
UC Irvine
ICS Technical Reports

Title
UCI LISP Manual

Permalink
https://escholarship.org/uc/item/6qj664cd

Authors
Bobrow, Robert J.
Burton, Richard R.
Jacobs, Jeffrey M.
et al.

Publication Date
1973

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6qj664cd
https://escholarship.org/uc/item/6qj664cd#author
https://escholarship.org
http://www.cdlib.org/

UCI LISP tL\IlUAL

by

Robert J. Bobrow
Richard R. Burton
Jeffrey r.1. Jacobs
, Daryle Lewis

Notice: This Material
may be· protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

TECHNICAL REPORT #21 updated 10/73

Table of Contents

Introduction

Debugging Facilities
Introduction
Temporarily Interrupting a Computation
BREAKl - The Function that Supervises all

Breaks
What You Can Do In a Break

Break.Commands
Leaving a break with a value

(OK, GO, EVAL, FROM?)
Correction of UNBOUHD ATOM and

UNDEFINED FUNCTION errors (>, USE)
Aborting to Higher Breaks or the Top

Level (j, jj)
Examining and Modifying the Context of

a Break
Searching for a Context on the Stack
Editing a Form on the Context Stack
Evaluating a Form in a Higher Context
Backtrace Commands

Printing the Functions, Forms and Variable
Bindings on the Context Stack

Breakmacros
User Defined Break Commands

How to Use the Dreak Package
Setting a Break to Investigate a Function
Tracing the Execution of Functions
Setting a Break INSIDE a Function
Removing Breaks and Traces
Using BREAK0 Directly to Obtain

Special Effects from the
Break Package

Error Package - Getting Auto~atic Breaks
When Errors Occur

Summary of Break Commands

0 0 0

1. 1
1. 1
1. 5

1. 6
1. 8
1. 8

1- 8

1. 9

1.10

1- 11
1.11
1.12
1.12

1-15

1-17
1-18
10 18
1.19
1.19
1.21

1.23

1.24
1. 2 5

,

The LISP Editor
Introduction
Commands for the New User
Attention Changing Comnands

Local Attention Changing Commands
Comnands That Search

Search Algorithm
Search Cornrriands
Location Specification

Commands That Save and Restore the
Edit Chain

Commands That Modify Structure
Implementation of Structure

Modification Commands
The A, n, : Commands
Form Oriented Editing and

the ~-ole of UP
Extract and Embed
The MOVE Command
Comrnand s That "r1ove Parentheses"
TO and THRU

Commands That Print
Commands That Evaluate
Commands That Test
[·l!acro s
Mis6ellaneotis Commands
Editdefault
Editor Functions

Extended Interpretation of LISP Forms
Evaluation of Sequences of Forms

Extended LMHJDA Expressions
The Functions PROGl and PROt~n

Conditional Evaluation of Forms - SELECTQ
Changes to the Handling of Errors
Miscellania - APPLY#, NILL

2 0 1
2. 2
2.10
2.15
2.16
2.22
2.24
2-26
2-30

2.J6
2.33

2. 4 5-
2-46
2.so
2.54
2-57
2.62
2.63
2.66
2.68
2.71
2.78
2.80

3. 1

3. 1
3. 2
3. 3
3. 4
3. 5

-------------------:----------c~----:------

Extensions to the Standard Input/Output Functions
Project-Programmer Numbers for Disk I/0
Saving Function Definitiohs, etc. on Disk Files
~eading Files Sack In
Reading Directories
File Manipulation
Queuing Files
Recovery from QM,\HGR Errors
Printing Circular or Deeply Nested Lists
Spacing Control - TAB
~Pretty Printing" Function Definitions and

S-Expressions
Reading Whole Lines
Teletype and Prompt Character Control Functions
Read Macros - Extending the LISP READ Routine

Functions for Defining Read Macros
Using Read [1acros

Modifyirig the READ Control Table
Reading without Interning

New Functions on S-Expressions
S-Exfression Building Functions
S-Expression Transforming Functions
S-Expression Modifying Functions
Mapping Functions with Several Arguments
r1apping Functions which use nconc
S-Expression Searching and Substitution Functions
Efficiently Working with Atoms as Character Strings

New Predicates
Data Type Predicates
~lphabetic Ordering Predicate
Predicates That Return Useful Non-NIL Values

• Other ~redicates

New Numeric Functions
Miniraum and Maximum
FORTRAN Functions in LISP

,1. 1
4 0 1
4. 1
4. 1 .
4- 1 .
4. 1.
4. 1.
4. 1.
4. 2
4 0 2

4. 3
4. 4
4 .. 5
4. 6
4 0 6
4. 7
4 • 8
4. 9

5. 1
5. 1
5. 3
5. 4
5. 5
5 0 6
5. 7
5. 9

6. 1
6. 1
6 D 2
6. 3
6. 4

7 D 1
7. 1
7 0 2

1
2
4
7
10

Functions for the System Builder
Loading Conpiled Code into the High Segment
The Compiler and LAP

Special Variables
Removing Excess Entry Points

Miscellaneous Useful Functions
Initial System Generation

The LISP Evaluation Context Stack
The Contents of the Context Stack
Examining the Context Stack
Controlling Evaluation Context

Storage Allocation
Contiguous Blocks of Storage

Index

8. 1
s. 1

-8. 2
8. 2
8. ') ,_.

8. 3
8. 4

9. 1
9 0 1
9. 2
9 0 4

10. 1
11. 1

INDEX. 1

-INTRODUCTION

UCI LISP is a compatible extension of the Stanford LIS?
1. G programming system for the DEC PDP-10 ~ The extensions
make UCI LISP a powerful and convenient interactive
programming environment for • research and teaching in
artificial intelligence and advanced list processing
applicationso _7\ll Stanford LISP programs, (except those
using the· B IG;HJf1 package) can be run directly in UCI LI SP.
In addition, the extended features of UCI LISP make it much
easier to transfer interpreted LISP programs from BBN LISP
and MIT AI LI SP (we have already conver,ted severa 1 large
programs,· including a version of the Woods' Augmented
Transition network Pnrser fror:1 BBN LISP, and a version of
Micro-Planner from MIT AI LISP.)

This nanual c1escribes the extensions to the Stanford
LISP 1.6 system, and should thus be reaa in conjunction with
the latest Stanford LISP 1.6 manual, currently SZ-\ILO11 28.6
(Stanford Artificial Intelligence Laboratory Operating Note
28°6). As can be seen :ror:1 the relative sizes of the two
documents UCI LISP represents a substantial extension to
Stanford LISP, and frbm our own experience presents a major
inprovement in the habitability of the system for both naive
and experienced users. (r-,, 'majority of the extensions were
suggested by the features of BB:J LISP, probably the best
interactive LISP system in existence, but unfortunately
available at the tir1e UCI LISP was implemented only on
TENEX, a paged virtual memory system for the PDP-10,
produced by Bolt, Beranek and Pewman Inc. ; this LI SP system
is now or soon will be available on the BURROUGHS :36700 and
the IBH S/360 and S/370 series machines, and is now called
INTERLISP.)

The major extensions to Stanford LISP can be briefly
described ~s follows:

1) Improvemehts in storage utilization:
a) UCI LISP is reentrant and compiled code nay be

piaced in the sharable high segment
b) The allocator allows ieallocation of all

spaces (including Binary Program Space) at any
tir.ie, and new versions of GETSY'11 and PUTSYM
are now available to permit relocation of

0 • 1

~ACRO-10 and FORTRAN coded routines
c) A new data type, the BLOCK, which allow users

freer access to Binary Program Space and
permits the construction of data items such as
the systen O8LIST, which is both a list and a
contiguous block of storage (to provide
efficient use as a sequential hash table)

2) Powerful interactive debugging facilities,
including:

a) Sophisticated conditional breakpoint and
function tracing facilities

b) A powerful list structure editor for editing
function definitions and data

c) Facilities for examining, correcting and
continuing to run in the context of a program
which has been interrupted by an error or by a
user initiated temporary interrupt

3) Extensions to the I/O facilities available in the
basic system, including:

a) Convenient I/O to disk files, including use of
project/programmer designations and ways to
save and restore functions and data

b) Read Macros (patterned after MIT l\I LISP) for
extending the LISP READ routine

cl A routine for printing circular or deeply
nested expressions

d) Routines to modify the control table of the
LISP READ routine

e) The ability to change the OBLIST used by
INTERil (and, hence, RET\D) at any time by
changing the value of the atom OBLIST to a
properly structured BLOCK list (see le above
and Chapter 11)

f) The ability to RENAME and DELETE files from
within LISP

g) The ability to read file directories for any
accessible project-programmer nur.iber, to see
if a file exists in a directory

h) Several useful functions for carriage
positioning, teletype echo and prompt
character control, reading input a line at a
time, reading list structures without
interning their atoms, etc-

4) Functions for examining and modifying the special
pushdown stack which holds the context of ongoing

O • 2

computations

5) Error protection facilities:
a) LlII,, T and other a tor.is cannot be easil)'

ua~aged by RPLACA, RPLACD, SETO and SET
b) The system will no longer go into an infinite

loop when searching for the function
definition of the CAR of a form

c) Changes to the disk output routine DS!<OUT so
that it uses the REN.7\ME facility to provide a.
backup for user files (minimizing the risk of
unintentionally clobbering files)

6) Extended basic functions including:
a) ~·Jew predicates for data types, and most

preo ica te s now return useful non-NIL va 1 ue s,
rather than T

b) ilew list construction and modification
functions

c) ~ultiple sequential form evaluation in LAMBDA
expressions

d) An efficient
e) Availability

functions

n-way switch
of the ?ORTRAN mathematical

f) ~lappiwr functions with severa 1 arguments, and
ones which build new liSts using nconc to join
segments

7) The ability to use many of the system Queue
Manager's facilities without leaving LISP,
allowing:

a) Listing of files on the line printer
b) Initiation of batch jobs

As mentioned, we have made UCI LISP a reentrant system
which :nay be u scd by severa 1 users s imu 1 taneou sly. Thus,
while the new features of UCI LISP reauire a larger system
than the original Stanford LISP, this inpact is mininized in
any environr.ient Hi th more than one LISP user. In addition,
since the basic LISP systen contains many features
previously available on 1 y in the various extension files
(such as SM ILE, ALVI!'1E, TR..ZI.CE, etc.) or which had to be
written by the user, it is possible to write and de';)ug
meaningful jobs in the basic system, without getting extra
core 0 The UCI LISP system has a sharable high segment of
14K and a user specific low segment of 8K. Thus, if there
are two users the virtual core load is 30K, while getting

0 0 3

the same capabilities in Stanford LISP would require a load
of 3 2 K for the two users, and of course the ir.iprovernent is
even more n9ticeable with more users sharing UCI LISP (abo0t
BK is saved for each additional user) ..

The ability to put compiled code in the sharable
segment and to reallocate Binary Program Space makes it
possible to build systens in which much of the systems code
is compiled LISP expressions. All of the advanta·ges of
higher level codi~g are obtained, and the LISP conpiler
(borrowed fr6m·· Stanford with some small modifications)
produces better results than most assembly language coders.
Such: partially compiled systems can now be used without
closing off the· possibility of the user extending Binary
Program Space to store his own compiled code. In genera 1,
it is now possible to compile a system incrementally. The
user can save • the low segment which con ta ins the partially
compiled system, then test out new m.a ter ia 1 in interpreted
form before extending the Rinary Progran Spate in the
segment to load the new co~piled material.

The debuggiYlg fa.cili ties form the bulk of the
extensions to Stanford LISP, anrl are identica 1 with the
equivalent facilities available in B3N LISP in the summer of
1971-. ·- (B

0

Brl LISP has been extended in the interveninCJ
period.) They make i_t possible for the usc-ff to track down
bugs in complicatecl recursive programs by making it eusier
for him to inv~stigate the context in which the bug 6ccurred
(eog. to see at what point erroneous aata was passed as an
argument, or at what point _the flow of control went awry,
etc.)· The user does not have to plan in advance or set
breakpoints to get access to the context of the error. The
systeM holds the context of any error automatically,
allowing the user to ~erform whatever investigations he
wishes, and make. any corrections \~hich rnay be useful. This
also makes it possible to ;_':latch up u sr.iall error, like an
unbound ato1:1 or sirnple undefined function, in the middle of
a large conputation and to continue the computation without
having to start from scratch. Similarly, the . user can try
out icleas for correcting the error, without leaving the
context of the error, and go on only when he has pinned down
the error and its possible solution. If the infor~ation
available at the time the LISP system rliscovers the error is
i:-isufficiont to· pin down the· cu use of the error, the user
can have the system repeat the computation, with a specia 1
trace feature that prints out whatever the user wishes to

0 . 4

know at various points in the computation- (The user can
specify both what data is to be printed and under what
conditions he wishes it printed.) The user can also force
the system to establish a breakpoint anywhere in his
cornputatipn, so . he can investigate the · context before the
error has covered its tracks.

'l'he IJCI LISP editor (borrowed ',vith some modifications
from the BBN LISP system) is actually a language for
incremental nodification.of list structures. It can be used
by a user at a terminal to modify function definitions (even
during the niddle of a break while the function is still on
the conte~t stack) or to change complicated data structures.
It can al so be used as a subroutine by other functions,
making it convenient for one :unction to modify another
function. This is actually done by the B~;EAK package, to
implenent the function BREAKIU which inserts a breakpoint at
any arbitrary point in a user function.

The editor can r.1ove around in a structure by sr:iall
local Dotions, or by searching for a portion of the
structure which matches some given pattern. It can insert
new items, delete old ones, interchange items, change
structure, embed old items in new structure or extract them
from old structure, etc. In order to be able to edit a
function which is still on the context stack and to have all
of the portions on the context stack be changed at once, the
r:iodi f ica tions performed by the editor are physical changes
of the existing structure. Although all the modifications
are "destructive", using RPLACA and RPLACD to make changes
in the given structure, all of the i:lodifications can be
selectively reversed by means of the urmo feature- Thus the
user can make modifications without worrying about
complet~ly destroying his function definitions by accident-

The editor is a very large, complicated function, anc1 its
documentation indicates that fact. However, the first part
of the editor. documentation giyes a convenient rundown on
how to use .the editor as a novice, and with that the
beginning user can get oui te a bit done. By skimming the
remainder of the editor chapter the user can get some idea
of the Dany extra useful features available, and can slowly
extend his ca;:,abilities with the euitor. It has been a
common observation that in the process of writing and
debugging a large system, or even a small pro0ram, the
average user spends most of his tiD.e in editing his
functions. By becoming f ani 1 iar with a 11 the features of

0 . 5

the list structure ecli tor the user can cut his editing tine
considerably, and make larqe or· subtle changes easily. The
user sl:ould also bear in· mind that the Gditor is available
as a function which can be used by other functions. This
can make many jobs substantially easier.

I10TE: ALVIIJE is no longer a va i lab le in tl1e standard
version of UCI LISP because we believe that the new editor
and I/0 facilities are substantially better than those
provided by .'\LVH1Eo (There is an assembly switch which
r.iakes it posf',ible to ~un ALVnrn in UCI LISP if necessary.)

Sor:ie of the extended I/0 facilities of UCI LISP were
available in :::;rnu::, etc., :::iut putting them in the sharerl
system saves core. The Read Macro facility is a great
convenience and makes using Micro-Planner nuch simpler. The
user-modified READ - control table is Dore general than that
availnble in the Stanford SCAN package (which is still
useful and available), and the new SPRINT is faster than the
origina 1. The other functions are crni te convenient, and
will r:iake nany tasks simpler.

The special pushdown list ha~_been extended to provide
the equivalent of the RD!T LISP context stack. This is the
backbone of the ERROR and BREAK packages, since it enables
running programs to examine their context, and to change it
if n~cessary. The stack functions, particularly RETFROM and
OUTV.Z\L r:iake it possible to exper ir:1ent with various contro 1
regimes, where subordinate functions can abort and !"et urn
froM hi<Jher level fun ct ions on the basis of loca 1
in forria tion. Ind i scr imina te fooling around with the stack -
is likely to produce peculiar and· unwanted results, but the
stack functidns can be extremely hel~ful at times.

'i'he error protection facilities are an attempt to catch
some of the comDon errors of novices (and experienced users
too) which can clob.ber the system. There are few things
more confusing than what happens to the systerri when the
value of :HL is no longer ~HL, or if the value of T becomes
NIL. In Stanford LISP this _could easily happen if SF.TQ or
SI':':" received a 1 i st as a first urgumen t- 'i'hi s can no longer
happen in UCI LISP. Similarly, Stanford LISP occasionally
went in to infinite loops because c1 f orr:i had a CAP.. which was
IHL or had no function definition and evaluated to NIL.

0 0 6

This has been corrected.

The extended basic functions are ones which were of
great use in writing the editor, aREAK package, etc 0 0 and in
bringing up tran sla tec1 versions of BDN LISP and MIT AI LISP
progra!'lS • '::'he mu 1 tip le forn LA118Dl\ express ion and the n-way
switch SELECTn should make rnany programming jobs :11uch more
convenient, as should the availability of mapping functions
with several arguments. The user will almost certainly
profit from ski~rning through the chapters on these extended
features, just to know what is available-

0 0 7

Credits and ~cknowledgements

The design and overall direction of the irnpler.ientation
of this system are the responsibility of Ro~ert Bobrow, who
also r.iade the first riodifications to Stanford LISP,
including the original error package, accessible context
stack and storage reallocator- In large part the existence
of the fin a 1 systeJ11 and its ex tensive documentation is due
to the Herculean efforts of Daryle Lewis, who did the bulk
of the rnodif ications to the assembly language code
(inclUding making Stanford LISP reentrant) and corrected the
compiler and Ll\P systo.f'.ls. I!e singlehandedly transferred the
entire BBN LISP editor and its documentation to our system,
and in genera 1 par formed vi ta 1 and arduous design,
programming ~nd documentation tasks too nur.ierous to mention.
Richard Burton did yeoman's labor by transferring (and
extending) the nnu LISP .ERROR and B~EAK packages, and
providing their docur1entation. Jeff Jacobs maintained the
system for many nonths, correcting 8ay old Stanford compiler
and girbage collector bugs; he also implemented many
extensions, such as the interface to the Queue Manager, disk
file directory functions, the user-switchable OBLIST, and
the BLOCK data type. Bi 11 Earl has also provided great
service in maintaining the system and :i.ts documentation.
Whitfield Di ff ie. of Stan ford has helped us out of severa 1
sticky problems with the LISP system and its compiler. The
original i~plernentation of the editor and several I/O
functions is due to Rodger Knaus, as wel 1 as many helpful
suggestions. Finally, but of vital importance, is Alan
Be 11, whose great knowi edge of the PDP-10 opera ting system
helped us through nany rough times, ana who has done much of
the transferring of nm, LISP and '.HT JU LISP programs.

Vie are triply indGbtec1 to the designers, ir.iplementers
and· documenters of BBiJ LISP, particularly Daniel Bobrow and
Warren Tei tel;TJan- i•1ost of the debugging and interactive
facilities as \vell as the general design philosophy of UCI
LISP were inspired ;Jy the BBN LISP systern" Secondly, we
were able to use much of their code directly, since it was
written in LISP, making it possible to obtain a large,
well-written and· oebugged system in a fraction of the time
and effort it would h.ave taken to write it fror:1 scratch.
Fina 11 y, we have made ex tensive use of the BBN LI SP TENEX
REFEREI1CE tt\!HJAL as a source of raw material for our
documentation. In particular, much of the material in the

0 . 8

chapters on-~he BREAK and ERROR packages an~ the editor is a
revised version of the material in the BB?1 LISP f,l,'\IWZ\L0 1·.Je
take full responsibility for the errors ,rnd deficiencies
produced by such an arrangem~nt, while greatfully
acknowledging BBn' s ,:no in providing much of. the basic
documentation. He are also in debt to several people at BEN
for their c1id in obtaining and explaining this material,
particulLlrly Jim Goodwinu l\lice Hartley and the director of.
the Artificial Intelligence Group, Jaime Carbonell ■

This manual is the woxk of _nany people as well as ihc
listed authors - in particular Warren Teitelman, formerly of
BBN and now at Xerox Palo Alto Research Center, who produced
the original BBN LISP c'!ocur:ientation and the lions share of
the origi~al code. He are also in c'Jebt to Marion Kaufman
and ?hyllis Siegel who did daily battle with the PDP-10 to
produce the RUUOFF files from which this documentation is
produced.

La st, but l"lost assured 1 y not lea st in the roster of
those who have mace this system possible are Kathy Burton
and Connie Lewis who lived through the nany discussions, all
night programr:1ing sessions and battle-fatigue of the year
during which this system was implemented.

ENJOY, ErJcJOY !

0 • 9

I:FJEX

A (edit command) ------------------------------ 2-13, 41
ACOS -- 7° 2
AND--- 6 ■ 3
APPLY#-- 3. 5
ARCS (break command) -------------------------- 1.10
ASIN ------------------------------- __ . ------- 7. 2
ASSOC#--------------------------·---~-------- S. 7
ATAU ------------- ---------------------------- 7. 2
S (edit command) ------------------------------ 2-13, 31
BELow· (edit command) ----~--------------------- 2.32, 33
BF (edit command) ----------------------------- 2.10, 28
BI (edit comnand) ----------------------------- 2. 54
Billf) (edit conrnand) --------------------------- 2. 70
BK (break com~and) ---------------------------- 1°15
3K (edit comnan~) ----------------------------- 2.10, 19
BKE (break command) --------------------------- 1°15
3KF (break command) --------------------------- 1°15
BLKLfiT --11. 1
BO (edit command) -----------------~----------- 2.ss
BREAK--- 1. 1, 18
BREAKIN --------------------------------------- 1. 1, 20
BREAKMACROS ----------------------------------- 1 ■ 17
3REAK0 ---------------------------------------
BREAKl ---------------------------------------
DRKEXP ---------------------------------------
BROKElJnl S ------------------- ------------------
CHANGE (edit command) -------------------------
CHRVAL ---------------------------------------
CLRBFI --
COMS (edit command) --------------------------
COMSQ (edit command) --------------------------
COUSP ------------------.---------------------
COPY---~
cos--
COSD ---------. -------------------------------
COS H ---------- ------------------- --- ---------
DDT--
D~LETE --
D~LETE (erlit command) -------------------------
DIR---
□REMOVE --------------------------------------
DREVERSE -------------------------------------
DRM ---

ITJDEY • 1

1-23
1. 6
1. 7
1.18
2.43
s. 9
4- 5
2.64
2.64
6 • 1
5. 3
7. 2
7. ')

<..

7. 2
1. 5
4 0 1. 5
2 0 14, 41,
4 . L 3
s. 4
5. 4
4. 6

43

DSI<::IIJ --- 4. 1. 1
DSKOUT -- 4. 1
DSf1 --- 4. 6
DSUBST ---·-------------------·---------------- S. 4
E (edit command) ------------------------------ 2. 9, 63
EDI~ (break command) -------------------------- 1.13
EDIT4S -- 2.83
EDITCOMSL --~---------------------------------- 2.78
EDITDEFAULT ----------------------------------- 2.78
EDITE -------------- -- -~--- --- --- --------- 2.81
EDITF --- 2.81
EDI7FI:mp ------------------------------------- 2.84
EDITFNS --------------------------------------- 2.83
EDITFPAT -------------------------------------- 2.84
EDITL ------------- --------------------------- 2.eo
EDITP --- 2.82
EDITRACEFTJ ------------------------------------ 2.84
EDITV --------------------- ·------------------- 2.82
E;1BSD (edit cornnand) -------------------------- 2. 49
ERR--- 3" 4
ERRCH ------------------------ ---------------- 4. 5. 1
ERROR--- 3. 4
ERRSST -- 3. 4
EVAL (break command) -------------------------- 1. 8
EVALV -----------------------~----------------- 9. 4
EX (break command)----------------------------- 1. 14
EXP--- 7" 2
EXTRACT (edit command) ------------------------ 2.47
F (break corr,mand) ----------------------------- 1.11
F (edit COFl~and) ------------------------------ 2. 6, 26, 27
FILRAK ------------ --------------------------- 4. 1. 6
FLATSIZEC --------------~-------------------~-~ 5~ 9
FLOAT--- 7. 2
?lWBRKPT ----- • ----------. --------------------- 9. 3
FREE --------· ------.· ---- ·--------------------- 8. J. 1
FREELIST -------------------------------------- 8. 3. 1

'FROM?= (bre3k command) ------------------------ 1. 9, 14
FS (edit comnan<'l) ----------------------------- 2. 2 8
F= (edit command) ---~------------------------- 2.28
GO (break command) -~~------------------------- 1. 8
GRIND2F ------ -------------------- - --------- 4. 3
GRINL --- 4. 3
G~INPROPS ------~------------------------------ 4. J
CTBLK ---11. l
HERE (in editor) ------------------------------ 7..44, 52
HGHCOR -- 8. l
HGHEND -- 8. l
HGHORG -- 8. 1

IrlDEX • 2

I (edit command) ------------------------------ 2°63
IF (edit com~and) -~--------------------------- 2°66
IUITFL -- 8. 3
Ii1ITPROMPT --------~--------------------------- 4. 5
INSERT (edit command) --------------------~---- 2.43
INUViP ------------------------------------·----- 7. 1
LAMBDA-------- --- ---------------------------- 3. 1
LAP--- 8. 2
LAPLST -- 8. 2
LAST\·-lORD -------- - - - -- - - - - - -- - - - - - ___ _: __ - - ----- 2. 81, 8 2
LASTPOS ----------~------~-----------------~~---1.11
LC (edit cornmano) ----------------------------- 2.31
LCL (edit command) ---------------------------- 2-31
LCOIJC ------------------------------- ~ -------- 5. 2

LDIFF --- 5. 8
LEXORDER -------------------------------------- 6. 2
LI (edit command) ----------------------------- 2-55
LIIJBREAD -------------------------------------- 4. 4
LITATOM --------------------------------------- 6. 1
LO (edit command) ----------------------------- 2.55
LOG--- 7. 2
LOOKUP-- 4. 1. 6
LP (edit command) ----------------------------- 2.66
LPQ (edit corn~and) ---------------------------- 2.67
LSUBST -------------------------- ------------- 5. 3
M (edit command) ------------------------------ 2.68, 69
MAKEFN (edit command) ------------------------- 2.75
MAPCAU -- 5. 6
MAPCON -- 5. 6
MAPCOUC --------------------------------------- 5. 6
MARK (edit command) -------------------~------- 2.36
MAX--- 7. 1
11AXLEVEL -------------------------------------- 2 ■ 24
MBD (edit command) ---------------------------- 2 ■ 14 1 48
MEMB -- 6. 3
i-1EMBER -- 6. 3

MEMQ -- 6. 3
MIIJ --------------------- --------------------- 7. l
t1ODCHR -- 4. 8
MOVE (~dit command) --------------------------- 2.50
MYPPN --- 4. 1. 6
TT (edit command) ------------------------------ 2. 5, 38
UEQ --- 6. 4
NEX (edit cornrnan~) ---------------------------- 2.33
NEXTEV -- 9. 2
NIL (edit command) ---------------------------- 2.71
~ILL-- J. 5
n□CALL -- 8. 2

Il1DEX • 3

tJTH ---
NTH (edit com~and) ----------------------------
MTHCHAR _ ----------- --- -- ----------------------
11UM7YPE ---------------------------------------
PX (edit comr.iand) ----------------------------
OK (break cornnand) -------------------------···-
OK (edit conmand) ----------------------------
ORF (edit command) ---------------------------
ORR (edit command) ----------------------------
OR--
OUTVAL --------------------------------- ------
p (edit command) ------------------------------
PATOM ---
pp (edit comr.iand) --------------------~--------
PREVEV ---------------------------------------
PRINTLEV -------------------------------------
PROGN --
PROGl --
PROMPT--
QUEUE ------------------------------- ---------
R (edit command) ------------------------------
RANDOM--
RDFILE ---------------------------------------
RDNAM --
READP ----------------------------------- ----
REE---
RENAME --
REPACK (edit COM□and) -------------------------
REMOVE---------------------------------------
RETFROM -----~---------------------------------
RETURN (break command) -----------------------
RI (edit comDand) ----------------------------
RO (edit conmand) ~-~-----~------------------~-
RGETSYM ---------------------------------------
RPUTSYM ---------------------------------------
S (edit commanr.) -----------------------------
SAVE (edit command) --------------------------
SECOND (edit command) -------------------------
SELECTQ --------------------------------------
StTCHR ---------------------------------------
SIN--------------------------------------~--
S I~·lD ------------ ------ ----- ------------------

S INH ---
SPECIAL--------------·-----------------------
SPDLFT ---------------------------------------
SPDLP~ ---------------------------------------
SPD~RT ---------------------------------------
SPREDO --

r:rn::::-: . 4

s. 3
2 • 21 I 33
s. 9
7. 1
2. 8, 33
1- 8
2-71
2.28
2.67
6. J
9 - . 4
2. ') 62 .L. ,

6. 1
')
L. • 2
9. 2
4. 2
3. 2
3. 2
4. 5
4. 1. 7
') 7 I GO ,_ .
7. ')

.L.

