
CCUM2

DEC 1975

THE UNIVERSITY OF TEXAS

AT AUSTIN

Computation Center

LISP Reference Manual

CDC -6000

01 (R)

(QR)

00 w

(I" QR)

DEC 75 LISP Reference Manual

LISP Reference Manual

CDC - 6000

Computation Center
University of Texas at Austin

Austin, Texas 78712

LISP Reference Manual DEC 75

The Computation Center will appreciate any comments about this
manual which may be used to improve its usefulness in later
editions. In comments concerning errors, additions, deletions,
or omissions, please include the date of the manual and, for each
item, the number of the page involved. Comments should be
addressed to: Editor, Computation Center, University of Texas at
Austin, Austin, Texas 78712.

ii

DEC 75 LISP Reference Manual

Acknowledgements

This manual is extensively based on the manual written by Dr.
E. M. Greenawa 1 t for the ear 1 ier version of the UT LISP sys tern.
The Computation Center expresses its appreciation to Robert A.
Amsler, Jonathon Slocum, and Nabry Tyson for their ass is ta nee in
revising the manual to reflect the current LISP system and for
producing a machine-readable preliminary form of the the manual.

ii i

DEC 75 LISP Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION, 1

2. USING TIIE LISP SYSTEM, 3

3.

2.1 THE LISP CONTROL COMMAND, 3
2.2 INPUT FORMAT FOR UT LISP, 9
2.3 LISP SYSTEM OUTPUT, 11

DATA
3. 1

3.2
3.3

FORMATS, 13
INPUT FORMATS I 13
3.1.1 Lexical Classes, 13
3.1.2 Literal Atoms, 14

3.1.2.1 Standard Literal Atoms, 14
3.1.2.2 Special Literal Atoms, 15
3.1.2.3 Additional Notes on Literal Atoms, 16

3. 1. 3 Numeric Atoms, 16
3.1.3.1 Fixed-point Numeric Atoms, 16
3.1.3.2 Floating-point Numeric Atoms, 17
3.1.3.3 Additional Notes on Numeric Atoms, 18

3.1.4 S-expressions, 19
3.1.4.1 The Dotted Pair, 19
3.1.4.2 The List, 19
3.1.4.3 Additional Comments on Composite S-

expressions, 20
3.1.5 Additional Input Constructs, 20
OUTPUT FORMATS, 21
INTERNAL FORMATS, 22
3.3.1 Storage Allocation, 22
3.3.2 Free Space Data Formats, 23
3.3.3 Full-Word Space Data Formats, 24
3.3.4 Dotted Pairs and Lists, 24
3.3.5 Literal Atoms, 26
3.3.6 Numeric Atoms, 32
3.3.7 Tii.e Oblist, 32

4. FUNCTION DEFINITIONS, 33
4.1 FUNCTION TYPES, 33
4.2 NOTATION USED IN FUNCTION DEFINITIONS, 33
4.3 ELEMENTARY FUNCTIONS AND PREDICATES, 34
4.4 LOGICAL CONNECTIVE FUNCTIONS, 40
4.5. SEQUENCE CONTROL AND FUNCTION EVALUATION, 41
4.6 LIST MANIPULATION FUNCTIONS, 44
4.7 PROPERTY LIST MANIPULATION FUNCTIONS, 47
4.8 FUNCTIONS WITH FUNCTIONAL ARGUMENTS, 50
4.9 ARITHMETIC FUNCTIONS AND PREDICATES, 52
4.10 CHARACTER MANIPULATION FUNCTIONS, 56
4.11 DEBUGGING AND ERROR PROCESSING FUNCTIONS, 59
4.12 MISCELLANEOUS FUNCTIONS, 62
4. 13 ARRAYS, 66
4. 14 SYSTEM CONTROL, 67

5. INPUT/OUTPUT, 74
5.1 FILES, 74

5.1.1 Standard System Input/Output Files, 74
5.1.2 Selected Read and Write Files, 75
5.1.3 User Access to Selected Files, 76

5.2 FILE AND BUFFER ASSOCIATIONS, 76
5.3 OUTPUT OF S-EXPRESSIONS, 79
5. ·4 INPUT OF S-EXPRESS IONS, 81
5.5 INPUT OF NON-S-EXPRESSIONS, 81
5.6 RANDOM ACCESS OF DISK FILES, 83
5.7 INPUT CONTROL FUNCTIONS, 84

v

LISP Reference Manual

5.8 OUTPUT COTROL FUNCTIONS, 86
5.9 FILE MANIPULATION, 87
5.10 BINARY I/0, 87

DEC 75

6. THE LISP COMPILER/ASSEMBLER, 89

7.

6.1 ACCESS TO THE LISP CO:m>ILER AND ASSEMBLER, 89
6.2 LCOMP - THE LISP COMPILER, 90

6 . 2 . 1 Output o f the Co mp i 1 er , 9 1
6.2.2 Theory of Operation of the Compiler, 91
6.2.3 Compiling Many Functions, 93
6.2.4 Compiling Large Functions, 96
6.2.5 Compiling Functional Arguments, 96
6.2.6 Compiling References to FEXPR~FSUBR Functions, 96
6.2.7 Tracing Compiled Functions, 96
6.2.8 Avoiding Name Conflicts, 96
6.2.9 Redefining Standard Functions, 97
6.2.10 Using SMACRO for In-line Compilation, 97

6.3 LAP - THE LISP ASSEMBLER, 98
6.3.1 Program Format, 98
6.3.2 Symbols, 98 .
6.3.3 Address Expressions, 99
6.3.4 Instructions Recognized by the Assembler, 101
6.3.5 Pseudo Instructions of the Assembler, 101
6.3.6 Operation and Control of the Assembler, 105
6. 3. 7 Errors De tee ted b~r the Assembler, 105
6.3.8 Output of the Assembler, 107
6.3.9 Coding Conventions, 107

6.3.9.1 Register Conventions, 107
6.3.9.2 Calling Sequences, 108
6.3.9.3 Coding Examples, 108

6.4 THE LISP LOADER, 110
6. 4. 1 The Loading Process, 111
6.4.2 Output from READLAP, 111

6. 5 FINAL COl\1MENTS, 112

LISP
7. 1
7.2
7.3

7.4
7.5
7.6

OVERLAYS, THE FORTRAN INTERFACE, AND VIRTUAL MEMORY, 113
THE LISP OVERLAY, 113
CREATING A LISP OVERLAY,114
REFERENCING A LISP OVERLAY, 114
7 . 3 . l S imp 1 e Lo ad i ng o f a L I SP Over 1 a y, 1 14
7.3.2 Linking to a Particular Function

in an Overlay Without Return, 114
7.3.3 Linking to a Particular Function

in an Overlay With Return, 115
7.3.4 Hints and Warnings About LISP Overlay Use, 116
7.3.5 Error Return From CALLSYS, 116
THE LISP - FORTRAN INTERFACE, 117
WARNINGS ABOUT RESERVED FILE NAMES, 118
VIRTUAL MEMORY FOR FUNCTIONS, 118

8. DEBUGGING THE LISP PROGRAM, 120
8.1 DAYFILE ERROR MESSAGES, 120
8.2 UT LISP ERROR MESSAGES AND THEIR MEANINGS, 120

8.2.1 Errors Detected During Input, 121
8.2.2 Errors Detected During Output, 122
8.2.3 Errors Detected by

File Manipulation Functions, 122
8.2.4 Errors Detected by the Garbage Collector, 123
8.2.5 Errors Detected by the Interpreter, 124
8.2.6 Errors Detected Within Particular

LISP Functions, 125
8.3 WHAT TO DO IF THE ANSWER IS WRONG, 127
8.4 UNDERSTANDING THE UT LISP BACK.TRACE, 129

vi

DEC 75 LISP Reference Manual

8.5 PROGRAM DETERMINATION OF ERROR TYPE, 129

9. INTERACTIVE USE, 130
9.1 INTERACTIVE I/O BEHAVIOR, 130
9.2 INTERRUPTS, 131

9.2. 1 Uses for LISP Interrupts, 131
9.2.2 Effecting Interrupts, 132
9.2.3 The Trap Function, 133

9.3 RETURN FROM NESTED FUNCTION INVOCATIONS, 133

APPENDIXES , 135
A. ALPHABETIC INDEX OF UT LISP SYSTEM FUNCTIONS, 135
B. LISP SUBSYSTEMS, 140
C. SYSTEM VARIABLES, 141
D. COMPARISON OF UT WITH MIT LISP 1.5, 144

FIGURES

2.1 LISP Input Deck, 10
2.2 Example of LISP Output, 12
3.1 UT LISP Storage Allocation, 23
3.2 Free Space Data Format, 24
3.3 Storage of Dotted Pairs and Lists, 25
3.4 Binding Values to an Atom, 27
3.5 Print Image Structures, 28
3.6 Interpretation of INFO Property Value, 29
3.7 Numeric Atom Structures, 30
3.8 A Full Example, 31
3.9 An Oblist Element, 32
6.1 Output of LCOMP Based on INTERSECTION Function of Figure

2. 1' 92
6.2 CONTENTS OF LAPUNCH File Produced by Pass 1 of LAP Based on

INTERSECTION Function of Figure 6.1, 99

TABLES

3.1 Lexical Class Assignments, 13
4.1 UT LISP Argument Descriptors, 35
6.1 LAP Macros Defining the "LISP :Machine", 94
6.2 Functions with CMACRO Properties, 95
6.3 Compiler Function Names, 97
6. 4 Symbols with SYM Property in Standard LISP, 100
6.5 Instruction Set Recognized by the LISP Assembler, 102

vii

DEC 75 LISP Reference Manual

1. INTRODUCTION

This manua 1 is a reference document for UT LISP, the
imp le men tat ion of the LISP programming language developed at The
University of Texas at Austin for Control Data Corporation 6000,
7000, and CYBER 70 series computers. UT LISP is available at
many installations of these classes of machines. UT LISP is not
necessarily compatible with LISP implementations existing on
other types of computers. UT LISP is, however, a very rich
implementation and provides very powerful tools for the LISP
programmer.

This implementation is an interpretive system. A compiler is
separately available which can improve the speed of production­
type LISP programs (see chapter 6). UT LISP is available to
users in both hatch and conversational modes of operation.

The LISP programming language originated about 1960 when its
formalism and first implementation were developed at M. I.T. by
John Mc Car thy and others [1, 2] . I ts fundamen ta 1 cons true t is the
recursive function applied to data structures organized as lists.
Although highly formal in structure, LISP is a very effective
programming language for applications involving structured non­
numeric data bases and processes employing non-algorithmic,
heuristic methods. It is by no means res tr ic ted to these
app 1 ica t ion areas; it is a fu 11 y genera 1 programming language.
The most widespread use of LISP has been in artificial
intelligence research, symbolic algebraic manipulation systems;
and computer-assisted ins true t ion.

This manna 1 is not a primer on the LISP language. It
doc mne n ts the a c t ua 1 be ha vi or o f the var i o us fa c i 1 i t i es a va i 1 ab le
in UT LISP. It is recommended that the beginning LISP programmer
study one of references 3, 4, 5, or 6 (or any other suitable
introductory text) before reading beyond chapter 2 of this
manual. Reference 7, though containing more advanced material,
also has some elementary LISP exercises. Chapter 2 gives
information about using the UT LISP system. Final definition of
the behavior of any LISP function mentioned in the referenced
introductory texts resides in the descriptions given in chapters
4 and 5.

Beginners should not be concerned over the large number of
functions available in this implementation, since most are
conveniences rather than essentials for LISP programming. The
novice user can write complete programs using only the following
functions:

a. the 4 general functions: CAR, CDR, COND, and CONS,

b. the 3 arithmetic functions: PLUS(+), TIMES<*>, and
DIFFERENCE(-),

c. the 3 predicates: ATOM, NUMBERP and EQ,

d. the 2 debugging aids: TRACE and UNTRACE, and

e. the 2 1/0 routines: READ and PRINT.

Together with a knowledge of the system atoms FIN, F, LAMBDA,
NIL, and T, these 14 functions enable one to re-create such
additional system functions as GREATERP, EQUAL, LESSP, LENGTH,

-1-

LISP Reference Manual DEC 75

APPEND, MEMBER, NULL, REVERSE, MAPCAR, MAPC, MAPLIST, MAP, and
SUBST (a task which would be an excellent practice exercise).

Beginners should first master the above functions and then
study the slightly more advanced routines: SETQ, SET, PROG,
RETURN, GO, PUT, GET, and the additional debugging aids TRACESET
and UNTRACESET.

Learning the functions in approximately this order
provide sufficient mastery of the basics of LISP to support
confidence while digesting the other 160 functions and 100
listed in the appendixes.

References:

wi 11
one's
atoms

1. Mc Car thy, J. , 11 Recurs i ve Fune t ions of Symbo 1 le Express ions
and Their Computation by Machine, . Part 1 11 , Comm. of the ACM
3, April 1960, pp. 184-195.

2. McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P.,
and Levin, M. I., LISP 1.5 Programmer's Manual (M.I.T.
Press, Cambridge, Massachusetts) 1962.

3. Weissman, C., LISP 1.5 Primer (Dickenson Publishing Company,
Inc., Belmont, California) 1967.

4. Friedman, D. P., The Little LISPer (Science
Associates, Menlo Park, California) 1974.

5. Siklossy, L., Let's Talk LISP
Englewood Cliffs, New Jersey) 1975.

(Prent ice-Ha 11,

Research

Inc. ,

6. Maurer, W. D., A Programmer's Introduction to LISP (American
Elsevier, New York) 1973.

7. Berkeley, E. C., Bobrow, D. C., The Programming
LISP: Its Operation and Applications (M. I.T.
Cambridge, Massachusetts) 1966.

-2-

Language
Press,

DEC 75 LISP Reference Manual

2. USING THE LISP SYSTEM

The UT LISP system is accessible by means of a control
command. This chapter describes the LISP control command and the
formats of input to and output from the UT LISP system. It is
assumed in the following that the reader is somewhat familiar
with LISP and its form.

2.1 THE LISP CONTROL COMMAND

The LISP control command is of the form:

LISP,A=<n1>,B=<n2>,C,E,F,G;I=<filename>,K=<n3>,L,N,
O=<filename2>,P,S=<filename3>,T,X=<n4>,Y,Z,
< subsys tem1> , < suhsys tem2> , ... , < suhsys temn> .

where the parameters are described below.

Parameter

A

B

c

Value

A=<n1>

A
missing

B=< n2>

B
missing

c

Meaning

Allocate <nl> percent of available
space to free space and the
remainder to full-word space. <n1>
must be in the range from 10 to 96.
Available space is defined as the
total memory size minus the size of
the LISP interpreter minus the size
of the stack minus initial binary
program space. If the S keyword
parameter is used to in it ia 1 ize
LISP by loading an. overlay
previous 1 y crca ted by the LISP
function DEFSYS, the A keyword
parameter is overridden by the free
space allocation present when the
overlay was created.
Not lega 1.
Allocate 92 percent of available
space to free space and 8 percent
to full-word space.

Set the stack size to < n2> words
long. If the S keyword parameter
is used to initialize LISP by
loading an over lay previous 1 y
created by the LISP function
DEFSYS, the B keyword parameter is
overridden by the stack size
present when the overlay was
created.
Not lega 1.
Set the stack size to 1000 words
long.

Set conversa t iona 1 mode of
operation for LISP. LISP normal
input CSYSIN) is read from file
TTY. User-originated output (WRS)
and LISP system output CSYSOUT) are
listed on file TTY using an output

-3-

E

F

G

I

K

LISP Reference Manual DEC 75

missing

E

missing

F

missing

G

missing

I=< filename l>

1=0 (zero)
I
missing

K=<n3>

line length of 70
the C keyword
specified, the I,
keyword parameters
specified.

characters.
parameter

L, 0, and
should not

If
is
p

be

Set batch mode of operation for
LISP. LISP normal input CSYSIN> is
read from the file specified by the
I keyword parameter. User­
originated output (WRS) and LISP
system output CSYSOUT) are listed
on the file specified by the 0
keyword parameter with an output
line length of 132 characters.

Set expert mode.
allows primitive
a toms.

Expert mode
operations on

WARN ING: On 1 y users who really
know what they are doing should set
expert mode since this mode
disables error detection of
primitive operations on atoms.
Do not allow primitive operations
on atoms, and enable all LISP error
detection facilities.

Terminate the LISP run when any
error is encountered.
Try to recover and continue running
at the top level after an error is
encountered.

Print a message each time a garbage
co 1 lec t ion occurs. The G keyword
parameter does.not affect the time
when the garbage collection occurs.
Do not pr int a message each time a
garbage collection occurs.

Read LISP normal input <SYSIN) from
f i le < f i 1 e name 1 > • I f the I keyword
parameter is specified, the C
keyword parameter should not be
specified.
Not legal.
Not lega 1.
Read LISP normal input <SYSIN> from
file INPUT, or, if the C keyword
parameter is specified, from file
TTY.

Request that the Job field length
be changed to <n3> words. LISP
requires a field length of at least
35000 (oc ta 1) • If the S keyword
parameter is used to initialize
LISP by loading an overlay
previously created by the LISP
function DEFSYS, the K keyword
parameter is overridden by the Job
field length present when the
overlay was created. ·

-4-

DEC 75 LISP Reference Manual

L

N

0

p

s

K Not legal.
missing Do not change the Joh field length.

LISP uses the current Joh field
length.

L

missing

N

missing

O= < f i lename2>

O=O (zero)
0
missing

p

missing

S=< f i lename3>

List LISP source statements on the
LISP system output (SYSOUT) file
determined by the 0 keyword
parameter. If the L keyword
parameter is specified, the C, N,
and P keyword parameters should not·
be specified.
Suppress listing of LISP source
s ta temen ts unless the P keyword
parameter is specified. If none of
the keyword parameters L, N, or P
is specified, the LISP source
statements are printed only in
internal format as S-expressions.

List orily user-originated output
(WRS) and LISP error messages
(SYSOUT) on the file de ternd.ned by
the C or 0 keyword parameters. Al 1
LISP sys tern-generated output except
for error messages is suppressed.
Do not suppress 1 is ting of LISP
sys tern-generated on tpu t.

List user-generated output (WRS).
and LISP system output (SYSOUT) on
file <filename2> using an output
line length of 132 characters. If
the 0 keyword parameter is
specified, the C keyword parameter
should not be specified.
Not lega 1.
Not lega 1.
List user-genet·at<•d output (WRS)
LISP system output (SYSOUT) on file
OUTPUT using an output 1 in.e length
o f 13 2 c hara c t e rs , or , i f the C
keyword parameter is specified, on
file ITY using an. output line
length of 70 characters.

List LISP source statements and a
parenthesis leve 1 count under each
parenthesis on the LISP sys tern
output (SYSOUT) file determined by
the 0 keyword parameter. If the P
keyword parameter is specified, the
C, L, and N keyword parameters
should not be specified.
Suppress listing of LISP source
s ta temen ts unless the L keyword
parameter is specified. If none of
the keyword parameters L, N, or P
is specified, the LISP source
statements are printed only in
in terna 1 format as S-express ions.

Initialize LISP by
file < f i lename3>
previously created

-5-

loading from
the over lay

by the LISP

T

x

y

z

LISP Reference Manual DEC 75

S=O (zero)
s
missing

T

missing

X=< n4>

x
missing

y

missing

z

missing

< suhsys temi>

function DEFSYS. <filename3> must
be a disk-resident local file. If
the S keyword parameter is used to
initialize LISP by loading an
overlay, the A, B, K, and X keyword
parameters should not be specified
since all storage allocation
controls (free space allocation,
stack size, Joh field length, and
binary program space) are reset to
the values present when the overlay
was created. In addition, if the S
keyword parameter is specified, no
LISP subsystems should be
specified.
Not legal.
Not legal.
Initialize LISP with the standard
functions and atom values given in
Appendix A.

Print a timing message of the form
*TIME: <number>

after each e~aluation of a top­
level expression, where <number> is
the time in mi 11 iseconds required
to evaluate the expression.
Do not print a timing message after
each e va l ua t i on o f a top- le ve 1
expression.

A 1 1 o ca t e < n 4 > words a t in i t i a 1 i z a -
t ion to binary program space. If
the S keyword parameter is used to
initialize LISP by loading an
overlay previously created by the
LISP function DEFSYS, the X keyword
parameter is overridden by the size
of the binary program space present
when the overlay was created.
Not legal.
Allocate no words at initialization
to binary program space.

Insert a blank line before each
*EVAL:,*VALUE:, *TIME: or trace
output for a more readable listing.
Do not insert a blank line before
each *EVAL: , *VALUE: , *TIME: , or
trace output.

Simulate an interrupt when any
LISP-detected error is encountered.
The C keyword parameter must also
be specified.
Do not simulate an interrupt when
any LISP-detected error is
encountered.

Read the LISP subsystem on local
file <subsystemi> and evaluate the
expressions in it. No more than 10
LISP subsystems may be specified.
The name of the LISP subsystem may
not be a single letter. If any

-fl-

DEC 75 LISP Reference Manual

null
missing

subsys tern is specif led, the S
keyword para me fer shou Id not be
specified.
Not legal.
Do not read a LISP subsystem.

The following list summarizes these parameters alphabetically
by keyword letter:

Parameter

A=<number>
B=<number>
c
E
F
G
I = < f i 1 e name >
K=< number>
L
N
O=< filename>
p
S = < f i 1 e name >
T
X=<numher>
y
z

Notes on LISP Parameters

Fune t ion

Allocation control
Stack size specification
Conversational mode control
Expert mode control
Error fatality control
Garbage co I lee tor message contro I
Input file co~trol
Field length control
Listing con tro 1
Listing con tro 1
Output file control
Listing con tro 1
Initialization control
Timing message control
Binary program space allocation
Output spacing control
Error interrupt control

The parameters described above may appear in any order, but no
parameter shou Id appear more than once. If an invalid parameter
or combination of parameters :s specified,.LISP aborts after
issuing the DAYFILE message

PARAMETER ERROR <letter>

where <letter> designates the first inva I id parameter.

All parameters which require a numerical value allow either an
un.s i gne d de c i ma 1 i n t e ge r or an uns i gne d o c t a 1 int e ge r . Oc ta 1
numbers are written as a string of octal digits followed by Q, B,
or K. Octal numbers suffixed by K are multiplied by 1000
(octal); for example, 5K is the same as 5000Q.

The allocation control (A) keyword parameter is used to vary
the relative sizes of free space and fu I I-word space in order to
fit the working storage of LISP to the program at hand. For
instance, a program which deals with many numbers needs
relatively more full-word space than a program whose main purpose
is the man i pu 1 a t ion o f 1 is ts . I f one re 1 i es on the de fa u 1 t 8
percent of total available space allocated to full-word space,
then the size of total memory necessary to get enough full-word
space may he quite large and there may he much unused free space.
An A parameter specification less than 92 allocates relatively
more ful 1-word space to the program, which may then he ah le to
run in a smaller total memory than otherwise. To determine
whether an adJustment of the allocation control parameter is
advisable, the user should consult the output from a previous
run. At the end of every run LISP pr in ts a summary of how many

-7-

LISP Reference Manual DEC 75

times the garbage co I lee tor was cal led when free space was
exhausted and how many times it was called when full-word space
was e xha us t e d • I f the n umh er o f t i mes i t was ca 1 1 e d because o f
f u 1 1 -word spa c e e xha us t ion is s i gn i f i cant l y 1 a r ge r than the
number of times it was called because of free space exhaustion,
then the allocation control parameter should be decreased,
otherwise the parameter should be increased.

The stack size specification (B) keyword parameter is used to
vary the size of the stack in the LISP system. Increasing the
stack size increases the number of levels of recurs ion which are
a I lowed in the LISP program. Inc re as ing the stack size decreases
the amount of free and ful 1-word space available in the same
field length.

The binary program space allocation (X) keyword parameter is
used to allocate memory space for the storage of compiled LISP
code (see chapter 6) and for arrays (see sec t ion 4 . 13) . I f no
binary program space has been allocated, LISP automatically
requests more memory from the ope.rating sys tern. If the user
knows, however, approximately how many words of binary program
space are needed, he can preallocate the space using this
parameter and thereby save the overhead incurred when LISP
requests more space from the operating system.

Bo th the ini t ia 1 iza t ion con tro 1 (S) and suhsys tern load contro 1
parameters offer mechanisms for the user to initialize the LISP
system to some set of functions and atom values other than the
standard ones given in appendix A. An overlay loaded by the
initialization control parameter is the result of a previous LISP
run and consists of all free space and full-word space that
existed at the time in that run when the DEFSYS function was
called. The initialization is performed very quickly via direct
reading of the file into memory. A LISP subsystem has a name
which is the name of the file on which it res ides. The subsystem
cons is ts of a series of express ions which are au to mat ica 11 y read
by LISP and. evaluated before any of the nser's expressions are
executed. Append ix B discusses subsys terns. The over lay
initialization procedure is very fast, bnt it is inflexible in
the sense that the memory allocation and to ta 1 memory size cannot
be varied from that which was in effect at the ti me the over lay
was defined. On the other hand, a LISP suhsys tern can be loaded
into any size of memory under any allocation parameter set that
will accommodate it. The disadvantage of the subsystem is that
it requires processing (i.e., extra time) hy the LISP system each
t i me i t is 1 o ad e d .

When expert mode con tro 1 (E) is specified, the user can
perform CAR, CDR, CSR, RPLACA, RPLACD, and RPLACS operations on
atoms. Normally, these operations are prohibited by LISP and
cause an ILLEGAL ARGUMENT error. Improper use of these
operations on 1itera1 a toms may cause changes in information
vi ta 1 to the operation of the LISP system, and may cause the
program to fa i 1 ca tas trophica 11 y. Therefore, on 1 y the rea 11 y
expert user who has some val id reason for performing these
operations should ever specify this parameter.

The actions specified by several of the control command
parameters may be turned on and off dynamically under user
control during the course of a run. The listing control is
des er ibed in sect ion 4. 14. The garhage co I lee tor message
control, timing message control, and expert mode control
parameters may a 11 be e f fee ted by means des er ibed in sect ion
4. 12. Input file control and output file control functions are

-B-

DEC 75 LISP Reference Manual

described in sect ion 5. 1. 1. Error interrupt con tro 1 may be
handled by means described in section 9.2.

LISP requires a field length of at least 35000 (octal). All
of the memory available to the Job at the time LISP is requested
is used by the LISP system. Therefore, no other programs (such
as compiled FORTRAN code) may be cores iden t with the LISP sys tern.
Also, the total amount of working storage available to the LISP
sys tern can be control led by changing the field length of the Job.
A field length of 50000 (octal) is recommended as a minimum
practical size of memory in which to run the UT LISP system.

Examples of LISP Commands

LI SP . is e qui va 1 en t to
LISP,A=92,B=1000,I=INPUT,O=OUTPUT,X=0.

LISP,F,G,P,T. is equivalent to
LISP,A=92,B=1000,F,G,I=INPUT,O=OUTPUT,P,T,X=0.

LISP,C,G. is equivalent to
LISP,A=92,B=1000,C,G,X=0.

LISP,A=80,B=1800,E,K=77000B,X=l0100B,LAP,LCOMP. is equivalent to
LISP,A=80,B=l800,E, I=INPUT,K=77000B,O=OUTPUT,X=10100B,

LAP,LCOMP.

2.2 INPUT FORMAT FOR UT LISP

A LISP program is usually composed of a simple sequence of
LISP expressions, or forms, to be evaluated. Each form consists
of a function name or lambda expression followed by a sequence of
argument expressions, entirely enclosed in parentheses. At most
one express ion is al lowed on a 1 ine. Program execution is
hand led .by the function EVAL, the nsua 1 "top- leve 1 function 11 •

EVAL is called to evaluate successive inp11t expressions in the
order they appear. For example:

(EQ (QUOTE A) (QUOTE B)

is a proper express ion for EVAL. Note that constant i terns in the
expression must he quoted to prevent their evaluation.

EVALQUOTE may be selected as the top-level function only by
setting the //MODE var.iab le to (EVALQUOTE . 2) (see sect ion
4. 14) .

Execution terminates when an end-of-file occurs on the normal
input file (SYSIN) or when a line whose first atom is FIN is
read. Logical record marks on any file read l>y LISP are ignored.

LISP functions and data may be placed in free format on input
lines in columns 1-72. The only restriction is that an atom may
not be split between two successive lines. For details on the
syntax of literal and numeric atoms the user is referred to
sect ion 3. 1.

Any data that is to be read during evaluation of an expression
must immediately follow that expression on the normal input file
unless it is to be read from a different file. Figure 2.1 shows
a representative input deck ready to be processed by LISP.

-9-

ABCD123,JOHN DOE.
XXX=PASSWORD.
JOB,TM=10,PR=10.
LISP,P,T,F,

LISP Reference Manual

Figure 2.1 - LISP Input Deck

DEC 75

7/8/9 - <end-of-record card>
re THIS FUNCTION RETURNS A LIST "WHICH CONTAINS ALL

THE ELEMENTS PRESENT IN BOTH OF ITS ARGUMENT LISTS%
<DEFINE 11 (

<INTERSECTIONCLAMBDACX Y)

))

<COND<<OR<NULL X)CNULL Y>>NIL)
((MEMBER (CAR X) Y)

(CONS <CAR X)CINTERSECTION<CDR X)Y)))
<T<INTERSECTIONCCDR X)Y)))))

(INTERSECTION 11 (A B C) 11 (A D E))
(INTERSECTION 11 (x z T Z) II (z Z))
FIN
6/7/8/9 - <end-of-file card>

Certain characters have special meaning when encountered in
LISP input. They are intended to make typing input data less
ted ions.

Character
(display code)

(60B)

(64B)

[(61B)

] (62B)

% • • • 3 < 7 lB)

Meaning

This character causes the S-expression
immediate 1 y f o 11 owing it to be quoted, e . g. ,
"(A) is represented internally as (QUOTE
(A)) and prints as (QUOTE (A)).

This character causes LISP to accept the
immediately next character as part of a
literal atom even if it is not normally
a 11 owed, e . g. , A#. B is the atom A. B .

This character is equivalent to a left
parenthesis, but marks a closure point for a
following] character, e.g., [A) is
equivalent to (Al.

This character is e qui va lent to an arbitrary
number of right parentheses sufficient to
match all left parentheses up to and
including the most recent unmatched [
character. If no [character precedes the
] , all left parentheses remaining unmatched
in the S-expression are matched by], e.g.,
((((AJ is e qui va 1 en t to ((((A)))) .

Any characters between a pair of 3 symbols
wi 11 be treated as comments by the UT LISP
system. These inc 1 ude a 11 the spec ia 1
characters above. Comments may extend over
an indefinite number of lines, but the
closing 3 , must be within columns 1-72. A
character may not precede the opening 3
symbol,• e.g., #3 3 is not a legal
comment, but 3.,,.,#3 is. The LISP input
routines discard any comments delimited by 3

-Hl-

DEC 75 LISP Reference Manual

symbols. To retain comments within defined
LISP code the COMMENT function should be
used (see section 4.3).

While not a single character, two
immediately adJacent % characters have the
meaning that the S-express ion currently
being input should he discarded. LISP will
request input again. This capability is of
primary beuef it to the conversa t iona 1 user
who may need to discard an erroneous S­
express ion which extends over several lines.

Also, if EVALQ.UOTE is being used as the top-leve 1 function, the
occurrence of the atom STOP as the second half of a doublet
cancels the current evaluation. This feature is of greatest
value to conversational users who need to recover from a typing
error in the first half of the doublet.

2.3 LISP SYSTEM OUTPUT

When LISP begins execution, it first sends a version message
of the form:

UT LISP - VER. <number> (<date>)

to the Job's DAYFILE. Here <number> is the version number of the
LISP system and <date> is the date it was assembled. These items
allow the user to determine which version of LISP he is using.

Following the printing of the version message,
execution of the user progra~.

LISP begins

For each
the user what
obtained. At
containing

*EVAL:

expression executed, LISP produces output to inform
express ion was evaluated and what :result was

the beginning of each evaluation LISP prints a line

or whatever is appropriate for the top- leve I function in use.
This 1 ine is a s igna I that the top- leve 1 function has begun.
operation. (In conversa t iona 1 mode this is a signal that LISP is
ready for the user to enter new information.) Fo I lowing this
1 ine, the express ion which is current 1 y he ing eva I ua ted is
printed. If a listing control parameter is present on the
control card, then an exact image of what was read on the source
lines is printed. If listing control is not on, then the
express ion is printed by the norma 1 LISP pr int ing function.
Expressions whose function is DEFINE are normally supressed if
listing control is not on, since they are frequent and
voluminous, and the user should be acquainted with their content
already. Next LISP prints a line containing

This 1 i ne s i gna 1 s the co mp 1 e t ion o f e va I ua t ion and is f o 11 owed by
the result of the evaluation. If the T control command parameter
was specified, the timing message is then printed. Then LISP
begins the sequence of output for the next evaluation. Any
printed output produced by the evaluation itself precedes the
*VALUE: message. Figure 2.2 shows as an example the output
produced by the input deck shown in figure 2. 1.

-11-

LISP Reference Manual DEC 75

If the output suppression parameter CN> had been supplied on
the control command, none of the output of figure 2.2 would
appear. Only user-originated output and/or system error messages
would appear in that case.

Figure 2.2 Example of LISP Output

*EVAL:
r. THIS FUNCTION RETURNS A LIST WHICH CONTAINS ALL

THE ELEMENTS PRESENT IN BOTH OF ITS ARGUMENT LISTS%

<DEFINE 11 (

0 1
CINTERSECTIONCLAMBDACX Y)
2 3 4 4

CCONDC(ORCNULL X><NULL Y>)NIL)
4 56 7 77 76 5

((MEMBER (CAR X) Y>

))
10

56 7 7 6
<CONS CCAR X><INTERSECTIONCCDR X)Y)))
6 7 77 8 8 765

(TCINTERSECTIONCCDR X)Y)))))
5 6 7 7 65 432

*VALUE:
<INTERSECTION>

*TIME: 11

*EVAL:
(INTERSECTION "CAB C> "<AD E))
0 1 1 1 10

*VALUE:
(A)

*TIME: 8

*EVAL:
(INTERSECTION II (x z T Z) II (z Z))
0 1 1 1 10

*VALUE:
< Z Z>

*TIME: 8

*EVAL:

GARBAGE COLLECTIONS: 0 0

-12-

DEC 75 LISP Reference Manual

3. DATA FORMATS

The LISP programmer needs to be aware of the formats of data
treated by LISP. This chapter describes the external and
internal representations of LISP data.

3.1 INPUT FORMATS

Programs and data for LISP have the same format, that of the
S-express ion. Input to LISP must be presented in the f orin of
line images. Lines may be of any length, but UT LISP does not
read more than 72 columns of a line. Reading of each line is
terminated at co 1 umn 73 or the first odd-numbered co 1 umn after
the last non-blank character on the 1 ine, whichever occurs first.

3.1.1 Lexical Classes

The significance of a character read by LISP is determined by
the lexica 1 class to which that character be longs, and each
character be longs to some lexica 1 class. The standard le:xica 1
classes are shown in table 3.1.

Fune t ion CHLEX (see sect ion 5. 7) may be nsed to change the
lexical class of any character. By so doing, one can change the
meaning of a character when it appears in input data. For
instance, if the lexical class of the character: were changed
to 0 , then the : wo u 1 d be regard e d as t he e nd - o f- 1 i ne s i gna I by
LISP, and no information beyond the : would be read.

Lexie al
Class

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Table 3.1 Lexical Class Assignments

Display
Code

00

33-44

05
21
45
46
53
71
65
61
62
51
52
57
55-56
60

Members

end-of- I ine
letters except E and Q
digits 0 - 9
any characters not in some other class
E
Q
+

$
3 (percent sign or down arrow)
(pound symbol or right arrow)
[
]
(
)

(period)
, (blank and conuna)

11 (e qui vale nee sign or
spec ia 1 (no members -
i tern 2)

-13-

double-quote)
see section 3.1.2.3,

LISP Reference Manna l DEC 75

3.1.2 Literal Atoms

A literal atom is one of the basic types of S-expression.
Literal atoms are represented in input and output data by strings
of contiguous characters. For processing, 1 i tera l a toms are
ohJects which may be the constituents of larger S-expressions.
The character string which represents the literal atom on
external media is called the print name of the literal atom and
serves to distinguish one 1 i tera l a tom from another. The
particular constituent characters of the print name normally have
no significance to the LISP processor. A literal atom may
contain up to 30 characters in its print name.

