address for the function in execution when the overlay was
defined, and a ~wversion mnumber for LISP. The second record
contains everything else. Once the overlay is on the disk file,
it may be saved and/or manipulated in any way that any disk file
may be.

Functions exist within LISP to 1load the overlay back into
mepory in a two—step process. In the first step the first record
of the overlay is read into memory. If the version number
contained in the overlay does not agree with the current LISP
vers ion number, LISP terminates with a message. It is not
possible to use an overlay that was created under omne version
with a different version. If the version numbers match, the
field length of the Job is dynamically updated to that required
for the overlay, and then the rest of the file is read into
memory. Finally execution resumes at the point where it was
suspended when the overlay was created. In this sense, the
.overlay is a dynamic snapshot of the LISP program.

-113-

LiSP Reference Manual DEC 75

7.2 CREATING A LISP OVERLAY
LISP overlays are created by function DEFSYS.

(DEFSYS <filename> <{boolean’)
pseudofunction; SUBR

DEFSYS writes the current LISP program onto the file
{filename?> as a LISP overlay. <filename> is rewound before

being written. I1f <boolean> is true, execution terminates
immediately after the overlay is written. If <boolean> is
NIL, execution of LISP continues, and DEFSYS prints a
message

FIELD LENGTH: <number>

where <{number> is the current field length needed for the
overlay. The wvalue of DEFSYS is *T¥.

7.3 REFERENCING A LISP OVERLAY

LISP overlays may be used in three different ways. They may
be simply loaded, loaded and control unconditionally passed to
them, or loaded and used as an extension to the running program.
‘When loaded via the § parameter on the LISP control command, they
are used as programs saved for wuse by being simply loaded
without reinitialization.

?v.3.1 Simple Loading of a LISP Overlay

A LISP overlay is loaded and replaces the running LISP program
by execution of function LOADSYS.

(LOADSYS <fi1ename>)
pseundofunction; SUBR

LCADSYS rewinds and loads file (filename>. Unpredictable
results will be obtained if <filename> does not contain a
LISP overlay. LOADSYS itself returns NIL and execution
resumes in the newly-loaded overlay where execution was
suspended when the overlay was defined. The use of
S=<{filename> on the LISP control command (see chapter 2) is
equivalent to executing (LOADSYS <filename>) before any
other processing is done.

7.8.2 Linking to a Particular Function in an Overlay Without
Re turn
By executing function OVERLAY a user can load a particular

overlay and request execution of some particular function deflned
‘in the newly—-loaded program.

-114-

DEC 75 LISP Reference Manual

(OVERLAY <filename> {functiond> <list> <lat))
pseudefunction; SUBR
{filename> specifies the overlay to be loaded. <functiond

is a function to be executed in the new program. <listd> is
a list of actual arguments to which <functiond is to Dbe

applied. <lat> defines an environment for the execution of
{function>. The elements of <lat> should be wvariables
which are defined im the initial LISP program and
referenced by <function>. The values of these wvariables
are passed into the newly—loaded overlay and redefined
there so that they will be defined when <functionb>

references them. OVERLAY writes {function>, <list> and the
environment onto a scratch file named ARGS (there must be a
buffer available for this file), then it loads the overlay

from <filename>. After loading the overlay, OVERLAY then
rewinds ARGS and reads <function>, <list>, and the
environment, establishes the wvariables in the environment,
and applies <function> to <list>. Af ter executing
{function>, <control returns to SYSIN as though <function>

had been executed from the top level of LISP.

v.3.3 Linking to a Particular Function in an Overlay With Return

By use of the function CALLSYS, one can mnot only load an
overlay and execute a function in it, but also save the calling
environment so that the environment can be restored when the
overlayed function finishes. Thus CALLSYS allows LISP programs
to be partitioned into several parts with almost transparent
linkages between them. Overlays may even link to themselves
recursively.

(CALLSYS <filename> <{function> <list> <latd> <booleand)
pseudofunction; SUBR

The first four arguments of CALLSYS are identical in
meaning and function to those of OVERLAY. The operation of
CALLSYS is similar to that of OVERLAY except that before
loading the new overlay, the calling program is saved on a
temporary disk file. Then after executing <function> the
value of the execution and the environment are written onto
ARGS, the saved program is reloaded, the wvalue and
environment are read from ARGS, the environment is re-—
established, and the value is returned as the ~wvalue of
CALLSYS. The environment is passed back into the calling
program so that any changes made in it by the called
function are properly reflected. The temporary file
holding the saved programs operates like a stack so that
chains of overlays may be properly entered and exited. An
exception to this operation occurs if the fifth argument,
{boolean>, is true. If so, the calling program is not
saved, and return from the loaded overlay goes to the
overlay which loaded the overlay that executed CALLSYS with

{boolean> true. This feature is properly used when a
return from CALLSYS would cause an immediate return to =z
lower—level owverlay. Use of this feature eliminates the

1/0 charges otherwise incurred by saving and reloading a
program which will not be used.

-115-

LISP Reference Manual DEC ¢5

Example: Suppose the following run were made. Only the
interesting aspects of the run are shown.

command $ LISP,S=AA. (control command)
action: load AA and resume execution
command : (DIFFERENCE

(CALLSYS "BB "FX (LIST P @ NIL NIL)

(FY PQ))
action: save AA

load BB

execute function FX

reload AA and return wvalue FX
execute function FY

execute function DIFFERENCE

command : (CALLSYS "CC "RST NIL NIL NIL)
action:® save AA
load CC
execute RST, which contains the following
command
command. (CALLSYS "DP "PQR NIL NIL T)
(determine value of RST)
action: load DD

execute PQR

reload AA and return value of PQR as ~wvalue
of RST, etc.

7.3.4 Hints and Warnings About LISP Overlay Use

The file operations of creating and loading overlays are done
by UT LISP as efficiently as possible. The files involwved,
however, <can be quite large and consequently the [/0 charges for
these operations can be very heavy. For example, a 77000 (octal)
word program in overlay form occupies about 350 sectors on the
disk. At 4 milliseconds of charge time per sector transferred, a
LOADSYS of such an overlay costs 1.4 seconds, and a CALLSYS
between one such overlay and another costs 4.2 seconds in I/CG
charges alone. Overlays should be used Judiciously.

Information can be passed between LISP overlays in only three
ways via OVERLAY or CALLSYS: through the argument list for the
funection, through the environment specified, or by means of an
external file written by the caller and read by the callee. It
is particularly important to note that information stored on the
property lists of literal atoms in the calling program is not and
cannot be automatically passed to the called program. One
solution to this limitation is to make sure that the same atoms
and property lists are kept in both overlays. Another solution
is to keep such property list information in an overlay by itself
and reference that overlay any time the information is meeded.

7.8.5 Error Return From CALLSYS

If an error occurs while executing functions in an overlay
loaded by CALLSYS, the appropriate error message and backtrace
are printed if enabled. If the error occurs within the scope of
an ERRORSET in the last-loaded overlavy, then control stays in

-116-

DEC 75 LISP Reference Manual

that overlavy. If, however, no ERRORSET has occurred in the last-
loaded overlavy, LISP backtracks through the chain of loaded
overlays until either the top-level program is restored, or a
program is restored which had an ERRORSET call in it.

The backtracking process involves restoring each saved core-—
image in the reverse order of entry. After each is restored, the
message

keeckkk ERROR: CALLSYS

is printed, followed by the backtrace of the overlay Just
restored, as if it was at the point of entry to the overlay Just
exited. Thus a complete history of the entire chain of overlay
entries can be viewed.

Example:

Suppose program AA has CALLSYSed owverlay BB which has
‘ CALLSYSed overlay CC which has CALLSYSed overlay DD and an

error occurs in overlay DD. Assume that overlay BB has

called ERRORSET. Then the output will contain

KKK EK error: (message for the error)
>>>>> STACK: (backtrace for overlay DD)

ek ERROR: CALLSYS
>>>>> STACK: (backtrace for overlay CC)
wetckeksk ERROR: GALLSYS

>>>>> STACK: (backtrace for overlay BB)

and overlay BB will retain control.