4. 1. 2
4. 9
4. 5. 1
1. 5
4. 1 . 5
2.74
s. 3
9. 4
1. 9
2-55
2.56
8. 3. 2
8. 3. 2
2.37
2-72
2.31
3. 3
4. 8
7. 2
7. 2
7. 2
8. 2
9. 2
9 . 2
9. 2
9. 4

SPREVAL --------------------------------------- 9° 4
SPRIU'I' ----------------- • • --· ·--------- -------- 4. 3
SQRT-------------------·--·------------- --- 7° 2
STKCOUNT ----------------~----~~--~------------ 9. 2
STKNAME -------------- ---- ---------- ---- -- 9° 3
STK:JTH ---------------------. - • -- ·-------- • ____ 9. 3
STKPTR --- -----------~------------------------ 9. 2
STKSRCH ---------------~---------~~----~----~-- 9. 3
STOP (edit command) ---~-----~----------------- 2-72
STRINGP --------------------------- ------------ 6. 1
SUBLIS -----------------~---------- ---- ------ 5. 7
SUBPAI R ,-------------------------- ·------------ 5 •. 7
SURROUND ·(edit command) ---------~-------~----- 2°49
SW (edit command) -~-----~---~----------------- 2.61
SYSCLR --- ----------- ··-------- -----------------. 8. 3
TAB ---------------- ·------- ---------------·---- 4. 2
TAILP -------------------------- -~------------ G. 3
.TAN----------------------~-------------------- 7. 2
Tl-d,JH - ---------------- • ·-----·------ ------- --- --- 7. 2
TCO~JC --------------·----- ·-· --·-----·------------ 5. 1
TEST (edit comr:iand} -----'----------------------- 2. 77
THIRD (edit Comnand) ----~---~-~------~-~~----- 2.31
THRU (edit command) -----~--~------------------ 2-57
TO (eait command) ----~------~---~------------- 2.57
TRACE-----------------~--------------------- 1. 1, 19
TRACEDFNS ----------------------~-------------- 1-1$
TTYECHO ------------~-- ----------------------- 4. 5
TTY: (edit commanrl) --------------------------- 2.71
UFDINP -- 4. 1. 2
UNBLOCK (edit command) ------------------------ 2.77
UNBOUND--------------------------------------- 8. 3
UNBREAK --------------------------------------- 1 ■ 21
urmo (ecJi t command) --------------------------- 2 .1 O, 76
UNDOLST --------------------------------------- 2 ■ 76, 77
UNFIIID -- 2.26, 36
UN7RACE --------------------------------------- 1.22
UNTYI --- 4. 5. 1
UP (edit COTl!T'.lc'!nCl) ----------------------------- 2.13, 16, 50
UPFir1DFLG ------------------------------------- 2. 4 5
USE (break com~ann) --------------------------- 1.10
USERMACROS ------------------------------------ 2.70
XTR (edit COMmand) ---------------------------- 2.14, 46
0 (edit command) ------------------------------ 2. 4, 18
ANY (in edit pattern) ----------------------- 2.22
*MAX-- 7. 1
*MI~----------------------------------·------- 7. 1
*RElll\ME --------------------------------------- 4. 1. 4
*RGETSYM -------------------------------------- 8. J. 2

HlDEY • 5.

*RPUTSYM -------------------------------~------ 8. 3. 2
-- 2-64
(edit command) ----------------------------- 2.44
@ (at - sign , in edit pattern) - - - - - - - - - - - - - - - - - - 2 . 1 2 , 2 2
i (break command) ----------------------------- 1.10
f (edit cornmano) :------------------------------ 2. 4, 18
Ti (break command) ---------------------------- 1.10
& (break com~and) ---------------~-------:------ 1.11
& (in edit pattern) --------------------------- 2.11, 22
? (edit CODmand) ------------------------------ 2. 2, 62
?? (edit comnand) ----------------------------- 2-77
?= (break command)--~-------------------------- 1-13
~ (in break package) -----------------------~-- 1.12
~ (edit command) --~-------------------------:-- 2.36
~ (edit command) --------:--------------------- 2.36

(edit com~and) ---------~-------------------- 2.14, 41
(edit command) ----------------------------- 2.34

• • • (in ecit pattern) ------------------------- 2.22
== (in edit pattern) -------------------------- 2.22
-- (in ecit pattern) -------------------------- 2.11, 22
\ (edit command) ------------------------------ 2.10~ 36
\P (edit command) ----------------------------- 2.11, 37
(~ pattern) (edit command) -----------:--------- 2-32
> (break conmano) ------------------:----------- 1. 9
-> (break command) ---~------------------------ 1. 9
%LOOKDPTH ------------------------------------- 1. 8
%PRINFN --------------------------------------- 1. 8
!NX (edit command) --------------------~------- 2.20
!UNDO (edit cornmjnd) -------------------------- 2.76
!D (edit command) ---~------------------------- 2.18
!VALUE--------------------------------------- l ■ 8

rrrnr::x . 6

DEBUGGING FACILITIES

Introduction

Debugging a collection of LISP functions involves
isolating problems within particular functions and/or
determining when and where incorrect data are being
generated and transmitted. In the UCI LISP system, there
are five facilities which aid the user in monitoring his
progra,i. One of these is the Error Package which takes
control whenever an error occurs in a program and which
allows the user to examine the state of the world (see
section on 'ERROR PACKl-\GE'). Another facility allows the
user to temporarily interrupt his computation and examine
its progress. The other three fac il i ties (BREAK, TR.Z\CE a :1d
BREAKH1) allow the user to (temporarily) modify sel~cted
function definiticins so that he can follow the flow 0£

control in his programs. All of these facilities use the
same system function, BREAKl, as the user interface-

BREAKu BREAKIN and.TRACE together are called the Break
Package. BREAK and TRACE can be used on compiled and system
functions as well as EXPR' s, FEXPR' s and :--iACRO' s. BREAKIN
can be used only with interpreted functions.

BREAK modifies the definition of a function FN, so that
if a break condition (defined by the user) is sa ti si f ied,
the process is halted temporarily on a call to FN. The user
can then interrogate the state of the machine, perform any
computations, and continue or return from the call•

TRACE modifies a definition of a function FN so that
whenever FN is called, its arguments (or some other values
specified by the us~r) are printed. When the value of FN is
computed it is printed also-

BREAI<IN allows the user to insert a breakpoint inside
an expression defining a function. When the breakpoint is
rE:ached and if a break condition (defined by the user) is
satisfied, a temporary ha 1 t occurs and the user can again
investigate the state of the computation.

The two examples on pages 1.J and 1 ■ 4 illustrate these
facilities. In the first example, the user traces the
function FACTORIAL. TRACE redefines FACTORIAL so that it
calls BREAKl in such a way that it prints some information,
in this case the arguments and value of FACTORIAL, and then

1 . 1

goes on with the computation. When an error occurs on the
fifth recursion, BRE.Z\K 1 reverts to interactive mode, and a
full break occurs. The situation is then the same as though
the user had originally performed (BREAK FACTORIAL) instead
of (TRACE FACTORIAL), and the user can e~aluate various LISP
forms and direct the course of the computation. In this
case, the user exar,ine s the variable N, instructs BREA Kl to
change L to 1 and continue. The > command, following an·
UNBOUND ATOM or UNDEFINZD FUNCTION error, tells BREAKl to
use the next expression instead of £he atom which caused the
error. The> command does a destructive replacement of, in
this case, 1 for L, and saves an edit step by correcting the
typo in the function definition. The rest of the tracing
proceeds without incident. The function !JNTRACE restores
FACTORIAL to its original definition.

In the second example, the user has written Ackerrnann's
function. He then uses flRSA K to place a ca 11 to BREA Kl
around the body of the function. He indicates that ACK

1
is

to be broken when M equa 1 s N and that before the break
occursr the arguments to ACK are to be printed. While
calculating (ACK 2 1), ACK is called twice when M = n.
During the first of these breaks, the user prints out a
backtrace of the function names and variable bindings. He
continues the computation with a GO which causes the value
of (ACK 1 1), 3, to be printed before the break is released.
The second break is released with an OK which does not print
the result of (ACK 1 1). The function UNBREAK with an
argument T restores the latest broken or traced function to
its original definition.

For further information on how to use BREAK, TRACE and
BREAKIN, see the section on The Break Package.

1 . 2

*(DE FACTORIAL (N)
(COND ((ZEROP N) L)

(T (TIMES N (FACTORIAL (SUBl ~))))))

FACTORIAL
*(TRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)
El~TER FACTORIAL:

L

N = 4
EI·1TER FACTORIAL:

N = 3
ENTER FACTORIAL:

n = 2
ENTER FACTORIAL:

N = 1
ENTER FACTORIAL:

N = 0

UNBOUND VARIABLE - EVAL

(L BRO KEH)
1:N

0

1:> 1

!· FACTORIAL= 1
FACTORIAL= 1

FACTORIAL= 2
FACTORIAL= 6

FACTORIAL= JO
30

(UNTRACE FACTORIAL)

(FACTORIAL)
*(FACTORIAL 4)

30

1 . 3.

* (DE AC K (M 1-1)
(C mm ((ZERO P M) (II.DD 1 n))

((ZEROP N) (ACK (SUBl M) 1))
(T (ACK (SUBl M) (ACK M (SUBl N))))))

ACK

*(BREAK (ACK (EQIJM) (ARCS)))

(ACK)
* (ACK 2 1)

M = l
n = 1

(ACK BROKEN)
1:BKFV

M =
N =

ACK
M =
N =

ACK
M =
IJ. =

ACK

1:GO

3

M = 1
N = 1

1
1

2
0

2
1

(ACK BROKEIJ)
l:OK

5
*(UNBREAK T)

(ACK)

1 • 4

Interrupting a computation-REE and DDT

A useful feature for debugging is a way to temporarily
suspend computation. If the user wishes to know how his
computation is proceeding (i.e. is he in an infinite loop
or is system response poor). Then type Control-C twice
(which will· cause a return to the monitor) followed by
either REE or. DDT. After typing REE the user must respond
with one of the fallowing control characters; Control-H,
Control-B, Control-G, Control-E or Control-Z 0 Typing DDT is
equivalent to typing REE followed by Control-H-

1° Control-H: This will cause the coniplitation to continue,
but a break will occur the next time a function is called
(except for a compiled function called by a compiled
function). A message of the form (-- BROKEN) is typed and
the user is in BREAKl (see the next section). He can
examine the state of the world and continue or stop his
computation using any of the BREAKl commands. WARNING It is
possible to get into an infinite loop that does not include
calls to functions other than compiled functions called by
compiled functions. These will continue to run. (In such
cases, type Control-C twice, fol lowed by REE, fol lowed by
one of the other control characters).

2. Control-B: This will cause the system to back up to the
la st expression to be eva 1 ua tea and ca use a break (putting
the user in BREA Kl with al 1 the power of BREA Kl at the
user's command. This does not include calls to compiled
functions by other compiled functions.

3. Control-G: This causes an (ERR ERRORX) which returns to
the last (ERRSET ERRORX). This enables the user to
Control-C out of -the Break package or the Editor, reenter
and- return to the appropriate command level 0 (i.e. if the
user were several levels deep in the Edi tor for example;
Control-G wil 1 return him to the correct command level of
the Edi tor).

1 0 5

4° Control-E: This does an iERR NIL), which return NIL to
the . la st ERR SET. (See section on change,s to ERR and
ERRS ET) •

5° Control-Z: This retu.rns the user to the top-level of
LISP, (i.e. either the READ-EVAL-PRINT loop or the current
IIHTFN j.

6° Control-R: This restores the· normal system OBLIST.
Another of the above control characters must be typed after
this character is typed ■ This. will often ·recover after a
GARBAGED OBLIST ~~ssage.

1 . 5 . 1

BREAKl,,

The,, heart of the debugging package is a 'function called
BREAKl. BREAK an~ TRACE redefine you~,fu~ctions' in te~ms of
BREAKl., When an error occurs ,control is passed to BREAKl.
The DDT-break fea~ur~ is also implemented usirig BREAKl.,

Whenever LISP types a message of the form (-- BROKEN)
followed by 'n:' the user i,s ,then 'talking to' BREAKl, and
he is,,~ in a break.' BREAKl allows the user to interrogate
the state of the w6rld and affect the course of the
computation. It uses the prompt character ' : ' to indicate
it is ready to accept input (s) for evaluation, in the same
way as the top level of LIS~ uses'*'· The ri before the'•'
is the level number which indicates how many levels of
BREAKl are currently open. The user may type in an
expression for evaltiation and the value will be.printed out,
fol lowed, by another- ': '. Or the, user can, type in one of the
commands,· desc'ribed below which. are specifically recognized
by BREA Kl • (for summary of commands see Ta-ble I, page l O 2 5).

Since BREAKl. puts all of the power of LISP at the
user· s command, he can • t:'lo_ , anything he can do at the top
level of LISP. For example, he can define new functions or
edit existing ones, set breaks, or. trace functions. The
user may evaluate an ~xpression, see that the value was
incorrect, call the ~ditor, change a function, and .evaluate
the expression again, all without leaving the break.

It is important to emphasize that once a break occurs,
the user is in complete control of the flow of the
computation, and the computation wi 11 not proceed wi thont
specific instruction from him. Only if the user gives one
of the commands that exits from the break (GO, OK, RETURN,
FROM?=, EX) will the computation continue. If the user
wants to abort the computation, this also can be done (using
r or f j).

Note that BREAKl is just another LISP function, not a
special system feature like the interpreter or the garbage
collector. It has arguments and returns a value, the same
as any other function. A call to BREAKl has the form

(BREAKl BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE)

The arguments to_ BREA I< 1 are: BRKWHEN is a LISP function
which is evaluated to determine if a break will occur ■ If

1 • 6

BRKWHEN returns NIL, BRKEXP is evaluated and returned as the
value of the BREAKL Otherwise a break occurs- BRKFN is
the name of the function being broken and is used to print
an identifying message. BRKCOMS is a list of command lines
(as returned by READLINE) which are executed as if they had
been typed in from the teletype. The command lines on
BRKCOMS a re executed before commands are accepted from the
teletype, so that if one of the commands on BRKCOMS causes a
return, a break occurs without the need for teletype
interaction. BRKTYPE identifies the type of the break. It
is used primarily by the error package and in all ca~es the
user can use NIL for this argument.

The value returned by BREAKl is called 'the value of
the break.' The user can specify this value explicitly by
using the RETURN command described below. In most cases,
however, the value· of the break is given implicitly, via a
GO or OK command, and is the result of evaluating 'the break
expression,· BRKEXP.

BRKEXP is, iri general, an expression
equivalent to the computation that would have
taken place had no break occurred. In other
words, one can think of BREAKl as a fancy EVAL,
which permits interaction before and after
evaluation- The break expression then corresponds
to the argument to EVAL. For BREAK and TRACE,
BRKEXP is a form equivalent to that of the
function being traced or broken. For errors,
BRKEXP is the form which caused the error. • For
DDT breaks, BRKEXP is the next form to be
evaluated.

1 . 7

~HAT YOU CAN DO IN A BREAK

Break Commands

Once in a break, in addition to evaluating expressionst
the user can ask BREAKl to perform certain useful actions by
giving it atomic items as "break commands". The following
commands can .be typed in by the ·user or may be put on the
list BRKCOMS. TABLE I (page 1-25) is a summary of these
commands.

All printing in BREAKl is done by calling (%PRINFN
expr) • • %PRINFN is an a tom (not a function) which should
evaluate to the name of a printing function of one argument.
%PRINFN is initialized to use PRINTLEV because it can print
circular lists, which ~uite often result from errors.
PRINTLEV only prints lists to a depth of 6. This depth
parameter may be changed by setting the value of %LOOKDPTH.
PRHlTLEV is necessarily slow and if you are not printing
circular structures, traces can be speeded up greatly by
changing the value of %PRINFN to PRINl ■

GO

OK

EVAL

Releases the break and allows the computation
to proceed. BREAKl evaluates BRKEXP, its first
argument, prints the value, and returns it as the
value of the break. BRKEXP is the expression set up
by the. function that called BREAK-1 ■ For BREAK or
TRACE, BRKEXP is equivalent to the body of the
definition of the broken f1Jnction. For the error
package, BRKEXP is the expression in which the error
occurred. For DDT breaks, it is the next form to be
evaluated.

Same as GO except that the value of BRKEXP is
not printed.

Causes BRKEXP to be evaluated. The break is
maintained and the value of the evaluation is
printed and bound on the variable !VALUE. Typing GO
or OK wil 1 not ca use reeva 1 ua tion of BRKE}~P
fol lowing EVAL but another EVAL wi 11. EVAL is a
useful command when the user is not sure whether or
not the break v'1i 11 produce the correct value and

1 . 8

wishes to be able to do something about it if it is
wrong.

RETURN form
The form is evaluated and its value is returned

as the va 1 ue of the break. For example, one might
use the EVAL command and follow this with
RETURH (REVERSE !VALUE) •

. FROM?= form
This permits the user to release the break and

return to a previous context with form to be
evaluated. For details see context· commands.

> (or->] expr
For use either with

UNDEFINED FUNCTIOt1 error.
containing the error with
expr) e.g.,

FOOl
UNDEFINED FU~CTION
(FOO 1 BROKEN)
1:> FOO

UNBOUND ATOM error or
Replaces the expression
expr (not the value of

changes FOO 1 to FOO and continues the computation.
Expr need not be atomic, e.g.,

FOO
UNBOUND ATOM
(FOO BROKEN)
l:> (QUOTE FOO)

For UNDEFINED FU~CTION breaks, the user can specify
a function and its first argument, e.g.,

MEMBERX
UNDEFINED FUNCTION
(MEMDERX BROKEN)
1: > MEMBER X

Note that in the some cases the form containing the
offending atom will not be on the stack (notably,
after calls to APPLY) and in these cases the
function definition will not be changed- In most
cases, however, > wi 11 correct the function
definition.

1 . 9

USE x FOR y

i

if

ARGS

Causes all ciccurren6es of y iri the form on the
stack at LASTPOS (foi Error breaks, unless a F
command has been Used, thi~ form is the one in which
the • error occurred.) to be replaced (RPLACA • ed) by
x 0 Note: This is a destructive chang~ to the
s-expression involved and will, for example,
permanently change the definition of a function and
make a edit step unnecessary.

Calls ERR and aborts the break. This is a
useful way to unwind to a higher 1 evel break. Al 1
other errors, inclu~ing those encountered while
executing the GO, 0 K, EVAL, and RETURN commands,
maintain the break-

This returns control directly to the top level
of LISP.

Prints· the names and the current values of the
arguments of BRKFN. ri:i most cases, these are the
~rguments of the broken function-

1. 10

Context Commands

A 11 in formation pertaining to the evaluation of forms
in LISP is kept on the special push down stack- Whenever a
form is eva 1 ua ted, that form is placed ori the spec ia 1 ·push
down stack. Whenever. a variable is bound, the old binding
is saved on the special push down stack. The context (the
bindings of free variables) of a function is determined by
its position in the stack. When a break occurs, it is often
useful to explore the contexts of other fuhctions on the
stack. BREA Kl al lows this by means of a context pointer,
LASTPOS, which is a pointer into the special push down
stack. BREAKl contains commands to move the context pointer
and to evaluate atoms or expressions as of its position in
the stack. For the purposes of this oocurnent, when moving
through the stack, "backward" is considereo to be toward the
top level or, equivalently, towards the older function calls
on the stack.

F [or&] argl arg2 ... argN
Resets the variable LASTPOS, which establishes

a con text for the commands ?=, USE, EX and FROM?=,
and the backtrace commands described below. LASTPOS
is the position of a function call on the special
push down list. It is ini tia 1 i zed to the function
just before ·the call t9 BREAKl.

F takes the rest of the teletype· line as its
list of arguments. F first resets LASTPOS to the
function ca 11 just before the ca 11 to BREAKl, and
then for each atomic argument, F searches backwaro
for a ca 11 to that atom. The fol lowing atoms are
treated specially:

F
When used as the first argument

caused LASTPOS not to be reset to
above BREAKl but continues searching
from the previous position of LASTPOS.

Nur:1bers
If negative, move LASTPOS back

· (i.e. towards the top level) that
number of calls, if positive, forward.

1 . 1 1

Search forward instead of
backward for the next atom

Example:

If the special push-down stack looks like

then

BREA Kl
FOO
SETQ
corm
PROG
FIE
cmm
FIE
COND
FIE
corm
PROG
FUt/J

F FIE corm
F & COND
F FUM ~ FIE
F & 2
F

(13)
(12)
(11)
(10)

(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
(1)

will set LASTPOS to to (7)
will then set LASTPOS to (5)
will stop at (4)
will then move LASTPOS to (6)
will reset LASTPOS to (12)

If F cannot successfully complete a search,
for argN or if argN is a number and F cannot move
the number of functions asked, "argN?" is typed.
In either case, LASTPOS is restored to its value
before the F comr:iand was entered. Note: It is
possible to move past BRKEXP (i.e. into the break
package functions) when searching or movin~
forwards.

When F finishes, it types the name of the
function at LASTPOS.

F can be used on BR KC OMS. In which case, the
remainder of the list is treated as the list of
arguments. (i.e. (F FOO FIE FOO)

1. 12

EDIT argl arg2 ... argN
EDIT uses its arguments to reset LASTPOS in

the same manner as the F. command. The form at
LASTPOS is then given to the LISP Editor. This
commands can often tiJ'Yles save the user from the
trouble of calling t □ ITF and the ·finding the
expression thQt he needs to edit.

?= argl arg2 ... argN
This is a multi-purpose command. Its most

common use is to interrogate the value(s) of the
arguments of the broken function, (ARGS is also
useful for this purpose.) e.g. if FOO has three
arguments (X Y Z), then typing ?= to· a break of
FOO, will produce:

n:?=
X = value of X
y = value of y
z = value of z

?= takes the rest of the teletype line as its
arguments. If the argument list to ?= is NIL, as
in the above case, it print·s .all of the argur:ients
of the function at LASTPOS. If the user types

?= X (CARY)

he will see the value of ~{, and the value of (CAR
Y). The difference between· using ?= and typing X
and (CAR Y) directly into BREAKl is that ?

evaluates its inputs as of LASTPOS. This provides
a way of examining variables or forms as of £
particular point on the stack. For example,

·F (FOO FOO)
?= X

will allow th~ user to examine th~ value of X in an
earlier call to FOO.

?= also recognizes numbers as referring to the
correspondingly numbered argument. Thus

:F FIE
:?= 2

1 . 13

will print the name and value. of th~· second
argument of FIE (providin~ FIE_is not compiled).

?= can also be used on BRKCOMS, in which case
the remainder of the list on BRKCOMS is treated as
the list of arguments. For example, if BRKCOMS is
((EVl\L) (?= X (CAR Y)) GO)), .BRKEXP will be
evaluated, the values of X ~nd (CARY) printed, and
then the function exited with its value being
printed.

FROM?= [form]

EX

FROa?= exits from the break by undoing the
special push down stack back to LASTPOS ■ If FORM
is NIL or missing, re-evaluation continues with the
form on the push down stack at LASTPOS ■ If FORM is
not NIL, .the function call on the push down stack
at LASTPOS is ieplaced by FORM and evaluation
continues with FORM ■ FORM is eialuated in the
context of LASTPOS. There is no way of recovering
the break bec.ause the push down stack h9 s been
undone. FROM?= al lows the user to, among other
things, return a particular value as the value of
any function call on the stack. To return 1 as the
value of the previous call to FOO:

:F FOO
:FROM?= 1

Since form is evaluated after it is placed on the
stack, a value of NIL can be returned by using
(QUOTE NIL).

EX exits from the break and re-evaluates the
form at LASrPos. EX is equivalent to FROM?= NIL.

1 . 14

Backtrace Commands

The backtrace commands print information about
function calls on the special push down list. The
information is printed in the reverse order that the calls
wete made. Atl backtraces start at LASTPOS.

BKF
BKF gives a backtrace of

functions that are still pending.
the names of

BKE gives a backtrace of the expressions which
called functions still pending (i.e~ It prints the
function calls themselves instead of only the names
asinBKF).

BK gives a full backtrace of all e?{pressions
still pending.

All of the backtrace commands may be suffixed by a 'V'
and/or followed by an iritegei. If. the integer is included,
it specifies how many blocks are to be printed. The
limiting point of a block is a function call- This form is
useful when working. on a Data ·Point. Using the integer
feature in conjunction with the F command, which moves
LASTPOS, the user can display any contiguous part of the
backtrace. If a 'V' is inc 1 uded, variable bindings are
printed along with the expressions in the backtrace.

Example:

BKFV

BKV 5

would print the names and variable
bindings of the fun~tions called before
LASTPOS.

would ~rint everything (expressions and
variables) for 5 blocks before LASTPOS.

1 . 15

The output of the backtra.ce commands deserves some
explanation. Right circular lists are only printed up to
the point where they start repeating and are closed with
' •••] • instead of a right parenthesis- Lists are only
printed to a depth of 2. /#/ Is a notation which
represents "the previous expression"·. For example, (SETO
FIE (FOO)) would appe~r in a BK backirace as

(FOO)
(SETQ FIE /#/)

1 • 16

I3reakmacros

Whenever an atomic command is encountered by BREAKl
that it does .IlQt recognize, either via BRKCOMS or the
teletype, it searches (using ASSOC) the list BREAKMACROS to
see if the atom has been defined as a break macro~ The
form of BREAKMACROS c]efin·i tions is (. • • • (atom ttylinel
ttyl ine 2 • • • ttyl ineN).) • ATOM is the· com:narid name.
ARGS is the argument(s) for th~ macro. The arguments of a
brea kmacro are assigned va 1 ues from the remainder of the
command line iii which the macro is cal led. If ARGS is
atomic, it is assigned the remainder of the command line as
its value. If ARGS is a list, the elements of the rest of
the command line are assigned to the variables, in order.
If there are more variables in ARGS then items in the rest
of the command line, a value of rnL is filled in- Extra
i terns on the command line are ignored. The TTYLINEs are
the body of the breakmacro definition and are lists of
break commands or forr.is to be eva:luated. If the atom is
defined as a macro, (i.e. is found on BREAKMACROS) BREAKl
as signs values to the variables in ARGS, substitutes· these
values for all occurrences of the variables in TTYLINEs and
appends the T7YLINEs to the front of BR KC OMS. When B~EAKl
is ready to accept another cor.imand, if BRKCOM S is non-NIL
it takes the first element of BRKCOMS and processes it
exactly as if it had been a 1 ine input from the teletype.
This means that a macro name can be defined to expand to
any arbitrary collection of expressions that the user could
type in. If the command is not contained in BREAKMACROS,
it is treated as a function or variable as before.