3.1.2.1 Standard Literal Atoms

A standard literal atom is one which can be read by the normal
LISP READ function and whose print name will be an exact image of
the character string used to re present it. The syn tax of a
standard literal atom is given by the rules:

1. The first character may be chosen from lexical classes
1-8 or 18.

2. The remaining characters, if any, may be chosen from
lex i ca 1 c lasses 1 -9 or 1 7 e xc e p t t ha t i f the f i rs t
character is in class 8, the second character may not
be.

3. The character string se lee ted by rules 1 and 2 must no f.
be interpretable as a numeric atom (see section 3.1.3).

4. The character string must be preceded by a member of
lexical class 0, 9, or 11-17.

5. The character string must he followed by a member of
lexical class 0, 11-16, or 18.

If we assume the standard lexical class a~signments given in
table 3.1, these rules plus the input format rules given earlier
state that a standard literal atom is any string of 1-30 non­
blank characters wholly contained on one line; does not start
with $$, 3, #, [,] , (,) , period. comma, or "; does not con ta in
a # , [,] , (,) , per i o d , c o mma , or b 1 a nk; and is no t
interpretable as a number.

Examples:

Valid

A
+B
1234Z
$12
ALON GA.TOM
BCD3XYZ

-14-

Invalid

1234
A.B
X#Y
"P
(A)
A LONG ATOM

DEC 75 LISP Reference Manual

3. 1.2.2 Special Literal Atoms

Special literal atoms have print names which do not obey the
syntax rules for standard literal atoms. A syntactic mechanism
is provided for specifying literal atoms with completely
arbitrary print names. There are two categories of special
literal atoms.

Category A:

Category A special literal atoms are denoted by;

1. The first two characters are from lexica 1 class 8.

2. The third character is a de 1 imi ter and
lexical classes 1-18.

is chosen from

3. Fol lowing the third character is a
characters chosen from lex ica 1 classes
including the delimiter defined by rule 2.

string
1-18,

of
hut

0-30
not

4. The last character is a copy of the de 1 imi ter defined by
rule 2.

5. The a tom must be preceded by a member of lexica I
0, 9, or 11-17.

The character string defined in rule 3 is the print
the a tom.

Examples: (Assuming class assignments of table 3.1)

Category B:

$$$(.)$
$$A123A
$$(XYZ<

has the print name
has the print name
has the print name

(.)
123
XYZ

classes

name of

Category B special literal atoms are formed according to the
rules for standard 1itera1 a toms. However, any character not
allowed in an atom under the rules of section 3.1.2.1 may be
included if that character is prefixed by a character from
1 ex i ca 1 c 1 ass 10 . The e f f e c t o f a c 1 ass 1 0 char a c t er is to
cause the immediately following character to be treated as
class 1, regard less of its ac tua 1 class membership. The
characters from class 10 so used are not themse 1 ves counted as
members of the print name of the atom. If the class 10
char a c t er occurs in co l mnn 7 2 , i t i s cons i de red to be f o 1 lo we d
by a h lank.

Examples: (Ass um i ng c 1 ass ass i gnme n ts o f tab I e 3 . 1)

#(#,#)
A#.B
#123

has the print name
has the print name
has the print name

-15-

(.)
A.B
123

LISP Reference Manual DEC 75

3.1.2.3 Additional Notes on Literal Atoms

1. Equivalence of print names is the mecha~ism for determining
whether two external representations are the same atom. This
means that the same atom can he represented in several ways
in the input to LISP. For example:

2.

are a 11 the same a tom.

Lexical class 18 has a special significance. A member of
class 18 serves as a terminator of atoms and may also be a
first character. This class is intended to facilitate input
of such things as punctuation in normal English text. For
example, suppose the period were placed in class 18. Then
the sequence

DOG.

in the input to LISP would be read as the atom DOG and the
atom whose print name is the period. To achieve this effect
without class 18 we would have to input

DOG #.

3. If a string of characters intended to be a literal atom
exceeds 30 characters, it will be truncated to the first 30
characters with no indication to the user.

4. Literal atoms are represented uniquely in the memory of a
LISP program. All references to a given literal atom in LISP
data structures refer to the same representation.

5. Appendix C lists those atoms initialized by the LISP system.
Thes.e should be used only for their intended purposes. For
example, T should not be reset by the user or used as a PROG
variable.

3.1.3 Numeric Atoms

A numeric atom is another atomic type of S-expression.
Numeric atoms are used in much the same way as literal atoms, but
have a numeric value associated with them instead of a print
name. There are two categories of numeric atoms: fixed-point
and floating-point.

3.1.3.1 Fixed-point Numeric Atoms

The two categories of fixed-point numeric atoms are decimal
integers and octal numbers. These two types are distinguished
syntactically both on input and output, but may be used
interchangeably as arguments of functions operating on fixed­
point numbers.

Decimal integers are constructed according to the rules:

1. The fi~st character may he an optional sign chosen from
lexical class 6 or 7. Unsigned numeric atoms are
assumed to he positive.

-16-

DEC 75

2.

LISP Reference Manual

After the optional sign is a string of not more than 15
members of lexical class 2 which form an integer not
exceeding 281,474,976,710,655 (2**48 - 1).

3. The numeric atom must be preceded by a member of a
lexical class 0, 9, or 11-17.

4. The numeric a tom must he f o I lowed by a member of lexica 1
class 0, 9-14, or 16-18.

Exa mp 1 es : (Ass um i ng c 1 ass ass i gnme n ts as in tab 1 e 3 . 1)

Val id

1235
-6095
+300001

Invalid

12Z3
-756340981005723

Octal numbers are constructed according to the rules:

1. The first character may be an optional sign chosen from
lexical class 6 or 7. Unsigned numeric atoms are
assumed to he positive.

2. After the optional sign is a string of not more than 20
members of lex ica 1 class 2 res tr ic ted to the digits 0-7.

3. Fo I lowing the digit string there must he an occurrence
of a character from lexical class 5 (normally a Q).

4. Following the class 5 character there may he an optional
unsigned decimal infeger. This integer is the number of
bits hy which the bit string repre~ented hy the octal
d i g i ts is to he sh i ft e d 1 e f t (end a r o nncl) to form the
final number.

5.

6.

Examples:

The numeric a tom must be preceded by a member of
class 0, 9, or 11-17.

The numeric atom must be fol lowed by a member of
class 0, 9-14, or 16-18.

(Assuming class assignments as in table 3. 1)

Val id

-7Q
14Q3(or 140Q)

-7777777777Q
(or 7777777777Q30)

Inva 1 id

8Q
12345670123456701234567Q

lexica 1

lexica 1

3.1.3.2 Floating-point Numeric Atoms

Floating-point atoms are constructed according to the rules:

1. The first character may be an optional sign chosen from
lexical class 6 or 7. Unsigned numeric atoms are
assumed to he positive.

-17-

2.

LISP Reference Manual

After the optional sign there
characters from lexical class 2.
part of the number.

DEC 75

must be one or more
These form the integer

3. Following the integer part there may he an optional
fraction part consisting of one character from lexical
class 15 and one or more characters from lexical class
2.

4. An exponent part may follow the fraction part and must
fol low the integer part if there is no fraction part.
The exponent part consists of a character from lexical
class 4 followed by a signed or unsigned integer. The
exponent part represents the power of 10 by which the
number is multiplied.

5. The numeric a tom must be preceded by a member of lex ica 1
class 0, 9, or 11-17.

6. The numeric a tom must be fo I lowed by a member of lexica 1
class 0, 9-14, or 16-18.

Examples: (Assuming class ass igmnen ts as in tab le 3. 1)

Va 1 id

1.23
4E5

-6.2E-3
+0.7E+6

Inva I id

8.
.2
456
2E

3.1.3.3 Additional Notes on Numeric Atoms

1. A numeric a tom is associated with a 60-h if memory word which
holds the binary representation of its value. Character
strings representing numeric values outside the normal range
for numbers in the CDC 6000 machines will be converted into
binary incorrectly without warning to the user.

2. Numeric atoms are stored separately in
Each occurrence of a numeric atom
s tr uc t ur e in me mo r y, e ve n i f the va 1 ue
encountered previously.

the computer memory.
creates a new data

is the same as one

3. Although lexical class assignments can be made different from
those in table 3.1, only the characters 0-9 can be correctly
interpreted as digits in class 2. If other characters are
used in class 2 they wi 11 convert to numeric va 1 ues in a
strange way.

4 • I f a char a c t er s tr i ng whose in i t i a l e I e men ts res e mh 1 e a
numeric atom is encountered, LISP processes the string as a
number un ti 1 the syn tax rules for numeric a toms are violated.
At that point, the character string wi 11 be interpreted as a
1 i tera I a tom. For instance, the string

6.24A

would he read as a standard literal atom. This is the only
way in which standard literal atoms can be created with a
class 15 character embe(lded in the print name.

-18-

DEC 75 LISP Reference Manual

3.1.4 S-expressions

Atoms are basic symbo 1 ic data uni ts of LISP. They may be
combined into larger data structures called S-expressions. An
atom by itself is the most primitive type of S-expression. S­
express ions may appear in input text in a completely free-form
manner except that a toms may not be split be tween 2 1 ines. Two
types of composite S-express ion are distinguished, one being a
shorthand for a common form of the other.

3.1.4. 1 The Dotted Pair

Dotted pairs are the most primitive form of composite S­
express ion. They are represented in input text according to the
rules:

1. The first character is a member of lexical class 13.

2. Next comes any S-express ion.. This is ·Cal led the CAR of
the dotted pair. ·

3. Then there must appear a character from lexica 1 class
15.

4. Next comes any S-expression.
the dotted pair.

This is called the CDR of

5. Fina 11 y there must appear a character from lexical class
14.

6. The components may be separated optionally by any number
of characters from lexical class 16.

Examples: (Assuming class assignments as in tahle 3.1)

Valid

(A. B)
(CX.NIL) .NIL)
((A.B) CC.<D.E)))
(1 . 2)

3.1.4.2 The List

Invalid

(• A)
(B.)
CC.D.E)
(1. 2)

Dotted pairs wh~se only atomic CDR part is the a tom NIL occur
very frequently in LISP so frequently, in fact, that a
shorthand notation has been developed. These dotted pairs are
ca l led 1 is ts • By de f in i t ion, the a tom NIL is the empty 1 is t and
can be represented by () • If we rep lace by () a 11 occurrences of
NIL in a dotted pair and then delete all matching sets of
parentheses which are irmnediately preceded l>y a dot (deleting the
dot also), we get the corresponding list notation for the dotted
pair. For example,

(A.<< B. (C. NIL)).< D. (E. NIU)))

is equivalent to

CA. ((B. < C. ())). (D. (E. ()))))

-19-

LISP Ref ere nee Manna 1 DEC 75

which is equivalent to

<A < B C) D E)

More formally, a list is defined hy:

1. The first character is a member of the class 13.

2. Next come zero or
separated by an
lexical class 16.

more separate S-expressions, each
arbitrary numher of characters from

3. The last character must be a memher of lexical class 14.

Acco rd i ng to the c 1 ass ass i gnme n ts o f tab le 3 . 1 , these r u 1 es mean
that a 1 is t is s imp 1 y a sequence of S-express ions separated . by
blanks or commas and surrounded by parentheses.

3.1.4.3 Additional Comments on Composite S-expressions

1. Each composite S-expression causes a new data structure to be
bui 1 t in memory, even if the same S-express ion has been
encountered previously.

2. Lists must be enclosed by balanced pairs of symbols
consisting of one character from class 13 and one from class
14. The elements of a list may themselves be lists, which
often result's in a large number of class 14 characters
appearing together at the end of a list. As a convenience t~
the user, the class 13 character of a list may be replaced by
a character from class 11 ([) and any or all of the class 14
characters by one character from class 12 (J). Seman t ica 11 y,
class 11 is equivalent" to class 13. Also, a class 12
character is equivalent to any number of class 14 characters
in a manner such that a 11 class 13 characters be tween the
class 11 and the class 12 characters will be properly
ma tc.hed. For example,

[(A(B(C(DJ

is e qui va 1 en t to

(<A(B< C< D)))))

3.1.5 Additional Input Constructs

1. Comment information may appear any place in the input text
that an S-express ion may appear. A comment is any string of
characters bracketed on both sides by a character from
lexical class 9. Such comments appear on any 1 is ting of the
LISP input text, but are never translated into any kind of
data structures in memory.

2. The semantics of LISP functions requires that
form:

(QUOTE S-expression)

lists of the

appear frequently. As a shorthand notation, the LISP input
procedures convert any S-expression preceded by a character
from lex i ca 1 c 1 ass 1 7 i n to t he above form inter na 1 1 y. Tha t
is, using the class assignments of table 3.1,

-20-

DEC 75 LISP Reference Manna 1

"S-expression

is e qu i va 1 en t to

(QUOTE S-express ion)

3. A mixed notation that is not purely dotted pairs or lists is
possible. If one applies the process for converting dotted
pairs to lists given in section 3. 1.4.2 to a dotted pair
whose atomic CDR is not NIL, the result is mixed notation.
For example,

(A.<B.(C.D)))

is e qui va lent to

CAB C.D)

LISP can also read this form of notation.

3.2 OUTPUT FORMATS

LISP can output only S-express ions. Al 1 LISP output is in the
form of line images. The user can specify the maximum length of

·the output I ines . for any file (see sect ion 5. 2) and he can force
the first n colunms of the lines to he blank. As characters are
formatted into a line image, an. internal pointer is kept to the
position where the next character will he placed on the line. A
new 1 ine is started whenever the current 1 ine is filled or the
next atom cannot fit on the current line.

By using the character manipulating functions of section 4.10,
the formatting functions of section 5.8, and the printing
functions of section 5.3, the user can construct virtually any
kind of formatted output he des ires. The LISP printing functions
each print an entire S-expression under the following formatting:

1. Each S-express ion begins at the posit ion specif led by
the internal pointer at the time printing starts.

2. A 1 i tera I a tom is represented in output by the character
string that is its print image. Under user con tro 1 the
syntactic marks con tro 11 ing spec ia 1 a torn recognition may
be reinserted (see section 5.3).

3. Fixed point numeric atoms are converted using an
appropriate technique from binary to character
representation and are printed without leading zeros.
The I e t t er Q. is a 1 ways used as the o c t a 1 number
indicator. A number following the Q indicates a binary
power of two multiplier (a binary left shift); for
example, lQ.6= 100Q.

4. Floating point numeric atoms are converted from binary
to character form according to the format parameter~
most recently set by function NFORMAT (see section 5.8).
These formatting parameters specify the number of digits
to be printed before and after the decimal point, and
unless o the·rwise set are ho th 5. If the number fa I ls in
the range established by those parameters it is printed
without an exponent part. If it does not fa 11 in that
range it is printed with only one digit preceding the
dee ima l point and fo I lowed by an E and the appropriate
exponent.

-21-

LISP Reference Manual DEC 75

5. Composite S-expressions are always printed in list
format with par en theses as de 1 inti ters and blanks as
separators. Mixed notation is used if the S-express ion
has a non-NIL rightmost CDR (see section 3.1.5, item 3).

6. New lines are started only when a line is completely
filled or when an atom will not fit on the current line.

See section 4.14 for some additional controls which may affect
output formats.

3.3 INTERNAL FORMATS

A.11 data man ipu lated by LISP u 1 t ima te 1 y res ides
computer memory. In this sect ion, we discuss the
in terna 1 for ms in which data may occur.

3.3.1 Storage Allocation

in the
various

UT LISP uses all of the memory available to it. This total
storage area is allocated into several different portions.
Figure 3.1 shows the storage allocation.

The I/O buffers and program code areas are the fixed portions
of LISP. These areas inc 1 ude a 11 the code for the execution of
LISP programs. Free space is the main area in which the internal
forms of S-express ions are stored. Fu 11-word space is used to
hold character strings for a tom names and the binary va 1 ues of.
numeric atoms. The stack is an area used for holding the LISP
program stack which enables recursive execution. Binary program
space is used to contain compiled LISP functions and to contain
LISP arrays. The size of eac·h area is allocatecl at the beginning
of LISP execution and, except for binary program space, remains
f i xe d for the d ur a t ion o f exec u t ion . The f i e 1 d 1 e ng th, and
consequently binary program space, is increaRe<l to accommodate as
much code or as many arrays as desired, up to the limit imposed
by the operating system.

The initial sizes of the areas shown in figure 3.1 depend on
the following values:

FL - Field length

B - Value from
(default

A - Value from
(default

x - Value from
(default

For these values,
defined to be:

Program code and
l/O buffers:

B parameter, LISP con tro 1 command
value = 1000)

A parameter, LISP control command
value = 92)

X parameter, LISP control command
value = ())

the initial sizes of the various areas are

C = 34000 (octal)
version

changing with

Binary program space: x = x
B = B Stack:

-22-

DEC 75 LISP Reference Manual

Free space:

Ful 1-word space:

Z = (FL - C - X - B) * A/100

Y = FL - C - X - B - Z

All of the area below the point marked Fin figure 3.1 is
overlaid by FORTRAN overlays ancl the area below the point marked
L is overlaid by LISP overlays (see chapter 7).

Figure 3.1 UT LISP Storage Allocation

0 --------------------------------
l/O Buffers

F --------------------------------
c

Program Code

L --------------------------------

Free Space z

Fu 11-Word Space y

Stack B

Binary Program Space x
FL-1

3.3.2 Free Space Data Formats

Every word in free space is used according to the format sho·wn
in figure 3.2. In each 60-bit word the three rightmost fields
each occupy 18 bits and are used almost exclusively to hold
pointers (addresses) to other words in free space or full-word
space. These fields are named CSR, CAR, and CDR, from left to
r i g ht . The 1 e f t mo s t b i t o f t he wo rd (b i t 5 9) i s use d as a mark
bit to indicate an active element of a data structure during the
process of garbage collection. When garbage collection is not in
progress this hit is always 0. A one-bit field (bit 54)
indicates that the word is the header of an a torn if the bit is
set to 1. A two-bit tag field (hits 58 and 57) is used to
distinguish among the various types of atoms. Bits 56 and 55 are
unused and may contain anything.

S-expressions are represented in memory by sets of free space
words I inked together by pointers in the CSR, CAR, and CDR fields
of the words. Internally, any S-expression is identified hy the
address of the first memory word in its structure. It is these
addresses which are ac tua 11 y man ipu lated by the programs. In
subsequent sections, more detailed pictures will be given of the
var ions types of S-express ion data s true tures.

-23-

LISP Reference Manual DEC 75

Figure 3.2 Free Space Data Format

59 0

CSR CAR CDR

A A A A

1------ Atom indicator bit (l bit)

'--------
1-----------

1--------------

Unused field (2 hits)

Tag field (2 bits)

Garbage collector
mark hit (1 bit)

3.3.3 Full-Word Space Data Formats

Each 60-bit word in full-word space is used to hold a 60-bit
obJect. An ohJect is either a binary numher or a string of up to
10 six-bit characters. Binary numbers are either one's
complement integers or they are floating po int numbers in the
standard CDC 6000 representation. Character strings of fewer
th.an 10 characters are stored left-Justified with zero bit fill.

3~3.4 Dotted Pairs and Lists

Dotted pairs and lists are represented in storage by free
space words which have zero in the tag fie l(t and 1n the a tom
indicator. A dotted pair is re presented by a s Ingle such word
whose CAR field con ta ins a pointer to the CAR t)ar t of the dotted
pair and whose CDR field contains a pointer to the CDR part of
the dotted pair; the CSR field is not used.

A list is represented by a set of words in free space, one for
each element of the list. The CAR field of each word contains a
pointer to an element of the list, and the CDR field of each word
but the last contains a pointer to the next free space word in
the I is t. The last word of a 1 is t cont a ins a pointer to the a tom
NIL in its CDR field.

Diagrams showing examples of these s true lures
f i gur e 3 . 3 . In these f i gur es t he c on vent ion o f
pointer to an atom by writing the name of the atom
is used.

are shown in
representing a
in the fie Id

Note:
field,
as one

In figure 3. 3 and the fol lowing figures the tag
mark bit, atom indicator, and unused bits are shown
2-digit octal number.

-24-

DEC 75 LISP Reference Manual

Figure 3.3 Storage of Dotted Pairs and Lists

1. (DOTI'ED • PAIR)

I ooj 'DOTTED! PAIR I
2. ((A • B) • C)

I oo! I
I

I c

[oo[
\I

I A I B

3. (A LIST) _ (A • (LIST • NIL))

4. ((WITH) (SUB) LISTS) _ ((WITH • NIL) • ((SUB • NIL) • (LISTS • NIL)))

00 LISTS NIL

00 WITH NIL 00 SUB NIL

-?!"!:-

LISP Reference Manna 1 DEC 75

3. 3. 5 Li tera 1 Atoms

A literal atom is a fairly complex structure which has
components in both free space and fu 11-word space. The first
word of a 1itera1 a tom, cal led the a tom header, has the a tom
ind i ca tor b i t s e t to 1 and the tag f i e 1 d s e t to 0. The CSR f i e Id
of the a tom header po in ts to the property 1 is t of the a tom. Each
atom has at least two attributes: PNAJ'IIE, with a value which is a
structure representing the print image of the atom, and INFO,
with a value which qualifies the print image. (Note: UT LISP
a toms usually share INFO proper ty-1 is t cells. There fore the

11 expert" user who is directly manipulating property lists must
take care never to conca ten.ate property I is ts with other
s true tures without making a copy of the INFO ce 11.) Each element
of the property list contains a pointer to the indicator (or
a t tr i but e) in i ts CSR f i e l d , a po inter to the assoc i a t e d va 1 ue in
its CAR field, and a pointer to the next property list element in
its CDR field.

The CDR field of the atom header contains a pointer to the S­
expression which is the current value hound to that atom when it
is accessed by LISP as a variable. A special pointer to an atom
with an empty print image is stored here when the atom is not
actually bound to any value.

The CAR field of the atom header contains a pointer to a list
of other values bound to the atom in higher-level contexts. In
an unbound a tom the CAR field of the header po in ts to the heade:r
i ts e 1 f . F i gur e 3 . 4 shows the changes which occur in a Ii a tom
header as successive values are bound to it.

Figure 3. 5 shows the different s true turef; which occur for
representing an atom's print image. Figure 3.6 shows the
interpretation of the value associated with the INFO property.
This particular value is not a pointer to some S-expression.

F i na l 1 y, f i gur e 3 . 8 shows a co rnp 1 e t e 1 i t er a 1 a t o m s t r uc t ur e .

-26-

DEC 75 LISP Reference Manual

Figure 3.4 Binding Values to an Atom

Given the function definitions:

function A: (LAMBDA (X) (B (CDR X)))
function B: (LAMBDA (X) (C (CDR X)))
function C: (LAMBDA (X) X)

the figures below show the header for atom X during evaluation of the
expression:

(A (QUOTE (P Q R)))

1. Before Entry to A

Lt>j 011 t I
property list

w I

2. Before Entry to B

[
..... [0_1_1 -.ti---..... 1 _,_._I _-=:,+--1C>(P Q R)

,__p_ro_p_e_r_ty_l_i_s~__:I o:-o: ... l=--==--== -==-1=====w==l

3. Before Entry to C

--l>(Q R)

(w = atom with empty name)

t>I Olj i I \ I
property list\l~O-O~l--~-,-~---PI C>(P Q R)

~
00 w

4. After Entry into C

t>1011 + I , I
'\; . \,....,,....,,..----.----.------,

property 1 is t j._O_O_,_l __ _..._\....,__.__-:..---+---C>(Q R)

\i

-t--C>(R)

1001 I \ I -1--t>(P Q R)
~-____,___......~~-_...

1001 I I w

-27-

LISP Reference Manual DEC 75

Figure 3.5 Print Image Structures

1. Atom With Print Image of 1-10 Characters

00 PNAME

00 0 0

-----------------------EE~~-~2~~~------full-word space

characters 1-n

2. Atom With Print Image of 11-20 Characters

00 PNAME ---+---[.>- •••

00 0
free space

-----------------------rilii=wor<l-space-
characters 1-10

characters 11-n

3. Atom With Print Image of 21-30 Characters

00 PNA.ME -----t>- ...

00
free space

----- ------------------------£uii=wor<l-space-
characters 1-10

characters 11-20

characters 21-n

-28-

DEC 75 LISP Re·f erence Manua 1

Figure 3.6 Interpretation of INFO Property Value

INFojvaluel NIL I

bits which denote the number
of characters in image.

---- 6 bits which, if nonzero, denote
the delimiter character used with
category A special literal atom.

'-------6 bits which, if nonzero, indicate
a category B special literal atom.

-29-

LISP Reference .Manual DEC 75

Figure 3.7 Numeric Atom Structures

1. Floating Point Numeric Atom

L-1-1....,..........-
NJL

--~E~~-~E~:~-----full-word space

!binary floating point numbe~

2. Integer Numeric Atom

21 NJL

free space --fuii=wor<l-space

binary integer

3. Octal Numeric Atom

31 NJL

--~E~~-~E~:~-----full-word space

binary integer

-30-

DEC 75 LISP Reference Manual

Figure 3.8 A Full Example

The list (EASY) is shown with atom EASY also drawn in detail. EASY is shown
as having no value, but having attribute C with value 3.

T
j ooj

t
NIL

(EASY)
'¢

t
the

01 w atom
EASY

00 c 00 PNAME !ooj INFO! 4 NIL

21 NIL 0

the nWn.ber 3
free .:s

-----~--------------- ---------------------------------- --£\iii=w
s ce

I 0501233100 •.•

-31-

LISP Rererence Manual DEC 75

3.3.6 Numeric Atoms

All numeric atoms are two-word structures. The
numeric atom header is a free space word with the atom indicator
bit set to 1 and the tag field containing 1, 2, or 3 to denote
floating point, integer, or octal, respectively. The CSR field
of the numeric atom header points to a word in full-word space
which contains the binary value of the number. The. CAR field
always points to the header, and the CDR field always points to
NIL. Figure 3.7 shows the structures in detail. The only
difference between integers and octal numbers is that the print
routines print one as a decimal number and the other as an octal
number.

3.3.7 The Ohlist

The 11 ob 1ist 11 is a spec la 1 list ma in ta ined by the LISP input
routines and is deserving of special merition. Each literal atom
in the LISP system appears somewhere in the oblist, and as a
result the input routines can always determine if an atom being
read already exists. This mechanism enables LISP to maintain the
unique storage of literal atoms.

The oblist is a list of 128 sublists called 11 buckets 11 • As
each literal atom is read, its print image is used to generate a
number between 0 and 127, thus selecting one of the buckets of
the oblist. The atom will be in only the bucket so selected.

To fac i 1 i ta te searching by print images, the e le men ts of the
buckets have a special structure as shown in figure 3.9.

The oblist is normally available to the LISP program as the
value of variable OBLIST.

Figure 3.9 An Oblist Element

00 a bucket

atom header

property list

print image

-32-

DEC 75 LISP Reference Manual

4. FUNCTION DEFINITIONS

All LISP programs are built by function composition~ that is,
the user clef ines functions which in turn ca 11 on other functions,
either user-defined or defined in the LISP system. This chapter
describes precisely most of the functions defined in UT LISP.
Some functions are described in chapters 5, 6, 7, and 9, as
appropriate. These function descriptions should serve the user
as his definitive guide to their use.

4. 1 FUNCTION TYPES

There are four function types in UT LISP~ distinguished by the
names EXPR, SUBR, FEXPR, and FSUBR. Fune t ions of type EXPR and
FEXPR are stored in the machine as lambda express ions to be
executed in an interpretive manner. Functions of type SUBR and
FSUBR are stored in the system as macqine code which is executed
directly by the computer when requested. User functions are
generally of type EXPR or FEXPR and the functions defined within
the LISP system are always of type SUBR or FSUBR. Functions of
type EXPR and SUBR are functions of a fixed number of arguments.
Fur thermo re, when such a function is ca I led, the argmnen t
express ions appearing in the ca 11 ing express ion are eva 1 ua ted
before they are given to the called function. Arguments of a
SUBR may be omitted from the right, and the missing arguments are
supplied as NIL. Functions of type FEXPR and FSUBR, on the other
hand, can have an arh i trary number of argnmen ts in the ca 11 ing
expression and those arguments are not evaluated before they are
given to the called function. FEXPR and FSUBR functions are also
sometimes cal led "spec ia 1 forms 11 •

LISP functions may be further classified as normal functions,
pseudo functions, or predicates. Norma 1 fnnc t ions receive some
arguments, perform some manipulation on those arguments, and
return .a value which depends on the manipulation performed.
Pseudofunc t ions receive some arguments and perform some side­
effect operation (i.e., an operation that changes some of the
internal data structures of the LISP program) rather than some
manipulation upon the arguments. Since a 11 LISP functions must
return some value, a pseudofunction also returns a value, hut the
value may hear no relationship to the arguments which were given
it. A predicate is a function which receives some arguments and
returns a value of either true or false, depending on some
relationship that ho.Ids among the arguments. In LISP, falsity is
always represented by .the atom NIL and truth is represented hy
anything other than NIL. Some predicates do in fact return the
a tom *T* as the va 1 ue for truth, hut the user s ho u Id endeavor no t
to use this fact.

4.2 NOTATION USED IN FUNCTION DEFINITIONS

The function descriptions in this manual are given using EVAL
notation. For example:

<CONS <st> <s2>)

which indicates that CONS is a function of two arguments, either
of which may be any arbitrary S-expression. In the text of this
manual LISP function names and system variables are always
capitalized. In descriptions of the arguments e:xpected by the
function, < > brackets are used to delimit argument codes (see

-33-

LISP Reference Manual DEC 75

table 4.1), with [] brackets denoting argument subscripts which
are not simple integers. When a function can accept an arbitrary
number of arguments, the e 11 ips is (...) is used to indicate this
fact.

In genera 1, a function has certain res tr ic t ions on the types
of arguments it may receive. The descriptors given below
incorporate these restrictions through a shorthand notation.
Where one of the descriptors given in the table below appears in
the 1 is t o f a r gume n ts o f a f unc t i on de f in i t ion , the argument
actually supplied to the function must obey the characteristics
defined for that descriptor. Notice that if the arguments to a
function are eva 1 ua ted (as in a 11 SUBRs and in certain indicated
FSUBRs), the descriptor defines what the result of that
evaluation must be, whereas if a function does not evaluate its
arguments, the descriptor defines what must literally appear in
the code. If the res tr ic t ions are not met, the LISP sys tern wi 11
probably detect an ILLEGAL ARGUMENT or ILL-FORMED ARGUMENT error.

Each function description given in the remainder of this
chapter inc I ud es the name o f the f unc t ion , the types o f arguments
the function expects, the classifications of the function, and a
pre c i s e de s c r i p t ion o f the a c t ion o f the f unc t ion .

The functions are grouped into subsections according to
overall purpose. Within each group, functions are described
first and predicates last, with the most commonly used of each
type given first. An alphabet ica 1 index of functions is given in
append ix A.

4.3 ELEMENTARY FUNCTIONS AN~ PREDICATES

The elementary functions and predicates comprise the LISP
primitive functions and predicates on which the language is based
and the most commonly-used nonprimitive functions and predicates.

(CAR < na ts>)

norma I; SUBR

CAR returns as its value the left part of the dotted
which is the result of evaluating its argument. In
terms , i t re turns t he f i rs t e 1 e men t o f t he 1 is t .
retrieves the value stored in the CAR field of the
atomic S-express ion which is its argument.

(CDR < na ts>)

no rma I ; SUBR

pair
1 is t

It
non-

CDR returns as its value the right part of the dotted pair
which is the result of evaluating its argument. In list
terms it returns the rest of the list after the first
e le men t is deleted. It re.tr ieves the va 1 ue stored in the
CDR field of the non-atomic S-expression which is its
argument.

-34-

DEC 75

Type
Descriptor

<a tom>

<boo lean>

<character>

<exp>

<filename>

< f I number>

< f ixnumher>

< fnexp>

<function>

< fw>

< fwl>

<lat>

<letter>

< 1 is t>

< 1 i ta tom>

<na ts>

<number>

< s>

LISP Reference Manual

Table 4.1 UT LISP Argument Descriptors

Meaning

The argument must be either a literal atom or
a numeric a tom.

The argument may be any S-expression, hut it
will be interpreted as a truth value: NIL is
equivalent to false; anything else is
equivalent to true.

The argument must he a literal atom whose
name is a single character.

The argument must be some LISP expression
which can be eva 1 ua ted by EVAL.

The argument musi t l>'e a 1itera1 a tom
containing at most seven letters and digits,
starting with a letter.

The argument must he a floating-point numeric
atom.

The argument must be a
atom (either integer or

fixed-point
octal).

numeric

The argument must be a func t iona 1 express ion.
Either it mns t he the name of a function
preceded hy QUOTE or FUNCTION, or it must be
a lambda expression preceded by QUOTE,
FQ.UOTE, or FUNCTION.

The argument must be a function name,
expression or label expre~sion.

lambda

The argument must he a single ful 1 word, that
is, a word in full-word space.

The argument must be a list of full words.

The argument must be a list of literal atoms.

The argument must be a literal atom whose
name is a single letter (A ... Z).

The argument must be a list or
1 is t . By 1 is t is meant a
expression whose rightmost CDR
whose top- leve 1 printed
contains no periods.

The argument must be a single

NIL, the empty
non-atomic S­

is NIL, i.e.,
representation

1 i tera l a tom.

The argument must be some non-atomic s-
express ion.

The argument must
type.

The argument may
expression.

-35-

be a numeric atom of any

be any arbitrary s-

LISP Reference Manual DEC 75

(CSR < na ts>)

no rma 1 ; SUBR

CSR retrieves the value stored in the CSR field of the non­
atomic S-expression which is its argument.

(CAAR < na ts>)
(CADR < na ts>)
(CASR < na ts>)
(CDAR < na ts>)
(CDDR <nats>)
(CDSR <nats>)
(CSAR < na ts>)
< CSDR < na ts>)
(CSSR <nats>)
< CAAAR < na ts>)

.
(CSSSSSSSSR < na ts>)

normal; EXPR

Multiple CAR-CDR-CSR functions are allowed and may contain
up to 8 A's, D's, or S's between the C and R to denote a
sequence of CAR, CDR, or CSR operations. The sequence of
operations is applied in right-to-left order, i.e., (CDAR
<nats)) is equivalent <CDR (CAR <nats>)) .. Users may find
the NTH function more useful for combined forms composed of
a CAD ... DR sequence.

<CONS < s 1> < s2>)

norma 1 ; SUBR

CONS hu·i Ids a new S-express ion. It cons true ts the dotted
pair (<s1> • <s2>) hy obtaining a new word from free space
and storing its first argument in to the CAR field of the
word and its second argument into the CDR field of the
word. CONS is the fundamen ta 1 function for bui Id ing new S­
express ions.

(LIST <s1> <s2> ... <s[nJ>)

normal; FSUBR

LIST takes an arbitrary number oi arguments and constructs
a new list such that <sl> is the first element, <s2> is the
second e 1 e men t , and so on. I f no arguments are given the
va 1 ue is N IL.

(COMMENT <st> <s2> .•• <s[nJ»

pseudofunction; FSUBR

COMMENT is a do-no thing function which provides a
convenient means of retaining conunents within a defined
LISP program. COMMENT evaluates none of its arguments, and
always returns NIL.

-36-

DEC 75 LISP Reference Manna 1

(QUOTE <s>)

normal; FSUBR

QUOTE is essen t ia 11 y a do-no thing function. It receives
its argument unchanged and returns as its value that same
argument. QUOTE is used to prevent evaluation of S­
expressions which serve as data internal to a LISP function
definition. Within a LISP function, most literal atoms are
eva 1 ua ted as variables and lists are eva 1 ua ted as function
cal ls. When QUOTE precedes an a tom or an S-express ion, it
is a s igna 1 to the interpreter that these things are not to
be evaluated as variahles and function calls, hut instead
are actual constant data of the function.

(FQUOTE < s>)

norma 1; FSUBR

FQUOTE is identical to QUOTE wi fh the except ion that when
co mp i 1 a t ion is o c cur r i ng , the co mp i 1 er co mp i le s the
argument of FQUOTE as a function and does not compile the
argument of QUOTE. Therefore, in functions which are to be
compiled, FQUOTE should appear only before lambda
expressions.

CSET <atom> <exp>)

pseudofunction; SUBR

SET is the pr ine ipa 1 va 1 ue-ass ignmen t function. I ts first
argument must eva 1 ua te to an a tom and the va 1 ue of the
second argument is made the value of th<:' atom. The value
of SET is its second argument, or the new va I ue which was
assigned.