7.4 THE LISP - FORTRAN INTERFACE

A properly-coded FORTRAN overlay may be accessed from a LISP
program to perform some kind of calculation 1o which FORTRAN is

better suited. The facility provided is minimal, but effective.
Note that LISP may link to a FORTRAN program, bhut FORTRAN may not
link to a LISP program. The overlay must have been programmed in

FORTRAN, not some other language similar to FORTRAN. From LISP,
a FORTRAN overlay is accessed by executing the function FORTRAN:

(FORTRAN <filename>)
pseudofunction; SUBR

{filename> is a disk file containing FORTRAN overlays. The
FORTRAN function first saves almost all of the current core
image on a disk file. Only 1/0 buffers and enough code 1o
reload the saved image are retained. A (1,0) overlay is
then loaded from file <filemame> and control passed to it.
The FORTRAN overlay must obey certain restrictions (see
below). Communication between LISP and the FORTRAN program
is via disk files only, and must be explicitly programmed
by the user. The FORTRAN program may access a maximum of 6
files, and these must have been opened by LISP before
loading the FORTRAN program. The FORTRAN function returns
a value of NIL if the overlay load was unsuccessful, or ¥XTk
if loading and execution proceeded normally.

Only programs compiled by the RUN FORTRAN compiler can be

used. Since a small portion of LISP code remains in memory while
the FORTRAN program is active, it is necessary that the FORTRAN

-117-

LISP Reference Manual DEC 75

overlays be so structured that they do not overlay that code.
When the overlays are created by the system loader, a dummy (9,0)
overlay must be included in the relocatable binary input so that
the load address of the (1,0) overlay will be at the proper

point. This (6,8) overlay is mnever wused and c¢an best be
implemented with the following COMPASS program:
IDENT DUMMY
LCC OVERLAY(K file>,9,0)
ENTRY DUMMY
DUMMY BSS <{number>
END DUMMY

{file> is the name of the file on which the absolute overlays are
to be written and <number> is the appropriate value to assure
that the (1,8) overlay starts in the right place. This value may
change with different versions of LISP, but is always available
as the wvalue of the atom FORFIRST. This <number> is not
absolutely critical in the sense that the (1,0) overlay may be
loaded at a higher address and still work; in this case, LISP
reloads it at the correct address.

The FORTRAN program must fit into the field length at which
"LISP is running when the FORTRAN function is called.

7.5 VWARNINGS ABOUT RESERVED FILE NAMES

The file used by the LISP functions when saving core images is
named FROM, and the file used to save core images by FORTRAN is
named FTEMP. These are not LISP files, in the sense that they do
not use the regular LISP buffers. If the user has local files of
these mames, they will be destroyed by LISP if overlays are used.

7.6 VIRTUAL MEMORY FOR FUNCTIONS

LISP programs using many functions dynamically often cannot be
broken into overlays conveniently or become extremely expensive
to run when so partitioned. LISP users may find the wvirtual
memory facility wuseful in these situations. Virtual memory
programs make implicit use of the random access functions to
create a file containing the user’s designated wvirtual functions.
These functions are then capable of having their in—core
definitions removed when they are not being executed by the
running LISP system and can subsequently be recreated from the
information stored in the wvirtual function file.

The wirtual function file contains pointers to the actual
locations of atoms in core instead of the original symbolic
representations of these atoms. Users must therefore either save
the +wvirtual function file along with a DEFSYS of the LISP system
containing their loaded program or recreate the wvirtual function

file on each subsequent run. DISKOUT makes a virtual function
file random. However, if an overlay is created with the wvirtual
functions, re—-entry of the overlay will not cause the wvirtual

function file to be random and a RANDOM I/0 error may occur. The
following functions describe the wuse of the virtual memory
facility.

-118-

DEC 75

LISP Beference Manual

(DISKOUT < fixnumberl> <{fixnumber2> <{1listd>)

(GETD

pseudofunction; SUBR

DISKOUT is the basic function of the virtual memory system.
This function writes the definition of the functions whose
names appear in <list> onto the wvirtual function file
VIRFN. The wuser may change the mname of this file by
changing the value of the system wvariable VIRFN. Fach
function name given in <{list> is assumed to have prewviously
been defined.

DISKOUT also puts a VIRFN property indicator on the

property list of each function name given in <{list>. This
indicator tells the system that the function has been
defined on the virtual function file. Subse quent

redefinition of any function previously used in a call to
DISKOUT causes the disk-resident definition of that
function to be lost.

There are two numeric bounds on the amount of memory the
LISP system allows for in-core definitions of vwvirtual

functions. {fixnumberl> and <(fixnumber2> determine the
respective lower and upper bounds on the size of the in—
core virtual function memory. Two system wvariables

7//CODEMIN and //CODEMAX are bound to these values. Typical
values for //CODEMIN and //CODEMAX are respectively 40060
and 7009, allowing for 4606 1o 7006 words of in—-core
virtual function definitions.

Whenever a function which is not in core is called by the
LISP oprogram, LISP checks to see if it will fit in core
without exceeding //CODEMAX (i.e., <fixnumberZ2>). If so,
the function 1is read into core. If not, functions which
have resided longest in in-core virtual function memory are
removed until the amount of in core code is less than
/7CODEMIN; then requested function is bhrought into core and
execution continues. This transfer is of course performed
in a manner which is transparent to the running program.

DISKOUT returns <list> as its wvalue.

{litatom>)

pseudofunction; SUBR

GETD returns the functional definition of <litatom> by
getting the wvalue associated with the EXPR or FEXPR
indicator on <litatom>’'s property list. GETD can be used
to force the retrieval of <litatom> from the wvirtual
function file if its definition is not presently in core,
provided <litatom®> has been the argument of a previous call
to DISKOUT. For more information on GETD see section 4.7.

-119-

LISP Reference Manual DEC 75

8. DEBUGGING THE LISP PROGRAM

This chapter explains the causes and cures of the errors
detected by UT LISP and offers general advice for debugging LISP
programs. In the interpretive mode, LISP has wvery powerful
error—checking capabilities, and the associated messages can
provide the user with considerable information to aid in
debugging his program. Extensive error checking is mnot provided
in compiled LISP code in order that it may run faster; it is
assumed that compiled functions have been thoroughly debugged
before compilation.

8.1 DAYFILE ERROR MESSAGES

The following DAYFILE error messages are currently given by
UT LISP. All errors indicated by DAYFILE messages are absolutely
fatal to execution.

INSUFFICIENT FIELD LENGTH

This message is given when the LISP system finds that the field
length provided permits an impractically small amount of free and
full-word storage. A field length of 50000 (octal) is
recommended as the minimum practical size.

PARAMETER ERROR <letter>

This message is given when parameter {letter> on the LISP control
command violates the restrictions described in section 2.1.1.
These restrictions are that X, S, I, and O can appear only once
each, and that C cannot appear in combination with I or 0. Also,
single—letter names may not be used for user—defined subsystems.

CANT LOAD <filename>

This meésage is given when <filemame> appears on the control
command as @a subsystem mname and there is some error during
loading. This error implies that there is something wrong with
the file.

8.2 UT LISP ERROR MESSAGES AND THEIR MEANINGS
Three typés of error messages may appear during a LISP run:

(a) Informative messages. These messages report conditions
which are not fatal to execution but should demand user
attention. After printing the message, the LISP system
continues execution as best it can. These messages are
preceded by /////.

(b)> Recoverable errors. Errors represented by these
messages cause execution of the current expression or
doublet to be terminated. The LISP system is able to
recover, however, and continune with the next expression
or doublet. Each message is preceded by *kX¥k, and is
associated with an ‘"error code" atom whose value is
passed to EVAL upon detection of the associated error
(see section 8.5).

-120-

DEC 75 LISP Reference Manual

(c¢c) Non—-recoverable errors. Errors represented by these
messages cause the entire LISP run to be terminated.
These messages are preceded by 111178,

All error messages are set off from the rest of the output by
blank lines before and after, and therefore should be easily
spotted by the user. Most recoverable error messages are
accompanied by a backtrace. Informative messages and non-—
recoverable error messages are not so accompanied. The backtrace
is a reduced 1listing of the contents of the LISP stack at the
time of the error, and the primary informatiomn it conveys to the
user is the sequence of functions which have been entered, but

not completed. In form the backtrace is:
>>>>> STACK: (<{mame> <name> <name> ... <name>)

for as many lines as are necessary. In the case of EXPR and
FEXPR functions, <mame> is actually a list containing the
function name and the actual parameters with which it was called.
Occasionally, information other than, function names, such as
lists and numbers, may appear, but the chief fact of interest to
the user is that every function entered, both user—defined and
system—def ined, is named on the stack. The names are printed in

forward order, with the most—-recently-entered fumnctiom appearing
last (see section 8.4).
8.2.1 Errors Detected During Input

These errors imply that the user’'s data is incorrect. They
can be eliminated only by revising the data.

s//77 ILLEGAL DOTTED PAIR SYNTAX

While reading an S—expression, LISP dectected omne of the

forms

——— S-expl . S-exp2 . S—exp3)

or ——— S-expl . S-exp2 S-exp3)
Only --- S-expl . S-exp2) is a legal dotted pair. S-exp3
is completely ignored, and LISP continues. If the file is

being listed as it is read, this message appears directly
beneath the line containing the error.

s/7// 1LLEGAL SEQUENCE .)
s/s777 ILLEGAL SEQUENCE (.