Example: a command PARGS to print the arguments of the
function at LASTPOS could be defined by evaluating:

(NCONC BREAKMACROS (QUOTE ((PARGS NIL (?=)))))

A command FP which finds a place on the SPD stack and
prints the form there can be ~efined by:

(NC0!1C BREAK:'1ACROS (QUOTE (FP X (F •
LASTPOS))))))

1 • 1 7

X) ((PRINT (SPDLRT

BREAK PACKAGE

How To Set A Break

The followin9 functions are useful for setting and
unsetting breaks and traces.

Both BREAK and TRACE use a function BREAK0 to do the
actc:.,l :,:.)J_iCi.,..::.itiein of ·r:unctiun df.?finitions. When BREAK0
breaks a SUBR or an FSUBR, it prints a message of the form
(--- . ARGUMENT L1ST?). The user should respond with a
list of arguments for the function being broken. (FSUBR' s
take only one argument and BREAK0 checks for this O) The
arguments on this list are actually bound during the calls
to the broken function and care should be taken to insure
that they dq not conflict with fre~ variables. For
LSUBR's, the atom N? Is used as the argument. It is
possible to GRINDEF and edit functions that are traced or
broken. BROKE!JFNS is a list of the functions currently
broken ■ TRACEDFNS is a list of the functions currently
traced.

BREAK.

BREAK is an FEXPR. For each atomic argument, it
breaks the function named each time it is called. For each
list in the form (fnl IN fn2), it breaks only those
occurrences of FNl which appear in FN2. This feature is
very useful for breaking a function that is called from
many places, but where one is only interested in the call
from a specific function, e.g. (RPLACA IN FOO), (PRINT IN
FIE), etc. For each list not in this form, it assumes that
the CAR is a function to be broken; the CADR is the break
condition; (When the fuction is called, the break condition
is evaluated. If it returns a non-NIL value, the break
occurs. Otherwise, the computation continues without a
break.) and the CDDR is a list of command lines to be
performed before an interactive break is made (see BRWHEN
and BRKCOMS of BREAKl). For example,

(BREAK FOOl (FOO2 (GREATERP N 5) (ARGS)))

will break all calls to FOOl and all calls on FOO2 when N
is greater than 2 after first printing the arguments of
FOO2.

1 . 18

(BREAK ((F004 IN FOOS) (MINUSP X)))

will break all calls to F004 made from FOOS when X is
negative.

Examples:
(BREAK FOO)
(BREAK ((GET IN FOO) T (GO)))
(i3REAK (SETO (EQI11) ((PRINT (QUOTEN=l)))(?=M)))

TRACE

TRACE is an FEXPR. For each atomic argument, it
traces the function named (see form on page 1.3) each time
it is called. For each list in the form (fnl IN fn2), it
traces only those calls to FNl that occur within FN2- For
each list· argument not in this form, the CAR is the
function to be traced, and the CDR is a list of variables
(or forms) the user wishes to see in the trace.

For example, (TRACE (FOOl Y) (SETQ IN FOOJ)) will
ca use both FOO 1 and SETQ IN FOO 3 to be traced. SETQ' s
argument will be printed and the value of Y will be printed
for FOOL

TRACE uses the global variable # %INDENT to keep its
position on the line. The printing of output by TRACE is
printed using %PRINFrJ (see page 1. 9). TRACE can therefore
be pretty printed by:

(SETQ %PRINFN (QUOTE PRETPRIN))
(DE PRETPBIN (FORM)

(SPRINT FORM (*PLUS 10 #%INDENT)))

Examples:
(TRACE FOO)
(TRACE *TIMES (SELECTQ IN DOIT))
(TRACE (EVAL IN FOO))
(TRACE (TRY M rJ X (*PLUS N, M)))

Note: The user can always call BREAK □ himself to
obtain combinations· of options of BREAKl not directly
available with BREAK and TRACE (see section on BREAK □
below). These functions merely provide convenient ways of
calling BREAK □, and will serve for most uses.

1 . 19

BREA KIN

BREAKIN enables the user to insert· a break, i • e., a •
call to BREAKl, at a specified location in an interpreted
function. For example, if FOO calls FIE, inserting a break
in FOO before the call to FIE is similar to breaking FIE.
However, BREAKIN can be used to insert breaks before or
after prog labels, particular SETQ expressions, or even the
evaluation of a variable-_ This is because BREAKIN operates
by calling the editor and actually inserting a call to
BREAKl at a specified point inside of the function.

The user specifies where the break is to be inserted
by a sea;uence of editor commands. These commands are
preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the
specified point, i.e., put the call to BREAKl BEFORE that
potnt, AFTER that point, or AROUND that point. For
example, (BEFORE COND) will insert a break before the first
occurrence of corm, (AFTER COND 2 l) wi 11 insert a break
after the predicate in the first COND clause, (AFTER BF
(SETQ X F)) after the last place X is set~ Note that
(BEFORE TTY:), (AROUI1D TTY:) or (AFTER TTY:) permit the
user to type in commands to the editor, locate the correct
point, and verify it for himself using the P command, if he
desires. Upon exit from the editor' with OK, the break is
inserted. (.I\ STOP command typed to TTY: produces the same
effect as an unsuccessful edit command in the original
specification, e.g., (BEFORE CONDO). In both cases, the
editor aborts, and BREAKIN types (NOT FOUND).)

for BREA KIN BEFORE or AFTER, the break expression is
NIL, since the value of the break is usually not of
interest. For BREAKIN AROUND, the break expression will be
the indicated form. When in the break, the user can use
the EVAL command to evaluate that form, and see its value,
before al lowing the cornputa tion to proceed. For example,
if the user inserted a break after a COND predicate, e.g.,
(AFTER (EQUAL X Y)), he would be powerless to alter the
flow fo computation if the predicate were not true, since
the break would not be reached. However, by breaking
(AROUND (EQUAL X Y)), he can evaluate the break expression,
i 0 e 0 , (EQUAL X Y), see its value and evaluate something
else if he wished.

The message typed for a BREAKIN break identifies the
location of the break as well as the function, e.g.,

l . 20

((FOO (AFTER CON □ 2 1)) BROKEN).

BREAKIN is an FEXPR which has a maximum of four
arguments. The first argument is the function to be broken
in. The seco;1d argument is a list of editor commands,
preceded by BEFORE, f..FTER, or AROUND, which specifies the
location inside tbe function at which to break ■ If there
is no second ·argument, a value of (BEFORE TTY:) is assumed.
(See earlier discussion.) The' third and fourth arguments
are the break condition and the list of cor:imands to be
performed before the interactive break occurs, (BRKWHEN and
BRKCOMS for BREAKl) re spec ti vely. If there is no third
argument, a value of Tis assumed for BRKWHEN which causes
a break each time the BREAKIN break is executed. If the
fourth argument is missing, a value of NIL is assumed. For
example,

{BREAKIN FOO (AROUND COND))

inserts a break around the first call to CON□ in FOO.

It is possible to insert multiple break points, with a
single call to BREAKIN by using a list of the form ((BEFORE
•••) (AROUND •••)) as the second argument. It is also
possible to BREAK or TRACE a function which has been
modified by RREAKIN, and conversely to_ BR.EAKIN a function
which is broken or traced. UNBREAK restores functions
which have been broken in- GRHlDEF makes no attempt to
correct the modification of BREAKIN so functions should be
unbroken before th~y ·are stored on disk ■

Examples:
(BREAKIN FOO (AROUND ~TY:) T (?=MN) ((*PLUS X Y)))
(BREAKIN F002 (BEFORE SETQ) (EQ X Y))

UUBREAK

UNBREAK is an FEXPR. It takes a list of functions
modified by BREl\K or BREAKI11 and restores them to their
original state. It's value is the list of functions that
were "unbroken".

(UNBREAK T) will unbreak the function most recently
broken.

(U~BREAK) will unbreak all of the functions currently

1 . 21

broken (i.e. all those on BROKENFNS).

If one of the functions is not broken, UNBREAK · has a
value of (fn NOT BROKEN) for that function and no changes
are made to fn.

Note: If a function is
either UNTRACE or UNBREAK
function definition.

both
Will

traced and broken in,
restore the original

UNTRACE

UNTRACE is an
modified by TRACE
state. It's value
"untraced".

FEXPR. It takes a list of functions
and restores them to their original

is the list of functions that were

(UN TRACE T) Wi 11 unbrea k the function most rec en tl y
traced~

(UNTRACE) will untrace all of the functions currently
traced (i 0 e. all those on TRACEDFNS).

If one of the functions is not traced, UNTRACE has a
value of (fn NOT BROKP-:H) for that function and no changes
are made to fn.

1 . 22

BREAK0 [FN WHEN COMS]

BREAK0 is an EXPR. It sets up a break on the function
FN by redefining FN as a call to BREAKl ~ith BRKEXP ~ form
equivalent to the definition of FN, and WHEN, FN and COMS
as BRKWHEN, BRKFtl, and BRKCOMS, respectively (see BREAKl).
BREAK0 also adds TN to the front of the list BROKEHFNS.
It's value is FN.

If FN is non-atomic and of the form (fnl IN fn2),
BREAK0 first calls a function which changes the name of fnl
wherever it appears inside of fn2 to that of a new
function, fnl-IN-fn2, which is initially defined as fnl.
Then BREAK0 ·proceeds to break on fnl-IN-fn2 exactly as
described above. This procedure is useful for breaking on
a function that is called from many places, but where one
is only interested in the call fror.i a speci fie function/,
e.g. (RPLACA IN FOO), (PRINT IN FIE), etc. This only works
in interpreted functions. If fnl is not found in fn2,
BREAK0 returns the value (fnl NOT FOUND IN fn2).

If FN is non-atomic and not of the above form, BREAK0
is called for each member of F'N using the same values for.
WHEn and COMS specified in this ca 11 to BREAK0. This
distributivity permits the user to specify complicated
break conditions .without excessive retyping, e.g.,

(BREAK0 (QUOTE (FOOl ((PRINT PRINl)IN (FOO2 FOO]))))
(QUOTE (EQ X T))
(QUOTE ((EVl\L) (?= Y Z) OK)))

will break on FOOl, PRINT-IN-FOO2, PRINT-IN-FOO 3,
PRIN1-IN:-FOO2, and PRINl-IrJ-FOOJ.

If FN is non-atomic, the value of BPEAK0 is a list of
the individual v~lues.

For example, BREA KO can be used to trace the changing
of particular values by SETO in the following manner:

*(SETQ VARLIST (QUOTE (X Y FOO)))
* (BREAK O (QUOTE SF.TQ) (QUOTE (MEMQ _ (CAR XXXX) VARLIST))
* (QUOTE ((TRACE) (?=) (UNTRACE))))
(SETQ ARGMEfJTS?)*(XXXX)

SETQ will be traced whenever CAR of its argument (SETQ is
an FSUBR) is a member of VARLIST.

1 . 2 3

ERROR Pl'\.CKAGE

Introduction

When an error occurs during the evaluation of a LISP
expression, control is turned over .to the Error Package.
The I /0 is forced to the TTY (channel NIL) but wi 11 be
restored to its previous channels if the user continues the
evaluation. The idea behind the error package is that it
may be possible to ·patch up' the form in which the error
occurred and continue. Or, at least, that you can find the
cause of the error more easily if you can examine the state
of the world at the time of the error. Basically, what the
Error Package does is cal 1 BREAK 1 with BRKEXP set to the
form in which the error occurred. This puts the user 'in a
break' around the form in which the error occurred. BREAKl
acts, just like the top level of the interpreter with some
added commands (see section on BREAKl). The main
difference when you are in the Error Package is that the
variable bindings that were in effect when the error
occurred are still in effect. Furthermore, the expressions
that were in the process of evaluation are still pending.
While in the Error Package, variables may be examined or
changed, and functions may be defined or .edited just as if
you were at the top level. In addition, there are several
ways in which you can abort or continue from the point of
error. In particular, if you can patch up the error, you
can continue by typing OK. If you can't patch the error, j
wi 11 get you out of the break. When you are in the error
package, the prompt character is •: • and is preceded by a
level number. :~ote: if you don't want the error package
invoked for- some reason, it can be turned off by evaluating
(*RSET NIL). Similarly, (*RSET T) will turn the error
package back on.

Commands

There are several atoms which will cause special
actions when typed into BREAK 1 (the error package). These
actions are useful for examining the push down stack (e.g.
backtrace s), changing forms and exiting from the break in
various ways. Table I (on the next page) gives a summary
of the actions. For a complete description, see the
section on 'What You Can Do In A Break'.

1 . 2 4

Table I
Break Package Command Summary

(for complete description see pp. 1-8-1.16)

Command

GO

OK

EVAL

RETURN xx

r
ii

> [- >] expr

FROM?= form

EX

USE x FOR y

F [&J al- .an

EDIT Al .. An

?= f 1 . . . fN

ARGS

SKF

BKE

BK

Action

Evaluates BRKEXP, prints its value,
and continues with this value

Same as GO but no print of value

Reevaluate BRKEXP and print its value.
Its value is bound to !VALUE

Evaluate xx and continue with its value

Escape one level of BREAKl

Escape to the top level

After an error, use expr for the erring atom

Continues by re-evaluating form at LASTPOS

Same as FROM?= H IL

Substitutes x for yin form at LASTPOS
(destructively)

Resets LASTPOS (stack context)

Resets LASTPOS and gives the form at LASTPOS
to the LISP Editor

Evaluates forms fI as of LASTPOS

Prints arguments of the broken function

Backtrace Function Names

Backtrace Function Calls

Backtrace Expressions

Note: All of the backtrace commands can be combined with a
·v· or followed by an integer. The 'V' will cause the
values of variables to be printed. The integer wi 11 1 imi t

1 . 25

the trace to that number of blocks. For example, BK 3,
BKEV, BKFV 5 and BKEV are all legitimate commands.

1 • 2 6

The LISP Editor

Contents

2 CURRENT EXPRESSION, P, &, PP, EDIT CHAIN, O, T,
5 (n), (n eL ... , em), (-n el, eo•, em), N, F, R, NX, RI,

10 UNDO, BK, BF, \, \P, &, --, @ (AT-SIGN),
13 UP, B, A, : , DELETE, MBD, XTR, UP, .. 0 , n, -n,
18 0, !O, f, NX, BK, (NX n), (BK n), !NX, (NTH n),
22 PATTERN MATCH, &, *ANY*, --, ==, ... ,
24 SEARCH ALGORITHM, MAXLEVEL, UNFIND, F, (F pat n),
27 (F pat T), (F pat N), (F pat), FS, F.=, ORF, BF, (BF pat T),
30 LOCATION SPECIFICATION, IF, ##, $, LC, LCL, SECOND, THIRD,
32 (~pat), BELOW, NEX, (NTH$), .• , MARK,+,~, \, UNFIND,
37 \P, S, (n), (n el, ..• , em), (-n el, ""°" em), N,
41 B, A, :, DELETE, IN~ERT, REPLACE, DELETE, ##, UPFINDFLG,
46 XTR, EXTRACT, MBD, EMBED, MOVE, BI, BO, LI, LO, RI, RO,
57 THRU, TO, R, SW, P, ?, E, I, ##, COMS, COMSQ,
66 IF, LP, LPQ, ORR, MACROS, M, BIND, USERMACROS,
71 NIL, TTY:, OK, STOP, SAVE, REPACK, MAKEFN,
76 UNDO, TEST, ??, !UNDO, UNBLOCK, EDITDEFAULT, EDITL,
81 EDITF, EDITE, EDITV, EDITP~ EDITFNS, EDIT4E,
84 EDITFPAT, EDITF1NDP

The LISP editor allows rapid, convenient modification
of list structures. Most often it ,is used to edit function
definitions, (often while the function itself is running)
via the function EDITF, e.g., (EDITF FOO). However, the
editor can also be used to edit the value of a variable, via
EDITV, to edit special properties of an atom, via EDITP, or
to edit an arbitrary expression, via EDITEo It is an
important feature which allows good on-line interaction in
the UCI LISP system.

This chapter begins
intended for the new user.
page 15.

with a lengthy introduction
The reference portion begins on

2 . 1

Introduction

Let us introduce some of the basic editor commands, and
give a flavor for the editor's language structure by guiding
the reader through a hypothetical editing session. Suppose
we are editing the following incorrect definition of APPEND

(LAMBDA(X)
y
(COND ((NUL X) Z)

(T (CONS (CAR) (APPEND (CDR X Y))))))

We call the editor via the function EDITF:

#(EDITF APPEND)
EDIT

1

The editor responds by typing EDIT followed by #, which is
the editor's ready character, i.e., i.t signifies that the
editor is ready to accept commands. (In other words, al 1
lines beginning with# were typed by the user, the rest by
the editor.)

At any given moment, the editor's attention is centered
on some substructure of the expression being edited. This
substructure is called the current expression, and it is
what the user sees when he gives the editor the command P,
for print. Initially, the current expression is the top
level one, i.e., the entire expression being edited. Thus:

#P
(LAMBDA (X) Y (COND & &))

Note that the editor prints the current expression,
using PRIHTLEV, to a depth of 2, i.e., sublists of sublists
are printed as &. The command ? W:i.11 print the current
expression as though PRINTLEV was given a depth of 100.

#?
(LAMBDA (X) Y (COND ((NUL X) Z) (T (CONS (CAR) (APPEND (CDR

X Y))))))

and the command PP (for PrettyPrint) will GRINDEF the
current expression.

2 • 2

A positive integer is interpreted by the editor as a
command to descend into the correspondingly numbered element
of the current expression. Thus:

#2
#P
(X)

A negative integer has a similar effect, but counting
begins from the end of the current expression and proceeds
backward, i 0 e., -1 refers t6 the last element in the
expression, -2 the next to the last, etc. For either
positive integer or negative integer, if there is no such
element, an error occurs. ·Editor errors· are not the same
as 'LISP errors' , i.e., they never cause breaks or even go
through the error machinery but are direct calls to ERR
indicating that a command· is in some way faulty. What
happens next depends on the context in which the command was
being executed. For example, there are conditional commands
which· branch • on errors. In most situations, though, an
error will cause the editor to type the faulty command
followed by a? And wait for more input. In this case, the
editor types the faulty command followed by a ?, and then
another # 0 The current expression .i..§. never changed when a
command causes fill error- thus:

#P
(x)
#2
2 ?
#1
#P
X

A phrase of the form 'the current expression is
changed' or 'the current expression becomes' refers to a
shift in the editor's ATTENTION, not to a modification of
the structure being edited.

When the user changes the current expression by
descending into it, the old current expression is not lost.
Instead, the editor actually operates by maintaining a chain
of expressions leading to the current one. The current
expression is simply the last link in the chain. Descending
adds the indicated subexpression onto the end of the chain,
thereby making it be the current expressiono The command 0

2 • 3

is used to ascend the chain; it removes the last link of the
chain, thereby making the previous link be the current
expression. Thus:

#P
X
#0 p
(X)
#0-1 P
(COND (& Z) (T &))

Note the use of several commands on a single line in the
previous output. The editor operates in a line buffered
mode. Thus no command is actually seen by the editor, or
executed until the line is terminated, either by a carriage
return, or an escape (alt-mode).

In our editing session, we will make the following
corrections to APPEND: delete Y from where it appears, add Y
to the end of the argument list, (These two operations could
be thought of as one operation, i-e-, move Y from its
current position to a new position, and in fact there is a
MOVE command in the editor. However, for the purposes of
this introduction, we will confine ourselves to the simpler
edit commands.) change NUL to NULL, change Z to Y, add X
after CAR, and insert a right parenthesis following CDR x.

First we will delete y. By now we have forgotten where
we are in the function definition, but we want to be at the
"top," so we use the command t, which ascends through the
entire chain of expressions to the top level expression,
which then becomes the current expression, i.e., t removes
all links except the first one.

#l P
(LAMBDA (X) Y (COND & &))

Note that if
effect, i.e., it
error. In other

we are already at the top, j has no
is a NOP. However, 0 would generate an
words, j means "go to the top," while 0

means "ascend one link."

2 . 4

The basic structure modification commands in the editor

(n)

(n.el, ..• ,em)

(-n elu•••,em)

Thus:

n~l deletes the corresponding
element from the current expression-

n, m~l
the

replaces
current

el, , em.

n, m~l
nth

inserts
element

expression-

#P

the nth element in
expression with

el, .. ~, em before the
in the current

(LAMBDA (X) Y (COND & &))
(3)
#(2 (XY))
#P
(LAMBDA (X Y) (CONO & &))

a.l.l, structure modification ~ hY the editor is
destructive, i 0 e 0 , 1.b,g_ editor uses RPLACA and RPLACD to
physically change~ structure il ~ given° Note that all
three of the above commands perform their operation with
respect to the nth element from the front of the current
expression: the sign of n is used to specify whether the
operation is replacement or insertion. Thus, there is no
way to specify deletion or replacement of the nth element
from the end of the current expression, or insertion before
the nth element from the end without counting out that
element's position from the front of the list. Similarly,
because we cannot specify insertion after a particular
element, we cannot attach something at the end of the
current expression using the above commands. Instead, we
use the command N (for NCONC). Thus we could have performed
the above changes instead by:

2 • 5

#P
(LAMBDA (X) Y (COND & &))
(3)
#2 (N Y)
#P
(X y)
#i p
#(LAMBDA (X Y) (COND & &))

Now we are ready to change NUL to NULL. Rather than
specify the sequence of descent commands necessary to reach
NULL, and then replace it with NULL, i ■ e 0 , 3 2 1 (1 NULL),
we will use F, the find command, to· find NULL:

#P
(LAMBDA (X Y) (COND & &))
#F NUL
#P
(NUL X)

#(1 NULL)
#0 p
((NULL X) Z)

Note that F is special in that it corresponds to TWO
inputs. In other words, F says to the editor, "treat your
~ command as an expression to be searched for." The
search is carried out in printout order in the current
expression. If the target expression is not found there, F
automatically ascends and searches those portions of the
higher expressions that would appear after (in a printout)
the current expression- If the search is successful, the
new cur~ent expression will be the structure where the
expression was found, (If the search is for an atom, e.g., F
NUL, the current expression will be the structure containing
the atom. If the search is for a list, e.g., F (NUL X), the
current expression will be the list i•tself.) and the chain
will be the same as one resulting from the appropriate
sequence of ascent and descent commands. If the search is
not successful, an error occurs, and neither the current
expression nor the chain is changed: (F is never a NOP,
i.e., if successful, the current expression after the search
will never be the same as the current expression before the
search- Thus F EXPR repeated without intervening commands
that change the edit chain can be used to find successive
instances of EXPR.)

2 • 6

#P
((NULL, :f) Z)
#F corm P

COND ?
#P
((NULL ,X) Z)

Here the search failed to find a COND following the
current expression, al though of course. a corm does appear
earlier in the structure. This last example illustrates
another facet of the error recovery rnechani sm: to avoid
further confusion when an error occurs, all commands on the
line beyond the one which caused the error (and all commands
that may have been typed ahead while the editor was
computing) are forgotten.

We could also have used the R command (for Replace) to
change NUL to NULL. A command· of the form (R el e2) • will
replace all occurrances of el in the current expression by
e2- There must be at lea st one such occurrence or the R
command will generate an error ■ Let us use the R command to
change all z's (even though there is only one) in APPEND to
y:

#T (R z Y)
#F Z

z ?
#PP
(LAMBDA(X Y)

(COND ((NULL X) Y)
(T (CONS (CAR) (APPEND (CDR X Y))))))

The next task is to change (CAR) to (CAR X). We could
do this by (R (CAR) (CAR X)), or by:

#F CAR
(N X)
#P
(CAR X)

The expression we
expression after the

now want to change is
current expressioni i 0 e.,

2 0 7

the
we

next
are

currently looking at {CAR X) in {CONS {CAR X) {APPEND {CDR X
Y))). We could get to the APPEND expression by typing 0 and
then 3 or -1, or we can use the command NX, which does both
operations:

#P
{ CAR X)
#NX P
(APPEND {CDR X Y))

Finally, to change {APPEND (CDR X Y)) to (APPEND (CDR
X) Y), we could perform (2 (CDR X) Y), or (2 (CDR X)) and (N
Y), or 2 and (3), deleting the Y, and then O (N Y).
However, if Y were a co~plex expression we would not want to
have to retype it. In stead, we could use a command which
effectively inserts and/or removes left and right
parentheses. There are six of these BI, BO, LI, LO, RI, and
RO, for Both In, Both Out, Left In, Left Out, Right In, and
Right Out. Of course, we will always have the same number
of left parentheses as right parentheses, because the
parentheses .are just a notational guide to structure that is
provided by our print program. (Herein lies one of the
principal advantages of a LISP oriented editor over a text
editor: unbalanced parentheses errors are not possible.)
Thus, left in, left out, right in, and right out actually do
not insert or remove just one parenthesis, but this is very
suggestive of what actually happens.

In this case, we would like a right parenthesis to
appear following X in (CDR X Y). Therefore, we use the
command (RI 2 2), which means insert a right parentheses
after the second element in the second element (of the
current expression):

#P
(APPEND (CDR X Y))
#(RI 2 2)
#P
(APPEND (CDR X) Y)

We have now finished our editing, and can exit from the
editor, to test APPEND, or we could test it while still
inside of the editor, by using the E command~

#E (APPEND (QUOTE (A B)) (QUOTE (C D E)))
(ABC DE)

2 . 8

The E command ca uses the next input to be given to
EVAL.

W~ GRINDEF APPEND, and leav~ the editor.

#PP
(LAMBDA(X Y)

{COND ((NULL X) Y),

#OK
APPEND
*

(T (CONS (CAR X) (APPEND (CDR X) Y)))))

2 • 9

commands for the New User

This manual is intended primarily as a reference
manual, and the remainder of this chapter is organized and
presented accordingly. While the commands introduced in the
previous scenario constitute a complete set, i.e., the user
could perform any and all editing operations using just
those commands, there are many situations in which knowing
the right command(s) can save the user considerable effort.
We irtclude here as part of the introduction a list of those
commands which are not only frequently applicable but also
easy to use. They are not presented in any particular
order, and are all discussed in detail in the reference
portion of the chapter.

UNDO

B'K

BF

\

Undoes the last modification to the
structure being edited, e.g., if the
user deletes the wrong element, UNDO
will restore it 0 The availability
of UNDO should give the user
confidence to experiment with any
and all editing commands, no matter
how complex, because he can always
reverse the effect of the command.

Like NX, except makes the expression
immediately before the current
expression become current.

Backwards Find. Like F, except
searches backwards, i.e., in inverse
print order-

Restores the current expression to
the expression before the last "big
jump", e.g., a find command, ant,
or another \. For example, if the
user types F COND, and then F CAR, \
would take him back to the COND.
Another\ would take him back to the
CAR•

2. 10

\P
Like \ except i -c restores the edit
chain to its stat~ as of the last
print, either by P, ?, or PP. If
the edit chain has not been changed
since the last print, \P restores it
to its state as of the printing
before that one, i 0 eo, two chains
are always aaved.

Thus if the user types P followed by 3 2 1 Pv \P will
take him back to the first P, i 0 e., would be equivalent to 0
0 0 o Another \P would then take him back to the second P,
i. e O , he can use \P to flip back and forth between two
current expressions.

The search expression given to the F
or BF command need not be a literal
S-expression. Instead, it can be a
pattern. The symbol & can be used
anywhere within this pattern to

• match with any single element of a
list, and can be used to match
with any segment of a list. Thus,
in the incorrect - definition of
APPEND used earlier, F (NUL &) could
have been used to find (NUL X), and
F (CDR --) or F (CDR & &), but not F
(CDR &), to find (CDR X Y).

Note that & and -- can be nested arbitrarily deeply in
the pattern. For example, if there are many places where
the var a ible X is set, F SETQ may not find the desired
expression, nor may F (SETO X &). It may be necessary to use
F (SETQ X (LIST--)). However, the usual technique in such a
case is to pick out a unique atom which occurs prior to the
desired expression and perform two F commands ■ This "homing
in" process seems to be more convenient than ultra-precise
specification of the pattern.