(SETQ <atom> <exp>)

pseudofu.nc t ion; FSUBR

SETQ. is similar to SET except that the first argument of
SETQ is quoted. That is, the first argument is the actual
a tom which wi 11 have its va 1 ue assigned. The va 1 ue
re turned by SETQ is its second argument, or the new va I ue
which was assigned to the variable. For example,

(SETQ X Y)

is equivalent to

(SET (QUOTE X) Y)

(RPLACA < na ts> < s>)

pseudofunction; SUBR

RPLACA rep laces the CAR field of its first argument with a
pointer to its second argument. This function modifies
existing list structure in memory, and should be used with
caution. 257 The value returned by RPLACA is its first
argument, which has been modified by the action of RPLACA.

-37-

LISP Reference Manual DEC 75

(RPLACD <nats> <s>)

pseudofunction; SUBR

RPLACD replaces the CDR field of its first argument with a
pointer to its second argument. This function modifies
existing list structure in memory. RPLACD should be used
with caution as it may be used to create circular lists,
which may cause difficulty with other processes. The value
returned by RPLACD is its first argument, which has been
modified by the action of the function.

CRPLACS <nats> <s>)

pseudofunction; SUER

RPLACS replaces the CSR field of its first argument with a
pointer to the second argument. This function is the on 1 y
function which allows the user to place information into
the CSR field. It modifies existing list structure in
memory and therefore should be used with caution. The
va 1 ue re turned by RPLACS is its first argument, which has
been modified by the action of the function.

(ATOM < s>)

predicate; SUBR

ATOM returns true
or a numeric a tom.
other expression.

(EQ < s 1 > < s2>)

predicate; SUBR

if its argument is either a literal atom
It returns false if its argument is any

EQ returns trut if its two arguments share the same memory
location. It re turns false under any other circumstances.
Literal atoms are stored uniquely in the LISP system so
that their e qua 1 i ty may he determined by this simple
comparison of machine addresses. Since no other type of S­
expression is stored uniquely, an EQ comparison of other
types usually fails.

C EQN < s 1 > < s2>)

predicate; SUBR

EQ.N is similar to EQ except that it also works for numeric
a toms. It re turns true either if its two arguments are EQ.
or if they are two numeric a toms which have the same
numeric value. The two numbers may be of different types.
EQN re turns false under a 11 other c ircnms tances.

-38-

DEC 75 LISP Reference Manual

(EQUAL <s1> <s2>>
(= < s 1 > < s2>)

predicate; SUBR

EQUAL returns true if its two arguments are equivalent S­
expressions. Two S-expressions are equivalent if they are
ho th the same 1itera1 a tom, if they are two numbers with
the same va 1 ue, or if they are two non-atomic S-express ions
composed of the same atoms in corresponding positions.
EQUAL returns false if its two arguments are not equivalent
S-expressions. = is a synonym for EQUAL.

<NULL <s>)

predicate; SUBR

NULL re turns true if its argument is the a tom NIL. It
returns false under all other c.ircumstances. NULL is a
logical negation operator.

CNlJMBERP <s>)

predicate; SUBR

NUMBERP re turns its argument if the argument is a number of
any type. It returns false if its argument is any other
kind of S-expression.

(MEMBER <s> <list>)

predicate; SUBR

MEMBER searches the top leve 1 of <I is t> for an element
EQUAL to <s>. If such an element is no I. in the <list>, the
value of MEMBER is NIL. If it is present, the value of
MEMBER is the remaining port ion of the list beginning with
the element sought.

(MEMQ < s > < 1 is t >)
predicate; SUBR

MEMQ is identical to MEMBER in a 11 re spec ts except that
MEMO. uses EQ instead of EQUAL when testing for the e qua 1 i ty
of <s> with a member of <list>.

<ALPHAP <litatom1> <litatom2>)

predicate; SUER

ALPHAP compares the pr int names of its two arguments and
returns true if the first argument alphabetically precedes
the second argument. It re turns false if the first
argument alphabetically follows the second or if they are
the same atom. The collating sequence of the CDC 6000
series display code is used to determine the
alphabetization.

-39-

LISP Reference Manual DEC 75

<GRADP <st> <s2>)

predicate; SUBR

GRA.DP returns true if its first argument resides at a lower
memory address than its second argurnen t. It re turns false
if its first argument res ides at the same or higher memory
address than the second argument. This function can be
used as an arbitrary but consistent ordering predicate for
literal atoms since a given literal atom will always reside
at the same address during the course of one LISP run
unless removed from the oh 1 is t (see REMOB, sect ion 4. 12).
Non-atomic S-express ions and nun1bers may have many copies
present in memory during the course of one run and each
copy will reside at a different address, Thus, users
should be certain GRADP is comparing the addresses of the
same desired copies if it is used to order such
expressions. The function EQ.N will detect different
copies.

CA+ < s 1 > < s2> >
CA- < s 1 > < s2»

normal; SUBR

A+ (or A-> returns an S-expression whose address is the sum
(or difference) of the addresses of <sl> and <s2>. An
error occurs if the resulting express ion would cause a mode
error.

4.4 LOGICAL CONNECTIVE FUNCTIONS

The logic a 1 connective functions are used to form comp lex
Boolean expressions from simple predicate expressions.

C NOT < s»
predicate; SUBR

NOT is in every way equivalent to the predicate NULL. It
is the logical inversion operator. It returns true if its
argument is false or re turns false if its argument is true.

(AND <expt> <exp2>

norma 1; FSUBR

<exp[nJ>)

AND e va 1 ua t es each o f i ts arguments in turn un t i I i t
encounters the first argument which is false or until it
evaluates all of its arguments. If all of its arguments
evaluate to true the value of AND is the value of <exp[nJ>
(which is true) . If one argument is false the va 1 ue of AND
is false. Expressions following the first false expression
are not eva 1 ua ted. If there are no arguments the va 1 ue of
AND is true.

-40-

D~C 75 LISP Reference Manna I

(OR <expl> <exp2>

norma I; FSUBR

<exp[nJ>)

OR evaluates each of its arguments in ttu~n until it finds
the first argument which has a true value. If one of its
arguments is true, then the value of OR is the value of
that argument. If none of its arguments is true, then the
value of OR is false. Arg;uments following the first true
argument are not eva 1 ua ted. If no arguments are present
the value of OR is false.

4', 5 SEQUENCE CONTROL AND FUNCTION EVALUATION

The functions of this section are used to control the sequence
of execution of expressions in a LISP function by providing
conditional and iterative control structures. Also included are
functions which enah le the user to cons true t and evaluate his own
functions and expressions at run-time.

(COND C<boolean1> <exp> ..• <exp))
(<boolean2> <exp>
(< hoo lean[nJ > <exp>

norma 1; FSUBR

<exp>)
<exp>))

COND is one of the maJor functions of LISP. Most user­
de fined functions are defined in terms of a COND-express iori
(conditional expression). COND provides a conditional
con tro 1 s true ture s imi Jar to ·that provided by the IF
statement in ALGOL. The arguments of COND are lists
containing at least o·ne S-express ion each. COND proceeds
as follows: <boolean!> is evaluated and if it is true then
the remaining S-express ions (if any) in the 1 ist containing
< ho o 1 e an 1 > are e va 1 ua t e d in 1 e f t - to - r i g ht order . I f
< b.oo leanl> is false, then <boo lean2> is eva 1 ua ted and if
<boo lean2> is true the S-express ions fo I lowing it (if any)
are evaluated. This process continues for <boolean3>,
<boo lean4> , etc. , uu ti 1 either some <boo lean[i J > is true or
all <boolean[i]>'s have been evaluated as false. In any
case the value of COND will always be the value of the last
S-express ion eva 1 ua ted under its control. The va 1 ue of
COND with no arguments given is NIL.

(SELECT <exp> (<exp[1, lJ> <exp[1.2J>
(<exp[2,1J> <exp[2,2J>
<<exp[m,1]> <exp[m,2J>
< exp [m+ 1 J >)

norma 1; FSUBR

< exp [1 , n 1J >)
<exp[2,n2J>)
<exp[m,n[m]J))

SELECT a I lows the se lee t ion of a particular list of
express ions to he eva 1 ua ted depending on the va I ue of the
first argument of SELECT. It proceeds as fol lows. The
f i rs t argument , < exp> , is e va 1 ua t e d . I ts va I ue is then
compared successively to the values of <exp(l,IJ>,
<exp[2,1J>, <exp[3,1J>, .•. , until the value of <exp>
equals the value of <exp[i,lJ. For that i, each
<exp[i, 2J > , <exp[i, 3] >, ... , <exp[i, n[i] > is eva 1 ua ted and
the value of <exp[i,n[iJJ> is returned as the value of
SELECT. SELECT is very similar to COND in this respect, in
that once a test is successfully completed, SELECT

-41-

LISP Reference Manual DEC 75

evaluates an arbitrarily large number of. associated
express ions, re turning the va 1 ue of the last express ion so
evaluated. If the value of <exp> is not equal to the value
of any <exp[i,lJ>, i=l, ... ,m, then the va]ue of <exp[m+lJ>
is returned as the value of SELECT.

(PROG2 <expl> <exp2>)

pseudofunction; SUBR

The value of PROG2 is the value of <exp2>. This function
is used to perform two act ions where LISP norma 11 y a I lows
only one.

CPROGN <expl> <exp2> •.. <exp[nJ>)

pseudofunction; FSUBR

PROGN evaluates each of its arguments in turn and the value
of the last argumen. t is re turned as the va 1 ue of PROGN.
This function is used to perform a simple sequence of
act ions where LISP nor ma 11 y a I lows on 1 y one.

(PROG <lat> <sl> <s2> ... <s[nJ>)

pseudofunction; FSUBR

The PROG express ion is used to form iterative functions.
The first argument is a 1 ist of atoms which serve as
temporary variables within the PROG expression. The
remaining arguments are either literal atoms or else they
are express ions to be evaluated. Literal a toms serve as
labels and the expressions serve as statements of a
sequent ia 1 programming language. PROG proceeds by first
assigning the value NIL to each of the temporary variables.
I t t hen e va 1 ua t es each < s (i J > un 1 es s i t i s an a tom. An
a tom is skipped and the express ions fo I lowing it are
evaluated, one after the other. The use of the GO function
allows the sequence of execution to be altered (see below).
The value of a PROG expression is NIL if all the <s[i]>'s
are executed without encountering the RETURN function. If
RETURN is encountered, the va 1 ue of the argument of RETURN
is the value of the entire PROG expression. GO and RETURN
may be executed in other functions which are ca I led by the
function containing a PROG expression, provided none of
these f unc t i o ns has been c o rnp i led (see c hap t er 6) .

(GO <litatom>)

pseudofunction; FSUBR

GO is used to con tro 1 execution sequence within a PROG
express ion. I ts argument is not eva 1 ua ted and must he one
of the labels which appears in the PROG expression.
Execution of GO causes the execution of the PROG expression
to be continued with the statement immediately following
the label which is the argument of the GO. GO may not be
used to branch out of a PROG expression, but may transfer
control only within the most recently occurring PROG
express ion. GO has no value as such.

-42-

DEC 75 LISP Reference Manual

(RETURN < s >)

pseudofunction; SUBR

RETURN causes LISP to exit a PROG expression. The argument
of RETURN is made the value of the entire PROG expression.
RETURN may he executed within a non-PROG express ion which
is evaluated under the control of a PROG expression, in
which case LISP exits from the PROG express ion.

CEXIT < litatom> <exp>)

pseudofunction; SUBR

EXIT causes LISP to exit the most recent call to the user­
called function <litatom>. EXIT evaluates <exp> a second
t irne. This second eva 1 ua t ion takes place in the con text
before the ca 11 to < Ii ta tom> rather than in the con text of
the ca 11 to EXIT. EXIT re turns the resulting value as the
value of the function< litatom>". EXIT differs from RETURN
in that EXIT re turns from < 1 i ta tom> to the function which
called < litatom> independent of whatever PROG expressions
have been entered. EXIT is e qui va lent to:

<RETFROM <NTHFNBK <litatom> 1) <exp>)

(EVAL <exp>)

norma 1; SUBR

EVAL evaluates its argument a second time. TI1e value of
this second evaluation ·of <exp> is returned as the value of
EVAL. Variables within the expression will be evaluated in
the con text in which the ca 11 to EVAL i E'l made.

Example:

<EVAL (QUOTE COMMA)) =

(APPLY <function> <list>)

norma 1; SUBR

The <list> is a list of arguments for the <function> which
is the first argument of APPLY. The value of APPLY is the
value obtained by applying< function> to <list>. The first
argument must be either a function name or a lambda
express ion and if it is a function name, the function must
he of type EXPR or SUBR. If a <function> of type FEXPR or
FSUBR is given to APPLY then an UNDEFINED FUNCTION error
will occur even though the function is in fact defined.

<EVALQUOTE <function> <list>)

norma 1; SUBR

EVALQUOTE is similar to APPLY in that it app 1 ies <function>
to < 1 is t>. However, EVALQUOTE allows the function to he of
type FEXPR or FSUBR as we 11 as EXPR or SUBR. The result of
the application of <function> to <list> is the value of
EVALQ.UOTE.

-43-

LISP Reference Manual DEC 75

< EVLIS <list>)

norma 1; SUBR

EVLIS expects its argument to be a list of expressions. It
evaluates these expressions one at a time from left to
right and returns a list whose elements are the respective
va I ues of the express ions.

<FUNCTION <function>)

pseudofunction; FSUBR

The argument of FUNCTION is expected to be a function name
or a lambda expression. This function is required in
certain very special cases to prepare an environment for a
func t iona 1 argument he ing passed to an.other function. I ts
va 1 ue is a so-cal led 11 funarg 11 express ion.

(LABEL <litatom> <lambda expression>)

form

LABEL is a form which binds the <lambda expression> to
< I i ta tom> in a 1na nne r such t ha t d ur i ng exec u t ion o f the
< lambda express ion>, if < 1 i ta tom> is app I ied as a function
and has no standard definition (EXPR, etc.), then <lambda
express ion> is used as the function definition. LABEL is
used to permit a name to be given to a temporary, recursive
express ion.

4.6 LIST MANIPULATION FUNCTIONS

List manipulation functions are the principal means for
dealing,wlth S-expressions. Operations of construction, copying,
reversal, and combination are possible.

<LENGTH <s»

no rma I ; SUBR

The argument of LENG11I may be either an atom or a list. If
the argument is a list, then the value of LENGTH is the
number of elements in the 1 is t. If the argument is an
atom, the value of LENGTH is zero.

CNTH <list> <fixnumher>)

no rma l ; SUBR

NTH returns the <fixnurnber>th top-level element in <list>.
< f ixnumber> must be s tr ic t 1 y positive and less than or
equal to the. number of e_lements in< list>. <NTH< list> l)
is equivalent to (CAR< list».

-44-

DEC 75 LISP Reference Manual

C COPY < s>)

norma 1; SUBR

COPY copies its argument. That is~ it returns an entirely
new 1 is t s true ture occupying different memory words and
equivalent to the original S-expression.

C REVERSE < 1 is t>)

no rma 1 ; SUBR

REVERSE re turns a new 1 is t whose top- leve 1 e le men ts are the
same as the elements of its argument but are reversed in
order. Sublists of the list are not themselves reversed.

CREVERSIP <list>)

psendofunctlon; SUBR

REVERSIP performs an in-place reversal of a list. Tiie
value of REVERSIP is the same <list> as its argument, but
that list has been inte1·nally modified so that the top­
level elements appear in reverse order.

<APPEND <list> <s>)

normal; SUBR

The first argument of APPEND must be a list. The second
argument norma 11 y is a · 1 is t, but does not have to he.
APPEND Joins its two arguments together such that the
resulting new list contains the elements of both arguments
with the elements of <list> appearing before the elements
of <s>. The first argument is copied with the terminal NIL
replaced by a pointer to <s>.

CNCONC <list> <s>>

no rma 1 ; SUBR

NCONC is similar to APPEND in that it Joins its two
arguments into a single S-expression. NCONC actually
modifies <list> to .replace the terminal NIL with a pointer
to <s>. The value of NCONC is its first argument, as
modified by the action of the function. This can he
contrasted with the value of APPEND which creates a new
list structure and cloes not modify either of its arguments.

CCONC < listt> < list2> ... < list[nJ>)

normal; FSUBR

CONC is similar to NCONC in that it concatenates its
arguments into a single list. However, CONC accepts an
arbitrary number of lists and returns <Iistl>, internally
modified to be the concatenation of all of the lists in the
order that they were presented. CONC modifies the existing
list structure of all its arguments except the last.

-45-

LISP Reference Manual DEC 75

CPAIR <list1> <list2>)

norma 1; SUBR

PAIR matches its two argument lists together, returning a
resulting list whose length is equal to the length of its
shorter argument. Each element of the resulting list is a
dotted pair whose CAR is the corresponding element of
<list!> and whose CDR is the corresponding element of
< 1 is t2> • Thus, the first e le men ts are pa ired~ and the
second elements are paired, and so forth.

CEFFACE <s> <list>)

normal; SUBR

EFFACE
<list>.
1 is t.

removes the first occurrence of the item <s> from
EFFACE modifies the existing structure of the

(SUBLIS <list> <s>)

where < 1 is t> is an express ion of the form

CC<sl> • <s2)) C<s3> . <s4>> ... ((s[n-11> • <s[nJ)))

normal; SUBR

SUBLIS receives a list of dotted pairs, as indicated, for
its first argument and an arbitrary S-expression as its
second argument. The value of SUBLIS is the result of
substituting the right part of a dotted pair for every
occurrence of the left part of the dotted pair in < s>, the
second argument of SUBLIS. Thus, SUBLIS a I lows the
simultaneous substitution of a number of items in an
arbitrary S-express ion. SUBL IS does not modify existing
memory s true ture. SUBLIS creates a new s true ture
contain"lng the various substitutions, but does not copy any
unchanged subs true ture.

Example:

CSUBLIS "((A. 1)(B . 2)(C . 3)) "CA CBC 8) A))
= (1 c 2 3 2) 1)

CSUBST <s1> <s2> <s3>)

no rma 1 ; SUBR

The value of SUBST is the result of substituting <s1> for
a 11 occurrences of < s2> in < s3>. SUBST does not modify
existing list structure. SUBST creates an entirely new
list s true ture con ta in ing the substitutions, but does not
copy any unchanged substructures.

Example:

CSUBST 11 A 11 B "CA CBC B) A>> = CA CA CA) A>

-46-

DEC 75 LISP Reference Manual

4.7 PROPERTY LIST MANIPULATION FUNCTIONS

Every literal atom in the system has a property list
associated with it. The property 1 is t con ta ins i terns of
information about, or properties of, the atom. Users may assign
properties of their own choice to a toms. Each property is
characterized by an indicator, which is itself a literal atom and
which defines what property is being mentioned, and by a value
for that property, which may be any S-express ion. The ind lea tors
INFO, PNAME, EXPR, SUBR, FEXPR, FSUBR, SYM, CMACRO, SMACRO,
CSUBR, and CFSUBR have special meaning to the LISP system itself
and should be avoided or used with care; Property lists do not
have the same s true ture as ordinary 1 is ts (see chapter 3) and
should be manipulated only by the following functions.

<PUT< litatom1> < litatom2> <s>)

pseudofunc t ion; SUBR

If <s> is non-NIL, PUT searches the property list of
<litatoml> for an occurrence of the indicator <Iitatom2>.
If < 1 i ta tom2> is found then PUT replaces the old associated
va 1 ue with < s>. If the indicator is not found PUT places a
new element on the property list with indicator <litatom2>
and va 1 ue < s > • I f < s > is NIL, the assoc i a t e d ind i ca tor is
removed from the property 1 is t, if present; i.e., PUT cal ls
(REMPROP < li ta toml> < Ii ta tom2>) . The va 1 ue of PUT is its
first argument.

(GET< litatoml> < litatom2>)

norma 1; SUBR

GET is the inverse of PUT. GET searches the property list
of <litatoml> for a property list element whose indicator
is < litatom2>. The value of GET is the value associated
with that indicator if the indicator is present. Otherwise
the value of GET is NIL. GET shou Id not be used to ob ta in
the PNAME property of an a tom if the PNAME is going to be
used with the character man ipu lat ion functions (see sect ion
4. 10) • Instead, the function GETPN (see be low) shou Id he
used.

CDEFLIST <s> <litatom>)

where <s> is an expression of the form

((< litatoml> <s1» « litatom2> <s>)
C<litatom[nJ> <s(nJ>))

pseudofnnction; SUBR

DEFLIST is used to simultaneously assign a new property to
a number of different atoms. The first argument is a list
o f sub 1 is ts , each of two e 1 e men ts as shown a hove • The
second e 1 e men t o f each o f the s uh 1 is ts is p 1 aced on the
property list of the first element of the sublist as the
value of a property whose indicator is the second argument
of DEFLIST, that is, <litatom>. The value of DEFLIST is a
1 is t of the < 1 i ta tom[i J > 's which appear in the first
argument ; t ha t is , a 1 is t o f a 11 o f the a to ms to which the
new property has been assigned by DEFLIST.

-47-

LISP Reference .Manual

(DEF I NE < s > >
where <s> is an expression of the form

((< litatoml> <sl>) « litatom2> <s2>) « 1 i ta tom[n] > < s [n] >))

pseudofunction; SUBR

DEC 75

The argument of DEFINE is equivalent in form to the first
argument of DEFLIST, with the exception that the second
e 1 e men t of each o f the s uh 1 is ts s ho u 1 d he e i the r the name
of a functi9n or a lambda expression. DEFINE makes <s(i])
a property of <litatom[i]> with the indicator EXPR. The,
primary purpose of DEFINE is the definition of LISP
functions. DEFINE is equivalent to a call on the function
DEFLIST with the second argument being the atom EXPR. The
value of DEFINE is a list of the atoms which have received
the fnnc t ion definitions. ·

CDEF C< litatoml> < lat1> <sl» « litatom2> < lat2> <s>) •.. « litatom[nJ> < lat[nJ> _<s[nJ>>) ·

pseudofunction; FSUBR

DEF acts exactly as;

<DEFINE 11 (« litatoml> (LAMBDA< latl> <sl>))
« 1 i ta tom2> (LAMBDA < la t2> < s2>)) ...
C<litatom[n]> <LAMBDA <laHnJ> <s[nJ>))))

It thus is a convenient abbreviated form of DEFINE which
eliminates the need to "explicitly state the LAMBDA flag for
each <litatom[i]> function defined.

CDEFF (<litatoml> < latl> <st>) ((litatom2> < lat2> <s2>) •••
C<litatom[nJ> <lat[nJ> <s[n]>))

pseudofunction; FSUBR

DEFF is similar to DEF with respect to its abbreviated call
upon DEFINE. However, DEFF defines < 1 i ta toml> through
<litatom[n]> as FEXPRs rather than EXPRs (see section 4.1).

(GETD < 1 i ta tom>)

pseudofunction; SUBR

GETD returns the functional definition of <litatom> by
GETting the value associated with the EXPR or FEXPR
indicator on <litatom>'s property list. GETD also forces a
re tr ieva 1 of the function < 1 i ta tom> from the disk if
<litatom> has previously been the argument of a call to
DISKOUT (see section 7.6 on the LISP virtual memory
fac i 1 i ty for functions) . If < 1 i ta tom> does not have an
EXPR or FEXPR indicator on its property list, GETD returns
NIL. Thus sys tern functions with SUBR or FSUBR dei ini t ions
are not retrieved by GETD.

-48-

DEC 75 LISP Reference Manua I

(PUTD < litatom> <s>)

pseudofunction; SUBR

PUTD replaces the definition of <litatom> associated with
its EXPR or FEXPR indicator by <s>, using the same
indicator already on< litatom>. If< litatom> does not have
an EXPR or FEXPR definition, PUTD does nothing. The value
of PUTD is a 1 ways its first argument.

(Q.KED IT < Ii tat om> < s 1 > < s 2>)

pseudofunction; SUBR

QKEDIT substitutes <sl> for <s2> within the definition of
any EXPR or FEXPR fun.ct ion < 1 i ta tom>. QKEDIT is e qui va lent
to

(PUTD <Ii ta tom> (SUBST < s 1> <.s2> (GETD < Ii tat)))

CGETPN <litatom>)

normal; SUBR

GETPN returns the PNAME property of the <litatom>
structured as a list of full words; that is, a list whose
CAR fields point directly to the full words which contain
the characters of the print name of the < litatom>. Such a
list structure is necessary for manipulation by some of the
functions defined in section 4.10.

(REMPROP < 1i ta toml> < Ii ta tom2>)

pseudofunction; SUBR

REMPROP removes the property whose indicator is <litatom2>
from <litatoml>. The value of REMPROP is <litatoml>.

(FLAG< lat> <litatom>)

pseudoftlnction; SUBR

FLAG PUTs the property indicator <Iitatom>, with the
associated value *T*, on the property list of each of the
atoms in <lat>. The value of FLAG is NIL.

(REMFLAG < lat> < 11 ta tom>)

pseudofunction; SUBR

REMFLAG removes a 11 occurrences of the indicator < 1 i ta tom>
from the property list of each of the atoms in <lat>. The
value of REMFLAG is always NIL.

-49-

LISP Reference Manual

CPROP <litatoml> <litatom2> <fnexp>>

normal; SUBR

DEC 75

PROP is similar to GET in action. The property list of
< litatoml> is searched for the indicator < litatom2>. If
such a property is found, the entire property list of
< litatoml> beginning with property< litatom2> is returned
by PROP. If < 1 i ta tom2> is not an indicator on the property
list of < 1 i ta toml> , then < fnexp> , which must be a function
of no argu~ents, is applied and the value returned by PROP
is the value of <fnexp>.

4.8 FUNCTIONS WITH FUNCTIONAL ARGUMENTS

These functions all sequentially scan a list, performing an
operation on the list with each scanning operation. The
operation to be performed is specified by a functional argument.
Thus these functions have variable se~antics. Although FUNCTION
must be used with functional arguments for some user-defined
functions, it is never necessary with these functions.

(MAP < 11 s t > < f ne xp >)
pseudofunction; SUBR

MAP app 1 ies the functional express ion < fnexp> to < 1 is t>,
then to <CDR <list>), <CDDR <list>), and so on, until
<fnexp> has been applied to all non-NIL CDRs of <list>.
<fnexp> must describe a function of only one argument. The
va l ue of MAP is a l ways NIL. MAP is a hra ys used to perform
some kind of side effect computation.

CMAPC <list> <fnexp))

pseudofunction; SUBR

MA.PC is similar to MAP excet>t that it at>P 1 ies < fnexp> to
successive CARs of <list> instead of to the entire <list>.
Thus MA.PC first app 1 ies < fnexp> to (CAR < 1 is t>), then to
<CADR <list>) and so on until some CD ..• DR of <list> is
NIL. MAPC always returns NIL as its value (compare this
with the definition of MAPCAR).

(MA.PLIST <list> <fnexp>)

norma 1 ; SUBR

MAPLIST is similar to MAP except that its value is a list
of each of the values i>roduced when <fnexp> is applied to
successive CDRs of <list>. These elements are CONSed
together as they are generated. <fnext>> must be a function
of only one argument.

Example:

< MA.PLIST 11 (A B C> (FQ.UOTE (LAMBDA (X) <CONS X NIL))))
= <<<AB C>><<B C))((C)))

-50-

DEC 75 LISP Reference Manual

<MAPCON <list> <fnexp>)

nor ma 1; SUBR

MAPCON is similar to MAPLIST except that the value Is the
1 is t which results from concatenating· the ind ividua 1
results of applying <fnexp> to successive CDRs of <list>.
This implies that each value returned by the <fnexp> must
i tse 1 f be a 1 is t or else erroneous results may occur when
the elements are concatenated together. <fnexp> must he a
function of only one argument.

Example:

(MAPCON 11 (A B C> (FQUOTE (LAMBDA (X) (CONS X NIL))>)
= <<AB C>CB C>CC>>

(MA.PC.AR < 1 is t > < f nexp>)

normal; SUBR

l·is t of
< fnexp>.
of· the
itself.

MAPCAR is similar to MAPLIST in that it returns a
the results of the ind i vidua 1 app 1 lea t ions of
However, <fnexp> is applied at each step to CAR
successive CDRs of < 1 is t> instead of to the CDR
<fnexp> must be a function of only one argument.

Example:

C MAPCAR 11 (A B C) (FQUOTE <LAMBDA < X> (CONS X NIL))))
= (< A) < B) C C))

CSEARCH <list> <fnexpl> <fnexp2> <fnexp3>)

norma 1; SUBR

SEARCH applies <fnexpl> to <list> and successive CDRs of
<list> until it happens that the value of <fnexpl> is true.
If this condition occurs, then SEARCH applies <fnexp2> to
the re ma ind er o f < 1 is t > a t t ha t t i me . I f the en t ire l is t
is exhausted without any application of <fnexpl> giving a
true value, then < fnexp3> is applied to NIL. SEARCH is
therefore used to apply some function to a portion of the
1 is t depending on a condition which must be met by some
element of the list. Each <fnexp> must he a function of
only one argument.

Example:

(SEARCH II ((A • 1) (B. • 2) (c . 3))
(FQUOTE< LAMBDA< X> C EQ < CAAR X> "B)))
CFQUOTE<LAMBDA<X>CCDAR X)))
CFQUOTE<LAMBDACX)(ERROR "(SEARCH FAILURE)))))

= 2

CSASSOC <s> <list> <fnexp>)

no rma 1 ; SUBR

SASSOC searches its second argument (which must be composed
from non-atomic elements) for an element whose CAR is EQUAL
to < s>. If such an e le men t is found, the va 1 ue of SASSOC
is that e le men t. Otherwise, the function < fnexp> of no

-51-

LISP Reference Manual DEC 75

arguments is applied and its value returned as the value of
SASSOC.

Example:

(SASSOC 11 B 11 ((A . l)(B . 2)(C • 3)) NIL) = CB • 2)

4.9 ARITHMETIC FUNCTIONS AND PREDICATES

All of the functions described in this section must receive
numeric atoms as their arguments. There are three types of
numbers in LISP: oc ta 1 numbers, integers, and floating-point
numbers. Octa 1 numbers and integers are not distinguished for
arithmetic operations; both are considered to be fixed point.
They differ only in their printed representation. All of the
arithmetic functions may accept either fixed-point or floating
point inputs or a mixture of the two. The result is floating
point if any of the inputs are floating point and is fixed point
otherwise.

CADD1 <number>)

norma 1; SUBR

ADD 1 increments <number> by 1 and re turns the
value as its result. A fixed-point result is
type.

(SUB1 <number>)

norma 1; SUBR

inc re men ted
of integer

SUBl decrements <number> by 1 and returns the decremented
quantity as its value. A. fixed-point result is of integer
type.

CPLUS <number> <number> ... <number>)
(+<number> <number> ..• <number>)

norma 1; FSUBR

PLUS evaluates all its arguments and returns as its value
their sum. A fixed-point result is of integer type. + is
a synonym for PLUS.

(DIFFERENCE <numberl> <number2>)
(- <number!> <number2>)

normal; SUBR

DIFFERENCE returns as its value the difference <numberl> -
<number2>. A fixed-point result is of integer type. is
a synonym for DIFFERENCE.

-52-

DEC 75 LISP Reference Manual

<MINUS <number>)

norma 1; SUBR

MINUS returns the negative of its argument.
result is of integer type.

(TIMES <number> <number> <number>) (* <number> <number> <number>)

nor ma 1; FSUBR

A fixed-point

TIMES evaluates all its arguments and returns as its value
their product. A fixed-point result is of integer type. *
is a synonym for TIMES.

(QUOTIENT <number 1> < number2>)
(/<number!> <number2>)

norma 1; SUBR

QUOTIENT returns as its value the quotient of
<numher1>/<numher2>. The quotient of two fixed-point
numbers is the integer part of the quotient and is of
integer type. Thus, QUOTIENT< 1 2) re turns the va 1 ue 0. /
is a synonym for QUOTIENT.

<REMAINDER <numherl> <number2>)

no rma 1 ; SUBR

REMAINDER returns as its value the remainder of the
division <numher1>/<number2>. The rem<1 inder is . calculated
by the usual formula:

remainder= dividend - (/quotient/* divisor)

where /quotient/ is the greatest integer contained within
the quotient. A fixed-point result is of integer type.

(DIVIDE <numberl> <number2>)

norma 1; SUBR

DIVIDE returns as its value a list of two numbers wherein
the first e le men t is (QUOTIENT <number 1 > < number2>) and the
second element is <REMAINDER <numberl> <number2>).

(RECIP <number>)

norma 1; SUBR

RECIP returns as its value the reciprocal of its argument.
That is, it is e qui va lent to (QUOTIENT 1 <number>). The
reciprocal of any fixed-point quantity larger than one is
an integer zero.

-53-

LISP Reference Manual

<MAX <number> <number> ... <number>)

norma 1; FSUBR

DEC 75

MAX evaluates all its arguments and returns as its value
the algebraically largest <number> in the set.

(MIN <number> <number> ••. <number>)

norma 1 ~ FSUBR

MIN evaluates all its argu"ments and returns as its value
the algebra ica 11 y smallest < n'umber> of the set.

CLOGAND <number> <number> ... <number>)

norma 1; FSUBR

LOGAND evaluates all its arguments and returns
by-bit logical product (logical AND). Each
treated as a 60-hit quantity. The value of
always of oc ta 1 type.

(LOGOR <number> <number> • . . <number>)

norma 1; FSUBR

their bit­
<number> is

LOGAND is

LOGOR evaluates all its arguments
b i t 1 o g i ca 1 sum (inc 1 us i ve 0 R) •
as a 60-b it quan t_i ty. The va 1 ue
oc ta 1 type.

and returns their bit-by­
Each <number> is treated

of LOGOR is always of

<LOGXOR <number> <number> .•. <number>)

normal ; FSUBR

LOGXOR evaluates all its arguments and returns their bit­
by-bit logical difference (exclusive OR) with association
to the left. Each <number> is treated as a 60-b it
quantity. The value of LOGXOR is always of octal type.

CLEFTSHIFT <number> <fixnumber>)

norma 1; SUBR

LEFTSHIFT performs a shifting operation on its 60-bit first
argument. <fixnumber> is a shift count of the number of
bi ts <number> is to be shifted. If the shift count is
positive the shift is left, end-around circular. If
negative the shift is right, end-off with sign extension.
The result of the LEFTSHIFT function is always of octal
type.

(FIX < f I number>)

norma 1; SUBR

The value of FIX is the largest integer contained in the
floating point number. The value is of integer type.

-54-

DEC 75 LISP Reference Manual

CFLOAT <fixnumber>)

norma 1; SUBR

FLOAT returns a floating-point number whose value is the
same as that of the fixed-po int argument. < f ixnumber> must
be less than 2**48 in magnitude for this function to give
the proper result.

<OCTAL <number>)

pseudofunction; SUBR

OCTAL converts its argument into a number of octal type.
The print image of the resulting number is the octal
representation of the or igina 1 va 1 ue. No conversion from
floating point to fixed point is made. OCTAL actually
modifies its argument direct 1 y. It does not make a copy of
the argument.

(RANDOM <number>)

norma 1; SUBR

RANDOM returns a new random number in the range 0-1 each
time it is cal led with a zero argument. If cal led with an
argument he tween 0 and 1, it re turns that argument, as its
value, and on subsequent calls with a 0 argument, it will
return new random numbers be longing to a new sequence begun
by the ca 11 with a nonzero argument.

(ZEROP <number>)

predicate; SUBR

ZEROP re turns <number> as its va 1 ue if its argument is a
numeric· zero. It re turns false otherwise.

(ONEP <number>)

predicate; SUBR

ONEP returns <number> as its value if its argument has the
va 1 ue 1 (either fixed-point or floating-point). It re turns
false if its argument is not equal to 1.

<MINUSP <number>)

predicate; SUBR

MINUSP re turns <number> as its va 1 ue if its argument is a
negative number. It returns false if its argument is a
positive number. On 1 y the sign of the number is tested.
Therefore, MINUSP returns true if <number> is -0.

-55-

<FIXP <number>)

predicate; SUBR

LISP Reference Manual DEC 75

FIXP returns <number> as its value i.£ its argument is a
fixed-point number (either an integer or an octal number)
It returns false otherwise.

<FLOATP <number>)

predicate; SUBR

FLOATP returns <number> as its value if its argument is a
floating-point number, or false otherwise.

<LESSP <numberl> <number2>)
<< <numberl> <number2>>

predicate; SUBR

LESSP returns true if <numberl> is strictly less than
<number2>, or false otherwise. If either of the argu~ents
is floating point, the comparison uses floating-point
arithmetic. < is a synonym for LESSP.

(GREATERP <number 1 > < number2>)
(> <number 1 > < number2>)

predicate; SUBR

GREATERP returns true tf <numberl> is strictly greater than
< number2>, or false otherwise. If either of the arguments
is floating point, the comparison uses floating-point
arithmetic. > is a synonym for GREATERP.