These two character sequences are illegal in an S-
expression. The period is ignored in both cases. If the
file is being listed as it is read, the message appears

beneath the line containing the error.

/7777 CONSECUTIVE DOTS

Two or more consecutive periods were found in a dotted
pair. All but the first period are ignored. If the file
is being listed as it is read, this message appears beneath
the line containing the error.

L dd

44

HAHKKK

8.2.2

8.2.8
RAKkKK

KRR

LISP Reference Manual DEC 75

UNMATCHED RIGHT PARENTHESES

This message occurs if the first non—blank character of a
new S—expression is a right parenthesis. The implication
is that there is an excess of right parentheses over left
parentheses. The extra parentheses are ignored. If the
file is being listed as it is read, this message appears
directly beneath the line containing the error.

EXTRANEQUS DOTS

This message occurs if the first character read for an S-
expression is a period. That is, one or more periods
appear between S-expressions on the input file. The
periods are igmnored. If the file is being listed as it is
read, this message appears directly beneath the line

containing the error.

UNMATCHED LEFT PARENTHESES

Code: ERRII1

This message occurs if an end-of-file is read before
sufficient right parentheses have been read to match all
left parentheses. It is symptomatic of missing data cards.

Errors Detected During Output
See section 5.3.

Errors Detected by File Manipulation Functions
ATTEMPTED TO OPEN MORE THAN SIX FILES
Code: ERRI2

This error occurs for calls to the RDS, WRS, REWIND,
ENDFILE, or OPEN functions which attempt to open a seventh
file. LISP can accommodate only six files at one time. If
more than six files are meeded, the advised approach is to
CLOSE a file and open it again later if necessary.

ATTEMPTED TO CLOSE SYSIN OR SYSOUT

Code: ERRIS

This error is detected by the CLOSE function. It is never
permiss ible close the file which is equated to either

SYSIN or SYSOUT'. SYSIN and SYSOUT must always exist. They
may be changed, however (see chapter 5).

-122-

DEC 75

KKK

8.2.4
sk

Rk

SIS
oL edd

e dd

LISP Reference Manual

RANDOM 10 ERROR: <filename>
Code: ERRRI1
This error is detected by either RANIN or RANOUT when a
random I/0 operation is attempted on a file which has not
been opened in random mode. (See section 5.2 for opening a
file in random mode.)
Errors Detected by the Garbage Collector
INSUFFICIENT FREE SPACE
Code: ERRGC2
INSUFFICIENT FULL SPACE
Code: ERRGCS

This error occurs when the system was only able to recover
less than 1/64th of the space initially allocated to the

indicated area. The implication is that it would be futile
to continue execution, since garbage collection would occur
more and more frequently with less and less gain. When

this error occurs, the system returns control to the last
occurrence of ERRORSET or to SYSIN, whichewver occurs first.
The problem can be cured most easily by increasing the

field length for the next run. Alternatively, the A
parameter on the LISP control command may be adjusted (see
chapter 2). Decreasing the value of the A parameter

effectively allocates more of the given space to the full-
word space 7region, whereas increasing the value allocates
more to the free space.

FREE SPACE IS CROWDED
FULL SPACE IS CROWDED

One of these two informative messages occurs if the garbage

collector finds that less than 1/16th of the allocated

space in the respective region is available. These

messages indicate that the program may run more effieciently

either in a larger memory space or else with adjustment in

éhe A parameter on the LISP control command (see chapter
).

GARBAGE COLLLECTED: <nl1> <n2>

This informative message appears every time a garbage
collection occurs if the G parameter is specified on the
LISP control command, or if it is turmed on by setting //GC
to true (see section 4.14). In the message, <{nl> is the
number of free—space words which were recovered and <{n2> is
the number of full space words which were recovered.

8.2.5
RARKKK

KKK

Rkskkek

LISP Reference Manual DEC 75

Errors Detected by the Interpreter
UNDEFINED FUNCTION: <name>
Code: ERRA3

The interpreter has encounntered an atom, <mame>, which is
syntactically in the positionm of a functiom name and for
which it was unable to find a functional definition. Most
commonly this error is caused by an extra set of
parentheses around a form within a LISP expression. Such a
pair of parentheses causes the LISP interpreter to treat
the results of the enclosed form as another call on a
function. Typically, the result is some data list whose
first element is not a function name. Another cause is the
omission of a mecessary QUOTE in fromt of a data list,
causing the data list to be interpreted as a form.
Finally, this error may arise if there is a parenthesis
error within the expression or doublet which (is supposed
to have) defined the function. Such an error may cause the
function not to be recogmized by DEFINE or DEFLIST. The
backtrace indicates the functionm within which the erroneous
function call occurred.

NUMBER TREATED AS FUNCTION: <{number>
Code: ERRA4

This error occurs when the interpreter finds (number> in a
position where it expects a functiom name. The causes of
the error are the same as for the "undefined function"
error, that is, an extra set of parentheses around a form
or else a missing QUOTE. Again, the backtrace indicates
which function contained the erroneous information. The
number itself is printed in the message.

RECURSION LIMIT EXCEEDED: < list>
Code: ERRAS

Certain information is placed on the stack when a function
is entered and is removed from the stack when the function

is eéexited. Typically the amount of information placed on
the stack is from two to six words. This error occurs when
there is no more room on the stack. It is impossible to

specify how many. levels of recursion are allowed by the
system, since the limit depends on the particular sequence

of functions which are entered. In general, though, a
stack size of one thousand words seems to allow two hundred
to three hundred levels of recursion. Technical reasons

for this error to occur are the failure of the programmer
to include terminating conditions in a recursive function.
The error may occur in certain system functions such as
PRINT and APPEND, if they are given a circular list to
process. Finally, it is possible that a recursive function
is operating on data which causes it to recur too many
times., If the latter is the case, then it is advisable to
rewrite that function in an iterative manner using the PROG
feature. This problem can also be eliminated by increasing
the stack size wvia the B parameter on the LISP control
command. No backtrace is given with this error. <list> is
a list of the last eight entries on the stack.

-124~

DEC 75

‘LISP Reference Manual

¥xkxk% UNBOUND VARIABLE: <mname>

WA

Reskeskstesk

KRR A

8.2.6
kAskskk

Code: ERRA®

A variable which has not been assigned a ~value can be
detected by the LISP system. This message occurs when the
value of such a variable is required in a computation.
{name> is the supposed wvariable and information about the
function in which it was encountered is given in the

backtrace. Typical causes of this error are a keypunch
error or a missing QUOTE around a data atom, in which case

the data atom is evaluated as a wvariable. This error is
not detected within compiled functions.

TOO MANY ARGUMENTS: <name>
Code: ERRAY
TOO FEW ARGUMENTS: <name>
Code: ERRAS8

One of these errors occurs when a user—-defined EXPR
function is called with either too many or too few
arguments. These conditions are not detected for machine-
coded SUBRs or compiled functions. <mame> is the function
which was improperly called and the name of the calling
function appears in the backtrace information. The user
must redefine his function or correct the functionm call to
correct this error.

NON-HIERARCHICAL FUNARG
An error has occurred in "unpeeling" the stack, probably
caused by incorrect use of "funarg" expressions. No
backtrace is given.

Errors Detected Within Particular LISP Functions

ILLEGAL ARGUMENT: ({fmn> . <{arg>)

Code: ERRA1

This error is detected by several LISP functions. In this
message the system prints the result of (CONS <fn> <arg’),

where <fn> is the name of the function which received <arg
as its illegal argument. The backtrace gives the name of

the functiom within which the <c¢all was made. The user
should consult the function descriptions (chapters 4, 3, 6,
Y, and ©9) to determine the reasons for the error. This

error typically occurs when a function is given an atom
when a list is expected or vice wversa, or else when a
numeric function is given a non-numeric argument. At times
the function name given may not seem to be related to the
function called by the wuser, since certain of the LISP
system functions call other functions.

-125-

bt 3

L 3 2

KRRk

KKK

EE S 33

-y

o

LISP Reference Manual DEC 75

ILL-FORMED ARGUMENT: <name>

Code: ERRA2

This error is similar to the illegal argument error. It
occurs when a mon—list dotted pair is given to a function
which expects a list and looks for the NIL terminator of
that list. <name> is the function receiving the ill-formed
argument. The wuser must rewrite his call on the function
to correct the error.