2 . 11

@ (at-sign)
Any atom ending in@ (at-sign) in a
pattern will match with the first
atom or string that contains the
same initial characterso For
example, F VER@ will find
VERYLONGATOM0 @ can be nested inside
of the pattern, e.g°' F (SETQ VER@
(CONS--)).
If the search is successful, the
editor will print= followed by the
atom which matched with the @-atom,
e.g.,

#F (SETQ VER@&)
=VERYLONGATOM

Frequently the user will want to replace the entire
current expression or insert something before it. In order
to do this using a command of the form (n el, ••• ,em) or (-n
elo ••• ,em), the user must be above the current expression.
In other words, he would have to perform a 0 followed by a
command with the appropriate number. However, if he has
reached the current expression via an F command, he may not
know what that number iso In this case, the user would like
a command whose effect would be to modify the edit chain so
that the current expression became the first element in a
new, higher current expression. Then he could perform the
desired operation via (1 el, ••• ,em) or (-1 el, ••• ,em). UP
is provided for this purpose.

2. 12

UP

(A e 1, .•. , em)

After UP operates, the old current
expression is the first element of
the new current expression° Note
that if the current expression
happens to be the first element in
the next higher expression, then UP
is exactly the same as o.
Otherwise, UP modifies the edit
chain so that the new current
expression is a tail (Throughout
this. chapter 'tail' means 'proper
tail') of the next higher
expression:

#F APPEND
(APPEND (CDR X) Y)
#UP P

(APPEND & Y))
#0 p
(CONS (CAR X) (APPEND & Y))

The is used by the editor to
indicate that the current expression
is a tail of the next higher
expression as opposed to being an
element (ioe 0 , a member) of the next
higher expression. Note: if the
current expression is already a
tail, UP has no effect$

Inserts el, ••• ,em before the current
expression, i.e. g does an UP and
then a -1.

Inserts el, .•• , em after the current
expression, ioe., does an UP and
then either a (-2 el, 000 ,em) or an
(N el, .•• ,em), if the current
expression is the last one in the
next higher expression.

2 0 13

(: e 1 , ... , em)

DELETE

Replaces current expression by
elr ■•■ ,em, iQe ■, does an UP and then
a (1 e 1 , ... , em) .

Deletes current expression, i.e.,
equivalent to (:).

Earlier, we introduced the RI command in the APPEND
example. The rest of the commands in this family:, BI, ROu
Lii LO, and RO, perform similar functions and are useful in
certain situations. In addition, the commands MBD and XTR
can be .used to combine the effects of several commands of
the BI-BO family. MBD is used to embeQ the current
expression in a larger expression. For example, if the
current expression is (PRINT bigexpression), and the user
wants to replace it by (COND (FLG (PRINT bigexpression))),
he can acomplish this by (LI 1), (-1 FLG), (LI 1), and (-1
COND), or by a single MBD command 0

XTR is used to eKtL_act an expression from the current
expression° For example, extracting the PRINT expression
from the above COND could be accomplished by (1) , (LO 1) ,
and (LO 1) or by a single XTR command. The new user is
encouraged to include XTR and MBD in his repertoire as soon
as he is familiar with the more basic commands.

2 •. 14

Attention Changing Commands

Commands to the editor fall into three classes:
commands that change the current expression (i.e. g change
the edi.t chain) thereby "shifting the editor's attention,"
commands that modify the structure being edited, and
miscellaneous commands, e.g.o exiting from the editor,
printing, evpluating expressions ■

within the context of commands that shift the editor's
attention, we can distinguish among (1) those commands whose
operation depends only on the structure of the edit chain,
e.g. , O, UP, NX; (2) those which depend on the contents of
the structure, i 0 e 0 0 commands that search; and (3) those
commands which simply restore the edit chain to some
previous state, e.g., \, \P. (l) and (2) can also be
thought of as local, small steps versus open ended" big
jumps. Commands of type (1) are discussed on pp.
2°15-2.21; type (2) on pp. 2.22-2.35; and type (3) on pp.
2.36-2.37°

2 • 15

Local Attention-Changing Commands

UP
(1) If a P command would cause the
editor to type ..• before typing
the current expression, i 0 eo, the
current expression is a tail of the
next higher expression, UP has no
effect: otherwise
(2) UP modifies the edit chain so
that the old current expression
(i. e o, the one at the time UP was
called) is the first element in the
new current expression. (If the
current expression is the first
element in the next higher
expression UP simply does a 0.
Otherwise UP adds the corresponding
tail to the edit chain.

Examples: The current expression in each case is (COND
((NULL X) (RETURN Y))) •

10 #1 p
COND
#UP P
(COND (& &))

2. #-1 p
((NULL X)
#UP P ... ((NULL
#UP p

((NULL

3. #F NULL P
(NULL X)
#UP P

(RETURN Y))

X) (RETURN

X) (RETURN

((NULL X) (RETURN Y))
#UP P

y)))

y)))

••• ((NULL X) (RETURN Y)))

The execution of-UP is straightforward, except in those
cases where the current expression appears more than once in
the next higher expression. For example, if the current
expression is (A NIL B NIL C NIL) and the user performs 4
followed by UP, the current expression should then be •••
NIL C NIL.) UP can determine which tail is the correct one

2 • 16

because the commands that descend save the last tail on an
internal editor .variable, LASTAIL ■ Thus after the 4 command
is executed, LASTAILis (NIL t NIL). When UP is called, it
first determines if the current-expression is a tail of the
next higher expression. If it is, UP is finished.
Otherwise, UP ~omputes
0;1EMB current-expression next-higher-expression) to .obtain a
tail beg inning with the current expres s{ori. • (The current
expression . should ·always be either a tail or an element· pf
the' next, higher expression. If it is neither, for example
the user has directly (and incorrectly) manipulated the edit
chain, UP generate~ an error.) If there are no other
instan~es of the current-expressio~ in the next higher
expression, this tail is the correct one ■ Otherwise UP use~
LASTAIL'· to select the correct ta i 1. (Occasionally the user
can get the edit chain into a state where LASTAIL cannot
resbl ve • the ambiguity, for example if ther"e were two
non-atomic structures in the same expression that were EQ,
and the user descended more than one level into one of them
and then tried to come back out using UP. In this case, UP
selects the first tail and.prints LOCATION UNCERTAIN to warn
the user. Of course, we could have solved this problem
completely in our implementation by saving at each descent
both elements and tails. However, this would be a costly
solution to a situation that arises infrequently, and when
it does, has no detrimental effects. The LASTAIL solution
is cheap ari~ resolves 99% of the ambiguities.

n (n>O)

-n (n>O)

Adds the nth element of the current
expression to the front of the edit
chain, thereby making it be the new
current expression. Sets LASTAIL
for use by up. Generates an error
if the current expression is not a
list that contains at least n
elements.

Adds the nth element from the end of
the current expression to the front
of the edit chain, thereby making it
be the new current expression ■ Sets
LASTAIL for use by UP. Generates an
error if the .current expression is
not a list that contains at least n
elements.

2 • 1 7

0
Sets edit chain to CDR of edit
chain,·· thereby making the next
higher expression be the new correct
expres·sion. Generates an error if
there is no higher expression, i.e.,
CDR of edit chain is NIL.

Note that O usually corresponds_ to going back to the next
higher left parenthesis, but not always. For example, if
the current expression is (A B C D E F • G), and the user
performs

UP P
••• C D E F G)
#3 UP P
•. • E F. G)
#0 p
•• • C D E F G)

If the intention is to go back to the ne~t higher left
parenthesis, regardless of any intervening tails, the
command !O can be used. (!O is pronounced bang~zero.)

!O

r

Does repeated O's until it reaches a
point where the current expression
is not a tail of the next higher
expression, i.e., always goes back
to the next higher left parenthesis.

Sets edit chain to LAST of edit
chain, thereby making the top level
expression be the current
expression.
error.

2 • 18

Never generates an

NX

BK

Effectiv~ly does an UP followed by a
2, (Both NX and BK operate by
performing a ! 0 followed by an
appropriate number, i.e. There
won't be an extra tail above the new
current expression, as there would
be if NX operated by performing an
UP foll-0wed by a 2.) thereby making
the current expression be the next
expression. Generates an error if
the current expression is the last
one in a list. (However, !NX
described below will handle this
case o)

Makes the current expression be the
previous expression in the next
higher expression. Generates an
error if the current expression is
the first expression in a list.

For example, if the current expression is (COND ((NULL X)
(RETURN Y)))

#F RETURN P
(RETURN Y)
#BK P
(NULL X)

(NX n) n>O

(BK n) n>O

Equivalent ton NX commands, except
if an error occurs, the edit cha in
is not changed"

Equivalent ton BK cornmandsr except
if an error occurs, the edit chain
is not changed.

Note: {NX -n) is equivalent to (BK n), and vice versa.

2 • 19

,------
' .

!NX
Makes current expression be the next
expression/ at a higher levelu i.eo,
goes through any number of right
parentheses to get to the next
expression.

For example:

#PP
(PROG (UF)

(SETQ UF L)
LP (COND ((NULL (SETQ L (CDR L))) (ERR NIL))

((NULL (CDR (MEMQ# (CARL) (CADR L})))
(GO LP)))

(EDITCOM (QUOTE NX))
(SETQ UNFIND UF)
(RETURN L))

#F CDR P
(CDR L)
#NX

NX ?
#!NX P
(ERR NIL)
#NX P
((NULL &) (GO LP))
#!NX P
(EDITCOM (QUOTE NX))

!NX operates by doing O • s until it reaches a stage
where the current expression is not the last expression in
the next higher expression, and then does a NX. Thus !NX
always goes through at least one unmatched right
parenthesis, and the new current expression is always on a
different level, i.e •. , !NX. and NX always produce different
results. For example using the previous current expression:

2. 20

(NTH n) n>O

#F CAR P •
(CAR L)
! NX;: P
(GO LP)
#\P p
(CARL)
#NX P
(CADR L)

Equivalent. to n followed by UP,
i O e. , ca uses the list starting with
the nth element of the current
expression. ((NTH 1) is a NOPe)
Causes an error if current
expression does not have at least n
elements.

A generalized form of NTH using location specifications is
described on page 2.34.

2. 21

Commands That Search
~

Al 1 of the editor commands that search use the same
pattern matching routine- (This routine is available to the
user directly, and is described later in this chapter in the
section on "Editor Functions.") We will therefore begin our
discussion of searching by describing the pattern match
mechanism. A pattern PAT matches with X if

1. PAT is EQ to x.
2. PAT is &.
3. PAT is a number and EQUAL to x.
4. If (CAR pat) is the atom *l\NY*, (CDR pat) is a

list of patterns, and PAT matches X if and only
if one of the patterns on (CDR pat) matches x.

5. If PAT is a literal atom or string, and (NTHCHAR
pat -1) is@, then PAT matches with any literal
atom or string which has the same initial
characters as PAT, e.g. VER@ matches with
VERYLONGATOM, as well as "VERYLONGSTRING".

6. If (CAR pat) is the atom--, PAT matches X if
A 0 (CDR pat)=NIL, i.e. PAT=(--),

e.g., (A --) matches (A) (A B C) and
(A • B)

In other words, -- can match any tail of
a list.

B. (CDR pat) matches with some tail of X,
e.g. (A -- (&)) will match with (AB
C (D)) I but not (A B C D) , or (A B C
(D) E). However, note that (A -- (&)
--) will match with (ABC (D) E).

In other words, will match any
interior segment of a list.

7. If (CAR pat) is the atom==, PAT matches X if
and only if (CDR pat) is EQ to x. (This pattern
is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a
command type in by the user obviously cannot be
EQ to existing structure.)

8. Otherwise if X is a list, PAT matches X if (CAR
pat) matches (CAR x), and (CDR pat) matches (CDR
x).

When searching, the pattern matching routine is called
only to match with elements in the structure, unless the
pattern begins with:::, in which case CDR of the pattern is
matched against tails in the structure. (In this case, the
tail does not have to be a proper tail, e 0 g 0 (::: A --)

2 . 22

will match with the element (ABC) as well as with CDR of
(X A B C), since (A B C) is a tail of (A B C).) Thus if the
current expressiion is (kB C (BC)),

#F (B --)
#P
(BC)
#0 F (:~: B --)
#P
••• BC (BC))
#F (: : : B --)
#P
(BC)

2 0 2 3

Search Algorithm

Searching begins with the cutrent expression and
proceeds in print order. Searching usually means find the
next instance of this pattern, and consequently a match is
not attempted that would leave the edit chain unchanged.
(However, there is a version of the find command which can
succeed and leave the current expression unchanged.) At each
step, the pattern is matched against the next element in the
expression currently being searched~ unless the pattern
beg ins with . . . in which case it is matched again st the
corresponding tail of the expression. (EQ pattern
tail-of-expression)=T also indicates a successful match, so
that a search for FOO will find the FOO in (FIE • FOO).
The only exception to this occurs when PATTERN=NIL, e.g., F
NIL. In this case, the pattern will not match wi'th a null
tail (since most lists end in NIL) but will match with a NIL
element.

If the match is not successful, the search operation is
recursive fir st in the CAR direction and then in the CDR
direction, i 0 e., if the element under examination is a list,
the search descends into that lipt before attempting to
match with other elements (or tails) at the same levelo
(There is a 1 so a version of the find command which only
attempts matches at the top level of the current expression,
i.e., does not descend into elements, or ascend to higher
expressions.)

However, at no point is the total recursive depth of
the search (sum of number of CARs and CDRs descended into)
allowed to exceed the value of the variable MAXLEVEL. At
that point, the search of that element or tail is abandoned,
exactly as though the element or tail had been completely
searched without finding a match, and the search continues
with the next element or tail for which the recursive depth
is below MAXLEVEL· This feature is designed to enable the
user to search circular list structures (by setting MAXLEVEL
srna 11) , as wel 1 as protecting him from ace iden tally
encountering a circular list structure in the course of
normal editing o MAXLEVEL is initially set to 30 0. If a
successful match is not found in the current expression, the
search automatically ascends to the next higher expression,
and continues searching there on the next expression after
the expression it just finished searching. If there is
none, 1. t ascends again, etc. This process continues unti 1
the entire edit chain has been searched, at which point the
search fa i 1 s ~ and an error is generated. If the search

2. 24

fails the edit chain is not· ch?tnged • (nor· are any CONSes
performed.)

If the search is successful, i.e., an expression is
found that the pattern matches, the edit chain is set to the
value it would have had had the user reached that expression
via a sequence of integer commands •

. If the expression that matched was a list, it will be
the final link in the edit chain, i.e., the new current
expression. If the expression that matched is not a list,
e-g~, is an atom, the current expression will be the tail
beginning with that atom, (Except for situations where match
is with Y in (X • Y) P Y atomic and not NIL. In this case,
the current expression will be (X • Y).) i.e., that atom
will be the first element in the new current expression. In
other words, the search effectively does an UP. (Unless
UPFINDFLG=NIL (initially set to T). For discussion, see
page 2°45).

2. 25

Search Commands

All of the commands below set LASTAIL for use by UP,
set UNFIND for use by\ (p. 2.36), And do not change the
edit chain or perform any CONSes if they are unsuccessful or
aborted.

F pattern
i 0 e 0 , two commands: the F informs
the editor that the next command is
to be interpreted as a pattern.
This is the most common and useful
form of the find command. If
successful, the edit chain always
changes, i.e., F pattern means find
the next instance of PATTERN.

If (MEMB pattern current-expression)
is true, F does not proceed with a
full recursive search.

If the value of the MEMB is NIL, F
invokes the search algorithm
described earlier.

Thus if the current expression were (PROG NIL LP (COND
(--(GO LPl))) . . . LPl ...) , F LPl would find the prog
label, not the LPl inside of the GO expression, even though
the latter appears first {in print order) in the current
expression. Note that 1 {making the atom PROG be the
current expression), followed by F LPl would find the first
LPl.

(F pattern N)
Sarne as F r,~sttern, i.e., finds the
next instance of pattern, except the
MEMB check of F pattern is not
performed.

2. 26

(F pattern T)
Simil~r to F pattern, except may
succeed without changing edit chain,
and does not perform the MEMB check.

Thus if the current expression is (corm ".) u F corm
will look for the next corm, but (F COND T) will 'stay
here'.

(F pattern n) n>O

(F pattern) or
(F pattern NIL)

Finds the nth place that pattern
- matches. Equivalent to (F pattern

T) followed by (F pattern N)
repeated n-1 times. Each time
PATTERN successfully matches, n is
decremented by 1, and the search
continues, until n reaches o. Note
that the pattern does not have to
match with n identical expressions;
it just has to match N times. Thus
if the current expression is (FOOl
F002 F003), (F FOO@ 3) will find
F003.

If the pattern does not match
successfully N times, an error is
generated and the edit chain is
unchanged (even if the PATTERN
matched n-1 times).

Only matches with elements at the
top level of the current expression,
i.e., the search will not descend
into the current expression, nor
will it go outside of the current
expression. May succeed without
changing edit chain ■

For example, if the current expression is
(PROG NIL (SETQ X (COND & &)) (COND &) •••)

F (COND --) will find the COND inside the SETQ, whereas {F
(COND --)) wi 11 find the top level COND u i.e. u the second
one.

2 • 2 7

(FS pattern[l]

(F= expression x)

(ORF pattern[l]

BF pattern

pattern[n])
Equivalent to F pattern[ll followed
by F pattern[2] followed by F
pattern n, so that if F pattern m
fails, edit chain is left at place
pattern m-1 matched.

Equivalent to (F (== • Expression)
x) ; i.e. , searches for a structure
EQ to expression, seep. 2.22.

pattern[n])
Equivalent to (F (*ANY* pattern[lJ

pattern[n]) N), i.e., searches
for an expression that is matched by
either pattern[l] or ••.
pattern[n]. Seep. 2.22.

Backwards Find. Searches in reverse
print order, beginning with
expression immediately before the
current expression (unless the
current expression is the top level
expression, in which case BF
searches the entire expression, in
reverse order.)

BF uses the same pattern match
routine as F, and MAXLEVEL and
UPFINbFLG have the same effect, but
the searching begins at the end of
e·ach list, and descends into each
element before attempting to match
that element. If unsuccessful, the
search continues with the next
previous element, etc., until the
front of the list is reached, at
which point BF ascends and backs up,
etc.

For example, if the current expression is
(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --)) --)
F LIST followed by BF SETQ will leave the current
expression as (SETQ Y (LIST Z)), as will F COND followed by
BF SETQ

2. 28

{BF pattern T)
Search ~lways includes current
expression, i-e-, starts at end of
current expression and works
backward, then ascends.and backs up,
etc.

Thus in the previous exampl~, where F COND followed by
BF SETQ found {SETQ Y {LIST Z)), F COND followed by {BF SETQ
T) would find the (SETQ W --) expression.

{BF pattern) .
{BF pattern NIL.)

~a~e_a~ BF.patterrr~

2. 29

Location Specification

Many of the more sophisticated commands described later
in this. chapter use a more general method of specifying
position called a LOCATION SPECIFICATION. A LOCATION
SPECIFICATION is a list of edit commands that are executed
in the normal fashion with two exceptionso First, all
commands not recognized by the editor are interpreted as
though they had been preceded by F. (Normally such commands
would cause errors.) For example, the location specification
(COND 2 3) specifies the 3rd element in the first clause of
the next COND. (Note that the user could always write (F
COND 2 3) for (COND 2 3) if he were not sure whether or not
COND was the name of an atomic command.)

Secondly, if an error occurs while evaluating one of
the commands in the location specification, and the edit
chain had been changed, i.e., was not the same as it was at
the beginning of that execution of the location
specification, the location operation will continue. In
other words, the location operation keeps going unless it
reaches a state where it detects that it is 'looping', at
which point it gives up. Thus, if (COND 2 3) is being
located, and the first clause of the next COND contained
only two elements, the execution of the command 3 would
cause an error. The search would then continue by looking
for the next COND. However, if a point were reached where
there were no further COND s, then the fir st command, COND,
would ca use the error: the edit chain would not have been
changed, and so the entire location operation would fail,
and cause an error.

The IF command
using in location
applied to elements
will be described in
examples ilustrating

and the # # function provide a way of
specifications -arbitrary predicates

in the current expression O IF and # #
detail later in the chapter, along with
their use in location specifications"

Throughout this chapter, the meta-symbol $ is used to
denote a location specification. Thus $ is a list of
commands interpreted as described above~ $ Can also be
atomic, in which case it is interpreted as (LIST$).

2. 30

(_LC 0 $)

(LCL . $)

(SECOND . $)

{THIRD . $},

Provides ·a way of explicitly
invoking . fhe location operation,
eog. ·(LC COND 2 3) will perform the
search described above.

Same as LC except search is confined
• to current expression, i.e., the

edit chain is rebound during the
seaich so it looks as if the editor
were called on just the current
expression. For example, to find a
COND containing a RETURN, one might
use the location specification (COND
(LCL RETURN) \) where the \ would
reverse the effects of the LCL
command,· and make the final current
expression be the COND.

Same as (LC • $) Followed by
another (LC, • $) Except that if
the first succeeds and second fails,
no change is made to the edit chain.

Similar to second.

2. 31

(~ pattern)

For example~

#PP
(PROG NIL

Ascends the edit chain looking for a
link which matches PATTERN. in other
words, it keeps doing O's until it
gets to a specified point ■ If
PATTERN is atomic, it is matched
with the first element of each link,
otherwise with the entire link. (If
pattern is of the form (IF
expression), EXPRESSION is evaluated
at each link, and if its value is
NIL, or the evaluation causes an
error, the ascent continues.}

(COND ((NULL (SETQ L (CDR L)})
(COND (FLG (RETURN L}}))

#F CADR
#(~ cmm)
#P

((NULL (CDR (MEMB (CARL (CADR L))))}
(GO LP))))

(COND (& &) (& &))

Note that this command differs from BF in that it does
not search inside of each link, it simply ascends. Thus in
the above example, F CADR fol lowed by BF COND would find
(COND (FLG (RETURN L))), not the higher COND.

(BELOW corn X)

If no match is found, an error is
generated and the edit chain is
unchanged.

Ascends the edit chain looking for a
link specified by COM, and stops x
links below that, i.e. BELOW keeps
doing O's until it gets to a
specified point, and then backs off
N O's. rn. is evaluatedv e.g.,
(BELOW com (*PLUS X Y)))

2 • 32

(BELOW com)
Same as (BELOW com 1)

For example, (BELOW COND) will cause the COND clause
containing the current expression to become the new current
expression. Thus if the current expression is as shown
above, F CADR fol lowed by (BELOW COND) wi 11 make the new
expression be ([NULL (CDR (FMEMB (CAR L) CADR L] (GO LP)),
and is therefore equivalent to O O O o.

BELOW operates by evaluating X and
then executing COM, or (_ com) if
COM is not a recognized edit
command, and measuring the length of
the edit chain at that point. If
that length is M and the length of
the current edit chain is N, then
BELOW ascends n-m-y links where Y is
the value of x. Generates an error
if COM causes an error, i 0 e 0 , it
can't find the higher link, or if
n-m-y is negative.

The BELOW command is useful for locating a substructure
by specifying something it contains. For example, suppose
the user is editing a list of lists, and wants to find a
sublist that contains a FOO (at any depth). He simply
executes F FOO (BELOW\).

(NEX x)
Same as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTQ clause,
he can advance to the next clause with (NEX SELECTQ).

NEX
Same as (NEX 'i:-).

The atomic form of NEX is useful if the
performing repeated executions of (NEX x).
MARKing (seep. 2°36) The chain corresponding
use NEX to step through the sublists.

2 0 33

user will be
By simply

to X, he can

(NTH$)
_Genera 1 i zed
Effectively
Followed by
UP.

NTH command.
performs (LCL $),
(BELOW \) , fol lowed by

In other words, NTH locates$, using a search restricted to
the current express-ion, and then backs up to the current
level, where the new current expression is the tail whose
first element contains, however deeply, the expression that
was the terminus of the location operation ■ For example:

#P
(PROG (& &) LP ccmm & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L)
(NTH UF)
#P

(SETQ UNFIND UF)

(RETURN L))

If the search is unsuccessful, NTH
generates an error and the edit
chain is not changed.

Note that (NTH n) is just a special case of (NTH $), and in
fact, no special check is made for$ a number; both commands
are executed identically.

(pattern : : . $)
E.g., (COND : : RETURN). Finds a
COND that contains a RETURN, at any
depth. Equivalent to (F pattern N),
(LCL. $) followed by (_ pattern).

For example, if the current expression is (PROG NIL
(COND ((NULL L) (COND (FLG (RETURN L})))) --), then (COND ::
RETURN) will make (COND (FLG (RETURN L))) be the current
expression. Note that it is the innermost COND that is
found, because this is the first COND encountered when
ascending from the RETURN. In other words, (pattern : : $)
is not equivalent to (F pattern N), followed by (LCL • $)
fallowed by \.

Note that $ is a location specification, not just a
pattern- Thus (RETURN : : COND 2 3) can be used to find the
RETURN which contains a COND whose first clause contains (at
least) three elements. Note also that since $ permits any
edit commandf the user can write commands of the form (COND
•. (RETURN : : COI-W)), which Will locate the first corm that

2. 34

contains a RETURN that contains a COND ■

2. 35

Commands That Save and Restore the Edit Chain

Three f ac i 1 i ties are available for saving the current
edit chain and later retrieving it. The commands are MARKu
which marks the current chain. for future reference, ..,.a (An
atomic command; do not con fuse with the list command (4-
pattern).) which returns to the last mark without destroying
ito and 44, which returns to the last mark and also erases
it-

MARK
Adds the current edit chain to the
front of the list MARKLIST.

Makes the new edit chain be (CAR
Ml\RKLIST). Generates an error if
MARKLIST is NIL, i.e. , no MARI-CS have
been perforl"iled, or all have been
erased.

Similar to ~ but also erases the
MARK, i.e., performs (SETQ MARKLST
(CDR 1-'JARKLST)) •

If the user did not prepare in advance for returning to
a particular edit chain, he may still be able to return to
that chain with a single command by using\ or \P.

\
Makes the edit chain be the value of
UNFIND o Generates an error if
UNFIND=NIL.

UNFIND is set to the current edit chain by each command
that makes 1:, "big jump", ioe., a command that usually
pe=forms more than a single ascent or descent, namely T, +,
<-4:--, !NX, all commands that involve a search, e.g., ?u LC,
•• 1 BELm 11, et al and \ and \P themselves. (Except that
Ui.\lFIND is not reset when the current edit chain is the top
le:vel expression, since this could always be returned to via
the f command.)

For exampleu if the user types F COND, and then F CAR,
\ would take him back to the COND ■ Another\ would take him
back to the CAR, etc.

2. 36

\P
Restores the edit chain to its state
as of the last print operation,
i.e., P, ?, or pp. If the edit
chain has not changed since the last
printing, \P restores it to its
state as of the printin~ before that
one, i.e., two chains are always
saved 0

For example, if the user types P fol lowed by 3 2 1 P,
\P will return to the first P, i.e., would be equivalent to
0 0 o. (Note that if the user had typed P followed by F
CQND, he could use either \ or \P to return to the P, i 0 e 0 ,

the action of \ and \P are independent.) another \P would
then take him back to the second P, i.e., the user could u~e
\P to flip back and forth between the two edit chains.

(s var 4 $)
Sets .Yfil:. (using SETO) to the current
expression after performing (LC •
$). Edit chain is not changed.

Thu.s (S FOO) will set FOO to the current expressionu (S
FOO -1 1) will set FOO to the first element in the last
element of the current expression.

2 • 3 7

Commands That Modify Structure

The basic structure modifications commands in the
editor are:

(n)

(n el"°" em)

(-n el . . . em)

(N e 1 . . . em)

As mentioned earlier:

n~l deletes the corresponding
element from the current expression.

n, m~l replaces the nth element in
the current expression with el •••
em.

n,m~l inserts el ••• em before the
n element in the current expression.

m~l attaches el •• 0 em at the end
of the cµrrent expressi0n.