4.10 CHARACTER MANIPULATION FUNCTIONS

Normally in LISP, one is not concerned with the constituents
of the atomic symbols, as atoms are treated as indivisible units.
However, it is occas iona 11 y necessary to decompose an a tom in to
its constituent characters or to build an atomic symbol from a
group of individual characters. The functions described in this
section assist in these operations.

A character irl LISP is represented by a literal atom whose
print name is the single character. Thus, the characters may be
man ipu lated by any of the functions which may be used to
manipulate atomic symbols. This means also that there is a
difference between single digit numbers and the literal atoms
whose names are the digit characters. The user should keep this
dif.ference in mind. There exists an internal buffer into which
up to 120 characters may be placed. This buffer is useful for
accumulating characters which are being used to construct atoms,
and this buffer is manipulated by some of the functions des er ibed
in this sect ion.

-56-

DEC 75 LISP Reference Manual

CCLEARBUFF)

pseudofunction; SUBR

This function of no arguments clears the internal buffer
and resets the counter of its contents to zero. The value
of CLEARBUFF is NIL. Tiiis function should he executed
before any of the other functions which affect the buff er
are used.

(PACK <character>)

pseudofunction; SUBR

PACK places the character which is its argument into the
next sequential position in the internal buffer, following
all characters which have previously been placed there.
The value of PACK is NIL.

CMKNAM)

pseudofunction; SUBR

MKNAM returns as its value a list of full words created
from the contents of the internal buffer. The characters
are taken from the buffer ten at a time and placed into
full words containing up to ten display character codes.
The last full word is filled with zero hits if necessary~
The resulting list is one whose CAR fields point directly
to the full words containing the character codes. This
type of list structure is not a normal LISP list. The
internal buffer is cleared after this function is
completed.

< INTERN < fwl>) or (INTERN < 1 i ta tom>)

pseudofunction; SUBR

The argument of INTERN can be either a < fwl> or a
< 1 i ta tom>, INTERN searches the oh 1 is t for an a tom whose
pr int image matches < fwl> or <Ii ta tom>. If such an a tom is
found, INTERN returns that atom. Otherwise, INTERN puts
<litatom> or an atom it creates from the <fwl> on the
oblist and returns this atom as its value.

C NUMOB)

pseudofunction; SUBR

NUMOB expects the internal buffer to contain a sequence of
characters defining a number. The syntax of the numbers is
the same as if the characters had been punched on a data
card. The value of this function is the LISP number which
corresponds to that character re pre sen tat ion. If the
characters in the buffer do not form a legal LISP number,
then NUMOB returns as its value a literal atom whose print
name contains those characters but is not INTERNed. The
buffer is empty after this function is completed.

-57-

LISP Reference Manual DEC 75

(UNPACK < fw> >

pseudofunction; SUBR

The argument to UNPACK must itself be a full word; that is.
a memory word containing up to ten display code characters.
filled with zero bits if fewer than ten characters are
present. The value of UNPACK is a list of literal atoms,
one atom for each character contained in the argument of
UNPACK. The print names of the literal atoms in the list
correspond to the character codes in the ful 1 word.

CIMA.GEL <atom> <boolean>)

pseudofunction; SUBR

IMAGEL returns the integer length of the printed
repres:nta t ion of <a tom> . If <boo lean> is false, the image
used 1s the . normal printed image. If <boolean> is true,
the image used inc 1 udes any de 1 imi ter or escape symbols
necessary to reproduce a readable form of the atom. This
function facilitates formatting printed output.

(Nlf.MTOATOM <number>)

pseudofunction; SUBR

NUMTOATOM creates and returns a literal atom whose print
name is equivalent to the representation <number> would
have if printed. The literal atom is not placed on the
oblist. The format used for floating-point numbers is
under the control of NFORMAT (see section 5.8).

(COMPRESS < lat> <boo lean>)

pseudof.unction; SUBR

<lat> must he a list of single-character atoms. If
<boolean> is false or omitted, COMPRESS creates and returns
an atom identical to the result of a READ of the same
characters as from an input file. That is, if the
characters are a legal numeric representation, a numeric
atom is returned; otherwise, a standard literal atom of the
first 30 characters, created according to the syntax of
section 3.1.2.1, .is returned. If <boolean> is true, then
spec ia 1 characters which would ord inar i 1 y terminate the
reading of an atom from the input file are included in the
first 30 characters of the a tom re turned. If <boo lean> is
true, the a tom is INTERNed; otherwise it is not.

Examples:

(COMPRESS II (A B #. # ' # •)) = AB
(COMPRESS II (A B # • # ' # •) T) = AB. ' •

(EXPLODE <a tom>)

pseudofunction; SUBR

EXPLODE returns a list of single-character atoms which if
concatenated are equivalent to the print image of <atom>.

-58-

DEC 75 LISP Reference Manual

<atom> may be either numeric or literal. ExPLODE is the
inverse of COMPRESS, i.e.,

<COMPRESS <EXPLODE <atom>) T) = <atom>

C LITER < s>)

predicate; SUBR

LITER returns <s> as its value if <s> is a Itteral atom
whose print name is a single alphabetic cbaracter.CA-Z).
The value of LITER is false in all other circumstances.

<DIGIT <s>>

predicate; SUBR

DIGIT returns <s> as its value if <s> is a literal atom
whose print name is a single numeric character (0-9). The
value of DIGIT is false under· all other circumstances.
Notice that DIGIT is false for the single-digit numeric
a toms 0-9 .

. < OPCHAR < s >)

predicate; SUBR

OPCHAR returns <s> as its value if <s> is a literal ·atom
whose print name is one of the single characters +, -. /,
or *· OPCHAR returns false under all other circumstances.

4.11 DEBUGGING AND ERROR PROCESSING FUNCTIONS

These functions are used to give the user some control over
the operation of the LISP sys tern or to enah le him to ob ta in more
information a_hou t the operation of his functions.

<ERROR <s»

pseudofunction; SUBR

ERROR causes a recoverable error to occur. The argument to
ERROR appears as part of an error message printed in
response to this function. The message is:

***** ERROR: <s>

Continued execution of the current top-level expression is
suspended unless the ERROR function is executed under the
control of an ERRORSET (see below). This function has no
va 1 ue as such.

-59-

LISP Reference Manual DEC 75

<DIE <s>)
pseudofunction; SUBR

DIE behaves much like ERROR (see above), except that it is
irrevocably fatal and causes the LISP run to terminate.
< s> is printed as part of a message:

! ! ! ! ! KILLED: < s >

CERRORSET <exp> <boolean1> <boolean2>)

pseudofunction; SUBR

ERRORSET is a function which allows the LISP system to
recover from a recoverable error without terminating the
execution of the current top-level expression. The first
argument of ERRORSET is evaluated a second time. If no
error occurs during the eva 1 ua t ion, then the resu 1 t of
ERRORSET is a 1 is t of the value of the express ion. If an
error does occur during the evaluation the result of
ERRORSET is NIL. If a computation causes a recoverable
error to occur, the system returns to the point at which it
entered the last ERRORSET function. <booleanl> controls
the printing of the error message in response to the error
de tee ted. If <boo leant> is true the error message is
printed; if false, the error message is not printed.
<boolean2> controls printing of the backtrace with the
error message. If both <boolean1> and <boolean2> are true;
the backtrace is also printed. Note that ERRORSET is a
SUBR; therefore the result of evaluating <exp> is passed to
ERRORSET as its first argument. If ERRORSET is to be
passed an expression· to be directly evaluated, <exp> must
be the QUOTEd form of this expression. This case is
particularly important since ERRORSET does not cause
recovery from an error produced be fore it receives the
value of <exp> .

Examp te·: (use of ERRORSET to detect unbound variables)

If the variable BETA is bound to the variable ALPHA, but
ALPHA has no value, then

(ERRORSET "BETA) = (ALPHA)
(ERRORSET BETA) = NIL
(ERRORSET 11 ALPHA) = NIL

and CERRORSET ALPHA)
error message.

<TRACE< lat>)

pseudofunction; SUBR

would produce an unbound variable

TRACE FLA.Gs the property 1 is t of each of the a toms in the
<lat> with the indicator TRACE. Subse<tnently, for a
function of type EXPR and SUBR whose name was so flagged,
the actual arguments supplied to that function are printed
every time that function is entered, and the actual value
resulting from that function is printed every time the
function is exited. This feature enables the user to get a
complete history of the activity of a selected set of
functions. To he effective, the TRACE indicator must be

-60-

DEC 75 LISP Reference Manual

placed on
functions
NIL.

the property list
have been defined.

of r~nctions after
The value of TRACE is

The format of the printing is as follows:

[<xx>J ARGUMENTS OF <name>

those
always

This line is printed each time a traced function is
entered. <name> represents the name of the function. <xx>
is a two-character code which is changed every time a new
11 ARGUMENTS OF 11 message appears and is designed to enable
the user to te 11 which occurrence of a ca 11 on the function
is being described. The <xx> begins with A and sequences
through Z, etc. , up to , , . Fo I lowing this 1 ine, each
argument received by the indicated function is stated on a
separate line. The line

[<xx>] VALUE OF <name>

is printed each time a traced function is exited. <name>
represents the name of the function which is being; exited.
The actual value returned by the function at this point is
printed beginning on the next line. These two messages
appear in pairs. Every function that is entered must
u 1 t i ma t e 1 y be ex i t e d . The i nd i ca tor < xx> is used t o ma t ch
the corresponding function entry and exit lines, since
these 1 ines may be separated by many pages of output if
extensive tracing is used. Al though tracing of functions
can be very useful in the debugging process, the user is
cautioned to be economical in his use of tracing as the
extra printing consumes both time and paper. If too much
tracing is done the user may receive a large amount of
output which has too much de ta i 1.

(UNTRACE < lat>)

pseudofunction; SUBR

UNTRACE is the inverse of TRACE. It removes the flag TRACE
from the property list of each atom in the <lat> . Any of
those a toms which are function names wi 11 subsequently not
be traced when app 1 ied as a function. The va I ue of UNTRACE
is always NIL.

<TRACESET <lat>)

psendofunction; SUBR

The a toms in the < lat> shou Id be the names of functions
which are composed of a PROG express ion. These functions
are marked in such a way that while they are in con tro 1,
every execution of a SET or SETQ. causes a message to be
printed, showing the va 1 ue assigned to the var ial> le at that
point in time. The message consists of the variable name
followed by an equal sign followed by the value which was
assigned to that variable. This process is useful for
tracing the internal operation of functions written using
PROG expressions. If any atom in< lat> is not the name of
a function with a top-leve 1 PROG, then that a tom is not
processed. An error message is generated after the entire
< lat> is processed. The value of TRACESET is its unchanged
argument. SET and SETQ. tracing continues downward through

-61-

LISP Reference Manual DEC 75

all called functions until another PROG expression which is
not TRA.CESET is entered.

<UNTRACESET <lat>)

pseudofunction; SUBR

UNTRA.CESET is the reverse of TRA.CESET. The atoms in the
<lat> should be the names of functions composed of PROG
expressions. UNTRACESET removes the marks set by the
TRACESET function so that subsequent execution of those
functions will no longer cause the printing produced by the
TRACESET. By the value of UNTRACESET is its unchanged
argument.

(LOOK <fixnumber))

norma 1 ; SUBR

<fixnumber> is treated as a machine address. LOOK returns
an octal number whose va 1 ue is e qua 1 to the con ten ts of the
designated location. There is no restriction on what
address may be looked at except that it must be within· the
bounds determined by the current field length.

4.12 MISCELLANEOUS FUNCTIONS

These functions provide the user with various capabilities for
affecting or gaining information about the system operation.

CTEMPUS>

CTM)

<DATE)

pseudofunction; SUBR

This function of no arguments returns an integer value
which is the TM time in mi 11 iseconds since the LISP run was
begun. TEMPUS is ini t ia I ized to zero whenever a new
control command call to LISP is entered. TEMPUS is not
reinitialized by the use of overlays.

pseudofunction; SUBR

TM returns an integer equal to the number of milliseconds
of TM time the Joh has used so far. TM time differs from
TEMPUS time in that TM time inc 1 udes a 11 work done t.y the
user during the current hatch Joh or since logging in,
regardless of whether this time was spent running LISP. TM
time thus reflects the operating system's view of the
user's computer use, rather than LISP's view.

pseudofunction; SUBR

DATE returns a special literal atom containing 10
characters of display code formed (left to right) from: a
blank, the first two digits of the current date, a second

-62-

DEC 75

<TIME)

LISP Reference Manual

blank, the first three letters of the
third h 1 ank, and the last two digits
(e.g., an atom equivalent to $$/ 04 JUL
July 4, 1976).

pseudofunction; SUBR

current month, a
of the current year
76/ for the date

TIME re turns the current time of day as a special 1itera1
a tom of 10 characters, composed from left to r ig·ht as
follows: a blank, two digits representing the current hour
(24 hour bas is) , a period, two dig i t8 representing the
number of minutes after the hour, a second period, two
digits re presenting the number of seconds after the minute,
and a final period (e.g., 2:31 PM would be equivalent to
$$/ 14.31.00./).

(DEADSTART)

pseudofunc t ion; SUBR

DEADSTART re turns an integer e qua 1 to the number of
mi 11 iseconds elapsed since the lasi t machine de ads tart.

CTMLEFT)

pseuclo function; SUBR

'TI'll..EFT returns an integer equal to the number of
milliseconds left for the current Joh. TMLEFT is useful
only to batch programs; it returns 0 whenever called from
an interactive program.

<SECTORS)

(pp)

CCPl

pseudofunction; SUBR

SECTORS re turns an integer e qua 1 to the number of disk
sector transfers performed by the current Job.

pseudofunction; SuBR

PP returns an integer equal to the number of PP
used by the current Job. This va 1 ue is de terminecl
operating system and is not specifically related
use of PP time.

pseudofunction; SUBR

seconds
by the
to LISP

CP returns an integer equal to the
mi 11 iseconds of CP time used by this
by the operating system and is not
the beginning of the LISP run.

cumulative number of
Job. CP is determined
initialized to zero at

-63-

LISP Reference Manual DEC 75

<RECLAIM)

(FULL)

CFREE>

pseudofunction; SUBR

This function of no arguments causes a garbage collection
to occur whether it is needed or not. The va I ue of RECLAIM
is a 1 ways NIL. If the Garbage Collector Message Control
(/ /GC) is i n e f f e c t (see sec t ions 4 . 14 and 2 . 1) , then a
line is printed showing the number of words collected by
the garbage collector.

pseudofunction; SUBR

This function of no arguments re turns an integer result
which is the nunilier of full words currently avialable.
This function consumes one full word and one free word each
time it is called.

pseudofunction; SUBR

This ·runction of no arguments returns an integer value
which is the number of free words currently available.
This function consumes one free word and one ful 1-word each
t i me i t is ca 1 1 e d •

(REMOB <litatom> <boolean>)

pseudofunction; SUBR

This function removes its argument <litatom> from the
ohlist provided (1) <litatom> is not a special LISP system
a tom, or (2) <boo lean> is true and < 1 i ta tom> is not
interna·lly referenced by the LISP system. The net effect
is t ha t i f the a tom is no t a member o f any o the r 1 is t
s true ture in memory, then the words comprising that a tom
wi 11 he collected during the next garbage collect ion.
Furthermore, if subsequently an atom with the same nante is
read, an entirely new atom will be created and the old one
wi 11 not he assumed. The va 1 ue of REMOB is < 1 i ta tom> if
the < 1 i ta tom> was removed from the oh 1 is t, or NIL
otherwise.

(ADDR < s>)

pseudofunction; SUBR

This function returns as its value an octal number which is
a representation of the address of <s>. ADDR enables one
to determine the actual machine address of any given S­
ex:press 1on.

-64-

DEC 75 LISP Reference Manual

(ADDRP < s>)

predicate; SUBR

ADDRP returns <s> if <s> is actually an address outside of
the free space and full-word space memory areas. This
could he the case if <s> points into the LISP interpreter,
the push-do·wn stack, or binary program space. If <s> is an
address within free space or fnl 1-word space, ADDRP re turns
false. Thus, ADDRP re turns false if < s> is an S­
express ion.

CGENSYM <letter>)

pseudofunction; FSUBR

GENSYM creates an entirely new literal atom each time it is
ca I led. The Ii tera 1 a tom has· a name of the form < xnnnnn>
where < x> is a single letter and < nnnnn> is an integer.
The letter used to compose the name is the argument of
GENSYM. Each time GENSYM is executed with an argument
<letter>, it re turns the next a tom in the se qnence for that
letter. If GENSYM is executed with no argument, the atom
generated is the next in the sequence started by the las. t
execution of GENSYM with a <letter> argument. Each a tom in
the sequence differs from the previous one by having the
integer part of the name inc re men ted by one. If no
argument is ever specified for GENSYM the letter G is used.
The a toms created by GENSYM are not placed on the ob 1 is t.
Therefore, if an atom with the same name is subsequently
read, it wi 11 not correspond to the a t0m created by GENSYM.
Users must therefore save the names of all GF,NSYM created
a toms in order to reference them. Th<'se names can he saved
easily by binding some variable to tlw value returned by
GENSYM, or by keeping such values in n 1 is t or accessible
via known property list indicators.

Examples:
be low)

(assuming the cal ls are made in the order given

CALIST)

(GENSYM> = G00001
(GENSYM T> = T00001
<GENSYM> = T00002
<GENSYM G> = G00002

pseudofunctlon; SUBR

(first call)

This function of no arguments creates an association list
which shows a 11 var lab le bindings at the time the function­
is cal led. The function proceeds by scanning the oh 1 is t
and creating a dotted pair for every a tom which current 1 y
has a binding. Each pair cons is ts of the a tom dotted with
i ts b ind i ng. Thus a ca 11 on this f unc t ion re turns a do t t e d
pair list reflecting the current evaluation~environment of
the LISP system.

-65-

LISP Reference Manual DEC 75

< BACKTRACE)

pseudofunction; SUBR

This function of no arguments returns a list of the current
indicators on the system stack. See sect ions 8. 2 and 8. 4
f o r a des c r i p t ion o f these i t ems .

4. 13 ARRAYS

Although the primary data structure of LISP is the linked
1 is t, an array s true ture is use fu 1 in many prob le ms. UT LISP
provides a primitive array capa~ility. Array storage is
allocated in binary program space (see sect ion 3. 3. 1) with two
array e le men ts per word. Each array e le men t can he a pointer to
an arbitrary S-expression and is preserved during garbage
collect ion. Memory a 1 located to an array cannot be reused by
LISP for other purposes.

(MKARRA.Y < 1 i ta tom> < 1 :is t>)

where <list> has as its value an expression of the form

(< f ixnumber 1> < f ixnumber2> <fixnumher[n]))

pseudo function; SUBR

MKARRAY defines and allocates an n-dimensional array whose
11 name 11 is < litatom>. Each< fixnnmber[kJ> is a dimension of
the array such that elements of the array are indexed in
the [k] th dimension by va Ines of 0 through
(< f ixnumher[kJ > - 1). ·A pointer to the array space is
placed on the property list of <litatom> with the indicator
ARRAY. Each array e 1 e men t is in i t i a l i zed to NIL. The
value of MKA.RRAY is NIL. The total number of elements in
the array is the arithmetic product of a 11 the
<fixnumber[k]) for k=l,n.

CSETEL <Iitatom> <list> <s>)

where <list> has as its value an expression of the form

C<fixnumberl> <fixnumber2> < f ixnumher[n] >)

pseudofunction; SUBR

If the <litatom> has an ARRAY property, SETEL stores the S­
expression <~> into the element indexed by the list of
subscripts 1n the second argument. Each subscript may
range from 0 to (i[k] - 1), where i[k] is the value of the
[kJth dimension used in the call to MKA.RRAY which allocated
the array. If fewer subscripts are used than are defined
by the dimensionality of the array, the effect is as though
they were omitted from the right and va 1 ues of 0 are used
in their places. For example, if A is a two-d imens iona 1
array, CSETEL "A "(1) NIL) is equivalent to CSETEL "A "(1
0) NIL). The value of SETEL is <s>, the third argument.
In the interest of speed of access no validity checking is
performed on the subscript list.

-66-

DEC 75 LISP Reference Manual

(GETEL <litatom> <list>)

where <"'list> has as its value an expression of the form

(<fixnumberl> <fixnumber2> ... < f ixnumhe::.~ [nJ >)

pseudofunction; SUBR

If <litatom> has an ARRAY property, GETEL returns the vHlue
stored in the element indexed by the list of subscripts in
the second argument. All convent ions regarding treatment
of subscripts are the same as defined for SETEL above.

CCLARRAY <litatom>)

pseudo function; SUBR

If <litatom> has an ARRAY property, CLAR.RAY resets all
elements of the array (regardless of dimensions) to NIL.
The value of CLAR.RAY is always .. NIL. If < litatom> does not
have an ARRAY property, an i l lega 1 argnmen t error results.

4.14 SYSTEM CONTROL

It is often desirable to he able to change certain aspects of
LISP's behavior while a Joh is running, part icnlarly those set by
control command parameters. In UT LISP these controls are
effected by means of a set of system-defined variables and user-:­
callable functions. The function LISTING effe~ts control of the
L, P, and N control command parameters. The variables //EXPERT.
//FATAL, //GC, //TIMING and //ZAP control the E, F, G, T, and Z
parameters, respectively. Several other variables of the system
may also he set or interrogated by user }:>rograms at any time.
Users are hereby warned to avoid using thf' names of these
variables within their own functions excc~pt for the purposes
described.

The descriptions of the LISTING function and
variables are given below.

<LISTING <s>)

pseudofunction; SUBR

these sys tern

This function simulates the L, P, and N parameters of the
LISP contro 1 command. If the argument is the a tom P, then
subsequent top-level expressions or doublets are listed
with parenthesis counting. If the argument is the atom L,
then subsequent top- leve 1 express ions or double ts are
listed without a parenthesis count. If the argument is
the atom N, then only user-originated output and error
messages appear on SYSOUT. If the argument is anything
else, then subsequent top- leve 1 express ions or do uh le ts
are printed by LISP, but not in source image form. The
value of LISTING is its arg·ument. LISTING with an
argument of P has no effect if SYSIN and SYSOUT are the
same file, e.g., when LISP is used interactively.

-67-

LISP Ref ere nee Manua 1 DEC 75

//MODE - toplevel function

Value: (<function> <fixnumher>)

De fa u 1 t va 1 ue : (EVAL . 1)

<function> is the function which is evaluated at each step
of the ma in loop of LISP. < f ixnumber> is the number of
arguments expected by that function. The <fixnumber> is
used to control the main loop input mechanism so that the
correct number of S-expressions are read from SYSIN before
eva 1 ua ting <function> with these arguments. If one of the
S-expressions read is the atom STOP, the main loop ignores
any others already read and starts over. If the first S­
expression is the atom FIN or if the end-of-file on SYSIN
is read, the ma in loop terminates. When the LISP sys tern is
first called by control command, //MODE is initialized to
CEVAL . 1). If //MODE is set to some value of incorrect
format, LISP pr in ts an appropriate error message. In hatch
mode this error aborts the progi:'am.

//INPUT - interpreter input function

Value: <express ion>

De fa u l t va 1 ue : <INPUT (QUOTE SYSIN))

<expression> should be some LISP expression which when
evaluated reads information from SYSIN and returns an S~
express ion corresponding to the information read.
<expression> is evaluated as many times as given by (CDR
//MODE) at each step of the ma in loop. If <express ion>
returns the atom STOP, FIN, or EOF, the main loop
interprets those atoms as described under //MODE above.

//OUTPUTA - interpreter echo output function

Value: <function>

De fa u 1 t va l ue :

<LAMBDA (=====/////)
<OR <AND <NOT (ATOM=====/////))

(EQ <CAR=====/////) (QUOTE DEFINE)))
<OUTPUT //SYSOUT =====/////NIL)))

The <function> must be a function
function is used to print each of
the interpreter input function
parameters specify printing.

of one argument. This
the S-expressions read by

when the 1 is t i ng cont r o 1

//OUTPUTB - interpreter result output function

Value: <function>

De fa u 1 t va 1 ue :

(LAMBDA(=====/////) (OUTPUT //SYSOUT =====/////))

The <function> must be a function of one argument. This
function is used to print the result of each top-level
eva 1 ua t ion.

-68-

DEC 75 LISP Reference Manual

//PLEVEL - print level control

Va 1 ue: < f ixnumher>

Default value: 65536 (i.e., 2**16)

<fixnumber> defines the number of levels of parenthesis
nesting which is printed by the system output routines.
Information deeper in the structure is not printed, but is
represented by ** in the output. Variation of the print
I eve 1 can be very useful for cases in which the s true ture
of a I is t is des ired, but its detailed con ten ts may be
uninteresting.

Examples:

For //PLEVEL = 0,

S-expression

ATOM
(X)
CA B C)
CCOND < (NULL X> Y))

For //PLEVEL = 1 '

S-expression

ATOM
(X)
(A B C)
CCOND ((NULL X) Y))

For //PLEVEL = 2,

S-expression

ATOM
(X)
<A B C>
(COND < (NULL X) 7))

//PLIMIT - list length print control

Value: <fixnumber>

Printed Representation

** **
**
**

Printed. Re pres en tat ion

ATOM
(**)
<** ** **) <** **)

Printed Representation

ATOM
(X)
(A B C)
(COND <** **))

Default value: 65536 (i.e., 2**16)

<fixnumher> defines the number of elements of a list which
wi 11 he printed by the system output routines. If //PLIMIT
has va I ue < n> , the first < n> e le men ts of each I is t are
printed and if there are more than < n> , an ellipsis 11 11

will be printed to indicate their absence. This control is
useful when it is desired to reduce debugging output.

-69-

LISP Reference Manual DEC 75

Examples:

For //PLIMIT = 0,

S-expression Printed Representation ------------
ATOM ATOM
CA B C) (. . .)

For //PLIMIT = 1 •

S-expression Printed Representation ------------
CAB C) (A • • •)

For //PLIMIT = 2,

S-expression Printed Representation

((A B CHX y Z) p D Q.)) ((AB .•.)(X Y •••) .••)

//TPLEVEL - trace print level control
//TPLIMIT - trace list length print control

Va. l ue: < f ixnumber>

Default value: 4

TI1ese controls function in the same way as //PLEVEL and //PLIMITt
respectively, hut are effective only when trace information is
being printed.

//PCSR - CSR field print control

Value: <boo lean>

Default value: NIL

When //PCSR ls true, the system output routines print the
contents of the CSR fields of non-atomic S-expressioi;is. If the
CSR field of a word con ta ins an S-express ion, it 1s printed
between % characters, and immediately preceding the contents of
the CAR field of that word.

Example:

I I I
I X I A I
I I I

==>
I

YI
I

Structure

I
B 1

I

Printed

==>

(%}{% A %Y3 B 3Z3 C)

-70-

I
Z I

I

I I
C I NIL I

I I

DEC 75 LISP Reference Manual

//TIMING - timing message control

Va 1 ue: <boolean>

Default value: NIL

When //TIMING is true, the message

*Tll'IE: <number>

Is printed after each top- leve 1 eva 1 ua t ion. <number> is
the number of elapsed mi 11 iseconds for that eva 1 ua t ion.
//TIMING is set true when the T parameter appears on the
LISP control command.

//SAVING - resu.l t saving con tro 1

Value: <boo lean>

Default value: NIL

When //SAVING is true, LISP automatically binds the result
of each top-level evaluation to the atom PREVIOUS. This
allows the result to he used conveniently in the subsequent
e va 1 ua t ion .

//GC - garbage collector message control

Value: <boo lean>

De fa u 1 t va 1 ue : N IL

When //GC is true, each time a gar hag~ co I lee t ion occurs a
message is printed:

/ / / / / GARBAGE COLLECTED: < n 1 > < n2>

< nl> is the number of free-space words recovered and < n2>
is the number of full words recovered. //GC is set true
when the G parameter appears on the LISP con tro 1 command.

//ZAP - error interrupt control

Value: <boo lean> or < f ixnnmber>

De fa u 1 t va 1 ue : NIL

If //ZAP is non-NIL, then an interrupt is simulated
whenever an error occurs (see chapter 9 for a discussion of
interrupts) . If the va 1 ue of //ZAP is a < f ixnumber> in the
range 1 to 12, the corresponding interrupt function is
used. If //ZAP is non-NIL but not a < f ixnumber> , interrupt
1 is simulated. When //ZAP has a non-NIL value the system
performs as though the user had specified the Z control
commai1d parameter upon ca 11 ing; LISP (see sect ion 2. 1) • The
//ZAP variable has no effect unless SYSIN and SYSOUT are
the same file, e.g., in conversational mode.

-71-

LISP Reference Manual DEC 75

//EXPERT - expert mode control

Value: < hoo lean>

Default value: NIL

//EXPERT allows the user to change the expert mode control
parameter from inside LISP (see section 2.1). Setting
//EXPERT to true allows primitive operations to be
performed on atoms and is equivalent to specifying the E
parameter on the LISP control command. Setting //EXPERT to
false disables expert mode.

//FATAL - error fatality control

Value: <boo lean>

De fa u 1 t va l ue : N IL

Setting //FATAL to true causes'any subsequent error in the
user's program to terminate execution. Setting the //FATAL
variable to true achieves the same resu It as specifying the
F parameter on the LISP control command (see section 2.1).
If //FATAL is set to false, norma 1 error recover-i;r
procedures will be in effect.

//SYSIN - system input file control

See function SYSIN (section 5.1.1)

//SYSOUT - system output file control

See function SYSOUT (section 5.1.1)

//CODEMIN - minimum in-core code control
//CODEJl1AX - maximum in-core code contro 1

See function DISKOUT (section 7.6)

-72-

DEC 75 LISP Reference Manual

The LISTING function and system var iah les described above
actually effect control of UT LISP. That is, a call to LISTING
or l'esetting some variable's value has an ilmnc.diate effect on the
operation of LISP. Below are described several system variables
which can be used to gain information about UT LISP. Their
values are useful, hut changing them does not affect the
operation of LISP.

Variable

//RDS

//WRS

//FL

//GFR

//GFU

//NFR

//NFU

//FRS

//FUS

//STS

Value

name o f cur re n t 1 y-s e 1 e c t e d read f i 1 e

name of currently-selected ·write file

current field length

number of fr.ee-space words r~covered
last garbage collection

in

number of ful I words recovered
garbage collection

in last

number of garbage collect ions which have
occured due to free-space exhaustion

number of garbage co I lee t ions which have
occurred due to fnl 1-word space
exhaust ion

number of words in fref> space

number of words in fu 11-word space

number of words a 1 located to the stack

-73-

LISP Reference Manual

5. INPUT/OUTPUT

LISP provides an extensive set of functions which give the
user facilities for input and output of LISP S-expressions and
general data on any disk or tape file within the operating
sys tern. With these functions the user can perform rather
complicated file manipulation operations. Functions are
described in this chapter using the same notation as in chapter
4.

5. 1 FILES

All input/output in the operating sys tern is done via files of
information. LISP regards a file as a contiguous string of lines
terminating with an end-of-file and having a position pointer.
Al though the operating sys tern can s true ture files into logical
records, LISP ~ompletely ignores this structure; thus ends-of­
records are invisible to the LISP inpu t/ou tpu t sys tern. Files are
named and their names are represented within LISP by 1 i tera ~
a toms whose print representations are character strings obeying
the usua 1 file-name syn tax of the operating sys tern; i.e. , one to
seven letters or digits, beginning with a letter. Within the
operating system, certain file names are specially designated to
have particular sources or destinations. Usage of these files
within LISP conforms to these sys tern designations. These files
are:

Fi le Name

INPUT
OUTPUT
PUNCH
PUNCHB

Normal Source/Destination

Cards from card reader
Line printer
80-column Hollerith punched cards
Co lunm binary punched cards

Al 1 data read or writ ten by LISP input/on tpu t functions is in
the form of display coded line images obeying the usual system
conventions. The input routines assume line images of 72 columns
or fewer . I f a l i ne be i ng read is 1 o nge r t ha n 72 co I umns , a 1 1
inf or mat ion beyond co 1 umn 72 is ignored hy the LISP sys tern.
Under program control, the line length allowed for output lines
is changeable.

The operating system defines an attempt to read a file
immediately after writing on that file to be an error. LISP
keeps a record of the last type of operation performed on a file
and a 1 ways performs a rewind operation any time a read is
requested when the last operation was a write. Thus the user can
write information on a file and immediately read that file from
its beginning.

5. 1. 1 Standard System Input/Output Files

At any time, severa 1 files may he known and us ab le by LISP.
Two of these files are designated as the standard sys tern
input/output files. The standard input file is the one from
which the LISP ma in interpreter loop reads the program
express ions or double ts. The standard output file is the one on
which the LISP main interpreter loop writes the results of
expression or doublet evaluations and also all error messages.

-74-

DEC 75 LISP Reference Manual

These standard input and output files are known by the
pseudonyms SYS IN and SYSOUT, res pee t ive ly. SYS IN and SYSOUT are
each equivalenced to some other file which is the fi]e actually
read or ·written. This equivalencing is under program control.
No matter what files are being· used for the standard sys tern
input/output, they may be referenced by the names SYS IN and
SYSOUT.

If not otherwise specified, SYSIN is initially equivalenced to
INPUT and SYSOUT is ini t ia 11 y e qui va lenced to OUTPUT. The input
file con tro 1 and output file con tro 1 parameters on the LISP
control conunand can be used to initialize SYSIN and SYSOUT to
o th.er file names. The conversa t iona 1 mode LISP contro 1 command
parameter, C, equivalences both SYS!N and SYSOUT to file TTY.

SYSIN and SYSOUT can be equivalenced to other files by means
of the SYS IN and SYSOUT functions described be low.

(SYSIN <filename> <character>)

pseudo function; SUBR

SYS IN makes <file name> the new standard inpn. t file and
enters the main loop of LISP. The next expression will he
read from <filename>. The SYSIN function makes a stack of
filenames given in successive cal ls to SYS IN, so that when
the end of the new SYS IN file is read, the stack is popped
and the SYS IN file reverts to the 1 as t previous va 1 ue.
Thus the SYS IN function may be used to initiate the input
of a chain of files, with the SYSIN file eventually
returning to its first definition. (Note: Such a chain
must not require opening more than six files altogether.
See section 5.2.) The.second argument of SYSIN provides
listing control for the new SYSIN file. If the <character>
is L, P, or N, the new SYSIN file will he listed or not as
though the L, P, or N parameters appe::-lred on the LISP
control command (see section 2. U. If the <character> is
S, the listing controls in effect at th<' time SYSIN is
called wlll be in effect for the new SYSIN file. If the
<character> is anything else, a 11 listing con tro 1 flags are
cleared. SYSIN binds the atom <filename> to the LISP
variable //SYSIN. SYSIN returns *T* RS its value.

(SYSOUT <filename>)

pseudofunction; SUBR

SYSOUT makes <filename> the new s tandar<l. output file. It
takes effect immediately, and the value of SYSOUT will be
written on <filename>. The function SYSOUT returns as its
value the name of the old SYSOUT-equivalenced file. SYSOUT
binds the atom <filename> to the LISP variable //SYSOUT.

5. 1. 2 Se lee ted Read and Write Files

At a 1 l t i mes , one f i 1 e i s des i gna t e d the s e 1 e c t e d read f i 1 e
and one the se lee ted ·write file. In genera I, those LISP
functions which read inf or mat ion read from the current se lee ted
read file, and those functions which write information write on
the selected write file.

-75-

LISP Reference Manual DEC 75

Initially, the selected read and write files are the same as
SYSIN and SYSOUT, respectively. Execution of functions SYSIN
and/or SYSOUT has no effect on the selected read and write files,
however. These files may be changed by functions RDS and WRS as
described be low.

(RDS < f i 1ename>)

pseudofunction; SUBR

RDS makes <file name> the new se lee ted read file. It
returns the previous selected read file name as its value.
RDS binds the atom <filename> to the LISP variable //RDS.

(WRS < f i le name >)
pseudofunction; SUBR

WRS makes <file name> the new se lee ted write file. It
re turns the previous se lee ted write f i I e as its value. WRS
hinds the atom <filename> to the LISP variable //WRS.

5.1.3 User Access to Selected Files

The user may at any time determine which files are
selected by evaluating the system variahle8 //SYSIN,
//RDS, //WRS. These variables are always bound to the
currently selected (also see section 4.14).

Variable Default Va Jue -------- ------- -----
//SYS IN SYS IN filename current 1 y selected

//SYSOUT SYS OUT filename currently selected

//RDS SYS IN cur1•ent ly selected read file

currently
//SYSOUT,
file names

as SYS IN

as SYS OUT

//WRS SYS OUT currently selected write file

5.2 FILE AND BUFFER ASSOCIATIONS

There must he a huff er area associated with each file
currently in use by LISP. The standard LISP system reserves six
file buffer areas to accommodate up to six active files at one
time. It is not possible for the user to access more than six
files at any given time. Under program control, however, the
file buffers may he detached from files and attached t~ other
files so that a total of more than six files may in fact he used
during the course of a run.