ERROR: <s>

Code: ERRAG

This message occurs for a user—detected error when the user
calls the system ERROR function. The message includes the
S—expression <s>, which is the argument to the ERROR
function and can be anvthing the user desires.

RETURN OR GO OUTSIDE A PROG

Code: ERRPI1

This error occurs if a RETURN or G0 function was called
within another function which was not executing within the
overall control of a PROG expression. This situation Iis
not allowed and the user must redefine the function teé
correct the error.

GO TO NON-EXISTENT LABEL: <mname>

Code: ERRP2

Within a PROG expression the function GO was called with a
non—-existent label, <name>. The most common cause of this
error is a keypunch error.

CHARACTER BUFFER EXCEEDED

Code: ERRCI1

Detected by the PACK function, this error occurs when an
attempt is made to pack more than the 1limit of 129
characters into the character buffer.

NON-MATCHING OVERLAY

The UT LISP system is not a static one, but evolves in

time. LISP overlays created under one version of the
system are not likely to be able to run wunder another
version of the system. The system contains internal
information specifying which wversion it is, and each

overlay contains the version under which it was created.
The two version numbers are compared when an overlay is
loaded and this error occurs if theyv do not match. It is a
fatal error since execution would almost surely be
unsuccessful. To correct the error the user must redefine
this overlay under the current version of the system.

-126-

DEC 75 LISP Reference Manual

t111t JLLEGAL FORMAT FOR //MODE

The system control variable //MODE determines the top—level
behavior of LISP. It must have the format

({function> . {positive—integer>)

Anvy deviation of //MODE from this format terminates
execution. However, for conversational mode, LISP sets
//7MODE to (EVAL . 1) after printing the error message and
then returns to execution of SYSIN.

1111t KILLED: <s>

This message occurs when the user purposely terminates a
program by executing function DIE with <s> as its S-
expression argument.

8.3 WHAT TO DO IF THE ANSWER IS WRONG

It is often the case that a program executes without any of
the errors previously described, vet gives incorrect results. In
such a case the user must apply a debugging procedure to
determine the errors in his own functions. We shall try here to
indicate a reasonable procedure for debugging running LISP
programs.

It is assumed that the user is familiar with the purposes of
each of the functions that he is attempting to use. If this is
true, then a study of the form of the incorrect result often
indicates approximately where within the set of functions the
error is occurring. This loc¢ation greatly reduces the amount of
debugging effort required, since the user’s attention can then be
focused on that area. In any event the first step is to
carefully review the form of the functions as they were input to
the LISP processor. This review is facilitated by a listing of
the functions which shows the parenthesis level count, obtained
by using the P parameter on the LISP control command (see chapter
2). With such a listing, the user should carefully scrutinize
his function definitions, making certain that they are
syntactically correct. It is possible for simple parenthesis
errors to cause a function to have a form such that it neither
serves the intended purpose nor causes a LISP system error. Any
errors in syntactic form discovered in this way should be
corrected, and the Job rerun to determine if an erroneous answer
still occurs.

Once the syntactic forms of the user’s functions are correct
and an erroneous result still occurs, then the wvarious tracing
facilities of the LISP system can be used to gain more
information about the behavior of the functions. The TRACE
function described in chapter 4 is used to turn on tracing for

any selected set of user and/or system—defined functions. Its
converse, the UNTRACE function, can be used to selectively turn
off such tracing. When a function is traced, then when that

function is entered the arguments which were actually received by
it are printed, and when it is exited the value it generates is
printed. The trace output is produced even when the function is
entered via recursion from within itself. Thus, tracing a
recursive function vyields complete information about the way it
operates on a given set of data.

-127-

LISP Reference Manual DEC 75

Tracing of functions should be used very carefully. The extra
printing involved in the tracing information costs the user both
pages of output and extra time. If a great many functions are
traced at one time, these extra costs can add considerably to the
cost of a Job. It is suggested, therefore, that the user trace
only those functions of which he suspects erroneous operation.
Also, he should trace those functions while they are operating on

a minimal-sized data set which will reproduce the error. A very
useful procedure to apply is to make one run tracing all of the
functions in which a suspected error is occurring. Then, by

reviewing the output, the user can determine which of the traced
functions are operating correctly, and perhaps which of the
functions is operating incorrectly. If the erroneous function(s)
cannot be determined for one reason or another, the tracing
output will wsuwally point to some other functions which may not
have been traced that are better candidates to be traced the next
time. Then the mnext test run should be made without tracing
those functions which are known to be operating correctly. Thus,
through a propgressive sequence of runs the erroneous function can
be isolated.

Tracing, as has Just been described, is very useful for

debugging recursive functions. It does mnot, however, always
vield complete information about iterative functioms which have
been written using the PROG feature. In this case, tracing shows

. the arguments which were received by the function; and shows the
value which was returmned by the funmctioen; but shows mnothing of
what happened in between, unless the iterative function is also
recursive. For such functions another tracing procedure is
available, mnamely, the TRACESET function. This function and its
converse, the UNTRACESET function, are both described in chapter
4. They allow one to selectively turn on and turn off the
tracing of all SET and SETQ value assignment statements within a
PROG expression. When TRACESET has been applied to a given
function then every time a wvariable is assigned a value via the
SET or SETQ@Q functions within the PROG expression (or in any
recursive function which is executed under the control of the
PROG expression) a line is printed showing the variable and the
value which was assigned to the wvariable at that time. Since
iterative functions wuse wvariables to hold temporary results, to
count, and so on, the TRACESET option allows one te obtain almost
complete information about an iterative function. The same
warning about the cost of using the TRACE function is given with
respect to the TRACESET function.

By Judicious use of the TRACE and TRACESET functions the wuser
can mnormally determine very closely the point at which an
erroneous answer is being generated. In the unlikely event that
the error appears to occur within one of the system—defined
functions, the user should report such a finding to one of the
Computation Center’s consul tants, showing him the output
necessary to support the conclusion.

Tracing is not always as flexible as might be desired. For
instance, it might be desirable to trace a certain function only
when it is called by some particular function, instead of every
time the function is called. Such selective tracing may be
accomplished if within the particular calling function, the call
to the function to be traced is immediately preceded by a TRACE
call and immediately followed by an UNTRACE call. Or the wuser
might wish to actually program the printing of intermediate
results. This is quite easily dome in LISP since the PRINT
function is an identity function. That is, it returns its
unchanged argument as its wvalue. Therefore, any form which

DEC 75 LISP Reference Manual

appears in the LISP program may be made the argument to PRINT
without affecting the result of the program.

To reiterate, we shall state the debugging procedure as a
step—wise process.

(1) From a listing with parenthesis counts, check for and
correct syntactic errors.

(2) Use TRACE and/or TRACESET to selectively trace the
functions which are believed to Dbe in error, and
progressively isolate the functions which actually are
in error.

(3) Correct the erroneouns function(s).

8.4 UNDERSTANDING THE UT LISP BACKTRACE

The backtrace is a condensed listing of the content of the
system’s pushdown stack. It contains a history of the activity
ofkthe system up to the point in time at which the backtrace is
taken.

Of most interest is the appearance of the names of all
functions which were entered but have not yvet completed. Of ten
these names appear twice, side—by-side in the backtrace, because
in addition to either EVAL or APPLY the function itself put its
name on the stack. The user should not be alarmed by this
duplication.

Other symbols, particularly EVAL and EVLIS, may appear even
though the user did not call these functions, since thev are used
internally by the LISP interpreter. If the backtrace is taken
while a set of function arguments is being cvaluated, then the
already-evaluated arguments appear omn the stack.

8.5 PROGRAM DETERMINATION OF ERROR TYPE

Some of the error messages listed in section 8.2 have a code
associated with them. This code identifies a particular error
type within LISP. Each code is an atom.

Whenever one of these errors occurs, the code associated with
it is made the value of the atom ERRORTYPE. By interrogating the
value of ERRORTYPE, one can determine the type of the last-—
occurring error. ERRORTYPE initially has the wvalue NIL. This
facility is useful in conjunction with ERRORSET, which allows a
program to recover from amn error, or when running interactively
with the 7Z control command paranmeter (see section 2.1). The
further course of the computation may be guided by knowing what
error occurred.

An additional facility prowvided by LISP .is that of error trap

procedures. FEach error code atom has a value which is considered
to be a form to be evaluated when the error occurs. Initially
these atoms are all bound to NIL. If the wuser, however, binds

some other form to the atom then that form is evaluated, but only
after any interrupt expression has itself been evaluated (see
chapter 9).

