
, -"-

\

\

,I
\

, \

L

/

, [

J

'I, '

")

\

/

,\ \

Implementing Primitive Datatypes
for Higher-Level Languages

Stanley T. Shebs

Tech. Report. UUCS-88-020

TECHNICAL REPORT·.
, '," , .. ," (" I

,C,ompnter Science··

'\ '

, f

.. \
)

f ' '

IJniversity of Utah,·
\

. Salt Lake City;, Utah
.• 1 -'

/

)

, I'

\ '

\

-;."

Copyright © Stanley T. Shebs 1988

All Rights Reserved

ABSTRACT

Implementation of modern programming languages is a complex task. Bridging
the semantic gap between abstract linguistic constructs and concrete hardware com
ponents requires much software, including compilers, interpreters, runtime libraries,
and programming environments. Compiler construction has long been aided by
parser generators and attribute grammar evaluators, but the other components have
been neglected, even though they constitute the largest parts of implementations
of Lisp, Prolog, Smalltalk, and similar languages. Within an implementation, the
representation of primitive datatypes such as numbers, lists, strings, and symbols
require some of the most difficult decisions by the implementor. The effectiveness
of type discrimination schemes, interactions between storage allocation and virtual
memory, and general time/space tradeoffs are issues that have no simple resolution;
they must be evaluated for each implementation.

The problems are approached from three directions: a survey of representation
ideas used in existing systems, a set of design rules that mimic the behavior of expert
implementors, and an automatic designer that generates the primitive datatypes of
a Common Lisp system. This Common Lisp system can then be used to compare
different representations in an accurate and reproducible manner. Transformations
of one abstract type into another turn out to be important design steps, and the
separation of the notion of function type into signature and contextual types is an
essential part of code generation. Experimental results indicate that although the
process can be made to work, completely automated construction of high-quality
designs requires further advances.

To my parents

CONTENTS

ABSTRACT .. 11

LIST OF TABLES. IX

LIST OF FIGURES .. X

ACKNOWLEDGMENTS. .. xu

CHAPTERS

1. INTRODUCTION.. .. 1
1.1 Many Languages, Many Implementations . .
1.2 The Structure of Language Implementations

1.2.1 Theory
1.2.2 Practice
1.2.3 Runtime Systems

1.3 An Approach to Designing Data Structures
1.4 Related Work

1.4.1 Computer-Aided Implementation.
1.4.2 Data Structure Design
1.4.3 Studying Tradeoffs.

1.5 How This Work Relates to Their Work
1.6 The Rest of the Dissertation

1
2
3
4
5
6
8
8
8

10
11
12

2. REVIEW OF DATA STRUCTURE DESIGNS. 13
2.1 Lisp.

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14

.........
LISP 1
7090 LISP 1.5
M-460 LISP
Q-32 LISP ..
PDP-1 LISP
LISP 1.6 and VCI Lisp
LISP 2 ..
VT LISP.
BBN LISP
1108 LISP
LISP F3/F4
MicroLISP ..
PDP-10 MacLISP
Multics lVlacLISP

14
14
14
15
17
18
18
19
21
21
22
22
23
23
24

2.1.15 Interlisp-l0 .. 25
2.1.16 LISP-II ... 26
2.1.17 ULISP · ... 26
2.1.18 Cambridge LISP . 27
2.1.19 CLisp 27
2.1.20 ByteLisp ... 28
2.1.21 Interlisp-VAX 29
2.1.22 Interlisp-D · . 29
2.1.23 Zetalisp/Symbolics 3600 30
2.1.24 Scheme Chips 30
2.1.25 NIL 30
2.1.26 FLISP · ... 32
2.1.27 Franz Lisp · . 33
2.1.28 Portable Standard Lisp 33
2.1.29 FLATS 34
2.1.30 LeLisp · ... 34
2.1.31 Tandem Lisp . 34
2.1.32 T 35
2.1.33 Spice Lisp · . 35
2.1.34 Data General Common Lisp 36
2.1.35 S-l Lisp 38
2.1.36 Kyoto Common Lisp ... 38
2.1.37 HP Common LISP. 38
2.1.38 Extended Common Lisp. . 39
2.1.39 Lucid Lisp · 39
2.1.40 Lisp/370 and Lisp/VM 41
2.1.41 PC Scheme .. 41
2.1.42 mini-Scheme 42
2.1.43 XLISP · . 42
2.1.44 VT-LISP ... 43
2.1.45 CScheme ... 43
2.1.46 GNU Emacs Lisp 43
2.1.47 SPUR Lisp 44
2.1.48 LMI K-processor . 45
2.1.49 UtiLisp .. 45
2.1.50 A-Lisp · 46
2.1.51 SIOD 46

2.2 Purely Functional Languages . 47
2.2.1 IDRIL · . 47
2.2.2 Illinois FP 48

2.3 Prolog 48
2.3.1 C-Prolog 48
2.3.2 SB-Prolog 49

2.4 Object-Oriented Languages .. 49
VI

2.5

2.6
2.7

2.8

2.9

2.4.1 CLU
2.4.2 Xerox Smalltalk-80
2.4.3 Tektronix 4406 Smalltalk
2.4.4 Swamp
2.4.5 ConcurrentSmalltalk.
2.4.6 Little Smalltalk
2.4.7 BrouHaHa
2.4.8 UMass Smalltalk .
SNOBOL4
2.5.1 The Macro Implementation .
Icon.
APL
2.7.1 Purdue/Unix APL .
2.7.2 Q'Nial
Conventional Languages.
2.8.1 Ada.
Summary.

49
50
51
52
52
52
53
54
54
54
55
56
56
57
57
59
59

3. DESCRIPTIVE FORMALISMS. .. 61
3.1 Formal Definition of Types 61

3.1.1 Standard Schemas 63
3.1.2 Booleans 63
3.1.3 Integers. 63
3.1.4 Ranges. 64
3.1.5 Sums.. 64
3.1.6 Structures 65
3.1. 7 Vectors ...
3.1.8 User-Defined Types
3.1.9 Examples......

3.2 Formal Definition of Machines
3.2.1 Examples

3.3 Representation of an Implementation
3.4 Pragmatics of Usage

3.4.1 Finiteness
3.4.2 Statistical Patterns

3.5 Pragmatic Limits in Standardized Languages
3.6 Summary..........

4. IMPLEMENTATION DESIGN RULES
4.1 Global Design Issues .. .

4.1.1 Feasibility
4.2 Machine Characteristics .

4.2.1 Sizes of Objects
4.2.2 Object Tables

4.3 Design for Integers. . . .
Vll

66
66
67
69
70
70
71
71
72
75
76

77
77
78
78
79
79
80

4.4 Design for Sums 82
4.4.1 Design of Tags . 82
4.4.2 Design of Separate Spaces. 85
4.4.3 Design of BBOP 86
4.4.4 Combinations of Sums. 87
4.4.5 Merging and Splitting Sums 87

4.5 Design for Structures 89
4.6 Design of Vectors .. 91

4.6.1 Vector / Structure Integration 94
4.6.2 Arrays 94

4.7 Other Types 95
4.7.1 Floating Point Numbers. 95
4.7.2 Rational Numbers 97

4.8 Special Considerations. 97
4.8.1 List Compaction . 97
4.8.2 Storage Reclamation 97

4.9 Summary. 101

5. AN AUTOMATIC DESIGNER 103
5.1 The Designer . 104

5.1.1 Making Decisions 105
5.1.2 Choice Objects. 105
5.1.3 Type-to-Type Transformation 106
5.1.4 Finishing the Design . 108

5.2 The Coder .. 110
5.2.1 Division and Flattening. 111
5.2.2 Instruction Matching 111
5.2.3 Generating Files . 111

5.3 Utah Common Lisp 113
5.3.1 Itemization . 114
5.3.2 Code Generation. 114
5.3.3 Register Allocation 116
5.3.4 Assembly. 116
5.3.5 Micro-kernel 116

5.4 Evaluation .. 117
5.4.1 Benchmarks 117
5.4.2 Results 117

5.5 Discussion 119
5.5.1 Lack of Generality . 120
5.5.2 Combinatorial Explosion 120
5.5.3 Coding Optimizations . 121
5.5.4 Use of Registers 122

5.6 Summary. 122
Vll}

6. CONCLUSION .. 123
6.1 Contributions

6.1.1 Recommendations for Lisp Standards
6.2 Extensions
6.3 Applications
6.4 Abstract Data Types in General

APPENDICES

123
124
125
126
127

A. SPECIFICATIONS OF TYPES 129
A.1 Basic Lisp Definition .. 129
A.2 Common Lisp Definition 129
A.3 68000 Definition . 132

B. COMPLETE DESIGNER RUN 135
B.1 Designer Session 135
B.2 Abstract Design 0 138
B.3 Opencodings for Design 0 . 139
B.4 Primitives for Design 0 140
B.5 Bootstrap File 141
B.6 Benchmark Run 141

REFERENCES ... 142

IX

LIST OF TABLES

2.1 Tag and Data Sizes of Various PSL Implementations

5.1 Designs Produced.

5.2 Execution Times .

34

119

119

LIST OF FIGURES

1.1 Structure of a Common Lisp Implementation.

2.1 Fields in IBM 704 vVord

2.2 Memory Allocation in LISP 1.5

2.3 The Symbol CHARCOUNT in LISP 1.5 . .

2.4 Number Representation in LISP 1.6 ..

2.5 Data Structures in LISP 2

2.6 UT LISP Word Layout ..

2.7 Data Representation in PDP-I0 MacLISP

2.8 A Multics Maclisp Pointer

2.9 Data Representation in LISP-II ..

2.10 Tag Assignment in Cambridge LISP

2.11 Data Representation in Zetalisp

2.12 Data Representation in NIL

2.13 Use of Low Tags in T3

2.14 Data Representation in Spice Lisp.

2.15 Representation of NIL in ExCL

2.16 A Data Object in SPUR

2.17 Data Representation in C-Prolog

2.18 Objects in Smalltalk-80

2.19 Object Header in 4406 Smalltalk

2.20 Objects in Little Smalltalk

6

14

16

17

19

20

21

24

25

27

28

31

32

36

37

40

44

49

51

52

53

2.21 Representation in SNOBOL4 ... 55

2.22 Representation in Icon Version 6.2 57

2.23 Q 'Nial Array Representation. 58

3.1 An Implementation Function 71

3.2 Symbol Name Lengths in HP Common Lisp 74

4.1 Graph of BBOP Tradeoffs 87

4.2 Allowable Combinations for Type Discrimination 88

4.3 IEEE Floating Point Format. 96

5.1 Tag Assignment Choice 106

5.2 Generator of Tag Assignment Code 107

5.3 A Type-to-Type Transformation. . 109

5.4 Addition of Wrappers to a Primitive 110

5.5 Machine-Generated Opencodings 112

5.6 Machine-Generated Primitives . . . 113

5.7 Architecture of the VCL Compiler 115

5.8 Evaluation Process 118

XlI

ACKNOWLEDGMENTS

Bob Kessler deserves the most credit for being supportive while I chased wild
ideas around. He has made the PASS group a very enjoyable place to be over
the past five years. Gary Lindstrom was instrumental in supplying doses of reality
seasoned with humor. He and Bob Keller suffered me to talk about almost anything
in the AMPS seminar. Ganesh Gopalakrishnan agreed to be on my committee
almost at the last minute, and made many useful remarks on the draft. John C.
Peterson and Julian Padget offered good advice, while Gerry Sussman said to read
a lot.

Jed Krohnfeldt and Harold Carr have been good colleagues, even though it seems
like we're always working on completely different things at anyone time. Leigh
Stoller deserves a hand for having faith in the success of the VCL system, and
spending long hours on it. Other members of the PASS group endured inchoate
talks and formless ideas: Jerry Duggan, Jeff Knell, Will Galway, Mike Hucka,
Bobbie Othmer, Eric Muehle, Mohammad Pourheidari, and Craig Steury. John
Brasher was an endless source of thoughts and conversation. Ted Jardine gave
me an opportunity to do some of my research at Boeing, and protected me from
management. The two John Petersons (John C. and John W.), Marti Peterson,
Lal George, Tim Moore, and John van Rosendale helped keep me sane by wanting
to go rock-climbing even when I thought I was too busy. Sandra Loosemore has
been both a special friend and an valuable colleague; few women can match her
accomplishments.

Many people have helped with the survey in Chapter 2, most notably Eric
Benson, Fons Botman, George Carrette, Dan· Corkill, John Cowan, Jeff Dalton,
John Fitch, John Foderaro, Bernie Greenberg, Joe Marshall, Eliot Moss, Dave
Moon, Joe Murray, Eric Norman, Per-Eric Olsson, Paul Pedersen, Jonathan Rees,
Bob Shaw, JonL White and Kei Yuasa. I hope I have not misrepresented their
systems too seriously!

The Amoco Foundation was very important in the gestation of this work. Their
three years of funding gave me time to learn and to develop ideas freely. 1/Iy
activities in the last two years were partly supported by the Hewlett-Packard
Company and by DARPA under contract number DAAI<11-84-K-0017. Finally, the
Boeing AI Center supported an early version of this research during the summer of
1985.

CHAPTER 1

INTRODUCTION

If controversies were to arise, there would be no more need for disputation
between two philosophers than between two accountants. For it would
suffice to take their pencils in their hands, to sit down to their slates, and
to say to each other (with a friend as witness, if they liked): Calculemus
[Let us calculate].

G.W. Leibniz (ca 1670)

High-level programming languages offer the opportunity to improve computing
practice, by abstracting away from hardware, and towards useful applications. Lisp,
Prolog, Smalltalk, APL, SETL, Snobol, and Icon, to name some of the better-known
languages, include among their abstractions a variety of predefined data objects,
including lists, symbols, sets, and character strings. However, builders of these
languages have always faced a series of puzzling questions about the representation
of data objects. How should the type of an object be recorded? What is the best
memory layout for complex objects? Will multiple representations offer any space
or speed advantages? How should memory be allocated and reclaimed? To help
answer these questions, this dissertation will introduce the systematic investigation
of data object implementation, both by the study of existing systems, and by the
construction of an automated designer of implementations.

1.1 Many Languages, Many Implementations

In the 1930s and 40s, the pioneers of computing anticipated many ideas; but
they never dreamed of the modern proliferation of programming languages. In
1966, Landin mentioned a survey that had counted 1,700 languages [91], although
Sammet's stricter criteria counted a mere (!) 120 in her famous book [133]. No
one even bothers to try counting them today. Feelings are mixed on whether this
diversity is good or bad, but in any case, the abundance of languages seems to be
an enduring feature of the computing scene.

Diversity creates at least one indisputable problem. Each and every language in
actual use must have one or more programs which implement the language. Lan
guage implementations are crucial pieces of software, comparable to text editors and
operating systems in their importance for computing. Customers accept or reject

2

computer systems on the basis of the available languages; the more sophisticated
users will also look at the performance of the languages, since poor software can
bog down a system tremendously.

Language implementations are more like operating systems than text editors,
however; although language systems can be made portable, efficient ones are invari
ably hardware-specific. Combined with the multiplicity of languages, this fact leads
to a situation in which a typical computing center has dozens or even hundreds of
language systems in active use. Worse, each such system is a medium- to large-sized
program or collection of programs.

Given this, it should not be too surprising that efforts have been made to
regularize and automate the construction of language implementations. Since
languages were originally equated with translators and compilers, work has largely
concentrated on the automation of compiler writing. Great successes have been
achieved in this area; automatic parser generation has reduced the syntax analysis
phase from a mystery to a few days' programming task, while the use of common
intermediate languages has increased the sharing and reuse of compiler components.
The success of this process can be seen by comparing the 18 person-years needed
to construct the first Fortran compiler [11] to the one or two person-years typically
allotted for compilers of similar quality nowadays [4].

The times have changed in other ways as well. Interest has been slowly but
steadily growing in "more abstract" or "higher-level" languages: primarily, but
not exclusively, languages whose basic model of computation is not based on the
conventional von Neumann machine. The models of computation vary widely,
from function application (Lisp, Logo, ML), to logic (Prolog), to message passing
(Smalltalk, Actors), to string/pattern matching (Snobol, Icon), to array operations
(APL), to set theory (SETL). Also, the programming environment has become of
central importance, even for conventional languages. A modern environment is not
complete without source-level debuggers, formatting tools, and language-sensitive
editors. Compiler construction alone is no longer sufficient.

In many ways, the present situation for new languages and environments is much
like it used to be for compilers: relatively few were built, and each one was as likely
to be a research effort as a programming project. Unfortunately, the paucity of
publications on the construction of these systems has led to a situation in which
many ideas have been reinvented or ignored.

1.2 The Structure of Language Implementations

Although the general theory of language implementation has been studied some
what, much of the practice is still rather mysterious. It is mostly unpublished;
concepts and techniques are passed on by word-of-mouth, by comments in source
code, or by cryptic remarks in the backs of manuals. Thus, a brief sketch of theory
and practice is appropriate. For a more extensive view of practice, see Lecarme and
Gart's book on software portability [92, ch. 5].

3

1.2.1 Theory

Semantic theory has relatively little to say about. the necessary structure of a
language system. If we use a denotational formalism such as that described in
an introductory text [152], every language is a member of the class of functions
mapping programs to behaviors (which are themselves mappings from inputs to
outputs):

L E (P -+ (1 -+ 0))

Programs are objects in what are typically called syntactic domains, although such
domains have no truly unique characteristics. A program could be a string of
characters, a sequence of tokens, a tree-structured object, or something else entirely.
The class of behaviors is similarly unconstrained, since "behavior" could range from
a constant function that returns the same thing no matter what the input, to the
behavior of a spreadsheet program, to the complexities of human activity. There are
no other restrictions; this means that for any given program and any given behavior,
there exists at least one language that causes the given program to exhibit the given
behavior. In other words, the class of possible languages is extremely large.

Note that there is no inherent notion of compilation in this model. The function
L is always an "interpreter." Compilers arise as a frontend to the interpreter, by
translating the source language into another language which is itself interpreted in
order to get 110 behavior:

L = L' 0 C

where
C E (P -+ PI)

L' E (PI -+ (1 -+ 0))

C compiles an L program in P to a program in P'. L' may range over a variety
of languages, from a slightly altered version of L to raw machine language. In the
latter case, the "syntactic" domain pI consists of sequences of machine language
instructions.

The process of dividing a language into a compiler and another language may
be repeated indefinitely, yielding a sequence of compilers each feeding the next
in line. This view leads to some useful observations; for instance, the interpreter
of a Lisp system operates on S-expressions and not the source text, which means
that the Lisp reader can be considered to be a simple compiler, and that compiler
techniques may be applicable. Likewise, intermediate languages in a compiler could
have interpreters corresponding to them. An attempt to write such an interpreter
is a useful way to detect omissions in the intermediate language and! or mistakes
in code generation and optimization.

The basic fact derived here can be simply stated:

Compilers and interpreters always come in pairs.

The significance of this is that it governs the language implementation process,
whether or not implementors are consciously aware of it.

4

1.2.2 Practice

The practice of language implementation centers around the basic fact of the last
section; how many compiler/interpreter pairs should be defined, and what should
be the division of labor for each pair? At one end of the spectrum, a C compiler does
almost everything, and has an "interpreter" consisting of the hardware augmented
with a few hundred bytes of runtime system code. At the other end, a modern Lisp
system may include several types of compilation, multiple optimization options, and
several megabytes of runtime system. These decisions define the basic architecture
of an implementation, and are among the first choices made by an implementor. 1

There are very few purely interpretive systems. To qualify, a system must
interpret source code directly, which usually means looking at strings of characters.
Some early microcomputer implementations 'of BASIC did work this way, but the
cost of repeated lexical analysis on symbols and numbers is quite high; for instance,
a constant number inside a loop would have to be read and reconstructed on each
iteration through the loop.

A more reasonable approach to interpretation employs a lexical analyzer and
maybe a parser to produce an intermediate form with a fairly regular structure,
such as a sequence of tokens, but still close enough to the source form that it could
be reconstructed. The majority of interpreters work this way, and in some cases
the intermediate form is formally described and of interest in its own right. (Lisp
S-expressions and Prolog databases are two well-known examples.) Some imple
mentations may do a considerable amount of preprocessing. Hewlett-Packard's
Common Lisp [70] transforms S-expressions into another intermediate form in
which lexical variables have been alpha-converted and macros have been expanded.
Although the result is still used by something resembling a Lisp interpreter, it is
very different from the source code, and reconstruction of the exact source code is
not possible.

Next, an implementation may compile to an abstract machine language and
interpret that language. Perhaps the best-known example is Pascal P-code, which
has been implemented in hardware, but is far more often seen as input to an inter
preter [14,120]. P-code is machine language for a stack machine, which simplifies
the compiler greatly. Other examples include Scheme 84 [52] and PC Scheme [16],
as well as Snobol4 [66]. Almost all Prolog compilers use the "Warren Abstract Ma
chine" (WAM) designed by D.H.D. Warren [162]. The abstract machine technique is
quite popular in research environments where new architectures are being proposed.
The interpreters can be complicated or simple, depending on the complexity of
the simulated machine and the level of detail required. Such a low-level language
also appears in conventional compilers, but the only "interpreter" is the compiler
backend and its target [4]. The abstract machine need not be similar to conventional
hardware; popular lines of research include abstract machines based on dataflow [9]
or graph reduction [122].

1 It should be noted that these decisions may be made by external forces or by custom, so they
are not always explicitly stated.

5

Finally, a language implementation may compile to real machine code. This
approach is favored for commercial-quality implementations, where the order of
magnitude performance advantage over other approaches justifies the order of mag
nitude increase in system size and complexity. Even in this situation of "total
compilation," the compiler can rarely if ever generate raw machine instructions
only. Instead, it will compile to what has been referred to as the "Compiler Writer's
Virtual Machine" [30], a combination of hardware and low-level software.

Real implementations frequently use multiple pairs of compilers and interpreters.
Many commercial compilers use several intermediate languages (each one forming
pairs with the previous and following languages at each compiler stage), while
typical Lisp implementations include read/eval and compiler/runtime pairs.

1.2.3 Runtime Systems

One notable characteristic of Lisp and Smalltalk systems is the tremendous size
of the runtime system. Common Lisp, for example, defines some 600 functions [146],
of which less than 100 are genuine primitives-the remaining functions are usually
defined in terms of those primitives. The code for these definitions generally runs
to about 40,000 lines of Common Lisp. The Smalltalk-80 Virtual Image contains
hundreds of classes, each with 5-10 methods, and over 10,000 objects, all adding up
to about 1/2 megabyte of data [90]. Much of this code is associated with window
management, editing, and similar high-level operations. APLs and Prologs do not
typically have such enormous runtime systems, although that may change in the
case of Prolog; Quintus Prolog includes some 700 predicates [125].

Closer examination of nonprimitives reveals two partially overlapping classes of
functionality: simple operations, and subsystems. Simple operations may range
from set operations to elaborate sorting utilities, but even a very complicated sort
function will still be simpler than a debugging package or an editor. In turn, the
primitives are even simpler in their behavior.

Figure 1.1 summarizes this view of the various levels of a language system. OUf

chief interest in the succeeding chapters will be the level just above the machine
the primitive datatypes. This is where machine and language semantics interact
directly, and where the most difficult design decisions arise.

Why are primitives difficult to implement? In terms of quantity of code, they
are the smallest part of the runtime system, so optimizing their construction would
seem to have little effect on the magnitude of the task. Nevertheless, there are
several reasons to concentrate on primitive datatypes:

1. Machine dependencies. The primitives (by definition) cannot be expressed in
terms of the language, and must be coded in some other way, usually involving
machine language. By contrast, even though nonprimitives constitute greater
volume, they are simpler to write, and may even be portable (the Spice Lisp
library has been reused in many other Common Lisps, and the Smalltalk-80
Virtual Image has also been widely distributed [90]).

6

debug eval compile

assoc r--
member cos

win-
dOWE

cons
+

xref gcd -
car atom

machine ed

Figure 1.1. Structure of a Common Lisp Implementation

2. Operating system dependencies. OS facilities will be accessed through the
primitives. Memory allocation may be constrained by the OS; most versions
of Unix,2 for example, are not configured to allow the use of an entire virtual
address space.

3. Severe constraints on time and space. Primitives represent overhead relative
to native machine structures, so poor performance will affect every program
running in that system.

4. Complex tradeoffs. Some simulated results collected previously [141] clearly
illustrate how even very simple designs for the primitives yield drastically
different results for different benchmark programs.

Performance is by far the most important consideration, since primitives in higher
level languages can consume 50% or more of program execution time [137,150].
This is generally regarded as overhead relative to the use of lower-level languages
(whether rightly or not is open to question), and is frequently used as a strong argu
ment against higher-level languages. In response, human designers have emphasized
the use of clever techniques to save a bit or a clock cycle here and there.

1.3 An Approach to Designing Data Structures

The goal, then, is to invent a method for implementing the primitives of a
language. The method should be sufficiently precise that it could be incorporated
into a program, if desired. Success will be measured according to the usefulness

2Unix is a trademark of AT&T.

7

of the results in real implementations, either directly, by generating part of an
implementation, or indirectly, by helping a human designer make better decisions.

The first step is to reduce the problem to an exercise in the implementation
of abstract data types (ADTs). Although the reduction is straightforward, the
problem of ADT implementation is largely unsolved, so we will cut the Gordian
knot and use heuristic rules in a generate-and-test paradigm. The rules create a
number of plausible designs, and a subsequent coding stage produces definitions
whose time and space costs can be estimated, or used directly in a real system.

This approach does not purport to come up with the "best" design. One of the
results of this investigation is that the performance of designs varies so widely from
language to language, machine to machine, and benchmark to benchmark, that any
single design will turn out to be highly undesirable in many cases.

Let us look at an example of building a Common Lisp system for the 68000
processor. Common Lisp is a rather large language, so we shall consider only lists,
small integers, characters, and strings. To build the implementation, we will need
code for list functions (cons, car, cdr, consp), arithmetic operations (+, -, »,
and string functions (char, length). The first step is to construct specifications
for these types. The details are in chapter 3; for now it is sufficient to say that
a list cell is a structure with two components (car and cdr), both small integers
and characters are finite ranges of integers, and that a string is a varying-length
vector of characters. We also need some limits, so we say that programs will use at
most 100,000 list cells and up to 100,000 strings, each with no more than 10,000
characters, but that average string length is more like 80 characters, and that the
total will be only 100,000 characters in all the strings together. The machine also
needs a specification that says it can address 16 megabytes of memory, and that it
has instructions for addition, subtraction, and so forth.

The design system is a Lisp program, and the specifications are named by
symbols, so doing something like (impl 'small-cl 'm68k) sets it to work. The
result will be a number of different designs, but for simplicity, let us consider only
the rules involved in one design.

1. The toplevel part of the specification is a union of four types, and the rule
defines two tag bits to be stored in the most significant bits of a word, with
the tag value 0 assigned to lists, 1 assigned to small integers, and so forth.

2. The list specification is of a structure of two components car and cdr, and the
rule matching this declares a structure in memory with the car stored at a
lower address than the cdr.

3. Both the small integers and character specifications are ranges of integers
smaller than a 32-bit word. The same rule matches each individually, and rep
resents them one-to-one with twos-complement integers (the "natural" integer
representation for a 68000).

4. The default rule for vector representation matches the string specification,
which has the effect of representing the string as a block of words, where the

8

first word is a length, and each succeeding word contains a character object.
Note that this is not the conventional byte-packed representation for strings.

Similar rule firings are occurring for other designs simultaneously, ultimately pro
ducing a large collection of different designs.

The later stages of the design system take the basic definitions of the primitive
functions and transform them from an abstract language into machine code. The
process is basically a mechanical one, very similar to standard compiler generation
methods. The current directory now has a large number of files. The most
interesting are the files en.l and pn.l, which are sets of definitions used by the
compiler and runtime system, respectively. The compiler definitions are for loading
into a cross-compiler, which will then compile both the runtime system definitions
and any user programs. Note that the correctness of the design is never proved
explicitly, but is inherent in the correctness of individual transformations, which
will be assumed.