The act of associating a buffer with a file and defining
certain characteristics of the file is called 11 opening 11 the file.
Unless stated otherwise, all functions described in other
sect ions of this chapter "open 11 the files they manipulate using
default va 1 ues for the file characteristics. If the user wishes
to explicitly 11 open 11 a file or define its characteristics; the
function OPEN is used.

-76-

DEC 75 LISP Reference Manual

<OPEN <filename> <list>)

where < 1 is t> has as its value an express ion of the form

«<cl> . <v1>) C<c2> . <v2>) ... C<c[nJ> • <v[nJ>))

pseudofunction; SUBR

OPEN finds an available buffer and associates it with
<file name>. OPEN re turns <filename> as its va 1 ue. The
second argmnen t of OPEN is a 1 is t of file characteristics
to be set. They are chosen from among the fo I lowing:

ECHO
EC HOP

LENGTH
ll'IARGIN

SCR
RANDOM

Descriptions of 'these file characteristics are given below:

ECHO

Value: NIL or non-NIL

De fa u 1 t va l ue : N I L

If value is non-NIL, then each line of the file is
echoed on SYSOUT as the file is read. NIL turns off the
echo-printing.

ECHOP

Value: NIL or non-NIL

Default value: NIL

I f va I ue i s non - N IL , each 1 i ne o f t he f i 1 e i s echoed on
SYSOUT as the file is read, and a parf'nthes is count is
also printed for each line. NIL tnrns off this option.

LENGTH

Value: < f ixnuniber>

Default value: 70 (interactive) or 132 (batch)

The maximum output line length for this file is
< f ixnnmber> characters. < f ixnumher> should be less than
136.

MARGIN

Value: <fixnumber>

De fa u 1 t va 1 ue : 0 (interactive) or 1 (batch)

Each 1 ine output to this file wi 11 have < f ixnumber>
blank characters appended to the left. Since the h lanks
occupy the leftmost <fixnumber> positions of the line,
only LENGTH - MARGIN characters can h< output on a 1 ine.

-77-

LISP Reference Manual DEC 75

SCR

Value: NIL or non-NIL

Default value: NIL

Defines <filename> as scratch mode if the value is non­
NIL. Scratch-mode files are never written to disk so
long as the information writ ten on them does not exceed
the capacity of the buffer. Scratch mode is cancelled
if the buffer overflows or if the function ENDFILE is
executed. For short files which do not need to be
preserved at the end of a run, scratch mode
significantly speeds access.

RANDOM

Value: NIL or non-NIL

Default value: NIL

If the va Iue is non-NIL, the file is defined to be
accessible by the random-access I/O functions described
in section 5.6. //RDS, //WRS, //SSYSIN, and //SYSOUT
may not be RANDOM.

Any characteristics not otherwise specified when Ui.-:,
file is first opened (either by calling OPEN or by calling
some I/O function) are set to the default value. Once a
char a c t er is t i c is de f i ne d , i t c an be changed on I y by
exp 1 ic it I y specifying the change in a subsequent ca 11 to
OPEN. Any number of calls may be made to OPEN to change a
f i 1 e ' s char a c t er is t i cs · d yna mi ca 1 1 y.

For example:

(OPEN "ATOM "((SCR . T)))

makes the file ATOM a scratch-mode file.
of

(OPEN II ATOM)

Later execution

does not cance I the scratch mode.
it is necessary to execute

To cancel scratch mode,

(OPEN 11 ATOM 11 ((SCR . NIL)))

(CLOSE <filename>)

pseudofunction; SUBR

CLOSE dissociates the specified file from its buffer.
<filename> is returned by CLOSE as its value. After the
buffer has been dissociated from its file, it is available
for re-use for some other file. If the file being "closed"
was last used for output purposes, an end-of-file mark is
wr i t ten on the f i 1 e . Any "c 1 o s e d " f i 1 e s t i l l ex is ts on the
disk and may be "opened" again later. //SYSIN and //SYSOUT
may not be closed.

The user may determine what files are 11 open 11 at any time by
executing function OPENFILES.

-78-

DEC 75 LISP Reference Manual

COPENFILES)

pseudofunction; SUBR

OPENFILES returns a list with one element for each file
presently 11 open 11 to LISP. Each element is itself a list of
the form:

((filename> ((<c1> • <v1>)C<c2> . <v2>) ••• (c[n] • v[n])))

where each of the C<c[iJ> • < v[i J >) pairs indicates the
characteristics of a current va 1 ue of one of the

<filename> •

5.3 OUTPUT OF S-EXPRESSIONS

The functions PRINT, WRITE, PRIN1, and TERPRI are used to
output LISP S-expressions on the current selected write file.
F'unc t ion OUTPUT can be used to output an S-express ion to an
arbitrary file. The S-express ion is· writ fen on as many 1 ines as
are required, governed by the margin and line length of the file
.hein.g written. Formatting of numeric atoms is completely
automatic, but may be controlled to some extent by use of the
function NFORMA.T (see sect ion 5. 8) • If the output functions are
given something to write which is not an S-expression, they print
in its place:

#< nnnnnn>

where < nnnnnn> is the oc ta 1 va 1 ue of the ac tua I po inter received
by the output function.

CPRINT <s> <boolean>)
(WRITE < s> <boo lean»

pseudo function; SUBR

The va-1 ue of PRINT is < s>. PRINT writes the S-express ion
< s> on the current se lee fed write file. Writing commences
on the current 1 ine of that file and extends over as many
1 ines as necessary. PRINT a 1 ways terminates the 1 ine so
that the next S-express ion writ ten on the file wi 11 begin
on a new 1 ine. If <boo lean> is false, the S-express ion is
printed using the print names of its component atoms. If
<boo lean> is true, any a toms with nous tandard pr int names
are writ ten with the appropriate de 1 imi ters inserted so
that the atoms may subsequently be read by the LISP input
functions. WRITE is a synonym for PRINT.

(PRINl <s> <boolean>)

pseudofunction; SUBR

PRIN1 behaves exactly as
terminate the line after
Successive calls on PRINl
(poss ib 1 y} he printed on the

-79-

PRINT, except that it does not
writing the S-expression.

cause several S-expressions to
same 1 ine.

LISP Reference Manual DEC 75

<PPRINT <s> <boolean>)

pseudofunction; SUBR

PPRINT "pretty-pr in ts" the S-express ion < s> on the current
selected write file. The value of PPRINT is <s>. If
<boolean> is true, any atoms with nonstandard print names
are writ ten with the appropriate de 1 imi ters inserted so
that the atoms may subsequently be read by the LISP input
functions. PPRINT operates exactly as PRINT, except that
the output is neatly formatted for easy readability by the
use of appropriate indenting for nested sub-expressions and
special conventions for the printing of LAMBDA, COND and
PROG expressions. PPRINT cannot print non-S-expressions.

Example:

CPPRINT //OUTPUTA T) would print:

< LAI'IBDA (=====/////)
(OR

CTERPRl)

CAND CNOT (ATOM=====/////))
CEQ. (CAR=====/////) "DEFINE))

(OUTPUT //SYSOUT =====/////)))

pseudofunction; SUBR

The value of TERPRI is NIL. TERPRI terminates the current
line on the current selected write file, so th~t the next
S-express ion writ ten on the file wi 11 beg in a new 1 ine. A
call on PRIN1 followed.by a call on TERPRI is equivalent to
a ca 11 on PRINT. If no thing has been writ ten on the
current line, the effect of TERPRI is to skip a blank line.

(OUTPUT <filename> < s> <boo lean>)

pseudofunction; SUBR

The va 1 ue of OUTPUT is < s>. OUTPUT writes < s> on file
<filename>. With respect to that file, the action of
OUTPUT is the same as PRINT. OUTPUT does not change the
selected write file. The definition of OUTPUT is
e qu i va 1 en t to :

(OUTPUT <filename> < s> <boo lean>) =
<PROGCA) <SETO. A <WRS <filename>))

(PRINT <s> <hoolean>)<WRS A><RETURN <s>))

COUTPUT1 <filename> <s> <boolean>)

pseudofunction; SUBR

OUTPUT! behaves exactly as OUTPUT, except that it does not
terminate the line after writing the S-express ion.
Successive calls on OUTPUT1 cause several S-expressions to
(poss ib 1 y) be printed on the same 1 ine.

-80-

DEC 75 LISP Reference Manna 1

(TTYCOPY <filename>)

pseudofunction; SUBR

'IlYCOPY a 1 lows the interactive CRT user to have a copy of
all subsequent terminal interaction written to <filename>.
This is es pee ia 11 y useful if one has a conversa t iona 1
program and desires to selectively save samples of its
output for later use. A call to TTYCOPY with any legal
filename as an argument turns on the dual output mode such
that a 11 termina 1 interact ion is also printed on
<filename>. TTYCOPY may be turned off by calling (TTYCOPY
NIL). Turning off the dual output mode also performs a
CLOSE of <filename> (see section 5.2).

5.4 INPUT OF S-EXPRESSIONS

The functions READ and INPUT are used to read LISP S­
express ions from files. Each ca 11 of one of these functions
reads the next available complete s~expression on that file,
consuming as many 1 ines of the file as necessary. When the
complete S-express ion has been read, the file is left positioned
so that the next READ request will continue scanning the line on
which the previous S-express ion ended. Thus there may be ·more
than one S-express ion on a I ine, No more than 72 co 1 umns of each
line are scanned.

CREAD)

pseudofunction; SUBR

READ reads the next S-expression from the current selected
read file and returns that S-expression as its value. If
there is no next S-express ion on the file. the a tom EOF
is returned as the value of READ. If the end-of-file is
de t e c t e d wh i le READ i ng a 1 is t , n n 11 unma t c he d le f t
parenthesis" error.occurs.

(INPUT <filename>)

pseudofunction; SUBR

INPUT operates in the same manner as READ except it reads
from file <filename>. INPUT does not change the se lee ted
read file. The definition of INPUT is equivalent to:

<INPUT <filename>) =
<PROG (AX) <SETQ A RDS <filename>))

CSETQ X CREAD)) <RDS A) <RETURN X))

5.5 INPUT OF NON-S-EXPRESSIONS

It is of ten necessary to read inf or mat ion which is not in the
form of S-expressions. LISP provides very primitive facilities
for reading such data one character at a time. It is up to the
user to employ the various character-manipulating functions
described in sect.ion 4.10 to reform the data into meaningful
ohJec ts. A character which is read by these func t ivns is
returned as the literal atom which has that single character as
its print image. Users should carefully note that digits (0, 1,
2, ••. , 9) read as characters are returned as literal atoms

-81-

LISP Reference Manual DEC 75

(equivalent to $$$0$, $$$1$, •.• , $$$9, respectively) and are
consequently not equivalent to the single-digit numbers. The
function NUMOB must be used if it is desired to utilize the
numeric values of numbers read as characters.

Users should also note that line images as stored on files by
the operating system are variable 1n length. The operating
sys tern truncates a 11 1 ines by removing trailing blanks, leaving
an even number of characters followed by an end-of-line marker.
LISP considers the end-of-line to occur at column 73 or when the
end-of-line marker is encountered, whichever occurs first.
Therefore users should not use column counts to determine when
lines are terminated.

CREADCH <boolean>)
(ADVANCE <boo lean>)·

pseudofunction; SUBR

READCH (ADVANCE is a synonymj returns the next character
from the current se lee ted read file if its argument is NIL;
with each such ca 11 the input posit ion is advanced one
column. If the argument of READCH is non-NIL, the input
position ls backed up two columns before reading, to allow
the previous character to be read again. This backing-up
function of READCH cannot go beyond the beginning of the
current line and any attempt to do so causes the atom EOR
to he re turned as the value of READCH. $EOR.$ is also
re turned by READCH when it de tee ts the end-o f-1 ine. If the
end-o f-1 ine is reached, the next ca 11 on READCH
automatically sequences the input position to the beginning
of the next line and the first character on that line is
returned by READCH. The atom EOF is returned by READCH
if it advances the input posit ion beyond the last line of
the file.

Example:

Given the input I ine,

ABCD

then, in sequence,

(READCH NIL) = A
(READCH NIL> = B
C READCH NIL) = c
C READCH T) = B
CREADCH T) = A
(READCH NIL) = B
(READCH NIL) = c
< READCH NIL) = D

C STARTREAD)

pseudofunction; SUBR

STARTREAD moveu the input posit ion to the beginning of the
next line of the current selected read file whether or not
the current line has been entirely scanned. The value of
STARTREAD is the first character on the new line.
Subsequent calls on READCH will continue scanning the new
line. Contrary to some LISP implementations, UT LISP does

-82-

DEC 75 LISP Reference Manual

not require STARTREAD to be called before the first call on
READCH. STARTREAD returns the atom EOF if there is no
next line on the file.

C TEREAD)
CENDREAD>

pseudofunction; SUBR

TEREAD (ENDREAD is a synonym) immediately advances the
input position to the end-of-line of the current line of
the current selected read file. The value of TEREAD is
a 1 ways the a tom EOR. After a ca 11 011. TEREAD, the next
call on READCH will read the first characte~ on the next
1 ine.

5.6 RANDOM ACCESS OF DISK FILES

Ordinarily, LISP I/O is done in a purely sequential manner.
It is sometimes useful, however, to be able to reference
information stored at known positions on a disk file. UT LISP
provides two functions which allow S-expressions to be referenced
in random sequence from a disk file.

Any file which is going
11 opened 11 with the random
designated may also be read
input functions. Each such
current po s i t ion o f the f i le .

to be used for random access must be
opt ion specified. Any file so
sequent ia 11 y using the ordinary LISP

read operation commences at the

Random access operations require the usf' of a "disk address"
to specify the des ired posit ion within the file. The LISP random
access functions use a word address, and regard the file as a
1 inear sequence of character-filled words. A file writ ten
sequentially may be referenced randomly hy s!)ecifying a word
address.

The addresses employed by these functions are not LISP obJects
themse 1 ves. A suggested way to hand le them is to assign an

·atomic key to each S-express ion to be randomly writ ten. The
address re turned by RANOUT can then be saved on. the property 1 is t
of the key, for subsequent use in a RA.NIN call. For maximum
efficiency on any given file a 11 RANOUT <'pera t ions should be
performed before any RA.NIN operations.

CRANOUT <filename> <s> <boolean>)

pseudofunction; SUBR

RANOUT positions <filename> to its extreme endpoint and
then if <boo lean> is true, no further act ion occurs. If
<boolean> is false, RANOUT then performs an (OlITPUT
<filename> <s> <boolean>) operation. The S-expression <s>
is writ ten on the file. The va 1 ue re turned by RANOUT is
the address within the file after the positioning
operation. Note that this address is not a LISP number and
is not necessarily a pointer to a valid S-expression.

-83-

LISP Reference Manual DEC 75

(RA.NIN <filename> <address> <boolean>)

pseudofunction; SUBR

The second argument of RANIN is a disk address of the same
form as that returned by RANOUT (i.e., it is not a LISP
number) . The file <filename> is positioned to that address
and then, if <boo lean> is true, no further act ion occurs.
If <boolean> is false, RANIN performs an (INPUT <filename))
operation. The value of RANIN is the S-expression thus
read. A subsequent ca 11 on INPUT or READ for this file
without an intervening RANIN or RANOUT will commence at the
posit ion in the file immediate 1 y fol lowing the S-express ion
read by RA.NIN.

(ROUT <filename> < s> <boo lean>)

pseudofunction; SUBR

ROUT operates in the same way as RANOUT except that ROUT
returns a LISP octal number for the address within the file
of the beginning of the S-express ion. The use of ROUT thus
requires more storage (for numbers) than RANOUT, but may be
more convenient for the user.

CRIN <filename> <fixnumber><hoolean>)

pseudofunc t ion; SUBR

RIN operates in the same
requires an octal number (as
second argument.

5.7 INPUT CONTROL FUNCTIONS

way as RANIN except that RIN
returned by ROUT) as its

UT LISP provides a 1 imi ted amount of con fro l over the input
process. Fune t ions are provided for skipping input co 1 umns or
for tabbing to a particular column. Also, a function is provided
for changing the lexical significance of individual characters so
that a nonstandard syntax can be employed.

CISPACE <number>)

pseudofunction; SUBR

I SPACE posit ions the input pointer of the cnrren t se lee ted
read file forward by <number> co 1 umns. I SPACE does not
skip beyond the ac tua 1 end or be fore the ·ac tna I beginning
of the current line. The value of !SPACE is the column
number of the next column to be read after the skipping has
been done. If the argument to I SPACE is less than or e qua 1
to 0 no skipping is done. Thus ISPACEC0) gives the present
column position on the input line.

(ITAB <number>)

pseudofunction; SUBR

ITAB positions the input pointer of the current selected
read file to the column specified by its argument. Ir the

-84-

DEC 75 LISP Reference Manual

present column number is g1•eate1• than or equal to the
argument of ITAB no positioning is done. The value of ITAB
is the number of the next co luum to be read after the
positioning has been done. ITAB does not move the input
pointer beyond the actual end of the present line.

CCHLEX <character> <fixnumher>)

pseudofunction; SUBR

Each character in the system character set he longs to some
1 ex i ca 1 c 1 ass (see sec t ion 3 . 1 . 1) . The 1 ex i ca l c 1 ass o f a
character determines how the character is interpreted by
the input fuuc t ions, as discussed in chapter 3. In certain
very special cases it may he desirable to change the
lex ica 1 class of a particular character. This is done by
the function CHLEX. The first argument must be a single­
charac ter 1itera1 a tom. The second argument must he a
positive integer in the range 1-18, designating the number
of the desired new lexical class of the character. The
change takes effect immediately for the next input
operation. Any character may have its lexical class
changed any number of times. Unpredictable results will be
obtained, however, if non-digit characters are assigned to
the class of digits. The value of CHLEX is the number of
the previous lexical class of the character.

Lexica 1 Class Assignment Codes

Lexical Display
Class Code

------- -------
0 00
1
2 33-44
3
4 05
5 21
6 45
7 46
8 53
9 71
10 65
11 61
12 62
13 51
14 52
15 57
16 55-56
17 60
18

Members

end-o f-1 ine
letters except E and Q
digits 0-9
any characters not in ~omo other class
E
Q.
+

$
r. (percent sign or down arrow)
(pound symbo 1 or r igh.t arrow)
[
]
(
)

(period)
, (blank and comma)

11 (equivalence sign or double-quote)
special (no members - see section 3.1.2.3,
i tern 2)

-85-

LISP Ref ere nee :Manua I DEC 75

5.8 OUTPUT CONTROL FUNCTIONS

UT LISP . provides a 1 imi ted amount of co:ntro 1 over the output
process in addition to that previously described. Fune t ions are
provided for intraline spacing and for formatting floating point
nu1nhers.

(OSPACE <fixnumher>)

pseudofunction; SUBR

OSPACE issues < f ixnumber> blanks to the current 1 ine of the
current s e 1 e c t e d wr i t e f i 1 e , s tar t i ng a t the current co l umn
posit ion. OSPACE does not space beyond the defined line
length of the file. The value of OSPACE is the number of
the output column in which the next output item will begin.
Arguments of OSPACE which are less than or e qua I to 0 wi 11
not cause spacing to he performed. Thus, OSPACE(0) wi 11
give the current column number as its value.

COTAB <fixnumher>)

pseudofunction; SUBR

OTAB posit ions the current se lee ted write file so that the
next i tern output wi 11 begin in column < f i xnumber> . OTAB
does not space beyond the defined 1 ine length of the file.
Arguments o f OTAB which are 1 es s than the current co l'umn
posit ion do not cause spacing to occur. The va 1 ue of OTAB
is the number of the output co 1 umn in which the next item
output will begin. Column numbering begins with 1 in the
column immediately following any margin of blanks specified
for the file. Thus, the tabbing functions independently of
the margin.

(NFORMAT < f ixnumber 1> < f ixnumber2>)

pseudofunction; SUBR

The first argument .to NFOR.MAT spe<' if i.es the number of
digits which are to precede the dee ima 1 point when floating
po int numbers are subsequently output; the second argument
specifies the number of digits to follow the decimal point.
Both arguments must be integral and their sum cannot exceed
16. If their sum does exceed 16, the second argument is
reduced if possible. The details of how number formatting
is de term i ne d are given in sec t ion 3 . 1 . 3 . De fa u l t va 1 ue s
of 5 and 5 are assumed for the numbers prior to the first
call to NFORMAT. The value of NFORMAT is NIL.

Example:

The number 23.123 is printed as

23. 12300

under the standard format. After (NFORMAT 2 2) is
executed, the number is printed as

23. 12

-86-

DEC 75 LISP Reference Manual

5.9 FILE MANIPULATION

The remaining input/output functions of UT LISP are those for
f i 1 e man i p u 1 a t ion . These provide for the us ua 1 c as es ,

<ABOLISH <filename>)

pseudofunc t ion; SUBR

ABOLISH closes the file given as its argument and then
re turns the file to the operating sys tern, releasing the
disk space or tape unit assigned to the file. The file can
no longer be referenced. The value of ABOLISH is its
argument.

<ENDFILE <filename>)

pseudofunction; SUBR

ENDFILE writes an end-of-file on <filename>. If the file
was OPENed as a scratch-mode file, ENDF ILE cancels the
scratch-mode and for~es the file to be written on disk. If
subsequent writes are made on a clisk file, the end-of~file
is changed to a system end-of-record. The value of ENDFILE
is its argument.

(REWIND <filename>)

pseudofunction; SUBR

REWIND causes the named file to 1rn repositioned at its
beginning. If the file is already rewound, it is not
disturbed. The va lne of REWIND is its argument.

5.10 BiNARY 1/0

Norma 11 y a 11 input and output performed hy LISP is done in CDC
6000 series display code. Occasionally a user may wish to read
or write multiplexor (MlJX) images consisting of five 12-bit
characters packed per word, or to perform I/O using h inary
vectors. The function LEFTSHIFT provides the capah i 1 ty for
manipulating such l>inary information within LISP. The following
two functions provide capabilities for an interactive program to
perform l/O operations with such h inary information on the file
TTY.

(lNBIN)

pseudofunction; SUBR

A call to INBIN initiates the reading of binary information
from the terminal. All information read by LISP in this
mode is stored five characters per word, as 12-b it
multiplexor images. I NB IN terminates when the user inputs
a carriage return or other line terminator. The total
number of characters cannot exceed 48. The value of INBIN
is a list containing the packed binary words which were
read. These binary words can be printed proper 1 y at the
terminal as characters only if the binary output function
OUTBIN is used.

-87-

LISP Reference Manna 1 DEC 75

(OUTBIN < fwl>)

pseudofunction; SUBR

OUTBIN outputs its argument to the interactive terminal
file TTY as 12-bit multiplexor images. 0UTBIN assumes the
< fwl> is composed of h inary information, packed in the form
described under INBIN. The value of OUTBIN is its
argument.

Example:

The f o I lowing sequence initiates a read on the same 1 ine
on which X is printed at the interactive terminal.

<PRIN1 X>COUTBIN NIL)(READ)

-88-

DEC 75 LISP Reference Manual

6. THE LISP COMPILER/ASSEMBLER

The previous chapters have described the structure or UT LISP
and the functions it provides. These facilities are most often
employed by the user th.rough interpretive execution of his
functions. The UT LISP interpreter provides easy and effective
use with good error contro 1 and diagnostic fac i 1 it ies.
In terpre tat ion runs slower, however, than the same functions
would execute when coded directly in machine language. Also in
the interpretive execution mode, the user cannot use the
underlying machine in ways not defined by the built-in functions
of the LISP system.

The LISP compiler is available to those users
increase execution speed to as much as 2-7
interpretive execution. The compiler translates
definitions into an intermediate form which can be
machine code by the LISP assembler.

who wish to
t ilne s t ha t o f
LISP function
assembled in to

The LISP assembler is normally used in conJunction with the
LISP compiler, but it is also available for separate use. The
LISP assembler enables users to write assemh 1 y language programs
which make f u 1 1 u t i l i z a t i on <> f the und er 1 y i ng machine .

6 . 1 ACCESS TO THE LI SP COMPILER AND ASSEl'IBLER

The LISP compiler and assembler are very large programs and.
are relative 1 y inf re quen t 1 y used. For these reasons, they are
not provided as part of the standard LISP system. Instead, they
are maintained as LISP subsystems (see appendix B) on the
operating system library. ·

Two subsystems are required:

LAP cont a ins t he L l SP ass e rn h le r
necessary i n i t i a I i z a t i •J n co d n .

LCOMP con ta ins the LISP compiler
initialization code.

program and

and its

These programs were themselves written in LISP and then self­
compi led. They are loaded into binary program space in exactly
the same way as user-compiled code.

To o:b ta in the compiler,
recommended:

the following control command is

LISP,E,A=80,B=1800,LCOMP,LAP,X=10100B.

with a field length of at least 77000 octal. Other parameters of
the defined parameter set may also be used if desired. The
values of the A and B parameters are guidelines. The X parameter
indicates the amount of compiled code loaded by LAP and LCOMP.
Loading other compiled code may require inc re as ing the fie Id
1 e ng th o f the Job .

The assembler can he used by itself. To obtain only the
assemh ler, the fo I lowing contro 1 conunand is recommended:

LISP,E,A=80,B=1800,LAP,X=2600B.

with a field length of 74000 octal. The parameters shown on the

-89-

LISP Reference Manual DEC 75

control command above are required, and others of the defined
parameter set may also be used if desired.

The control commands given here define minimal configurations
for these programs. As such, they may be used in either
i n t er a c t i ve o r b a t ch mode for the co mp i la t ion/ ass e mb 1 y o f s ma 1 1
functions (approximately 15 lines of LISP or fewer, depending on
function complexity) . The comp i lat ion/assemh 1 y process is a
heavy user of memory, particularly full-word space, and frequent
garbage collection is necessary. Users of the compiler/assembler
should care fu 11 y observe the functioning of the sys tern on their
particular programs and adJus t the field length and/or allocation
control parameter to improve performance in their individual
cases . Because o f res tr i c t i o ns on the max i mum f i e 1 d length o f
interactive Jobs, not a 11 functions can be compiled· in
interactive mode. Batch use of the compiler/assembler is
the1•e fore recommended for medium or large functions.

The contro 1 commands shown above initiate the process of
loading the compiler and/or assembler. This loading process
takes approximately 8 seconds of TM time before any processing of
user input takes place. Two messages are printed during the
loading process:

(**** LI SP ASSEJ'.IIBLER - VERSION x. x *****)
<**** LISP COMPILER - VERSION x.x *****)

These are printed as each subsys tern star ts loading, and x. x is
the number of the current version. If these two messages fail to
appear• assistance shou Id be sought from a co usu 1 tan t.

6.2 LCOMP - THE LISP COMPILER

Once loaded,
function COMPILE

the LI SP co mp i I er
in the form:

is activated hy executing the

<COMPILE <lat>)

The a to ms g i ve n in the < 1 a t > are names o f f unc t ions which
defined before the activation of COMPILE. COMPILE expects
atoms to have lambda-expressions stored on their property
with either the EXPR or the FEXPR indicator.

were
these
lists

COMPILE transforms each lambda-expression into an internally
represented assembly-language program, constructed from a set of
macros representing the machine language of an iden l ized LISP
machine. After this translation, the compiler automatically
activates the assembler, which then expands the macros into
machine language of the CDC 6000 machines. As wi 11 be described
1 a t er , the user has the op t i om~ o f i mme d i a t e 1 y 1 o ad i ng the
resulting machine code in to memory, saving the machine code on a
f i. le , or s imp 1 y d is card i ng i t (see sec t ion 6 . 3 . 6) .

The res u 1 t o f co mp i 1 a t ion mus t he he 1 d en t ire 1 y in me mo r y. I t
may he a very large list structure, so the compiler must be
provided with at least enough memory to compile the largest
function in the list given to it.

The compiler itself detects no errors. Any function presented
to it will he compiled. The compiler does automatically call the
assembler, however, and compiled code for an illegal function
almost always produces errors detected by the assembler. The
errors are described in section 6.3.7. The value returned by the

-90-

DEC 75 LISP Reference Manual

function COMP ILE is the 1 is t of fnnc t ion names g i ,.en to it as its
argument. If any of ·the names in the 1 is t was not defined as a
function, its en try in the I is t is rep laced by the message:

(<name> IS NEITHER FEXPR NOR EXPR)

See sect ion 6. 2. 2 be low for further dis cuss ion of the
compiler's operation.

6 . 2 . 1 Output o f the Co mp i 1 er

In addition to the value it returns and the compiled code it
produces, the compiler also produces some printed output for each
function it compiles. The compiler a 1 ways produces the
f o I lowing:

(<name> <number>)

<COMPILE-TIME= <t1>)

(PASS1-TIME = < t2>)

(LENGTH <number>)

<LAP-TIME= <t3>)

(ORIGIN <number>~

<TOTAL-TIME= <t4>)

<name> is the function name.
<number> is the number of words of
free space occupied by the lambda­
express ion.

< t 1 > = time
compiler.

(mi 11 iseconds) in

< t 2 > = t i me (mi I I is e co nd s) in f i rs t
pass of assembler

<number> = length (in words)
compiled code

< t3> = ti me
assemh ler

(mi 1 l is e co nd s)

of

in

<number> = address of start of code
in memory

< t 4 > = t i me (mi 1 1 is e co nd s) in
compiler and assembler

Each of these i te1ns is on a separate
last are produced by the compiler.
pr int e d h y the ass e mb 1 e r .

I ine. The first two and the
The other four are ac tua 11 y

Optionally, a listing of the compiled code may he ohtained,
control led by the variable PRNTFLAG. If PRNTFLAG has a non-NIL
value, a neat listing of the compiled code is produced. Fig.
6.1 shows an example. If PRNTFLAG has the value NIL, no listing
is produced. PRNTFLAG is initialized to NIL during the loading
o f the co mp i 1 er .

6.2.2 Theory of Operation of the Compiler

The UT LISP compiler has been designed so that there are no
restrictions on its use. Any function that executes properly
interpretive 1 y and which on any function ca 11 inc 1 udes a 11
arguments whether required or not will compile and execute
properly. There are no restrictions on variable references or on
interaction between compiled and interpreted functions.

As the compiler processes a function, it generates a list of
macro calls in the form of a program to he assembled by LAP.
Each of the macros represents a specific operation of a "LISP
machine 11 , and is predefined when the compile1• is loaded into the

-91-

LISP Reference Manua 1

Figure 6.1

Output of LCOMP Based On
INTERSECTION Function of Figure 2.1

(***** LISP ASSEMBLER - VERSION 1.5 *****)
(***** LISP COMPILER - VERSION 1.5 *****)
*EVAL:
(SETQ PRNTFLAG T)

*VALUE: *T*

*EVAL:
<COMPILE (QUOTE (INTERSECTION)))

<INTERSECTION 52Q)

<MAIN INTERSECTION SUBR)
CSAVE76 INTERSECTION 1)
(BINDVARS ex Y) 2)
C VALUE 1 X)
(NULL 1 1)
< OR 1 R0000 1)
(VALUE 1 Y)
(NULL 1 1)

R00001 (COND 1 C00001)
CSETAK 1 NIL)
(JUMP E0000 1)

C00001 (VALUE 1 X)
(CAR 1 1)
(VALUE 2 Y)
(CALL MEMBER 2)
(COND 1 C00002)
(VALUE 1 X)
(CAR 1 1)
CSAVE 1 3)
(VALUE 1 X>
(CDR 1 1)
<VALUE 2 Y)
(CALL INTERSECTION 2)
<SETA 2 1)
(UNSAVE 1 3)
(CONS 1 1 2)
(JUMP E00001)

C00002 <VALUE 1 X)
CCDR 1 1)
(VALUE 2 Y)
(CALL INTERSECTION 2)

E00001 CUNBINDVARS 1)
(UNSAVE76)
(JUMPB6)

(COJ-'IP ILE-TIME = 516)
<PASS1-TIME =138)
(LENGTH 43Q)
CLAP-TIME =240)
<ORIGIN . 74073Q)
<TOTAL-TIME =756)

*VALUE:
(INTERSECTION)

-92-

DEC 75

DEC 75 LISP Reference Manua 1

system. Some examples of these macro ca I ls are shown in figure
6.1. The meanings of most of them are given in table 6. 1 below.

The
process.
the LAP
variables
code is
element
compiler
:re turn to

compiler is initially given a lambda-expression to
For the lambda-express ion the compiler first generates
header e 1 e rue n t , and t he n c o de f o r b i nd i n.g arguments to
(if any) and for reserving space on the stack. Then
generated to evaluate the expression forming the third

of the lambda-express ion. Fo I lowing this code the
generates code to unbind variables (if any) and to
the ca 11 i ng f unc t ion.

The bulk of the compilation process is involved in generating
code to evaluate express ions. If an express ion is a number, code
is generated to place a pointer to the nunilier in a register. If
an express ion is a variable (< 1 i ta tom>), code is generated to
place the value o.f the variable in a register. If an expressin
is o f t he form

(< func t ionname> < arg1> < arg2> ... < arg[nJ >)

where each <arg> may itself he an expression, the comniler
recursively compiles each <arg> in left-to-right order and~ then
generates code to app 1 y < func t ionname> to those va 1 ues.

The most common! y used LISP functions whose machine-code
realizations are short are known to the compiler and are compile<l
in 1 ine in the resulting program. These function~ are
represented in the code by macros whose names are the same as the
functions they rea 1 ize (e.g. , CAR, CDR, etc.) . Each such
function is identified by having the property CMACRO on its
property list. The value associated with this property is a
function which performs the necessary code generation. Table 6.2
gives a list of the functions known in the standard compiler.

All other functions referenced in the express ion cause a CALL
macro to he generated. This macro c rea te8 a ('a 11 i ng· sequence to
the named function, which is assumed to hP defined elsewhere.
The execution of an actual function call is c0usiderably slower
than exec u t ion o f an in - 1 i ne f nnc t i o n .

Whenever the compiler encounters an express ion whose
< func t ionname> is FUNCTION or FQ.UOTE, it assumes that the
expression contains a lambda-expression which is a sub-function
of the one being compiled. This sub-function is compiled
separately given an internally-generated name, and its code is
appended to the end of the code is generated for the entire
function. Such sub-functions can he identified by the occurrence
of an ini t ia 1 ENTRY macro ca 11.

This brief and simplified description of the operation of the
compiler accounts for most of its activity. The description is
offered here in the he 1 ie f that some understanding of the
compiler's operation will facilitate its use and the preparation
of good programs. For further details the reader is referred to
reference [1] at the end of this chapter.

6.2.3 Compiling Many Functions

When compiling many functions it is better to define Just a
few o f them a t a t i me , i mme d i a t e 1 y co mp i 1 i ng them a f t e r de f in i ng
them. Af t er the co mp i 1 a t ion, the f unc t ion de f in i t ions s ho u 1 d be
deleted. For a given field length specification, this process
reduces the storage required for function definitions and gives

-93-

LISP Reference Manua 1 DEC 75

Table 6.1

LAP Macros Defining the "LISP Machine"

Macro name Meaning

< AND < i > < 1 o c >)

CBINDVARS <lat> <n>)

(CALL <name> < n>)

CCOND <i> <loc>>

(FCALL <name> <list>)

(FREE < i>)

< FUNARG < i> <name>)

(GO< loc>)

< JUMPB6)

(OR< i> < loc))

CPROGINIT <loc> <lat>)

(SA VE < i> < J >)

CSAVE76 <name> <n>)

(SETA < i> < J>)

(SETAK <i> <constant>)

Controls
function
register
con ta ins
< loc > .

sequencing of the AND
based on the value in

< i > • I f reg is t er < i >
false, control transfers to

Controls binding of values to the <n>
variables in the <lat>.

Sets up calling linkage to function
<name> with <n> parameters.

Controls sequencing of the COND
function based on value in register
< i>. If register < i> is false
control transfers to <Ioc>.

Sets up calling linkage to an FSUBR
or FEXPR <name>, with the <list> of
arguments.

Obtains a word from free space,
leaving a pointer to it in A<i>.

Es tab l is hes function <name> as a
functional argument in register <i>.

Implements the GO fnnc t ion.

Exits from a function.

Controls se q_uenc ing of the OR
function depending on the value in
register <i>. If register <i>
contains something not false, control
transfers to <loc>.

Initializes a PROG expression where
<lat> is the 1 is t of PROG var iah les
and <loc> is the exit address.

Saves register < i> in the <J> th
position of the stack relative to its
top.