LISP Reference Manual DEC 75

9. INTERACTIVE USE

The previous chapters have discussed most of the facilities of
UT LISP. These facilities are available to both the batch wuser
and the interactive wuser. This chapter explains some slight
peculiarities in the behavior of LISP when used in the
interactive mode and an additiomal facility, the interrupt, which
is primarily useful to the interactive user.

9.1 INTERACTIVE 1,0 BEHAVIOR

When the C parameter is specified on the LISP control command,
LISP is initialized to operate interactively (conversationally).
Three things happen when this is done:

1) SYSIN and SYSOUT are both equated to file TTY and are
associated with the same buffer area.

2) The size of that buffer is reduced from 512 words to 10
words and the output 1line length is set to 70
characters.

3) Printing of top—level input on SYSOUT is disabled.

LISP outputs information only when the buffer for a file is
full or whenever for a given file a read operation occurs after a
write operation. Item 1 above assures that all generated output
will be sent to the terminal before LISP requests its mnext input
line, keeping the proper sequence of input and output. The
second change above causes output to be sent to the terminal
sooner than if a large buffer were used. This means that what
the user sees at his terminal is more in synchrony with what LISP
is actually doing at that moment. The third item merely
recognizes that if the user is typing his inpnt at a terminal,
the input is already visible to him.

The fact that S7SIN and SYSOUT share a buffer in interactive
mode does impose some restrictions that do not apply in batch
mode !

1) Top—-level expressions may not be typed accumnlatively.
That is, a new one should not be typed until all output
generated by the current one has been sent to the
terminal.

2) If a data input line contains several S-expressions to
be read by several executions of READ, no output
functions may be executed until the entire line has been
read. For example:

If yvour program contains

(PROGN (PRINT (READ)) (PRINT (READ)))
and on the first input request you type
A B

then

A

-136-

DEC 75 LISP Reference Manual

will be printed and LISP will requestlmore input
instead of reading B from the first input 1line.

Note that these comments apply only to terminal input.
Interactive LISP programs may manipulate disk files in
the same way as batch programs.

3 It 1is not possible to get a parenthesis count line for
terminal input.

9.2 INTERRUPTS

An interrupt is a means for suspending the normal execution of
a program and performing a task (perhaps independent of that
program) in such a way that the suspended program execution can
be resumed as if no interruption had occurred. Interrupts are
provided in the hardware of many machines. They are usually used
to enable processing intermittent, real-time evenis, such as the
occurrence of errors or the input of characters from the keyboard
terminals of a timesharing system. The CDC 6006 series computers
do not have hardware interrupts, but UT LISP prowvides for the
simalation of up to 12 interrupts. The UT LISP interrupt feature
is most wuseful in interactive execution mode, since the TAURUS
timesharing system supplies the mechanism for simulating real-
time interrupts (see section 9.2.2). However, UT LISP interrupts
can also be effected during batch executions.

When an interrupt occurs, UT LISP preserves the state of the
program, evaluates a specified "interrupt expression", and then
restores the preserwved state. By wusing DEFINT (see section
9.2.2), the user can define a unique expression to be evaluated
for each interrupt. The interrupt expressions may do anything
valid in the context in which they are evaluated, including
interaction with the user. User interaction is most easily
achieved by calling function SYSIN (see section 4.12) within the
interrupt expression.

9.2.1 Uses for LISP Interrupts

There are three main purposes for using interrupts with a LISP
program: D) to query the program status, (2) to determine the
cause and cure of an error, or (3) to effect special control.

If the expression evaluated in response to an interrupt
converses with the user, he can determine something about the
status of his program. He can execute BACKTRACE (see section
4.12) to see what is on the stack, evaluate wvariables, look at

function definitions, and so on. When the interrnpt expression
has completed evaluation, LISP continues execution of the
interrupted process. Notice, however, that any changes in

variable wvalues, etc., which occurred during evaluation of the
interrupt expression are effective when the interrupted process
resumes .

When an error occurs, its corresponding message is printed.
Then, if system variable //ZAP (see section 4.14) is mon—NIL, the

interrupt corresponding to the value of //ZAP occurs. If the
interrupt routine permits doing so, the status of the program may
be checked and the cause of the error determined. Then it is

sometimes possible to correct the cause of the error and resume
execution as if the error had not occurred (see RETFROM, section
8.3), There is no useful general procedure for such recovery;
each case requires special attention.

-131-

LISP Reference Manual DEC 75

Two interrupts are automatically evoked by actions of the LISP

system. Interrupt 83 occurs at the first application of EVAL
after a garbage collection occurs. By defanlt, the wvalue
associated with interrupt 3 is NIL and no action occurs. If some

action is desired, the user may specify an interrupt expression
for interrupt ‘3 by wusing function DEFINT (section 9.2.2).
Interrupt 2 is triggered by use of the function EVALTRAP (see
section 9.2.3).

Finally, an interrupt expression may be wused to canse some
side effect which influences the course of the computation. Such
a use could be a potentially powerful tool.

0.2.2 Effecting Interrupts

The interrupt expression evaluated when an interrupt occurs is
the bound value of the system wvariable //INT<{n>, where <{(n> is an
integer in the range 1 through 12, The default interrupt
§x¥ressions present in the UT LISP system are shown in the table

e iow.

Interrupt Default Interrupt Expression

e o et s S s st e it e et S et S s S e B e e s e S ot e o ot ot it e S S

1-2 (PROGN (PRINT $$$///// INTERRUPTS)
(SYSIN (QUOTE TTY)))

3-5 NIL
6 (PROGN (SETQ ~/~/INPUT "(INPUT ./SYSIN))
(SETQ@ ~/MODE "(EVAL . 1)))
7-12 NIL
It is possible to lose control of LISP if //MODE or //INPUT get
set to bad wvalues. Interrupt 6 may be used to try to recover

control.

Users may establiszh an interrupt expression by SETting the
appropriate variable //INT<n> or by executing function DEFINT.

(DEFINT <fixnumber><{exp>)
pseudofunction; SUBR

DEFINT binds <exp> to the system variable //INTXfixnumber>,
where <fixnumber> must be in the range 1-12. <exp> is
subsequently evaluated when interrupt <fixnumber> occurs.

During interactive execution, a LISP interrupt can be caused
either by the program itself or by the TAURUS user. During batch
execution, only the program can cause an interrupt. A LISP
interrupt is evoked under program control by executing the LISP

INTERRUPT function.

“(INTERRUPT < f ixnumber>)
pseudofunction; SUBR

INTERRUPT evokes the simulated interrupt <fixnumber>, which
results in the evaluation of the interrupt expressiom bound

-132-

DEC 75 LISP Reference Mannal

to the system variable //INT{fixnumber>. <fixnumber> must
be in éhe range 1-12 or be NIL. If NIL, interrupt 1 is
assumed. :

The TAURUS wuser can cause a LISP interrupt by typing the
appropriate TAURUS INTERRUPT command shown below.

TAURUS Command

LISP Interrupt Long Form Short Form
<n> <BEL> INTERRUPT=L< n> < CR> {BEL> I=1<{n><{CR>

6+<n> <{BEL> INTERRUPT=S<n><CR> {BEL> I=S<n><CR>

In the TAURUS commands, <{m> must be in the range 1-6, <BEL>
represents the TAURUS ‘"bell" issued by simultaneousiy striking
the "CNTRL" and "G" k?ys, and <CR> represents the RETURN kevy.

The "=I<{n>" form o the command sets sense light <n>, which
corresponds to the LISP interrupt <mn> (i.e., interrupts 1-6).
The "=8<m>" form of the command sets sense switch <n>, which

corresponds to the LISP interrupt 6+<m> (i.e., interrupts 7—-12).

EVAL monitors the sense lights and switches during its
execution and when one is ON, a simulated interrupt occurs. The
response to the TAURUS INTERRUPT command is not immediate, but

should be fairly fast when programs are being interpreted. When
LISP execution is primarily in compiled c¢ode, response mav be
siow, since response is a function of how frequently EVAL is
executed.

9.2.83 The Trap Function

(EVALTRAP‘<fixnumber>)
Pseudofunction; SUBR

EVALTRAP resets an internal counter to <{fixnumber>. Each
time the interpreter invokes FEVAL this counter is
decremented by 1. When the counter becomes negative the
system resets the counter to 2%%539 — 1 (the default value)
and causes interrupt 2 to occur. Thus EVALTRAP acts as a
bound on the amount of work the LISP system can do before
an interrupt occurs. The user can control what occurs when
interrupt 2 is triggered by wusing DEFINT to associate
expressions with //INT2.