1.4 Related Work

Apparently, completely automated construction of a programming language's
primitive operations has never been done before. There has been a variety of work
on similar problems, but under several different rubrics, including Data Design,
Automatic Programming, Abstract Data Types, Program Transformation, and
Very-High-Level Languages. Some work has also been done on the analysis of
individual design tradeoffs for implementations.

1.4.1 Computer-Aided Implementation

The computer has long been used to aid compiler construction; in fact, the
automatic generation of lexical analyzers and parsers is generally considered to be
a solved problem [69]. Automatic construction of code generators has been a mixed
success; Cattell [30], Fraser [50], Ganapathi [54], Graham and her students [56],
R. Kessler [82], Pleban [123], and others have built working generators of code
generators, but all have proved to have various defects and limitations [116], and
have not (yet) supplanted custom-built code generators. Peephole optimizers have
more recently proved amenable to automation, as demonstrated by Davidson and
Fraser [37]' and Kessler [83]; it remains to be seen whether they will be widely
useful. There has been a little work on the automation of assembler construction
[101,140,168]. Thus, although runtime systems have not been considered, successes
in other areas give us reason to hope for success in automating runtime system
construction.

1.4.2 Data Structure Design

What is perhaps the first work on data structure selection was done by Gotlieb
and Tompa in the early 70s [59]. Their algorithm selected a representation from a

9

catalog of about a dozen possibilities, which encompassed representations rang
ing from linked lists to balanced trees. The datatype being implemented was
a simple sort of database object that defined insertions, deletions, and lookups.
The algorithm took as input the space available, the number of elements of each
substructure, the size of the search key space, and so forth, and produced a shorter
list of plausible representations. Each of these was subjected to a further evaluation
that counted individual operations and produced a set of linear functions expressing
the time cost of those operations. The best representation evaluated to the lowest
final cost.

The 70s also saw extensive efforts in automatic programming as a problem
in artificial intelligence (the Handbook of AI[13] has a survey chapter). Several
projects featured data structure design as a key step.

Barstow's synthesizer PECOS [15] had sets of rules operating on the abstract
types collection and mapping. The rules implemented the types as lists, bit arrays,
hash tables, and several other Lisp object types. The rules emphasized finding valid
implementations rather than optimizing them; it was intended that Kant's program
LIBRA [80] would be the optimization expert. Barstow's rules were heuristic, since
they were intended to reflect expertise in programming, and so were not capable
of generating all possible implementations (although on at least one occasion they
did produce an unanticipated design [15, p. 208]). LIBRA worked hand-in-hand
with PECOS; its main responsibility was the estimation of costs of partially refined
programs. Each data structure had cost formulas associated with its operations,
and LIBRA used branch-and-bound to eliminate partially refined programs whose
estimated costs were too high.

Low also did work on data structure selection for abstract sets and lists in
a subset of SAIL [100], using a hill-climbing algorithm and user input to decide
on the best representation, as well as program execution using simple default
implementations to generate statistics. The representation library included eight
ways to represent sets (sorted lists, bit vectors, trees, etc), and three ways to
represent lists (singly and doubly linked lists, as well as varying length arrays).
Low noted that the machine's attempts to infer usage of objects were not very
successful, that user interrogation was generally necessary.

Rowe and Tonge [131] defined a somewhat elaborate mechanism for defining ab
stract datatypes, including capabilities to define distinguished elements of the type,
various axioms such as commutativity of operations, and the kinds of operations
supported by the type. The description of implementation types is similar. The
two kinds of types are matched using a general algorithm. Although the method
appears to have been effective, it was not completely implemented, and does not
appear to have been pursued further.

More recently, interest in automatic programming has waned, having been re
placed by activity in abstract data types and object-oriented programming. Such
languages support free choice of representation quite well, but this support tends
to be ignored, and all objects end up with the same representation, even when this
is not appropriate. Mary Shaw called for multiple representations at a conference

10

in 1976 [136], but this call has gone largely unheeded. Notable exceptions are the
languages SETL and Paragon.

Although SETL has been around for many years [134], it uses some modern
ideas internally. SETL is based on the idea of sets as primitive objects, but each
set may be implemented differently. The SETL compiler must manage operations
involving different representations for sets, emitting code for coercions as necessary,
and it uses flow analysis to decide which variables should get which representations
so as to minimize the number of coercions. For further details on this, and some
performance results, see [51]. The limitations of SETL are that it uses only a
small and fixed set of implementations for sets, and that the language requires the
representation of everything in terms of sets and mappings.

Paragon was developed by Mark Sherman, who described it in his dissertation
[142]. It is basically an ADT language along the lines of Alphard or CLU, but
offers policy procedures as a means for compiletime selection of representations. A
policy procedure is a piece of Paragon code that is executed during compilation, and
that decides which of several predefined representations will be used at any point.
Although this is a powerful mechanism, it is totally manual, and in practice, most
programmers would probably not take the time to code several representations, or
to check that the policy procedures are really choosing the best representations.

Kapur and Srivas [81] have studied the use of a term rewriting system to
implement one datatype in terms of another. The basic technique is to find theorems
about representation instead of proving the correctness of given representations; to
this end, Kapur and Srivas use rewriting to expand as well as reduce terms. The
goal is to rewrite operations expressed in terms of basic operations, into operations
expressed in terms of the implementation type. This very general approach was
only applied to the implementation of a queue using a list, and key steps were done
manually. Still, this paper shows some significant advantages in the formalization
of individual transformation steps.

Jalote [74] has also investigated the automatic implementation of ADTs, but
instead of using rewriting strategies, the axioms are classified into categories, each
of which has a simple implementation. The overall representation is always the
same; a tree. One significant point of this work is that the output is working C
code. On the other hand, issues of consistency and completeness of axioms are
ignored.

Darlington [36] has been an important exponent of the use of program transfor
mation techniques to implement abstract data types. Most of the work seems to
have concentrated on the application of transformations, rather than the automated
discovery of useful transformations or "best targets" of transformations.

1.4.3 Studying Tradeoffs

Very recently, some interest has been developing in the tradeoffs inherent in
language implementation. This has to some extent been spurred by the devel
opment of specialized hardware for languages, particularly Lisp. The choices of
data structure representation become especially critical, since any mistakes will

11

be permanently enshrined in silicon. Because of this, most of the tradeoff studies
have been conducted as part of a hardware design project. Steenkiste's dissertation
[150] is particularly useful, although the concrete results are based on the Portable
Standard Lisp implementation, which has many assumptions wired into it. Shaw's
dissertation [137] also has extensive experimental results on HP Common Lisp, but
only limited assessment of alternative implementations.

1.5 How This Work Relates to Their Work

In contrast to the previously-cited work, this dissertation will concentrate on
data structures for existing high-level languages, primarily but not exclusively Lisp.
This angle is at once more and less ambitious than previous work: more ambitious,
because the goal is to generate "wizard-quality" designs to be used in real situations;
less ambitious, because the data to be represented is simpler than those typically
occurring in application programs. More specifically, primitive datatype design has
several special characteristics:

• Unlimited design time. Primitive datatype design is basically a one-time
process. This means that a variety of designs can be evaluated, even the less
likely ones, and the evaluation can be done in a more realistic setting, perhaps
even testing the implementation on the programs of special interest. The
choice of test programs can greatly alter the apparent desirability of any given
design. Designs might be redone occasionally, perhaps following a detailed
performance study.

• Numerous interacting design decisions. Each design decision involves only
a few alternatives, but there may be 20 to 30 such decisions made in a
complete design. Good datatype designs tend to be tightly interwoven; there
are many interacting considerations. Speed for one operation will be gained
at the expense of another, while limited memory will have many competing
demands placed on it. Representation "puns," where the same bits have
multiple interpretations, are a staple of the better designs, and we will see
some interesting examples in the next chapter.

• Scarcity of experts. Very few people have built even one higher-level language
implementation, and even fewer have built more than one.

• Importance of performance. As discussed previously, the primitives will affect
the performance of every program that will ever be written for the implemen
tation, at so Iowa level that application programmers will be unable to do
anything about it.

Taken together, these features suggest that previously developed solutions cannot
be used directly, although many ideas will prove to be useful.

There are several significant areas that this work will not attempt to cover:

12

• Control-related structures. These are much more complicated, and bound up
with language semantics. This includes displays, trails, frames, contexts, and
environments.

• Design of garbage collection algorithms. This is another complicated area with
a substantial literature; here, the algorithms will be treated as black boxes.
However, the choice of algorithm and the requirements that algorithms place
on representations (such as extra bits for marking) will be considered.

• Hardware performance details. Although caches, pipelines, virtual memory,
and register windows can significantly alter the tradeoffs in data structures,
the added complexity would divert attention from basic questions that should
be considered first.

• Parallelism. Parallel hardware has some implications for data structures, but
the field is too chaotic at present-there is not even any consensus on language
semantics or machine architectures for parallelism, let alone implementation
techniques.

Prospects for further work in all of these areas are interesting, however, and will be
discussed in the last chapter. In general, this work emphasizes heap-allocated data
and conventional machines.

1.6 The Rest of the Dissertation

Chapter 2 is devoted to a review of existing implementations and their primitive
datatypes. During the course of this research, it has become painfully obvious
that there is no comprehensive survey of runtime systems. This chapter briefly
describes the data structures of about 80 language systems; mostly Lisp dialects,
but including Prolog, Smalltalk, Snobol, Icon, APL, and conventional languages.

Based on this review, Chapter 3 develops a formalism with which to describe
datatypes, machines, and implementations. The formalism is based on abstract
data types, but specialized to be constructive rather than fully general. We also
include some discussion of the pragmatic considerations that must be included with
the basic definitions.

Chapter 4 sets down rules and heuristics for good designs. They are expressed
in English.

Chapter 5 then goes into detail on the designer and coder programs that produce
definitions usable by a specially-designed Common Lisp implementation. This
chapter also includes experimental results on the consequences of different designs
for some benchmark programs.

Finally, Chapter 6 summarizes the progress made in this dissertation and out
lines several promising avenues for further investigation. There is also a set of
recommendations for improvements to standardized Lisp dialects, suggested by the
formalization of their datatypes.

CHAPTER 2

REVIEW OF DATA STRUCTURE DESIGNS

... we have witnessed the proliferation of baroque, ill-defined, and, there
fore, unstable software systems. . .. many programmers now live in a
limbo of folklore, in a vague and slippery world, in which they are never
quite sure what the system will do to their programs.

E.W. Dijkstra, A Discipline of Programming (1976)

Although higher-level languages have been implemented many times, the liter
ature includes almost no discussion or comparison of their runtime systems. This
chapter is the first survey spanning a wide range of different implementations built
during the past 30 years. It covers a variety of languages (though with an emphasis
on Lisp), and emphasizes the internal representations of explicit data objects.
(Thus the design of stack frames and other control-related objects is excluded,
although they may be mentioned on occasion.) The main criterion for inclusion
of a system was that information about internal data structures was available.
Languages embedded in other languages, in such a way as to utilize the primitive
datatypes of the base language, were also excluded. On the other hand, if part of a
data structure is built into hardware, the hardware will be described. Finally, only
languages with nontrivial data structure implementations have been listed; this
excludes for instance most conventional languages like C and Fortran, although
some aspects of PL/I, Algol-68, and Adal will be of interest.

The sketchiness of the publications can be seen by the primary sources used
here: appendices in manuals, working documents, personal communications, and
in a unfortunate number of cases, uncommented source code. This means that there
is considerable variation in the detail and accuracy of the descriptions. Since the
systems described span most of the entire history of computing, there is considerable
variation in the terminology. Typically the original terms will be used, along
with brief definitions, both for the sake of accuracy, and to avoid confusion over
connotations that the modern equivalents might not share with their predecessors.
The implementations for each language are listed roughly in chronological order.

1 Ada is a trademark of the Department of Defense.

14

If (I address (15)
~tag

1,1 I decrement (15) I

Figure 2.1. Fields in IBM 704 Word

2.1 Lisp

Lisp2 systems are chiefly characterized by a fairly flat type space, containing
5 to 30 types all with a fairly equal status. The types are quite nonuniform in
size, ranging from small objects such as characters to large high-dimensional arrays.
Since few Lisp compilers do any significant amount of type inference, performance of
type discrimination and dispatching is considered crucial to overall quality. Special
problems in Lisp have included the extremely large numbers of small list cells,
and the importance of symbols as the means by which the parts of the system are
connected to each other. Also, the representation of large integers has been an issue
for some dialects of Lisp.

2.1.1 LISP 1

The first Lisp system was LISP 1 by McCarthy and his students, whose evolution
has been extensively described by Stoyan [153]. The data structures in LISP 1 were
similar to those in the Fortran List Processing Language (FLPL) [55]. FLPL divides
a 36-bit IBM 704 word into five parts: sign, prefix, address, tag, and decrement,
as shown in Figure 2.1. There are functions XCSRF, XCPRF, XCARF, XCTRF,
and XCDRF to access all of these fields, although LISP 1 discarded all but the
CAR and CDR operations.3 The prefix field's bits discriminated between atoms
and lists, as well as between "owners" and "borrowers" of objects-the difference
being whether the reference was the original one or had been acquired later on.
This seems to have been used primarily for storage recovery, but the details are
obscure. (This distinction was erased in all later dialects of Lisp, although it was
retained for many years in other list-processing languages.)

2.1.2 7090 LISP 1.5

LISP 1.5 was the first Lisp dialect to achieve widespread dissemination. The
LISP 1.5 Programmers Manual [105], a classic Lisp reference, also includes some

2For many years, the term "Lisp" has been treated as a name and not an acronym, although it
originally derived from "LISt Processing". When discussing particular systems, the original name
will be used; when referring to the language in general, I will use "Lisp".

3In accordance with common usage, "car" and "cdr" will be used as ordinary nouns.

15

of the basic facts about the IBM 7090 implementation. LISP 1.5 defines relatively
few types of objects: lists, fixed- and floating-point numbers, arrays of up to three
dimensions, and symbols. Although functions can be compiled, the resulting object
code is not "first-class" and is. permanently connected to the symbol naming the
function. In turn, symbols are not completely distinct from property lists, nor are
arrays clearly distinguished from functions. LISP 1.5 was eventually implemented
on many machines, the first of which was the IBM 7090, a descendant of the 704
that was also a 36-bit machine with an 15-bit address space.

The basic design divides the address space into several kinds of spaces, as shown
in Figure 2.2. The heap contains only list cells, all of the same size, and since the
7090 word was large enough for two addresses, a list cell requires exactly one word.
(Due to details of the machine, the complements of the car and cdr are what is
actually stored.) A number is actually a list cell with a negative address in the car,
and a pointer to the number proper in the full word space, which is essentially the
space for all 36-bit untyped data. Symbols are equated with property lists, which
are flagged with -1 in the car, and the familiar alternating property-value form in
the cdr. All parts of the symbol, including its print name and value, are on this
list, in no particular order. The print name is itself a list, whose successive cars
point to full word space, each word of which contains 6 BCD characters. Figure
2.3 illustrates the layout of a typical symbol. This symbol has only two properties;
[20, p. 66] lists 10 properties as being commonly used by the system.

Full word space and the heap are the only areas of memory where storage can
be recovered. Unallocated space is linked together into a free list (the cdr position
being used for the next address, even in the case of full words). This works because
the allocated objects were always one word in size. A mark-and-sweep garbage
collector (GC) reclaims unused storage, using a bit table "next to full word space."
The binary program space (BPS) contains both compiled code and arrays; neither
are GCed. The entire process required one second.

From a modern perspective, there is much in LISP 1.5 that seems bizarre or
even ridiculous. Still, the implementation is worth studying, not only because of
the insights into early programming practices, but because it is one of the very few
implementations that was not influenced by previously existing Lisp systems, while
it influenced succeeding Lisps for many years.

2.1.3 M-460 LISP

The Univac M-460 was a military version of the Univac 490, a 30-bit machine
with 32I(words of memory4. The language was LISP 1.5, derived from the 7090
implementation by Hart and Evans, and described in [20, pp. 191-203].

Some implementation details are the same as for the 7090 system. Pointers
are 15 bits, and are packed two to a word, making a one-word list cell. However,
numbers are lists of one to three words preceded by a flag-word; each of these
words contains only 10 significant bits, since these are the only values that are

4The machine was said to "have 32000 registers"!

16

77777

70000

17000

00000
(octal)

Loader, LAP, Compiler

car I cdr

Heap Space

Full Word Space

Push-Down List

Binary Program Space

Basic System
(Interpreter, etc)

Figure 2.2. Memory Allocation in LISP 1.5

17

Figure 2.3. The Symbol CHARCOUNT in LISP 1.5

recognizable by the GC as numbers and not addresses (small addresses apparently
point into the GC's bit table). In addition, M-460 characters are required to be 8
bits instead of the 6 allowed by the BCD character set of the 7090, so a name is
represented as a list of characters (small numbers). This gave rise to perhaps the
first published comparison of Lisp implementation techniques; it was observed that
for a typical list of symbols, "string form" needed 530 words as opposed to 470
words for 7090 LISP 1.5, which was not considered severe, and compensated for by

, simplified handling and GC.

2.1.4 Q-32 LISP

The Q-32 was another early time-shared machine, built by the System Develop
ment Corporation (SDC). It had a 48-bit word and 65I(words of storage, and did
Is-complement arithmetic. The Lisp was an implementation of LISP 1.5 derived
from the M-460 implementation, and described by Saunders in [20, pp. 220-238].
Q-32 LISP is notable for being cross-compiled from the 7090 to the Q-32, especially
since the greater word lengths necessitated special handling on the 7090 side.

Q-32 LISP's runtime structure is closer to the 7090 than to the M-460. It has
a full word space separate from free storage, a binary program space, and so forth.

18

Numbers have a somewhat less compact representation than on the 7090, the value
being placed in a one-element array, which results in a total of 3 words being used
(pointer, array header, value). Atoms have a head cell whose cdr points to the
property list (the first cell of which is the print name), and whose car points to the
special cell-essentially a binding. This is different from SPECIAL declarations,
which are indicated by a hit in the tag. In fact, a bit in the tag field is also used to
indicate if a function is being traced, with the result that the property list is not
used by the system at all.

2.1.5 PDP-1 LISP

PDP-l LISP was a subset of LISP 1.5 implemented by Peter Deutsch in 1963-64.
It was notable for its small size, both with respect to the language (only 42 symbols
were present initially), and with respect to the implementation (2000 18-bit words,
with the ability to go up to the full 12-bit address space of the PDP-I). It did not
include a compiler. The documentation is rather limited, consisting mostly of a
sparsely commented assembly language listing in [20]. To make matters worse, the
assembly code is written for compactness.

The data types supported are atoms (symbols), numbers (integers), and list
cells. Memory consists of variable-sized list space and full word space, while types
are distinguished with 2 bits in the high end of a word (the high-order 6 bits were
not used for addressing).

2.1.6 LISP 1.6 and UCI Lisp

This was an important Lisp dialect in the 60s and 70s. A PDP-I0 version is
described in a SAIL Operating Note -[124]. Most of the internal representation is
identical to that for LISP 1.5, at least partly because the PDP-I0 is, like the 7090,
a 36-bit machine with an 18-bit address space. Memory allocation is basically the
same.

LISP 1.6 internals have several differences worth nothing:

1. Definition of a special value cell that never moves during garbage collection,
and is therefore directly referenceable by compiled code.

2. Strings, which are represented as uninterned symbols. (Oddly enough, the
quotes around the printed representation of the string are saved along with
the string proper.) Five 7-bit ASCII characters are packed into fullwords (in
contrast to the 6 6-bit characters on the 7090).

3. A four-way division of numbers into inums, fixnums, bignums, and reals. Inums
have an immediate representation and so are limited in range, typically to
[_216,216 -1]. They have an offset representation that overlays the high-order
part of the address space. Fixnums are the same as LISP 1.5 fixed-point
numbers, while bignums are arbitrary precision integers, represented by lists
of fixnums, as illustrated in Figure 2.4. (Reals (floats) are represented the
same way as fixnums, but with the tag FLONUM instead of FIXNUM.)

19

INUM -1 14185

FIXNUM -1
~------~--~----~

BIGNUM

Figure 2.4. Number Representation in LISP 1.6

VCI Lisp is a compatible extension of LISP 1.6 dating from the early 70s [107].
As such, its data representations are almost completely identical to those used by
LISP 1.6; most of the extensions were made at the Lisp level rather than at the
machine level. Bignums appear to have been dropped, while strings are treated less
like symbols (no property list and no value, although they may still be "interned"
if desired).

2.1.7 LISP 2

During the mid-60s, there was some excitement over a new, redesigned successor
to LISP 1.5, to be called LISP 2. The user-visible syntax was Algol-like (though
S-expressions were still available), a variety of datatypes and declarations were
available, and new control structures were added. Its success might have had a
profound effect on the course of Lisp development, but although several papers
and technical reports were written [2,95], System Development Corporation and
Information International Inc. were unable to secure sufficient funding to complete
an implementation for the Q-32 (the same machine as mentioned in Section 2.1.4).

Nevertheless, development did proceed to the point of data structure design,
and chapter 11 of [1] is a very detailed specification. The design is somewhat
complicated, mostly because of some rather unusual objects that were defined for

20

sind pointer t tag pointer

list---lL-_O_O ...r...1 __ -+-! __I.....-_.l.-1 ____ -.I ..

print name information
identifie ~ 07 v-f-chain IDt~~r property list

00 compiled ref cn ,,01 n free list link
o 5 23 29 47

arra
I I ,~ 2x I size I 00 I

data

Figure 2.5. Data Structures in LISP 2

LISP 2. Over 30 types are discriminated by a 6-bit t-tag field stored with each
object. Despite this capability, objects are also segregated into four regions: list
space, array space, binary program space, and triple (usually means symbol) space.
List space is reasonably simple, consisting of one-word list cells only (the tag for lists
was 00). Array space holds numbers, strings, and formals (formal arguments?), as
well as arrays. The first word of each of these includes a size and a self-pointer (for
use in GC). Arrays actually had several tags, depending on the type of data being
stored. Similarly for numbers; the same 48-bit field was considered to represent an
octal, integer, or real, depending on the tag. String characters were 8-bit ASCII, and
packed six in a word. (The t-tag includes a 3-bit field to tell how many characters
were in the last word-the size field counted whole words only.)

Triple cells are distinct from property lists. As might be inferred from the name,
triple cells consist of three words, although pointers to a triple cell normally address
the middle word, which is where the type data is stored. The first word contains
various data that is pointed to directly from BPS; in the case of identifiers, the first
word contains print-name information. The middle word also includes the property
list pointer and a pointer to the v-f-chain, a circular list of pointers used during
evaluation. The third word includes a link to the next free triple, as well as a count
of compiled code references. Figure 2.5 summarizes all this graphically. Triple cells
do not move during reclamation, but are linked into a free list.

It is clear that LISP 2 was very ambitious for its time, perhaps too ambitious,
considering the available hardware. Weizenbaum [163] wrote an extensive review
and critique, with some remarks that are intriguing from our point of view. For
instance, the variable-sized objects of LISP 2 are characterized as bad, because they
would make the garbage collector more complex.

2.1.8 UT LISP

1 csr (18)1 car (18)1 cdr (18) 1

atom bit
unused(2)

tag field (2)
mark bit

Figure 2.6. UT LISP Word Layout

21

UT LISP got started in 1966, as an implementation of LISP 1.5 on the Control
Data 6000 machines at the University of Texas at Austin [112], and remained in
use for many years [35]. The CDC 6000/7000 machines are 60-bit machines with
18-bit address spaces.

UT LISP is patterned very closely after the 7090 LISP 1.5. The address space
of the CDC only requires 18-bit pointers, and since only four bits are needed for
tagging, this leaves 20 bits unused by list cells, and so the decision was made to
put in an extra 18-bit field, called the CSR field ("S" meaning "special"). It is
completely identical to car and cdr in its behavior, and is exploited for several
optimizations. For instance, each entry on the property list is a single list cell; the
csr is the name of the property, the car is the value of the property, and the cdr
points to the next property. This yields a 2-to-l savings in the number of words,
effectively doubling the available heap space.

The pname (print name) of atomic symbols uses each of the three pointers to
address words containing 10 six-bit characters each, thus allowing symbols to be up
to 30 characters (unused positions are filled with zeros). The symbols themselves
just have pointers to their property lists in the csr fields, while the car is a self
pointer and the cdr is nil. Integers and floats are similar; although the csr field
points to the 60-bit words with the actual data. Actually octal integers and decimal
integers are tagged differently, but the only behavior difference is in printing and
reading. Characters are represented by atoms with one-character names.

As in 7090 LISP, the heap is divided into list and fullword spaces, GCed using
mark-and-sweep.

2.1.9 BBN LISP

BBN LISP was another PDP-l system, and is partially described by Bobrow
and Murphy [23]. The dialect basically resembles LISP 1.5.

Perhaps the most interesting feature of BBN LISP is the attempt to use a Lisp
specific virtual memory, with a drum as backing store. Of the 18-bit address space,
only 16K words were main memory, while 88K were on the drum (65K of the

22

remainder being dedicated to immediate representation for integers). The address
space between 0 and 300,0008 is divided into different areas for each type of data,
including lists (list cells require two IS-bit words), value cells, plist cells, fullword
integers, pushdown list (stack), function cells, pnames, and the reader's hash table.
Each area is fixed in size, ranging from 4K to 4SK words. All areas are also
uniformly divided into 256-word pages, which are managed via a page table.

Each page has a separate free store list, since GC works on a page-by-page
basis, so as to minimize I/O. Experimental results were that the whole scheme
slowed BBN LISP by about a factor of two.

2.1.10 1108 LISP

In the late 60s, E. Norman built an implementation of Lisp for the Univac lIDS,
a 36-bit machine with an IS-bit address space. The Lisp dialect was basically
LISP 1.5 [117].

lIDS LISP only uses half of the address space, and divides it into 12S-word pages,
each of which is dedicated to a single type. Unused pages are linked together, as
are unused objects within a page. The type of object on each page is stored in
a table with one word for each page, although the code itself is only three bits.
Type codes distinguish lists, integers, octals/print-name characters, floating point
numbers, out-of-bound addresses, compiled code, linkage nodes (a special form of
compiled code), and symbols. List cells and all types of numbers each occupy a
single word. Compiled code is a block of memory with a I-word header divided into
many smaller fields, while a symbol consists of two words divided into four fields
of equal size, containing pointers to value, property list, print name, and hash link
(which points to another symbol in the same hash bucket-used during reading).
The print name is a list of octals.

Garbage collection is basically mark-and-sweep, but the marking of numbers is
unusual in that every 32nd word on a page of numbers is treated as a bit vector
containing the mark bits for the next 32 numbers. (Presumably this is to allow an
even division of a page, although it wastes 4 bits in each word being used as a bit
vector.) Pointers are marked by complementing, and compiled code is marked by
setting a bit in the header.

2.1.11 LISP F3/F4

LISP F3 and LISP F4 are implementations of LISP 1.5 written by Nordstrom
at the University of Uppsala in Sweden [115]. They consist only of an interpreter,
and are written in Fortran 66 [F. Botman, personal communication].

The only datatypes defined are atoms, strings, small integers, and lists. List
cells are indices into car and cdr arrays, at least above a certain point. Below that
the index indicates an atom and indexes a pnameindex array that points to the
printname. The car of an atom is normally its toplevel value, but the car of a
string is the symbol LISPF4-STRING. Small integers are indices into still another
unused and unallocated part of the car and cdr arrays.

23

2.1.12 MicroLISP

This was the subject of a well-known paper by Deutsch, one of the earliest
proposals for a specialized Lisp machine [42]. The MicroLISP language was essen
tially an implementation of BBN-LISP, but with a facility to define new types of
structures. The ideas were later incorporated in ByteLisp and Interlisp-D.

The MicroLISP data representations are generally similar to those in BBN
LISP; objects are stored in quanta (pages) that each held objects of only one type,
while integers in the range [-1536,1535] are permanently allocated to their own
addresses. MicroLISP also has tags to distinguish integers, floats, and pointers
which are used only during calculation of intermediate results (so the GC will not
be confused when it scans the stack).

2.1.13 PDP-I0 MacLISP

MacLISP was built in 1973. The PDP-I0 implementation was highly optimized,
and became famous for outperforming a version of Fortran on the same machine
[45]. MacLISP includes seven basic types of objects: single-precision (36-bit)
integers, single-precision floats, bignums, symbols, lists, arrays, and hunks. Hunks
are essentially short vectors, and can be garbage collected while arrays are not.