Saves the function <name> and re turns
information on the stack and reserves
< n> words of temporary storage.

Sets register < i> equal to register
<J>.
Sets register <i> to a <constant>.

-94-

DEC 75

<SETQ. <name> <i>)

CUNBINDVARS <i>)

(UNSAVE < i > < J >)

LISP Ref ere nee Manna 1

Se ts the va 1 ue of var iah le <name>
the cont en t o f re g is t er < i > •

to

Unbinds the most-recently bound list
of variables. Register <i> is
preserved during tha operation.

Re tr i eves the va 1 ue from the < J > th
position on the stack and puts it in
register <i>.

(UNSAVE76) Prepares stack for function exit.

(VALUE< i> <var>) Retrieves the value bound to variable
< var> and p 1 aces i t in reg is t er < i > .

(<fnname> <i> <J> <k> •••) Implem~nts the LISP system function
< f nna me > • Re g is t er < i > is a l ways the
res u 1 t reg is t er and reg is t er s < J > ,
< k>, ... , are the arguments of the
function. ·

Table 6.2

Fune t ions with CM..L\CRO Properties

ADVANCE
AND
ATOM
CALLSYS
CAR
CDR
CSR
CONC
COND
CONS
DEF SYS
EQ.
ERRORS ET
FIXP
FLO ATP
FQ.UOTE
FUNCTION
GO
LIST
MINUSP

-95-

NOT
NULL
NUMB ERP
OR
OUTPUT
PRINT
PRINl
PROG
PROGN
PROG2
QUOTE
READ CH
RETURN
RP LAC A
RP LA CD
RP LACS
SET
SETQ.
WRITE
ZEROP

LISP Reference Manual

more working space for the compiler.
used, a larger field length is required.

6 . 2. 4 Co mp i 1 i ng Large Fune t ions

DEC 75

If this process is not

It is entirely possible that some large functions may not be
compilable in any reasonably-sized field length. Such functions
must be split into smaller independent pieces.

6.2.5 Compiling Functional Arguments

Functional arguments in expressions may be designated in three
ways:

(QUOTE <function>)
(FQUOTE <function>)

(FUNCTION <function>>-

.The forms using QUOTE and FQUOTE hehaye identically except that
when the compiler sees FQUOTE, the <function> expression
f o 1 1 owing is co mp i 1 e d as a s uh- f unc t ion . A f unc t i o na 1 argument
designated by QUOTE cannot reliably he distinguished from any
other quoted expression so it is not compiled. The advantages of
compilation are lost in this case. Whenever poss ih le, FQUOTE
should he used to designate func t iona 1 arguments.

The form using FUNCTION also causes the <function> expression
to he compiled as a sub-function. This form, however, generates
a 1 a r ge a mount o f code for e nv i r o nme n ta 1 ·pres er va t ion and hence
is expensive in both space and .time. FUNCTION serves a very
special purpose and is needed in only a very few cases (see
sect ion 4. 5).

6.2.6 Compiling References to FEXPR-FSUBR Functions

When. the compiler generates a ca 11 ing se qncnce to a function,
the calling sequence is of EXPR-SUBR type or of FEXPR-FSUBR type,
depending on the ~ype of the referenc~d function. If the
referenced function is as yet undefin.cd, an EXPR-SUBR calling
sequence is assumed, There fore, a 11 nser-de fined FEXPR-FSUBR
functions must have those property indicators at the t irne when
references to them are compiled.

6. 2. 7 Tracing Comp i 1 ed Fune t ions

Compiled functions can be traced in the usua 1 manner, provided
the function TRACE is ca 1 led after the functions are loaded but
before they are used. Once compiled functions are executed,
internal linkages have been constructed, and tracing cannot be
initiated.

Since SETQs are compiled in line, the function TRACESET has no
effect on compiled functions.

6.2.8 Avoiding Name Conflicts

The compiler is itself a LISP program containing a number of
LISP functions. If the user defines a function whose name is the
same as one of the compiler functions (see table 6.3), then the
user's function may well he used instead of the compiler function
when the compilation is attempted. This situation usually causes

-96-

DEC 75 LISP Reference Manual

highly chaotic results. Compiler function names for the most
part have a period (.) as their second character and are not too
likely to cause conflicts.

Table 6.3

Compiler Function Names

COMPILE
DATA
ENTRY

A.DJOBJl
A.SER
A. SMAC2
A.SMAC
C.ANDOR
C.ARGS*
C.ARGS
C.COND
C.FARGS
C.FNCALL
C.FNFORM
C.FN
C.FORM
C.LABEL
C.LAMBDA

IF
LAP
MACRO

C.LIST
C. C01'IPRESS*
C.COMPRESS
C.ONCER
C.PRINT
C.SPEC
I. NCR
L. ISTER
M.ACPROC
M.ATCH2
J'.11.ATCH
O.BJlADDP
O.BJlADD
O.BJlFIX
O.PCODE

6.2.9 Redefining Standard Functions

OPDEFINE
PUNCHMAC
VFD

O.PTIMIZE
P.ADCNT
P.AD
P. ASSl
P.C
P.MAP
R.EVERSIP
S.PACE2
S.VREG
S. YSMAC
T. IMER
T.RANS
T.ZCNT
U.NSVRG

Occasionally there is a need for a nRer to define his own
versions of functions already defined in LISP. If the redefined
f unc t ion is one o f tho s e in t he 1 is t o f t a h 1 e 6 . 2 , the co mp i 1 er
still generates code for the built-in definition, and does not
generate a call to the user's new version. To circumvent this
difficulty, it is merely necesary to remove lh<' CMACRO property
from those f uuc t ions a f f e c t e d . The co mp i 1 er then genera t es a
call to the function instead of expanding it in li~e.

The CMACRO property may he removed from any of
in table 6.2 except:

COND FUNCTION GO PROG RETURN

the functions

If the CMACRO property is removed from these functions, the
resulting compiled code wi 11 not he correct.

6.2.10 Using SMACRO for In-line Compilation

The in-1 ine compilation of short fnnc t ions such as CADR, CDDR,
etc, , may he forced by using Sl"IACRO. If a function name has an
SMACRO property whose va 1 ue is a lambda-express ion, the· lambda­
express ion is compiled in 1 ine. Fune t ions such as CADDR, etc. ,
are not compiled in 1 ine unless the user generates appropriate
SMACRO expressions for them.

-97-

LISP Reference Manual DEC 75

6.3 LAP - THE LISP ASSEMBLER

The LISP assembler is a general two-pass assembler with macro
and conditional assembly capabilities. It is most frequently
called from within the LISP compiler, but may be called directly.

The assembler is called by:

CLAP < s 1> < s2>)

where <sl> is the program to be assembled and <s2> is an initial
symho 1 tab le. Program formats are described be low in sect ion
6.3.1. The initial symbol table is usually NIL, but in speciaJ
cases may be a list of dotted pairs, each pair being a literal
atom and a numeric value to be associated with that symbol.

The va 1 ue re turned by function LAP is the f ina 1 symbo 1
of the assembly in the form of a list of dotted pairs.

table

Pass 1 of the assembler produces.an intermediate form of the
program with all operation codes and ·register numbers decoded.
This intermediate form may be· saved on a file for subsequent use
and/or it may be further processed by pass 2 of the assembler and
loaded into memory for execution. Pass 2 evaluates address
express ions and finishes processing the function.

The intermediate form produced by pass 1 may be a very large
express ion, so suf f ic ien t memory must he made available,
espec ia 11 y in ful I-word space. The user is cant ioned to observe
very carefully the use of memory during assembly of his programs
and to adJust the LISP parameters accordingly.

6.3.1 Program Format

A program to be assembled by LAP is a 1 ways in the form of a
1 is t. Machine ins true t ions and assembler pseudo-operations are
themselves sublists in the program. Atomic elements in the
program I is t serve as . labels in the program. If several a toms
appear conse·cutively in the list, they all label the same
ins true t ion. Every program must begin with a MAIN pseudo­
opera t ion. An example assemb I y is shown in f ignre 6. 2.

6.3.2 Symbols

Any 1itera1 a tom may be used as a symbo 1 in a program so long
as it is not confused with some part of an operation.

The special symbol + when used as a label means to force the
next instruction to be in the left-most bits of the next word to
be assembled. If the previous word is not fu 11, it is f i I led
with pass instructions.

The special symbol * when used as an operand in an address
expression stands for the address of the word containing the
instruction being assembled.

-98-

DEC 75 LISP Reference Manua 1

Figure 6.2

Contents of LAPUNCH File Produced by Pass 1 of LAP
Based On INTERSECTION Function of Figure 6.1

C~IAIN 0 <<INTERSECTION SUBR OQ.)) ((ROOOOl . 12Q.) (C00001 • 14Q.)
(C00002 • 34Q) CE00001 • 37Q.)) 43Q <<611Q51 ((QUOTE
INTERSECTION))) (612Q.51 (1)) < 1Q54 (SAVE76ER>) + (611Q51 (<QUOTE
<X Y)))) (lQ.54 <BINDIT)) C511Q51 ((QUOTE X))) 5311Q48 + C6021Q48
(- (QUOTE NIL))) (511Q51 ((QUOTE NIL))) (52Q51 ({+ * 0))
(5011Q48 (+ 1)) (6011Q.48 (- (QUOTE NIL))) (51Q.51 CR00000)
(5110.51 ((QUOTE Y))) 53110.48 + C6021Q.48 (- (QUOTE NIL))) C511Q.51
((QUOTE NIL))) (520.51 ((+ * 1))) C5011Q.48 (+ 1)) (60110.48 (-
(QUOTE NIL))) (41Q.51 CC00001)) <5110.51 ((QUOTE NIL))) <40.54
(E00001)) (5110.51 ((QUOTE X>)) 5311021122Q.30 5311Q48 (512Q.51
< (QUOTE Y))) 53220.48 (VFD 12 < 1Q6) 18 < LINKIT) 1 (0) 11 (2) 18
((QUOTE MEMBER))) C6011Q48 <- (QUOTE NIU)) (41Q51 CC00002))
(51 lQ.51 ((QUOTE X>)) 53110211220.30 53110746 lQ.33 C 5167Q.48 < + < +
PDSTACK 3))) (511051 ((QUOTE X>» 531105311Q.33 (512Q51 ((QUOTE
Y))) 5322Q48 + CVFD 12 < 1Q6) 18 CLINKIT> 1 (0) 11 (2) 18 ((QUOTE
INTEHSECTION))) 5421Q48 C5117Q48 (+ (+ PDSTACK 3))) 53110.48
74610747202062212667Q 541Q.51 (6211Q48 (- (QUOTE NIL))) + (7211Q48
(- (QUOTE NIL))) + (3110.48 ((+ * 1))) <10.54))
5410054600530101016Q3 (40.54 (E00001)) + (511Q51 ((QUOTE X)))
<GARBAGE 531105311Q33 (512Q.51 ((QUOTE Y))) 5322Q.48 + <VFD 12
(1Q6) 18 CLINKIT) 1 (0) 11 (2) 18 ((QUOTE INTERSECTION))) 64110.48
+ (615Q51 ((+ * 1))) (4Q54 ((APPLLG>) 561 lQ.48 (5157Q48 (+
PDSTACK)) 6365Q48 2152263750.33 (26Q.51 (0))))

6.3.3 Address Expressions

Some machine instructions require the sp,~cification of an 18-
b it quantity in the address part. LAP a 1 lowN these quantities to
be specified in the form of expressiow~. A LAP address
express ion may have any of fonr for ms:

a) a number
b) a s;rmbol (literal atom)
c) a Q.UOTEd S-expression (e.g. "(ABC))
d) ((operator> <expression!> <expression2>)

If the express ion is a number, the va 1 ne placed in the
instruction is the value of the right-most 18 hits of that
number. The number may be positive or negative.

If the express ion is a symho 1, the value is (le termined by:

1) The \ra 1 ue associated with the symbol on ::he LAP symbo 1
table, if any. Otherwise

2) The va 1 ue associated with one of the indicators SYM,
SUBR, FSUBR on the property 1 is t of the symbo 1. If the
symbo 1 has more than one of these properties, the one
most recently put on the atom is used.

The values associated with SUBR and FSUBR properties are the
addresses of the entry po in ts of the named machine-coded
subroutine. Linkage to such subroutines can thus he effected
mere 1 y by naming them in the address fie Id of an appropriate Jmnp
instruction. Values associated with a SYM property are generally
addresses of important locations within the LISP sys tern which
need to be accessed by the assem.b 1 y- language routines. Tab le 6. 4
gives a list of symbols with SYM properties defined in the

-99-

LISP Reference Manna l DEC 75

standard LISP system. The symbol * is treated specially in the
evaluation of an expression and always evaluates to the current
location within the program.

Symho l

A.PPLLG

BIND IT

BP ROG

CIO

FGARBAG·

FULLLIS

GARBAGE

LINKIT

PD ERR

PDSTACK

PROGINIT.

SAVE76ER

SYSTEM

Table 6.4

Symbols with SYM Property in Standard LISP

Use/meaning

Unbinds a list of variables previously bound and
saved on the stack. Can be used during exit
from a function.

Binds a list of variables to the argument values
sent by the ca 11 ing function. The 1 is t of
variables is saved on the stack with indicator
VMARK. .

Location of cell containing the address of the
next available word in binary program space~

Entry point of a routine for calling CIO for
input/output. Enter via RJ, with FET location
in B2 and CIO code in XO.

Entry po int to the garb age co l le c tor used whe it
full space is used up.

Location of the pointer to the next available
ful I-space word.

Entry point to the garbage collector used when
free space is used up.

Entry po int to a dynamic 1 inkage routine which
wi 11 I ink a machine-coded routine to another
regard less of whether the cal led routine is
machine-coded or interpreted.

Location of e1•ror routine for stack overflow.

Location of the hot tom of the i;;i tack.

Makes a .standard entry to a PROG.

Entry point to a routine which constructs a
stack header element and stores it on the stack,
opt iona 11 y reserving extra space on the stack.

Entry point to a routine for making system
requests. Enter via RJ, with formatted request
in X6.

-100-

DEC 75 LISP Reference Manual

If the express ion is a Q.UOTEd S-express ion, the value used in
the ins true t ion is the ac tna 1 address of the S-express ion, and
the S-expression is not evaluated further. For instance, the
expression CAR evaluates to the address of the machine subroutine
for the CAR function, but the expression "CAR evaluates to the
address of the a tom CAR i tse 1 f.

If the expression is of the form «operator> <expression!>
<expression2>), the values of <expressionl> and <expression2> are
combined according to the specified operator. The permissible
operators are + and - . The expression is evaluated as a full­
word value and then finally truncated to 18 bits.

The entire
sign.

expression may be optionally preceded by a + or -

6.3.4 Instructions Recognized by the Assembler

A complete set of CDC 6000 ~eries central processor
instructions is recognHzed by LAP, with mnemonic codes of the
instructions being the same as those recognized hy the COMPASS
assembler [2].

Each instruction is represented by a list whose first element
is the mnemonic operation code. Remaining elements are register
designators, register numbers, and operator symbols. Register
numbers are always enclosed in parentheses, and operator symbols
must he separated from adJ acen t atomic symho ls by at least one
h lank. Tab le 6. 5 gives a 1 is t of the ins true t ions and shows the
for ms that they may take.

It is assumed that any user of the LISP ~ssemhler is already
familiar with the machine operations, and no further discussion
of them will he given here.

6.3.5 Pseudo Instructions of the Assembler

The LISP assemh ler, 1 ike most assemJ, 1 ers, employs pseudo
instructions to supply it with certain information about the
program and to handle storage allocation. There are six pseudo
ins true t ions recognized by LAP. They are descr ihed he low by
giving the form of the pseudo ins trnc t ion fol lowed by a
description of its function.

(MA.IN <name> <type>)

The MA.IN pseudo ins true t ion must appear at the beginning of
each program to be assemh led. <name> is a 1itera1 a tom which is
the name by which this program will be known. <name> is also
treated as though it were a label on the first instruction of the
program. <type> specifies the type of property the code is to he
given. <type> may be one of: SUBR, FSUBr:., or SYM. If it is
SUBR or FSUBR, then the program is a LISP-callable function. If
type is SYM, then it is not LISP-callahle but may contain code or
data which may he referenced by other hand-coded programs. The
address of the first word of the program is placed on the
property list of <name> with indicator <type).

-101-

LISP Reference Manual

Table 6.5

The Instruction Set Recognized by the LISP Assembler

In the following:

i .J. k
Jk
<k>

represent register numbers in the range 0-7
represents a constant in the range 0-63
represents an address expression

DEC 75

In a 11 cases where an a 1 terna te form has B(J) or BC k) omitted•
B(0) is assumed.

Operation Standard
Code Form(s)

01
02

. 030
031
032
033
034
035
036
037
04

(RJ <k»
C JP BC i) < k>)
C ZR XC J > < k>)
C NZ XC J) < k>)
< PL XC J) < k>)
(NG XC J) < k>)
CIR XCJ) <k»
C OR XC J) < k»
C DF XC J > < k> >
CID XCJ) <k>>
(EQ. BC i) BC J > < k»

05 (NE BC i) BC J) < k.>)
06 C GE BC i) BC J) < k.>)

07 {LT BC i) BC J) < k»

C BXC U XC J))
< BX< i) XC J) * XC k))
(BXC i) XC J) + XC k))
CBX(i) X(J) - XCk))
C BXC i) - XC k))

10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33

CBXCi) - XCk) * XCJ))
CBXCi) - XCk> + XCJ))
C BXC i) - XC k) - XC J))
C LXC U (J k))
< AXC i) C J k))
(LXC i) BC J) XC k>)
C AXC i) BC J) XC k))
CNXCi) BCJ) XCk))
C ZXC i) BC J) XC k))
C UXC i) BC J > XC k) >
CPX(i) B(J) XCk))
< FXC i > XC J > + XC k))
< FXC i) XC J) - XC k))
CDXCi) XCJ) + XCk))
CDXCi) XCJ) - XCk))

-102-

Alternate
Form(s)

C JP < k>)'

(EQ <k»
C ZR BC i)
<ZR < k.>)

C NZ BC i)
C GE < k>)
CLE BC J)
(LE BC J)

<LT BC i)
C GT BC J)
C GT BC J)

<k>)

< k>)

BC i) < k>)
< k>)

< k>)
BC i) <k»
<k»

CLXC i) XCk) BCJ))
< AXC i) XC Id BC J))
< NX(i) XC k))
< ZX< i) XC k))
(uxc i) xc k))
(PX< i) X<Id)

DEC 75 LISP Reference Manual

Table 6.5 (cont<l.)

Operation Standard Alternate
Code Form(s) Form(s) --------- ---------------- ---------

34 c ID{(i) }{(J) + }{(k))
35 (RXC i) X< J) - XC k))
36 (IX(i) XC J) + X< k))
37 (IX(i) X< J) - XC k>)
40 (FX< i) X(J) * XC kJ)
41 <RX< i) X< J) * XCk.))
42 (DX(i) xc J) * XC k))
43 (M}{(i) (Jk.))
44 (FXC i) X< J) / X(k.))
45 <RX< i > X(J) / X< k.))
46 <NO)
47 CCX< i) XCk))
50 <SAC i) AC J) < k>)
51 <SAC i) BCJ) < k.)) <SA< i > <"k>)
52 <SAC i) }{(J) <k»
53 C S0A< i) xc J) + BC k)) CS0AC i) X< .1>)

(SAC i) BC k.) + xc J))

54 (SAC i) ACJ) + BC k)) (SAC i) A< J)_)
<SAC i) BC Id + AC J))

55 <SAC i) A(J) - BC kJ) C SAC i) - BC k) + A< J))
56 (SAC i) BCJ) + BC k)) (SAC i) BC J))
57 (SAC i) B(J) - BC k)) (SA< i) - BC k))

<SAC i) - R(k) + BC J))

60 C SBC i). ACJ) <k»
61 (SBC i) B(J) < k>) (SBC i) < k>)
62 C SBC i) X< J) <k.»
63 C SBC i) XC J) + BC k.)) (SBC i) X(.J))

C SAC i) B< k) + xc J))

64 <SB< i) A(J) + B< k.)) CSB(i) A< .J))
<SB< i) BC ld + A<J)}

65 <SB< i) ACJ) - BC k)) <SB< i) - B(k.) + AC J))
66 (SBC i) BCJ) + BC k)) <SB< i > B(J))
67 (SBC i) BCJ) - BC k) > (SBC i) - B< k))

(SBC i) - Il(k.) + BC J))

70 (sxc i) AC J) < k>.>
71 (SX(U BCJ) <k.» (SX< i) < k>)
72 < SX< i) X< J) <k»
73 < SX< i) XC J) + BC k>) (SX< i) X< .1>)

(sxc i) BC k) + X<J))

74 (sxc i) A(J) + BC k)) C SXC i) AC J))
C SBC i) BC ~d + AC J))

75 < SX< i) A(J) - B< k)) C SXC i) - BCk) + A< J))
76 CSX< i) B(J) + BC k)) (SX< i) BC .J))
77 (SXC i > B(J) - BC k)) (SX< i > - BC k))

< SX(i) - BC k.) + B(J))

-103-

LISP Reference Manual DEC 75

<ENTRY <name> <type>)

The ENTRY pseudo ins true t ion is similar to MAIN. It appears,
however, within a block of code instead of at the beginning. It
defines a secondary entry point of type <type> and name <name>.
The code following ENTRY may be referenced by <name> and may in
turn reference ins true t ions or data common to it and the program
named in the MAIN pseudo ins true t ion.

(MACRO < name> < 1 a t > < ins t 1> < ins t 2 > . • • < ins t [n] >)
Pseudo instruction MACRO defines a macro instruction for use

in assembling the current program. <name> is the name of the
macro; <lat> is a list of literal atoms which are the symbols to
he replaced when the macro is expanded. < inst l> <inst [n] >
are machine instructions, pseudo instructions, and/or macro
instructions which define the body of the macro. Each
substitutable parameter must be a distinct element of the S­
expression defining the macro body.

A macro is used by placing the form:

<<name> <st> <s2> < s [nJ >)

anywhere an instruction might appear. <sl> . • . <s(nJ> are S-
express ions which ai•e substituted in to a copy of the macro bod.y
for the subs ti tu tab le parameters in one-to-one correspondence.
After substitution, the macro body is inserted into the program
instead of the macro instruction and then assembled.

A MACRO pseudo ins true t ion may appear anywhere in the program
so long as it precedes the first use of the macro. Macros
defined by the :MACRO pseudo ins true t ion are pure 1 y lo ca 1 to the
program being assembled and must be redefined for use in other
programs.

Example:

When the macro deiinition:

is referenced by:

(MACRO XX < I V))
(SA< I) <QUOTE V>)
(SA(I> X< D))

<XX 3 ANATOM)

the macro definition is expanded to the code:

<SAC3) (QUOTE ANATOM))
CSAC3> X(3))

(IF (< p[1J > < inst [1, 1 J > • • • < inst[1, mJ>) ••.
({p[nJ> < inst[n, U> • • . < insHn,m])))

The IF pseudo instruction provides a conditional assembly
capah i 1 i ty. Each < p[i] > is an express ion, and the <ins H i, J J >
are LAP instructions. The <p[iJ> are evaluated using standard
LISP evaluation rules until one is found to he true. The set of
instructions following the first true <p[iJ> is assembled at this
point. If no < p[i] > is true, then no ins true t ions are assembled.

-104-

DEC 75 LISP Ref ere nee Manna 1

IF is most often used inside macro definitions, and the <p[iJ>
genera 11 y are functions of the argnmen ts substituted in to the
macro when it is expanded.

(DATA <expression>)

The DATA pseudo instruction defines a full-word data constant.
<express ion> is an express ion of the form defined in sect ion
6 . 3 . 3 , and is e va 1 ua t e d a c c or d i ng to t he r u l es g i ve n there . I t
is left as a full-word value, however, and not truncated to 18
bits. Each DATA pseudo instruction allocates and defines one
word of storage.

(VFD < n[1J > (<exp [1 J >) < n[2] > (<exp [2] >) . • . < n[mJ > (<exp [mJ >))

The VFD pseudo instruction defines the contents of one
computer word, placing several values into specifiable fields
within the word. Each <n[iJ> is a siJ:Uple integer which defines a
field width. The <exp[i] > fo I lowing each < n[i] > is an express ion
o f the form des c r i he d in sec t i on 6 . 3 . 3 . Each < exp [i J is
evaluated and truncated to <n[iJ> hits. The resulting values are
then concatenated in order and placed in the allocated word. Thf'
sum o f a 1 1 < n [i J > may no t e :xc e e d 6 0 . I f the s um o f t he < n [i J > is
less than 60, the packed values are stored in the high order bits
of the word and the lower order bi ts are filled with zeros.

6.3.6 Operation and Control of the Assembler

The assemh ler performs a first pass over the program, and
optionally a second pass. D1~ring the first pass, instructions
are decoded and the operation codes and r.,.gister numbers are
reduced to numeric quantities. Also dnrinp; the first pass,
macros are expanded and the symho 1 tab le is cons true tcd.

The secon<l pass, if requested, eva 1 ua tes :1dd ress 0xpress ions
and actually places the program code into memory.

The second pass is performed only if the
not NIL. LOADFLAG is initialized to NIL
loaded. If LOADFLAG is NIL, then assemb I y
only through pass 1 takes place.

variable LOADFLAG is
when the assembler is
and error detection

The in termed ia te code form prod need by the act ion of the first
pass may be saved on a file for subsequent processing by pass 2
(see description of READLAP, section 6.4). If variable LAPUNCH
has a non-NIL value then that value is assumed to be the name of
a f i 1 e on wh i ch the i n termed i a t e code i s to he wr i t t e n . I f the
value of LAPUNCH is NIL, then the intermediate code is not saved
on a file. If the value of LAPUNCH is PUNCHB, the intermediate
code is punched on binary cards with an end-of-record separator
be tween functions. LAPUNCH is ini t ia 1 ized to OUTLAP.

6.3.7 Errors Detected by the Assembler

The assembler is capable of detecting certain errors in the
program being assembled. Each error causes a message to he
printed. The various messages are given below with an
explanation of their meaning.

-105-

LISP Reference Manual

Errors Detected in Pass 1

<instr> HAS UNRESOLVED REGISTER NUMBER

<ins tr> is the ins true t ion being
ins true t ion specifies a non-numeric val u-3
number.

<instr> INCORRECT HEADER ELEMENT

DEC 75

processed. The
for a register

<instr> is not a MA.IN pseudo instruction and it should be.

<symbol> IS NOT A LEGAL OPERATION

<symbol> has been used as the operation code in an
ins true t ion, but it is not def i.ned as a machine
ins true t ion, a macro ins true t ion, or a pseudo ·ins true t 1 on.

<symbol> IS MULTIPLY DEFINED

<symbol> has been used more than once as a label in the
program.

<instr> HAS SYNTAX ERROR

<instr> has a legal operation code. hut
unrecognizable.

<instr> ILLEGAL ENTRY

its form is

< i.ns tr> is an ENTRY pseudo ins true t ion which has occurred
without a MA.IN pseudo instruction precf~<ling it.

<instr> HA.S NON-NUMERIC A.RG

<ins tr> is a VFD pseudo ins h .. uc t ion which has a non-nmner ic
va 1 ue whe1•e a field width is expec te<l.

<instr> HAS MORE THAN 60 BITS DESIGNATED

<ins tr> is a VFD pseudo ins true t ion in which the field
widths total more than 60 bits.

Errors Detected in Pass 2

ILLEGAL ADDRESS EXPRESSION CEVALK) :<exp>
ILLEGAL ADDRESS EXPRESSION <EVALJ):<exp>

<exp> is an address expression which is somehow not
permlss ih le. In the first case, <exp> is an express ion
preceded by something other than a plus or minus sign. In
the second case, <exp> either contains an invalid operator
or is an undefined symbol.

-106-

DEC 75 LISP Reference ~funual

If any errors are detected during pass 1,
code is not written onto a file, if such action
If any errors are de tee ted by either pass 1 or
is not loaded into memory. The message:

the irtermed ia te
was requested.

pass 2, the code

< n> ERRORS IN LAP ASSEMBLY

is printed if any errors were detected, where <u> is
of errors.

the number

6.3.8 Output of the Assembler

Aside from the in termed ia te form of the code which may be
writ ten to a file, and the symbo 1 tab le which is re turned as the
value of LAP, there is very little printed output from the
assembler. The four lines of output produced by the assembler
have a 1 ready he e n shown in sec t ion 6 . 2 . 1 • They g i ve s ta t is t i ca 1
information about the assembly. They are:

<PASSl-TIME = < tl>)

(LENG'TII <number>)

CLAP-TIME= <t2>)

<ORIGIN <number>)

<tl> = time (milliseconds)
assembler first pass.

spent in

<number> = length (in words)
assembled code.

< t2> = to ta 1 time (mi 11 iseconds)
assemh 1 ing.

of the

spent

<number> = address of
code in memory.

first word of.

<t2> includes loading time if loading was performed.
is zero if the code was not ac tua 11 y loaded.

The ORIGIN

6.3.9 Coding Conventions

The user who wishes to write an assemh 1 y language function
which can communicate with the rest of LISP needs to know certain
things about the internal workings of LISP. A. brief survey of
important topics is given here. Users who need more knowledge
should consult with the Computation Center personnel responsible
for LISP.

6 . 3 • 9 . 1 Regis t er Convent ions

Two registers have predetermined and fixed meanings within
LISP. They are:

Register

AO

B7

Use

Always contains a pointer to
available free-space word.

the next

Always contains a pointer to the current
top of the stack. B7 + PDSTACK is the
location of the top, and B7 decreases as
new items are added to the stack.

Assembly language programmers should always make sure
meanings are preserved over any programs they write.

these

-107-

LISP Reference Manual DEC 75

6.3.9.2 Calling Sequences

All LISP functions are entered by direct Jumps, not by the
return-Jump instruction. On entry to the function, register B6
contains the appro·priate return address for the function, so that
function exit is accomp 1 ished by a

(JP BC 6))

instruct ion. If another LISP function is cal led during the
course of this one, then the value in B6 must be saved and
restored.

Arguments are passed to LISP functions in registers Al-A5.
For a SUBR function, A1-A4 contain the first four arguments,
while A5 contains a pointer to a list of any remaining arguments;
for an FSUBR, Al contains a pointer to a list of all arguments.

Any value computed by the function is expected to be in
regls ter Al on exit from the function~.

6.3.9.3 Coding Examples

1) Saving information on the stack

(SBC 1) "<function-name>)
CSB(2) <n>)
(RJ SAVE76ER>

The above code sequence saves the <function-name>, B6, and
B7 on the stack in the expected form so that the <function­
name> can appear in fhe backtrace Cs<.>e section 8.4) if an
error occurs within the function. If < n> is greater than
0, < n> words are allocated be low the top of the stack for
use in saving other information. The stack configuration
after execution is:

. ' ----------------------------------
I

<name> B7 I B6 <== B7+PDSTACK
I I I I I
!----------------------------~-----!
I I
I I
I <n> words I
I I

The value of B7 saved in the top word is that va 1 ue B7 had
before the additional entry was made. Other data to he
stored on the stack may be referenced by the address
expression.

BC7) + C+ PDSTACK i)

where i =.1 to <n>.

It is recommended that this code sequence he executed at
the beginning of each LISP-callable function.

Information saved on the stack must be explicitly
removed before exiting the function.

-108-

DEC 75 LISP Reference Manua 1

2) Restoring the stack

<SA(i) BC7) + PDSTACK)
(SB(6) X< i))
(AX(i) (1-8)) (i in range 1-5 inc 1 us i ve)
CSB(7) X< i))

This code sequence res tores B6 and B7 to their va 1 ues
s tore d a t the top o f the s tack. 0 the r d a ta on the s tack
must he retrieved by knowing their posit ions relative to
B7.

3) Binding variables

(SB(1) 11 < list-of-variables>)
(RJ BIND IT)

Execution of this code binds afi the arguments passed in
A 1-A5 to the a to ms c on t a i ne d in the 1 i s t o f var i ab 1 es . The
arguments can then he referenced as the va 1 nes of those
variables. BINDIT places a pointer to the list. of
variables on the stack and decrements B7 by 2. Variables
bound in this way must be explicit 1 y unbound he fore leaving
the f unc t i o n •

4) Accessing the value of a variable

(SA(i) 11 <variable))
(SA(i) X(i)) .

(i in range 1-7 inc 1 us i ve)

This code places the var iah le' s va 1 ue i u to register A(i).

5) Unbinding variahles

+ (SB< 3) (+ * O)
(EQ. APPLLG)

This code retrieves the 1 is t of variables
stack and unbinds each atom. Register B7 is
2 • This code des troys the cont e n ts o f Al •

6) Calling a SUBR or FSUBR

(code to put arguments in A1-A5)

+ CSBC6) (+ * 1))
(EQ. < name>)

-109-

saved on the
inc re men ted by

LISP Reference Manual

7) Calling an EXPR

(code to build a list of arguments in A2)

(SA(1) 11 < name>)
+ CSBC6) (+ * 1))

(EQ. APPLY>

8) Getting a word of free space

DEC 75

C SAC i) A(0) >
CSA<0> X(i))

Ci in range 1-5 inclusive)

+ (NZ X< i) < + * l))
< RJ GARBAGE)

This operation must be performed in this manner. At the end of
the sequence, register A(i) contains a pointer to the free word,
which can now he used, and A0 has been prope1· ly updated.

9) Get a word of full space

(SAC i) FULLLIS)
<SA< i> X< i > >
(BX< J > X< i) >
CSACJ) FULLLIS)

(i in range 1-5 inclusive)

(J equals 6 or 7)

+ CNZ.XCi) <+ * 1))
(RJ FGARBAG)

This operation must be performed exactly as indicated. At the
end of this sequence, the address of the ful 1-space word, which
can now he used, is in register A(i).

10) Exiting a function

(JP B(6))

Prior to executing this instruction, it will be necessary to
ensure that B6 con ta ins the same va 1 ue it hacl on en try to the
funet ion.

6.4 THE LISP LOADER

This section explains how compiled and/or assembled code is
placed into memory. If the variable LOADFLAG is non-NIL at
assemh 1 y time, the assembler au to mat ica 11 y cal ls the loader
during its second pass over the program. However, to use the

. in termed ia te form of code which has been saved on a file, the
·loader must be called by use of the LISP function READLAP.

READLAP is an FSUBR function which may have 0,
arguments:

CREADLAP <filename> <lat>)
CREADLAP <filename>)
<READLAP)

1, or 2

<rile name> is the unquoted name of a file from which READLAP is

-110-

DEC 75 LISP Reference l"fanua 1

to read functions in the intermediate f'>rm produced by LAP. If
the <filename> is omitted, then READLAP reads from the current
system input file (SYSIN). The <lat>, if given, is a list of
function names whose definitions may appear in the set to be
loaded, but which are to he ignored if encountered. This feature
is useful to avoid loading superceded fnnc t ions without having to
regenerate the entire file of functions of which they may be a
part.

READLAP begins reading at the current posit ion of the
indicated file. Each function is read and pass 2 of the
assembler is performed on it, loading the functions into memory
one after the other. Reading stops when the end-of-file 1s
encountered or when the atom //ENDLAP is read, whichever occurs
first.

6.4.1 The Loading Process

Pass 2 of the assembler evaluatei.;i address expressions and
combines completely assembled instructions into full-word units.
As each word of information is completed it is stored into the
next available word of binary program space (see chapter 3). If
there is not sufficient memory remaining in binary program space
to accommodate a function, a re~uest is made to the operating
system to allocate more memory. Such requests are made in
multiples of 1000 (octal) words.

A known amount of binary program space can be allocated in
LISP by means of the X parameter on the control card. If the
needed amount is known, this opt ion can he nsed to avoid making
requests on the operating sys tern.

6.4.2 Output from READLAP

As each func i: ion is read, its name is pr in I <'<1 by READLAP. The
names are printed across the page, as a re<'o1•1{ of the functions
loaded. ·

I f pass 2 o f the ass e mb 1 er de t e c ts err o rs • the
given in section 6.3.7 are printed. The last
printed before the error messages is the name of
which the errors were de tee ted. If any errors
message:

TOTAL ERRORS = <number>

error messages
function name

the fnnc t ion in
occurred, the

is then printed. Any f~nc t ion in which an error was de tee ted is
not loaded into memory.

After a 11 functions have been processed, the fo flowing message
is printed:

TOTAL LOAD TIME = <number>

<number> is the total time in milliseconds spent in the
process.

-111-

loading

LISP Reference Manual DEC 75

The value returned by READLAP is a list giving the entry
points and names of all functions loaded. The list contains the
entries in the reverse order of their actual loading. The form
of the list is:

(((<name> <type> <address>)
C<name> <type> <address>)

(<name> <type> <address>))
((<name> <type> <address>> ...))