All structure rnodificaton done Q.Y the editor is destructive,
i O e., the editor use.§. RPLACA and RPLACD to physical lY
change the structure it™ given.

However, al 1 structure modification is undoable, see
UNDO P• 2. 76.

All of the above commands generate errors if the
current expression is not a list, or in the case of the
first three commands, if the list contains fewer than n
elements. In addition, the command (1), i.e., delete the
first element, will cause an error if there is only one
element, since deleting the first element must be done by
replacing it with the second element, and then deleting the
second element. Or, to look at it another way, deleting the
first element when there is only one element would require
changing a list to an atom (i.e- to NIL) which cannot be
done. (However, the command DELETE wi 11 work even if there
is only one element in the current expression, since it will
ascend to a point where it can do the deletion.)

2 • 3 8

Implementation of Structure Modification Com~ands

Note: Since all commands that insert, replace, delete or
attach structure use the same low level editor functions,
the remarks made here are valid for all structure changing
commands.

For al 1 replacement, insertion,, and attaching at the
end • of a list g unless the • command was typed in directly to
~he editor, copies of the corresponding structure are used,
because of the possibility that the exact same command.,
(i.e. same list structure) might be us~d again. { Some
editor commands take as arguments a list of edit commands,
e.g. (LP F FOO (1 (CAR FOO))). In this case, the command
(1 (CAR FOO)) is not considered to have been "typed in" even
though the LP command itself may have been typed in.
Similarly, commands originating from macros, or commands
given to the editor as arguments to EDITF, EDITV, et al,
e.g. (EDITF FOO ·F COND (N --)) are not considered typed
in°) Thus if the program constructs the command (1 (ABC))
via (LIST 1 FOO), and gives this command to the editor, the
(A B C) used for the replacement will NOT be EQ to FOO.
(The user can circumvent this by using the I command, which
computes the structure to be used. In the above example,
the form of the command would be (I 1 FOO), which would
replace the first element with the value of FOO itself. See
po 2.6J)

The rest of this section is included for applications
wherein the editor is used to modify a data structure, and
pointers into that data structure are stored elsewhere. In
these cases, the actual mechanics of structure modification
must be known in order to predict the effect that various
commands may h 9 ve on these outside· pointers. .For example,
if the value of FOO is CDR of the current expression, what
will the commands (2), (3), (2 X Y Z), (-2 X Y Z), etc., do
to FOO?

Deletion of the first element in the current expression
is perfonned by replacing it with the second element and
deleting the second element by patching around it ■ Deletion
of any other element is done by patching around it J i.e.,
the previous. tail is altered. Thus if FOO is EQ to the
current expression which is (A B C D} , and FIE is CDR of
FOO, after executing the command (1), FOO will be (B CD)
(which is EQUAL but not EQ to·FIE). However, under the same
initial conditions, after executing (2) FIE wi 11 be
unchang-ed, i•eoe FIE will still be (B C D) even though the

2 0 39

current expression and FOO a re now (A C D). (A general
solution of the problem just i sn • t possible, as it would
require. being able to make two lists EQ to each other that
were originally different. Thus if FIE is CDR of the
current expression, and FUM is COOR of the current
expression, per.forming (2) would have to make FIE be EQ to
FUM if all subsequent operations were to update both FIE and
FUM correctly. Think about it-)

Both replacement and insertion are accomplished by
smashing both CAR and CDP of the corresponding tail 0 Thus,
if FOO were EQ to the current expression, ·cA B C D), after
(1 X Y Z), FOO would be (X Y Z BCD). Similarly, if FOO
were EQ to the current expression, (ABC D), then after (-1
X Y Z), FOO would be (X Y Z ABC D).

The N command is accomplished by
of the current expression a la NCONC.
to any tail of the current expression,
command, the corresponding expressions
the end. of FOO.

smashing the last CDR
Thus, if FOO were EQ
after executing an N

would also appear at

In summary, the only situation in which an edit
operation will not change an external pointer occurs when·
the external pointer is to a proper tail of the data
structure, i.e., to CDR of some node in the structure, and
the operation is deletion- If all external pointers are to
elements of the structure, i-e-, to CAR of some node, or if
only insertions, replacements, or attachments are performed,
the edit operation will always have the same effect on an
external pointer as it does on the current expression.

2 0 4 0

The A,B,: Commands

In the (n), (n el •oo em), and (-n el ••• em)
commands, the sign of the integer is used to • indicate the
operation° As a result, there is no direct .way to express
insertion after a particular element, (hence the necessity
for a separate N command). Similarly, the user cannot
specify deletion or replacement of the NTH element from the
end • of a list without first converting .n to the
corresponding positive integer. Accordingly, we have:

(B el • u em)
Inserts el o.. em .Qefore the
current expression. Equivalent to
UP followed by (-1 el ••• em).

For example, to insert FOO before the la st element in
the current expression, perform -1 and then (B FOO).

(A e 1 • . • em)

(: e 1 • o • em)

DELETE or (:)

Inserts el •o• em gfter the current
expression. Equivalent to UP
followed by (-2 el ••• em) or (N el
• • • em) or (N el o.. em) whichever
is appropriate.

Replaces the current expression by
el • • • em. Equivalent to UP
followed by (1 el-·~ em).

Deletes the current expression, or
·it the current expression is a tail,
deletes its first element.

DELETE first tries to delete the current expression by
performing an UP and then a (l) ■ ~his works in most cases.
Howevero if after performing UP, the new current expression
contains only one element, the command (1) will not worko
Therefore DELETE starts over and performs a BK, followed by
UP; followed by (2). .For example, if the current expression
is· (COND ((MEMB X Y)) (T Y)), and the user performs -1, and
then DELETE, the BK-UP-(2) method is used, and the new
current' expression will be • . . ((MEMB X Y)))

However,
one element,
performs UP u

if the next higher expression contains only
BK will not work. So in this case, DEL~TE
followed by (: NIL), i.e. g it REPLACES the

2. 41

higher expression by NIL ■ For example, if the current
expression is (COND ((MEMB X Y)) (T Y)) and the user
performs F MEMB and then DELETE, the new current expression
wi 11 be NIL (T -y)) and the orig ina 1 expression would
now be (COND NIL (TY)). The rationale behind this is that
deleting (MEMB X Y) from ((MEMB X Y)) changes a list of one
element to a list of no elements, i 0 e 0 , () or NIL- Note
that 2 followed by DELETE would DELETE ((MEMB X Y)) NOT
replace it by NIL ■

If the current expression is a tail, then B, A, and
will work exactly the same-as though the current expression
were the first element in that tail. Thus if the current
expression were (PRINT Y) (PRINT Z)), (B (PRINT X))
would insert (PRINT X) before (PRINTY), leaving the current
expression • •. (PRINT X) (PRINT Y) (PRINT Z)).

2. 42

The following forms of the- A, B, and
incorporate a location specification:

commands

(INSERT el •.. em BEFORE. $)
Similar to (LC ■ $) followed by (B
e 1 . . . em).

#P
(PROG (WY X) (SELECTQ ATM & NIL) (OR & &) (PRINl &))
#(INSERT LABEL BEFORE PRINl)
#P
(PROG (WY X) (SELECTQ ATM & NIL) (OR & &) LABEL (PRINl &))

Current edit chain is not changed,
bu~ UNFIND is set to the edit chain
after the B was performed, i ■ e•, \
will make the edit chain be that
chain where the insertion was
performed.

(INSERT el . . . em AFTER . $)
Similar to INSERT BEFORE except uses
A instead of B.

(INSERT el ••• em FOR . $)
Similar to INSERT BEFORE except uses
: for B.

(REPLACE$ WITH el ... em)
Here S is the segment of the c_ornmand
between REPLACE and VHTH ■ Same as
(INSERT el••• em FOR . $). (BY
can be used for WITH-)

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE$ TO el ... em)

(DELETE. $)

Same as REPLACE WITH

Does a (LC $) followed by
DELETE. Current edit chain is not
changed (Unless the current
expression is no longer a part of
the expression being edited, e.g.,
if the current expression is •.• C)
and the user performs (DELETE 1),

2. 43

the tail, (.C), will have .been cut
off. ·similarly, if the current
expression is (CDR Y) and the user
performs (REPLACE WITH (CAR X)).),
but UlffIND is set to the edit chain
after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Note that if $ is NIL (empty), the corresponding
operation. is performed here (on the current edit chain),
e.g., {REPLACE WITH (CAR X)) is equivalent to (~(CAR X)).
For added readability, HERE is also permitted, e.g., (INSERT
(PRINT X) BEFORE HERE) wi 11 insert (PRINT X) before the
current expression (but not change the edit chain).

Note also that $ does not have to specify a location
WITHIN the current expression, i.e., it is perfectly legal
to ascend t~ INSERT, REPLACE, or DELETE ■ For example
(INSERT (RETURN) AFTER 1 PROG -1) will go to the top, find
the first PROG, and insert a (RETURN) at its end, and not
change the current edit chain.

Finally, the A, B, and commands, (and consequently
INSERT, REPLACE, and CHANGE), all make special checks in El
thru Em for expressions of the form (# # • coms) • In tJu s
case, the expression used for inserting or replar.in•J is a
.QQQY of the current expression aft~t executing corns, a list
of edit commands. (The execution of corns does not change
the current edit chain.) For exampleu (INSERT (## F COND -1
-1) AFTER3) [not (INSERT F corm -1 (## -1) AFTER 3), which
inserts four elements after the third element, naI71ely F,
corm r -1, and a copy of the la st element in the current
expression J wi 11 make a copy of the la st form in the la st
clause of the next COND, and insert it after the third
element of the current expressiono

2. 44

Form Oriented Editing and the Role of UP

The UP that is performed before A, B, and : commands
(and therefore in INSERT, CHANGE, REPLACE, and DELETE
commands after the location portion of the operation has
been performed.), makes these operations form-oriented ■ For
example, if the user typGs F SETQ, and then DELETE, or
simply (DELETE SETQ), he will delete the entire SETQ
expression, whereas (DELETE X) if X is a variable, deletes
just the variable x. In both cases, the operation is
performed on the corresponding FORM and in both cases is
probably what the user intend.ed 0 • , Similarly, if the user
types (INSERT (RETURN Y) BEFORE SETQ), he means before the
SETQ expression, not before the atom SETQ. (*There is some
ambiguity in (INSERT expr AFTER functionname), as the user
might mean make .rurn.r. be the function's first argument ■
Similarly, the user cannot write (REPLACE SETQQ WITH SETQ)
r.ieaning change the name of the function. The user must in
these cases write (INSERT expr AFTER functionname 1), and
(REPLACE SETQQ 1 WITH SETQ).) A consequent of this
procedure is that a pattern of the form (SETQ Y --) can be
viewed as simply an elaboration and further refinement of
the pattern SETQ. Thus (INSERT (RETURN Y) BEFORE SETQ) and
(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same
operation (Assuming the next SETQ is of the form (SETQ
Y-)) •) and, in fact, this is one of the motivations behind
making the current expression after F SETQ, and F (SETQ Y
--) be the same.

Occasionally, however, a user may have a data structure
in which no special significance or meaning is attached to
the position of an atom in a list, as LISP attaches to atoms
that appear as CAR of a list, versus those appearing
elsewhere in a list. In general, the user may not even know
whether a particular atom is at the head of a list or not.
Thus, when he writes (INSERT expression AFTER FOO), he means
after the a tom FOO, whether or not it is CAR of a list O By
setting the variable UPFINDFLG to NIL (Initially, and
usually, set to T.) the user can suppress the implicit UP
that follows searches for atoms, and thus achieve the
desired effect. With UPFINDFLG = NIL then following F FOO,
for example, the current expression will be the atom FOO.
In this case, the A, B, and : operations wi 11 operate with
respect to the atom FOO. If the user intends the operation
to refer to the list which FOO heads, he simply uses instead
the pattern (FOO--).

2 • 4 5

Extract and Embed

Extraction involves replacing the current expression with
one of its subexpressions (from any depth).

(XTR . $)
Replaces
expression
is current
s) •'

the original current
with the expression that
after per forming (LCL •

For example, if . the current expression is (COND ((NULL X)
(PRINT Y))) g (XTR PRINT) , or (XTR 2 2) will replace the COND
by the PRINT.

If the current expression after (LCL
$) is a tail of a higher

expression, its first element is
used-

For example, if the current expression is
(COND ((rJULL X) Y) (T Z)), then (XTR Y) will replace the

COND with Y.

If the extracted expression is a
listu then after XTR has finished,
the current expression will be that
list.

Thus, in the first example, the current expression after the
XTR would be (PRINTY).

Thus, in the second
the XTR would be
COND.

If the extracted expression is not a
list, the new current expression
will be a tail whose first element
is that non-list.

example, the
Y followed

current expression after
by whatever followed by

If the current expression initially is a tail,
extraction works. exactly the same as though the current
expression were the first element in that tail 0 Thus is the
current expression is (XTR PRHlT) will replace • the COND by
the PRINT, leaving (PRINTY) as the current expression.

2. 46

The extract command can al so
specification.

incorporate a location

(EXTRACT $1 FROM $2)
($1 is the segment
and FROM.)
Performs (LC • $2)
$1). Current edit
changed, but UNFIND
edit cha in· after
performed.

Example: If the current expression is

between EXTRACT

And then (XTR.
chain is not

is set to the
the XTR was

(PRINT (COND ((NULL X) Y) (T Z))) then following
(EXTRACT Y FROM COND), the current expression will be
(PRINT Y).
(EXTRACT 2 -1 FROM COND), (EXTRACT Y FiOM 2)~
(EXTRACT 2 -1 FROM 2) will all produce the same result•

2 . 47

While extracting replaces the current expression by a
subexpression, embedding replaces the current· expression

'with,one containing it as a subexpression-

(MBD x)
X is a list, substitutes (a la
SUBST, i•eo, a fresh copy is used
for each • substitution) the current
expressiori for all instances of the
atom * in x, and replaces the
current expression with the result
of that substitution.

Example: If the current expression is
((NULL X) *) ((NULL (CAR Y)) * (GO
(PRINT Y) with (COND((NULL X) (PRINT
(PRINTY) (GO LP))).

(PRINTY), (MBD (COND
LP))) would replace

Y)) ({NULL (CAR Y))

(MBD el .. o em)
Equivalent to (MBD (el em *)) •

Example: If the current expression is (PRINT Y), then (MBD
SETQ X) will replace it with (SETQ X (PRINTY)).

(MBD x)
X atomic, same as (MBD (x *))o

Example: If the current expression is (PRINT Y), (MBD
RETURll) will replace it with (RETURN (PRINTY)).

All three forms of MBD leave the edit chain so that the
larger expression is the new current expression.

If the current expression initially is a tail,
embedding works exactly the same as though the current
expression were the first element in that tail. Thus if the
current expression were (PRINTY) with (SETO X {PRINTY)).

The embed command can also incorporate a location
specification.

2 0 48

(EMBED$ IN • x)
($ is the segment between EMBED and
INo) Does (LC • $) and then (MBD •
x) • Edit. , cha in is not 'changed, but
UNFIND is s~t to the edit chain

• atter the MBD was p~rformed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND J 1 IN (OR* (NULL X})).

WITH can be used for IN, ?nd SURROUND can be used for EMBED,
e 0 g~, (SURROUND NUMBERP WITH (AND* (MINUSP X)))e

2. 49

The MOVE Command

The • MOVE command allows the user to
expression to be moved, (2) the place it is
and (3) the operation to be perfo~rned there,
before, insert ii aftei, replace, etc ■

speci.fy (1) the
to be moved to,
e.g., insert it

(MOVt $1 TO c6m. $2)
($1 is the segment between MOVE and
TO.) Where .COM is BEFORE, AFTER, or

. the name 'of a list command, e.g. v • ,

• •• N, etc. Performs (LC . $1) ,
Obtains the current expression there
(or its first element, if it is a
tail), let us call this expr; MOVE
then goes back to original edit
chain, performs (LC o $2), Peforms
(com expr), then goes back to $1 and
deletes expr. Edit chain is not
changed ■ UNFIND is set to ed~t
chain after. (com expr) was
performed ■

For example, if the current expression is (AB D CJ, (
MOVE 2 TO AFTER ·4) will make the new c.urrent expression be
(AC D BJ. Note that 4 was executed as of the original edit
chain, and that the second element had not yet been removed.

2. 50

As the following examples taken from actual editing
will show, the fi!OVE command is an extremely versatile and
powerful feature of the editor.

#?
(PROG (L) (EDLOC (COOR C)) (RETURN (CARL)))
#(MOVE 3 TO: CAR)
#?
(PROG (L) (RETURN (EDLOC (COOR C))))

#P
••• (SELECTQ OBJP~ & &) (RETURN&) LP2 (COND & &))
#(MOVE 2 TON 1)
#P

(SELECTQ OBJPR & & &) LP2 (COND & &))

#P
(OR (EQ X LASTAIL) (NOT &) (AND & & &))
#(MOVE 4 TO AFTER (BELOW COND))
#P
(OR (EQ X Ll\STAIL) (NOT &))

#\ p
(& &) (AND & & &) (T & &))

#P
((NULL X) (COND & &))
#(-3 (GO DELETE))
#(MOVE 4 TOH (_ PROG))
#P
((NULL X) (GO DELETE))
#\ p
(PROG (&) (COND & & &) (COND & & &) (COND & &))
#(INSERT DELETE BEFORE -1)
#P
(PROG (&) (COND & & &) (COND & & &) DELE'rE (COND & &) }

Note that in the la st example 8 the user could have
added the prog label DELETE and moved the COND in one
operation by performing (MOVE 4 TO N (_ PROG) (N DELETE)).

2 0 51

Similarly, • in the next example, • in the course of specifying
$2, the location where the expression was to be moved to,
the user also performs a stiucture modification, via. (N
(T)) u thus creating the structure that will receive the
expression being moved-

#P
((CDR &) (SETQ CL &) (EDITSMl\SH GL & &))
(MO VE 4 TO N O (N (T)) - 1]
#P
((CDR &) (SETQ CL &))
#\ p
(T (EDITSMASH CL & &))

If $2 is NIL, or (HERE), the curreit position specifies
where the operation is to take place. In this case, UNFIND

_is set to where the e~pression that was moved was originally
located, i 0 e 0 , Sl~ For example:

#P
(TENEX)
#(MOVE 7 F APPLY TON HERE)
#P
(TENEX (APPLY & &))

#P
(T (PRINl C-EXP))
#(MOVE BF PRINl TON HERE)
#P
(T (PRINl C-EXP) (PRINl &))

4
i7

Finally, if Sl is NIL, the MOVE command allows the user
to specify some place the current expression is to be moved
to. In this case, the edit chain is changed, and is the
chain where the current expression was moved to, UNFIND is
set to where it was.

#P
(SELECTQ OBJPR (&) (PROGN & &))

2. 52

(MOVE TO BEFORE LOOP)
#P
0 0

• (S ELECTQ OBJPR & &) LOOP (RPLACA DFPRP &) (RPLACD DFPRP &))

/

2. 53

Commands That "Move Parentheses"

The commands presented in this section permit
modification of the list structure itself, as opposed to
modifying components thereof. Their effect can be described
as inserting or removing a single left or right parenthesis,
or pair of left and right parentheses. Of course, there
will always be the same number of left parentheses as right
parentheses in any list structure, since the parentheses are
just a notational guide to the structure provided by PRINT.
Thus, no command can insert or remove just one parenthesis,
but this is suggestive of what actually happens.

In al 1 six commands, n and m are used to specify an
element of a list, usually of the current expression- In
practice, n and mare usually positive or negative integers
with the obvious interpretation. However, all six commands
use the generalized NTH command, p. 2.34, To find their
element(s), so that nth element means the first element of
the tail found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) (SETQ Y (CONS W
Z))), then (BI 2 CONS), (BI X -1), and (BI X Z) all specify
the exact same operation.

Al 1 six commands generate
not found, i.e., the NTH fails.

an error if the element is
All are undoable.

(BI n m)
12_oth in, inserts a left par en theses
before the nth element and after the
mth element in the current
expression. Generates an error if
the mth element- is not contained in
the nth tail, i.e., the mth element
must be "to the right" of the nth
element.

Example: If the current expression is (A B (C D E) F G),
then (BI 2 4) will modify it to be (A (B (CD E) F) G).

(BI n)
Same as (BI n nl.

Example: If the current expression is (A B (C D E) F G),
then (BI -2} ',vill r.iodify it to be (AB (C DE) (F) G).

2. 54

(BO n}
Both out. Removes both parentheses
from the nth element. Generates an
error if nth element is not a list.

Example: If the current expression is (A B (C D E} F G) u
then (BOD) will modify it to be {ABC DEF G) 0

{LI n)
1eft i_n, inserts a left paronthr-isi :,
~·>c.•f{_·>r':· -:1LC' 11t]·1 C?10~-n011t (a!;.c1 ~1

;natching right parenthesis at the
end of the current expression),
i-e ■ u equivalertt to (BI m -1) 0

Example: If the current expression is (A B (C D E) F G),
then (LI 2) will modify it to be {A {B (CD E) F G)).

{LO n)
1eft QUt, removes a left parenthesis
from the nth element.
following the nth
deleted~ Generates an
element is not a list.

8..ll elements
element are
error if .nth

Example: If the current expression is (A B (C D E) F G),
then (LO 3) will modify it to be {ABC DE).

(RI n m)
Right i_n, inserts a right
parenthesis after the mth element of
the nth element. The rest of the
nth element is brought up to the
level of the current expression.

Example: If the current expression is (A (B C D Ei F G), (RI
2 2) will modify it to be (A (BC) DEF G). Another way of
thinking about RI is to read it as "move the right
parenthesis at the end of the nth element IN to after the
mth element."

2 • 55

(RO n)

Right QUt, removes the right
parenthesis from the nth element,
moving it to the end of the current
expression. All elements following
the nth element are moved inside of
the nth element 0 Generates an error
if nth element is not a list.

Example: If the current expression
3) wi 11 modify it to be (A B (C D
thinking about. Rb is to read
parenthesis at the end of the nth
the current expression-"

is (A B (C D E) F G), (RO
EFG)). Another way of
it as "move the right

element OUT to the end of

2. 56

TO and THRU

EXTRACT, EMBED I DELETE, REPLACE, and MOVE can be made
to operate on several contiguous elements, i. e O , a segment
of a list, by using the TO or THRU command in their
respective location specifications.

($1 THRU $2)
Does a (LC . $1), Followed by an
UP, and then a (BI 1 $2), thereby
grouping the segment into a single
element, and finally does a 1,
making the final current expression
be that element.

For example, if the current expression is (A (B (C D) (E) (F
G H) I) J K), following (C THRU G), the current expression
w i 11 be ((C D) (E) (F G H)) •

($1 TO $2)
Sarne as THRU except last element not
included, i.e., after the BI, an (RI
1 -2) is perforrnedo

If both $1 and $2 are numbers, and $2 is greater than
$1, then $2 counts from the beginning of the current
expression, the same as $1. In other words, if the current
expression is (A B C D E F G), (3 THRU 4) l'leans (C THRU D),
not (C THRU F). In this case, the corre spending BI command
is (BI 1 $2-$1+1).

THRU and TO are not very useful commands by themselves,
and are not intended to be used "solo", but in conjunction
with EXTRACT, B1BED, DELETE, REPLACE, and MOVE- After THRU
and TO have operated, they set an internal editor flag
informing the above commands that the element· they are
operating on is actually a segment, and that the extra pair
of parentheses should be removed when the operation is
complete. Thus:

#P
(PROG IHL (SETQ A &) (RPLACA & &) (PRINT &) (RPLACD & &))
(MOVE (3 THRU 4) TO BEFORE 5) p
(PROG 1-HL (PRINT &) (SETQ A &) (RPLACA & &) (RPLACD & &))

Note that when specif ing $ 2 in the MOVE, 5 was used in stead

2 • 57

of 6° This is because the $2 is located after $1 is. The
THRU location groups i terns toge_ther and thus changes the
numeric location of the following items.

#P
(PROG IHL (PRINl &) (PRINl &) (SETO IND &) (SETQ VAL &) (PRINT
#(MOVE (5 THRU 7) TO BEFORE 3)
#P
(PROG NIL (SETQ IND &) (SETQ VAL &) (PRINT &) (PRINl &} (PRINl &))
#(DELETE (SETQ THRU PRI@))
= PRINT
#P
(PROG NIL (PRINl &) (PRINl &))

#P
LP (SELECTQ & & &) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y))

#(MOVE (1 TO OUT) TON HERE)
#P
• • • OUT (SETQ FLG &) (RETURn Y) LP (SELECTQ & & &) (SETQ Y &))

#PP
(PROG (TEMPl TEMP2)

(COND ({NOT (MEMO REMARG LISTING))
(SETQ TEMPl (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMPl)))

(T (SETQ TEMPl REMARG)))
(NCONC LISTING REMARG.)
(RETURN (CONS TEMPl TEMP2)))

#(EXTRACT (SETQ THRU CADR) FROM COND) PP
(PROG (TEMPl TEMP2)

(SETQ TEMPl (ASSOC REMARG NAMEDREMARKS))
(SETQ TEMP2 (CADR TEMPl))
(NCONS LISTING REMARG)
(RETURN (CONS TEMPl TEMP2)))

TO and THRU can also be used directly with XTR ■

(Because XTR involves a location specification while A,B,:,
and MBD do not.) Thus in the previous example, if the
current expression had been the COND u e.g. e the user had
first performed F COND, he could have used (XTR (SETQ THRU
CADR)) to perform the extraction.

2. 58

($1 TO) ~ ($1 THR U)
Both same as ($1 THRU -1), i-e-,
from Sl thru the end of the list.

#P
(VAL (RPLACA DFPRP &) (RPLACD & &) (RPLACA VARS&) (RETURN&))
#(MOVE (2 TO) TON (+ PROG))
(N (GO VAR))
#P
(VAL (GO VAR))

#P
(T (COT.JD &) (EDITSMASH CL & &) (COND &))
#(-2 (GO REPLACE))
#(MOVE (COND TO) TON PROG (N REPLACE))
#P
(T (GO REPLACE))
#\ p
(PROG (&) (COND & & &) (Corm & & &) DELETE (COND & &) REPLACE
(COND &) (EDITSMASH CL & &) (COHO &))

#PP
(LAMBDA(CLAUSALA X)

(PROG (AD)
(SETQ A CLAUSALA)

LP (COND ((NULL A) (RETURN NIL)))
(SERCH X A)
(RUMARK (CAR A))
(NOTICECL (CAR A))
(S ET Q A (CD R A)) .
(GO LP)))

#(EXTRACT (SERCH THRU NOT@) FROM PROG) P
= NOTICECL
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))
#(EMBED (SERCH TO) IN (MAP [FUNCTION (LAMBDA (A) *] CLAUSALA]
#PP
(LAMBDA(CLAUSALA X)

(MAP (FUNCTION
(LAMBDA(A)

(SERCH X A)
(R UMAR K (CAR A))
(NOTICECL (CAR A))))

CLAUSALA))

2. 59

\

(R X y)
Replaces all instances of x by yin
the current expression, e.g., (R
CAADR CADAR). Generates an error if
there is not at least one instance.

R operates by ~erforming a DSUBST. The current
expression is the third argument to DSUBSTv i ■ e-, the
expression being substituted into, and ~ is the first
argument. to DSUBST, i.e., the expression being substituted.
R computes the second argument to DSUBST, the expression to
be substituted for, by performing (F x T) 0 The second
argument is then the current expression at that point, or if
that current expression is a list and~ is atomic, then the
first element of that current expres~ion- Thus x can be the
S-expression (or atom) to be substituted for, or can be a
pattern which specifies that S-expression (or atom).