MacLISP apparently originally used separate fixed-size regions for each type, but
converted to allocating by pages, as described by Steele in 1977 [147]. Since the
PDP-I0 can fit exactly two 18-bit addresses in a 36-bit word, and since the address
space is rather small, tags are undesirable, and type discrimination is based on
the use of a type table indicating the segments (pages) devoted to each type, as
illustrated in Figure 2.7. Pages are allocated to each type as they are needed.
Although the technique was already known, MacLISP appears to have originated
the term "BIBOP" as an acronym for Big Bag of Pages ("BBOP" is also seen
sometimes). The segments are each 512 words in size, which means that the segment
table need contain only 512 entries, and the index to this table is just the nine high
bits of a pointer. One halfword of a table entry is bit-encoded for types and other
information (read-only memory, etc), while the other half is a pointer to the symbol
naming the type. The bit-encoding exploits special instructions of the PDP-I0 that
allow testing for several types at once; for instance, a numberp test is possible by
enabling three bits, one for each type of number. The pointer to type name is
also used in a clever way for dispatch tables, since the type names are allocated
consecutively in the symbol table, and so the addresses of the symbols are all
adjacent and could be used as unusual offsets.

Under this basic scheme, list cells, fixnums, and floats all occupy full words,
while bignums are divided into halves, one with the bignum's sign, the other with a
pointer to a list of fixnums. Symbols need both a word in the symbol segment and
two words somewhere else, usually in a read-only segment. The word in the symbol
segment has pointers to the symbol's property list and to the two-word block, which
in turn points to its value cell, print name, count of function arguments, and some
random bit fields. Nil is not represented as a symbol, but as 0, which is a memory
location also containing 0, so car and cdr of nil are nil always, but symbol

24

main memory

plist I

·
· ·

number segment table

000001 ..• I

· · ·
car I cdr 001000 ... I

110000 ... I

Figure 2.7. Data Representation in PDP-10 MacLISP

SYMBOL

FIXNUM
LIST

functions always need to do nil tests. Hunks are always allocated in power-of-2
SIzes.

Since MacLISP cannot change the type of a segment once it has been assigned,
and since the available memory is limited, if space has been exhausted, it will
attempt to GC before requesting a new segment from the operating system. GC
is mark-and-sweep, with the mark bits living in bit blocks that have their own
segments.

2.1.14 Multics MacLISP

MacLISP on the Multics system was similar in many ways to its incarnation on
the PDP-10, although it was built by a different group [B. Greenberg, D. Moon,
personal communications]. The hardware of the system was the GE 645, a 36-bit
machine with many 72-bit operations, a nominal 72-bit address space, and a variety
of registers with lengths from 18 to 72 bits. A curious feature of Multics MacLISP
was its use of PL/I in a number of places internally.

A pointer is a 72-bit object, with a variety of fields, as illustrated in Figure 2.8.
The 9 types are bit-encoded as in PDP-10 MacLISP, but cons cells had a type code
of 0 (no bits turned on), in order to speed up pointer-chasing. Fixnums use the
second word for a 36-bit value, as do flonums. Atomic symbols consist of a 2-word
value pointer, 2-word plist (property list) pointer, and a PL/I-like varying-length
string of characters stored contiguously with the symbol.

25

segment number type code a~r mo e 1

vord offset in seg 01."t1 offset unused a~dr 2 mo e
o 17 23 29 35

Figure 2.8. A Multics Maclisp Pointer

Cons cells are stored in a separate heap, cars first, then cdrs. All other objects
go into array space. GC is stop-and-copy.

2.1.15 Interlisp-10

There are several implementations of Interlisp [156], all of which share the same
"Interlisp Virtual Machine" described by Moore [111], which itself specifies very
little about the representation of basic types. It does require 11 basic types and a
facility for adding new types. The user-defined types all look like structures with
fields. Interlisp-10 is the original system, which evolved from several earlier efforts,
most notably BBN-LISP.

Section 3 of [156] supplies a basic description. List cells are handled in the
same way as for PDP-10 MacLISP, namely the car and cdr both fit into a single
word. Literal atoms (symbols) are three words in length. The first word includes
the property list and top level binding (which can be accessed via car and cdr
functions). The second word is an instruction that calls function code if defined,
and the third word includes pointers to the pname (print name), and a reserved
half for an extension to reference the file containing a function's definition. The
pname is a raw string object-a block of words with 7-bit characters packed 5 to a
word. The first character contains the length in characters; since it includes itself
in the length, the maximum length of a pname is 126 characters.

Large integers are allocated in one word of storage, and thus fall in the range
[-235

, 235
- 1], overflow past this range resulting in failure. (Interlisp systems did

not include bignums until recently.) Small integers fall in the range [-1536, 1535],
and their representation is immediate, but offset by a constant. Floats are allocated
in one word, in the standard PDP-10 format.

Arrays are somewhat complicated, since they have different subregions storing
different types of objects. The array header includes a length, a half-word for GC
purposes, and offsets to the pointer and relocation subregions of the array. The
first section following the header contains unboxed data (36-bit untyped words).

26

Following this is the pointer subregion, then the relocation information area, which
specifies which of the unboxed entries should be modified if the array is relocated.

Strings are divided into string pointers and string characters. String pointers
allow the sharing of characters in memory, such as for substrings (Interlisp has no
destructive operations on strings). A string character is one word containing 57-bit
characters. Sequenc'es of string characters may appear in memory together. String
pointers are divided into a IS-bit length and a 21-bit pointer to string character
and character within it.

Interlisp-10 allocates space by pages, with each page storing distinct types of
objects. A type table stores the type associated with each page. Fixed-length types
such as numbers are no special problem, but variable-length objects require groups
of contiguous pages. As with MacLISP, GC runs before the allocation of new pages.
Freed fixed-length objects are collected into a free list, while variable-length objects
are compacted. GC is always done for fixed-length types, while a variable-length
type is only collected when it alone is exhausted. There are also some dynamic
heuristics governing how many extra pages to allocate to types.

2.1.16 LISP-II

LISP-II was written by Jeffrey Kodasky for the PDP-II during the mid 70s [89].
The dialect is LISP 1.5 with a handful of extensions, mostly primitives to address
memory directly. The implementation was written in assembly language to run
under RT-11, a primitive multi-tasking system.

LISP-II divides memory into free space (heap), array and I/O buffer space, and
various buffers for code, stack, and so forth. It then allocates all of the free space
in units called cells, each of which is two 16-bit words in size. The first word is the
car, the second is the cdr or a raw word. All pointers are cell-aligned, so this mean
two bits are unused at the low ends of both car and cdr. The spare two bits of the
car are a mark bit and a pointer/word bit controlling the interpretation of the cdr
field. If the pointer/word bit is 1, then the cdr is a raw 16-bit word, otherwise the
cdr contains a 14-bit pointer and the 2-bit field distinguishes literal atoms, literal
strings, and lists. (See Figure 2.9.) The car of an atom points to a linked list of
two-character cells linked together via their car fields, while the atom's cdr points
to the property list-basically the same as for LISP 1.5 on the 7090.

2.1.17 ULISP

ULISP is another PDP-II Lisp, modelled after the Univac 1100 Lisp by Norman
(see section 2.1.10). It was written by Robert Kirby at the University of Maryland
[85]. Along with some forgotten operating systems, ULISP could be run under
Sixth Edition Unix, thus making it the first Unix Lisp system. The dialect bears
some resemblance to LISP 1.5, but includes more primitive datatypes, including
both single and double precision floats.

The basic pointer is a 16-bit value. Like the Univac Lisp, the data area of
ULISP is divided into pages, of 1024 bytes each, each dedicated to a single type.

27

I
mark bit

pointer/word in cdr

car '1/
cdr \

\ tag

Figure 2.9. Data Representation in LISP-II

The page table contains one-byte codes for each type; the codes themselves are all
even numbers, to allow use of the type code for dispatching tricks. Car is stored
first in memory, then cdr, but the pointer to a cons cell actually points at the cdr
and uses a predecrement addressing mode to address the car.

2.1.18 Cambridge LISP

Cambridge LISP is a British development originally undertaken by Fitch and
Norman [46]. It is still in use, and now includes commercial microcomputer versions.
The dialect is largely based on Standard LISP [102]' with additional concern on
the designers' part relating to error handling for limited storage space, and rational
numbers. The original implementation was written in BCPL for the IBM 360/370
machines, and has since been ported to the GEe System 63, Acorn 32016, Acorn
ARM, and the Atari ST. Despite the variety of ports, the internal structure has
remained essentially the same [J.P. Fitch, personal communication].

The implementation is tagged, with 32-bit pointers divided into a 24-bit address
and an 8-bit tag field (which matches exactly with both the 360/370 and 68000
processors). Cambridge LISP is notable for its careful assignment of tags to types,
illustrated in Figure 2.10. The ordering essentially amounts to a topological sort
[88] of the type hierarchy, which means that many type tests are comparisons. For
instance, numberp is true if the tag is positive but less than 4. One disadvantage of
this assignment is that FF (-1) cannot be used to tag negative small integers, but
since FF does not tag any other type, untagged negative integers may be examined
during GC without any problem.

The heap and stack grow toward each other in the same space, which justifies
the use of a compacting collector. Nil is at the very beginning of the heap.

2.1.19 CLisp

CLisp was built for VAX/VNIS systems at the University of Massachusetts
in 1977-78. Types available included arrays, bignums, compiled functions, files,
fixnums, flonums, vectors, arrays, symbols, and cons cells. It was distributed to a

28

7F
70
60
50
40
30
20
10
00
FO
EO
DO
CO
BO
AO
90
80

compiled code entry points

vectors

floats
rationals
big integers
small integers
reserved

_4 I i_st_s ___ nil
identifiers

Figure 2.10. Tag Assignment in Cambridge LISP

number of sites [D. Corkill, personal communication]. The kernel (runtime system)
was hand-coded assembly language.

The basic object is 32 bits; either an immediate fixnum (flagged with 1 in the
least-significant bit), or a longword-aligned pointer. Pointer types are discriminated
by 512-byte pages (BBOP), which is the page size built into the VAX hardware.
Large objects could extend over multiple pages. Flonums (floats) are always 64-bit
numbers. Cons cells stored with car first, then cdr. Strings start with a 32-bit
length (in characters), are zero-terminated, and always allocated in multiples of
four bytes. Vectors are similar, but with both length in bytes and in number of
elements. Symbols have four components: value/function, print name (a string),
hash table link (another symbol), and pointer to the property list. NIL is a symbol,
with an address of o. Arrays consist of a 32-bit length field, followed by a descriptor
in the standard VMS format and the data itself. A variety of specialized arrays are
available. GC is mark-and-sweep, with a stack-allocated mark bitmap.

2.1.20 ByteLisp

ByteLisp was an implementation of Interlisp for the Alto. A group led by Peter
Deutsch at Xerox PARC worked on it [41]. The Alto was a 16-bit machine with
from 64K to 256K of memory available.

Despite the limited real address space, ByteLisp defines a virtual address space
of 224 16-bit words, although only 222 are actually used. 11any data types are

29

allocated from areas of fixed size and position, but others (list cells, large integers,
string and array descriptors, floats, and user-defined datatypes) all share a single
heap. The fixed partitions are sometimes exploited by using shorter (usually 16-bit)
pointers. The heap is organized into 512-word pages, each containing objects only
of a single type.

List cells have a compacted format (cdr-coding), where each cell is 32 bits, broken
into a I-bit F field, a 7 -bit Q field, and a 24-bit P field. The P field is generally
a full pointer to the car, while the Q field usually refers to a nearby cdr; the F
field decides how the P and Q fields are actually interpreted. The compaction is
very good, with the average size of list cells being 34-35 bits (worse case would be
64-bit list cells). The three types of integers include those in the range [0,216 - 1],
the range [-3 . 28 , -1], and 32-bit heap-allocated integers. Symbols are stored
as separate tables for function, "permanent" value, and property list, while the
print name is compacted in a complex fashion. Reclamation is based on reference
counting, as described in [43].

2.1.21 Interlisp-VAX

Interlisp-VAX, as described in [17], implements the Interlisp Virtual Machine in
about 12,000 lines of C and assembly language. The operating system is Berkeley
Unix.

It uses a BBOP scheme with rather large sectors (pages) of 64K bytes apiece. A
sector table contains 16-bit data type numbers that index another table describing
each type in more detail. A data object is then represented either as a pointer
directly into a sector, or to a sequence descriptor, in the case of variable-length
objects like strings. Some user-defined objects may contain a combination of pointer
and immediate data; to handle these cases, the type descriptor includes both a
length of the whole object and the number of pointers in it. In order to support
larger immediate integers than allowed by a 64K sector, the high-order half of the
address space (231 to 232 - 1) is used as a representation of 31-bit integers. This is
effectively a I-bit tag with a value of 1.

2.1.22 Interlisp-D

Interlisp-D is externally similar to the other Interlisps, but internally, it was
redesigned for the Xerox 1100 series of microcodable workstations.

As described in [53, pp. 73-75], a pointer is 24 bits in length. The address space
is composed of 512-byte quanta (pages). Small integers (in the range [216 ,216 _

1]) have an immediate representation, while integers up to 32 bits are boxed (are
allocated heap space and referred to by pointer), as are floats, which are in 32-bit
IEEE format. Cdr-coding (see section 2.1.20) is thoroughly built in; cons cells are
32-bit objects, normally 24 bits for the car and 8 bits for the cdr, which suffices to
address cdrs in the same page. The correct escape code converts the cons cell into
a forwarding pointer to a 64-bit cell with full car and cdr pointers, but this case is
supposed to be rare. Strings and arrays are allocated from a separate area.

Interlisp-D uses reference counts for reclamation, which are kept in a hash table
elsewhere, and which is claimed to be sparse.

30

2.1.23 Zetalisp/Symbolics 3600

Zetalisp originated as Lisp Machine Lisp, which was developed from MacLISP,
but is a much larger language. Many parts of the Common Lisp design were first
tried in Zetalisp. Moon [109] has written an extensive overview of data structures
in Zetalisp.

The Symbolics 3600 design (originally derived from the MIT Lisp Machine [18])
supports tags in hardware, which means that many primitive operations exhibit
some concurrency and can be quite fast. It is basically a 36-bit machine with a
28-bit address space (of 36-bit words, not bytes). A word can be broken down in
several different ways. An object reference has a 2-bit cdr code which implements
cdr-coding (see section 2.1.20), a 2-bit major tag, and possibly a 4-bit minor tag.
Small integers and IEEE single-precision floats use only the major tag, thus they
are each 32 bits, while pointers also have a minor tag, leaving 28 bits. Figure 2.11
illustrates some of these combinations.

More complex objects such as arrays also have a header word that can have
several different formats. For instance, the array header word consists of another
6-bit tag and 28 bits of type and length information, followed by the array data.
Specialized arrays such as strings are packed. Function objects are quite complex.
The header word has a tag and a size, followed by an additional three words of
various info. Then there is a table of constants and external references (essentially
a local symbol table), followed by the instructions, which are tagged as a distinct
type of data.

The GC method has been publicly described [110]. It is based on a notion of
ephemeral and static objects, and attempts to minimize VM thrashing.

2.1.24 Scheme Chips

In 1978-79, Steele and Sussman developed a pair of Scheme processor chips
[149]. The first was a toy design; it was only a II-bit machine, of which 3 bits
constitute a tag distinguishing both data (lists and atoms) and program structures
(function application, conditionals) from each other. The second effort, dubbed
the Scheme-79 chip, was a more plausible design; a 32-bit machine, with a 7-bit
tag field, a I-bit mark field for GC, and a 24-bit data field. It worked basically
as an interpreter on program structure objects. Although this chip was tested and
found equivalent to a KA-10 running compiled Lisp, the project was not continued
further.

2.1.25 NIL

NIL is a successor of MacLISP and Lisp Machine Lisp, and was one of the main
influences on Common Lisp. It was only implemented for the VAX. The following
description is from [53].

NIL is tagged, with a 32-bit pointer divided into a 3-bit high-order tag field, a
27-bit data field, and a 2-bit low-order tag field (see Figure 2.12). Since integers

31

35 31 27 o
Nx InJ- 394875092

list Nx FI(~ . 674675e34

En ~ List

L~n:: Array

Ene ~Functioln

Array Hea4 Type and Len~th
array rx Ini 27298472

lX Symbol FDD

Header Tag Size f.,-

LX Ini Number of Arguments co nstants

funct
rx Debug Information I ior ~ Definition Cell

rx S rmbol 7 KLUDGE

IX FI> .31415gel

1rx In~ Instruction 1 Entry Instruction
\ co 13 :; In~ Instruction 3 Instruction 2

/ Is ~ In!" Instruction 5 Instruction 4

de

17-bit instructions consist of 16-bit field + one tag bit

Figure 2.11. Data Representation in Zetalisp

32

31 29 1 0

I, I data I, I

Figure 2.12. Data Representation in NIL

are represented with a zero in the low-order tag bits, and a don't-care in the high
order bits, NIL has 3D-bit fixnums. Among other desirable qualities, the integer
can be used directly as an index to a general vector. NIL uses different tags for
stack-allocated and heap-allocated objects, and sets up the tags in such a way that
stack-allocated objects have the correct address for the dedicated stack space of
the VAX. That is, the high-order bit of a stack-allocated version of a type is 1,
which is the stack area defined by VAX hardware. Another way to look at this is
to recognize the most-significant bit as a stack/heap flag, and that there are really
only four tag bits for discriminating types.

2.1.26 FLISP

In the late 70s and early 80s, the Utah Symbolic Computation Group (led by
Hearn and Griss) experimented with a variety of Lisp systems, with the goal of
making a portable Lisp platform for the REDUCE algebra system. One of the
subgoals making this more difficult was the intent to include the Portable Lisp
Compiler (PLC) [64]. The dialect to be implemented was always Standard LISP
[102], an extremely small Lisp, but the first standardized dialect.

FLISP is a Fortran-based system written in SYSLISP [62]. SYSLISP was orig
inally billed as a BCPL-like or C-like Lisp dialect; in effect it is an "unsafe" Lisp
in which everything is implicitly a machine word, and any operation can be done
on any object. The PLC is capable of compiling SYSLISP into reasonably efficient
code; in the case of FLISP, it was adapted to compile a SYSLISP-coded interpreter
into Fortran.

The data representation is somewhat abstracted. Each item has a TYPE and an
INFO part. The low-level system description defines how these are to be represented;
for instance, it is mentioned that the DEC-20 implementation of FLISP uses 9-
bit TYPEs and 18-bit INFOs, leaving 9 bits for the GC to use. (Page 9 of [62]
suggests that this setup has the possibility for different data representations, but
this capability was apparently never exploited. Successor systems such as Portable
Standard Lisp always used tags.)

33

2.1.27 Franz Lisp

Franz Lisp is a dialect developed at UC Berkeley to run under Unix [48]. It
includes 14 primitive datatypes, including several kinds of array-like structures.
The language itself is fairly small, although many optional libraries are available.
Franz Lisp has been implemented on the VAX and on many 68000 systems. The
description of internals here partly derives from the manual, and from the source
code for the runtime system, which is almost entirely in C.

Franz Lisp uses a BBOP representation with 512-byte pages. Numbers in the
range [-1024,1023] have immediate representations, while all others are boxed.
(Franz Lisp is unusual in supplying and documenting functions to destructively
modify the boxed representation.) Bignums are lists rather than vectors of fixnums,
but with a different tag to avoid any type-aliasing. The cdr of a cons cell is stored
at the lower address. Structures such as symbols and arrays are defined using fairly
ordinary C structs.

The GC is mark-and-sweep. Unused string space mayor may not be recovered,
depending on the setting of an option while building the system. The rationale for
this is that string space collection is relatively slow, and that many applications
do not discard enough strings (particularly when they appear as names of interned
symbols, which are never destroyed) to make string recovery worthwhile.

2.1.28 Portable Standard Lisp

Portable Standard Lisp (PSL) [63] is essentially a runtime system based on the
Portable Lisp Compiler (see section 2.1.26). It is written in SYSLISP with a small
amount of assembly language and perhaps an interface to the operating system
written in an appropriate high-level language (C for Unix, Pascal for Apollo, Fortran
for Cray, etc). Most of the description is to be found in the Implementors Guide
[65] and in unpublished notes.

Despite the variety of machines to which PSL has been ported, its basic structure
is the same everywhere; all objects are tagged with at least 5 bits distinguishing 19
primitive types. Tags 0 and -1 must be used for positive and negative small integers,
respectively; otherwise there are no special assignments. User-defined types are all
built on the type e-vector, which is like a normal vector, but with a different tag and
no functions to access from interpreted code. All objects reside in a heap, with the
exception of compiled code and a few constant objects, which are in a non-GCed
area known as Binary Program Space.

Table 2.1 shows how the minimum tag requirement has been met by various
implementations of PSL. All use high-order tags; despite the apparent portability
of PSL, many parts of system code would fail if the tags were not at the high end
of the word. Of these, only the Cray-1 has unused bits, which is understandable,
since the address space is only 24 bits while the normal word size is 64 bits (the
extra bits are used as a relocation address for a compacting GC).

34

Machine Word Tag Data
DEC-20 36 5 31
VAX 32 5 27
68000 (A polIo D N300) 32 8 24
68020 32 5 27
IBM 370 32 8 24
Gould SEL 32 5 27
Cray-I 64 5 37

Table 2.1. Tag and Data Sizes of Various PSL Implementations

2.1.29 FLATS

FLATS is a Lisp machine developed by a large group in Japan [60]. The
supported dialect appears to be a small one resembling Standard LISP. Special
types of objects include big floats (arbitrary precision floating point), two kinds of
fast lookup tables (like hash tables), and H-type data, which is based on the idea
of hashing CONS.

The basic data format is a 32-bit word divided into an 8-bit tag and 24-bit field
for addresses and short integers. 2 bits of the tag are used for cdr coding, 1 bit
flags short floats, while 5 bits are the main tag field, which distinguishes about a
dozen types.

2.1.30 LeLisp

LeLisp is another highly portable Lisp system, developed at INRIA by Chailloux,
Devin, and Hullot [32]. It has been implemented on at least a dozen different
machines. The implementation is based on a low-level virtual machine called LLM3,
which is very close to machine language. The interpreter is quite fast, as is the
compiler.

Data representation is done by dividing memory into zones (spaces), one each for
symbols, conses, strings, vectors, and floats. The contents of strings and vectors go
into a heap zone. Short fixnums (I6-bit) are not boxed (allocated), while arbitrary
precision rationals are represented as trees of fixnums in the cons zone. Symbol
structures include slots for function, value, function type, print name, and property
list. All zones are GCed, the heap in particular is also compacted, using mark-and
sweep.

2.1.31 Tandem Lisp

Tandem Lisp was an implementation written by John Cowan and Paul Pedersen
for the Tandem NonStop II fault-tolerant minicomputer, although it did not actu
ally use any of the fault-tolerant capabilities. [J. Cowan, personal communication].
The Tandem architecture is similar to the PDP-II (16 bits, separate instruction and

35

data spaces), but with data space of 128K bytes. Addressing is slightly peculiar;
pointers can either be byte pointers addressing only the first 64K of data space, or
word pointers capable of addressing the entire 128K in 2-byte increments.

The Lisp dialect is very simple: conses, symbols, and 16-bit signed fixnums.
A cons cell is two 16-bit words, with the cdr stored first. A fixnum also requires
two words, with the cdr being a magic value and the car the value of the fixnum.
Symbols are structures in the implementation language (which was Algol-like). In
addition to the usual property list and value/function cell, there are two bits to flag
interned symbols and to indicate the presence of unusual characters in the print
name. The print name is packed into bytes immediately following the symbol,
preceded by a word giving the length of the name.

Symbols are allocated going upwards in data area, and conses/fixnums allo
cated downward (which is OK, because they are always addressed as words). The
uniformity of objects, and the non-GC of symbols, makes for a rather simple
mark-and-sweep garbage collector, which uses the low bit of the cdr as a mark
bit.

2.1.32 T

T is a superset of Scheme with many Common Lisp features, originally described
by Rees and Adams [127]. T has been ported to the VAX and to 68000-based
machines.

Each object has a 3-bit low-order tag, and all objects in memory are aligned on
8-byte boundaries, which is somewhat coarse, but avoids any need to shift pointers
in the data field. Only fixnums, pairs, floats, and strings merit unique tags; ()
and characters share a tag, while user-defined data structures are all distinguished
with a "type template". Fixnums get the zero tag. Tag stripping of cons cells is
eliminated by clever indexing, in which the value of the tag offsets the addresses of
the car and cdr, as illustrated in Figure 2.13.

2.1.33 Spice Lisp

Spice Lisp was originally intended as a NlacLISP successor to run on personal
workstations. Ultimately it became a chief contributor to, and a model imple
mentation of, Common Lisp [148]. The internal structure of Spice Lisp is almost
completely described in a single document [167]. Although Spice Lisp was originally
designed to run on the Perq workstation, the Perq was a fairly conventional 32-bit
microcodable machine with virtual memory.

Spice's data representation utilizes a "space-tag equivalence" , wherein the entire
32-bit address space is divided into 32 contiguous blocks, each of which is devoted to
a single type. This means that the most-significant 5 bits of a valid pointer is also a
standard type tag. Thus, object pointers may be dereferenced without removing the
tag, but examination of the tag requires only a single masking operation, thereby
achieving the advantages of both separate space and tagged representations. The
disadvantage is that the entire address space must be available to the Lisp system,

36

memory:
(bytes)

xxxxOOO
pointer

CAR
-5 xxxx 110~

------ displacements
xxxxl00 -1
xxxxl01 CDR
xxxxl11

Figure 2.13. Use of Low Tags in T3

and the virtual memory system must deal well with highly fragmented programs.
Areas of memory devoted to immediate types like fixnums and characters will
always remain empty. Each space is also limited to 227 bytes (225 or about 32
million objects), but this is unlikely to be a problem. Figure 2.14 illustrates the
representations in Spice Lisp.

More recently, Spice Lisp has been renamed CMU Common Lisp and been
implemented for the IBM RT PC [106]. Data representations are largely the same as
for the Perq, although the tag assignments have been altered-while Spice originally
assigned fixnums arbitrary tag values, in CMU Common Lisp they get the tags 0
and -1 (or 31). Also, the subtypes of numbers and arrays have been gathered into
contiguous ranges, which could be exploited by doing range tests on tags rather
than individual tests for each subtype.

2.1.34 Data General Common Lisp

This is a derivative of Spice Lisp, briefly described by Gabriel [53]. It runs on
Data General's MV family of computers, which are basically 32-bit machines, but
the highest four bits of the address are treated specially by both the hardware and
the operating system (three for a ring protection scheme, and one for indirection).

The objects are 32 bits long, and discriminated using a BBOP scheme with
32I(byte segments (pages). Thus pointers are divided into two equal halves (the
highest bit being ignored however), the upper half indexing the type table. Fixnums
are 28 bits, where the indirect and ring protection bits tag the fixnum.

14 x ~i

L

13 ..

~

11 ...

4 ..

~

3 x '2-.

20
12

9 10
11

11
9

12
3

13

8 I
3 I

'N'

·
·
·

Cons Space
I font I bits I

I T
J

expt I mantissa

1

Symbol Space

· · · String Space
o I 2

3

I 'I' I 'L' I

·
·

code

0

/character

....--- short float

value
function
property list
name
package

Figure 2.14. Data Representation in Spice Lisp

37

38

2.1.35 S-l Lisp

The S-l Mark IIA is a supercomputer developed by Lawrence Livermore Labs.
It is a 36-bit machine with a 31-bit address space, and some support for tags. Nine
of the tags are reserved by the hardware. A variety of numeric formats are available,
up to 144-bit floats and 288-bit complex numbers, and many rounding modes are in
hardware. The S-l also has some extremely complicated addressing modes. Several
papers were written about S-l Lisp [24,25], and Gabriel describes it [53].

S-l Lisp is based (unsurprisingly) on 5-bit tags that do almost all type encoding,
with the exception of specialized array types (available for nearly every type of
number), whose element types are stored with the array. Fixnums get the tags 0
and -l.