Each sublist contains the names, types and addresses of all entry
points to one function.

6.5 FINAL COMMENTS

The compiler and assembler are themselves large programs which
get loaded into binary program space. There is no way to reuse
the space they occupy. It is usually .. wise,. therefore, to compile
and assemble in one LISP run, saving the intermediate code, and
then to load and execute the functions in a separate LISP run.

If several runs of the compiler and assembler are
may be wise to generate and save a DEFSYS of
immediately after loading LAP and LCOMP.

expected, it
the system

LCOMP may be loaded separately from LAP if space is at a
premium. Setting PRNTFLAG to true causes a listing of the
compilation result to be output to //WRS. If this 1 is ting is
slightly altered to the form acceptable by LAP and if the macros
which begin the LCOMP file are loaded, then the output of the
compiler may be assembled in a second pass.

References:

1. Cohagan, W. L., A LISP Compiler/Assembler System for the CDC
6400/6600. Master's Thesis, University of Texas at Austin,
1971.

2. Control Data 6000 Series Computer System/6000 Compass Version
2 Reference Manual, Pub. No. 60279900.

-112-.

DEC 75 LISP Reference Manual

7. LISP OVERLAYS, THE FORTRliN INTERFACE, AND VIRTUAL MEMORY

This chapter descr ihes the fac i 1 it ies in UT LISP which answer
the fol lowing three quest ions:

1) How can a LISP program be saved for future use so that
it does not have to be reloaded from source language
input each time?

2) How can a large LISP program be partitioned with dynamic
linkage of the pieces during execution?

3) How can a FORTRAN program be used in conJ unction wl th a
LISP program?

All three of these capabilities exist in UT LISP. The first two
quest ions are answered l>y the use of LISP over lays, the third by
use of the FORTRAN over lay sys tern.

7.1 TIIE LISP OVERLAY

In chapter 3 we indicated th.at the memory al lo~a ted to a
running LISP program is divided into several distinct areas. All
user-defined programs and data reside in an area of memory which
starts at the address following the interpreter code and extends
to the address specified hy the field length. This area plus a
small amount of memory containing pointers and system status
information constitutes the LISP overlay area and can be written
onto a d is k f i 1 e a t the user ' s command .

The overlay is ·written onto the file as two logical records.
The first record contains all system status· information including
the field length in effect at the time of ovc'1•l3y definition, the
return address for the function in execution when the overlay w-as
defined, and a version number for LISP. The second record
cont a ins every th i ng e 1 s e . One e the over 1 a y i s on t he d i s k f i 1 e ,
it may he save<l and/or manipulated in any way that any disk file
may be.

Fune t ions ex is t w i thin L I SP t o load the over 1 a y lrn ck into
memory in a two-step process. In the first step the first record
of the over lay is read in to memory. If the version number
contained in the over lay does not agree with the current LISP
version number, LISP terminates with a message. It is not
possible to use an over lay that was crea tcd under one version
with a different version. If the version numbers match, the
field length of the Joh is dynamica 11 y updated to that re quired
for the overlay, and then the rest of the file is read into
memory. Finally execution resumes at the point where it wns
suspended when the over lay wns ere a te<l. In this sense, the
.over lay ls a dynamic snapshot of the LISP program.

-113-

LISP Reference Manual DEC 75

7.2 CREATING A LISP OVERLAY

LISP overlays are created by function DEFSYS.

CDEFSYS <filename> <boolean>)

pseudofunction; SUBR

DEFSYS writes the current LISP program onto the file
<filename> as a LISP over lay. <filename> is rewound before
being written. If <boolean> is true, execution terminates
inuned ia tel y after the over lay is writ ten. If <boo lean> is
NIL, execution of LISP continues, and DEFSYS prints a
message:

FIELD LENGTH: <number>

where <number> is the current fie Id length needed for the
overlay. The value of DEFSYS i!3 *T* ..

7.3 REFERENCING A LISP OVERLAY

LISP overlays may be used in three different ways. They may
be simply loaded, loaded and control unconditionally passed to
them, or loaded and used as an extension to the running program.
When loaded via the S parameter on the LISP contro 1 command, they
are used as programs saved for use by be i.ng s imp 1 y loaded
without re ini t ia I iza t ion.

7.3.1 Simple Loading of a L~SP Overlay

A LISP overlay is loaded and replaces the running LISP program
by execution of function LOADSYS.

<LOADSYS <file name>)

pseudofunction; SUBR

LOADSYS rewinds and loads file <filename>. Unpredictable
results will be obtained if <filename> does not contain a
LISP overlay. LOADSYS itself returns NIL and execution
resumes in the newly- loaded over lay where execution was
suspended when the overlay was defined. The use of
S=< file name> on the LISP con tro 1 command (see chapter 2) is
equivalent to executing (LOADSYS <filename>) before any
other processing is done.

7.3.2 Linking to a Particular Function in an Overlay Without
Return

By executing function OVERLAY a user can load a particular
overlay and request execution of some particular function defined
in the newly-loaded program.

-114-

DEC 75 LISP Reference Manna 1

(OVERLAY <filename> <function> < 1 is t> <lat>)

pseudo function; SUBR

<file name> specifies the over lay to Jrn loaded. <function>
is a function to he executed in the new program. <list> is
a 1 is t o f a c t ua 1 a r gume n ts t o wh i ch < f unc t ion> is t o be
applied. <lat> defines an environment for the execution of
<function>. The elements of <lat> should be variables
which are defined in the initial LISP prog·ram and
referenced by <function>. The values of these variables
are passed into the newly-loaded overlay and redefined
there so that they will he defined when <function>
references them. OVERLAY writes <function>, <list> and the
environment on to a scratch file named ARGS (there must be a
bu f fer a va i 1 ab 1 e f o r this f i I e) , then i t 1 o ads the over 1 a y
from < f i 1 e name> • Af t er 1 o ad i ng the over 1 a y, OVERLAY then
rewinds ARGS and reads <function>, < 1 is t>, and the
en vi r o mne n t , es tab 1 i she s the var i ab 1 e s in the environment ,
and app 1 ies <function> to ~ 1 is t>. After executing
<function>, control returns to SYSIN as though <function>
had heen executed from the top level of LISP.

7.3.3 Linking to a Particular Function in an Overlay With Return

By use of the function CALLSYS, one can not only load an
over 1 a y and e xe cute a f unc t i on in i t , hut a Is o save t he ca l 1 i ng
environment so t ha t the en vi r o nme n t c an he res t ore d when the
overlayed function finishes. Thus CA.LLSYS al]ows LISP programs
to he partitioned into several parts with almost transparent
1 inkages he tween them. Over lays may evt:'n 1 ink to themselves
recursively.

(CALLSYS <filename> <function> <list> <lat> <boolean>)

pseudofunction; SUBR

The first font• arguments of CALLSYS are id en t ica 1 in
meaning and function to those of OVERLAY. The operation of
CALLSYS is similar to that of OVERLAY except that before
loading the new over lay, the ca 11 ing program is saved on a
temporary disk file. Then after execn ting <function> the
value of the execution and the environment are writ ten on to
ARGS, the saved program is re loaded, the value and
environment are read from ARGS, the environment is re­
es tab 1 ished, and the va 1 ue is re turned as the va 1 ue of
CALLSYS. The environment is passed back in to the ca 11 ing
program so that any changes made in it by the cal led
function are proper 1 y ref lee ted. The temporary file
holding the saved programs operates 1 ike a stack so that
chains of overlays may be properly entered and exited. An
exception to this operation occurs if the fifth argument,
<boo lean>, is true. If so, the ca 11 ing program is not
saved, and re turn from the loaded over lay goes to the
over lay which loaded the over lay that executed CALLSYS with
<boolean> true. This feature is properly used when a
re turn from CALLSYS would cause an immediate re turn to a
lower-level overlay. Use of this feature eliminates the
I/O charges otherwise incurred by saving and re loading a
program which wi 11 not be used.

-115-

Example:

command:

action:

conunand:

action:

command:

action:

command:

act ion:

LISP Reference Manual DEC 75

Suppose the following run were made. Only the
interesting aspects of the run are shown.

LISP,S==AA. (control command)

load AA and resume execution

<DIFFERENCE
(CALLSYS "BB "FX (LIST P Q) NIL NIL)
(FY PQ))

save AA
load BB
execute function FX
reload AA and return value FX
execute function FY
execute function DIFFERENCE

(CALLSYS 11 CC "RST NIL NIL NIL)

save AA
load CC
execute RST,
command

which contains the following

(CALLSYS "DD 11 PQR NIL NIL T)
(determine value of RST)

load DD
execute PQR
reload AA and return value of PQR as value
of RST, etc.

7.3.4 Hints and Warnings About LISP Overlay Use

The file operations of creating and loading over lays are done
by UT LISP as efficiently as possible. The files involved,
however, can be quite large and consequently the l/O charges for
these opera t i"ons can be very heavy. For example, a 77000 (oc ta 1)
worcl program in over lay form occupies about 350 sec tors on the
disk. At 4 milliseconds of charge time per sector transferred, a
LOADSYS of such an overlay costs 1.4 seconds, and a CALLSYS
between one such overlay and another costs 4.2 seconds in l/O
charges alone. Overlays should he used Judiciously.

Information can be passed between LISP overlays in only three
ways via OVERLAY or CALLSYS: through the argument I is t for the
function, through the environment specified, or by means of an
external file writ ten by the caller and read by the ca l'lee. It
is particularly important to note that information stored on the
property lists of literal atoms in the calling program is not and
cannot be automatically passed to the called program. One
solution to this limitation is to make sure that the same atoms
and property lists are kept in both overlays. Another solution
is to keep such property list information in an overlay by itself
and reference that overlay any time the information is needed.

7.3.5 Error Return From CALLSYS

If an error occurs while executing functions in an over lay
loaded by CALLSYS, the appropriate error message and hacktrace
are printed if enah led. If the error occurs within the scope of
an ERRORSET in the last-loaded overlay, then control stays in

-116-

DEC 75 LISP Reference Manual

that over lay. If, however, no ERRORSET has occurred in the last­
loaded overlay, LISP backtracks through the chain of loaded
overlays until either the top-level program is restored, or a
program is restored which had an ERRORSET ca 11 in it.

The backtracking
image in the reverse
message

process invo 1 ves restoring each saved co re­
order of en try. After each is res to red, the

***** ERROR: CALLSYS

is printed, followed by the back.trace of the overlay Just
res to red, as if it was at the point of en try to the over lay Just
ex i t e d . Thus a c o mp 1 e t e h is tor y o f the en t ire cha in o f o ve r 1 a y
entries can be viewed.

Example:

Suppose program
CALLSYSed overlay
error occurs in
ca I led ERRORSET.

AA has
CC which

over lay
Then the

CALLSYSed overlay BB which has
has ~ALLSYSed overlay DD and an

DD. Assume that over lay BB has
output will contain

***** error:
> > > > > STACK:
***** ERROR:
>>>>> STACK:
***** ERROR:
» > > > STACK:

(message for the error)
(hacktrace for overlay DD)
CALLSYS
(backtrace for overlay CC)
CALLSYS
(backtrace for overlay BB)

and overlay BB will retain control.

7.4 THE LISP - FORTRAN INTERFACE

A proper 1 y-coded FORTRAN over lay may be r\cPessed from a LISP
program to perform some kind of calculation lo which FORTRAN is
better suited. The facility provided is min1nial, hut effective.
Note that LISP may 1 ink to a FORTRAN program, hut FORTRAN may not
1 ink to a LISP program. The over lay must havr: heen programmed in
FORTRAN, not some other language similar to FORTRAN. From LISP,
a FORTRAN over lay is accessed by executing the function FORTRAN:

(FORTRAN <filename>)

pseudofunction; SUBR

<filename> is a disk file containing FORTRAN overlays. The
FORTRAN fnnc t ion first saves almost a 11 of the current core
image on a disk file. Only 1/0 buffers aml enough code to
re load the saved image are retained. A (1, 0) over lay is
then loaded from file <filename> and con tro 1 passed to it.
The FORTRAN over lay must obey certain res tr ic t ions (see
be low). Connnunica t ion be tween LISP and the FORTRAN program
is via disk files only, and must be explicitly programmed
by the user. The FORTRAN program may access a maximum of 6
files, and these must have been opened by LISP be fore
loading the FORTRAN program. The FORTRAN function returns
a va 1 ue of NIL if the over lay load was unsuccess fu 1, or *T*
if loading and execution proceeded normally.

Only programs compiled by the RUN FORTRAN compiler can be
used. Since a small portion of LISP code remains in memory while
the FORTRAN program is active, it is necessary that the FORTRAN

-117-

LISP Reference Manual DEC 75

overlays be so structured that they do not overlay that code.
When the overlays are created by the system loader, a dummy (0,0)
overlay must be included in the relocatable binary input so that
the load address of the (1,0) overlay will be at the proper
point. This (0,0) overlay is never used and can best be
implemented with the fo I lowing COMPASS program:

DUMMY

!DENT
LCC
ENTRY
BSS
END

DUMMY
OVERLAYC<file>,0,0)
DUMMY
<number>
DUMMY

<file> is the name of the file on which the absolute over lays are
to be written and <number> is the appropriate value to assure
that the (1,0) overlay starts in the right place. This value may
change with differe·nt versions of LISP, but is always available
as the value of the atom FORFIRST. This <number> is not
abso 1ute1 y er it ica 1 in the sense that the (1, 0) over lay may be
loaded at a higher address and still w~rk; in this case, LISP
re loads it at the correct address. · ·

The FORTRAN program must fit into the fiel~ length at which
LISP is running when the FORTRAN function is called.

7.5 WARNINGS ABOUT RESERVED FILE NAMES

The file used by the LISP functions when saving core images is
named FROM, and the file used to save core images by FORTRAN is
named FTEMP. These are not LISP files, in the sense that they do
not use the regular LISP buffers. If the user has local files of
these names, they will he de~troyed by LISP if overlays are used.

7. 6 VIRTUAL MEMORY FOR FUNCTIONS

LISP. programs using many functions dynami<'a 11 y of ten cannot be
broken info overlays conveniently or become extremely expensive
to run when so p:..1r tit ioned. LISP users may find the vir tua 1
memory facility useful in these situations. Vir tua 1 memory
programs make imp 1 ic it use of the random access functions to
create a file containing the user's designated virtual functions.
These rune t ions are then capable 0 f having their in-core
definitions removed when they are not being executed by the
running LISP system and can subsequently be recreated from the
information stored in the virtual function file.

The virtual function file contains pointers to the actual
locations of atoms in core instead of the original symbolic
representations of these atoms. Users must therefore either save
the vir tua 1 function file a long with a DEFSYS of the LISP sys tent
containing their loaded program or recreate the virtual function
file on each subsequent run. DISKOUT makes a virtual function
file random. However, if an overlay is created with the virtual
functions, re-entry of the overlay will not cause the virtual
function file to be random and a RANDOM I/O error may occur. The
following functions describe the use of the virtual memory
fac i 1 i ty.

-118-

DEC 75 LISP Reference Manual

(DISKOUT < f ixnumber 1> < f ixnumber2> < 1 i.s t>)

pseudofunction; SUBR

DISKOUT is the basic function of the virtual memory system.
This function writes the definition of the functions whose
names appear in <list> onto the virtual function file
VIRFN. The user may change the ·name of this file by
changing the va 1 ue of the sys tern variable VIRFN. Each
function name given in< list> is assumed to have previously
been defined.

DISKOUT also puts a VIRFN property indicator on the
property 1 is t of each function name given in < list> • This
indicator tel ls the system that the function has been
defined on the virtual function file. Subsequent
redefinition of any function previously used in a call to
DISKOUT causes the disk-resident definition of that
function to be lost.

There are two numeric bounds· on the arnoun t of memory the
LISP system allows for in-core definitions of virtual
functions. <fixnumberl> and <fixnumher2> determine the
respective lower and upper bounds on the size of the. in­
core , virtual function memory. Two system variables
//CODEMIN and //CODEMAX are bound to these values. Typical
values for //CODEMIN and //CODE~IAX are respectively 4000
and 7000, a I lowing for 4000 to 7000 words of in-core
virtual function definitions.

Whenever a function -which is not in core is cal led by the
LISP program, LISP checks to see if it wi 11 fit in core
without exceeding //CODEMAX (i.e., <fixnmnber2>). If so,
the function is l•ead in to core. If not, functions which
have resided longest in in-core virtua 1 fnuc t ion memory are
removed until the amount of in core code is less than
//CODEMIN; then requested function is hrought into core and
execution continues. This transfer i~ of course performed
in a ma_nner which is transparent to the running program.

DISKOUTreturns <list> as its value.

C GETD < 1 i ta tom>)

pseuclofunction; SUBR

GETD returns the functional definition of <litatom> by
getting the value associated with the EXPR or FEXPR
indicator on < 1 i ta tom>' s property 1 is t. GETD can he used
to force the re tr i e va l o f < I i ta tom> from the v l r t ua 1
function file if its definition is not presently ht core,
provided <litatom> has been the argument of a previous call
to DISKOUT. For more information on GETD see section 4.7.

-119-

LISP Reference Manua 1 DEC 75

8. DEBUGGING THE LISP PROGRAM

This chapter explains the causes and cures of th~ errors
detected by UT LISP and offers general advice for debugging LISP
programs. In the interpretive mode, LISP has very powerful
error-checking capabilities, and the associated messages can
provide the user with considerable information to aid in
debugging his program. Extensive error checking is not provided
in compiled LISP code in order that it may run faster; it is
assumed that compiled functions have been thoroughly debugged
before compilation.

8.1 DAYFILE ERROR MESSAGES

The fo 1 lowing DAYFILE error messages are currently given by
UT LISP. Al 1 errors ind lea ted by DAYF ILE messages are ahso l u. te 1 y
fa ta 1 to execution.

INSUFFICIENT FIELD LENGTH

This message is given when
length provided permits an
ful 1-word storage. A
recommended as the minimum

PARA.METER ERROR < le t t er>

the LISP system finds that
imprac t ica 11 y sma 11 amount
field length 0£ 50000

practical size.

the _field
of free and
(octal) is

This message is given when parameter <letter> on the LISP control
command violates the restrictions described in section 2.1.1.
These res tr ic t ions are that X, S, I, and 0 can appear on! y once
each, and that C cannot appear in combination with I or 0. Also,
single..:. letter names may not be used for user-defined sub sys terns.

CANT LOAD <filename>

This message is given when <filename> appea~s on
command as ·a subs·ys tem name and there 1s some
loading. This error implies that there is something
the file.

8.2 UT LISP ERROR MESSAGES AND THEIR MEANINGS

the contro 1
error during

wrong with

Three types of error messages may appear dnr ing a LISP run:

(a) Informative messages. These messages report conditions
which are not fatal to execution but should demand user
attention. After printing the message, the LISP system
continues execution as best it can. These messages are
preceded hy /////.

(b) Recoverable errors. Errors represented by these
messages cause execution of the current expression or
doublet to he terminated. The LISP system is able to
recover, however, and continue with the next express ion
or doublet. Each message is preceded by*****, and is
associated with an "error code 11 a tom whose value is
passed to EVAL upon detection of the associated error
(see section 8.5).

-120-

DEC 75

(c)

LISP Reference Manual

Non-recoverable errors. Errors represented by these
messages cause the entire LISP run to be terminated.
These messages are preceded hy ! ! ! ? ! .

Al 1 error messages are set off from the rest of the output by
blank lines before and after, and therefore should he easily
spo l ted by the user. Most recoverable error messages are
accompanied by a back trace. Informative messages and non­
recoverable error messages are not so accompanied. The backtrace
is a reduced listing of the contents of the LISP stack at the
time of the error, and the primary information it conveys to the
user is the sequence of functions which have been entered, hut
not completed. In form the back trace is:

> > > > > STACK: (<name> <name> < uame > <name>)

for as many lines as are necessary. In the case of EXPR and
FEXPR functions, <name> is actually a list containing the
function name and the ac tua 1 parameters with which it was ca I led.
Oc ca s i o na 11 y, i n for ma t i on o t her t ha n. f unc t i on names , s uc h as
lists and numbers, may appear, but the chief fact of interest to
the user is that every function entered, ho th user-defined and
sys tern-defined, is named on the stack. The names are printed in
forward order, with the most-recently-entered function appearing
last (see section 8.4).

8.2.1 Errors Detected During Input

These errors imp 1 y that the user's data is incorrect.
can be eliminated only by revising the data.

They

///// ILLEGAL DOTTED PAIR SYNTAX

"While reading an S-express ion, LISP d<> tee ted one
forms

S-expl . S-exp2 . S-exp3)
or --- S-exp1 . S-exp2 S-exp3)

of the

Only S-exp1 . S-exp2) is a legal dotted pair. S-exp3
is completely ignored, and LISP continues. If the file is
being listed as it is read, this message appears directly
beneath the line containing the error.

///// ILLEGAL SEQUENCE .)
/////ILLEGAL SEQUENCE(.

These two character sequences are i l lega 1 in
express ion. The period is ignored in both cases.
file is he ing 1 is ted as it is read, the message
beneath the line containing the error.

///// CONSECUTIVE DOTS

au S­
I f the

appears

Two or more consecutive periods
pair. All but the first period are
is being listed as it is read, this
the line containing the error.

were found in a dotted
ignored. If the file
message appears beneath

-121-

LISP Reference Manual DEC 75

///// UNMATCHED RIGHT PARENTHESES

This message occurs if the first non-blank character of a
new S-expression is a right parenthesis. The implication
is that there is an excess of right parentheses over left
parentheses. The extra parentheses are ignored. If the
file is being listed as it is read, this message appears
directly beneath the line containing the error.

///// EXTRANEOUS DOTS

This message occurs if the first character read for an S­
expression is a period. That is, one or more periods
appear between S-expressions on the input file. The
periods are ignored. If the file is bP- ing listed as H is
read, this message appears direct 1 y beneath the 1 ine
containing the error.

***** UNMATCHED LEFT PARENTHESES

Code: ERRil

This message occurs if an end-o f'-f i le is read he fore
sufficient right parentheses have been read to match all
left parentheses. It is symptomatic of miss i.ng data cards.

8.2.2 Errors Detected During Output

See section 5.3.

8.2.3 Errors Detected by File Manipulation Functions

***** ATTEMPTED TO OPEN MORE THAN SIX FILES

Code: ERRI2

This error occurs for calls to the RDS, WRS, REWIND,
ENDFILE, or OPEN functions which attempt to open a seventh
file. LISP can accommodate only six files at one time. If
more than six files are needed, the advised approach is to
CLOSE a file and open it again later if necessary.

***** ATTE'MPTED TO CLOSE.SYSIN OR SYSOUT

Code: ERRI3

This error is detected by the CLOSE function. It is never
permissible to close the file which is equated to either
SYSIN or SYSOUT. SYSIN and SYSOUT must always exist. They
may be changed, however (see chapter 5).

-122-

DEC 75 LISP Reference Manua 1

*****RANDOM I/O ERROR: <filename>

Code: ERRRl

This error is de tee ted by either RAN IN or RANOUT when a
random J/O operation is at tempted on a file which has not
been opened in random mode. (See sect ion 5. 2 for opening a
file in random mode.) ·

8.2.4 Errors Detected by the Garbage Collector

***** INSUFFICIENT FREE SPACE

Code: ERRGC2

***** INSUFFICIENT FULL SPACE

Code: ERRGC3

This error occurs when the system was only able to recover
less than l/64th of the space initially allocated to the
indicated area. The implication is that it would he futile
to continue execution, since garbage collect ion would occur
more ancl more frequently with less and less gain. When
this error occurs, the system re turns con tro 1 to the last
occurrence of ERRORSET or to SYS IN, whichever occurs first.
The problem can be cured most easily by increasing the
field length for the next run. Alternatively, the A
parameter on the LISP control command may he adjusted (see
chapter 2) . Deere as ing the va 1 ne of the A parameter
effectively allocates more of the given space to the full­
word space region, whereas increasing the value allocates
more to the free space;

///// FREE SPACE IS CROWDED
///// FULL SPACE IS CROWDED

One of' these two informative messages occurs if the garbage
collector finds that less than 1/16th of the allocated
space in the respective region is ava i !ab le. These
messages indicate that the program may run more efficiently
either in a larger memory space or else with adJus tment in
the A parameter on the LISP contro 1 command (see chapter
2) •

///// GARBAGE COLLLECTED: <nl> <:n2>

This informative message appears every time a garbage
collection occurs if the G parameter is specified on the
LISP con tro 1 command, or if it is turned on l>y setting //GC
to true (see sec t ion 4 . 14) . In t he mes sage , < n 1 > is the
number of free-space words which were recovered and <n2> is
the number of ful 1 space words which were recovered.

-123-

LISP Reference Manual

8.2.5 Errors Detected by the Interpreter

***** UNDEFINED FUNCTION: <name>

Code: ERRA3

DEC 75

The interpreter has encountered an atom, <name>, which is
syntactically in the position of a function name and for
which it WBs unahle to find a functional definition. Most
commonly this error is caused by an extra set of
parentheses around a form within a LISP expression. Such a
pair of parentheses causes the LISP interpreter to treat
the results of the enclosed form as another call on a
function. Typically, the result is some data list whose
first element is not a function name. Another cause is the
omission of a necessary QUOTE in front of a data list,
causing the data list to be interpreted as a form.
Finally, this error may arise if there is a parenthesis
error within the expression or doublet which (is supposed
to have) defined the function •. Such.an error may cause the
function not to be recognized by DEFINE or DEFLIST. The
backtrace indicates the function within which the erroneous
function call occurred.

***** NU~IBER TREATED AS FUNCTION: <number>

Code: ERRA4

This error occurs when the interpreter finds <number> in a
position where it expects a function name. The causes of
the error are the same as for the "undefined function 11

error, that is, an extra set of par en theses around a form
or else a missing QUOTE. Again, the backtrace indicates
which function contained the erroneous information. The
number itself is printed in the message.

*****RECURSION LIMIT EXCEEDED: <list>

Code: ERRA5

Certain information is placed on the stack when a function
is entered and is removed from the stack when the function
is ex i t e d • Typ i ca 11 y the a mount o f info r ma t ion p 1 aced on
the stack is from two to six words. This error occurs when
there is no more room on the stack. It is imposs ih le to
specify how many. levels of recurs ion are a I lowed l>y the
system, since the 1 imi t depends on the particular sequence
of functions which are entered. In genera 1, though, a
stack size of one thousand words seems to allow two hundred
to three hundred levels of recursion. Technical reasons
for this error to occur are the failure of the programmer
to include terminating conditions in a recursive function.
The error may occur in certain system functions such as
PRINT and APPEND, if they are given a circular 1 is t to
process. Finally, it is possible that a recursive function
is operating on data which causes it to recur too many
t i mes • I f the 1 a t t er is the case , then i t is adv i. s ah 1 e to
rewrite that function in an iterative manner using the PROG
feature. This problem can also be eliminated by increasing
the stack size via the B parameter on the LISP control
command. No backtrace is given with this error. <list> is
a list of the last eight entries on the stack.

-124-

DEC 75 'LISP Reference Manua 1

***** UNBOUND VARIABLE: <name>

Code: ERRA6

A variable which has not been assigned a va 1 ue can be
de tee ted hy the LISP sys tern. TIJ.is message occurs when the
value of such a variable is required in a computation.
<name> is the supposed variable and information a])out the
function in which it was encountered is given in the
back trace . Typ i ca 1 cans es o f this error are a keypunch
error or a missing QUOTE around a data atom. in which case
the data a tom is e valuated as a variable. This e1·ror is
not detected within compiled functions.

***** TOO MANY ARGUMENTS: <name>

Code: ERRA7

***** TOO FEW ARGUMENTS : < name>

Code: ERRA8

One of these errors occurs when a user-defined EXPR
function is ca I led with either too many or too few
arguments. These conditions are not de tee ted for machine­
coded SUBRs or compiled functions. <name> is the function
which was improperly ca I led and the name of the ca 11 ing
function appears in the back trace information. The user
must redefine his function or correct the function call to
correct this error.

***** NON-HIERARCHICAL FUNARG

An error has occurred in
caused by incorrect use
backtrace is given.

"unpee 1 ing" the stack, prohab 1 y
of "funarp;" express ions. No

8.2.6 Errors Detected Within Particular LISP Functions

***** ILLEGAL ARGUMENT: <<fn> < arg>)

Code: ERRAl

This error is de tee ted by severe 1 LISP functions. In this
message the system prints the result of (CONS <fn> <arg>),
where <fn> is the name of the function which receivecl <arg>
as its illegal argument. The backtrace gives the name of
the function within which the ca 11 was made. The user
s ho u 1 d cons u 1 t the f unc t ion des c r i pt ions (chapters 4 , 5 , 6 ,
7, and 9) to determine the reasons for the error. Thi~
error typically occurs when a function is given an atom
when a 1 is t is expected or vice versa, or else when a
numeric function is given a non-numeric argument. At times
the function name given may not seem to be related to the
function ca I led by the user. since certain of the LISP
system functions call other functions.

-125-

LISP Reference Manual

***** ILL-FORMED ARGUMENT: <name>

Code: ERRA2

DEC 75

This error is similar to the illegal argument error. It
occurs when a non-list dotted pair is given to a function
which expects a list and looks for the NIL terminator of
that list. <name> is the function receiving the ill-formed
argument. The user must rewrite his call on the function
to correct the error.

***** ERROR: <s>

Code: ERRA.0

This message occurs for a user-de tee ted error when the user
calls the system ERROR function. The messa~e includes the
S-express ion < s>, which is the argument to the ERROR
function and can be anything th~ user des ires.

***** RETURN OR GO OUTSIDE A PROG

Code: ERRPl

This error occurs if a RETURN or GO function was called
within another function which was not executing within the
overall control of a PROG expression. This situation is
not a I lowed and the user must redefine the function ta
correct the error.

***** GO TO NON-EXISTENT LABEL: <name>

Code: ERRP2

Within a PROG express ion the function GO was ca I led with a
non-ex is tent labe I, <name>. The most common cause of this
error i"s a keypunch erro1•.

***** CHARACTER BUFFER EXCEEDED

Code: ERRCl

Detected by the PACK function, this error occurs when an
at tempt is made to pack more than the 1 imi t of 120
characters into the character buffer.

!!!!! NON-MA.TCHING OVERLAY

The UT LISP system is not a static one, but evolves in
time. LISP overlays created under one version of the
system are not likely to be able to run under another
version of the system. The sys!em contains internal
information specifying which version it is, and each
overlay contains the version under which it was created.
The two version numbers are compared when an overlay is
loaded and this error occurs if they do not match. It is a
fatal error since execution would almost surely be
unsuccessful. To correct the error the user must redefine
this overlay under the current version of the system.

-126-

DEC 75 LlSP Reference Manua 1

!!!!! ILLEGAL FORMAT FOR //MODE

The system control variable //MODE determines the top-level
behavior of LISP. It must have the format

(<function> • <positive-integer>)

Any deviation of //MODE from this format
execution. However, for conversa t iona 1 mode,
//MODE to CEVAL . 1) after printing the error
then returns to execution of SYSIN.

!!!!! KILLED: <s>

terminates
LISP sets

message and

This message occurs when the user
program by executing function
expression argument.

purposely
DIE with

terminates a
<s> as its S-

8.3 WHAT TO DO IF THE ANSWER IS WRONG

It is often the case that a program executes without any of
the errors previously described, yet gives incorrect results.. In
such a case the user must apply a debugging procedure to
determine the errors in his own functions. We sha 11 try here to
indicate a reasonable procedure for debugging running LISP
programs.

It is assumed that the user is familiar with the purposes of
each o f the f unc t ions t ha t he is a t temp t i ng to use . I f this is
true, then a study of the form of the incorrect result often
indicates approximately where within the set of functions the
error is occurring. This location greatly reduces the amount of
debugging effort required, since the user's attention can then be
focused on that area. In any event the first . step is to
carefully review the form of the func·tions as they were input to
the LISP processor• This review is facili lated by a listing of
the functions which shows the parenthesis level count, obtained
by using the ·P parameter on the LISP contro 1 command (see chapter
2). With such a listing. the user should carefully scrutinize
his function definitions, making certain that they are
syntactically correct. It is possible for simple parenthesis
errors to cause a function to have a form sue h that it neither
serves the intended purpose nor causes a LISP system error. Any
errors in syntactic form discovered in this way should be
corrected, and the Joh rerun to determine if an erroneous answer
s t i 11 occurs •

Once the syntactic forms of the user's functions are correct
and an erroneous result still occurs, then the various tracing
facilities of the LISP system can he used to· gain more
information about the behavior of the functions. The TRACE
function described in chapter 4 is used to turn on tracing for
any se lee ted set of user and/or system-defined functions. I ts
converse, the UNTRACE function, can he used to se lee ti ve ly turn
off such tracing. When a function is traced, then when that
function is entered the arguments which were actually received by
it are printed, and when it is exited the value it generates is
printed. The trace output is produced even when the function is
entered via recursion from within itself. Thus, tracing a
recurs i ve f unc t ion y i e 1 d s co mp 1 e t e info rma t ion ah out the way i t
operates on a given set of data.

-127-

LISP Reference Manual DEC 75

Tracing of functions should be used very carefully. The extra
printing involved in the tracing· information costs the user both
pages of output and extra time. If a great many functions are
traced at one time, these extra cos ts can add cons iderab 1 y to the
cost of a Job. It is suggested, therefore, that the user trace
on l Y those functions of which he suspects erroneous operation.
Also, he should trace those functions while they are operating on
a minima 1-s ized data set which wi 11 reproduce the error. A very
use fu 1 procedure to app 1 y is to make one run tracing a 11 of the
functions in which a suspected error is occurring. Then, by
reviewing the output, the user can de termi:ne which of the traced
functions are operating correct I y, and perhaps which of the
functions is operating incorrectly. If the erroneous function(s)
cannot be determined for one reason or another, the tracing
output will usually point to some other functions which may not
have been traced that are better candidates to be traced the next
t i me . Then the next t es t run s ho u 1 d be made w i thou t tr a c i ng
those functions which are known to be operating correct 1 y. Thus,
through a }>rogress i ve sequence of runs the erroneous function can
be isolated.

Tracing, as has Just been described, is very useful f'or
debugging i•ecursive functions. It does not, however, always
yield complete information about iterative functions which have
been writ ten using the PROG feature. In this case, tracing shows
the arguments which were received by the function; and shows the
va 1 ue which was re turned by the function; but shows no thing of
what happened in be tween, unless the iterative function is also
recursive. For such functions another tracing procedure is
available, name 1 y, the TRACESET function. This function and i tis
converse, the UNTRACESET function, are ho th described in chapter
4. They allow one to selectively turn on and turn off the
tracing of a 11 SET and SETQ va I ue assignment s ta temen ts within a
PROG expression. When TRACESET has been applied to a given
function then every time a variable is assigned a value via the
SET or SETQ. functions within the PROG <-'xpress ion (or in any
recursive function which is executed under the con tro 1 of the
PROG expression) a line is printed showing the variable and the
value which WBS assigned to the variable at that time. Since
iterative functions use variables to hold temporary results, to
count, and so on, the TRACESET option allows one to obtain almost
co mp 1 e t e info r ma t ion ab o u t an i t er a t i ve f unc t i on • The same
warning about the cost of using the TRACE function is given with
respect to the TRA.CESET fu.nc t ion.

By Judie ious use of the TRACE and TRACESET functions the user
can norma 11 y determine very close 1 y the point at which an
erroneous answer is being generated. In the nnl ike 1 y event that
the error appears to occur within one of the sys tern-defined
functions, the user should report such a finding to one of the
Computation Center's consul tan ts, showing him the output
necessary to support the conclusion.

Tracing is not always as flexible as might be desired. For
instance, it might be desirable to trace a certain function only
when it is ca I led by some particular function, instead of every
time the function is cal led. Such se lee ti ve tracing may be
accomplished if within the particular calling function, the call
to the function to be traced is immediately preceded by a TRACE
call and immediately followed by an UNTRA.CE call. Or the user
might wish to actually program the printing of intermediate
results. This is quite easily done in LISP since the PRINT
function is an identity function. That is, it returns its
unchanged argument as its va 1 ue. There fore, any form which

-128-

DEC 75 LISP Reference Manual

appears in the LISP program may be made the argument
without affecting the result of the program.

to PRINT

To reiterate, we shall state
step-wise process.

the debugging procedure as a

(1) From a listing with parenthesis counts, check for and
correct syntactic errors.

(2) Use TRACE and/or TRACESET to selectively trace
functions which are he l ievecl to be in error,
p1•ogress i ve 1 y isolate the functions which ac tua 11 y
in error.