For example, if the current expression is (LIST FUNNYATOM 1
FUNNYATOM2 (CAR FUNNYATOMl)}, then (R FUN@ FUNNYATOM3) will
substitute FUNNYATOM3 fpr FUNNYATOMl throughout the current
expression. Note that FUNNYATOM2, even though it would have
matched with the pattern FUN@, is NOT replaced.

Similarly, if (LIST (CAR X) (CAR Y)) is the first
expression matched by (LIST --) , then (R (LIST --) (LIST
(CAR Y) (CAR Z))) is equivalent to (R (LIST (CARX) (CARY))
(LIST (CAR Y) (CAR Z))), i.e., both will replace all
instances of (LIST (CAR X) (CAR Y)) by (LIST (CAR Y) (CAR
z)). Note that other forms beginning with LIST will not be
replaced, even though they would have matched with (LIST
--) • To change all expressions of the form (LIST --) to
(LIST (CARY) (CAR Z)), the user should perform (LP (REPLACE
(LIST--) WITH (LIST (CARY) (CAR].

UHF IND is set to the edit cha in fol lowing the find command
so that \ will make the current expression be the place
where the first substitution occurred.

2 • 60

(S'i·'l n rn)
Switches the nth and mth elements of
the current expression.

For example,· if the current expression is (LIST (CONS {CAR
X) (CARY)) (CONS (CDR Y)))g (S'W 2 3) will modify it to be
(LIST (CONS (CDR X) (CDR Y)') (CONS (CAR X) (CAR Y))) e The
relative order of Ji and m is not important, ie, (SW 3 2)
and (SW 2 3) are equivaleht ■

SW uses the generalized NTH command
, to find the nth a·na mth elements, a

la the BI~BO commands ■

Thus in the previous example, (SW CAR CDR) would produce the
same result.

2 • 6_1

.Commands That Print

p

(P m)

(P O)

(P m n)

(P O n)

?

Prints current expression as· though
PRINTLEV were ~iv~n a depth of 2.

Prints . mth element of current
expression as tho·ugh PRINTLEV were
given a depth of 2.

Same as P

Prints mth element of current
expression as though PRINTLEV were
given a depth of N.

Prints current expression as though
PRI~TLEVEL were given a depth of N.

Same as (P 0 100)

Both (Pm) and (P rn n) use the general NTH command to
obtain the corresponding element, so that m does not have to
be a number, e.g. (P corm 3) will work ■

All printing functions print to the teletype,
regardless of the primary output file. No printing function
ever changes the edit chain• All record the current edit
chain for use by \P, p. 2.37.

2 • 62

Commands That Evaluate

E

Example:

Only when tYpGd in, (ioe 0 , (INSERT D
BEFORE E) will treat E as a pattern)
causes the editor to call the LISP
interpreter giving it the next input
as argument.

#E (BREAK FIE FUM)
(FIE FUM)

(Ex)

(Ex T)

#E (FOO)
(FIE BROKEN)
1:

Ev a 1 ua te s X, i e e • ,
x), and prints the
teletype.

per forms (EVAL
result on the

Same as (Ex) but does not print.

The (Ex) and (Ex T) commands are mainly intended for
use by MACROS and subroutine calls to the editor; the user
would probably type in a form for evaluation using the more
convenient format of the (atomic) E command.

(I c xl "°" xn)
Same as (c yl yn) where
yi= (EVAL xi)•

I

Example: (I 3 (GETD (QUOTE FOO)) will replace the 3rd
element o:f the current expression with the definition of
FOO. (The I command sets an internal flag to indicate to
the structure modification commands not to copy
expression(s) when inserting, replacingu or attaching.) (I N
FOO (CAR FIE)) will attach the value of FOO and CAR of the
value of FIE to the end of the current expression. (I F=
FOOT) will search for an expression EQ to the value of FOO.

If c is not an atom, it is evaluated
as well.

Example: (I (COND ((NULL FLG) (QUOTE -1)) (T 1)) FOO), if
FLG is NILr inserts the value of FOO before the first
element of the current expression i otherwise replaces - the

2. 63

first element by the value 0£ FOO.

(## cor.i[l] com[2] corn[n])
is an FSUBR (not a command) • Its
value is what the current expression
would be after executing the edit
commands com[l] com[n] starting
from the present edit chain.
Generates an error if any of com[l]
thru com[n] cause errors. The
current edit chain is never changed.
(Recall that A,B,:, lNS.ERT, REPLACE,
and CHANGE make special checks for
forms in the expressions used for
inserting or replacing, and use a
copy of ## form instead (see p 0

2°44). thus, (INSERT (## 3 2) AFTER
1) is equivalent to (I INSERT (COPY
(# # 3 2)) (QUOTE AFTER) 1) .)

Example: (IR (QUOTE X) (## (CONS .• z))) replaces all X's in
the current expression by the first CONS containing a z.

The I command is not very convenient for computing an
entire edit command for execution, since it computes the
command name and its arguments separately. Also, the I
command cannot be used·· to compute an atomic commando The
following two commands provide more general ways of
computing commands.

(COMS xl ••. xn)

For example,
first element
if non-NIL,
NOP, see p.

Each xi is evaluated and its value
executed as a command.

(COMS (COrlD (X (LIST 1 X)))) will replace the
of the current expression with the value of X

otherwise do nothing. (NIL as a command is a
2.71.)

(C0MSQ com [1] . . . com [nl)
Executes com[lJ .•• com(n].

C0MSQ is ma1n1y useful in conjunction with the COMS commando
For example, suppose the user wishes to compute an entire
list· of commands for evaluation, as opposed to computing
each command one at a time as does the COMS command. He
WOUld then write {COMS (CONS (QUOTE COMSQ) x)) where X
computed the list of commands, e.g.,

2. 64

(COMS (CONS (QUOTE COMSQ) (GET FOO (QUOTE COMMANDS)))).

2. 65

·commands That Test

(IF x)
Generates an error unless the value
of (EVAL x) is true, i-e-, if (EVAL
x) causes an error or (EVAL x)=NIL,
IF will cause an error.

For some editor commands, the occurrencF, of an error
has a well defined mean in,_;, _._ .,_:., ·:··_;,_.'c.!y 11.'.·.:<'! r-•r '.'.'ors to 1,rancli
on as COND uses NIL and non-NIL. For example, an error
condition in a location specification may si:-ntily mean "not
this one, try the next." Thus the location specification

(*PLUS (E {OR (NUMBERP {## 3)) (ERR HIL)) T))
specifies the first *PLUS whose second argument is a number.
The IF command, by equating rn L to error, provides a more
na tura 1 way of accomplishing the same result. Thus, an
equivalent location specification is (*PLUS (IF (NUMBERP (##
3)))) .

The IF command can al so be used to select between two
alternate lists of commands for execution ■

(IF x cornsl coms2)
If {EV~L x) is true, execute comsl;
if {EVAL x) causes an error or is
eaual to NIL, execute coms2.

For example, the command {IF (NULL A) NIL (P)) will print
the current expression provided A=NIL.

(IF x comsl)

(LP " car.is)

If {EVAL x) is true, execute comsl;
otherwise generate an error.

Repeatedly executes corns, a list of
commands, until an error occurs.

For example, (LP F PRINT (ll T)) will attach a T at the
end of every PRINT expression. (LP F PRINT (IF (## 3) NIL
((N T)))) will attach a T at the end of each print
expression which does not already have a second argument.
(i 0 e 0 The form (## 3) will cause an error if the edit
command 3 causes an error, thereby selecting ((NT)) as the
list of commands to be executed. The IF could al so be
writ ten as (IF (CODR (# #)) NIL ((tl T))) .)

2. 66

(LPQ • Corns)

When an error occurs, LP prints n
OCCURRENCES, where n is the number
of times COMS was successfully
executedo The edit chain is left as
of the last complete successful
execution of COMS ■

Same as LP but does not print n
OCCURRENCES.

In order to prevent non-terminating loops, both LP and
LPQ terminate when the number of iterations reaches MAXLOOP,
initially set to 30.

(ORR corns[l] Coms[n])
ORR begins by executing coms[l], a
list of commands. If no error
occurs, ORR is finished. Otherwise,
ORR restores the edit chain to its
original value, and continues by
executing corns [2], etc. If none of
the command lists execute without
errors, i 0 e ■, the ORR "drops off the
end", ORR generates an error.
Otherwis~, the edit chain is left as
of the completion of the first
command list which executes without
error. (NIL as a command list is
perfectly legal~ and will always
execute successfully. Thus, making
the last 'argument' to ORR be NIL
will insure that the ORR never
causes an error. Any other atom is
treated as (atom), i-e•, the example
given below could be written as (ORR
NX !NX NIL).)

For example, (ORR (NX) (!NX) NIL) will perform a NX, if
possible, otherwise a !NX, if possible, otherwise do
nothing. Similarly, DELETE could be written as (ORR (UP
(1)) (BK UP (2)) (UP(: NIL))).

2. G7

Macros

Many of the more sophisticated branching commands in
the editor, such as ORR, IF, etc.,. are most often used. in
conjunction with edit macros •. The macro feature permits the
user to define, new commands - and thereby expand the editor's
repertoire. (However, built in commands always take
precedence over macros, i.e., the editor's repertoire can be
expanded, but not modified.) Macros are defined by using the
M command.

(M c • corns)
For c an atom, M defines c as an
atomic command. (If a macro is
redefined, its new definition
replaces its old.) Executing c is
then the same as executing the list
of commands COMS.

Fo~ example, (M BP BK UPP) will define BP as an atomit
command which does three things, a BK, an UP, and a P. Note
that macros can use commands defined by macros as well as
built in commands in their definitions. For example,
suppose Z is defined by (M Z -1 (IF (NULL (##)) NIL (P))),
i 0 e 0 Z does a -1, and then if the current expression is not
NIL, a P. Now we can define ZZ by (M zz -1 Z), and ZZZ by
(M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ).

Macros can also define list commands, i.e., commands
that take arguments.

(M (c) (arg[l} ... arg[n]) . corns)
C an atom. M defines c as a list
com:nand 0 Executing (c el • • • en)
is then performed by substituting el
for arg[l], ••• en for arg[n]
throughout COMS, and then executing
COMS. •

For example, we could define a more general BP by (M
(BP) (N) (BK N) UP, P). Thus, (BP 3) would perform (BK 3),
followed by an UP, followed by a p.

A list command can be defined via a macro so as to take
I

a fixed or indefinite number of 'arguments'. The form giv¢n
above specified a macro with a fixed number of argurnentsg ~s
indicated by its argument list.· If the 'argument list' is
atomicu th~ command takes an indefinite number of arguments.

2. 68

(M (c) a rg s • com s)
Name, args both atoms, defines c as
a list command. executing (c el •••
en) is performed by substituting (el
... en), i.e., CDR of the command,
for args throughout corns, and then
executing corns.

For example, the command SECOND, p. 2.31, can be
defined as a macro by (M (2ND) X (ORR ((LC • X) (LC 0

X)))). Note that for all editor commands, 'built in'
commands as well as commands defined by macros, atomic
definitions and list definitions are completely independent.
In other words, the existence of an atomic definition for c
in no way affects the treatment of c when it appears as CAR
of a 1 i st command, and the existence of a list definition
for c in no way affects the treatment of c when it appears
as an atom. in particular, c can be used as the name of
either an atomic command, or a list command, or both. In
the latter case, two entirely different definitions can be
used.

Note also that once c is defined as an atomic command
via a macro definition, it will not be searched for when
used in a location specification, unless c is preceded by an
F 0 Thus (INSERT -- BEFORE BP) would not search for BP, but
in stead per form a BK, an UP, and a P, and then do the
insertion• The corresponding also holds true for list
commands.

Occasionally, the user will want to
command in a macro to save some temporary
example, the SW command could be defined as

employ the s
result. For

(M (SW) (NM) (NTH N) (S FOO 1) MARKO (NTH M) (S FIE 1) (I
1 FOO) 4-<- (I 1 FIE))

(A more elegant definition would be (M (SW) (N M) (NTH N)
MARK O (11TH M) (S FIE 1) (I 1 (## «- 1)) ~ (I ~ FIE)), but
this would still use one free variable.)

Since s·w sets FOO and FIE, using SW may have
undesirable side effects, especially when the editor was
cal led f rorn deep in a computation. Thus we must always be
careful to make up unique names for dummy variables used in
edit macros; which is bothersome. Furtherrnoreu it would be
impossible to define a command that called itself
recursively while setting free variables. The BIND command

2 • 69

solves both problems.

(BIND • corns)
Binds three dummy variables #1, #2,
#3, (initialized to NIL), and then
executes the edit commands COMS.
Note that these bindings are only in
effect while the commands are being
executed, and that BIND can be used
recursively; it will rebind #1, #2,
and #3 each time it is invoked ■
(BIND is implemente-d by (PROG (#1 #2
#3) (EDITCOMS (CDR COM))) where COM
corresponds to the BIND command, and
EDITCOMS is an internal editor
function which executes a list of
commands.)

thus we could now write SW safely as

(M (SW) (NM) (BIND (NTH N) (S #1 1) MARK O (NTH M) (S #2 1)
(I 1 #1) 4<4 (I 1 #2))).

User macros are stored on a list USERMACROS.
(USERMACROS is initially NIL.) thus if the user wants to
save his macros, he should save the value of USERMACROS. •
(The user probably should also save the value of EDITCOMSL).

2. 70

l1iscellaneous Commands

NIL
Unless preceded by F or BF, is
always a NOP.

Calls the editor recursively. The
user can then type in commands, and
have them executed. The TTY:
command is completed when the user
exits from the lower editor. (See
OK and STOP below.)

'I'he TTY: command is extremely useful O It enables the
user to set up a complex operation, and perform interactive
attention-changing commands part way through it. For
example the command (MOVE 3 TO AFTER corm 3 P 'i'TY:) allows
the user to interact, in ef feet, within the MOVE command.
Thus he can verify for himself that the correct location has
been found, or complete thEl specification "by hand". In
effect, TTY: says "I'll tell you what you should do when you
get there-"

The TTY: cornmarid operates by pr in ting TTY: and then
calling the edi tor 0 The initial edit chain in the lower
editor is the one that existed in the higher editor at the
time the TTY: command was entered. Until the user exits
from the lower editor, any attention changing commands he
executes only affect the lower editor's edit chain. (Of
course, if the user performs any structure modification
commands while under a TTY: command, these will modify the
structure in both editors, since it is the same structure.)
When the TTY: command finishes, the lower editor's edit
chain becomes the edit chain of the higher editor.

OK
Exits from the editor.

2. 71

S70P
Exits from the editor with an error.
Mainly for use in conjunction with
TTY: commands that the user wants to
abort.

Since al 1 of the commands in the ea i tor are ERRS ET
protected, the user must exit from the editor via a command ■

STOP provides a way of distinguishing between a successful
and unsuccessful • (from the user's standpoint) editing
session. For example, if the user is executing (MOVE 3 TO
AFTER corm T.TY:) , and he exits from the lower editor with an
OK, the MOVE command will then complete its operation. If
the user wants to abort the MOVE command, he must make the
TTY: command generate an error- He does this by exiting
from the lower . editor with a STOP command. In this case,
the higher ed.i tor's edit· cha in wil 1 not be changed by the
TTY: command.

SAVE

For example:

#P
(NULL X)
#F corm P
(COND (& &) ('l' &))

#SAVE
FOO

*(EDITF FOO)
EDIT
#P
(COND (& &) (T &))
#\ p
(NULL X)

•. Exits from the editor and saves the
•state of the edit' ori the property
1 i st of the function/variable being
edited under the property EDIT-SAVE.
If the editor is called again on the
same structure, the editing is
effectively "continued," i.e., the
edit chain, mark list, value of
U.lff IND and UNDOLST a re restored.

2 . 7 2

SAVE is necessary only if the, use,r is editing many
different expressions; an exit from the editor via OK always
saves the state of the edit of that call to the editor. (On
the property list of the atom EDIT, under the property name
LASTVALUE. OK also remprops EDIT-SAVE from the property
list of the function/variable being edited.) Whenever the
editor is entered, it checks to see if it is editing the
same expression as the last one edited. In this case, i1:.

restores the mark list, the undol st, and sets UNFIND to be
the edit chain as of the previous exit from the editor. For
example:

*(EDITF FOO)
EDIT
#P
(LAMBDA (X) (PROG & & LP & & & &))'

#P
(COND & &)
#OK
FOO

*(EDITF FOO)
EDIT
#P

Any number of inputs except for
calls to the editor.

(LAMBDA (X) (PROG & & LP & & & &))
#\ p
(COIJD & &)

The user can always continue editing, including undoing
changes from a previous editing session, if

(1) No other expressions have been edited
that session; (since saving takes place at
time, intervening calls that were exited via
will not affect the editor's memory of this
session.) or

(2) It was ended with a SAVE command.

2. 73

since
exit
STOP
last

REPACK

For example:

#P

Permits the 'editing' of· an atom or
string.

"THIS IS A LOGN STRING")
#REPACK
EDIT
1 #P
(/"TH IS/ IS/ A/ LOG N / STRING/")
1 # (SW G rn
l #OK
"THIS IS A LONG STRING"

REPACK operates by calling the editor recursively on
UNPACK of the current expression, or if it is a list, on
UNPACK of its first element. If the lower editor is exited
successfully, i-r:. via Oi': as oi::posed to STOP, the list of
atoms is made into a single atom or string, which replaces
the atom or string being 'repacked.' The new atom or string
is always printed-

(REPACK $) •
Does (LC . $) followed by REPACK,
e.g. (REPACK THIS@).

2 0 74

(MAKEFN form args nm)

#P

Makes (CAR form) an EXPR with the
.nth through mth elements of the
current expression with each
occurance of an element of (CDR
form) replaced by the corresponding
element of args.; The .nth through
m.th • elements are replaced by form.
For example:

(SETQ A NIL) (SETO B T) (CONS C D))
#(MAKEFr1 (SETUP C D) (W X) 1 3) P
••• (SETUP CD))
#E (GRINDEF SETUP)
(DEFPROP SETUP

(LAMBD,\(W X) (SETQ A NIL) (SETQ B T) (CONS W X))
EXPR)

(MAKEFN form args n)
Same as (MAKEFN form args n n).

2 0 75

UNDO

Each command that causes structure modification
the front of UNDOLST
to restore all pointers

automatically adds an entry to
containing the information required
that were changed by the command.

UNDO

!UIWO

Undoes the last, i.e., most recent,
structure modification command that
has no,t yet been undone, (Since UNDO
and !UNDO causes structure
modification, they also add an entry
to UNDOLST. However, UNDO and !UNDO
entries are skipped by UNDO, e.g.,
if the user performs an INSERT, and
then an MBD, the first UNDO will
undo the MBD, and the second wil 1
undo the INSERT. However, the user
can also specify precisely which
command he wants undone o In this
case, he can undo an UNDO command,

I

eog., by typing UNDO UNDO, or undo a
!UNDO command, or undo a command
other than that most recently
performed.) and prints the name of
that command, e.g., MBD UNDONE. The
edit chain is then exactly what it
was before the 'undone· command had
been performed. If there are no
commands to undo, UNDO types NOTHING
SAVED.

Undoes all modifications performed
during this editing session, i.e.,
this call to the editor. As each
command is undone, its name is
printed a la U1'1DO. If there is
nothing to be undone, ! UNDO pr int s
NOTHING SAVEDo

Whenever the user continues an editing session as
described on pages 2. 7 2 -2. 73, the undo information of the
previous session(s) is protected by inserting a special
blip, called an undo-block on the front of UNDOLST. This
undo-block wi 11 terrnina te the operation of a ! UNDO, thereby
confining its effect to the current session, and will

2 • 76

similarly prevent an UNDO command from operating on commands
executed in the previous session ■

Thus, if the user enters the editor continuing a
session, and immediately executes an UNDO or !UNDO, UNDO and
!UNDO will type • BLOCKED, instead of MOTHING SAVED.
Similarly, if the user executes ~everal commands and then
undoes them all, either via several UNDO commands or a !UNDO
command, another UNDO or· ! urmo wil 1 a 1 so type BLOCKED.

UNBLOCK

TEST

Removes an undo-blo.ck. If executed
at a non-blocked state, i 0 e 0 , if
UNDO or !UNDO could operate, types
t10T BLOCKED.

Adds an undo-block at the front of
UIWOLST.

Note that TEST together with ! mmo provide a
'tentative' mode for editing, i.e., the
number of changes, and then undo al 1 of
! U_NDO command.

user can perform a
them with a single

??

#P
(CONS (T &) (& &))
(1 COND) (SW 2 3) P
(COND (& &) (T &))

#??
SW (1 --)

Prints the entries on UND0LST. The
entries are 1 i sted in the reverse
order of their execution, i.e., the
most recent entry first. For
example:

2 0 77

Editdefault

Hhenever a command is not recognized, i-e-, is not
·~)uilt in' or defined as a macro, the editor calls an
in terna 1 function, ED ITDEFAULT to deterr,ine what action to
take 0 If a location q:,ecification is being executed, an
internal flag inforr.is EDITDEFAULT to treat the command _as
though it had been preceded by an F.

If the command is
procedure follouer] • is

ator,ic anc'l typed
as <Jiven below.

in directly, the

-
1)

#P

If the command is one of the list connands, i 0 e.,
a momber of :::DI7C0:1SL, ana there is adci tional input on
the sar.ie teletype line, treat the entire line as a
single list command. (Uses RF.ADLIIJE. Thus the line
can be terninated by carriage return, right parenthesis
or square bracket, or a list.) Thus, the user may oMit
parentheses for any list command typed in at the top
level (which is not also an atomic cornmand, eog., NX,
BK). For example:

(COND (& ri) (T &))
#(XTR 3 2)
#MOVE TO AFTER LP

#P

If the conmand is
additional input is
generated, e.g.,

c cono c & &) (T &))
#MOVE

:··IOVE ?

2 }

on the list
on the teletype

EDITCOMSL
line, an

but- no
error is

If the last c~aracter in the command is P, and the
. first n-1 characters comprise the conmand ~, 4-,

:n:<, BK, !T-1X, u:wo, or REDO, assume that the
intended two commands, eog.,

2 • 78

UP,
user

#P
(C 0!10 (& &) (T &))

#2 NXP
(T (CONS X Y))

3)
OtherwisG, generate an error-

2 • 7 9

Editor Functions

(EDITL L corns atm marklst mess)
EDITL is the editor- Its first
argument is the edit chain, and its
value is an edit chain, namely the
value of L at the time EDITL is
exited. (L is a special. variable,
and so can be examined or set by
edit comr:iands. For example, i is
equivalent to (E (SETQ L (LAST L))
T) •)

Corns is an optional list of
commands. For interactive editing,
£Q1I!§ is IHL. In this case, EDI TL
types EDIT and then waits for input
from the teletype. (If mess is not
NII, EDITL types it instead of EDIT.
For example, the TTY: command is
essentially (SETO L {EDITL L NIL NIL
NIL (QUOTE TTY:)}).) Exit occurs
only via an OK, STOP, or SAVE
command.

If corns is NOT NIL, no message is
typed, and each member of corns is
treated as a command and executed.
If an error occurs in the execution
of one of the commands, no error
message is printed, the rest of the
commands are ignored, and EDI TL
exits with an error, i.e., the
effect is the same as though a STOP
comr1and had been executed. If a 11
commands execute successfully, EDITL
returns the current value of L 0

Marklst is the list of marks.

On calls from EDITF, Atm is the name
of the function being edited; on
ca 11 s from ED ITV, the name of the
variable, and calls from EDITP, the
a torn of which some property of its
property list is being edited. The
property list of atm is used by the
SAVE command for saving the state of

2 0 80

(EDITF x)

the edit.
anything

Thus SAVE will not
if atm=NIL i 0 e 0 ,

editing arbitrary expressions
EDITE or EDITL directly.

FSUBR function for editing

save
when

via

a
functiono (CAR x) is the name of
the function, (CDR x) an optional
list of commands. For the rest of
the discussion, fn is (CAR X) , and
£QITI.§. is (COE x) •

If x is NIL, fn is set to the value
of LASTWORD, corns is set to NIL, and
the value of LASTWORD is printed ■

The value of EDITF is fn.

(1) In the most common case, fn is an non-compiled
function, and EDITF simply performs
(EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO)))) corns fn)
and sets LASTWORD to fn. -

(2) If 1n is not_ an editable function, but has a value,
EDITF assumes the user meant to call EDITV, prints =EDITV,
calls EDITV and returns.

Otherwise, EDITF generates an fn NOT EDITABLE error.

(EDITE expr corns atm)
Edits an gxpression° Its value is
the last element of (EDITL (LIST
expr) corns atm NIL NIL). Generates
an error if expr is not a list.

2. 81

(EDITV editvx)
FSUBR function, similar to EDITF,
for editing yalues. (CAR editvx)
specifies the value, (CDR editvx) is
an optional list of commands.

If editvx is NIL, it is set to the
value of (NCONS LASTwORD) and. the
value of LASTWORD is printed.

If (CAR editvx) is a list, it is evaluated and its
value given to EDITE, e.go (EDITV (CDR (ASSOC (QUOTE FOO)
DICTIONARY)))). In this case, the value of EDITV is T ■

However, in most cases, (CAR editvx) is a variable,
e.g. (EDITV FOO); and EDITV calls EDITE on the value of the
variable.

If the value of (CAR editvx) is atomic then EDITV
prints a !JOT EDITABLE error message.

When (if) EDITE returns, EDITV sets the variable to the
value returned, and sets LASTWORD to the name of the
variable a

The value of EDITV is the name of the variable whose
value was edited.

(EDITP x)
FSUBR function, similar to EDITF for
editing £roperty lists. Like EDITF,
LASTWORD is used if xis NIL ■ EDITP
calls EDITE on .the property list of
(CAR x). When (if) EDITE returns,
EDITP RPLACD's (CAR x) with the
value returned, and sets LASTWORD to
(CAR x).

The value of EDITP is the atom whose
property list was edited 0

2 • 82

(EDITFNS x)
FSUBR function, used to perform the
same editing operations on several
functions. (CAR x) is evaluated to
obtain a list of functions. (CDR x)
is a list of edit commands. EDITFNS
maps down the list of functions,
pr in ts the name of each function,
and calls the editor (via EDITF) on
that function.

For example, (EDITFNS FOOFNS (R FIE FUM)) will change
every FIE to FUM in each 0£ the functions on FOOFNS ■

The call to
protected, so
one function
EDITFNS will
function-

the editor is ERRSET
that if the editing of

causes an error,
proceed to the next

Thus in the above example, if one of the functions did
not contain a FIE, the R command would cause an error, but
editing would continue with the next function.

(EDIT4E pat y)

The value of EDITFNS is NIL

Is the pattern
value is T if
PP• 2°22-2.23
'match'.

match routine.
pat rna tches y.

For definition

Its
See

of

Note: before each search operation in the editor
begins, the entire pattern is scanned for atoms or strings
that end in at-signs. These are replaced by patterns of the
form

(CONS (QUOTE/@) (EXPLODEC atom)).
Thus from the standpoint of EDIT4E, pattern type 5, atoms or
strings ending in at-signs, is really "If car[pat] is the
atom @ (at-sign), PAT will match with any literal atom or
string whose initial character codes (up to the @) are the
same as those in cdr[pat]."

If the user wishes to cal 1 EDIT4E directly, he must
therefore convert any patterns which contain atoms or
strings ending in at-signs to the form recgnized by EDIT4E.
This can be done via the function EDITFPAT.

2 • 83

(EDITFPAT pat flg)

(EDITFINDP x pat flg)

(EDITRACEFN com)

nakes a copy of 1?.£.t. with all
patterns of type 5 converted to the
form expected by EDIT4E. Ll.g should
be passed as NIL (..fl..g_=T is for
internal use by the editor) 0

Allows a program to use the edit
find command as a pure predicate
from outside the editor. X is an
expression, 12.il a pattern. The

1 value of EDITFINbP is T if the
command F pat would succeed, NIL
otherwise. EDITFINDP calls EDITFPAT
to convert 12.il to the form expected
by EDIT4E, unless .fl.g=T. Thus, if
the program is applying EDITFINDP to
several different expressions using
the same pattern, it will be more
efficient to call EDITFPAT once, and
then call EDITFINDP with the
converted pattern and flq=T.