Memory is divided into dynamic, static, and read-only areas. Read-only objects
can be created only, while static objects can also be modified (but not reclaimed),
and dynamic objects can also be reclaimed. Compiled code goes into a subarea
different from that for other data. Each of these subareas is divided into variable
size segments which themselves are composed of 64K byte segmentitos. A table
in static space identifies the kind (dynamic/static/read-only) and current status of
each segmentito. The GC works only on dynamic storage, and basically copies data
between old and new subspaces of dynamic storage.

2.1.36 Kyoto Common Lisp

Among Common Lisp implementations, Kyoto Common Lisp (KCL) is distin
guished by its use of C as the compiler target code (as well as for most of the runtime
system), and by its development independently of other Common Lisp efforts [171].

The basic objects are defined as C structs, and are not particularly compact.
The type field only needs to distinguish 27 primitive types, but occupies an entire
C short integer (which is typically 16 bits). The mark bits for GC are in another
short integer, and the components of the object are usually stored as long (32-bit)
integers. This means that even fixnums and characters require storage space, but
this is not as bad as it might seem; the extensive C coding in the runtime system
means allocation is unlikely within a primitive (this is hard to avoid when doing
Lisp-in-Lisp). Nil is a normal symbol. Every type in KCL has a C struct; no
bootstrapping is done using defstruct or an object facility, as is typical in most
Common Lisp implementations, especially for the "higher-level" types like hash
tables and random states.

GC is mark-and-sweep, using a 16-bit (!) mark field. Each type of object has its
own areas of memory, which simplifies compaction and allows reporting on space
usage and recovery.

2.1.37 HP Common LISP

Hewlett-Packard's Common Lisp [70] for the HP-9000 series workstations was
derived from a combination of PSL and Spice Lisp code [137]. The workstations are
based on the different members of the 68000 family, and the implementation was

39

affected by progress through the several generations of chips, with ever-increasing
address spaces.

The basic design uses 4-bit high-order tags that are effectively automatically
removed by the combination of virtual memory hardware and operating system
support. Representations of vectors and other objects are generally similar to those
in PSL, in fact the knowledgeable user can find a package nicknamed psI with many
of the most primitive PSL functions therein. The GC is stop-and-copy.

2.1.38 Extended Common Lisp

Franz Inc. was founded by several implementors of Franz Lisp. In addition
to supporting and enhancing Franz Lisp, they produced an implementation of
Common Lisp, called Extended Common Lisp or ExCL. ExCL has been ported
to a variety of machines. [J.K. Foderaro, personal communication].

The data structures are tagged with three bits in the low end of a 32-bit word.
Types getting their own tags are fixnums, symbols, characters, conses, and nil. All
other objects are pointers to blocks whose first byte indicates the type. Symbols
have a sixth word in addition to the five mandated by Common Lisp; it includes
various flags, and a 16-bit hash value, to avoid expensive recomputation.

Nil has a clever representation. Since in Common Lisp, nil is both a symbol
and a list, all of the symbol operations and all of the list operations must work
correctly on it. For instance,

(symbol-name nil) => "NIL"
(car nil) => nil

This is a problem, because the basic operations should be opencoded for best
performance, but the desired machine code is a displaced memory access and
nothing else. This precludes the use of any type tests, so nil must be organized
to look like a normal symbol and like a normal cons cell. Needless to say, tight
constraints are imposed on symbol and cons representations, as well as on nil itself.

Figure 2.15 shows how the problem is solved. The value slot of a symbol and
the car slot of a cons are at the same offset. Since both are defined to be nil again,
initialization need only install a circular pointer. Another one can be installed in
the cdr slot, which is at the same offset as the package slot of a symbol. The cdr
of nil is also nil, which is not a valid package. Fortunately, accessing the package
of a symbol is not a frequent operation, and can include the type test.

2.1.39 Lucid Lisp

Lucid Lisp is an implementation of Common Lisp sold by Lucid, Inc.; it is
highly portable, and available on a wide variety of machines (Sun, Prime, HP, etc).
Because of this, Lucid Lisp varies slightly from machine to machine, although the
basic scheme is held constant [E. Benson, personal communication].

The basic object reference is a word, typically about 32 bits in size. The
3 least-significant bits are the primary data type tag, and the next 5 bits may

40

N·l l.

c ons Symbol
-4
r--- f"

-4
r---

0 1/
~

1/

car
~

cdr V
I-- ~

value

packa

0

ge

V
I-- '" r--

funct ion

I- '" -

name

/
I- '" r--

plist

V
I-

~ flags
I--

'--

~ hash
'--

Figure 2.15. Representation of NIL in ExCL

f"

1/
f"

1/

f"

'"
1/

'"
1/

~
~

car

cdr/
value

package

function

plist

flags

hash

42

vectors, various types of function objects, I/O ports, and environments are all
allocated into pages. Fixnums are 15-bit 2s-complement; page table entries are
reserved to flag fixnums and characters, although they need not actually point to
distinct memory addresses.

Mark-and-sweep GC is performed by default; if this does not recover enough
memory (because of fragmentation over pages), a compaction will be run also. The
time needed is just a few seconds, even in the worst case.

2.1.42 mini-Scheme

Marc Feeley at the University of Montreal has written a small Scheme system
for the 68000, using a native-code compiler written in Prolog [J. Dalton, personal
communication] .

The datatype representation was designed for efficiency; it is based on 32-bit
pointers with 1-3 low tag bits, in the following assignment:
xxI 31-bit floats. (Also some unused bit patterns are assigned to #t, if, (), and

to characters.)

xl0 Assorted objects (word before this address supplies the actual type).

100 Pair. (cdr before this address, car at it.)

000 29-bit fixnum.

2.1.43 XLISP

XLISP is a widely available public-domain microcomputer implementation. The
language is a subset of Common Lisp and Scheme [47], and includes 9 types: list,
symbol, integer, string, object, file pointer, float, and two kinds of builtin functions
(subr /fsubr). It has no official description of internal structure, but the source code
is a 7300-line C program. It has been ported to a large number of machines, ranging
down to 16-bit microcomputers. This is at least partly because there is no compiler
or other machine-specific optimizations.

(This description is for version 1.6.) Data representation is defined in terms of
C structs. The most basic object is called a node, and always contains a char-sized
type field, a char-sized flags field, and a union of structures, which should be no
larger than two pointers. The flags field includes two mark bits for GC (two are
needed because the marking algorithm is not recursive). Conses store the car first.
Nil is 0, and car/cdr of nil is handled by explicit tests in those functions. Strings
have a static/dynamic type, which is an int field in addition to a pointer to the
string itself. String contents are malloced, and freed when the GC frees up the
string node (this has the effect of relying on the malloc/free allocation system to
handle all variable-size objects). Symbols have only property lists and value cells.
The car of the property list is actually the string representing the symbol name,
while the cdr is the property list proper. XLISP is like Scheme in not having
function cells distinct from value cells. Objects have a class and a pointer to their
data. The object data is actually a list long enough to hold all instance variables
of the object. Classes are themselves objects, with 7 instance variables.

41

sometimes be used for type discrimination as well. The primary types are even/odd
fixnums, "other" numbers, conses, symbols, procedures, "other" pointers, and
"other" immediates. The fixnums are therefore 30 bits in length, and are therefore
also valid word addresses in a 32-bit byte-addressed memory, which is useful for
system building and debugging.

The "other" immediate types include short floats, characters, an object flagging
unbound symbols, byte specifiers (not a first-class type of Common Lisp, but
important [146, pp. 225-228]), and header tags, which appear in the headers of
large objects such as arrays. Short floats have 16 bits of significance and 8 bits
of exponent, while characters have 8 bits of code, 4 bits of "bits" , and 12 bits for
fonts.

Pointers are all offset by an amount appropriate to the tag, so that the first
word of the object may be accessed without tag stripping. Cons cells do not have
headers, so the cdr is stored at a 0 offset and the car at a 4 offset. All other
allocated objects have header words which include both the type (a header tag)
and a length if appropriate. Symbols are among the objects with a header word;
instead of a length (the size of a symbol object being fixed), the header includes
flags and a 16-bit cache for the value of sxhash on that symbol.5 Nil is handled
in basically the same way as for ExCL. The Common Lisp datatypes that do not
have dedicated primary or secondary tags are implemented as ordinary structures.

Heap allocation is straightforward, with an extra wrinkle: the pointer to the
next available heap location is already tagged as a cons, to speed up consing.

2.1.40 Lisp/370 and Lisp/VM

Lisp/370 was built during the 70s by IBM. Its internals were briefly described
some years ago by White [164]. LISP /VM is the successor to Lisp/370 [5]. Objects
are 32 bit tagged pointers, with 8 bits of type tag, and 24 bits of address.

2.1.41 PC Scheme

PC Scheme is a commercial implementation of Scheme for the IBM PC, de
veloped by Texas Instruments [16]. It is based on a byte-code emulator at the
approximate level of Pascal P-code, but unlike P-code, it is based on 64 32-bit
registers instead of a stack. There is no method for evaluation, but the compiler is
fast enough to be unobtrusive in use.

Objects are three bytes, divided into one byte for a page number and two
bytes for a page displacement. Pages are variable in size, defaulting to around
4K bytes. Pointer chasing involves indexing a page table and adding the address
to the page displacement (thus sacrificing some access speed, but getting some
VM-like flexibility in a machine with no VM). An additional table stores the type
of objects in each page. Lists, bignums, double-precision floats, symbols, strings,

5The sxhash function is potentially expensive to compute, so it is worthwhile to cache its
results.

43

2.1.44 VT-LISP

VT-LISP is another microcomputer LISP, considerably smaller and simpler than
XLISP. VT-LISP has been described by its authors Bev and Bill Thompson [157].
It is a pure LISP, with less than 20 primitives and only four special forms. The
only types of objects are conses, symbols (limited in length to 80 characters), and
numbers. VT-LISP is written in highly portable Pascal; at 1300 heavily-commented
lines of source, it is one of the smallest working Lisp systems available.

The basic unit of representation is called a node, and is defined as a Pascal
structure consisting of an enumerated type discriminating four types (the three
mentioned above, plus a free_node object type), a mark flag declared to be
boolean, and the data, which includes two pointers (conses), a real (numbers), 80
bytes (symbols), or a pointer to a block of free nodes. The pointer to a node is a
32-bit quantity, divided into a 16-bit segment number and a 16-bit segment offset
(this is partly to deal with the 8086 architecture). Pascal's NIL is also VT-LISP's
NIL. Symbols are not interned. Instead, they are compared by string comparisons
always, since each re-read of the same symbol will cause a new symbol to be created.

The GC method is mark-and-sweep, using the mark flag attached to each object.
Free space is maintained as a linked list of blocks of nodes, since the variable-length
strings used with symbols share space with regular nodes, and fragmentation can
be a problem.

2.1.45 CScheme

CScheme is a C-based system developed at MIT by the original Scheme group.
The dialect is a large superset of Standard Scheme, with many builtin functions
ranging from process handling to graphics interfaces. The implementation is based
on a virtual machine interpreter, but is extremely large and complicated; the VNI
is over 50,000 lines of fairly portable C.

The virtual machine defines objects to have at least a 6-bit type tag, distinguish
ing no less than 62 (!) types of objects. This is more types than in any other system
described; the types appear to fall into three groups: normal data objects (basically
those of Standard Scheme), internal data objects, and source code constructs (for
instance, a "conditional" type). At present, the type field is defined to be 8 bits in
the high end of the word, along with a 24-bit data field. Symbols are two-component
structures (name and value). There is a 3- and 4-component structures called HUNK3

and HUNK4, which are treated very much like list cells. Vector length and type may
both be found in the first word of a vector. Floats are double precision.

2.1.46 GNU Emacs Lisp

The Emacs implementation developed by the Free Software Foundation [145]
includes a full Lisp as its customization language. Although used in a rather special
context, GNU Emacs Lisp is quite complete; it includes about 22 primitive types
(many specific to editing, such as buffers and windows), a garbage collector, and a

44

data(32)
unused(24) Igeij type

Figure 2.16. A Data Object in SPUR

compiler as well as interpreter. Like the rest of GNU Emacs, the Lisp is written in
C.

The representation is expressed either as a union or as structures, depending on
the settings of various compiletime flags. In either case, the representation uses
7-bit tags, 1 mark bit for GC, then a 24-bit data field. The tag/mark may be at
either end of a word, whichever does not require offset addressing to examine (this
is set at compiletime). Strings have 31-bit length fields in the first word-the sign
bit is used as the mark. Vectors and symbols are unusual in that in addition to the
usual fields, there is also a next field pointing to other objects of the same type,
presumably to allow GC without moving objects around.

2.1.47 SPUR Lisp

SPUR Lisp is a Common Lisp system designed to run on the SPUR, a multipro
cessing workstation system being developed at UC Berkeley. The SPUR CPU is a
40-bit RISC processor with a 32-bit address space. The 40-bit registers are actually
divided into a 32-bit data pointer, a 6-bit type tag, and a 2-bit GC generation
number (the type and generation bits together are the typegen field). The memory
is byte-addressed.

SPUR Lisp internals have been described in a recent technical report [173].
SPUR Lisp was originally derived from Spice Lisp, and shares much of its original
structure. On the other hand, the lowest-level representations diverge signifi
cantly, mostly because of the hardware support. Pointers in SPUR Lisp must
be doubleword-aligned, with the first 32-bit word containing the data, and the next
word containing 24 bits of unused space and the 8 bits of typegen information, as
shown in Figure 2.16. Despite the longer data, there are only two immediate types:
fixnums and characters, for which the most significant bit of the tag is 0, while all
pointer types have a 1. Fixnums are normal 32-bit numbers, while characters consist
of 8-bit code, 8-bit "bits", and 8-bit font fields. ([173] explains that although the
32-bit IEEE floats would seem to be logical candidates for immediate representation,
SPUR cannot transfer directly from registers to the floating-point processor, so they
have to be in memory anyway. However, pointer representation for floats also incurs
allocation/ deallocation overhead.) Tags for the allocated number types (floats,
bignums, etc) are all assigned contiguously, although the existence of hardware
type dispatching means this has no special advantages.

Nil is represented as a symbol, with all the same fields. car and cdr of nil
address the same slots as a symbol's value and function. I-vectors store raw data,

45

and include bignums and strings as special cases. The header of an i-vector includes
its access type, which indicates how many bits/element are stored (as an exponent
of two; 3 = byte items, 5 = 32-bit items, etc). The header also includes a 4-bit
subtype, and lengths in both 32-bit words and in number of elements. Strings are
also terminated with a NUL character, for Unix and Sprite system compatibility.
General arrays have many fields, with the contents stored separately (possibly with
several arrays pointing to it), as in Spice Lisp.

Unlike Spice Lisp, the heap is only a limited region of memory. The GC
algorithm is a generation collector of the sort first proposed by Lieberman and
Hewitt [97]. There are four generations distinguished by the hardware bits. The
heap divides into contiguous spaces, one for each generation, but they have no
requirements on relative position or size.

2.1.48 LMI K-processor

The LMI K-processor was a next-generation Lisp machine project that fell victim
to LMI's bankruptcy [J.R. Marshall, personal communication]. It was designed to
run Zetalisp and Common Lisp, and exhibited extremely good performance.

The basic design of the processor is a derivation of the original Lisp Machine--the
tag is in hardware and so forth. The basic object consists of a 6-bit tag field and
26-bit data/pointer field. Cons cells are even-word aligned, with the car first,
and the cdr is accessed using special hardware that can OR in a 1 to the virtual
address. Cdr-coding is no longer used. LMI's data indicated that only about
20% of memory is typically used for cons cells, and only 20% of those cells are
in compacted form. Abandoning cdr-coding simplifies and speeds up both the
hardware and software. Nil looks like a cons cell, followed by symbol structure
components. Only symbol-name needs to check for nil as a special case. Fixnums
are 24-bit rather than 26-bit objects, to accommodate the ALU hardware. Arrays
are handled in a clever way that allows checking for bounds and array complexity
(simple vector vs general array). The length of a simple vector is stored in the array
header as a negative number, while the length of an n-dimensional or forwarded
array is stored as a positive number.

The GC distinguishes ephemeral from permanent data objects, and must be able
to scan the heap starting at any location. Cons cells, vectors, and code are stored
in different areas.

2.1.49 UtiLisp

UtiLisp is a Common Lisp-like dialect built at the University of Tokyo [79,159].
Implementations have been in use since about 1981, but were more recently rewrit
ten for 24-bit address machines (68000), and for 32-bit machines (VAX, 68010/020).
The new one is dubbed UtiLisp32, and is written in LAP, which appears to be an
abstract assembly language.

UtiLisp32 uses a limited form of the "space-tag equivalence" of Spice Lisp. The
highest two bits of a 32-bit word are a tag field in which 11 designates fixnums, a

46

tag of 10 designates "other" objects, and the other two tags designate heap/stack
objects. The only actual allocated memory is for heap objects. The heap itself
consists of four areas that can grow into each other: compiled code, symbols, general
objects, and cons cells. Cdr is stored before car. General objects start with a header
word that gives a type, followed by a 32-bit length field (even for fixed-length objects
like floats), followed by the data. Strings are zero-terminated as well.

Oddly enough, the two lowest-order bits of a fixnum must be 0, in order to be
compatible with the allocater that always allocates on word boundaries.

2.1.50 A-Lisp

A-Lisp is a Common Lisp subset targeted to the Atari ST, presently under
construction by Sandra Loosemore [99]. At this writing (summer 1988), it can
run most of the Gabriel benchmarks, but is not in regular use. It is written in a
combination of C and Lisp.

The data representation is a combination of BBOP and low tag bits. The two
least-significant bits of a 32-bit word specify fixnums, short floats, characters, and
all other types (which are all referenced through pointers). Fixnums get the 0
tag. Despite the available space, characters do not have bits or font attributes.
Short floats consist of a 22-bit mantissa, 7-bit exponent, and a I-bit sign, and are
essentially in the Motorola format used by the C compiler. Pointers have a low
tag of 2, and the objects are always aligned to be "off by 2" so that the tag need
never be stripped when following pointers. Pages are 32I(bytes each. Instead of
using a separate type table, the type of a page is stored in its lowest address, which
requires only a mask and indirect addressing, but no load of a page table address
nor allocation of the table initially. Car is stored before cdr, although is asserted
to have been a "random assignment." On the other hand, the function cell of a
symbol is stored first to speed access, while the Common Lisp standard's permission
to do anything with the function cell of nil is exploited by storing a self-pointer
there, so car of nil needs no special treatment. Block-allocated objects such as
vectors, strings, and structures have two-word header with a pointer to contents
and a 32-bit length (which is not strictly necessary since object size is limited to
32I(bytes). Packages are implemented as primitive datatypes, and are stored as
single blocks of memory; two regions in the blocks serve as hash tables for internal
and external symbols. Collisions in the hash table are resolved by chaining through
links stored in special fields of the symbols.

The garbage collector is based on traditional compaction, but with the pages
linked together, so that entire pages can be freed if possible.

2.1.51 SIOD

SIOD stands for Scheme in One Defun, written by G. Carrette as a smallest
possible Scheme in Common Lisp. It was also translated into C, and in that form
is comparable to VT-LISP in size [G.J. Carrette, personal communication]. The
dialect is a subset of Standard Scheme.

47

The basic object is a C struct, consisting of a short GC mark, a short type,
and a union of cons cell, £lonum, symbol (with print name and value slots), subr
(pointer to C function), and closure (with environment and code). The type field
distinguishes these, with the additions of the tag 0 for nil, and 7 subtypes of subr
(distinguishing different call/return protocols). The symbol names are C strings
malloced and never recovered. Nil is represented as address 0 (or NULL in C).

GC is stop-and-copy, but with a twist; it can happen only between toplevel
prompts, which means that the tracing process need not try to examine a C stack,
but of course a too-complicated program will exhaust the heap and result in failure.
SIOD is only intended for pedagogical purposes, so this is acceptable.

2.2 Purely Functional Languages

Purely functional languages, although related to (and inspired by) Lisp, have
evolved along different pathways and have somewhat different characteristics. Since
destructive operations are not supported, the implementor has more freedom to use
alternate representations. In practice, this freedom seems to have been used more
for parallelism than for high performance on single processors. In addition, the
role of datatypes has been minimized, in some cases to the point that only small
integers and lists are builtin, while all other structures must be constructed by the
programmer. The net effect has been a dearth of data structure descriptions for
purely functional languages. This section does include several descriptions of the
FP language described by Backus [10]. (Probably the most available is one done
by Baden at VC Berkeley [49], but this one is a rather simple program in Franz
Lisp.)

2.2.1 IDRIL

IDRIL is a simple implementation of FP, with some facilities for utilizing hard
ware interrupts directly. It was written in Z80 assembly language, and partially
described in [139].

There are three types of objects: names, numbers, and sequences. Internally, a
3-byte representation is used, with one byte as type tag, and two bytes as a pointer
(the Z80 having a 16-bit address space). Names and numbers are actually quite
similar, since a symbol table was never implemented. Sequences in FP are more
like vectors than lists, and IDRIL signaled the end of a sequence with an all-zero
object (which also represented the empty sequence-a mistake never discovered at
the time).

Sequence structure is never shared, and of uniform size, so a free-list structure
is used, and unused objects released explicitly (as a normal part of the primitives'
operations). Since the released objects can potentially be large and complicated
structures, they are not flattened into a list, but are instead connected to the free
list, which becomes something more like a "free tree." vVhen the cell to be allocated
has two pointers, the second is pushed onto a stack. Thus allocation works from
the top of a stack of trees; when a tree is entirely used up, the stack is popped.

48

2.2.2 Illinois FP

The Illinois FP interpreter is a recent implementation of FP done by Arch
Robison at the University of Illinois [128]. It is notable for running both on single
processors and several parallel machines. The interpreter is written entirely in
C. The language is actually an extension of Backus' original dialect; new features
include floating point numbers and strings, as well as a representation of functions
as data.

The basic data object is a C char tag (which actually distinguishes 9 types), an
unsigned short (usually 16-bit) reference count, and a union of the data fields for
all other structures. Storage is allocated for all types of objects. If the reference
count overflows (unlikely, but possible), then the object is copied (legitimate,
since no destructive operations in FP). Sequences may be represented either as
arrays or as lists, which is decided before building the interpreter. Strings are
always represented as linked lists, with about 12 characters per cell (exact number
depending on the machine).

2.3 Prolog

Prolog systems have not yet evolved as much as their Lisp counterparts. Most
Prologs have only a few primitive types and emphasize basic compilation or inter
pretation rather than details of the runtime system. Data, program, and execution
state are frequently intertwined in much the same way as in normal-order functional
languages, greatly complicating the task of describing data structures. The most
common implementation technique is known as structure-sharing, essentially a
technique by which the structure of terms is distinguished from bindings, and
dynamic storage allocation is minimized. However, it has some difficulties, and
debate continues over the best methods for implementation. Unfortunately, most
optimized Prolog systems have been commercialized, and data on internals are hard
to come by.

2.3.1 C-Prolog

C-Prolog is a C-coded interpreter written at the University of Edinburgh [121],
which has passed through several generations of rewriting. The dialect is "vanilla"
Prolog, with only small integers, floats, symbols, and terms as data types. It uses
separate areas for stacks and trails that are part of a structure-sharing interpreter,
while objects as such are scattered throughout these areas, and are tagged with 1
or 3 bits in the low end of the word, as indicated in Figure 2.17. In order to avoid
heap-allocation of floats, C-Prolog resorts to a highly questionable tactic: three
bits of the significand is dropped, in order to make room for the tag. This is not
documented, although no promises are made about the floating precision either,
meaning that C-Prolog's floats are basically unusable.

49

Ig pointer to atom

1 109 integer 1
I~

3 bits
110~ exptl mantissa silently

truncated

111~ pointer

Figure 2.17. Data Representation in C-Prolog

2.3.2 SB-Prolog

Stony Brook Prolog was developed by D.S. Warren and several of his students.
It features a high-quality compiler that compiles to a WAM that is then simulated
with a C program. Details of data representation are buried in the source code [39].

The basic representation assumes 32-bit words, of which the three lowest bits
constitute the tag. The two lowest bits distinguish free variables, constructions
(non-atomic terms), numbers, and lists, while the next bit up distinguishes floats
from integers. SB-Prolog uses its own 29-bit representation for floating point
numbers.

2.4 Object-Oriented Languages

Object-oriented languages might seem to offer little interest relating to primitive
datatypes. The use of an interactive and uniformly object-based system encourages
(but does not require) uniformity of representation, and in fact that is what we
usually see. An object cannot always be distinguished with a few bits of type
tag, but may need a full-size pointer to a "class" object somewhere else in memory.
However, uniformity tends to be expensive on the average, so there is a recent trend
toward making more types of objects primitive, as a way to improve performance.

2.4.1 CLU

CLU is an object-oriented language developed at MIT [98]. The implementation
described here is for PDP-10/20 machines [J.E.B. Moss, personal communication];
the VAX version seems to be similar, but the code is almost completely undocu
mented.

The basic 36-bit object reference has a 2-bit tag distinguishing positive and
negative integers, pointers to objects, and object headers. Integers get the 0 and
-1 tags. Pointers just use the lower 18 bits of the word. The lower halfword is also

50

used in variable-size objects for the size. The slots of objects and vectors follow
immediately, as is the case for word/byte vectors and strings (characters packed five
per word). These objects are discriminated by the 16-bit field (otherwise unused)
in the first word. Arrays can also be more complicated, with an array dope vector
including words for lower bound, size, and a pointer to the array data, possibly into
the middle (the array data is itself a normal vector object).

Garbage collection (at least in later versions) is based on the Deu.tsch-Schorr
Waite algorithm [86, pp. 417-418].

2.4.2 Xerox Smalltalk-80

Smalltalk-8OS is thoroughly described in the so-called "Blue Book" [58], which
not only describes the language, but specifies a virtual machine on which the
language must run. The virtual machine is essentially the Alto, a 16-bit machine
with a 1M word address space (16-bit words). The virtual machine must provide
a particular sort of representation for Smalltalk objects, so that the Virtual Image
can run. The Virtual Image is best thought of a giant object code file containing
the entire Smalltalk programming environment, from user interaction to pixel ma
nipulations on the screen. It has been used by many different implementations,
although some have altered the Virtual Image to conform to the representations in
their virtual machine.

The original representation, based on the Alto, defines object references as 16-bit
pointers into memory. The general object consists of a size word, a reference to its
class, and 0 or more fields, all of which are 16 bits in size. The pointer to a general
object has a 0 in the lowest-order bit position, while small integers have a 1 in the
same place (the bit is essentially one of the Alto's condition codes). There are two
kinds of collections of small integers, one for 8-bit positive values, and another for
16-bit positive values.

An object reference does not point to the object directly. Instead, it points to a
large object table, which is just a vector of 32-bit entries, each of which contains a
20-bit pointer to the actual object, an 8-bit reference count, and some miscellaneous
bits. (see Figure 2.18). The rationale for this is that the available memory is more
than can be addressed by 16 bits, and that objects average about 10 words in size.
Therefore, the object table effectively increases the address space by a factor of
10, while losing 65K words of memory. The available real memory is up to one
megaword, so the loss of 6% of storage is offset by the 20% savings due to the use
of 16 instead of 20-bit pointers.

For storage reclamation, Smalltalk-80 includes an 8-bit reference count in each
object table entry, which is considered to have overflowed at 128 references (i.e.
the high-order bit flags the overflow). There is also a marking GC that works by
zeroing all reference counts in the object table, then incrementing as it traces from
root objects (the current process and the global dictionary).

6Smalltalk-80 is a trademark of Xerox Corporation.

51

object references object in heap

I integer 11 odd length - size

pointer class

1 01 free
field 0

I · · · - ref cntlll'li - r--

ob·ect table J

Figure 2.1B. Objects in Smalltalk-BO

A subsequent experiment in increasing the available memory while retaining
short pointers resulted in the LOOM (Large Object-Oriented Memory) extension
to Smalltalk-BO [77]. LOOM is a 4-gigaword memory (16-bit words). Each object
includes a 32-bit field specifying its address in secondary memory. Its other fields
are all 16-bit pointers, but each such pointer can be identified as a leaf, meaning
that it really exists in secondary and not primary memory. There are a number of
complexities involving with mapping 16- and 32-bit pointers back and forth, but
this is compensated for by the increased speed and decreased space required by
16-bit pointers. In essence, LOOM is a Smalltalk-adapted combination of cache
and virtual memory system.