Possible applications of EVALTRAP include simulating a
"time trap", checking for infinite Jloops or running an
interactive program requiring periodic inspection of its
progress. EVALTRAP returns its argument as its wvalue.

9.3 RETURN FROM NESTED FUNCTION INVOCATIONS

This section is included here because the facilities described
are most often useful when the interrupt-on—error capability is
activated in interactive mode. These facilities allow one to a)
pinpoint the stack entry for =a previous invocation of some
function, and b) exit directly from that particular invocation

-133-

LISP Reference Manual DEC 75

with a value as though all subsequent function invocations were
comple ted. Thus, suppose that on the [nlth invocation of some
function, an error interrupt occurs, and the user knows that if
no error had occurred the result of the [n — ilth invocation
should have been <x>. Then the user can specify fto exit directly
from the [ilth most recent invocation with wvalue <(x>, and the

computation will proceed as though the error had not occurred.
Two functions are used:

(NTHFNBK <atom> {fixnumber>)
pseudofunction; SUBR

NTHFNBK searches the stack, starting from the current top,
for the <(fixnumber>th occurrence of the function name
<atom>. NTHFNBK returns the stack index of that entry.

(RETFROM < f ixnumber> <exp>)
pseudofunction; SUBR

The <fixnumber> is a stack index for some function
invocation as found by NTHFNBK. RETFROM causes the stack
to be "peeled" back to that point, and then exits the
indexed function with the value of <{exp> as the wvalue of
the function. Note that {exp> is evaluated after the stack
has been "peeled" back, in the environment that held when
the function was invoked. Also, the effects of TRACE and
TRACESET may be affected by a call to RETFROM.

-134~

DEC 75

Name

ABCLISH
ADDR
ADDRP
ADD1
ADVANCE
ALIST
ALPHAP
AND
APPEND
APPLY
ATOM

A+

A._

BACKTRACE
CALLSYS

CAR

CDR
CHLEX
CLARRAY
CLEAFRBUFF
CLOSE
COMMENT
COMP ILE
COMPRESS
CONC
COND

CONS
COPY
CP
CSR
C...R

DATE
DEADSTART
DEF

DEFF

DEFINE

DEFINT
DEFLIST

LISP Reference Manual

ALPHABETIC INDEX OF UT LISP SYSTEM FUNCTIONS

Type Section Arguments
SUBR 5.9 <filename>
SUBR 4,12 <s>
SUBR 4,12 {s>
SUBR 4.9 <number>
SUBR 5.5 {boolean>
SUBR 4,12
SUBR 4.3 <litatoml><1litatom2>
FSUBR 4. 4 <expl><exp2> ... <explnl>
SUBR 4.6 {list><s>
SUBR 4.5 {function><1list>
SUBR 4.3 {s>
SUBR 4.3 {s1><s2>
SUBR 4.3 {sI><a2>
FSUBR 4,12
SUBR 7.3 K{filename><{function>
<list><{lat><bhoolean>
SUBR 4.3 <{nats>
SUBR 4.3 <{nats>
SUBR 5.7 {character><f ixnumber>
SUBR 4.13 (litatom>
SUBR 4,10
SUBR 5.2 {filename>
FSUBR 4.3 Cs1><s2> ... <slnl>
SUBR 6.2 <lat>
SUBR 4.10 <lat><{boolean>
FSUBR 4.6 <listI><1list2> ... <listlnl>
FSUBR 4.5 ({booleanl><exp> ... <exp>)
(<{boolean2><exp> ... <exp>) ...
({booleanlnl><exp> ... <exp>)
SUBR 4.3 <sI><s2>
SUBR 4.6 <{s>
SUBR 4,12
SUBR 4.3 {nats>
EXPR 4.3 <nats>
SUBR 4.12
SUBR 4.12
FSUBR 4.7 (<{litatoml><1latid><s1>)
({litatom2><1lat2><s2>) ...
(Klitatomlnl><latinl><slnl>)
FSUBR 4.7 ({litatoml1><lati><s1>)
({litatom2><1at2><s2>) ...
(<litatomlnl><latinl><sCnl>)
SUBR 4.7 ((<litatoml><s1>)
(<litatom2><s2>) ...
(<litatomlnl><slnl>))
SUBR 9.2 {fixnumber><{exp>
SUBR 4.7 ((Klitatoml><s1>)
({1litatom2><s2>) .
(Klitatom[nl><slnl>))<{litatom

-135-

LISP Reference Manual DEC 75

Name Type Section Arguments

DEFSYS SUBR 7.2 <filename><{boolean>
DIE SUBR 4,11 {s>

DIFFERENCE SUBR 4.9 <{number 1><{number2>
DIGIT SUBR 4.10 {s>

DISKOUT SUBR 7.6 {fixnumber1><fixnumber2><1ist>
DIVIDE SUBR 4.0 <number I><{number2>
EFFACE SUBR 4.6 <s><1list>

ENDFILE SUBR 5.9 <filename>

ENDREAD SUBR 5.5

EQ SUBR 4.3 {g1><s2>

EQN SUBR 4.8 <sl1><s2>

EQUAL SUBR 4.3 <sl1><s2>

ERROR SUBR 4,11 <s>

ERRORSET SUBR 4.11 Cexp><{booleani1><boolean2>
EVAL SUBR 4.5 {exp>

EVALQUOTE SUBR 4.5 {function><list>
EVALTRAP SUBR 0.2 <fixnumber>

EVLIS SUBR 4.5 <list>

EXIT SUBR 4.5 <litatom><s>
EXPLODE SUBR 4.10 <atom>

FIX SUBR 4.9 {fIlnumber>

FIXP SUBR 4.9 {number>

FLAG SUBR 4.7 {lat><{litatom
FLOAT SUBR 4.9 <{fixnumber>

FLOATP SUBR 4.9 {number>

FORTRAN SUBR 7.4 {filename>

FQUOTE FSUBR 4.3 (s>

FREE SUBR 4.12

FULL SUBR 4,12

FUNCTION FSUBR 4.5 {function>

GENSYM FSUBR 4,12 {letter>

GET . SUBR 4.7 <litatoml><litatom2>
- GETD " SUBR 4.7 {litatom>

GETEL SUBR 4.13 <litatom>

(<fixnumber1><{fixnumber2> ...
{fixnumberinl>)

GETPN SUBR 4.7 {litatom>

GO FSUBR 4.5 <litatomw>

GRADP SUBR 4.3 Ksld><s2>

GREATERP SUBR 4.9 <{number 1> <{number2>
IMAGEL SUBR 4.106 Catom><booleand>
INBIN SUBR 5.10

INPUT SUBR 5.4 {filename>

INTERN - SUBR 4.10 <fwl> or <litatom
INTERRUPT SUBR 9.2 {fixnumber>

ISPACE SUBR 5.7 {number>

ITAB SUBR 5.7 <{number>

LABEL FORM 4.5 {litatom>< lambda expression>
LAP SUBR 6.3 {s1><s2>

LEFTSHIFT SUBR 4.9 {number>< {f ixnumber>
LENGTH SUBR 4.6 {s>

LESSP SUBR 4.9 {number 1><number2>

-136-

DEC 75

Name

LIST
LISTING
LITER
LOADSYS
LOGAND
LOGOR
LOGXOR
LOOK

MAP
MAPC
MAPCAR
MAPCON
MAPLIST
MAX
MEMBER
MEMO
MIN
MINUS
MINUSP
MKARRAY

MKNAM

NCONC
NFORMAT
NOT

NTH
NTHFNBK
NULL
NUMBERP
NUMOB

NUMTOATOM

OCTAL
ONEP
OPCHAR
OPEN

OPENF ILES
OR

OSPACE
OTAB
OUTBIN
OoUTPUT
OUTPUT1
OVERLAY

PACK
PAIR
PLUS
PP
PPRINT

Type

FSUBR
SUBR
SUBR
SUBR
FSUBR
FSUBR
FSUBR
SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR

SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
SUBR
SUBR

SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
FSUBR
SUBR
SUBR

Section

o o

Pt @b

« o o

= OOOWWLOOOERN —OOVOW—~=L

NN N NONIT NI NN TN N TIPS TN
W

P,
(=)

O WA RN

(L)

e e e« s e

« o

bbb BABRDROBRAILE B
@

I\ = OO

« e e+ o

W ON = WWW=WHID
) @

s e o o

GLR B BD AIGIGIOITIAN R O
[\

.