Is available to help the user debug
complex edit macros, or subroutine
calls to the editor. EDITRACEFN is
to be defined by the user ■ Whenever
the value of EDITRACEFN is non-NIL,
the editor calls the function
EDITRACEFN before executing each
command {at any level), giving it
that command as its argument"

For example, defineing EDITRACEFN as
(LAMBDA (C) {PRINT C) (PRINT (CARL)))

will print each command and the corresponding current
expression. {LAMBDA (C) (BREAKl T T NIL NIL NIL)) will
cause a break before executing each command.

EDI~RACEFN is initially equal to
NIL, and undefined 0

2 • 84

' i
EXTENDED INTERPRETATION OF LISP FORMS

Extended Lambda Expressions

Hhen solving problems in LISP, it is very often convenient
to have a function which executes more than one form but does
not need the variable and label features of PROG ■ We have added
this capability to UCI LISP by extending LAMBDA expressions to
handle more than one form.

(LAMBDA "ARGUMENT-LIST" "FORMl" "FORM2" ~ .. "FORMn")

When such a LAMBDA expression is applied to a list of
arguments each FORM is evaluated in sequence and the
value of the LAMBDA expression is FORMn (after the
arguments are bound to the LAMBDA variables).

Examples:

((LAMBDA(X) (CAR X) (CDR X)) (QUOTE (A)))
((LAMBDA(X Y) X Y (CONS X Y)) NIL T) =

= NIL
(NIL. T)

This means that functions defined by DF or DE evaluate
a 11 of forms in their definition, instead of just the
first one as in Stanford's version. The value of the
functi9n is the value of the last form.

WARNillG: This is not a PROG; GO and RETURN do not have the
expected result.

3 . 1

The Functions PROGl and PROGN

{PROGl Xl X2 .•. Xn) ,n<6

PROGl evaluates all expressions X1 X2
returns Xl as its value.

(PROGN Xl X2 ... Xn)

PROGN evaluates all expressions Xl X2
returns Xn as its value.

3 • 2

Xn and

Xn and

Conditional Evaluation of Forms

J_SELECTQ X "Yl" "Y2" ... "Yn" Z)

This very useful function is used to select a sequence
of instructions based on the value of its first argument
x. Each of the Yi is a list of the form (Si E[l,i]
E[2,i] E[k,i]) where Si is the "selection key".

If Si is an atom the value of X is tested to see if it
ts fil2 to Si (not evaluated). If so, the expressions
E[l,i] E[k,i] are evaluated in seauence, and the
value of SELECTQ is the value of the last expression
evaluated, i 0 e. E(k,i].

If Si is a list, and if any element (not eva 1 ua ted) of
Si is fill to the value of X, then E[l,i] E[k,i] are
evaluated in turn as above.

If Yi is not selected in one of th•? two ways described
then Y[i+l] is tested, etc. until a.11 the Y's have been
tested. If none is selected, the value of SELECTQ is
the value of z. k must~ present.

An example of the form of a SELECTQ is:

(SELECTQ (CAR W)
(Q (PRINT FOO) (FIE W))
((A E I O U) (VOWEL W))
(COND (W (QUOTE STOP))))

which has two cases, Q and (A E I O U) and a default
condition which is a cono.

SELECTQ compiles open, and is therefore very fast;
however, it will not work if the value of Xis a list, a
large integer, or floating point number, since it uses
fill·

3 0 3

Changes to the Handling of Errors

(ERRSET E "F")

lERR E)

ERRS ET has been chanqed slightly. If F=NIL the error
mes sage is suppressed and the error wi 11 not ca use a
break to the Break Package. If F is not given then
ERRSET assumes that F=T. If F=0' (i.e. zero) then the
error message will be printed on the current output
device, otherwise it will be printed on the teletype.

There is now a spec ia 1 case of ERR, If the va 1 ue of E
is ERRORX, then ERR will return to the nost recent
ERRS ET which has F=ERRORX. This al lows two levels of
user errors. If a Control-G is typed in by the user it
generates a (ERR (QUOTE ER~ORX)). This means that the
user can now protect himself against this type of input
error.

(ERROR E)

ERROR generates a real LISP error 0 E is evaluated and
printed {unless error mes sages are suppressed) and then
a break occurs just as for any other LISP error ■

3 0 4

Miscellania

(APPLY# FN ARGS)

APPLY# is similar to l'.I.PPLY except that FN may be a
function of any type including MACRO. Hote that when
either APPLY or APPLY# are given an EXPR as their first
argument, the second argument is evaluated by APPLY# or
APPLY, but the elements of the resulting list are
directly • bound to the lambda variables of the first
argument, and are not evaluated again even though it is
an EXPR.

Examples:
(APPLY# (QUOTE PLUS)
(APPLY# (QUOTE CONS)

(QUOTE (3 2 2))) = 7
(LIST (QUOTE A) (QUOTE B))) =(A. B)

(lHLL "Xl" "X2" • • • "Xn") = NIL

This function allows the user to stick S-Expressions in
the. middle of a function definition (e.g. as a PROG
element) without having them evaluated or otherwise
noticed. rnLL is also useful for giving a dummy
definition to a function which has not yet been defined.

3 • 5

---------------------------~----------

EXTENSIONS TO THE STANDARD INPUT/OUTPUT FUNCTIONS

Project-Programmer Numbers for Disk I/0

In all I/0 functions (including INPUT and OUTPUT), the useof a
two element list (not£ dotted pair) in place of a device will
cause the function to assume OSK: and use the list as the
project-programmer number ■

Saving Function Definitions, etc. On Disk Files

DSKO!JT is an FEXPR ancl is used to ere ate an entire
output file on c]isk file OSK: "FILE" ■ It sets the
linelength to LPTLENGTH, and evaluates all of the
expressions in "EXPRSLIST". If an expression on
"EXPRSLIST" is atomic, then that atom is given to GRINL
in stead of being eva 1 ua ted directly. If the va 1 ue of
FILBAK is non-NIL and the file already exists, DSKOUT
will attempt to rename the file with an extension of the
value of FILBAK. An error message will be printed on
the TTY: if the file cannot be backed up. FILBAK is
initially set to LBK.

For example, if FNLIST is a list of your functions, they can be
saved on a disk file, FUNCS ■ LSP by:

(DSKOUT (FUNCS.LSP) Ff1LIST (PRINT {QUOTE END-OF-FILE)))

and the file FUNCS0 LSP Will be renamed to FUNCS.LBK if it
already exists ■

4 . 1

Reading Files Back In

(DSKIN "LIST OF FILE-NAMES") ,

Example:

READ-EVAL-PRINTs the contents of the given files. This
is the function to use to read files created by DSKOUT0

(DSKIN (FUNCS.LSP) DTJ\0: (Dl\TA.LSP))
Reads FUNCS ■ LSP from OSK: and DATA ■ LSP from DTAQ:.

(DSKIN (667 2) (DSKLOG.LSP))
Reads DSKLOG.LSP from the disk area of [667,2).

4 . 1 0 1

Reading Directories

The fol lowing functions are for reading dir,:?ctories. UFDHlP is
analogous to the function INPUT in that it opens a file on a
specified channel. The channel must be selected via INC in
order to be read. The f il0 is opened in binary image mode and
should not be read by the normal LISP read functions. All
functions are SURRS and thus evaluate their arguments.

(UFDINP CHANNEL PPN)

EXAMPLE:

(RDFILE)

EXAMPLE:

UFDiiJP opens the
returns the va 1 ue
either of the form
both inums or NIL ■

is assumed.

directory of - PPN on '·CHANNEL ■ • It
of CHANNEL as it's result ■ PPN is

(PROJ PROG) where P~OJ and PROG are
If PPM is NIL the user's directory

*(UFDINP T (QUOTE (2206,1)))

T

RDF ILE returns the next file in the directory that is
open on the current input channe 1. It return a file
which is either an atom or an atomic dotted pair. It
does an (ERR EOF) when it reaches the end of file.

*(PROG (X) (INC (UFDII1P T NIL) NIL)
(SETQ X (ERRSET (RDFILE)))
(INC NIL rnL)
(COND ((CONSP X) (RETURN (CAR X)))

(INIT . LSP)

4 . 1 . 2

(DIR PPl1)

EXAMPLE:

DIR returns a list of files from the directory of PPl~.
If PPN is NIL, the user's directory is ~ssumed.

(DIR (QUOTE (2206 4)))

((HUT o LSP) (FOO -LSP) MYFILEi)

4 0 1 . 3

File Manipulation

The following functions enable the user to manipulate files in
those directories to which he has legitimate access. The
definition of access privileges is I system dependent. These
functions use the RENAME UUO to effect the desired
manipulations ■ A FILESPEC is defined as follows:

(DEV FILNAM)

A DEV is either an atom whose last·character is a colon, I.E.
OSK: or a a list of the form~

(PROJ PROG)

where PROJ and PROG are both numbers. DEV is optional and if
ommitted the user's disk area is assumed.

A FILNAM is either an atom or an atomic dotted pair.

EXAMPLE:

MYFILE
(FILE. EXT)

(*RENAME FILESPECl FILESPEC2)

*RENAME is a SUBR that renames FILESPEC 1 to F ILESPEC2.
It returns T if the rename is successful and NIL if it
fa i 1 s. If a device is specified in FILESPEC 1 and no
device is specified in FILESPEC2 the device specified in
FILESPECl is carried over to FILESPEC2. Thus:

(*RENAME (QUOTE ((2206 4) (FOO. LSP)))
(QUOTE ((FOO . BAK))))

is equivalent to:
(*RE!JAME (QUOTE ((2206 4) (FOO . LSP)))

(QUOTE ((2206 4)(FOO. BAK))))

If no device is specified in either FILESPEC, the user"s
disk area is assumed.

4 0 1 . 4

(RENAME DEVl FILNAr1l DEV2 FIUJAM2)

RENMiE is an FSUBR that renames FILNAMl to FILNAM2° The
DEV's are optional. If DEV2 is not specified, DEVl is
assumed.
is the

. renaming

EXAMPLES:

If both DEV's are not specified, the default
user's disk area. RENAME returns T if the

is successful and NIL if it fails •

*(RENAMS OSK: (FOO . LSP) (FOO • BAK))

T
*(RENAME FOO FIE)

T
*(REIJAME (2206 4) (FOO • LSP) (2206 3) (FOO • LSP))

T

(DELETE DEVl FILHAMl DEV2 FILNl\M2 ~

DELETE is an FSUBR that deletes the files in the list.
The DEV's are optional, and a DEV is effective over the
following FILNAM's until a new DEV is encountered.
DELETE always returns NIL. The user s disk area is
assumed if no DEV has been specified.

EXAMPLES:

*(DELETE FOO (FOOl. LSP) (2206 4) (OLDFIL. COM))

NIL

4 . 1 . 5

(FILBAK FILE NEWEXT}

FILBAK is a SUBR that at.tempts to rename FILE with the
extension of NEWEX'I'. FILE can be either a FILNAM or a
FILSPEC. FILBAK returns T if the renaming was
successful and NIL if it fails.

EXAMPLES:

(MYPPN)

EXAMPLE:

(FILBAK (QUOTE FOO) (QUOTE BAK))

will rename the file FOO to FOO.BAK ■

(FILB.l\K (QUOTE (Foo' . LSP)) (QUOTE Bl\K))

will renarae the file FOO.LSP to FOO.BAK ■

(FILI3AK (QUOTE ((2206 4) (FOO • LSP)))
(QUOTE BAK))

will rename the file FOO.LSP[2206,4] to FOO.BAK[2206,4].

MYPPN returns the user's project programmer number
form suitable for use by the directory and
functions.

*(MYPPN)

(2206 4)

in a
I/0

(LOOKUP DEV FILNAM)

LOOKUP is a. SUBR that determines whether the file DEV
FILNAM exists or not. LOOKUP returns NIL if it can't
find the file and (LIST DEV FILrtl\M) if the file does
exist. If DEV is NIL, OSK: is assumed and (LIST FILNAM)
is returned.

4 0 1 . 6

Queueing Files

(QUEUE QtJAM: DEV: FILIJAM Si/ITCHES DEV: FILW\M SVlITCHES ••••)

QUEUE is an FSUBR that queues files to the specified
device or queue. It is essentially the same as the
monitor command QUEUE, both in syntax and effect. The
main use of this function is to get output to line
printer, paper tape punches etc. However, the input
queue can also be specifi~d in order to batch a job 0

A queue name QNAM: is an atom ···of ·three to six letters
whose last letter is a colon- The first three letters
indicate the general queue (see below) and the following
letters indicate the specific aueue.

LPT =LINE PRINTER QUEUE
PTP =PAPER TAPE PU~CH QUEUE
PLT =PLOTTER QUEUE
CDP =CARD PUNCH QUEUE
INP =JOB BATCH QUEUE

Thus (QUEUE LPT: •••) would queue to the line pr inter
without specifying a specific line printer queue.
(QUEUE LPTO: •••) would queue to line printer o. As in
the monitor command, if the queue name QNAM: is not
specified, the default is to LPT:.

If an INPUT queue is specified, a maximum of two files
is perr:ii tted. The seconc] file is taken as the nane of
the log file. If it is not specified, the filename of
the first file with an extension of .LOG is assumed.

4 . 1 . 7

Switches consist of two eleP1ent lists, the fir st
element being the switch and the se:ond the value.
In the case of a required non-numeric value (as in
DISP) only the first three letters ,.)f the argument
are looked at i 0 e. PRESERVE and PRE are equivalent.

S1-JITCH ARGUMEITI'

COPIES f11Ji1ER. IC

FORM NON-NUMERIC
LIMIT IJU:,1f.PIC
DISP 'PRE'

CPU

'RSN'

'DEL'
ll!Y~ERIC

EXPLA:1JATTOT1

'.llJf.JBE"R. OF COPIES
rl'O DE OUTPUT
FORMS FOS DEVICI:
OUTPUT LE1IT
PRESERVE FILE
RW1AME PILE OUT OF
OIRECTO~Y ~ND DELETE

QUEUES ALLOH!'.:D

LPT,P'I'P,CDP,PLT

LPT,PTP,COP,PLT
LPT,:?TP,CDP,PLT
.'\LL

A~TER SPOOLING ALL
DFLETE AFTER SPCOLING ALL
M,'\::nrnM CPU SECS FO~ JOB HJP ONLY

Defaults are system rlef ined except for DISP which
defaults to PRE so that all files are preserven.

As in the rnoni tor command, swi tche:3 are in effect
until superseded by another instance of the switch.
Switches rnay precede the first file or device.

DEV's are either an atom whose last character is a
colon or a ppn specification. A device affects
only the files fallowing it. It is superseded by
another device ■ If no device is specified, OSK: is
assur.ied.

4 . 1 . 8

Exar.mles:

*(Q~EUE LPT: DSK: FOO (FOO. LkP))

Prints the files FOO and F00°LSP on the line
printer.

*(QUEUE LPT: (FOO. LSP)(COPIES 2))

Prints two copies of FOO.LSP on the line printer.

*(CUEUE ITJP:' (Foo··.-: CTL))

Queues a job using FOO.CTI, as its command file,
leaving i3 LOG file in FOO.LOG.

*(QUEUE H1P: (FOO. CTL)(FOO. LOG))

Same as above.

'1 • 1 . 9

Recovery Fron ntL'\.~JGR Errors

The QUEUE function -must swap the LISP high segment for the
QMANGR high segnent. It then transfers control to the
Q[1I\l·JGR high segment- In nost cases, if Qf1,'\'.'·JGR finds an
error, it simply prints an error message. In a few cases,
however, it returns control to the monitor. The REE
command will restore the appropriate high segment and
processing wil 1 continue. note that in this instance, t~e
system does not wait for control characters.

A -S~ART comnand to the nonitor will also restore the
user's high segnent. However, this is not rec:.ommended as
the reallocation procedure will be entered.

4 . 1 . 10

Printing Circular or Deeply Nested Lists

(PRINTLEV EXPRESSION DEPTH)

PRINTLEV is a printing routine similar to PRINT ■

PRINTLEV, however, only prints to a depth of DEPTH ■ In
addition, PR I NTL EV recognizes lists which are circular
down the CD R and c 1 o s e s the s e wit h ' •••] ' instead of
')". The combination of these two features allows
PRINTLEV to print any circular list without an infinite
loop.

The value of PRINTLEV is the value of EXPRESSION. This
means that PRINTLEV should not be used at the top level
if EXPRESS ION is a circular list structure, since the
LISP executive would then attempt to print the circular
structure which is returned as the value.

Spacing Control

(TAB N)

TAB tabs to position ~J on the output 1 ine doing a TERPRI
if the current position is already past N ■ Note should
be taken that TAD outputs spaces only when necessary and
outputs tab characters otherwise.

1 0 2

"Pretty Printing" Function Definitions and S-Expressions

(GRI!1DEF "Fl" "F2" "?3" ... "FN")

GRIIJDEF is used to print the definitions of functions
and the values of variables in a format suitable for
reading back in to LISP, in what is known as DEFPROP
format- GRINDEF uses SPRINT (see below) to print these
s-expressions in a highly readable format, in which the
levels of list structure (or parentheses levels) are
indicated by indentation. GRINDEF prints all the
properties of the identifiers F 1, F 2, •• 0 , Fn which
appear on the list GRHlPROPS. If Fi is non-atomic, it
will be SPRINTed.

GRINPROPS

The variable GR IrlPROPS cont a ins the properties which
will be printed by GRINDEF ■ This variable can be set by
the user to piint special properties which he has placed
on atoms. The initial value of GRINPROPS is (EXPR FEXPR
MACRO VALUE SPECIAL).

(GRIIlL "Fl" "F2" ... "FN")

GRINL causes all of the atoms, "Fl" "F2" • •• "Fn", and
a 11 of the a toms on the 1 i sts which are the va 1 ues of
the atoms Fl F2 Fn to be GRINDEFed. GRHJL
correctly prints out read macros and is the only
function which does. GRINDEF does not save the
activation character for the read macros ■ Warning: Each
Fi~ be an atom.

(SPRINT EXPR IUD)

SPRHlT is the function which does the "pretty printing"
of GRINDEF 0 EXPR is printed in a human readable form,
with the levels of list structure shown by ind en ta tion
along the line. This is useful for printing large
complicated structures or function definitions. The
initial indentation of the top level list is IND-1
spaces. In normal use, IND should he given as 1.

4 . 3

Reading Whole Lines

(LHlEREAD)

LINEREAD reads a line, returning it as a list. If some
expression takes more than one line or a line terminates
in a comma, space or tab, then LINEREAD continues
reading until an expression ends at the end of a line.
This is the function used by the EDITOR and BREAK
Package supervisors to read in commands, and may be
useful for other supervisor-type functions.

Example:

*(LINEREAD)
*A B (C D
*E) F G

(AB (CD E) F G)

* (LINEREl\D)
*AB (CD E),
*F G

(AB (CD E) F G)

4 • 4

Teletvpe and Pro~pt Character Control Functions

(CLRBFI)

CLRBFI clears the Teletype input buffer ■

(TTYECHO)

TTYECHO complements the Teletype echo switch. The value
of TTYECHO is 'I' if the echo is bein<}- tufn.'ed on, and NIL
if it is being turned off.

(PROMPT N)

Example:

The LISP READ routines type
the user when they expect
This character is normal 1 y
prompt character. n is the
new prompt character.

out a "prompt character" for
to read from the teletype.
a "*"· PROMPT resets this
ASCII representation of the

The ASCII representation of the old prompt character is
returned as the value of PROMPT. (PROMPT NIL) returns
the current prompt character without changing it.

*(PROMPT 53)
52
+

(IN ITPROMPT N)

Whenever LISP is forced back to the top level (e.g. by
an error or Con tro 1-G) , the prompt character is reset.
INITPROMPT is similar to PROMPT except that it sets the
top level prompt character. (IlHTPROMPT NIL) returns
the ASCII value of the top level prompt character
without changing it ■

4 • 5

(READP)

(lJr-JTYI)

Exanple:

READP returns T if a ch~racter can he input and NIL
otherwise- P.El\DP does not input a character.

Ui-lTYI "unreads" a character (such as a character
input by a TYI or a READCH), so that the next call
to READ, TYI, etc., will pick up the UNTYI'ed
character as the next character to be reac], and
returns the .::'1.SCII code· for .that char_acter- Note:
In the LISP READ routine, an ato~ nay be terminated
either by a break character (a character which must
be interpreted by READ as well as serving to
terminate the ator.1, such as " (11, ") ", " [11, and " • .")
or a separator character (a charact~r used only to
separate atoms, etc., but not in itself meaningful,
such as carriage return or blank), In order to
save a break character for later interpretation,
the LISP RE~D routines use a one-charaacter buffer.
UI-JTYI simply stores its argument in this hufter;
thus there are two problems in usihg U!'JTYI. First,
if UJ,JTYI is used several times in succession with
no inter v en in g RE.'\. D ' s , TY I • s , etc . , then . on 1 y th~
most recent character is actually "unread" -:--a 11
others are lost. Second, if there is a break
character in the one-character buffer when an UNTYI
is performed, the break character will be lost.

The fol lowing
character ;nay
read routines:
* (DE PEE KC . ()

example illustrates
be examined ·without

(U:TI'YI (TYI)))

how the
a'ff ecting

* (PROG () (CLRBFI) (PI:EI<C) (RETlJRl1 (TYI))

*A

next
the

101

(ERR CH ~J)

ERRCH change-s the bell character that causes an
(ERR (IJUOTE ERROPX)). IJ is the 1\SCII
representation of the character ■ ERRCH returns the

4 . 5 . 1

ASCII rGpresentation of the old character. note
that if the new character is not a break character
to the monitor, it will not be processed until it
is read in the nor~al course of reading.

4 • 5 . 2

READ MACROS - Extending the LISP READ ROUTINE

Read Macros allow the user to specify a function to be
executed each time a selected character is read during input of
his data or programs. This function is generally used to
produce one or more elements of the input list which are built
up in some way from later characters of the input string 0 There
are two types of _Read Macros; Normal Read Macros whose result is
used as an element of the input list in the position where the
macro character occurred, and Splice Macros whose result (must
be a list which) is spliced sequentially into the input list.

WARrnnc: Read macro characters wi 11 not be recognized if they
occur inside of an atom name unless the character is first
defined to be equivalent to a break or separator character (e.g.
space or comma) using MODCHR ■

Functions for Defining Read Macros

(ORM "CHARACTER" "FUNCTION")

CHARACTER is defined as a normal Read Macro with
"FUNCTiotJ" being a function name or a LAMBDA expression
of no arguments which will be evaluated each time
CHARACTER is detected as a macro during input ■ FUNCTION
is put on the property list of CHARACTER under the
property REZ\DMACRO. The value of ORM is CHARACTER.

Examples: (ORM * (LAMBDA ()
(DRM = (LAMBDA ()

(NCONS (READ)))
(REVERSE (READ)))

(DSM "CHARACTER II "FUPCTION II)

_F.:xamPle:

DSM is exactly like ORM except that CHARACTER is defined
as a Splice Macro-

(DSM : (LAMBDA () (CONS NIL (READ)))

4 . 6

Using· Read Macros

The use of Read [1acros is best described with examples.
The Read Macros defined above will be used for the examples.

Example 1

If the expression (ABC= (DEF) G H) is read in the
apparent input will be (~EC (FED) G H).

r=xample 2

If (FOOl F002 *F003 F004) is read the apparent input is
(FOOl F002 (F003) F004).

In each case the associated function Has eva 1 ua ted and the·
result was returned as the next element of 1:he input list.

Example 3

Reading (ATl :(AT2 ATJ) AT4) will result in
(ATl NIL AT2 ATJ AT4).

Example 4

If the input is (AA AB :AC) the result is (AA AB NIL • AC).

It can be seen that the effect of a Sp 1 ice Macro
place the result of the function evaluation into the
stream ~inus the outermost set of parentheses.

-1 • 7

is to
input

Modifving the READ Control Table

Since the LISP READ routines are table driven, it is
possible to redefinG the meaning of a character by changing its
table entry. In each of the following functions CH is the ASCII
representation of the character being modified.

(MODCHR CH 11)

The value of t/lODCHR is the old table entry for CH. If N
is non-NIL it nust be a number which represents a valid
table entry. The entry for CH is changed to N. If N is
NIL, no change is nade, e.g. to make "." a letter (so it

, w i 11 be have 1 i k e the 1 et t er "A ") execute (MOD CH R 5 6
(MODCHR 101 NIL)).

lSETCHR CH 11)

SETCHR is similar to MODCHR except that it only modifies
the portion of the entry associated with read macros ■

4 . 8

Reading without Interning

{RDNAM)

Example:

RDNAM functions in the same manner as READ except that
it does not in tern the a toms that it reads. Thus an
atom read by RDI1AM and an atom read by READ are **NOT**
fill 0

* (PROG () (CLRBFI) (RETURN (EQ (RDNAM) (READ))))
*FOO
*FOO

NIL

4 . 9

Example:

NEH FUNCTIONS ON S-EXPRESSIONS

S-Expression Building Functions

('I'CONC PTR X)

TCONC is useful for building a 1 i st by adding elements
one at a time at the end. This could be done with
NCO NC. However, un 1 i ke NCOtJC, Tcm1c does not have to
search to the end of the 1 i st each time it is cal led.
It does this by keeping a pointer to the end of the list
being assembled, and upc1a ting this pointer after each
call- The savings can be considerable for long lists.
The cost is the extra word required for storing both the
list being assembled, and the end of the list. PTR is
that word: (CAR PTR) is the list being assembled, (CDR
PTR) is (LAST (CAR PTR)). The value of TCONC is PTR,
with the appropriate mocl if ica tions to its CAR and CDR.
Note that TC0!1C is a destructive operation, using RPLACA
and RPLACD.

*(MAPC (FUNCTION (LAMBDA (X) (SETQ FOO (TCONC FOO X))))
(QUOTE (5 4 3 2 1)))

*FOO
((5 4 3 2 1) 1)

TCO!JC can be initialized in two ways •. If PTR is NIL,
TCONC will make up a ptr. In this case, the program
must set some variable to the value of the first call to
TCOllC. .n,f ter that it is unnecessary to re set since
TCONC physically changes PTR thus:

*(SETQ FOO (TCONC NIL 1))
((1) 1)
*(MAPC (FUNCTION (LAMBDA (X) {TCONC FOO X)))

(QUOTE (4 3 2 1)))

5 . 1

'*FOO
((1 4 3 2 1) 1)

If PTR is initially (NIL), the value of TCONC is the
same as for PTR=NIL, but TCONC changes PTR, e.g.

*(SETQ FOO (NCONS NIL))
(lHL)
* (MAPC ' (FUUCTION (LAMB DZ.\ (X) (Tconc FOO X)))

(QUOTE (5 4 3 2 1)))
*FOO
((5 4 3 2 1) 1)

The latter method allows the program to initialize, and
then cal 1 TCONC without having to perform SETQ on its
value.

(LCONC PTR.X)

Where TCONC is used to add elements at the end of a
li~t, LCONC is used for building a list by adding lists
at the end. For example:

*(SETQ FOO (NCONS NIL))
(NIL)
*(LCONC FOO (LIST 1 2))
((1 2) 2)
*(LCONC FOO (LIST 3 4 5))
((1 2 3 4 5) 5)
*(LCONC FOO NIL)
((1 2 3 4 5) 5)

Note that LCONC uses the same pointer conventions as
TCONC for eliminating searching to the end of the list,
so that the same pointer can be given to TCONC and LCONC
interchangeably.