2.4.3 Tektronix 4406 Small talk

This implementation built on Tektronix's experience with their first implemen
tations, which were extremely close to the Xerox virtual machine but very slow as
well [90]. The 4406 is a 6B020-based machine, and its Smalltalk is intended to be
fast enough to be usable for development and delivery of large applications [31].

4406 Smalltalk still uses the Smalltalk-BO Virtual Image, does away with the
object table, and makes object references be 32-bits, of which one bit is an inte
ger/pointer tag. 31-bit integers make the old "large integer" code in Smalltalk-80
unnecessary. Each object consists of at least three 32-bit words, as illustrated in
Figure 2.19. Although the object table is gone, the garbage collector in the Virtual
Image remains unchanged, so a 16-bit hash field is still necessary. Indexable objects
such as arrays were broken up into the object proper and into a remote object
with the contents of the arrays. Compiled methods are somewhat complicated,
each compiled method consisting of three separate objects: a Compiled1-1ethod
object with pointers to various places, a LiteralArray object containing pointers
to all objects referenced by the method, and a BytecodeArray with the code itself.
Statistics are that the new system is larger, but also much faster (25 to 50 percent).

52

first field
class

GC inf ~I/I Ityl hash value
age II 1# fix I size (bytes)

II · · ·
~ .'1 if context

1 ~f has remote ~ndexable part

Figure 2.19. Object Header in 4406 Smalltalk

2.4.4 Swamp

Swamp is primarily a hardware implementation of Smalltalk-80 [96]. Like other
recent implementations, it uses a 32-bit object pointer and no object table, with
two high tag bits (0, -1 for small integers, to get a 30-bit range), and separate tags
for general objects and contexts (stack frames). For these last two types, 3 extra
bits are used for a generation number that is examined by a generation-scavenging
garbage collector. Object headers are three words: object class, size of object, and
a 16-bit hash value (represented as a small integer).

2.4.5 ConcurrentSmalltalk

ConcurrentSmalltalk is a Japanese development extending Smalltalk-80 for con
current programming [170]. Objects are equated with processes. Although objects
can work concurrently, there is no provision for sharing object memory in a parallel
environment.

The virtual machine uses 32-bit OOPs (object pointers), with a I-bit tag for
small integers. Pointers point to an object table, since this facilitates forwarding
and GC compaction. The general object consists of five 16-bit words, the first of
which contains no less than 16 different flags, including everything from a mark
bit, and flags for different types of primitive objects (blocks, contexts, methods,
etc). This is essentially a bit-encoding of types. The remaining fields are a I6-bit
reference count, a size for the fixed-length part, an overall size in bytes, and a
pointer to the object's class. GC is based on reference counting, backed up by
mark-and-sweep.

2.4.6 Little Smalltalk

Little Smalltalk is a smaller and more portable version of standard Smalltalk-80
written in C. Chapter 12 of Budd's description [26] distinguishes general objects

31 general object o
reference count

191 number of instance variab.J

instance variable 1

· · ·

special object

reference count
11 type

data

es
class
super

Figure 2.20. Objects in Little Smalltalk

53

from special objects, which are the primitive datatypes. General objects have a
straightforward representation as sequences of words in the format of Figure 2.20.

Special objects are distinguished for the same reason that integers are distin
guished in Smalltalk-80; space efficiency. Little Smalltalk is very comprehensive
on this point, using special representations for these types of objects: Block,
ByteArray, Char, Class, File, Float, Integer, Interpreter, Process, String,
and Symbol. The representations for each of these types are quite straightforward,
and usually not particularly compact. For example, a single character will occupy
an entire word.

2.4.7 BrouHaHa

BrouHaHa [108] is, like Little Smalltalk, an implementation written in C to run
on a variety of machines. Some special optimizations are done on the assembly
language output by the C compiler.

Like the other Smalltalks on current hardware, Brouhaha uses 32-bit pointers,
with a tag bit in the upper end of the word, with a 1 for integers and a 0 for
pointers. The object table is retained, but the entries are 64 bits long, with an
8-bit reference count, 24 bits for a pointer to the class and 32 for the object body
itself. The object itself has a 32-bit header consisting of one byte for flags and a
24-bit size field, followed by the instance variables.

54

2.4.8 UMass Smalltalk

UMass Smalltalk is a new implementation of Smalltalk-80 intended as a basis
for experiments in distributed databases [J.E.B. Moss, personal communication].
It is written in C, and intended for 32-bit machines like the VAX.

The basic representation is a 32-bit word with 2-6 tag bits in the low end of a
word. The following assignments are used:

xxxxOO Pointer to an object table entry.

xxxx11 Small integer.

xx0001 Small point. X and Y coordinates are each 14 bits.

xx1101 Small character.

000101 Nil.

110101 True.

010101 False.

All object references go indirectly through the object table. An object table entry
consists of 4 words, where the first is the address of the object data proper, the
second is a pointer to a class object, the third is the size, and the fourth contains
various smaller fields, including 16 bits of GC info, and a count of the "fixed"
instance variables of the object.

2.5 SNOBOL4

SNOBOL4, though chiefly known as a string-processing language, is notable for
several other reasons: it was among the earliest of languages to employ pattern
matching and backtracking, to provide user-defined datatypes, and to include a
wide variety of primitive types together with polymorphic operations on them. As
such, its data representations are of great interest.

2.5.1 The Macro Implementation

Perhaps the best-described SNOBOL4 implementation is one built using a macro
language, described in Griswold's 1972 book [66]. The macro language (called SIL)
encapsulates most of the representation details described in Chapter 5. The basic
data object is called a descriptor, and consists of a T field (tag), an F field (flag
bits), and a V field (data). The descriptor object appears in several different
contexts, and sometimes the T field holds normal data. Because of this, the T field
must be larger than the few bits necessary for a dozen builtin types. For instance,
it must also be large enough to encode all user-defined types. The Snobol4 system
uses six flags, so the F field must be at least six bits, and the V field must be large
enough for the largest integer allowed in the implementation.

55

31 8 0

value

tag flags

Figure 2.21. Representation in SNOBOL4

The descriptor for the IBM 360 is a total of 8 bytes in size, in which the first 4
bytes (a word) are the value field, and where the low 3 bytes of the second word
are the tag field. The F field is 8 bits and thus fits neatly into the remaining byte,
as illustrated in Figure 2.21.

The CDC 6000 word, on the other hand, is 60 bits long, and all the descriptor
fields fit comfortably into it, providing 30 or 36 bits for a value (the 36-bit length
is only used for floats), 6 bits for the F field, and 18 bits for the tag.

Storage regenemtion (reclamation) is basically a mark-and-sweep garbage col
lector (although for some reason it is asserted not to be). The root for marking is a
list of known blocks called basic blocks which point to all other blocks of descriptors.
The mark bit is in the F field of a descriptor. The sweep process is straightforward
compaction.

2.6 Icon

Icon is a recent language with roots in SNOBOL and SL/5. As with SNOBOL,
there is a book describing the details of its implementation [67]. The version
described therein is in C, and thus achieves a modicum of portability. The language
is in many ways a modernized Snobol. Its set of data types includes strings,
csets (character sets), integers, files, procedures, lists, sets, tables, records, and
co-expressions, as well as additional types used internally only.

The C implementation assumes machines with 16- or 32-bit words and pointers
at least as large as integers. The fundamental object is called a descriptor, and
consists of two words, the d-word and the v-word, roughly corresponding to type
tag and value, respectively. This setup supports strings specially by using the MSB
of the d-word to distinguish strings from non-strings. The remainder of the string's
d-word is its length, while the v-word points to the string's contents. For all other
types, the remainder of the d-word is a type code (thus wasting some space, since
there are only a few types of objects to distinguish).

Integers reside in the v-word or in a separate block of memory, depending on
the relative sizes of the integer and the v-word. In general, the v-word of more
complicated types is a pointer to a memory block, and the d-word then contains

56

an additional flag indicating this fact. The first word of the block is a repeat of the
type code (necessary to assist the garbage collector with recognition).

Icon allocates strings in a separate area. They are not O-terminated, since 0 is
a valid Icon character; instead, the combination of length and pointer in the string
descriptor suffices to identify the string uniquely. Since Icon does not support
destructive operations on strings (modification by assignment works by modifying
a copy), they can share as much storage as possible. In particular, substrings always
share with the original string, and concatenation onto the last string in the string
area does not copy that string.

Lists are actually doubly linked queues of vectors. An individual list element
is actually a block containing arbitrarily many list elements in sequential order.
The block may contain unused elements that are not counted as part of the list.
This apparently bizarre representation is intended to optimize various common
combinations of operations, such as arbitrary element access, additions to and
deletions from a list, and append operations.

Sets' are represented as hash tables (with 13 or 37 slots) whose entries point
to 6-word set-element blocks, each of which includes a 2-word header (including
the hash value), a 2-word member, and a 2-word pointer to another set element
block. Tables are quite similar, but the table-element blocks are 8 words, so as to
accommodate the two components of a table entry.

Storage management is based on the observation that many Icon programs never
need to do GC. Allocated storage consists of a static region, a string region, and a
block region. The static region contains only co-expression blocks, while the string
region contains only characters. Since blocks vary in size, Icon uses a free block
region pointer, allocating by incrementing a pointer; the string regions is handled
in this way also. GC is mark-and-sweep, but since string space has no marks, there
is a separate list of address pairs of string space that is in use. During the sweep
phase, this list is sorted, then the characters can be compacted. Compaction in the
block region has no unusual characteristics. An interesting feature of Icon storage
management is that a program can reserve space ahead of time, triggering GC if
necessary (one reason advanced for this is that untyped pointers may be present
sometimes during execution).

2.7 APL

As SNOBOL is built around the idea of strings, so APL is built around the
idea of arrays. The contents of an array must always be numbers (with the
exception of Q 'Nial; see below), but the array shape and size can be changed
at any time. This possibility requires runtime representation, but although many
APL implementations have been built, data on internal structure is scarce.

2.7.1 Purdue/Unix APL

The original Unix V6 APL was originally written by Ken Thompson. It has
since passed through many hands, and is currently maintained by Purdue. It is

57

1
9 tIEe - length

data

data

I~ length I
I I

I

Figure 2.22. Representation in Icon Version 6.2

basically an interpreter, but includes a simple compiler that encodes the program
more compactly. The system is written entirely in C.

The basic data structure is called an item, and consists of a type, rank (for
arrays), size, index, pointer to data, and an array of dimensions. A limit of 8
dimensions is wired in. 16 types are defined. Allocation is dynamic and the array
of dimensions varies in size with the declared rank, and contiguous with the contents
at the end of the memory block.

2.7.2 ~'~ial

The Nested Interactive Array Language or Nial is a dialect of APL that allows
array elements to be themselves arrays, while ordinary APL restricts elements to
be atomic (numbers usually) [76]. Q 'Nial is a portable C-coded implementation
[75].

To obtain uniformity in handling, numbers and characters are defined as atomic
arrays containing one element each. All arrays have headers containing a type,
memory management data, a flag distinguishing atomic from non-atomic arrays,
and one indicating whether the array consists entirely of data or of pointers to
other arrays. Non-atomic arrays also include a pointer to a shape array, which is
a normal array supplying all the dimensions (and which itself has a shape array!).
Shapes are shared whenever possible. (See Figure 2.23.)

Storage reclamation is based on reference counting, which works well because
Nial storage tends to be more stack-like than heap-like in its behavior. The problem
of circular references seems to be solved by "cheating" with the symbol table
references.

2.8 Conventional Languages

"Conventional" languages are those which are generally less abstract and more
machine-oriented. Although the issues of runtime systems are usually negligible,

58

header
ATYPE

header
HINTTYPE

header
2 INTTYPE

T 2 2

I
L header L--. header

INTTYPE PHRASETYPE
17 "hello world I

Figure 2.23. Q 'Nial Array Representation

since conventional languages are at least partly designed to avoid any runtime
overhead, there are at least two issues that have been discussed in the literature:
representation of floating point numbers, and the representation of arrays, partic
ularly those whose size can change dynamically.

The importance of floating point to scientific computation has meant that serious
implementations are in hardware rather than software. Even so, there is much room
for discussion on the merits of various representations. The IEEE format [118]
is a specification both of behavior and of representation, but it is not universal,
and many manufacturers have adopted their own form of floating point numbers.
For a language system, the choice will usually be that dictated by the underlying
machine, but for instance, many C compilers offer flags to choose the floating point
representation to be used.

The run-time representation of arrays is a favorite topic of compiler books, such
as Waite and Goos [160]. The choices for array storage (if not mandated by the
language) include pointer-based or indexed addressing, and indexed addressing may
be either in column-major or row-major order. An additional trick for indexed
addressing is to allocate row I columns by powers of two, to avoid multiplication
during indexing. The use of array size descriptors has already been mentioned for
dynamically-sizeable arrays. Most conventional languages (Fortran, C) use indexed
addressing with no tricks, to save storage and simplify inter-language interfaces.

Variable-size arrays, such as those encountered in PL/T, Algol (60 and 68),
and Ada, require some runtime information to be maintained. The structures are
referred to as dope vectors in this context [61], although they are not really different
from typed structures in any of the languages considered so far. Dope vectors can
usually be stack-allocated, and are known to describe arrays, so the structure is

59

rather simple; just a short vector of upper and lower bounds for each dimension,
along with the number of dimensions and the base address of the array.

2.8.1 Ada

Although Ada was originally intended as a conventional language for writing
embedded programs such as those in missile guidance systems, it ultimately ended
up as a large language that requires significant runtime support [3]. Several fea
tures are defined in such a way that such support may be necessary: constrained
subtypes, dynamic arrays within records, constrained heap objects, constraints on
subprogram parameters, and the composition of record discriminants. Ada also
allows (but does not require) automatic garbage collection, but few implementations
actually provide it.

The traditional method uses dope vectors, as in Algol or PL/I. Risgen et ale ap
plied the technique to structures in Ada [72]. There, the runtime objects expressing
type information are called type descriptors. There are several kinds, distinguished
by a tag, and ranging up to a dozen words in size. Type descriptors are not typically
shared by variables, even for variables that are all declared to be of the same type.

A recent paper by van Katwijk [158] describes the doublet model for Ada objects.
Doublets are pairs of pointers, one to the object's storage, and one to an object de
scriptor. This is applied uniformly, so for instance even integers will be represented
by doublets. This could be very inefficient, but the compiler does considerable
analysis to eliminate nearly all actual doublet operations, and the object descriptors
are shared when possible, as will often be the case when a number of objects are
declared to be of the same type.

2.9 Summary

This chapter describes an utterly confusing mix of different languages and imple
mentations. The confusion reflects to some extent what the thoughtful implementor
is faced with when designing. A few patterns do emerge from the chaos.

First, there are very few major surprises among the systems, either very obvi
ously bad or very obviously good designs. Clever designs are more often seen in
heavily used systems, although no one can say whether the usage is in response to
better designs yielding better performance, or the better designs were prompted by
the expectation of heavy usage. Only a handful of released implementations have
ever made a significant representation change after release; it would appear to be the
case that the initial design choices are also the permanent choices. It is impossible
to say what the real reasons might be; perhaps the difficulty of making any changes,
perhaps the lack of high-quality performance data to direct the changes, or maybe
only lack of interest.

Tags for type discrimination are clear winners over all systems, probably because
they require fewer assumptions about the global structure of memory. BBOP is
second, while full separate spaces are rare.

The primary focus of cleverness was on space usage before 1980, and on speed
thereafter, which coincides with the general availability of large address spaces and

60

large real memories. In general, techniques have evolved to fit the hardware, with
any delays attributable to software lifecycles (which appears to be about 5-10 years
for these language systems; few have remained in use longer than 10 years).

Some implementation techniques never caught on elsewhere, such as the type
per-bit encoding of MacLISP. But this is uncommon; especially more recently, there
has evolved some semblance of a consensus on the range of techniques and on the
vocabulary to be used in talking about those techniques.

Representation "puns" are the highlights of implementation designs. The term
is quite apt, since the same information is being interpreted in more than one way.
Although it is not always clear that they are advantageous, a number of puns are
well-known; others have only appeared in special situations. The most common
puns should be familiar to any experienced implementor:

• P art or all of a tag is also part of a number.

• Tags allocated contiguously can also be handled as small integers.

• A tag in high-order bits is also the high-order part of an address.

• A tag in low-order bits is also an offset into an object.

• Addresses into unused areas of memory are also integers.

• Lisp nil is designed to appear both as a symbol and as a list cell.

The ostensible justifications for puns are evenly split between desires to optimize
speed or space. Speed optimizations generally involve the elimination of one or
a few machine instructions, while space optimizations count savings in individual
bits. Some puns improve both space and time.

Throughout the designs there is an underlying tension between uniformity and
special cases. Special-casing for more than two cases is generally only seen for
numeric representations (both integer and floating-point) in Lisp systems.

Measurements of different schemes were never done, or perhaps never reported;
some implementors have verbally asserted that tests were made, but these tests
were either gedanken experiments, or unrepeatable once the implementation had
been released.

This survey is merely a start at collecting and reporting basic information; a
number of additional systems are known to exist, but descriptions are missing or
incomplete. I plan to continue expanding coverage, and to work out methods for
comparing the characteristics of different implementations.

CHAPTER 3

DESCRIPTIVE FORMALISMS

... the [Glass Bead] Game was so far developed that it was capable of
expressing mathematical processes by special symbols and abbreviations.
The players, mutually abstracting these processes, threw these abstract
formulas at each other, displaying the sequences and possibilities of their
science. This mathematical and astronomical game of formulas required
great attentiveness, keenness, and concentration. Among mathemati
cians, ... , the reputation of being a good Glass Bead Game player meant
a great deal; it was equivalent to being a very good mathematician.

H. Hesse, Magister Ludi (The Glass Bead Game) (1943)

Although the implementations of the previous chapter span a wide variety of
languages and machines, we can see a few patterns in the way that data is created,
operated on, and destroyed. The most universal pattern is a notion of data objects
being operated on by programs. Data objects are potentially unbounded in num
ber and size and lifetime. Although real systems impose limits, programs rarely
check those limits continually and explicitly. The objects almost always come into
existence via explicit requests, and mayor may not be discarded explicitly.

Data objects fall into several different classes. There are atomic objects such
as bits-it is not possible to subdivide a bit. On the other hand, a "structure"
has components each of which is itself a data object. Then there are arrays and
array-like objects which include a large number of similar objects as components.
More elaborate objects will also have constraints on their components, such as the
requirement that rational numbers have nonzero denominators. Objects may also
be identified with each other-again in the case of rationals, they are considered
the same if they can be reduced to identical lowest terms.

3.1 Formal Definition of Types

The theory of types is one of the most intensively studied areas in programming
language theory; many different models have been proposed [28,78]. No univer
sally satisfactory theory has emerged, although the concept of abstract data types
(ADTs) is widely accepted and has found its way into the standard curriculum.

62

Methods for the definition of ADTs range from the essentially syntactic forms of
Modula-2 and Ada, to the highly mathematical approach embodied in multi-sorted
algebras.

Purely syntactic approaches are practical for conventional programming, but
they are not adequate for complete specification of a type. At the other end, the
axiomatic definition of multi-sorted algebras introduces a great deal of uncertainty
about the adequacy of a specification. Not only is it possible that an arbitrary
set of axioms has no model, but it is not possible to determine this by analyzing
the axioms-in other words, consistency is undecidable in general (although some
techniques such as Knuth-Bendix completion can be used in special cases [73]).

As a way to resolve this problem, restrictions on axioms or on the type definitions
have been proposed. Domain theory [135] is a function-based mechanism of great
importance to proofs, but definitions of interesting types are complicated, being
built from combinations of higher-order functions, and undecidability of axioms
has been traded for undecidability of function equivalence. Cartwright [29] has
advocated the use of a constructive type theory based on set operations like union
and Cartesian product, an approach which provides the basis for the formalism
used here.

The basic idea for this dissertation's formalism is to use algebraic type theory,
but to select certain sets of axioms known to define types of interest. For instance,
ordinary queues are defined by a particular set of axioms. This set of axioms could
be represented by an axiom schema named queue that might be thought of a sort
of "macro" that expands into the complete set of axioms. To handle queues with
different types of elements or different names for the operations, the axiom schema
could be parametrized, perhaps written (queue integer cons-queue insert),
where integer is the name of the element type, and cons-queue and insert the
name of operations.

The point of schemas is not only to abstract away from individual axioms, but
to provide types known to have finite models. This simplifies both the specification
and the automated designer, and eliminates any question about the consistency or
completeness of the axioms. The available schemas cover most types of interest,
including ranges of numbers, structures, disjoint sums of types, and vectors.

Formally, abstract data types will be defined using Lisp syntax, basically con
sisting of a name attached to a schema:

(defadt name schema { function I axiom } * ...)
The name is the name of the type (a symbol), the schema is one of the schemas
listed below, and both function and axiom are optional. Functions are usually
auxiliary functions associated with the type, while axioms are sometimes useful as
rewrite rules. (Note, however, that using axioms may result in inconsistency with
the schema.)

vVe can assume some basic ADTs to exist already: in particular, the types
boolean and integer have all the mathematical properties of those types as nor
mally understood.

63

3.1.1 Standard Schemas

The standard set of schemas is based on what has appeared In the past as
primitive datatypes in higher-level languages.

• Booleans and integers.

• Ranges of integers.

• Sums

• Structures

• Vectors

3.1.2 Booleans

The axioms for schema booleans need only ensure that there are exactly two
distinct objects in the type:

(not (= t f))
(or (= x t) (= x f))

The model for this type can be any set of two distinct objects.

3.1.3 Integers

The schema integers designates the set of integers along with the usual assort
ment of numeric operations. Integers can rarely be used directly, because of their
infinite extent, but they make useful building blocks. The schema includes names
for a basic set of operations, such as int+ for addition and int-logior for bitwise
logical OR, while others such as int<= can be defined as nonprimitives.

This axiom schema would expand into a definition of integers based on Peano
axioms, with the numeric operations appearing at various places in those axioms.
This is a familiar process, so I will not repeat it here.

(defadt foo (integers int+ int- int* intI

)

int-logior int-logand int-lognot
int<)

(define int<= (lambda (x y) (or (= x y) (int< x y))))
(define int> (lambda (x y) (int< y x)))
(define int>= (lambda (x y) (int<= y x)))

64

3.1.4 Ranges

Subranges of integers occur frequently in definitions, not only to to define num
bers, but to index finite collections of other kinds of objects. The range type R is
defined with a schema that includes lower and upper bounds m and n, respectively:

(defadt R (range m n))
This schema does not define any of its own functions, but it does inherit all the

functions for integers, restricted suitably. The sole axiom just states that a object
r in R is an integer falling into the given range (note that it is inclusive on lower
but not the upper bound):

m:::;r<n

A variation that will prove handy is bit fields, which are essentially integers
between 0 and 2n - 1 inclusive, but can be used to avoid writing the large powers
of 2 that can appear frequently:

(bits n) = (range 0 2n)

3.1.5 Sums

The sum schema defines a type that is a disjoint union between a number of
subtypes. Objects in each subtype retain their individual identity. The only
primitive operations defined by a sum are the predicates Pi distinguishing each
type ii:

(defadt S (sum (Pt it) (P2 i 2) ••• (Pn in)))
The types ii need not all be distinct, but two occurrences of the same type will

be regarded as different subtypes of the sum. The only primitive functions defined
are the type-testing predicates

Pi(x) : S -+- boolean

while the axioms capture disjointness:

\:Ix E S 3i, Pi(X)

An example of a sum is the type t of Common Lisp:

(defadt t
(sum (numberp number)

(symbolp symbol)
(arrayp array)
(characterp character)
(consp cons)
(null null)
(packagep package)
(hash-table-p hash-table)
(random-state-p random-state)
(readtablep readtable)
(streamp stream)))

65

3.1.6 Structures

Structures are the same as records in many languages, defstruct in Lisp,
and terms in Prolog. In the schema here, it is possible to have both mutable
and immutable structures. In fact, we can generalize this to distinguish between
mutable and immutable components of a single structure type. This is useful in
the context of Common Lisp symbols, which are defined to have immutable compo
nents symbol-name and symbol-package, while the components symbol-function,
symbol-value, and symbol-plist can be modified without affecting anything else.
In the schema for structure type S, a component holding objects of type ti, with
an accessor function ai, can also have an optional setting function Si. The default
creation function C takes all components as arguments; any other desired creation
functions must be nonprimitives.

(defadt S (structure C (al it [Sl]) (a2 t2 [S2]) •••)
The signatures are straightforward; note that the setter returns the modified

structure, which simplifies handling later on:

ai : S ~ ti

Si : S, ti ~ S

The axioms need only state a sort of inverse relation between creating and destroy
ing, and define how the setter works:

ai(c(xl,"" xn)) = Xi

ai(si(c(Xl, .. " xn), Y)) = Y

The Common Lisp symbol type offers a good example of a structure (recall that
t means "any type" in Common Lisp):

(defadt symbol
(structure basic-make-symbol

(symbol-name string)
(symbol-package package)
(symbol-value t set-symbol-value)
(symbol-function function set-symbol-function)
(symbol-plist t set-symbol-plist))

(define make-symbol
(lambda (s p)

(declare (string s) (package p))
(basic-make-symbol s p 'Y.unboundY. 'Y.undefined% nil))))

There is actually no standardized Common Lisp function to create a symbol with
all of its slots filled in, so basic-make-symbol is a substitute, and the standardized
function make-symbol is a nonprimitive filling in some default values. Likewise, the
functions set-symbol-value and so forth are also not standardized; in a complete
system, they will appear only in expansions of the setf macro.

66

3.1.7 Vectors

Vectors include both fixed- and varying-length sequences of objects, all of the
same type. Like structures, vectors may also be mutable or immutable. For a
vector type V, c is the creation function, m is the length, a is the element accessor,
and t is the element type. Optional parts include the maximum length n (in which
case m is a minimum length), the length function 1, and a modifier function s. The
syntax is such that fixed-length vector do not define a length function at all. If it
is really needed, a length function could be added as a nonprimitive that returns
the value of the constant m.

(defadt V (vector c (m [n 1]) (a t [s]))
The schema defines from two to four functions, depending on the options. (In

this definition, we assume mutable vectors, and a creator that takes only a length
as argument).

Axioms:

c : integers --+ V

a : V, integers --+ t

I : V --+ int egers

s : V, int egers, t --+ V

l(c(n)) = n

a(s(c(n),i,x)) = x, if 0 ~ i < n

Character strings constitute a familiar example of a vector. Here, we assume
8-bit characters:

(defadt string
(vector make-string

(0 1000 string-length)
(schar character set-schar)))

(defadt character (range 0 255))

3.1.8 User-Defined Types

The type framework described does not allow for new types to be defined
dynamically. Although full ADT languages allow for this possibility, the capability
requires types to be (nearly) first-class objects, which is typically not the case for
most higher-level languages. Most of the languages do have some kind of restricted
type-definition facility.

Common Lisp has two type-definition facilities, with rather different character
istics. The first uses the deftype macro, and is fundamentally intended for the
benefit of declarations. Types defined using deftype are all simple specializations
of builtin types, and objects do not have distinct representations.

67

By contrast, the defstruct macro creates new types whose objects are distinct
from all other types of objects. From a practical point of view, however, all
defstruct types are quite restricted in their form; a fixed number of slots capable
of storing anything (with the possible exception of typed slots, which a system need
not support). Because of this, implementations have usually adopted a common
representation, which is vector-like, with the slots matched with positions in the
vector. This is not completely type-secure, since because defstruct is a macro, its
expansion will usually reveal the implementation details.

The builtin part of structures is fairly simple, and it seems safe to assume that
a similar approach could be taken for the user-defined types of Snobol and other
languages as well. Thus, structures can always be defined as relatively short vectors:

(defadt structure
(vector make-structure

(0 1000 structure-length)
(get-slot t set-slot)))

3.1.9 Examples

The classic example of rational numbers needs two axioms to distinguish true
rationals from just any pair of integers.