LISP Reference Manual

Arguments

<s1><s2> ... £s[nl>

<{s?

s>

<filename>

{number><{number> ... <{number>
<{number><{number> ... <number>
<{number><{number> ... <number>

{fixnumber>

<list><fnexp>
{list><{{fnexp>
{list><fnexp>
{list>< fnexp>
(list><fnexp>

{number><{number?> ... <{number>
(s><1list>

<s><1list> ,
<{number><{number> ... <{number’>

{number>

{number>

{litatom>
({fixnumber 1><f ixnumber2> ...
{fixnumberinl>)

{(list><{s>
2f§xnumber1>(fixnumber2>
s

(list><{fixnumber>
<(atom < fixnumber>

(s>

{s>

{number>

{number>

<number>

{s>

{filename>

((Kel> . <v1>)
(<ec2> . <v2) ...
(<eclnl> . <Kvinl>»))

Cexpl><exp2> ... <explnl>
{fixnumber>

{fixnumber>

<Cfwld

<filename><s><{boolean>
<{filename><{s><boolean>
{filename><{function><list><1at>

{character?>
<list1><list2>
<{number><{number> ... {number>

{s><{boolean>

-137-

LISP Reference Manual vDEC e5

Name Type Section Arguments

PRINT SUBR 5.3 {s><{boolean>

PRIN1 SUBR 5.3 {s><{boolean>

PROG FSUBR 4.5 {lat><s1><s2> ... <slnl>

PROGN FSUBR 4.5 {expl><exp2> ... {explnl>

PROG2 SUBR - 4.5 {expl><exp2>

PROP SUBR 4.7 {litatoml><litatom2><fnexp>

PUT SUBR 4.7 (litatoml><litatom2><s>

PUTD SUBR 4.7 {litatom><s>

QKEDIT SUBR 4.7 <litatom><sl1><s2

QUOTE FSUBR 4.3 {s>

QUOTIENT SUBR 4.9 <{number 1> <{number2>

RANDOM SUBR 4.9 <{number>

RANIN SUBR 5.6 <filename><address>

RANQUT SUBR 5.6 {filename><{s><{boolean>

RDS SUBR 5.1 {filename>

READ SUBR 5.4

READCH SUBR 5.5 {boolean>

READLAP FSUBR 6.4 {filename><lat>

RECIP SUBR 4.9 <{number>

RECLAIM SUBR 4,12

‘REMAINDER SUBR 4.9 <{number 1><number?2>

REMFLAG SUBR 4.7 <lat><litatom>

REMOB SUBR 4.12 <litatom><boolean>

REMPROP SUBR 4.7 <litatomi><litatom2>

RETFROM SUBR 9.3 <fixnumber><exp>

RETURN SUBR 4.5 <{s>

REVERSE SUBR 4.6 <list>

REVERSIP SUBR 4.6 {list>

REWIND SUBR 5.9 <filename>

RIN SUBR 5.6 {filename><{fixnumber>

ROUT SUBR 5.6 <filename><s><hLoolean>

RPLACA SUBR 4.3 {nats><{s>

RPLACD . SUBR 4.,3. <nats><{s>

RPLACS SUBR 4.3 <{nats><{s>

SASSOC SUBR 4.8 <s><list><{fnexp>

SEARCH SUBR 4.8 {list><{fnexp1><{fnexp2>< fnexp3d>

SECTORS SUBR 4,12

SELECT FSUBR 4.5 {exp>
(Kexpl1,11><expl 1,2]1> ...
Cexpll,nll>)
(Kexpl[2,11><expl2,2]1> ...
{expl2,n21>) ..
(<exp[m,1]><e [m 21> ...
{explm,nlmll> <exp[m+1]>

SET SUBR 4.3 <atom><exp>

SETEL SUBR 4.13 <litatom>
({fixnumber1><fixnumber2> ...
{fixnumberinl>)<s>

SETQ FSUBR 4.3 {atom><exp>

STARTREAD SUBR 5.5

SUBLIS SUBR 4.6 ((Ksl1> . <s2>)

(s8> . <sd>) ..
(Ksln—-11> . <s[n]>))<s>

-138-

DEC 75

Name

SUBST
SUB1
SYSIN
SYSouT

TEMPUS
TEREAD
TERPRI
TIME
TIMES
™
TMLEFT
TRACE
TRACESET
TTYCOPY

UNPACK
UNTRACE
UNTRACESET

WRITE
WRS

ZEROP

MAUNK] +

Type

SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
SUBR

SUBR
SUBR

SUBR

FSUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR

LISP Reference Manual

Section Arguments

{(s1><s2><s3>
{number>

{filename>

.

I

« 4 o

<lat>
<lat>
{filename>

< fwd
<lat>
<lat>

— = DN

ok ok bk QO bt bk ot et D et QI DNt = e O N
[\

et et G

¢ v e

{s><{boolean>
{filename>

{number>

{number><{number>
{number 1> <{number2>
{number><{number>
<number 1><number?2>
Cs1><s2>

<{number 1><number?2>
<{number 1> <{number2>

« o o &

BahbB BB D A g hbbh GRBRBRBRDCIOLN GOLR N
COWOOOL © ~W

-139-

{filename><{character’

<{number><{number> ..

{number>

<{number>
{number>

LISP Reference Manual DEC 75

B. LISP SUBSYSTEMS

A LISP subsystem is a "canned" set of fumction and/or constant
definitions which constitutes an extension of the facilities
provided by the normal LISP system. In particular, a subsystem
may be used to establish a set of application-oriented primitives
which can then be wused to construct user programs in some
particular application area. In form, a subsystem is a single
file containing a block of text in mnormal LISP input format
(without operating system control commands).

When LISP begins execution, each subsystem named on the
control command is read by LISP. Each expression of a subsystem
is evaluated as if the text were normal input, except that none
of the system output usually generated by LISP is produced. Each
file is interpreted as a sequence of expressions for EVAL. 0f
course the evaluation mode within the file can be changed by
binding //MODE (see section 4.14) to an appropriate dotted pair.
When all subsystems have been so processed, LISP begins reading
user—supplied input in the usual way.

In this way a subsystem defines a collection of facilities
which c¢an be used by user programs subsequently input. LISP
‘overlays provide a similar capability. However, an overlay
represents a snapshot of the results of some evaluation activity,
and always executes with the same global options and field length
for which it was defimed. A subsystem, on the other hand, can be
used with any combination of control command parameters and in
any field length. It is important to recognize that subsystem
use is costly because of the extra [/0 and evaluation time
required to process a subsystem. On the other hand, an overlay
is much less expensive since it is an absolute memory image which
needs only to be loaded.

Four subsystems are currently available at UT:

LAP - the LISP assembler

LCOMP - the LISP compiler

GRASP - a graph-processing extension to LISP
LISPED — an interactive intermnal function editor

-140-

DEC 75 LISP Reference Manual

C. SYSTEM VARIABLES

The system vwvariables are literal atoms which exist in the
standard LISP system and which are defined at system definition
time to have the values shown below.

Variable Section Value

ANDSIGN ~

BLANK (atom whose name is
the blank character)
COLON :

COMMA)

DARROW !
DASH -
DOLLAR $

EOF S$EOQF$
EOR
EQSIGN
EQUIV
ERRAO
ERRA1
ERRA2
ERRA3
ERRA4
ERRAS
ERRAS
ERRAY
ERRAS
ERRC1
ERRGC2
ERRGC3
ERRI1
ERRI2
ERRIS3
ERRORTYPE
ERRP1
ERRP2
ERRR1

&
=
z
&%

1]

e« o o o
e« o o

e
e o 0

.« o

wl ol el ol o wl wl el ol ol el o

LR Y

o .