(3) Correct the erroneous function(s).

8.4 UNDERSTANDING THE UT LISP BACKTRACE

the
and
are

The backtrace is
system's pushdown
of the sys tern up to
taken.

a co nd ens e d 1 i s t i l).g o f . the content o f the
stack. It contains a history of the activity
the point in time at which the backtrace is

Of most interest is the appearance of the names of a 11
functions which were entered but have not yet completed. Of ten
these names appear twice, side-by-side in the back.trace, because
in addition to either EVAL or APPLY the function itself put its
name on the stack. The user should not be a !armed by this
dup 1 ica t ion.

Other symbols, particularly EVAL and EVLIS, may appear even
though the user did not ca 11 these functions, since they are used
in terna 11 y by the LISP interpreter. If the back trace is taken
wh i 1 e a s e t o f f unc t ion arguments is he i ng e va l na t e d , then the
a lready-eva 1 ua ted arguments appear on the s tae k..

8.5 PROGRAM DETERMINATION OF ERROR TYPE

Some o i the error messages I is ted in sect ion 8. 2 have a code
associated with them. This code identifies a particular error
type within LISP. Each code is an atom.

'Whenever one of these errors occurs, the code associated with
it is made the value of the atom ERROR.TYPE. By interrogating the
value of ERROR.TYPE, one can determine the type of the last­
occurring error. ERRORTYPE initially has the value NIL. This
facility is useful in conJunction with ERRORSET, which alloWF a
program to recover from an error, or when running interactively
with the Z con tro 1 command parameter (see sect ion 2. 1) • The
further course of the compu.tat ion may be guided by knowing what
error occurred.

An add it iona 1 f ac i 1 i ty provided by LISP is that of error trap
procedures. Each error code a tom has a va I u.e which is considered
to be a form to be evaluated when the error occurs. Initially
these a toms are a 11 bound to NIL. If the user, however, binds
some other form to the a tom then that form is evaluated, hut only
after any interrupt express ion has i tse 1 f been eva 1 ua ted (see
chapter 9) •

-129-

LISP Reference Manual DEC 75

9. INTERACTIVE USE

The previous chapters have discussed most of the facilities of
UT LISP. These facilities are available to both the batch user
and the interactive user. This chapter explains some slight
peculiarities in the b~havior of LISP when used in the
interactive mode and an additional facility, the interrupt, which
is primarily useful to the interactive user.

9.1 INTERACTIVE I/O BEHAVIOR

When the C parameter is specified on the LISP control command,
LISP is initialized to operate interactively (conversationally).
Three things happen when this is done:

1) SYSIN and SYSOUT are both equated to file TTY and are
associated with the same buf.f er a~ea.

2) The size of that buffer is reduced from 512 words to 10
words and the output line length is set to 70
characters.

3) Printing of top- leve 1 input on SYSOUT is dis ab led.

LISP outputs information only when the buffer for a file is
full or whenever for a given file a read operation occurs after a
write operation. Item 1 above assures that all generated output
wi 11 be sent to the termina 1 before LISP requests its next input
line, keeping the proper sequence of input and output. The
second change above causes output to be sent to the terminal
sooner than if a large buffer were used. This means that what
the user sees at his termina 1 is more in sync hrouy with what LISP
is ac tua 11 y do lug at that moment. The third i tern mere 1 y
recognizes that if the user is typing his inpn t at a termina I,
the input is already visible to him.

The fact that S-ZSIN and SYSOUT share a huffer in interactive
mode does impose some restrictions that do not apply in batch
mode:

1) Top-leve 1
That is, a
generated
termina 1.

express ions may not be typed accumu.la t ive 1 y.
new one shou let not be typed un ti I a 1 I output
by the current one has been sent to the

2) Ir a data input · 1 ine con ta ins Severa 1 S-express ions to
be read by several executions of READ, no· output
functions may he executed until the entire line has been
read. For example:

If your program contains

CPROGN <PRINT (READ)) <PRINT <READ)))

and on the r irs t input requ.es t you type

A. B

then

A.

-130-

DEC 75 LISP Reference Manual

will he printed and LISP will request more input
instead of reading B from the first input li~e.

Note that these comments apply only to terminal input.
Interactive LISP programs may manipulate disk files in
the same way as hatch programs.

3) It is not possible to get a par en thesis count 1 ine for
termina 1 input.

9. 2 INTERRUPTS

An interrupt is a means for suspending the normal execution of
a program and performing a task (perhaps independent of that
program) in such a way that the suspended program execution can
be resumed as if no interrupt ion had occurred. Interrupts are
provided in the hard'lrare of many machines. They are usually used
to enable processing intermittent, real-time events, such as the
occurrence of errors or the input of characters from the keyboard
terminals of a timesharing sys tern. The CDC 6000 series computers
do not have hard '\<Tare interrupts, bn t UT LISP p1·ovides for the
simulation of up to 12 interrupts. The UT LISP interrupt feature
is most useful in interactive execution mode, since the TAURUS
timesharing system supplies the mechanism for simulating real­
time interrupts (see section 9.2.2). However, UT LISP interrupts
can also be effected during hatch executions.

When an interrupt occurs, UT LISP preserves the state of the
program, evaluates a specified 11 in t.errup t express ion". and then
res tores the preserved state. By using DEF INT (see sect ion
9. 2. 2), the user can _define a unique express ion to he evaluated
for each interrupt. The interrupt express ions may do anything
va 1 id in the cont ex: t in wh i ch they are e va l ua t e d , inc 1 ud i ng
interact ion with the user. User in terac I ion is most eas i 1 y
achieved by calling function SYSIN (see secti"n 4.12) within the
interrupt expression.

9.2.1 Uses for LISP Interrupts

There are three ma in purposes for using interrupts with a LISP
program: (1) to query the program status, (2) to determine the
cause and cure of an error, or (3) to effect special control.

If the expression evaluated in response to an interrupt
converses with the user, he can determine something about the
status of his program. He can execute BACKTRACE (see section
4. 12) to see what is on the stack, evaluate variables, look at
function definitions, and so on. When the interrupt expression
has completed eva 1 ua t ion, LISP continues execution of the
interrupted process. Not ice, however, that any changes in
variable values, etc., which occurred during evaluation of the
interrupt express ion are e f feet i ve when the interrupted process
resumes.

When an error occurs, its corre.3ponding message is printed.
Then, if system variable /'/ZAP (see section 4.14) is non-NIL, the
interrupt corresponding to the value of //ZAP occurs. If the
interrupt routine permits doing so, the status of the program may
he checked and the cause of the error determined. Then it is
sometimes possible to correct the cause of the error and resume
execution as if the error had not occurred (see RETFROM, sect ion
9.3). There ls no useful general procedure for such recovery;
each case requires special attention.

-131-

LISP Reference Manual DEC 75

TwQ interrupts are automatically evoked by actions of the LISP
system. Interrupt 3 occurs at the first application of EVAL
a f t er a garbage co 1 1 e c t i <> n occurs . By de fa u l t , the va I ue
associated with interrupt 3 is NIL and no act ion occurs. If some
action is desired, the user may specify an interrupt expression
for interrupt ·3 by using function DEFINT (section 9.2.2).
Interrupt 2 is triggered by use of the function EVALTRAP (see
section 9.2.3).

Finally, an interrupt express ion may be used to cause some
side effect which influences the course of the computation. Such
a use could be a potentially powerful tool.

9.2.2 Effecting Interrupts

The interrupt expression evaluated when an interrupt
the hound value of the system variable //INT<n>, where
integer in the range 1 through 12. The de fa11l t
express ions present in the UT LISP sys tern. are shown in
be low.

Interrupt _____ .:.,. __ _
1-2

3-5

6

7-12

Default Interrupt Expression

<PROGN <PRINT $$$///// INTEIUlUPT$)
CSYSIN (QUOTE TTY>>>

NIL

(PROGN (SETQ. / / INPUT 11 (INPUT ...- /SYS IN))
(SETQ. //MODE II (EVAL . l)))

NIL

occurs is
< n> is an
interrupt
the table

It is possible to lose control of LISP if //MODE or //INPUT get
set to had values. Interrupt 6 may he used to try to recover
contro 1.

Users may ·establi3h an interrupt expression hy SETting the
appropriate variable //INT<n> or by executing function DEFINT.

CDEFINT <fixnumber><exp>)

pseudofunction; SUBR

DEFINT hinds <exp> to the system variable //INT<fixnumber>,
where <fixnumher> ·must he in the range 1-12. <exp> is
subsequently evaluated when interrupt <fixnumber> occurs.

During interactive execution, a LISP interrupt can he caused
either by the program itself or by the TAURUS user. During batch
execution, only the program can cause an interrupt. A LISP
interrupt is evoked under program control by executing the LISP
INTERRUPT function.

· (INTERRUPT < f ixnumher>)

pseudofunction; SUBR

INTERRUPT evokes the simulated interrupt <fixnumber>, which
results in the evaluation of the interrupt expression bound

-132-

DEC 75 LISP Reference Manual

to the system variable //INT<fixnumber>.
be 'in the range 1-12 or be NIL. If NIL,
assumed.

< f ixnumber> must
interrupt 1 is

The TAURUS user can cause a LISP interrupt by typing the
appropriate TAURUS INTERRUPT command shown be low.

TAURUS Command
LISP Interrupt Long Form Short Form

<n> <BEL>INTERRUPT=L<n><CR>

6+<n> <BEL>INTERRUPT=S<n><CR>

<BEL> I=L< n> <CR>

<BEL> I= S< n> <CR>

In the TAURUS commands, <n> must be in the range 1-6, <BEL>
represents the TAURUS 11 be 11 11 issued by simultaneously striking
the 11 CNTRL 11 and 11 G 11 keys, and <CR> r·epresents the RETURN key.
The 11 =L<n> 11 form of the command sets sense light <n>, which
corresponds to the LISP interrupt < n> (i.e. , interrupts 1-6) .
The 11 =S< n> 11 form of the command sets sense switch < n>, which
corresponds to the LISP interrupt 6+< n> (i.e. , interrupts 7-12) •

EVAL monitors the sense lights and switches during its
execution and. when one is ON, a simulated interrupt occurs. The
response to the TAURUS INTERRUPT command is not immediate, but
shou Id be fairly fast when programs are being interpreted. Wh.en
LISP execution is pr imar i 1 y in compiled code, response may he
slow, since response is a function of how frequent 1 y EVAL is
executed.

9.2.3 The Trap Function

CEVALTRAP <fixnumber>)

Pseudofunction; SUBR

EVALTRAP resets an internal counter to <fixnmnber>. Each
time the interpreter invokes EVAL this counter is
decremented by 1. When the counter becomes negative the
system resets the counter to 2**59 - 1 (the default value)
and causes interrupt 2 to occur. Thus EVALTRAP acts as a
bound on the amol.lnt of work the LISP sys tern can do before
an interrupt occurs. The user can control what occurs when
interrupt 2 is triggered hy using DEFINT to associate
expressions with //INT2.

Possible applications of EVALTRA.P include simulating a
11 time trap 11 , checking for infinite loops or running an
interactive program requiring periodic inspection of its
progress. EVALTRAP returns its argument as its value.

9.3 RETURN FROM NESTED FUNCTION INVOCATIONS

This section is included here because the facilities described
are most of ten useful when the .interrupt-on-error capability is
activated in interactive mode. These facilities allow one to a)
pinpoint the stack entry for a previous invocation of some
function, and b) exit directly from that particular invocation

-133-

LISP Reference Manual DEC 75

wl th a va 1 ue as though a 11 suhse quen t function invocations were
completed. Thus, suppose that on the [n]th invocation of some
function, an error interrupt occurs, and the user knows that if
no error had occurred the result of the [n - i]th invocation
should have been <x>. Then the user can specify to exit directly
from the [i]th most recent invocation with value <x>, and the
computation will proceed as though the error had not occurred.
Two functions are used:

(NTHFNBK <a tom> < f ixnumber>)

pseudofunction; SUBR

NTHFNBK searches the stack, starting from the current top,
for the <fixnumber>th occurrence of the function name
<a tom>. NTHFNBK re turns the stack index of that en try.

(RETFROM <fixnumher> <exp>)

pseudofunction; SUBR

The <fixnumher> is a stack index for some function
invocation as found by NTHFNBK. RETFROM causes the stack
to he "pee led 11 hack to that po int, and then exits the
indexed function with the value of <exp> as the value of
the function. Note that <exp> is evaluated after the stack
has been 11 pee led" back, in the environment that he Id when
the function was invoked. Also, the effects of TRACE and
TRACESET may he affected by a call to RETFROM.

-134-

DEC 75 LISP Reference Manual

A. ALPHABETIC INDEX OF UT LISP SYSTEM FUNCTIONS

Name

ABOLISH
ADDR
ADD RP
ADDl
ADVANCE
A.LIST
ALP HAP
AND
APPEND
APPLY
ATOM
A+
A-

BACICTRACE

CALLSYS

CAR
CDR
CHLEX
CLARRAY
CLEARBUFF
CLOSE
COMMENT
COMPILE
COMPRESS
CONC
COND

CONS
COPY
CP
CSR
C ..• R

DATE
DEADSTART
DEF

DEFF

DEFINE

DEF INT
DEFLIST

Type

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR

FSUBR

SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
FSUBR
FSUBR

SUBR
SUBR
SUBR
SUBR
EXPR

SUBR
SUBR
FSUBR

FSUBR

SUBR

SUBR
SUBR

Seetion

5.9
4. 12
4. 12
4.9
5.5
4. 12
4.3
4.4
4.6
4.5
4.3
4.3
4.3

4. 12

7.3

4.3
4.3
5.7
4. 13
4. 10
5.2
4.3
6.2
4. 10
4.6
4.5

4.3
4.6
4. 12
4.3
4.3

4. 12
4. 12
4.7

4.7

4.7

9.2
4.7

Arguments

< r i lename>
< s>
< s>
<number>
<boo lean>

< 1 i ta toml> < 1i ta tom2>
<expl><exp2> ••• <exp[nJ>
< list><s>
< func ti on>< 1 is t >
< s>
< s 1> < s2>
< s 1> < s2>

<file name>< function>
<list>< lat>< boolean>

< na ts>
< na ts>
<character>< f ixnumber>
<litatom>

<filename>
<sl><s2> .•• <s[nJ>
< lat>
< lat>< boo lean>
<Iistl><list2> •.. <lisHnJ>
C<booleanl><exp> ... <ex~>)
C<hoolean2><exp> ..• <exp>) •••
C<boolean[nl><exp> ••• <exp>)

< s 1> < s2>
< s>

< na ts>
< n;:i ts>

(<litatoml><latl><sl>J
(< l i ta tom2> <la t2> < s2>)
C<litatom[nJ><lat[nJ><s[nJ>)

C< litatoml>< latl><sl>)
((1 itatom2>< lat2><s2>) ••• « litatom[nJ>< lat[nJ><s[nJ>)

(((litatoml><sl>J
((litatom2><s2>) •••
C< litatom[nJ><s[n])))

< f ixnumher> <exp>
((< litatom1><sl))

((li ta tom2> < s2>J
C< litatom[nJ><s[nJ>))< litatom>

-135-

LISP Reference Manual DEC 75

Name Type Sect ion Arguments
------- ---------

DEF SYS SUBR 7.2 <filename><boolean>
DIE SUBR 4. 11 <s>
DIFFERENCE SUBR 4.9 <numher1><numher2>
DIGIT SUBR 4. 10 < s>
DISKOUT SUBR 7.6 <fixnumberl><fixnumber2><list>
DIVIDE SUBR 4.9 <numherl><number2>

EFFACE SUBR 4.6 <s><list>
ENDFILE SUBR 5.9 <filename>
EN DREAD SUBR 5.5
EQ. SUBR 4.3 <sl><s2>
EQN SUBR 4.3 <s1><s2>
EQUAL SUBR 4.3 <s1><s2>
ERROR SUBR 4. 11 < s>
ERRORSET SUBR 4. 11 <exp><boolean1><hooleRn2>
EVAL SUBR 4.5 <exp>
EVALQ.UOTE SUBR 4.5 <function>< list>
EVAI. .. TRAP SUBR 9.2 < f ixnumber>
EVLIS SUBR 4.5 < list>
EXIT SUBR 4.5 < 1 i ta tom> < s >
EXPLODE SUBR 4.10 <a tom>

FIX SUBR 4.9 < f lnumher>
FIXP SUBR 4.9 <number>
FLAG SUBR 4.7 < 1 a t > < 1 i t a t o m>
FLOAT SUBR 4.9 < f ixnumher>
FLOATP SUBR 4.9 <number>
FORTRAN SUBR 7.4 <filename>
FQ.UOTE FSUBR 4.3 <s>
FREE SUBR 4. 12
FULL SUBR 4. 12
FUNCTION FSUBR 4.5 <function>

GENSYM FSUBR 4. 12 < letter>
GET SUBR 4.7 < l i ta toml> < 1 i ta torn2>
GETD SUBR 4.7 < 1 i ta tom>
GETEL SUBR 4. 13 < 1 i ta tom>

(< f ixnumber 1> < t" ixnmnber2>
< f ixnumber[nJ >)

GETPN SUBR 4.7 < 1 i ta tom>
GO FSUBR 4.5 < 1 i ta tom>
GRADP SUBR 4.3 <sl><s2>
GREATERP SUBR 4.9 <numberl><number2>

I MAGEL SUBR 4. 10 <a tom>< boo lean>
I NB IN SUBR 5. 10
INPUT SUBR 5.4 <filename>
INTERN SUBR 4. 10 < fwl> or< litatom>
INTERRUPT SUBR 9.2 < f ixnumher>
I SPACE SUBR 5.7 <number>
ITAB SUBR 5.7 <number>

LABEL FORM 4.5 < 1 i ta tom>< lambda express ion>
LAP SUBR 6.3 <s1><s2>
LEFTSHIFT SUBR 4.9 <number>< f ixnumber>
LENGTH SUBR 4.6 < s>
LES SP SUBR 4.9 <number1><nurnber2>

-136-

DEC 75

Name

LIST
LISTING
LITER
LOADSYS
LOG AND
LOGOR
LOGXOR
LOOK

MAP
MAPC
MAPCAR
MAPCON
MA.PL I ST
Jl'IAX
MEMBER
MEMQ
MIN
MINUS
MINUSP
MKA.RRAY

MKNAM

NCO NC
NFORMAT
NOT
NTH
NTHFNBK
NULL
NUMB ERP
NUMOB
NUMTOATOM

OCTAL
ONEP
OP CHAR
OPEN

OPENFILES
OR
OSPACE
OTAB
OUTBIN
OUTPUT
OUTPUTl
OVERLAY

PACK
PAIR
PLUS
pp
PPRINT

Type

FSUBR
SUBR
SUBR
SUBR
FSUBR
FSUBR
FSUBR
SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR

SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBil
SUBR
SUBR
SUBR

SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
FSUBR
SUBR
SUBR

LISP Reference Manual

Sect ion

4.3
4. 14
4. 10
7.3
4.9
4.9
4.9
4. 11

4.8
4.8
4.8
4.8
4.8
4.9
4.3
4.3
4.9
4.9
4.9
4. 13

4. 10

4.6
5.8
4.4
4.6
9.3
4.3
4.3
4. 10
4. 10

4.9
4.9
4. 10
5.2

5.2
4.4
5.8
5.8
5. 10
5.3
5.3
7.3

4. 10
4.6
4.9
4. 12
5.3

Arguments

<sl><s2> ••• <s[nJ>
.< s>
< s>
<file name>
<number><number>
<number>< number>
<number>< number>
< f ixnumher>

< 1 is t > < fnexp>
< 1 is t> < fnexp>
< list><fnexp>
< 1 is t> < fnexp>
< 1 is t> < fnexp>

<number>
<number>
<number>

<number>< number> <number>
<s><list>
<s>< list> .
<number>< number> <number>
<number>
<number>
< 1 i ta tom>
((fixnumberl><fixnnmber2>
< f ixnurnher[nJ >)

<list><s>
<fixnumherl><fixnumber2>
<s>
< list><fixnumher>
<atom><fixnunilier>
< s>
<s>

<number>

<number>
<number>
< s>
<filename>
((<cl> • <vl>)
(< c 2> • < v2>)
(<c[n]> • <v[n])))

<expl><exp2> ••• <exp[nJ>
<fixnumber>
< f ixnumber>
< fwl>
<filename><s><hoolean>
<filename><s><hoolean>
< f i 1 e name> < f unc t ion> < 1 is t > < 1 a t >
<character>
< listl>< list2>
<number>< number> • • • < m.unl"'er>

<s><boolean>

-137-

Name

PRINT
PRINl
PROG
PROGN
PROG2
PROP
PUT
PUTD

QKEDIT
QUOTE
QUOTIENT

RANDOM
RAN IN
RAN OUT
RDS
READ
READ CH
READ LAP
REC IP
RECLAIM

·REMAINDER
RE MF LAG
RE MOB
REMPROP
RETFROM
RETURN
REVERSE
REVERS IP
REWIND
RIN
ROUT
RP LA CA
RP LA CD
RP LACS

SAS SOC
SEARCH
SECTORS
SELECT

SET
SE TEL

SETQ
STAR TREAD
SUBLIS

Type

SUBR
SUBR
FSUBR
FSUBR
SUBR
SUBR
SUBR
SUBR

SUBR
FSUBR
SUBR

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR

SUBR
SUBR
SUBR
FSUBR

SUBR
SUBR

FSUBR
SUBR
SUBR

LISP Reference Manual DEC 75

Sect ion

5.3
5.3
4.5
4.5
4.5
4.7
4.7
4.7

4.7
4.3
4.9

4.9
5.6
5.6
5. 1
5.4
5.5
6.4
4.9
4. 12
4.9
4.7
4. 12
4.7
9.3
4.5
4.6
4.6
5.9
5.6
5.6
4.3
4.3
4.3

4.B
4.8
4. 12
4.5

4.3
4. 13

4.3
5.5
4.6

Arguments

<s><hoolean>
<s><hoolean>
< lat>< s 1> < s 2> • • • < s [nJ >
< expl> < exp2> ••. <exp[nJ>
<exp 1 > < exp2>
<litatom1><1itatom2><fnexp>
<litatom1><litatom2><s>
< 1 i ta tom> < s >

<litatom><s1><s2>
< s>
<numberl><nurnber2>

<number>
<filename><address>
<filename><s><hoolean>
< f i 1 e name>

<boo lean>
< f i 1 e name> < la t >
<number>

<number 1 > < numbe1~2>
<lat>< litatom>
< litatom><boo]ean>
< 1 i tat om 1> < l i tat o m2>
< f ixnunther> <exp>
< s>
< 1 is t>
<list>
<filename>
<filename>< f ixrmmher>
< filename><s><hoolean>
< na ts>< s>
< na ts>< s>
< na ts>< s >

<s>< list><fnexp>
< 1 is t > < fnexp l> < fnexp2> < fnexp3>

<exp>
(< exp [1 , 1] > < exp [1 , 2] >
< e xp [1 , n 1] >)

(< exp [2 , 1] > < exp [2, 2] >
< exp [2 , n2] >) , • •

(<exp[m,lJ><exp[m,21>
<exp[m,n[m]])) <exp[m+1J>

<a tom>< exp>
< 1 i ta tom>
<<fixnumberl><fixnumber2>
<fixnumber[nJ>)<s>

<a tom>< exp>

«<sl> • <s2>)
C<s3> • <s4>)
<<s[n-lJ> • <s[nJ>))<s>

-138-

DEC 75 LISP Reference Manua 1

Name Type Sect ion Arguments
------- ---------

SUB ST SUBR 4.6 <s1><s2><s3>
SUBl SUBR 4.9 <number>
SYS IN SUBR 5. 1 <filename><character>
SYS OUT SUBR 5. 1 <file name>

TEMP US SUBR 4. 12
TE READ SUBR 5.5
TERPRI SUBR 5.3
TIME SUBR 4. 12
TINES FSUBR 4.9 <number>< number> ... <number>
TM SUBR 4. 12
TMLEFT SUBR 4. 12
TRACE SUBR 4. 11 < lat>
TRACES ET SUBR 4. 11 < lat>
TTYCOPY SUBR 5.3 <filename>

UNPACK SUBR 4. 10 < fw>
UNTRACE SUBR 4. 11 < lat>
UNTRACESET SUBR 4. 11 < lat>

WRITE SUBR 5.3 <s><hoolean>
WRS SUBR 5. 1 <filename>

ZEROP SUBR 4.9 <number>

+ FSUBR 4.9 <number><number> <number>
SUBR 4.9 <number 1 > < number2>

* Ji'SUBR 4.9 <number>< number> . . . <number>
/ SUBR 4.9 <number 1> < nmnber2>
= SUBR 4.3 <sl><s2>
< SUBR 4.9 <numberl><number2>
> SUBR 4.9 <numberl><numher2>

-139-

LISP Reference Manual DEC 75

B. LISP SUBSYSTEMS

A LISP subsys tern is a 11 canned 11 set of function and/or constant
definitions which constitutes an extension of the facilities
provided hy the normal LISP system. In particular, a subsystem
may be used to establish a set of application-oriented primitives
which can then be used to construct user programs in some
particular application area. In form, a subsystem is a single
file containing a block of text in normal LISP input format
(without operating system control commands).

When LISP begins executioni each subsystem named on the
con tro 1 command is read by LISP. Each express ion of a subs~ns tent
is evaluated as if the text were normal input, except that none
of the system output usually generated by LISP is produced. Each
file is interpreted as a sequence of expressions for EVAL. Of
course the evaluation mode within the file can be changed by
binding //MODE (see section 4.14) to ~n appropriate dotted pair.
When all subsystems have been so processed, LISP begins reading
user-supp 1 ied input in the usua 1 way.

In this ·way a subsys tern defines a co 1 lec t ion o £ fac i 1 it ies
which can be used by user programs subsequently input. LISP

·overlays provide a similar capability. However, an overlay
represents a snapshot of the results of some evaluation activity,
and always executes with the same global options and field length
for which it was defined. A subsystem, on the other hand, can be
used with any combination of control command parameters and in
any field length. It is important to recognize that subsystem
use is costly because of the extra I/O and evaluation time
re~uired to process a subsystem. On the other hand, an overlay
is much less expensive since it is an absolute memory image which
needs only to be loaded.

Four s uh sys t ems are current 1 y a va i 1 ab 1 e a t UT:

LAP - the LISP assembler
LCO:MP - the LI SP co mp i 1 er
GRASP - a graph-processing extension to LISP
LISPED - an interactive internal function eel i tor

-140-

DEC 75 LISP Reference Manual

C. SYSTEM VARIABLES

The sys tern variables are 1itera1 a toms which exist in the
standard LISP system and which are defined at system definition
time to have the va 1 ues shown be low.

Variable

ANDSIGN

BLANK

COLON
CO:r>IMA

DARROW
DASH
DOLLAR

EOF
EOR
EQSIGN
EQUIV
ERRA.0
ERRA1
ERRA2
ERRA3
ERRA4
ERRA5
ERRA6
ERRA7
ERRA8
ERRC1
ERRGC2
ERRGC3
ERRI 1
ERRI2
ERRI3
ERRORTYPE
ERRP1
ERRP2
ERRRl

F
FORFIRST

GARLIST
GREATER
GREATEREQ.

LAP UNCH
LB RACK
LESS
LES SEQ
LOAD FLAG
LPAR

Sect ion

8.2.6
8.2.6
8.2.6
8.2.5
8.2.5
8.2.5
8.2.5
8.2.5
8.2.5
8.2.6
8.2.4
8.2.4
8.2.1
8.2.3
8.2.3
8.5
8.2.6
8.2.6
8.2.3

7.4

6.3.6

6.3.6

Value

(a tom whose name is
the blank character)

$

EOF
EOR
=
II

NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL
NIL

NIL
(location of or1g1n of

FORTRAN overlays)

NIL
>
L

NIL
[

<
~
NIL
(

-141-

Variable

NEQUAL
NIL
NOTSIGN

OBLIST

ORSIGN

PERIOD
PL USS
PREVIOUS
PRNTFLAG

RARROW
RBRACK
RPAR

SEMICOLON
SLASH
STAR

T

UPARROW

VIRFN

+

* *T*
/

//CODEMAX
//CODEMIN
//EXPERT
//FATAL
//FL
//FRS
//FUS
//GC
//GFR
//GFU
//INPUT
//INT1

//INT2

//INT3

//INT4
//INT5
//INT6

//INT7
//INT8
//INT9

LISP Reference Manual DEC 75

Sect ion

3.3.7

4. 14
6.2.1

7.6

4. 14
4. 14
4. 14
'}. 14
4. 14
4. 14
4. 14
4. 14
4. 14
4. 14
4. 14
9.2.2

<).2.2,
9.2.3
9.2.1,
9.2.2
9.2.2
9.2.2
9.2.2

9.2.2
9.2.2
9.2.2

Value

NIL
'
(bucket-sorted list of
all literal atoms)

&

+
NIL
NIL

]
)

;
/

*

VIRFN

+

0Q
0Q
NIL
NIL
18944 (i.e., 45000 octal)

NIL
0
0
(INPUT (QUOTE SYS JN))
(PROGN <PRINT$$$///// INTERRUPT$)

(SYSIN (QUOTE TTY)))
<PROGN (PRINT$$$///// INTERRUPT$)

(SYSIN (QUOTE TTY)))
NIL

NIL
NIL
<PROGN <SETQ //INPUT

(QUOTE <INPUT //SYSIN))
(SETQ //MODE (QUOTE < EVAL . 1))))

NIL
NIL
NIL

-142-

DEC 75

Variable

//INT10
//lNTl 1
//INT12
//MODE

//NFR
//NFU
//OUTPUTA

//OUTPUTB

//PCSR
//PLEVEL
//PLIMIT
//RDS

//SAVING
//STS
//SYSIN

//SYSOUT

//TIMING
//TPLEVEL
//TPLIMIT
//WRS

//ZAP

(
)
$
EOF
=
<blank>

.
II

[
] . .

&
3
"'
!
<
>
@

?

'

LISP Reference Manual

Sect ion

9.2.2
9.2.2
9.2.2
4. 14,
8.2.6
4. 14
4. 14
4. 14

4. 14

4. 14
4. 14
4. 14
4. 14,
5.1.2,
5. 1. 3
4. 14
4. 14
4. 14'
5.1.1,
5. 1. 3
4. 14,
5.1.1,
5. 1. 3
4. 14
4. 14
4. 14
4. 14'
5.1.2,
5. 1. 3
4.14,
9. 2. 1

Value

NIL
NIL
NIL
CEVAL . 0

0
0
(LAJ\IBDA (= = = = = / / / / /)

(OR CAND CNOT <ATOM=====/////))
CEQ (CAR=====/////)

(QUOTE DEFINE)))
<OUTPUT //SYSOUT =====/////)))

CLAJ\IBDA <=====/////)
(OUTPUT //SYSOUT =====/////))

NIL
65536
65536
SYS IN

NIL
1000
SYS IN

SYS OUT

NIL
4
4
SYS OUT

NIL

(
)
$
$EOFS
=
<blank>

.
"
[
] . .

&
3
"'
!
<
>
@

?

'

-143-

LISP Reference Manual

D. COMPARISON OF UT LISP WITH MIT LISP 1.5

MIT LISP*

ADD1
ADVANCE

AND
APPEND
APPLY
ARRAY
ATOM
ATTRIB

CAR

CDR

CLEARBUFF

COMMON

COMPILE

CONC
COND
CONS
COPY
COUNT

CPl
CSET
CSETQ.

DASH

DEFINE

UT LISP

ABOLISH
ADDR
ADD RP
ADDl
ADVANCE
ALIST
ALP HAP
AND
APPEND
APPLY

ATOM

A+
A-

B AC KTRAC E

CALLSYS
CAR
CA ... R
CDR
CD ... R
CHLEX
CLARRAY
CLEARBUFF
CLOSE

COMMENT
COMPILE
COMPRESS
CONC
COND
CONS
COPY

CP

CSR
CS ... R

DATE
DEADSTART
DEF
DEFF
DEFINE
DEF INT

DEC 75

* As defined in J. McCarthy et al., LISP 1.5 Programmer's Manual
(M. I. T. Press, Cambridge, Mass.) 1962.

-144-

DEC 75 LISP Reference Manual

MIT LIST UT LIST
-------- ------
DEFLIST DEFLIST

DEF SYS
DIE

DIFFERENCE DIFFERENCE
DIGIT DIGIT

DISKOUT
DIVIDE DIVIDE
DUMP

EFFACE EFFACE
ENDFILE

END READ END READ
EQ. EQ

EQN
EQUAL EQUAL
ERROR ERROR
ERROR1
ERRORS ET ERRORS ET
EVAL EVAL
EVALQUOTE EVAI,QUOTE

EVALTRAP
EVLIS EVLIS
EXCISE

EXIT
EXPLODE

EXPT

FIX
FIXP FIXP
FLAG FLAG

FLOAT
FLOATP FLOATP

FORTRAN
FQ.UOTE
FREE
FULL

FUNCTION FUNCTION

GENSY!-1 GENSYM
GET GET

GETD
GE TEL
GETPN

GO GO
GRADP

GREATERP GREATERP

I MAGEL
I NB IN
INPUT

INTERN INTERN
INTERRUPT
I SPACE
ITAB

LABEL
LAP LAP
LEFTSHIFT LEFTSHIFT
LENGTH LENGTH
LES SP LES SP

-145-

LISP Reference Manual DEC 75

MIT LISP UT LISP -------- -------
LIST LIST

LISTING
LITER LITER
LOAD

LOADSYS
LOG AND LOG AND
LOGOR LOGOR
LOG XOR LOG XOR

LOOK

MAP MAP
MAPC
MAP CAR

MAP CON MAP CON
:MAPLIST MAPLIST
MAX MAX
MEMBER MEMBER

MEMQ
MIN MIN
MINUS MINUS
MINUSP MINUSP

MKARRAY
MKNAM MKNAM

NCONC NCONC
NFORMAT

NOT NOT
NTH
NTIIFNBK

NULL NULL
NUl'IBERP NUl'IBERP
NUMOB NUMOB

NUMTOATOM

OCTAL
ONEP ONEP
OP CHAR OP CHAR
OPDEFINE

OPEN
OPENFILES

OR OR
OSPACE
OTAB
OUTBIN
OUTPUT
OUTPUT!
OVERLAY

PACK PACK
PAIR PAIR
PAUSE
PLB
PLUS PLUS

pp
PPR INT

PRINT PRINT
PRINTPROP
PRINl PRINl
PROG PROG

PROGN
PROG2 PROG2
PROP PROP

-146-

DEC 75 LISP Reference Manual

MIT LISP UT LISP
-------- -------
PUNCH
PUNCHDEF
PUNCHLAP

PUT
PUTD

QKEDlT
QUOTE QUOTE
QUOTIENT QUOTIENT

RANDOM
RAN IN
RAN OUT
RDS

READ READ
READ CH

READ LAP READ LAP
REC IP REC IP
RECLAIM RECLAIM
REMAINDER REMAINDER
RE MF LAG REMFLAG
REMOB REMOB
REMPROP REMPROP

RETFROM
RETURN RETURN
REVERSE REVERSE

REVERS IP
REWIND
RIN
ROUT

RP LAC A RP LAC A
RP LA CD RPLACD

RP LACS

SASSOC SAS SOC
SEARCH SEARCH

SECTORS
SELECT SELECT
SET SET

SE TEL
SETQ SETQ
SPEAK
SPECIAL
STARTREAD STARTREAD
SUBLIS SUBLIS
SUBST SUBST
SUB1 SUBl

SYS IN
SYS OUT

TEl'WUS
TE1'1PUS-FUG IT

TE READ
TERPRI TERP RI

TIME
TIMES TIMES

TM
TMLEFT

TRACE TRACE
TRACES ET TRACESE~f

TTYCOPY

-147-

LISP Reference Manual DEC 75

MIT LISP UT LISP
-------- -------
UNCOMMON
UN COUNT
UNPACK UNPACK
UNSPECIAL
UN TRACE UN TRACE
UNTRACESET UNTRACESET

WRITE
WRS

ZEROP ZEROP

+

*
/
=
<
>

-148-

	Title page
	Acknowledgements
	Table of Contents
	1. Introduction
	2. Using the LISP system
	3. Data formats
	4. Function definitions
	5. Input/output
	6. The LISP compiler/assembler
	7. LISP overlays, the FORTRAN interface, and virtual memory
	8. Debugging the LISP program
	9. Interactive use
	Appendixes
	A. Alphabetic index of UT LISP system functions
	B. LISP subsystems
	C. System variables
	D. Comparison of UT LISP with MIT LISP 1.5