(defadt Q

(struct make-rational
(numerator integers)
(denominator integers))

(not (equal 0 (denominator x)))

(equal (* (numerator x) (denominator y))
(* (numerator y) (denominator x))))

Simple S-expressions introduce the possibility of circular or recursive type defi
nitions:

(defadt sexp (sum (atom small-ints)
(consp conses)))

(defadt small-ints (range 0 1000))

(defadt conses (struct cons (car sexp) (cdr sexp)))

Scheme is somewhat more complicated than S-expressions, but not by much:

68

, , , Scheme as defined in R3RS

(defadt scheme

))

(sum (boolean? boolean)
(null? empty-list)
(pair? pair)
(symbol? symbol)
(number? number)
(char? character)
(string? string)
(vector? vector)
" procedures
jj i/o ports

(defadt boolean (set f t))

(defadt empty-list (set nil))

(defadt pair (structure cons))

(defadt symbol
(structure string->symbol

(string->symbol string)))

(defadt number
(structure xxx

(exactness exact-bit)
(xxx bare-number)))

(defadt bare-number (sum (complex? complex))

(defadt complex (sum (real? real)))

(defadt real (sum (rational? rational)))

(defadt integer (sum (integer? integer)))

(defadt character (range 0 256))

(defadt string
(vector make-string

(0 1000 string-length)

; not many promises

(string-ref character string-set!)))

(defadt vector
(vector make-vector

(0 1000 vector-length)
(vector-ref scheme vector-set!)))

69

The full definition of Common Lisp data is rather lengthy, so it has been relegated
to Appendix A.

3.2 Formal Definition of Machines

Researchers have been interested in the modelling of hard ware for a long time.
Perhaps the best known of these formalisms is ISPS [12], which is a version of the
ISP notation familiar to generations of students from Bell and Newell's classic text
[19]. It is essentially a procedural language in which programs represent processors.
It has been used in activities ranging from simulation of hardware to compiler retar
geting in PQCC [94]. The APL derivative AHPL of Hill and Peterson [71] is similar,
but somewhat less procedural, since it exploits the vector operations of APL. A
number of retargetable compiler efforts have developed special-purpose descriptions,
as for instance in the Bulldog compiler [44], Peep [83], and PO [38], among others.
These descriptions are also procedural, but at a procedure/instruction level, and
consist of only one or two statements apiece. Analysis at this scale is not only
feasible, but even reasonably efficient.

Unfortunately, none of the aforementioned formalisms are directly usable, nor
are their implementations. Existing systems have been designed for particular
purposes, and the semantics vary widely-some languages are very precise about the
forms of arithmetic and sequencing of operations, while others are too complicated
to reason about effectively.

The machine will be modelled as yet another ADT, typically a structure with an
extra function that models the machine's instructions. The structure is composed
from all of the machine's storage areas, while the function is a next-state mapping
from machine states to states-in other words, the total description of instructions.
In practice, these will be partial specifications. Only those storage areas of direct
relevance will be included, and the function will be expressed using rewrite rules
covering the most useful instructions. This means that there is no way to talk
about instructions doubling as data, or about self-modifying code, but this is not
a currently accepted practice in any case.

Storage space will be modelled as vectors of integers. Bit arrays are also valid,
but make the description of arithmetic operations much more complicated. It
is important to characterize the actual sizes of things accurately. For example,
Berkeley Unix virtual memory works in such a way that the full address space of a
program is allocated on the swap device. This has the effect of limiting programs
to the size of the device, which is probably less than the hardware's full address
space. This will have an enormous impact on the space of possible designs. In

70

those cases where the amount of memory can vary, memory should be modelled as
a varying-length vector. Many modern memories can be accessed in different ways,
perhaps in I-byte and 4-byte groups; this can be modelled by making one size part
of the definition, and accesses of the other size into nonprimitives.

Storage that is not part of main memory is somewhat more complicated to
handle, because some of it is irrelevant, and because most of it is used in special
ways during execution. Registers for argument-passing and result-returning are an
obvious example.

3.2.1 Examples

The VAX series has a rather simple storage structure. The definition of instruc
tions has not been included.

(defadt vax (structure make-vax (r reg s-r) (m vaxmem s-m)))

(defadt reg (vector 16 vaxword))

(defadt vaxmem (vector #.(expt 2 30) byte))

(defadt vaxword (bits 32))

(defadt byte (bits 8))

The 68000 description includes a number of instruction descriptions, and may
be found in Appendix A.

3.3 Representation of an Implementation

The obvious way to relate abstract types to machine types is to define a function.
However, a mapping of types to machine words is not uniquely determined, since
the same object may be represented in several ways. A cons cell, for instance, can
equally likely be stored at address 0, or 1232, or 555, and it will still be the same
cons cell. The inverse function maps machine configurations into abstract objects,
and is a valid (partial) function. It is a partial function because some machine
states may not represent any abstract object at all (i.e. garbage memory). Figure
3.1 illustrates a simple version of this.

D turns out to be insufficient; it only defines the relation of configurations,
and says nothing about how those configurations are reached in the first place.
Consider that the function defined above says nothing about storage allocation
or reclamation, not even whether such operations exist at all. The set of models
encompassed by the D above include not only implementations in which cons cells
are shared, but in fact ones in which cells overlap, where the cdr of one cell is the
car of the next!

The problem of design then divides into one of designing various Ds, then of
designing the actual functions to be consistent with a particular D. This second

71

D : register, memory --t sexp

D(x, NI) = x, where x E [0,1000)

D(x + 231
, M) = cons(D(Nlx , M), D(Mx +l, 1\11))

I q integer

1~ __________ c_ar ________ ~

I cdr

Figure 3.1. An Implementation Function

stage is extra complexity, and must among other things be able to compute inverses
of D, which is impossible in general. Therefore, the implemented set of design rules
synthesizes the primitives directly, expressing them in terms of low-level operations,
which include the functions on integers mentioned earlier, as well as the primitives
and nonprimitives of the machine ADT.

3.4 Pragmatics of Usage

The basic definition machinery developed so far is insufficient to explain the
derivation of familiar implementations. It is not possible to specify lists in such
a way that cdr-coding can appear to be desirable, nor is it possible to prevent a
designer from giving up entirely, on the grounds that the machine is not big enough
to accommodate any large data structure that a program might try to construct.
The specification must include additional information commonly known as pragmas.

3.4.1 Finiteness

Like nearly all type systems, the formalism here allows for infinite objects of
various kinds. However, a little thought should convince one that allowing the
definition of potentially infinite objects is going to cause problems for implementa
tions. Numbers are an easy example. Suppose the language specification insisted
all integers be represented. Then a 32-bit, 64-bit, etc. representation is insufficient,
since there are always integers whose representations require more than any given
number of bits. Lisp implementors routinely implement arbitrary-precision integers
(bignums), so as to allow very large numbers, but this only delays the problem,

72

rather than solving it. A one megabyte memory only has room for some eight
million bits, which is still finite. A more subtle problem occurs in connection
with list structure. Lists are basically interconnected small structures, but their
definition is recursive. Thus, the amount of storage is again potentially unbounded,
although each individual object has a small fixed size. This has a direct bearing on
the design of a list cell, since both halves are indices to other list cells. For example,
if a program references a million randomly interconnected cons cells, then both the
car and cdr pointers must be at least 20 bits long.

It is not necessarily adequate to just say "as many as possible." In a language
with several types of objects, this is an ambiguous phrase-should the finite memory
be given over to more list cells or more numbers? An even division is not always
desirable, since some programs will need more list cells, while others need more
numbers at any given moment. The form of the representation is fixed ahead of
time, so the designer must know how many of each type to plan for. For an example,
consider s-expressions again and suppose that the mandate is to have "as many as
possible." As many cells as possible means that the entire machine word should
be an address, but then there would be no valid representation for a number. In a
large language like Common Lisp, the dilemma is worse-how many of each of 30
types should be supported?

Therefore, any implement able ADT must have a set of specifications of sizes and
numbers for all types mentioned.

3.4.2 Statistical Patterns

Some designs are motivated by statistical considerations not expressed in the
type schemas. A familiar example is cdr-coding. In some well-known studies of real
Lisp programs [33], Clark and Green found that most usages of cons cells were in
long lists. In other words, the cdr of any cell was more likely to be another cons or
NIL instead of an arbitrary object. Based on this, Bobrow and Clark [22] proposed
an alternate representation of lists where each cons cell was a single pointer to the
car and the cdr was assumed to be in the next word. This scheme has a number
of obvious problems, for instance when destructive operations and various forms
of list splicing occur, and it is impractical without the use of special hardware.
Later versions allowed 3-8 bits for the cdr, which still gave a space savings while
retaining some flexibility in list structure. The whole basis for this technique is a
set of measurements of the average behavior of programs.

There are many kinds of statistical distributions for elements of a population.
"Zipf's law" [172] is well-known and appears in many situations; it is a distribution
where the nth most common member occurs with a frequency inversely proportional
to n. Other distributions are exponential-the 2nd most common member occurs
half as often as the most common one, and so forth (see [88, pp. 396-399]).

The typical situation in languages seems to be one in which small objects are
far more common than large ones. For instance, small integers are much more
common than large ones [137, pp. 50-51]. On the other hand, it also seems to be
the case that positive integers were 200 times more common than negative ones,

73

so the distribution is somewhat lopsided. On the other hand, Common Lisp does
use Universal Standard Time as the representation for time. UST is measured in
seconds from January 1, 1900; at present (1988), this is something like 2781194496,
which requires at least 32 bits to represent. In the usual distributions, this should
be an extremely uncommon number, but in fact a program that did anything with
dates and times would have many of these numbers, probably within a narrow range
of values representing several weeks or months. Our distribution of sizes then has
a notable "bump" in it, and the conscientious implementor might wonder whether
the chosen representations will do unusually well or poorly on numbers within the
"bump". Another likelihood is that heavily optimized programs will have clusters
of values around each power of 2, used in bit-packed representations, for sizes that
work out "right" when combined, and so forth. The distribution of values might
have quite a few undulations in it, though at increasing separations.

Symbol names in Common Lisps provide another interesting case study. The
average length of names is about 5 or 6 characters, but the distribution may be
oddly shaped, as in the histogram of HP Common Lisp symbols in Figure 3.2; there
are still many symbols up to 10-12 characters, and a very few long ones, up to 61
characters in length. This diagram clearly indicates that optimizing very short
symbol names (1-3 characters) would be as unproductive as optimizing very long
ones.

The obvious answer to all these considerations is to include the complete fre-
quency distribution as part of the datatype description. The distributions are
probability functions (area under curve < 1) whose independent variables may be
any of several parameters, such as sizes of objects, numbers of distinct objects, and
percentage of types of components. (Rosenschein and Katz [130] have introduced
similar pragmas.) In practice, only the most general characteristics of a distribution
are important, such as its maxima or the slope of a part of it. These are recorded
with the ADTs along with axioms:

(max-number n) The maximum number of the type that will exist at anyone
time.

(most-common slot type) The most common subtype appearing in a given slot
of a structure.

(most value) The particular member of a type that appears most often in pro-
grams.

A (cluster value) pragma to designate a value around which others tend to cluster
would be useful, but this would require some sort of distance to be defined for the
type (for integers, this could be the absolute value of the difference between two
integers).

Recursive objects present a special problem. We must assume that each instance
will be an individual object and specify the number of those, although alternate
implementations might make the numbers meaningless.

Definitions for the size of the executable part of the language kernel would also
be useful, as well as for the size of programs, but this is complex and will not be
considered here, although such definitions would be essential in a full designer.

74

1732 r

f-

f-

r

I-

r ~-
o 61

Figure 3.2. Symbol Name Lengths in HP Common Lisp

75

3.5 Pragmatic Limits in Standardized Languages

Although past standardization efforts were limited to conventional languages,
both Common Lisp [146] and Scheme [126] have recently emerged as standards in
the Lisp world. There are also efforts for a European Lisp standard [119], as well
as for a Prolog standard. One unexpected consequence of the formalization in this
chapter has been the discovery of several omissions in the standards' specification
of datatypes.

Machine limitations are a perpetual problem for standards. Even in a relatively
simple language like C, there is considerable variation in the sizes of char, int, and
long integers; implementations have represented int integers with from 16 to 64
bits. The ANSI standard for C [7] does set some limits, such as requiring int to
represent at least 16-bit numbers, and long to represent at least 32-bit numbers.
Ada's specifications are moderately elaborate [3, ch. 13], and include specifications
for all numerical limits.

The situation in Lisp dialects (and in other higher-level languages) is consid
erably more complicated, both because of the abstractness and because of the
greater variety of objects. A Common Lisp program that needs a certain amount
of memory may be perfectly correct according to the specification, and yet not run
in a too-small system which is nevertheless a correct implementation.

It is theoretically valid for a CLCI (Common Lisp Conforming Implementation)
to have room only for the symbols of the Lisp package (about 800). Only four
packages are required, only one random state, only one readtable. It is not clear
what the required range of integers might be; interpreted one way, the range need
only be large to accommodate UST times (a 32-bit number).

This is not to say that no attention has been paid to the issue of sizes. Limits
on arrays have been carefully specified; the rank of an array may be up to 7, each
dimension must be allowed to be at least 1024, and the total size allowed must be
at least 1024. Programs and programmers using arrays in CL can count on these
limits in a CLCI. Similarly, the range of floating point numbers is also available.

A more generous way to interpret the Common Lisp standard is that objects
can range up to the maximum size and number allowed by available memory. For
example, the bottom of p. 13 of [146] says "Common Lisp in principle imposes
no limit on the magnitude of an integer." Admitting this, however, means that a
programmer will never know when a problem is too big until the program exhausts
memory, and then that knowledge is only applicable to the one machine-the next
one might not have as much memory, and a previously working program will fail.
To put it simply, the goal of portability has not been achieved, and worse, the
programmer can do nothing to make certain that the program is portable in the
future.

Random states turn out to be a problem. Their size and character is not
specified; however, the random function is defined to return numbers in any range
specified by the argument, with no upper bound. This is misleading, because if the
range is sufficiently large, then the random state will not be "random enough". In
fact, if the random state n < 2k states (due to the periodicity of the generator),

76

then random will generate no more than n distinct numbers, no matter how big the
bound is set. Therefore, the lack of specification of the size of the random state in
CL means that portable code cannot rely on random, for any integer argument.

The Scheme standard has rather more serious holes; almost no promises are
made about implementations' capabilities. In theory, the maximum size of a vector
is allowed to be 0, and strings need never be longer than any name in the basic set
of functions. The class of numbers upon which a program can depend is completely
unspecified.

3.6 Summary

The mere act of formalization is useful, because it reveals unwarranted assump
tions. This started out as a mechanical process of setting up formal structures for
the purposes of implementation, but has ended up demanding the specification of
things usually left vague:

• The range of sizes of objects.

• The probability distributions of objects.

• The true size of machine structures.

• The semantics of operations on the objects.

When we examine standardized languages, it is clear that although some limits
have been set, others remain unspecified, and are therefore potential hazards to
application programmers. Chapter 6 will include a set of recommendations for
future revisions of the Scheme and Common Lisp standards.

CHAPTER 4

IMPLEMENTATION DESIGN RULES

I have watched managers make the decision to use assembly language ...
on the basis that "it has to be fast." Such a decision cost millions of
dollars and was made with about 10 seconds deliberation.

R.J. Rader, Computing Reviews (1983)

This chapter is essentially a compendium of rules relating to the design of
primitive datatypes for languages. They derive from general knowledge about data
structure design, from specific knowledge about existing language systems (such
as those in Chapter 2), and from experience with automated designers of the sort
described in the next chapter. Justification also derives from rational reconstruction
of real designs, that is, by analysis of what rules are necessary to produce familiar
implementations.

The formalization in the previous chapter largely reduces the task to one of ADT
implementation; only a few rules are actually specific to languages and not programs
in general. Many more rules assume a target ADT that resembles a machine. The
rules themselves are rather vague; partly this is because of their expression in
English, and partly because the bulk of real rules consists of mechanical processes
constructing code fragments. In addition, many of the rules overlap or contradict
each other; such situations result in multiple designs that cannot be decided on
until coding or evaluation time.

4.1 Global Design Issues

The most important characteristic of a data structure design is that it is inte
grated. Few decisions may be made with no reference to other parts of a design.
To prevent paralysis, this section will discuss some issues that are common to all
designs.

Some of the interactions among rules are cyclic in nature. For instance, the
memory needed by objects determines the size of the pointer, which may be a
component of some structure, therefore it determines the size of the structure,
possibly changing the amount of memory required by objects. Convergence of
this process cannot be proven in general, but there is little cause for worry, since
iterations are typically matching linear growth in requirements vs exponential
growth in resources, and resources will outstrip requirements quickly.

78

4.1.1 Feasibility

The very first task the designer should undertake is to see if the capacity of the
machine is sufficient for all the data it is to store. Bits are rather fine-grained, but
provide a common basis for comparison:

Is the number of bits in the machine at least as great as the number of
bits required by the datatypes?

The answer to this question depends on how bits are counted. The number of bits
in an integer n is just log2n rounded up; sequences multiply, structures add sizes
of components, and so forth. The size of the machine must be carefully calculated.
For instance, the VAX theoretically offers a 32-bit address space of 8-bit bytes or 235

bits total, but 3/4 of it is reserved for various purposes [40], so the true addressable
space is only 233 bits. Note that this rule also ensures that infinite datatypes will be
disallowed. The counting will be inaccurate, but at this stage, only approximations
are needed.

Also, any basic operations like arithmetic should have hardware counterparts in
some form. The basic operations are usually mathematical, arising from the ADT
integers. Ideally, a full designer should be able to derive bignum algorithms from
limited precision arithmetic, but this is asking a lot, considering that the problem
is not easy even for human designers!

Do all the primitive operations specified by ADTs have machine operations
to implement them?

(In the current implementation, this test is implicit; a missing operation will cause
the coding phase to fail to generate code, ultimately resulting in an undefined
function.)

4.2 Machine Characteristics

How does the designer decide that a VAX is a 32-bit machine? Is a 68000
a 16-bit or 32-bit machine? Reading manufacturer literature will surely lead to
drastic overestimates, so we will need heuristics to guess at what the right sizes
might be.

"Registers" include whatever storage places are used by compiled code, for
function protocol, temporary values, and so forth. This should exclude condition
code bits. This information must be specified in some fashion, but it will not be very
complicated. It will also not actually be part of the machine or type description,
but derives from the compiler algorithms, interface protocols, and so forth.

"Memory," however, can generally be found by a single heuristic that excludes
large register banks and tertiary memories:

The "main memory" of a machine is a vector of at least 500 numbers
each at least 6 bits in size, and which has at least one instruction that
can dynamically access and modify the elements of the vector in constant
time.

79

The size requirement effectively excludes registers, while the accessing requirement
ensures that some sort of pointer addressing is possible. This would be necessary
to exclude unusual machine structures, such as a serial buffer that might be large,
but unusable as a heap.

Many subsequent rules mention "natural sizes" of the machine. Most modern
hardware offers several sizes of objects to operate, such as 8-bit, 16-bit, and 32-bit
operands. Given this, it does not always make sense to specify a single "word size":

"Natural sizes" include the sizes of registers) of memory elements) and
any size mentioned in more than one instruction. Collect these sizes into
a list and use whenever a "natural size" is called for.

Machines have more subtle properties, but these are too complicated to describe
here, and are not used regularly by implementors anyway. Such properties include
memory shared by different processors and performance differences due to caches
and pipelining.

4.2.1 Sizes of Objects

Ideally, the size of objects/pointers should match the "word size" of the machine,
so as to optimize speed and to avoid wasting space. There is one rule that absolutely
must be satisfied:

The size of a pointer must be sufficient to address the specified maximum
number of data objects.

Another heuristic suffices to make sure the pointers are not larger than absolutely
necessary:

The size of an object should be equal to or less than the size of the registers.

This rule will not work well if there are different register sets of widely varying
sizes, as for instance on the Cray-I, which has both 24-bit and 64-bit registers.
This is a point of interaction with full language semantics, since the choice of
registers depends on how the language system uses them (for function arguments,
temporaries, and so forth).

In the following rules, the term "word" will refer to a unit of storage sufficient
to contain one object. A more sophisticated approach would allow several sizes for
objects, but this is far more powerful than usually necessary.

4.2.2 Object Tables

Under some circumstances, it may be worthwhile to let all object references go
indirectly through some sort of table. This is nearly universal for symbols in Lisp
systems, in order to provide a dynamic redefinition capability. Another use for
object tables is found in Smalltalk-80, where the 16-bit pointers of the Alto cannot
directly address one megabyte of memory.

The range of applicability for object tables is rather narrow, as indicated by the
nature of the preconditions:

80

If size of the pointer object is insufficient to address all of needed memory
directly, but is sufficient to point to the required number of objects, then
have the pointer point to a table of addresses for the objects proper.

If all types of objects share some field or slot, then the object table may be a good
place to put them.

If all objects indirecting through the object table share some component,
then pack that component into the object table entry.

One reason is that the object table is very regular, while objects may vary in size, so
the meta-rule about simplicity suggests that more regular things are simpler (and
therefore faster) to work with.

The use of symbol tables to allow dynamic redefinition of functions goes be-
yond the scope of this dissertation, since it involves executable code and language
semantics.

4.3 Design for Integers
Ranges of integers are the simplest form of number to implement, but they are

not totally straightforward. The main problems arise from the representation of
larger integers.

Small integers (fixnums) should always be represented directly, since they tend
to be quite common, even in the "more symbolic" programs.

If the range of integers fits within the available part of a single word, then
represent directly, using 2s complement if the hardware does.

"Available part" means any part of a word not already allocated for some other
purpose (tags, mark bits).

Anything larger than the data field of a word is going to need a more general
representation involving storage allocation. The most general rule implements
variable-length integers (bignums):

If the range of integers is too large for fixnums, use a varying-length vector
of small integers.

This rule is an example of "type-to-type transformation." The rest of the designing
will be done by the rules concerning vectors, which can represent the length in
different ways, pack elements, or represent the vector in turn as a list.

The algorithms for bignum computation are theoretically simple (see I(nuth
[87]), but the details of access to bigits ("bignum digits," the word-sized groups of
bits making up the bignum), propagating carries, and so forth will be complicated
in efficient implementations. White has an excellent discussion in [166]. Among
the unresolved issues is the choice between sign-magnitude and 2s-complement
representation within a bignum (see [151]). Although the fixnum rule would seem
to apply here (i.e. match the hardware representation for bigits), propagation
of sign bits is potentially more expensive than converting signed magnitudes to
2s-complement, so the tradeoff should be evaluated experimentally [J .L. vVhite,
personal communication]. In addition, bigit size is a difficult question:

lvlake bigits be one bit less than a halfword in size, or two bits less than a
full word.

81

Full bignum representation is expensive, both because each bignum requires
space for length data, and because the computation algorithms are all iteration
based and will do unnecessary steps for very short bignums. A useful compromise
is the adoption of a fixed-length allocated representation, usually one word:

If the range of numbers fits within one machine word, use a one-word
block of memory for the number.

A more general rule could use distribution information to decide some plausible
cutoff for fixed-length vs variable-length representation, but I do not know of any
such situations that apply beyond individual programs.

Mindless application of these rules (as exemplified by the typical" AI" program)
will likely result in a language system having only bignum representation-even
for numbers like 0 and 1. The right approach requires more rules to set up
automatically changing representations:

If a range of integers is very large (> machine word), substitute a sum
of disjoint ranges, one small « machine word) and two large, one con
taining all the larger numbers, the other containing the smaller numbers,
and design each of these, defining arithmetic operations to dispatch and
convert appropriately among the new ranges.

Historically, the division of positive and negative bignums into separate types is
uncommon. At least one reason is the difficulty of writing the bignum code to
handle two distinct types without making duplicates of the code. It has been more
common to overlap integer ranges:

If a range of integers is very large (> word), substitute a sum of a smaller
range « word) along with the larger range, and define the operations to
dispatch and convert types as necessary.

Defining the new operations is a critical step in both rules. The second rule
introduces the possibility for the same integer to have two very different forms,
so the operations not only need to dispatch on the type of integer, but also handle
overflow of the smaller range and conversion from the bigger representation to the
smaller one.

The schema for a range of integers actually allows arbitrary upper and lower
bounds. In practice, the human implementor will pick the bounds to be [-2n , 2n -1]
for some n, which matches a 2s-complement representation, and everything works
out fine. Occasionally, a different range will come up. There are two possibilities:

If the bits are available, expand an unusual range to 2s-complement bounds
and represent using an appropriate rule.

If space is at a premium, then compression is the order of the day, even though
operations will all be slowed down:

82

If there are only enough bits to represent the difference between lower
and upper bounds of a range, and the difference is less than half of the
absolute value of the range's bounds, represent the difference only and
adjust all opemtions to subtract and add the lower bound before and after
the operation itself.

These rules are especially useful in the design of integer representations to be used
in other data structures; for instance, length fields in vectors or reference counts of
objects.

4.4 Design for Sums

In a dynamic polymorphic language, type discrimination is a serious problem.
Modern languages and compilers go to great lengths to eliminate any uncertainty
about the type of an object. Common Lisp provides an extensive set of declara
tions for types, although compilers are not consistent in their use of them. Type
inference algorithms have been extensively researched [28], although they can fail
to disambiguate types completely, especially in the presence of complicated data
flow, higher-order functions, and some forms of abstraction. In the end, some type
discrimination will be needed.

There are at least four major ways to distinguish types dynamically:

1. Tagged pointers. Type is encoded in a bit field in the reference to an object.

2. Tagged objects. Type is encoded in a bit field in the object itself.

3. Separate spaces. Type is implicit in the address of the object.

4. BBOP ("Big Bag of Pages"). Contiguous small areas of memory are mapped
into type codes, via a table.

Hybrid of these major approaches are quite common. It remains an open question
as to which (if any) generally superior; BBOP seems to have the best characteristics
overall. To date, however, tagged pointers are the most popular technique over all
higher-level languages.

4.4.1 Design of Tags

Type tags inflict overhead on every object in memory. Therefore bit counting is
very important. Although 1 bit out of a 32-bit word is only a 3% overhead in space,
the more typical5-bit tag consumes 15% of memory, which adds up to many RAM
chips. In any case, the tag must be large enough to discriminate all the types:

The size of the tag field must be at least the base-210garithm of the number
of types in the sum.

There might be good reasons to make it larger, though:

If the machine has a natural subobject size, and the data field remains
large enough, make the tag be the size of the subobject.

83

This is for those cases in which the usable address space may be considerably less
than the word width, as for instance on the original 68000, which supports 32-bit
objects but has only a 24-bit address space. 8-bit tags are quite advantageous, since
byte operations can be used to manipulate them. We should not forget language
specific hardware:

If a machine has special instructions to operate and dispatch on the part
of a word exceeding the address space, make that part the tag field.

Another way to exploit machine characteristics is to know about about automatic
high-order bit stripping:

If the actual address space of the machine is smaller than the apparent
address space, make the tag field be the size of that difference.

A more unusual scheme assigns individual bits to each type:

If enough bits are available, then make each type correspond to a single
bit in the tag field.

This may seem silly, but did find use in MacLISP, in the BBOP page table (so not
in individual objects).

In theory, the tag bits could be scattered throughout a word, but the circum
stances are special and will be handled in another way. So we can insist on
using contiguous fields. The tag field may be allocated in either the high-order
or low-order bits of a word, or in the middle. The middle has no advantages (I
know of only one instance in which an implementor even considered doing this,
in order to exploit a byte-swapping instruction), but the high and low ends of a
word involve a large number of imponderables, and the final decision must be left
to experimental evaluation.

The tag must be a contiguous field of bits, assigned to either the high-order
or low-order end of an object/word.

(We will see shortly how to generate designs where both ends are used.) There is
at least one obvious special case:

If the smallest addressing units of memory are smaller than object width
by a power of 2, and the required tag size is less than or equal to that
difference, then allocate that many bits in the low end of the object for a
tag.

84

In most cases, this rule is advantageous for space only, since the bits must still
be masked out to prevent address alignment errors. However, some hardware
(such as the SPARe! [154]) can ignore those bits, thus rendering the tag removal
unnecessary.