* (TCONC FOO rnL)
((1 2 3 4 5 NIL) NIL)
*(LCONC FOO (LIST 3 4 5))
((1 2 3 4 5 NIL 3 4 5) 5)

5 0 2

S-Expression Transforming Functions

(NTH X N)

The value of TlTH is the tail of X beginning
element, e.go if H=2, the value is (CDR
(CDDR X), etc. If f1=1, the value is X,
consistency, the value is (COJ'JS NIL X).

with the Nth
X), if U=3,
if N=O, for

(REMOVE XL)

(COPY X)

Removes all top level occurrences of X from the list L,
giving a COPY of L with all top level elements EQUAL to
X removedo

The value of COPY is a copy of x.
to: (SUBS'l' 0 0 X).

COPY is eouivalent

(LSUBST X Y Z)

Like SUB ST except X is substituted as a segment. Note
that if X is tHL, LSUBST returns a copy of Z with all
Y's deleted. For example:

(LSUBST (QUOTE (A B)) (QUOTE Y) (QUOTE (X Y Z))) = (X A B Z)

5 • 3

S-Expression Modifying Functions

All these functions physically modify their arguments by
changing appropriate CAR's and CDR's.

(DREMOVE XL)

Similar to REMOVE,
actually modifies
does not use any
than REMOVE.

but uses .fill in stead of EOUAL, and
the list L when rer:ioving X, and thus

add i tiona 1 storage. More ef f ic ien t

NOTE: If X = (L ••• L) (i.e. a list of any length all
of whose top level elements are EQ to L) then the value
returned by (DREMOVE XL) is NIL, but even after the
destructive changes to X there is still one CONS cell
left in the r:iodified list which cannot be deleted. Thus
if Xis a variable and it is possible that the result of
(DREMOVE X L) might be NIL the user must set the value
of the variable given to DREMOVE to the va 1 ue returned
by the function.

(DREVERSE L)

The value of (DREVERSE L) is EQUAL to (REVF.RSE L) u but
DREVERSE destroys the original list Land thus does not
use any additional storage. More efficient than
REVERSE.

(DSUBST X Y Z)

Sir.1ilar to SUBST, but uses .fill and does not copy z, but
chan0es the list structure Z itself. DSUBST substitutef
0ith a copy of x. More efficieht than SUBST 0

5 • 4

Mapping Functions with Several Arguments

l\11 of the map functions have been extended to allow called
functions which need mcfre than ong_ arcrument. The function FN to
be called is still the first argument. Arguments 2 thru N (N <
7) are used as arguments 1 thru N-1 for FN ■ If the arguments to
the map functions are of uneoual length, the map function
terminates when the· shortest list becomes NIL. The functions
behave the .§.filDg_ as the previous definitions of the functions
when used with two arauments.

Example: This will set the values of .A, B and C to 1, 2 and 3,
respectively.

* (MAPC (FUNCTION SET) (QUOTE (ABC)) (QUOTE (1 2 3)))

tHL

5 • 5

Mapping Functions Which Use Nconc

The functions r1APCON and t1Z\PCAn produce lists by NCONC to
splice together the values retuined by repeated applications of
their func~ional argument.

MAPCOI1 and MAPCAN are
the function returns NIL.
nconc'ed to it, the output
the result returned from
function to remove al 1 of
written as:

especially useful in the case where
Since NIL does not affect a list if

from that function does not appear in
MAPCON or MAPCAN ■ For example, a

the vowels from a word can be easily

(READLIST (MAPCAN (FUNCTION VOWELTEST) (EXPLODE WORD)))

where VOVJELTEST is a procedure which takes one argument, LET,
and returns NIL if LET is a vowel, and (LIST LET) otherwise.

(MAPCOi~ FN ARG)

MAPCOtl ca 11 s the function FN to the list ARG. It then
takes the CDR of ARC and applies FN to it. It continues
this until ARG is IJIL. The value is each of the lists
returned by FN NCONC'ed together.

For a single list MAPCON is equivalent to:
(DE MAPCON (FN ARG)

(corm ((NULL ARG) NIL)
(T (NCONC (FN ARG)

(MAPCON FN (CDR ARG))))))

Exar.iple

* (MAPCON (.FUi-JCTIOM COPY) (QUOTE (1 2 J 4)))

(1 2 J 4 2 3 4 3 4 4)

(MAPCAN FN ARG)
(MAPCONC FN ARG)

t,1APCAN is sirrn1ar to f1APCOt--l except it ·calls FN with the
CAR of ARG instead of the whole list.

5 • 6

S-Expression Searching and Substitution Functions

(SUBLIS ALST EXPR)

Example:

ALST is a list of pairs ((Ul • Vl) (U2 " V2) •••
(Un ° Vn)) with each Ui ato~ic- The. value of SUBLIS is
the result of substituting each V for the corresponding
U in EXPR.

*(SUBLIS (QUOTE ((P. .. X) (C. Y))) ·(QUOTE (ABC D)})
(X BYD)

:~ew structure is ere a ted on 1 y if needed, e.g. if there
are no substitutions, value is Jill to EXPR-

(SUBPAIR OLD NEW EXPR)

Exar:-1Ple:

Similar to SUBLIS except that elements of NEW are
substituted for corresponding atoms of OLD in EXPR.

* (SUBPAIR (QUOTF. (A C)) (QUOTE (X Y)) (QUOTE: (A B C D)))
(X BYD)

Note: SUBLIS and SUBPAIR do not substitute copies of the
appropriate expression, but substitute the identical structure.

(ASSOC# X Y)

Similar to ASSOC, but uses EQUAL instead of fil·

5 • 7

(LDIFF X Y)

Y r,iust be a tail of X, i.e . .fill to the result of applying
some number of CDRs to)'.. LDIFF gives a list of all
elements in i'. but not in Y, i-e-, the _list difference of
X and Y. Thus (LDIFF X U1EMB FOO X)) gives all elements
in X up to the first FOO.

Note that the value of LDIFF is always new list
structure unless Y=!HL, in which case (LDIFF X :NIL) is X
itself.

If Y is not a tail of ,:, LDIFF generates an error.
LDIFF ter~inates on a I1ULL check.

5 • 8

Efficiently Working with Atoms as Character Strings

(FLATSIZEC L) = (LEl·1GTH (EXPLODEC L))

(NTHCHAR X N) = (CAR (NTH (EXPLODEC L) N))
= (CAR (NTH (REVERSE (EXPLODEC L)) N))
= NIL if (ABS I1) = 0 or > (FLATSIZEC L)

if N>O
if N<O

Note: The above functions do not really perform the operations
listed. They actually use far more efficient methods that
require no CONSes, but the effects are as given.

(CHRVAL X)

CHRVAL returns the ASCII representation of the first
character of the print nam~ of x.

5 . 9

:1f.1i7 P?EDICATES

Data 'I'ype Predicates

(COI,1SP X)

'I'he value? of COHSP is Y iff Xis not an ator.,.
CONSP is equivalent to:

(L,\M3D,'\ (X) (CO:m ((110T (,'\Tm,7 X)) X)))

.examples: (COllSP T) = 1lIL
(CONSP 1 ■ 23) = NIL

_(COllSP (QUOTE (X Y Z))) = (X Y Z)
(CONSP (Coq (QUOTE (X)))) = NIL

(STRDlGP Xl

The value of STRINGP is Tiff Xis a string.

(PZ\TOM___ll

The value of Pl\TOil is T iff X is an a.ton or X is a
pointer outside of free storaJe.

(LITATot1 Z)

The value of LIT?I.TOM is T iff X is a literal ato:n,
i.e., an atom :Out not a number.

6 . 1

Alphabetic Ordering Predic~te

(LEXORDER X Y)

The value of LEXORDER is Tiff Xis lexically les& than
or equal to Y. note: Both arglment s mu st be a toms and
numeric argur;ients are all lexically less than syr:1bolic
atoms.

Exar:-1ples: (LEXOPDER (QUOTE ADC) (QUOTE CD)) = T
(LEXORDER ((~UOTE B). (QUOTF. A)) = NIL
(LE XOR DER 123999 (QUOTE A)) = T
(LEXORDER (QUOTE B) (<JUOTE R)) = T

6 • 2

Predicates that Return Useful '.Jon-J'JIL Values

(MEMBER X Y)

MEMBER is the same as the old . MEMBER except that it
returns the tail of Y starting at the position where X
is found.

Examples:

(MEMBER (QUOTE (CD)) (QUOTE ((A B)(C D)E)))
= ((C D) E)

(r1D-1BER (QUOTE C) (QUOTE C)))

(MEMB X Yl
(MEMO X Y)

= NIL

MEMO is the saP1e as the old r·rnMQ except that it returns
the tail of Y starting at the position where Xis found-

Examples:

(ME1'1Q (QUOTE (CD)) (QUOTE ((AB)(CD)E)))
(M EM B (QUOTE A) (QUOTE (Q A B)))

(TAILP X Y)

= NIL

The value of TAILP is X iff Xis a list and a tail of Y,
i.e., Xis Iill. to some number of CDRs & 0 of Y.

(Ji.ND Xl X2

(OR Xl X2 ••• Xn)

= Xn if i3ll Xi are non-tlIL
= • 1n L otherwise

= The first non-NIL argument
= I'-1 I L i f a 11 Xi are l'l I L

As with the old AllD and OR these functions only evclluate as many
of their argumer.ts us necessary to determine the· answer (e.g.
AND stops evaluation aftc.>r thG fir st IHL argument) •

(j • 3

Other Predicates

(NEO X Y)

The value of I1EQ is Tiff Xis not ~Q to Y.
HEC is equivalent to:

(LAMBDldX Y) (:JOT (EQ X Y)))

Examples: (I1EQ 'T' T) = T1IL .l.

(NEQ rr, ilIL) ·. = 'T' .l. .l.

(rrno (QUOTE]\) (QUOTE B)) = T
(NEQ 1 LO) = T
{l'lEQ 1 1) = HIL
(IJEQ 1.0 1- 0) = T

6 . 4

r1EW iJUMER IC FUNCTIOllS

Minimum and Maximum

{ *rnn X y) == Minimum of X and y

(MIIJ Xl X2 Xn) == rHn iriurn of Xl, X2, . . . , Xn

(*MAX X y} == Maximum of X and y

(MAX Xl X2 ... Xn) = Maxim urn of Xl, X2, ... I Xn

{ IIWMP X}

IJ:1UMP returns X iff X is an I!.JUM. It returns NIL
ot hert-Ji se.

(NUMTYPE X}

NUMTYPE returns FIXMUM if the number Xis a fixed point
number and FLONUM if it is a floating point number.

7 . 1

FORTRAN Functions in LISP

It is now possible to use the FORTRAN ~ath
Functions in LISP. This allows the user to perform
cor.iputations that previously were difficult to do in
LISP- All functions return FLmJUMs for values bl!t may
have either a FLONUf-1 or a FIXtJUM for an argument.

To· load the l\ri thr.ietic Package
following at the top level of LISP:

execute the

*(r·1C(HJPUT SYS: (7\RITH.LSP)))
<SEQUENCE OF OUiPUT>
*(LOAD)SYS:ARITH$
<LOADER ~YPES BACK>
* (.zl.RITH)

The above \-till load the Arithmetic Package into
expanded core- To load the package into BIW\RY PROGRAf1
_SPACE type (LOAD T) instead of (LOAD).

Av~ilable Functions

Function Name

SIJl
snm
cos
COSD
TAN
ASHl
1\COS
ATi\tJ
snrn
COSH
TANH
LOG
EXP
SQRT
FLO7\T
RAiJD0r1

Meaning

Sine with argument in radians
Sine with argument in degrees
cosine with argument in radians
Cosine with argument in degrees
Tangent
l\rc Sine
Arc Cosine
i"\rc ':'angent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Log base e
Take e to a power
Square Root
Convert to a FLotJUM
Generates a random number
between o.o and 1.0

7 • 2

FUNC~IONS FOR THE SYSTEM BUILDER

Loading Compiled Code into the Hiqh Segment

The UCI LISP System has a sharable hi~h segment. This high
segment contains the interpreter, EDITOR, BREAK package, and all
of the utility functions. If the user wants to create his own
system he must be able to load cor,piled code into the high
segment. To allow the loading of code into the high segment,
the user must both own the file and have write priveleges; to be
write pr i vel eged, the user must ei the:t be ere a ting the system
from UCILSP 0 REL (see the section on creating the system) or
follow the procedure indicated in the function SETSYS. The
following three functions are for the purpose of loading code
into the high segment and will only work if the user i.s write
priveleged. •

(HGHCOR X)

If X=NIL the "read-only" flag is turned on (it is
initially on) and HGHCOR returns T ■ Otherwise Xis the
anount of space needed for compiled code. The space is
then allocated (expanding core if necessary), the
"read-only" flag is turned off and HGHCOR returns T.

{ HGHORG X)

(HGHEND)

If X=NIL the address of the first unused location is
returned as the va 1 ue of HGHORG. Otherwise the address
of the fir st unused location is set to X and the old
value of the high seg. origin is returned.

The value of HGHEND is the address of the last unused
location in the high seg.

8 . 1

(SETSYS DEVICE FILE}

SETSYS enables the user to create his own sharable
system. DEVICE is either a project-programmer number or
a device name followed by a colon_(i.e ■ DSK:)~ FILE is

• the name of the syste~ th~ user is creating. In order
to create the system, the user must Control-C out and do
an SSA FILE, then run the syste~. After this procedure,
the user has ~rite priveleges and may load code into the
sharable high s~gment. (Note that the user need not use
this to save a 16w s~gment only). This procedure is not
necessary for generating the system.

8 . 1 0 1

The Compiler and LAP

Special variablPs

In order to print variable bindings in the backtraces, we
have put a pointer to thje atom header in the CAR of the SPECIAL
cell of all bound atoms not used free in compiled code.
Unfortunately, for • compiled code code to fun, the CAR of the
SPECIAL cell of free variables must be NIL. This, when loading
LAP code, special variables must be saved if they are to be
printed properly in a backtrace. The .necessary information is
stored on LAPLST which contains the name and the special cell of
each spec ia 1 variable in the system. Since this means a two
word overhead for each special variable, there is a flag which
controls the adding of items to LAPLST. Special variables are
added to LAPLST iff the variable SPECIAL is non-NIL. The
initial value of SPECIAL is T.

Removing Excess Entrv Points - NOCALL Feature

If, during compilation, a function has a non-NIL NOC ALL
property, all calls to that function are compiled as direct
PUSHJ's to the ~ntry point of that function with no reference to
the atom itself. After loading, all functions used in this
manner will be left as a list on the variable REMOB ■ This means
that many functions which are not major entry points can often
times be REMOBed to save storage. The user may use (NOCALL FOOl
F002 FOOn) to make several NOCALL declarations. • Like
SPECIAL and DECLARE, when NOCALL is used outsid~ of the
compiler, it acts the same an NILL.

8 • 2

Miscellaneous Useful Functions

iunsormo)

{SYSCLR)

UNBOU!lD returns the un- internecl atom UNBOUND which the
system places in the CDR of an a torn' s SPECIAL (VALUE)
cell to indicate that the aton currehtly has no assigned
value even though it has a_ SPECIAL (V,'\LUE) cell on its
property list.

Re-initializes LISP to read the user's INIT.LSP file
when it returns to the top level, e.g. by a Control-G or
a START, or a REF.:1TER. SYSCLR a 1 so resets the garbage
collection time indicator to O and the CONSes performed
indicator to O. It also performs an EXCISE.

(IHITFL "FILELST")

Example:

INITFL is an FSUBR that sets up the file_ list_ for the
user's INIT fil~- FILELST may consist of more than one
file. However, if there is more than one file in the
list, the files followin~ the first one must be found or
an error wi 11 be generated. The fir st file in the list
is optional. The H1IT file is initially INIT ■ LSP.

INITFL retGrns· the old file list as its result ■

*(HJITFL (HlITl • LSP) (MYFILE • LSP) FOO)

((nnT O LSP))

8 . J

* * * * * *v-TARTHNG ** * * * *:

The following two functions can catastrophically destroy
the garbage collector· by ere a ting a c ire le in the free 1 i st if
they are used to return to the free list any words which are
still in use. Do not use these functions unless you are certain
what you are doing. (They are only useful in rare cases where a
small amount of working stor 9 ge is needed by a routine which is
called quite often.)

(FREE X)

FREE returns the word X to the free storage list and
returns IHL.

(FREELIST X)

FREEL I ST returns al 1 of the words on the top level of
the list X to the free ptorage 1 i st and returns NIL.
FREELIST terminates on a NULL check.

8 . 3 . 1

New Symbol Table Functions

The functions in this section are similar to the currently
existing symbol table·· functions except that th.ey either strip
off (for storing) or adc1 on the ator1 relocation- This allows
MACRO code to use the atom relocation· register S to refer to
free storage and thus allow expansion of binary program space
without destroying· LOADed code~ They operate in. ex.actly the
same manner as their older counterparts,. An error is generated
if the arguments or returning value is not a true cons cell ■

(*RPUTSYM SYM VAL)

*RPUTSYM puts VAL - relocation in the. symbol table under
SYt1.

(RPUTSYM Xl X2 ...)

RPUTSY~-1 functions in the same manner as PUTSYM, i.e. if
Xn is an a tom, then Xn is placed in the symbol table
with. Xn less the reiocation as. it's value. ·otherwise
(EVAL (Ci\DR XN)) is placed in the symbol table as the
va 1 ue of (CAR xn) ~

(*GETSYH X)

*G:CTSYM gets the value
relocation and returns
value.

(GETSYM P Sl S2 ...)

of
the

the symhol X,
cell pointed

adds on
to as

the
it's

GETSYM searches the symbol table for the symbol Sn and
places the relocated value on the property list of Sn
under property p.

8 • 3 • 2

Initial Svstem Generation

1) To Generate UCILSP.PEL

.R MACRO
*UCILSP.REL/P/P/P/P/P/P/P/P/P/P_UCILSP ■ M~C

(Needs to be done only when UCILSP.MAC if; changed.)

2) To Generate the LISP System (LISP.SHR.and LISP.LOW)

R LOADER
*UCILSP.RELS
.CORE 15
. STZ\RT
FULL ~lORD SP. = 75 0
BII1. PROG. SP. = 5
(INC (INPUT OSK: LAP))
<RANDOM MESSAGES>
jc
■ SSA LISP

<The preceeding loads the following files:
UCILSP ■ REL, LAP, SYSl.LAP, SYS2.LSP, ERRORX.LSP, ERRORX.LAP,
BREAK.LAP, EDIT-LAP>

(Needs to be done whenever any of the above files are changed.)

(If during the course of the above the mes sage "NO FW STORl\GE LEFT"
appears, experiment with variations in the allocation for Full
Hord Space.)

J) To Generate LISP.SYM, the LISP LOADER SY~BOL TABLE

-RU L052A (Version 52 of the DEC Loader.
This file is included with the LISP System)

*UCILSP ■ REL/J, SY:mAK ■ REL$
.START

(Must be done whenever Step 1 is performed.)

8 . 4

4) To Gen era te CGr1PLR. S}\. V, The LISP COMP I LE~

.AS OSK SYS

.R LISP 36
FULL WORD SP. = 2000
BHJ. PROG. SP. = 15000
*(INC (I:-JPUT OSK: (COMPI."~.LAP)))

<HAIJDOM :1ESSAGES>
*(!lOUUO NIL)
*(CINIT)
jc
.SA COMPLR.SAV
.DEL COMPLR ■ HGH

(Must be done whenever Step 3 is performed.)

5) To Generate LISP.LOO, the LISP LOADER

• R LOADER
*L0r'\DER ■ REL$
.START

(Needs to be done only when LOADER.MAC is changed.)

8 • 5

The Contents of the Context Stack

\'foe never a forr:i is given to EVJ\L, it is pushed onto the
top of the Special Pushdown List in the form of an Eval-Blip.
This information is used for backtrace s. An Eva 1-B lip entry
has UI L in the left half (see SPDLFT) and the form being
evaluated in the right half (see SPDLRT).

Also, variable bindings are saved on the Special
Pushdown List. The left side of the entry cohtains a pointer
to the special cell and the right side contains the value
which was saved.

The only other items on the Special Pushdown List are
used by the LISP interpreter, and always haVe a non-NIL atom
in the left half.

In the user's progra~s, stack pointers are always
I

represented as IllUMs. 'I'.hi s al lows the pro0raJT1 to ea si 1 y
nodify thern_with the standard arithmetic functions so that a
program can step either up (toward the most recent Eval-Blip)

I
or down (toward the top level of the interpreter) of the
stack at will.

All of the functions in this chapter take INUM's for the
pointer argu~ents. The actual pointer to the stack element
requires an offset from the beginning of the stack- For the
user to obtain a true LISP pointer he must call the function
STI<PTR (with an INU11 argument also). (i.e. if the user
wishes to do an ~PLACA or RPLACD on an element of the stack,
he must get a pointer via STKPTR.)

9 . 1

Examining the Context Stack

(SPDLPT)

The va 1 ue of SPDLPT is a stac}: pointer to the current
top of the stack. (Returns an INUM).

(SPDLFT P)

The value of SPDLFT is the left side of the stack. i tern
pointed to by the stack pointer P 0

lSPDLRT P)

(STKPTR)

The value of SPnLRT is the right side of the stack
item pointed to by the stack pointer P 0

The va 1 ue of STKPTR is u true LISP pointer to a stack
item-

(nEXTEV P)

If the stack pointer Pis a pointer to an Eval-Blip, the
value of NEXTEV is p. Otherwise, NE:i(TEV searches down
the stack, starting fror'l P, and returns a stack pointer
to the first Eval-Blip it finds. If NEXTEV can not find
an Eval-Blip it returns 1lIL-

(PREVEV P)

PREVEV is sil1'1ilar to PEXTf.V except that it moves up the
stack instGad of down it.

lS~KCOUNT 11AHE P PEI1D)

The value of STKCOUNT is the number of Eval-Blips with a
STK!1l\ME of i'JAt·1E occurring bet ween stack positions P-1
and PEND, where PEND< P.

9 0 2

(STK!l?•.r-!E P)

If position P ii not an Eval-Blip, the value of
is NIL. If position P is an Eval-Blip and the
atomic, then the value of STKHAME is that atom.
form is non-atomic, STKNAil!E returns. the CAR
form, i.e. the name of the function.

(STKllTH Il P)

STI{Nl\ME
form is

If the
for the

The value of STKNTH is a stack- pointer to the Nth
Eval-Blip starting at position P. If tl is positive,
STKNTH moves up the stack, and if N is negative, STKNTH
moves down the stack.

JSTKSRC!l NAME P FLAG)

The value of STKSRCH is a stack i-:ointer to the first
Eval-Blip With a STKNAME of NAME. The direction of the
search is controlled by FLAG. If FLAG=NIL, STKSRCH
moves down the stack. Otherwise STKSRCH moves up the
stack. STKSRCH never returns P for its value, i 0 e 0 it
steps once before checking f6r NAME ■

JFIJDBRKPT P)

The value of FNDBRKPT is a stack pointer to the
beginning of the Eval-Block that Pis in ■ The beginning
of a Eval-I3lock is defined as an Eval-Blip which doGs
not contain the next hiQ"her Eval-Blip within it. This
function is used by the backtrace functions.

9 • 3

Controlling Evaluation Context

(OUTVAL P V)

OUTVAL adjusts P to an Eval-Blip and returns from that
position with Vo

iSPREDO P V)

SPREDO adjusts .P to an Eval-Blip anc'l re-evaluates from
that pointo

(SPREVAL P V)

SPREVAL evaluates its argument v in its local context to
get a form, and then it
by P and evaluates the
from that conte.xt with
to SPREDO except that
changed.

returns to the context specified
form in that context, returning

the value. This is very similar
the EVAL-bl ip on the stack is

note: OUTVAL, SP REDO and SPRF.VP.L a 11 use rrnXTEV to adjust P to.
an Eval-Blip.

(EVALV l\ P)

The value of EVALV is the value of the atom A evaluated
as of position p. If A is not an ator.i then it must be
the spec ia 1 eel 1 of an a tom O By using the spec ia 1 eel 1
instead of the aton, special variables can be handled
properly. EVP1.LV is similar to EVAL with two arguments,
but is more efficient.

(RETFROM Frl VAL)

RETFRO/1 returns VJl..L from the most recent call to the
function F!:l with thE: value VAL. For RETFP,OM to work,
there r:1ust be an F.val-Blir for Fn.
sure to g~t an Eval-Slip in cor.ipiled
function with no arguments inside
(ER~SET (?U:lC)).

9 . 4

The only way to be
code is to call the

of an i:::'.RRSET, e.g.

Storage Allocation

When the LISP system is run with a core specification given
(i.e., "oR LISP n", n>22), LISP typc~s "ALLOC? (YO:? IJ)". If
you type ~u" or space (for no) then the system uses the current
allocations. If you type "Y" (for yes) then the system allows
you to specify for each area either an o~tal nur.iber followed by
a space designating the number of words to added to that area,
or a space designating an increase of zero words.

Example: (user input is underlined)

ALLOC? (YORN) y
FULL HORD SP. = lQQ_
BHl. PROC. SP. = 2000
REG. POL. =
SPEC. POL. = 1000

Any remaining storage is divided between the spaces as follows:

1/16 for full word space,
1/64 for each push down list,
the remainder to free storage and bit tables.

Reallocation of Storage

If you exhaust one of the storage areas it is possible to
increase the size of that area by using the reallocation
rocedure. First, expand core with the time sharing system.
command CORE and then reenter LISP with the REE cornmand- For
example, if the original core size was 22K, you could increase
it by 4K as follows:

*lC
-CORE 26
•REE

\lhen you reenter LISP, the same allocation procedure is followed
as described above.

10 . 1

Initial Allocations

The fol lowing are the ini t.ia 1 al locations for the various
storage areas when LISP is initially run.

PREE STOP.AGE
rULL 1'70RD SP.
BIN. PROG. SP.
REG. POL.
SPEC- POL.

=
=
=
=
=

2200
700
100

1000
1000

10 . 2

CONTIGUOUS BLOCKS OF STORAGE

A new data type, _BLOCI{, has been added to UCILSP. A BLOCK
consist of a block of contiguous storage locations. in Binary
Program Space. BLOCKs are similar to arrays in that they may
contain pointers that are protected from garbage collection, or
their contents may be ignored by the garbage collector. They
differ, however, in the means of access. BLOCKs are accessed by
a pointer into Binary Program Space and all of the functions
which will act on a cons cell will work eaually well on an
element of a block (except for printing). BLOCKs can be used
for setting up lists that are also tables, as in setting up
multiple OBLISTs. NOTE BE!m: the value returned by the BLOCK
functions is a true address, not a LISP number.

(GTBLK LENGTH 'GC)

GTBLK is a SUBR that returns a zeroed BLOCK of LENGTH
words. If GC is NIL, then the contents of the BLOCK are
ignored by the garbage collector. If GC is non-NIL then
the contents are treated as pointers and the cells
pointed to will not be collected.

(BLKLST LIST LENGTH)

BLKLST is a SUBR that returns a pointer type BLOCK of
LENGTH words. It chains the words in the BLOCK such
that the tDR of each word is the succeeding word. The
top 1 evel of LIST is then mapped into the CAR' s of the
block. If LENGTH is NIL, then the length of the list is
used. If (LE!JGTH LIST) is less than LENGTH, then the
CAR• s of the remaindef of the BLOCK are set to NIL. If
(LENGTH LIST) is greater than LENGTH, the list is
truncated.

11 . 1

	Title page
	Table of Contents
	Introduction
	Credits and Acknowledgements
	Index
	1 Debugging Facilities
	2 The LISP Editor
	3 Extended Interpretation of LISP Forms
	4 Extensions to the Standard Input/Output Functions
	5 New Functions on S-Expressions
	6 New Predicates
	7 New Numeric Functions
	8 Functions for the System Builder
	9 The LISP Evaluation Context-Stack
	10 Storage Allocation
	11 Contiguous Blocks of Storage