[se}ssjuc]eciac)ackvolecfvvas]ocioc)osfos]eciusfoc]as)os]
MDNNUINDDNNNDNDNNIDDNNDNDIDND
WO WU—ALANGUIANUIRNDN
~2Z2 2232222222222 2222'2=2
DD D VD D U D D D VD VD D U S U D D Y

F
FORF IRST

~
B

cation of origin of

RTRAN overlays)

oo~ rHrrrrt

R I]
o

GARLIST
GREATER
GREATEREQ

LAPUNCH 6.3.6
LBRACK

LESS

LESSEQ

LOADFLAG 6.3.6
LPAR

v vz
Y
-

AN A
]
-

~-141-

LISP Reference Manual DEC 75

Variable Section Value
NEQUAL #
NIL NIL
NOTSIGN ¢
OBLIST 3.8.7 (bucket-sorted list of
all literal atoms)
ORSIGN
PERIOD
PLUSS +
PREVIOUS 4.14 NIL
PRNTFLAG 6.2.1 NIL
RARROW ’
RBRACK 1
RPAR)
SEMICOLON H
SLASH /
STAR *
T KTk
UPARROW ~
VIRFN 7.6 VIRFN
+ +
B %
Tk KT
/7 /
7 7CODEMAX 4.14 oQ
77CODEMIN 4.14 aQ
//EXPERT 4.14 NIL
/77/FATAL .14 NIL
//7FL 4. 14 18944 (ji.e., 459009 octal)
//FRS 4.14
7 /7FUS 4.14
77GC 4. 14 NIL
//GFR 4.14 0
//GFU 4. 14 0
/7 INPUT 4.14 (INPUT (QUOTE SYSIN))
/7 INT1 9.2.2 (PROGN (PRINT $%8///// INTERRUPTS)
(SYSIN (QUOTE TTY)))
/7 INT2 9.2.2, (PROGN (PRINT $%$8$///// INTERRUPTS)
9.2.3 (SYSIN (QUOTE TTY)))
/7 INT3 29.2.1, NIL
2.2.2
/7 INT4 9.2.2 NIL
/7 INTS 9.2.2 NIL
/7 1INT6 9.2.2 (PROGN (SETQ@ //INPUT
(QUOTE (INPUT //SYSIN))
(SET@ ~/MODE (QUOTE (EVAL . 1)))»)
/7 INT? %9.2.2 NIL
/7 INTS 9.2.2 NIL
/7 INT9 9.2.2 NIL

-142-

DEC 75

Variable

/7INT10
//INT11
//INT12
//MODE

//NFR
7//NFU
770UTPUTA

/70UTPUTB

77PGSR

7 /PLEVEL
7//PLIMIT
//RDS

//SAVING
7/STS
/7/SYSIN

7/8YSOUT

//TIMING
/7 TPLEVEL
//TPLIMIT
7 /WRS

//ZAP

(
)

&
SEOF S
<blank>

L]

L
]

“ SOV AN D08 N e

LISP Reference Manual

e D = R RO 1O
.P.

BB R QRO OW

.

N
o] (1

. »

[e e el L e T e Y o g g S ST e g =
£

-

R IR NN

CJ e

L S)
.
QO
-

L L e

OB UTULA BB D GTUTE GTULE D CTULD B BB A
. .&.
—— YD

LAMBDA (=====/////)

(OR (AND (NOT (ATOM =====/////))
(EQ (CAR =====////7/)

(QUOTE BEFINE)))
(QUTPUT //SYSOUT =====/////}))
(LAMBDA (=====/////)
(OUTPUT //8YSOUT =====///// 1))

NIL

65536

65536

SYSIN

NIL
10060
SYSIN

SYSouT
NIL

4
4
SYSOUT

=
]
-

EOF$
blank>

o

LM =e w A lld}@vﬁ

o SNV Aee >0 H o

-143-

——— o p gt

D. COMPARISON OF UT LISP WITH MIT LISP 1.5

MIT LISPx

ADD1
ADVANCE

AND
APPEND
APPLY
ARRAY
ATOM
ATTRIB

CAR
CDR

CLEARBUFF
COMMON
COMPILE
CONC
COND
CONS
COPY
COUNT

CP1

CSET
CSET@

DASH

DEF INE

ined in J. McCarthy et al.,
. Press, Cambridge,

LISP Reference Manual

ABOLISH
ADDR
ADDRP
ADD1
ADVANCE
ALIST
ALPHAP
AND
APPEND
APPLY

ATOM

A+
A-

BACKTRACE

CALLSYS
CAR
CA...R
CDR
CD...R
CHLEX
CLARRAY
CLEARBUFF
CLOSE

COMMENT
COMPILE
COMPRESS
CONC
COND
CONS
COPY

CP

CSR
CS...R

DATE
DEADSTART
DEF

DEFF

DEF INE
DEFINT

=144~

DEC 75

LISP 1.5 Programmer’s Manual
Mass.) 1962,

DEC 7?5

MIT LIST

DEFLIST
DIFFERENCE
DIGIT

DIVIDE
DUMP

EFFACE

ENDREAD
EQ

EQUAL
ERROR
ERROR1
ERRORSET
EVAL
EVALQUOTE
EVLIS
EXCISE
EXPT
FIXP
FLAG

FLOATP

FUNCTION

GENSYM
GET

GO
GREATERP

INTERN

LABEL

LAP
LEFTSHIFT
LENGTH
LESSP

LISP Reference Manual

UT LIST

DEFLIST
DEFSYS

DIE
DIFFERENCE
DIGIT
DISKOUT
DIVIDE

EFFACE
ENDFILE
ENDREAD
EQ

E@N
EQUAL
ERROR

ERRORSET
EVAL
EVALQUOTE
EVALTRAP
EVLI1S

EXIT
EXPL.ODE

FIX
FIXP
FLAG
FLOAT
FLOATP
FORTRAN
FQUOTE
FREE
FULL
FUNCTION

GENSYM
GET
GETD
GETEL
GETPN

GO

GRADP
GREATERP

IMAGEL
INBIN
INPUT
INTERN
INTERRUPT
ISPACE
ITAB

LAP
LEFTSHIFT
LENGTH
LESSP

-145-

MIT LISP

LIST

LITER
LOAD

LOGAND
LOGOR
LOGXOR

MAP

MAPCON
MAPLIST
MAX
MEMBER

MIN
MINUS
MINUSP

MKNAM
NCONC
NOT

NULL
NUMBERP
NUMOCB

ONEP
OPCHAR
OPDEF INE

OR

PACK
PAIR
PAUSE
PLB
PLUS

PRINT
PRINTPROP
PRIN1
PROG

PROG2
PROP

LISP Reference Manual

LOADSYS
LOGAND
LOGOR
LOGXOR
LOOK

MAP
MAPC
MAPCAR
MAPCON
MAPLIST
MAX

MEMBER
MEMQ
MIN
MINUS
MINUSP
MKARRAY
MKNAM

NCONC
NFORMAT
NOT

NTH
NTHINBK
NULL
NUMBERP
NUMOB
NUMTOATOM

OCTAL
ONEP
OPCHAR

OPEN ‘
OPENFILES
OR

OSPACE
OTAB
OUTBIN
OoUTPUT
OUTPUT1
OVERLAY

PACK
PAIR

PLUS
PP
PPRINT
PRINT

PRIN1
PROG

PROGN
PROG2

- PROP

-146-

DEC 75

DEC 75

LISP Reference Manual

MIT LISP

PUNCH
PUNCHDEF
PUNCHLAP

QUOTE
QUOTIENT

READ

READLAP
RECIP
RECLAIM
REMAINDER
REMFLAG
REMOB
REMPROP

RETURN
REVERSE

RPLACA
RPLACD

SASSOC
SEARCH

SELECT
SET

SETQ
SPEAK
SPECIAL
STARTREAD
SUBLIS
SUBST
SUB1

TEMPUS-FUGIT
TERPRI
TIMES

TRACE
TRACESET

UT LISP

PUT
PUTD

QKEDIT
QUOTE
QUOTIENT

RANDCM
RANIN
RANOUT
RDS
READ
READCH
READLAP
RECIP
RECLAIM
REMAINDER
REMFLAG
REMOB
REMPROP
RETFROM
RETURN
REVERSE
REVERSIP
REWIND
RIN
ROUT
RPLACA
RPLACD
RPLACS

SASSOC
SEARCH
SECTORS
SELECT
SET
SETEL
SET@

STARTREAD
SUBLIS
SUBST
SUB1
SYSIN
SYSOUT

TEMPUS

TEREAD
TERPRI
TIME
TIMES

T™
TMLEFT
TRACE
TRACESET
TTYCOPY

-147-

MIT LISP

——— o e e e

UNCOMMON
UNCOUNT
UNPACK
UNSPECIAL
UNTRACE
UNTRACESET

ZEROP

LISP Reference Manual

UNPACK

UNTRACE
UNTRACESET

WRITE
WRS

ZEROP

vAuUN% |+

-148-

DEC 75

	Title page
	Acknowledgements
	Table of Contents
	1. Introduction
	2. Using the LISP system
	3. Data formats
	4. Function definitions
	5. Input/output
	6. The LISP compiler/assembler
	7. LISP overlays, the FORTRAN interface, and virtual memory
	8. Debugging the LISP program
	9. Interactive use
	Appendixes
	A. Alphabetic index of UT LISP system functions
	B. LISP subsystems
	C. System variables
	D. Comparison of UT LISP with MIT LISP 1.5