The assignment of tags to values can almost always be done totally randomly.
There are a few instances where particular decisions can be beneficial, particularly
in connection with low tags:

If low tags are in use and distinguishing less than four types, try all
permutations of type assignments.

Actually, 8 types is more useful, but even 81 = 40320 designs is too many to
evaluate. There is one tag value that stands out as especially important to assign
properly:

Assign the tag value 0 to the most frequently-occurring type.

This rule is useful for both high and low tags, although it is slightly less advanta
geous for low tags.

If an integer type occurs frequently, and it includes both positive and
negative numbers, and the tag is high-end, and there is an unassigned
tag value, then subdivide that type and assign consecutive tags to positive
and negative subtypes.

The last two heuristics together yield a very common design, in which positive
integers are tagged with 0 and negative integers with -1 (all ones, considered as
2s-complement) .

If the sum has sub-sums, then assign the tags topologically sorted order,
assuming the root of the sum tree as the maximal element.

This trick ensures that many tests on groups of types can be implemented as range
checks, thereby reducing the number of tests. For example, Common Lisp has a
very elaborate hierarchy, with 10 or more types of numbers that must all answer
"true" to the function numberp. A range check on properly assigned tags would
require 2 comparisons instead of 10 equality tests. This has been exploited in
Cambridge Lisp and other systems.

The "low tag as offset" pun can be handled directly here:

Adjust low-tagged pointers to be correct when the tag is present.

Storing the tag with the object, although a major technique in earlier times,
only works if all objects have storage allocated to them. It does have the advantage
of leaving the pointer "clean", so tag stripping and adding are not necessary.

If all types in the sum require some storage allocation, allocate a tag field
in the memory block holding an object.

This rule will be more useful for specialized discrimination, perhaps among types
of arrays or code objects.

1 SP ARC is a trademark of Sun Microsystems.

85

4.4.2 Design of Separate Spaces

Separate spaces are potentially more efficient than tags. They can be better
for speed, because both pointers and immediate data can be used directly, and for
space, since the type information is implicit in the address, and imposes no space
overhead (unless large empty spaces are a problem). There is an advantage for the
GC as well, since it can scan some areas very quickly, if they are already known
not to contain pointers (such as strings and code blocks). Spaces fall down on type
discrimination, since two address comparisons are needed.

Designing a separate space implementation is also quite simple:

Assign to each member of the sum an area big enough to hold as many
objects as have been specified.

The catch is that the sum of the allocated areas may exceed available memory,
especially if the system is intended for use on large problems.

Address comparison is most expensive when the two addresses are completely
arbitrary, and may have to be loaded from memory each time. One way to cheapen
things is to assign on a 2n boundary:

Round each assigned area up to some multiple of a power of 2, such that
the varying part of the address is a "natural size".

Halfword address comparisons are often faster, but this is usually too extreme of a
solution, since the resulting spaces will be quite small. The best values are likely
to be submultiples of a word, though this depends more on the instruction set than
on the architecture.

Spice Lisp introduced the idea of "space-tag equivalence," in which the high
address bits also look like a tag, thus giving the best of both worlds:

If the allowable address space is exactly the size of an object, then subdivide
memory into as many areas as the next higher power of two over the
number of types in the union, and define the predicates to work by tag
checking.

In theory, a pair of address comparisons in this scheme could be transformed into
a single tag mask and comparison, but the reasoning behind this is rather subtle.

Finally, there is a small modification to immediate types that have spaces which
are not actually used.

If a type is a range of integers with an immediate representation, then
allocate the space consisting of addresses matching those integers to that
type, or else modify the range's operations to add/subtract deltas to the
space actually allocated.

86

4.4.3 Design of BBOP

BBOP solves the initial allocation problem of separate spaces by breaking mem
ory into a large number of small areas or pages, each aligned on 2n boundaries and
containing objects only of a single type. This retains the advantages of separate
spaces while maintaining Hexibilityin the numbers of objects that can be allocated.

To distinguish types, divide memory into small equal-sized pages, make a
page table equal in size to the number of pages, and make each page table
entry large enough to discriminate all types but also be a "natural size".

The page table is additional space overhead, but not much; usually well under 1 %
of available memory.

A special issue for BBOP is the size of each page. The tradeoff is particularly
clear, but not easy to decide. There is one rule that must be satisfied in any case:

The number of pages must be greater than the number of types.

To gain the most flexibility, there should be as many pages as possible, but to keep
the size of the page table down, each page should be as large as possible. The
product of these two is a constant-the size of memory, so optimization amounts to
choosing a point on the hyperbola xy = m, where x is the page size, y is the number
of pages, and m is the size of memory. Unfortunately, there is really no objective
function to evaluate, so the actual choices are governed by other considerations.
Intuitively, the best balance seems to be at x = y (see Figure 4.1):

Set the page size to be the square root of the address space size.

Another way to look at this is to observe that the number of bits to address the
page table is exactly a half-address, which is usually a "natural" size.

Machines with VM generally have small pages that are treated specially by the
hardware, and there might be advantages to making BBOP pages the same size:

If the machine has paged virtual memory, make the page size be the same
as the virtual memory page size.

This heuristic is more empirical than some of the others, since virtual memory
behavior can be complicated and unexpected. The main purpose of the heuristic
to reduce working set size due to BBOP pages extending over several VM pages.

Another force increasing the page size is the prospect of having objects so large
that they must occupy several pages at once, which complicates everything:

Set the page size to hold the largest single object possible.

On the other hand, extremely large pages are effectively like separate spaces; there
should be some variability in allocation:

The number of pages should be at least 10 times the number of types.

It would be silly to have so many pages that more of memory was dedicated to the
page table:

The page table should be less than 10% of memory.

The 10% number is "soft," since it should be compared with the other typing
techniques (if tags need 20% of memory, then a page table needing 15% of memory
is still advantageous).

size of
each page

number of pages

Figure 4.1. Graph of BBOP Tradeoffs

4.4.4 Combinations of Sums

87

Before going into some special techniques, it should be pointed out that the
mindless application of these rules will cause problems if the language specification
includes nested sums. The rules will have no problem choosing spaces for the first
sum, tags for a subsum, and BBOP for a subsubsum. This is not always a ridiculous
thing to do; many of the implementations in Chapter 2 have dedicated spaces for
some types, and use tagging only in a heap space. Still, only certain combinations
will work, as shown in Figure 4.2. The restrictions are recursive, so for instance
once BBOP is used, all sub subtype discrimination must be done with tags, and
once tags are used, they must always be used thereafter. (In practice, only one or
two of these combinations will appear; simplicity is a virtue in runtime systems.)

These restrictions do not appear as separate rules; instead, they are extra
unstated preconditions on all of the rules relating to type discrimination.

4.4.5 Merging and Splitting Sums

The preceding rules, if blindly applied to a sum of sums, will set out individual
tags or spaces for each type in the sum, and additional tag fields or spaces for each
of those types that is itself a sum. This is usually an unintelligent thing to do.

Consider the case of types

(defadt sexp (sum (numberp number)
(symbolp symbol)

88

tag spaces BBOP

tag tag

Figure 4.2. Allowable Combinations for Type Discrimination

(consp cons)))

(defadt number (sum (integerp integer)
(ratiop ratio)
(floatp float)))

Now suppose that the tag rules are being applied. First the sum sexp will be
designed, and will use a 2-bit tag field to distinguish 3 types. Then, the tag rules
can be applied again, again to set up a 2-bit tag field to distinguish types of numbers.
However, this is a different tag field, so the total usage is 4 bits per word.

An alternative is to transform the source types into a single sum, something like

(defadt sexp (sum (numberp number)
(symbolp symbol)
(consp cons)
(integerp integer)
(ratiop ratio)
(floatp float))

(define numberp (x) (or (integerp x) (ratiop x) (floatp x))))

Note that numberp is no longer primitive, but must be defined in terms of other
predicates. In exchange for this, the tagged design will need only one 3-bit tag field,
a savings of one bit overall. This may not seem like much, but the full Common
Lisp type hierarchy is deep enough to result in 5 or more tag fields in each word,
totalling up to perhaps 8-9 bits of tag field when 5 is sufficient. Thus the heuristic:

If a sum has a subtype which is also a sum, transform the two into a
single sum.

Repeated application of the rule yields a variety of new patterns of sums and
subsums, up to and including a completely flat collection of types.

The inverse of this transformation may also be validly applied:

Divide a sum of more than two subtypes into two sums, one containing
the other.

89

The effect, if tagging is used, is to make several smaller tag fields. This is very
useful to get a sort of Huffman coding on type tags, particularly if some type just
barely fits within a word. In practice, this technique commonly gives integers a
shorter tag, thus allowing a larger range of integers to be represented within the
same fixed-size word.

The ultimate reason for using multiple representations is improved time or space
characteristics. Basically, savings can be achieved iff

where Ci and Ui are the costs and usage frequencies of the initial representation 0
and the subrepresentations 1 and 2, (so Uo = U1 + U2), and D is the cost for an
operation to decide between the two. N-way representations can be modelled as
N -1 two-way representations. The "costs" here are generic, and can be substituted
with either time or space numbers, whichever is considered more important. (Note
that D may have a significant cost in space as well as time, if the dispatching code
is opencoded in many places.)

A more specific reason to split types is for the purpose of using low tag fields on
byte-addressable machines. If the machine uses 32-bit aligned pointers, then the
two lowest bits are unused, and make an excellent tag field. However, discrimination
of 4 types is usually insufficient, and so additional type discrimination is needed.
The rules can do this by splitting the main type into a sum of 3 types and another
sum of all the remaining types.

Both splitting and merging are useful together, as a sort of g~neral reorganization
of type grouping. Also, different representation rules may be used on different parts
of a sum. Typically, one or two types with special characteristics (symbols, compiled
code) go into separate spaces, while the remainder are put into BBOP pages or are
given tags.

4.5 Design for Structures

Structures are basically the same as C structs or Pascal records, and techniques
for their implementation are well-known and relatively simple.

Assign components of a structure to random offsets in a freshly-allocated
block of memory.

A less-common approach puts each component into a separate table, which cannot
be done with just any typing scheme:

If the structure type is allocated into a separate space, then divide the
space into tables, each of sufficient size to hold one component for all
objects, and represent references to a structure as either a pointer or an
index into the tables.

90

The pointer/index choice depends on the size of the table. An index is more
compact, but more time-consuming to use, since it must always be added to the
address of the table base.

Packing of small structure components is generally a good thing to do:

If two components are sufficiently small that together they are less than
one word, combine them into a single word.

This will accomplish the design of older Lisps on small-address machines, where
15-18 bit pointers to car and cdr were packed into a single 36-bit word. Recursive
application of this rule will eventually try all possible packings of a multi-component
structure, with exponential growth in the number of possibilities. Fortunately, few
real-life structures have more than about five components, we would not expect to
see torrents of minutely different designs arising from this rule.

Most machines have an "indirect" addressing mode memory directly pointed
to, which is more efficient than the "displaced" mode necessary for addressing
components in general. This can be exploited:

Assign the most frequently-accessed component to the 0 offset in the struc
ture.

Another way to represent structures is to think of them as vectors. This only
works if each component of a structure can be forced into a uniform representation
(either all slots the same type, or all slots subtypes of a single type, which will be
the one used as vector element).

Represent a structure as a vector.

This rule, along with a later one that represents vectors as lists, has the interesting
consequence of using list representation for structures. This was once standard in
Lisp systems, but since largely abandoned. In Prolog, records vs lists is an ongoing
debate; see [27]. A somewhat less interesting result is an infinite regress, as a list
element (a structure with two components) is represented as a vector, which is
represented as a list, which is itself a structure of two components, ad infinitum.
Again, mindless application of rules could easily cause this to happen.

Another indelicate rule splits a multi-component structure into two structures
connected by pointers.

Transform a structure with more than two components into a structure
one of whose components is another structure containing some of the
components of the original.

This could be useful if part of a structure were to be shared. Repeated application
of this rule to one component at a time yields a list representation for a structure.

Conversely, structures with substructures can be merged into single larger struc
tures:

If a structure has a component which is also a structure, transform the
structure into a single structure with a merged list of components.

91

If a structure component will never be changed after creation of the structure,
then it can be handled somewhat more freely. Before going into details, we first
need a rule that does not care:

Transform an immutable component into a mutable one.

This rule is more for bookkeeping purposes than anything else; its implementation
creates a new name for the slot modifier that can be used during the coding process.

A structure may have any combination of mutable and immutable components,
but this is awkward to deal with, so a convenience rule segregates the two:

Divide a structure into mutable and immutable substructures.

The immutable substructure can be implemented quite differently. The main
advantage is that it need not be created anew, but a "new" structure could actually
be a pointer to an old one. This is how interned symbols in Common Lisp are
treated, and is also the idea behind the "hashing CONS" that has been used
occasionally, where new cons cells are just pointers to old ones, if the car and
cdr are the same as for some old cell. The idea of immutable objects is basic to
functional programming, and the sharing of such objects is a key advantage of many
evaluation schemes.

Alter the immutable structure's creator to try to reuse existing structures
by hashing to them.

This rule immediately brings up the design of hashing algorithms to support this
design. Like GC, the questions involved are complicated and space does not allow
going into them.

4.6 Design of Vectors

Vectors here subsume objects of fixed and varying length, as well as those with
mutable and immutable elements. We will assume vectors to be indexed from 0 on
up; any adjustments for non-zero basing are simple and not of much interest.

As with structures, the simplest and most obvious representation is as a block
of contiguous memory:

Represent a vector with a block of memory.

This rule fails to account for the length of the vector (perhaps the vector is of
fixed length), and it says nothing about how the components are to be handled.
The length must be recorded somehow for a varying-length vector, but it may also
be necessary for fixed-length vectors as well, if references might possibly go out of
bounds, or if something (such as the GC) has to be able to scan along memory.
One way to record a vector's length is to record it explicitly:

Store the length as a field at the beginning of the vector.

92

This requires adjustment of the index, unless the pointer to the vector addresses
the base of the vector's data:

If the machine has a capability for negative displacements, store the length
below the address of the vector.

The other thing that may be needed to he done to an index is to multiply or divide
it. A great advantage may be derived from the use of low tags matching the size
of words, then integer indices will already be shifted correctly. This will fall out
of the coding phase, when some designs are much more efficient at vector accesses
than others.

The other way to support varying lengths is to include an end-of-vector marker;
an object of some type different from the components of the vector.

If there is some bit pattern of a size matching the vector elements, but is
not itself a valid vector element, and either GC does not sweep memory or
the vector elements are typed sufficiently for GC to identify them, allocate
one extra position to each vector, and store that bit pattern there when
creating the vector.

Strings in C use a NUL (0) character, thus precluding the use of NUL within
strings. In the case of Icon strings, this technique is not legitimate, since all
possible characters may appear in a string. For general Lisp vectors, there may
be a spare pattern not designating a normal object, such as a special "unbound"
object. Another common solution is to use a new tag to designate a "non-object."
Such an object or tag can also be used for unbound variables.

It is possible to use both end-of-vector and length fields at the same time.
Modern Lisp systems that support interfaces to C can benefit from this, since
passing a string to C requires nothing more than passing to the beginning of the
string data, while getting the length is still a single access.

Packing of elements can and should occur in vectors. Strings are the most
familiar example, but bit vectors are found in Common Lisp, and "word vectors"
of various sorts prove to be useful in implementation of various internal structures
(hash tables, I/O buffers, etc). Packing is simpler than for structures, since all
elements are of the same type, but it is also more important, in that inefficiency
exacts a heavier penalty. The tradeoff is again imponderable, since tighter packing
may require more elaborate accessing code, but looser packing requires more space.

If the number of bits needed to represent a vector element is less than half
the size of a word, then pack as many elements as possible into each word.

The tightest packing may involve very uneven sizes with no actual space advantage,
such as 7 -bit characters in a 32-bit word. Going to a "natural size" loses nothing
and gains speed:

If the number of bits to represent a vector element is smaller than a
"natural size" that is a fraction of a word, then pack elements of the
natural size into a word.

93

This rule is essential to deriving a byte-packed form of Common Lisp strings, since
characters are first-class data types, but using a full word for each character in a
string is rather wasteful of space.

In special circumstances, allocation may not be necessary, such as for short bit
vectors.

If the number of bits needed by a vector is small enough to fit zn the
available part of a word, allocate the word to hold the vector.

Another rule concerns the size of the length field. A field sufficiently large to
cover all sizes of vectors may be too large, compared to the average length of the
vector. An example is symbols in Common Lisp systems, where nearly all symbols
have names less than about 30 characters long, and most have 5-6 character names.
The use of I-byte length fields instead of 4-byte fields could save up to perhaps
50K bytes of space (which might or might not be significant). A disadvantage
would be that two types of strings would then be required, since Common Lisp
requires implementations to support strings up to 1024 characters in length, and
recommends even higher limits. The rule just says to split types on the basis of
length:

If most vectors are short, and if the maximum length is large, then trans
form the type into a sum of short vectors and full-length vectors.

The basic representation of vectors is a bone of contention for declarative lan
guages, since memory block representations has deep connections with von Neu
mann architecture. Both the functional programming and logic programming com
munity have argued that representing vectors (and arrays) as blocks of memory
is a bad idea. For instance, Wise [169] has proposed quadtree representations for
matrices. List representation is valid too, at least for shorter vectors:

Represent a vector with a list, with each list cell containing one or more
vector elements.

Naively, one might expect that the list elements should be in the same order as in
the vector, but there is no fundamental reason for this. There are justifications for
reversing the list, or using a tree representation. For example, if the first elements
of the vector can be shared with others (as in 3-Lisp's rails [144]), or if the later
elements are accessed more often:

Represent a vector with a list in reverse order.

Accessing random elements can be sped up by using a tree-structured representa
tion, but this form also requires additional space:

Represent a vector with a tree-structured list.

94

(A more powerful rule would split vectors into arbitrary sections linked together,
but this does not seem to have any actual use.)

As with structures, immutability of elements has advantages. The advantages
are potentially much greater here, since vectors may be quite large, and sharing
a distinct space advantage. Icon and Snobol have always shared string contents
whenever possible, so for instance taking successive substrings of a string does not
actually cause any copying of string characters.

If separate spaces are in use, represent an immutable vector by making a
space dedicated to the vector elements, and using a structure that contains
a pointer to the beginning and a length, or else pointers to beginning and
end of the elements.

The real value of this rule derives from higher-level operations like concatenation
and subvector extraction, which would be nonprimitives here. Evaluation needs to
account for the performance of nonprimitives as well as primitives, but optimization
from the abstract form to concrete code is again too hard for reasoning systems.

4.6.1 Vector/Structure Integration

Frequently a vector-like object will also have some structure-like slots. For
instance, a Common Lisp vector will have fill-pointer and adjustable-p at
tributes, while Smalltalk defines its array objects to have pointers to their class.
The implementor, however, must write the definition as a structure, one of whose
components is a vector ADT.

The default behavior of the rules is to make a structure representation one of
whose slots is a pointer to the vector representation, which is not bad, but does
involve an extra pointer. Another approach is to use a single memory block with a
fixed-length section at the front, followed by the varying part.

If the type is a structure one of whose components is a vector, allocate a
single block of memory with the vector at the end of the block. Include a
length field somewhere within the combined object.

4.6.2 Arrays

As with sums of sums, vectors of vectors (or arrays) can benefit from special
treatment. The original ideas about representation of arrays were developed very
early on, but the first survey did not appear until 1962 [68]. The default behavior
of the rules will result in recursive vector of vector representations, which may be
actually be advantageous if multiplication is slow and sufficient memory for the
extra pointers is available. I should point out that this representation may be more
generally applicable than normally believed, since the extra memory overhead is
significant only with certain shapes of arrays (consider that for a 1000x1000 array,
the extra space is 1000 pointers or .1 % extra). In addition, since the vectors can
be moved around, large allocations are less frequent.

Indexing is the traditional method for array access, even though its main advan
tage is in space savings and possibly reduction of memory references:

If a vector has vectors as its elements, to some level of recursion, then rep
resent as a block of memory addressed by multiplying and adding indices,
preceded by a descriptor containing both lengths.

95

This rule covers situations in which, say, the first two indices index a block of
memory each of whose elements is a pointer to a vector. Because it designs a
representation rather than transforming types, it cannot be applied repeatedly to
get higher-dimensional arrays.

The type-to-type transformation of structures into vecto"rs means that a multi
dimensional array of structures has a special representation, where the component
of the structue is just another index.

A somewhat dubious optimization allocates indexed array space along power
of-2 boundaries in order to change multiplication into shifting. Such a trick is
rarely useful, since the space wastage is immense, compared to what may only be
a minor speedup. Nevertheless, machines which multiply in software will benefit.
It also makes sense when the array is expected to grow, since some growing room
is pre-allocated.

If sufficient extra space is available, and arrays are not overlaid, then
round sizes up to powers of two and use shifting instead of multiplication
for indexed addressing.

A. Rosenberg has done some work of a fairly theoretical nature on the represen
tation of dynamically changing arrays [129]. Some of the tradeoffs may seem highly
unusual-some of the proposed designs sacrifice 99% of memory space in order to
avoid copying array elements around. This may be worthwhile in APL, since many
programs could potentially copy a single array hundreds of times while processing
it. Unfortunately, this work was never tried experimentally [A. Rosenberg, personal
communication] .

Sparse arrays are also well-known, but start to tread into the realm of application
program design, since their desirability is strongly dependent on the kinds of
programs using such arrays.

4.7 Other Types

A number of special combinations arise that are not directly associated with
particular schemas.

4.7.1 Floating Point Numbers

The subject of floating point representation has been intensively studied, but
is not so important to us, since the decisions are usually embedded in hardware,
and language implementors primarily concern themselves with efficient interfaces
to that hardware. The IEEE standard [118] specifies both the behavior and the
representation of floats, leaving very little to the imagination. Thus the first rule:

96

lsi 255 xxxxxxxx

Figure 4.3. IEEE Floating Point Format

If the system has a builtin representation for floats, and the size of the
float is compatible with the specified type, then represent floats that way.

This rule could be easily justified by comparing the speed of computing with the
hardware representation compared to sequences of instructions.

In the formalisms of this dissertation, floats are actually small structures with
integer components. As such, the structure rules will take over, and be totally
unaware that the behavior may already be available. On the other hand, Common
Lisp allows a variety of floating point formats, from short floats (with potentially
as few as 13 bits of precision and 5 bits of exponent [146, p. 17]), to long floats of
potentially unbounded precision (S-l Lisp has up to 144-bit floating point numbers
[24]. It is unlikely that hardware will be able to support exactly the types defined
by the language, particularly in the case of short floats. If floats are smaller than
the builtin size, then represent as ordinary structures and alter the operations to
convert to the builtin size and back. If the floats are larger, then full software
support will be necessary, again something beyond the simple rules here.

An alternate representation of floats is the slash representation [104], in which
numbers are fractions in a fixed range. This representation has both advantages
and disadvantages, but the evaluation criteria take us into serious numerical math
ematics and far from the concerns of this work.

An unusual possibility concerns the problem of floats being too large for immedi
ate representation if tags are also used. The IEEE standard makes a large number
of 32-bit patterns undefined (Not a Numbers, or NaNs), exactly those for which
the exponent is 255 and the 23-bit significand is non-zero, as illustrated in Figure
4.3. Some patterns are reserved to flag exceptions, but the number of exceptions
is rather small, leaving some 8 million bit patterns unused. If a system did not
require large numbers of data objects, the IEEE NaNs could be used to represent
all other types, say with 3 bits for a tag, which leaves enough to address a million
bytes or words. The advantage would be immediate representations for all floats
while retaining all significant bits. This would work even better for double precision
floats, since the number of spare bit patterns is larger.

Unfortunately, the standard permits NaNs to be used in rather arbitrary ways
by floating point hardware and systems software, for instance using different bits
for each kind of exception, so prospects for this form of representations may not be
particularly promising.

97

4.7.2 Rational Numbers

Ratios of integers are not complex to represent (just pairs of integers where
the denominator is never 0), but there is a question relating to converting ratios
into lowest terms. Taking Common Lisp as an example, functions that get the
numerator and denominator must return the lowest terms, but no other part of the
specification requires the ratio to be internally represented in lowest terms. In fact,
converting to lowest terms after each operation is expensive, and it might be better
to wait until the numerator and denominator were about to become bignums, and
only then reduce to lowest terms.

4.8 Special Considerations

The topics here do not fit well with the rules covering particular schemas.

4.8.1 List Compaction

Lists are not directly expressible using one of the type schemas that have been
defined. However, the characteristics of entire lists may be different from those of
list cells considered individually. It has long been known that the cdr of a list cell
is more likely to contain another list cell than an atom [22]. The question of what
to do about this remains open-although hardware has been designed to optimize
list representations, studies do not agree on its overall effectiveness.

The most common technique to exploit this regularity is known as cdr-coding.
It involves the definition of an alternate form of cons cell, in which the car is of
normal size, and the cdr is only a few bits. The cdr is a relative address, pointing
to the next word or possibly the word after that. There may also be a bit pattern
for the NIL at the end of the list. Cdr-coding has some obvious problems, such as
potential inefficiency in the face of destructive operations.

Another approach to compact list storage is to use 3-element list cells. P. Sipala
has done a very sophisticated analysis of this alternative [143], and concluded that
12% storage savings could be gained, assuming the average numbers reported
in Clark's measurements, which is comparable to the savings from cdr-coding.
Historically, this seems to have been done only once, in UT LISP. 4-element list
cells have also been used by Takeuchi and Okuno [155]. In the formalism of this
dissertation, however, the possibility for multi-element list cells could only arise
by partitioning vectors; there is no way to preserve normal list semantics with
3-element cells.

To generalize this issue, we can consider any sort of coherent behavior among
large sets of objects of the same type. Opportunities include symbol spaces (certain
slot values showing up frequently).

4.8.2 Storage Reclamation

Garbage collection (or more generally storage reclamation) is a general concern
when memory is "used up" in a dynamic fashion. All of the languages considered

98

in this dissertation have automatic allocation and deallocation, and do not provide
for explicit manual deallocation (see [6, p. 283] for a remark on this).

Reclamation may not be necessary. This can happen if the allocation happens
at a rate that will not exhaust available memory before the program completes
execution. In practice, this may happen in two ways: either allocation is rare or
memory is very large.

Allocation tends to be frequent in higher-level languages, but sometimes is re
duced when doing extreme optimizations (such as for Lisp-based editors). "Static"
allocation may be observed in Lisp programs when large data structures like arrays
are allocated at the start of execution, then destructively modified thereafter.
Destructive operations in general can reduce the allocation rate to as low as a
few list cells per second (at the price of program clarity). Such economy requires
considerable programming effort, and usually has the effect of transforming a
"high-level" program into something resembling C code.

Another way to avoid reclamation is to use very large memories, an idea which
seems to have been suggested first by White [165]. The idea is that in a large virtual
memory (32-64 bits address space), the unreachable data structures gradually end
up swapped out to disk. When the program is finished, memory can be discarded,
including the swapping space. A variation would be to preserve the program at
some convenient point (say between toploop commands), exit, then restart. This
approach was actually used on the MIT and Symbolics Lisp machines for several
years, because the supplied garbage collector was buggy [110]. Even so, large VMs
have their own problems, such as fragmentation and working set size limitations.
Any kind of coalescing process is going to have overheads comparable to GC, so is
not a very good solution.

Despite the drawbacks, both approaches to eliminating reclamation should be
considered by the designer, since even the fastest reclamation techniques still have a
substantial effect on performance. When considering these issues, it is important to
know the rate of garbage production, the size of available memory (real and virtual),
and the expected running time of the program. The total expected amount of
consumption (rate times execution) is a quick test-if larger than available memory,
then reclamation will certainly be necessary.

If total memory usage by persistent objects over program execution might
exceed the available memory, then include a reclamation mechanism.

(Stack-allocated objects need no special reclamation machinery.) Note that this rule
might only be applied to particular parts of storage. For instance, list cell recla
mation is a given in Lisp, but compiled code reclamation is relatively uncommon
many systems will just fail if the compiled code space is filled up.

If reclamation is required, there are a variety of ways to implement it. These can
be classified by when and how much storage is made available for re-use. On the
one hand, storage can be made available the moment it is released (as in reference
counting), or all of it can be made available when memory is about to be completely
used up (as in garbage collection). Mixed algorithms are also possible.

99

An independent dimension of reclamation is its leakiness. This refers to how
good an algorithm is at recovering unused space. A leaky reclamation method is
not necessarily a mistake-if the rate of leakage is low enough, it may never become
an issue. Leakiness is really a generalization of the reclaim/no reclaim decision. It
is also possible to use several reclamation methods; a fast but leaky algorithm could
be backed up by a slower but more efficient method. Backing up reference counting
with a full GC is one well-known choice.

If a reclamation method leaks unacceptably, add a more leakproof recla
mation method to be invoked when storage appears to be exhausted.

The decision between reference counting and garbage collection is a difficult one,
but although implementors seem to have exercised themselves over the question,
the decisions rarely have any facts to back them up. Reference counting has the
advantage of no interruptions in execution:

If there are no mutable/circular structures, use reference counting.

Unfortunately, the "smoothness" of reference counting cannot be expressed in ADT
schemas, not even with additional pragmas.

If reference counting is chosen, then the size of the count field must be decided:

If reference counting is to be leakproof, the size of the count field must be
at least enough to count all objects in the system that might reference any
given object.

Deciding where the count is to be stored is a thorny problem. Fortunately, not all
objects need a count field:

If an object includes or reference an allocated piece of memory, then
include a count field with the object.

An object table is a good place, as is the header word, if there is room.
Garbage collection is a complete area of research in itself [34,86]. Rather than

be swamped in the complexities of unusual algorithms (which are being discovered
all the time), we will only consider rules for familiar techniques. First, the reasons
for doing GC:

If many circular structures are possible, or the average amount of sharing
is high enough to require large count fields, then choose garbage collection.

Garbage collection is based on the notion that all data in use can be traced from
some central known place, and that unused space is whatever is not so traceable.
Once the unused space has been identified, it must be made available for use again.
The process may be done all at once, or part at a time. It is normally initiated by
allocation attempts:

Attach the garbage collection invocation to allocation operations.

100

(An alternative might be to have GC proceed at regular intervals, initiated by clock
interrupts, but this is rather speculative.)

The tracing process derives directly from the type definitions, whether it uses a
stack or pointer reversal. It must also know whether each type has an immediate
or allocated representation.

Marking is somewhat more interesting. One way to view marking is as a "type
discrimination" problem, where there are two types of objects: traced and untraced.
With this point of view, we can apply the general rules for the representation of
sums, and derive the use of a mark bit, either in the pointer or in the object. We
can also hypothesize marking techniques based on separate-space-like behavior or
BBOP-like behavior. Conversely, the popular technique of using a bit table for
marking can be generalized to general type discrimination. With such a scheme,
all the tags of all objects would be stored in a separate area of memory (as opposed
to BBOP, which does some grouping as well).

Marking via separate spaces actually translates into the familiar technique of
stop-and-copy, which is based on the use of two spaces, one for old objects and one
for new copies. Objects in the old space get copied, while objects in the new space
are left alone, and the decision is made by comparing addresses. As with regular
separate spaces, sufficiency of address space is an issue:

If available virtual memory is more than twice the required memory and
representation is tagged (maybe BBDP?), use stop-and-copy.

The test for the extra space needs to be more delicate in the case of separate type
spaces:

If available space is more than twice the required space for each type in
spaces, use stop-and-copy.

The idea of BBOP marking derives from stop-and-copy in the same way that
BBOP for types is an improvement on separate spaces. We identify each page as
"old" or "new", and copy each page individually. This technique does not seem to
have been used, perhaps because the advantages of BBOP are less important for
GC.

Generation scavenging is an elaboration based on the observation that many
objects become garbage soon after creation. From our point of view, this amounts
to creating several types of marks, and type discrimination techniques are still
relevant. For instance, SPUR uses tags to distinguish generations.

With stop-and-copy, the old space need not have anything done to it. With
mark bits, something must be done to find the unused space, usually a linear sweep
through memory, which imposes a serious constraint on all object representations:

If sweeping in use, then design other objects to be identifiable on a linear
pass in each Geed space.

Assuming that unused objects can be identified, there is then the question of how
to make them available again. The best technique is the use of some sort of free
list, but this has only limited applicability:

If all objects of a uniform or nearly uniform size, or if fragmentation is
not a problem, then chain unused objects together into a list that allocators
can traverse to get new space.

101

Still, the highly uniform cons-based representations of early Lisp systems meant
that GC was relatively fast .. Free lists are still common in the storage managment
of symbols and sometimes cons cells, if they are stored in a separate space. If free
lists would cause fragmentation, then compaction is the thing to do:

If all of memory needed and varying-size objects are present, compact used
data into one end of a block of memory, allocating a relocation table OT a
slot in each object.

As with marking techniques, the relocation address falls under all the structure
rules, for its handling. An additional possbility is that a little-used structure slot
might be borrowed for relocation. This was not uncommon on older machines with
large words and small addresses, but at present, relocation tables are more likely
to be separate.

4.9 Summary

The design rules here are not unusually complicated or subtle. Part of the reason
is that the interactions among rules are more important than the rules themselves,
which also means that most design alternatives cannot be compared until coding
and evaluation. Not all of the rules have been tested in a designer, so they are
likely to be missing important, particularly the rules relating to storage recovery
techniques.

Some heuristics are so general that they do not appear as single rules, but as
collections of rules with a common theme. The common themes could be thought
of as meta-rules:

• Transform one type specification into another.

• Use the simplest possible representations.

• Exploit statistical patterns of usage.

These meta-rules cannot be implemented directly in anything less than a fully
automated reasoning system on the scale of Eurisko [93], but they are quite useful
in understanding the motivations for specific rules, as well as for suggesting new
rules.

Type-to-type transformation proves to be an important mechanism for making
decisions. This was not anticipated at the outset, and does not seem to have
been considered seriously in previous ADT research. Certain decisions (such as the
use of a single tag field) can only be rationally explained by transforming the type
structure, while from a more practical viewpoint, many design rules are simplified by
being able to make a small decision and then rely on some other rule to do the actual

102

construction of code. Informal application of type-to-type transformation can also
be useful: the observation that garbage collection involves a type discrimination
step allows us to "borrow" the type discrimination rules and use them in designing
garbage collection techniques.

Simplicity of representation is a common theme, though perhaps more notable
by the absence, rather than presence, of particular rules. Since the addition of even
a single machine instruction to a primitive can measurably affect overall program
performance, complexity must be avoided. Some puns are motivated by this meta
rule, the rationale being that if something has two meanings, then special code is not
necessary to distinguish one meaning from the other. On the whole, the meta-rule
eliminates interesting but overly complicated representations and the rules that
might generate them.

Extra complexity may be worthwhile if general but poor representations are
needed in only a small fraction of operations. Huffman coding is the information
theoretic version of this meta-rule. Since extra complexity also incurs new costs
while reducing others, there is an important tradeoff for each such case.

These rules will not and cannot make the final decisions about data represen
tations. The many apparent contradictions underscore this fact: each pair of
contradictory rules give rise to multiple plausible designs. The implementor can
only make a rational choice by evaluating each design, either by hand simulation
or by testing in a real system. This will be the subject of the next chapter.

CHAPTER 5

AN AUTOMATIC DESIGNER

A host of ... compilers ... darkened the face of learning.

E. Gibbon, Decline and Fall of the Roman Empire (1783)

While the heuristic rules of the previous chapter can provide much guidance to
the human designer, the real test of their validity is incorporation into a program
that can produce its own designs, and the usage of those designs in a real language
system. In this chapter, I will concentrate on Common Lisp; although in principle,
the designer could design for any language, the output is restricted to definitions of
functions and variables. In most cases this will be satisfactory (arithmetic primitives
in Prolog are fundamentally functional in nature, for example), but in general the
form of the design will have to conform to the language semantics. The machine
code segment of the designer is definitely restricted to Common Lisp, in fact the
syntactic form of its output is useful for only a single implementation; the state of
the art in language implementation does not allow for portable definitions of code
generation patterns.

The experimental approach described here has three main parts, each supported
by a separate piece of software:

1. Design. The designer program uses the previous chapter's heuristic rules to
produce a number of designs, which are collections of function definitions in
an abstract Lisp-like language.

2. Code. The coder program turns the abstract code of the designs into Common
Lisp, or machine language or both, as appropriate.

3. Evaluate. The coder's output can be incorporated into a Common Lisp system
that has been designed for this purpose.

The real implementation that will be used is a Common Lisp system that has
been under construction at Utah since late 1986, dubbed Utah Common Lisp or
UCL. It has been specially designed to be highly alterable, from the data-driven
frontend to the portable micro-kernel. In particular, most of the compiler's code
generation is done by declarative forms, which can be changed to implement a
wide variety of representations. The forms of interest here are all short sequences

104

of machine language that implement single functions or variables. The compiler
substitutes these bits of machine language for calls to primitive functions, in a
process called opencoding (also known as "inline coding"). In the best case, an
entire program may turn into machine code without a single function call. This
is important, because setting up and performing a function call may take many
instructions, which will overshadow the one or two instructions in the function
body that actually do the desired computation.

Before delving into the detailed description of the code, the reader should keep
in mind several basic decisions: 1) since the designer/coder is a one-time-only
sort of program operating on small amounts of data, time and space efficiency are
unimportant, 2) the designer is heuristic, meaning that it is not expected to handle
the most unusual situations, and 3) things have been greatly simplified in order to
get a working program. Later sections will discuss the limitations in more detail.

5.1 The Designer

The designer starts with the source and target ADTs. The source ADT will
generally be something resembling Lisp datatypes, while the target ADT will be
something resembling a machine. The designer will not produce incorrect results
if given other types, but it would very likely fail to generate any designs, due to
the lack of appropriate rules. Still, inverting source and target could yield data
structures for a machine emulator in Lisp, or using another Lisp-like target could
produce designs for embedded languages-see the discussion of rails in [144,138] for
an example of a nontrivial representation decision in an embedded language.

The designer output is a list of design objects (or simply designs), each of which
references a number of primitive objects (or primitives), which are the functions and
variables that the design defines. Each design is self-contained, with the exception
of ADTs, which are referenced by name and shared by all designs. Each primitive
is referenced by exactly one design-although it is possible for several designs to
share a primitive, this is unusual, since the definition of a primitive is almost always
different from one design to another.

The design process consists of two phases. The first is decision making, in which
the design decisions are made to create the designs, while the second phase builds
the complete design code for primitives. When done, the designer writes out the
design code into a file (for debugging purposes).

The designer is written in Lisp. An earlier version was written in NIRS [132],
using essentially a Prolog subset. The chief disadvantages of this approach were 1)
the substantial amounts of computation required, which required either auxiliary
functions or lengthy rules, and 2) the sheer quantity of the information generated.
Each design is perhaps a page long when printed out; if done with a standard
logic programming language, it must either be a large single term or a collection of
predicates. In the first case, rules now have to repeatedly assemble and disassemble
terms (albeit via unification), and in the the second, predicates have to be asserted
into the database, which brings its own set of problems. The ideal language would
be a sort of object-oriented Prolog, but these are not yet generally available.

105

5.1.1 Making Decisions

The basic design algorithm involves a set of choices, which are essentially rules
that make design decisions. Each choice is self-contained; it is a function that takes
an incomplete (partial) design as its argument and returns a (possibly empty) list
of partial designs. The algorithm just exhaustively applies each choice to each
partial design until all the designs left have at least one goal "done" and no goals
"undone". Although this approach is not very efficient, the number of different
choices is unlikely to be much over 50. The algorithm also cleans up the "done"
and "undone" slots of a design by treating them as sets and removing duplicate
elements. This keeps certain loops from occurring, by eliminating some goals that
have already been achieved (for instance, when a recursive type is being designed).
The algorithm applies itself recursively to the list of designs returned by a choice.
Completed designs go onto a list *designs* and are not worked on further.

The problem with this obvious and exhaustive approach to design is that it can
generate astronomical numbers of designs. For instance, random assignment of
PSL's 19 types to 5 tag bits results in

32!/(32 - 19)! = 6645143:I>35633883136000000

different assignments, each of which could be considered a different design. The
performance of the different designs is identical in almost all cases. The exceptions
are puns, and there are only a few (for tags, the assignment of zero is one important
pun). Since I have not been able to figure out a general way to prune such gigantic
design spaces into something more manageable, I have taken the alternate tack
of making the design rules "know more," and so in the case of tags, assignment
is cycled rather than permuted, thus assigning each tag to each type once but no
more. In the case of PSL, this would result in 32 designs; still a lot, but manageable.

5.1.2 Choice Objects

Choices themselves do all the real work. They always have an if-then form,
although this is not required. The typical test is for a type of schema, or perhaps
combination of schemas, along with values for size/frequency pragmas. If the test
succeeds, the choice usually copies the partial design and modifies the copy. Some
choices will make several copies; in any case, any new partial designs come back in
a list. An empty list indicates failure. The original design should not be returned.
The copying is necessary to support the generation of multiple designs, which will
only share some parts of their structure. (This is not as wasteful of space as it
might seem, since only the design objects and primitives themselves are copied, not
the contents of their slots.) The set of modifications to the copies is generally the
same:

1. Record the making of the choice in a list in a dedicated slot. Exact format is
unimportant, since the data is for documentation only.

106

(defchoice hi-tagged-sum (d)
(let «type (undone-type 'sum d»

(newdesigns nil»
(if type

(let* «n (length (cdr (adt-schema type»»
(lis (iota n»)

(dotimes (i n)
(push (one-hi-tag-assignment

d

newdesigns»

type
(append (nthcdr i lis)

(ldiff lis (nthcdr i lis»»
newdesigns»»

Figure 5.1. Tag Assignment Choice

2. Dissect the schema(s) that matched the test, and create an object for each
primitive mentioned in the schema(s).

3. Fill in each primitive's basic code, which is the operation with no adornments
of any sort.

4. Create any wrappers and initialization code necessary. Wrappers usually
handle some sort of generalized type conversion.

5. Record a goal as having been done and possibly add new goals.

6. Add the new partial design object to the list of those to be returned.

Figures 5.1 and 5.2 illustrate a complete choice object. This one designs high
tags for sums. The function undone-type matches if there is a type not already
designed, and which has a sum schema. If so, then the choice will generate several
different tag assignment patterns, in which the values are cycled around so that
each type gets a 0 tag in some assignment. The function one-hi-tag-assignment
actually does the work of building the abstract design code, starting by making a
copy of the design and its primitives, using copy-alI-design. The only functions
to be generated are predicates, one for each subtype, along with their signatures
(indicated by -»). Wrappers must be defined to convert objects from typed to
untyped and vice versa (this will be explained further in the next section). Also,
the use of tags implies a uniform heap, and the choice generates initialization code
and variables for it.

5.1.3 Type-to-Type Transformation

Type-to-type transformations are a special case of choice objects, with simpler
behavior. Basically, instead of creating parts of a design, a transformation alters

(defun one-hi-tag-assignment (d type assign)
(let «machine (design-target d))

(newdesign (copy-alI-design d)))

107

(add-decision (cons (adt-name type) (cons 'tagged assign)) newdesign)
(let* «fns (mapcar #'car (cdr (adt-schema type))))

(subtypes (mapcar #'cadr (cdr (adt-schema type))))
(tagsize (ceiling (log (length subtypes) 2)))
(datasize (- (machine-word-size machine) tagsize))'
(tagmask (ash (1- (expt 2 tagsize)) datasize))
(datamask (1- (expt 2 datasize))))

(do «resti assign (cdr resti)) (i (car assign) (car resti))
(restf fns (cdr restf)) (restt subtypes (cdr restt)))

«null restt))
(add-predicate (car restf)

'(-> (,(adt-name (design-source d))) (boolean))
'(lambda (x)

(eq (logand x ,tagmask)
,(ash i datasize)))

newdesign)
(cond «zerop i)

(push (cons '(-> ,(car restt) ,(adt-name type))
'(lambda (x) x))

(design-mappers newdesign))
(push (cons '(-> ,(adt-name type) ,(car restt))

'(lambda (x) x))
(design-mappers newdesign)))

(t (push (cons
'(-> ,(car restt) ,(adt-name type))
'(lambda (x) (logior x ,(ash i datasize))))

(design-mappers newdesign))
(push (cons '(-> , (adt-name type) ,(car restt))

'(lambda (x) (logand x ,datamask)))
(design-mappers newdesign)))))

(push '(let «space (allocate-proto-heap 10000)))
(setq heap-lower-bound space)
(setq heap-upper-bound (fix+ space 10000))
(setq next-free-heap space))

(design-init-code newdesign))
(add-variable 'heap-lower-bound 'integer newdesign)
(add-variable 'heap-upper-bound 'integer newdesign)
(add-variable 'next-free-heap 'integer newdesign)
(add-sub (adt-name type) subtypes newdesign)
newdesign)))

Figure 5.2. Generator of Tag Assignment Code

108

the source type so as preserve semantics. The creation of a new type is encapsulated
in a single function copy-all-adt; the Common Lisp function gentemp produces
the new names needed. (Note that tangled type structures will need alteration of
references as well as changes in the name slot.) The design has slots for both the
original source type as well as for the current source type. Figure 5.3 illustrates a
type-to-type transformation that merge sums of sums into a single sum type. The
first part does matching, and is complicated by the need to search for a subtype
that is itself a sum. The new schema is simple to construct, and the only other
work needed is to define the predicate that is now no longer a primitive.

5.1.4 Finishing the Design

The basic code fragments for each primitive are not complete definitions. The
basic definition of car, for instance, just says how to follow a pointer-there is no
mention of tag stripping, type checking, or anything else. However, a complete
primitive may be moderately complicated; in a tagged implementation, most op
erations start by removing the tag, then do an operation, and add tags back into
any results. This is not part of coding, since the composition of these operations
requires global information about the design, and is independent of any particular
target machine.

It turns out that we need two notions of type for a function. The first is the
conventional notion of type-car is defined on cons cells, but not on numbers. The
second is something that I will call the context type (in the apparent absence of
such a notion in the literature). The context type of a function says what types
might have to be recognized or returned, irrespective of what types can actually be
manipulated. It is a generalization of the notions of "raw" objects vs typed objects.
that are important to optimizing Lisp compilers. Normally, user-visible functions
in Lisp systems have a context type that includes all possible objects (the type t
in Common Lisp). In other words, any object may be passed to +, and it will do
the operation or issue an error message; there is no possibility of, say, a pointer to
a cons cell being mistaken for a number. In compiled code, however, + may appear
in a context where the object being passed is already known to be a float, so its
type info need not be checked/removed/added. For this use of +, the context type
of its argument is float. In some other case, an argument may be known only
to be a number, but not which kind, and the compiler might be able to eliminate
some error checking.

Aside from speculative possibilities for compiler optimization, context types are
important because they determine how to construct a complete function defini
tion. If the context type of a code fragment does not match the context type
of the primitive, then "wrappers" must be added to make them match up. Tag
stripping/ adding operations are perhaps the most common wrappers; they appear
as shown in Figure 5.4. lVlanipulation is straightforward, since the wrappers are
unary functions. It may be that several wrappers are necessary; in a tagged system
with more than one tag field, there will be a separate wrapper for each field. If

(defchoice merge-subtypes (d)
(let «type (undone-type 'sum d»)

(if type
(let «sch (adt-schema type»)

(if (and (eq 'sum (car sch»
(some #'(lambda (sub)

(eq 'sum
(car (adt-schema

(find-adt (cadr sub»»»
(cdr sch»)

(merge-subtrees d»»»

(defun merge-subtrees (d)
(let «main (find-adt (car (design-undone d»»

(results nil»
(let «sch (adt-schema main»)

(dolist (sub (cdr sch) nil)
(let «ss (adt-schema (find-adt (cadr sub»»)

(if (eq 'sum (car ss»

results»

(let «newdesign (copy-alI-design d»
(newtype (copy-all-adt main»)

(setf (adt-schema newtype)
(cons 'sum (mapcan #'(lambda (s)

(if (equal sub s)
(cdr ss)
(list s»)

(cdr (adt-schema newtype»»)
(push (make-primitive

:name (car sub)
:type '(-> (,(adt-name main» (boolean»
:basic-code
'(lambda (x)

(or ,~(mapcar #'(lambda (s) '(,(car s) x»
(cdr ss»»)

(adt-functions newtype»
(add-sub (adt-name main) (list (adt-name newtype»

newdesign)
(push newdesign results»»»

Figure 5.3. A Type-to-Type Transformation

109

110

[type] svref is (-> (vector integer) (t))
[context] svref is (-> (t t) (t))

(define svref
(lambda (x i) (lref (+ x (* 4 i)))))

II
\/

(define svref
(lambda (x i) (lref (+ (logand data x)

(* 4 (logand data i))))))

Figure 5.4. Addition of Wrappers to a Primitive

the context type matches the type coming from an operation, then no wrapper is
necessary, as in the result of a car function.

Sometimes more powerful wrappers will be needed. For instance, a structure
creating function must pass a type to the allocator when using spaces/BBOP, but
need only pass a size to a general heap allocator, if tags are used. However, the
structure-designing rules do not necessarily know which scheme will be used, so
their basic code will need modifications more extensive than available by wrapping.

Wrapping by analysis of context type is a rather expedient answer to a general
problem of ADT implementation, but seems to capture an important aspect of code
generation from designs. The process does make problems for the coder however,
which must attempt to take multiple masking and other operations and turn them
into single fast instructions.

5.2 The Coder

Coding is essentially a process of compilation, since the task is to transform
abstract Lisp code into machine instructions. The design code is essentially Lisp,
but adapted as necessary for succinct expression-a more functionally pure form is
desirable, but can also get too complicated for matching processes to succeed.

Although this would appear to be an ideal task for a compiler generator of
the sort that has been studied extensively, there are no "off-the-shelf' systems
that can be used independently of a complete compiler-writing system, so I have
been obliged to write my own generator. The algorithm is extremely simple; first,
the code is flattened into a series of assignment statements (essentially the quads
of standard compilers), then each assignment is matched against descriptions of
machine instructions, and rewritten into an instruction if the match is successful.
If the match is not successful, the coder assumes that a nonprimitive is present

111

and gives up; the code will eventually appear as a Lisp definition (which might or
might not be valid, but the coder has no way of knowing). In general, the coder
is free to break a function up into arbitrary combinations of normal functions and
opencoded ones. Although this is not usual for compiler generators, the process
is greatly simplified because the regular V CL compiler can be relied on to handle
conditionals and other more complicated constructs.

The coder works with three classes of primitive: variables, functions, and pred
icates. Functions and predicates are similar, but predicates return a "control
state" rather than values, and the VCL compiler generates code differently for
predicates inside of conditionals (if a predicate must produce an actual t or nil,
the compiler will effectively compile a (if <pred> t nil)). Primitive variables
are rather simple to handle, since they do not have any internal structure, just a
type.

5.2.1 Division and Flattening

The first step is to recursively scan through the definition. Most special forms
and calls to normal functions can be handled by the regular compiler, so the
flattener should divide a definition into smaller pieces connected by function calls
(this has not been implemented yet).

If a function can be opencoded, it then goes into a flattener that converts nested
function calls into a sequence of assignment forms with single calls producing the
value to be assigned (essentially the "three-address code" of conventional compil
ers). Flattening is rather simple-minded and introduces large numbers of temporary
registers, but the VCL register allocator will filter these out, so they are not a
concern.

5.2.2 Instruction Matching

Finally, each statement in the flattened code is matched against machine in
structions expressed as rewrite rules (axioms) in the machine ADT. The result of
each rewriting is a short (1-2 member) sequence of assembly language instructions.
Again, although a single statement may turn into several instructions, the register
allocator can clear up many situations, while peephole optimization could improve
others.

Failures to match here are serious, since any nonprimitives should have been
detected already. The coder should leave the primitive undefined.

5.2.3 Generating Files

The final step is to produce files that can be loaded and compiled by VCL. There
are two files; the en files contain opencodings defined with VCL macros, while the
pn files are definitions for nonprimitives along with the circular definitions for the
primitives. Figure 5.5 shows part of an opencoding file (the details will become
clearer as the VCL compiler is described), while Figure 5.6 illustrates the primitives.

Circular definitions of the form

112

;;;; Machine-generated opencodings

(defopen
fix+
(move long (arg 0) (temp * 5))
(move long (immediate long 2147483647) (temp * 4))
(move long (temp * 5) (temp * 3))
(and long (temp * 4) (temp * 3))
(move long (arg 1) (temp * 7))
(move long (immediate long 2147483647) (temp * 6))
(move long (temp * 7) (temp * 2))
(and long (temp * 6) (temp * 2))
(move long (temp * 3) (temp * 1))
(add long (temp * 2) (temp * 1))
(move long (immediate long 0) (temp * 0))
(move long (temp * 1) (result 0))
(or long (temp * 0) (result 0)))

(defopen
cdr
(move long (arg 0) (temp * 4))
(move long (immediate long 2147483647) (temp * 3))
(move long (temp * 4) (temp * 2))
(and long (temp * 3) (temp * 2))
(move long (immediate long 1) (temp * 1))
(move long (temp * 2) (temp * 0))
(add long (temp * 1) (temp * 0))
(move long (indirect (temp * 0)) (result 0)))

(defsysvar next-free-heap)

(defsysvar heap-upper-bound)

(defsysvar heap-lower-bound)

Figure 5.5. Machine-Generated Opencodings

;;;; Machine-generated primitives

(defun init-purelisp ()
(let «space (allocate-proto-heap 10000)))

(setq heap-lover-bound space)
(setq heap-upper-bound (fix+ space 10000))
(setq next-free-heap space)))

(defun fix+ (x y) (declare (inline fix+)) (fix+ x y))

113

(defun fix>= (x y) (declare (inline fix>=)) (if (fix>= x y) t nil))

(defun cdr (x) (declare (inline cdr)) (cdr x))

Figure 5.6. Machine-Generated Primitives

(defun foo (x y) (foo x y))

look silly, but they are surprisingly common in compiler-based Lisp systems. Their
purpose is merely to supply a function protocol for the opencoding. The idea is
that although the opencoding suffices to compile direct calls to the primitive, both
indirect calls (via apply and funcall) and interpreted calls need a real function
definition. The compiler opencodes the call to foo in the circular definition, while
handling the definition of foo as a normal function definition. The compiler should
be careful not to attempt tail recursion removal before opencoding, or it will make
the primitive into small tight infinite loops! (In Common Lisp, the declaration
(declare (inline foo)) eliminates any possible confusion.)

5.3 Utah Common Lisp

Most Lisp systems are not designed to accommodate alternate representations.
Implementors find it difficult to reconcile the necessary abstraction layer with
stringent performance requirements, and abstraction generally loses the contest.
The difficulty of abstraction goes up with the variety of representations desired;
accommodating different tag assignments is trivial, but allowing tag, separate
spaces, and BBOP representations is so difficult that it has not been completely
accomplished by anyone.

The Utah Common Lisp (UCL) compiler is the latest in a series of efforts [84] to
get good internal abstractions and good code quality at the same time. It is a fairly
simple compiler, consisting of only four required phases, interleaved with optional
optimization phases. The first required phase (itemization) converts S-expressions

114

into internal structures more suited for analysis, the second is the actual code
generator producing assembly language with virtual register references, the third
is a register (or resource) allocator, and the final phase is an assembler. Register
allocation, assembly, and (to some extent) code generation are driven from the
description of the target machine, while the function calling protocol is used by the
code generator and register allocator, and only the code generator uses the function
opencodings. Almost all optimization is in optional phases that transform code in
some intermediate form to code in the same intermediate form, thus the compiler's
functioning is not dependent on those phases. Without the optimizations, the
basic VCL compiler is about 5000 lines of Common Lisp, and the 68000 machine
description is about 1000 lines (other machine descriptions have not been completed,
but are probably shorter, since the 68000 has a rather complicated instruction set).
Figure 5.7 illustrates the compiler's structure.

5.3.1 Itemization

Itemization converts source code into items, which are structures of various types
representing the different special forms of Common Lisp. This phase also does
alpha-conversion of variables and functions, as well as expansion of macros.

Although the itemizer is basically independent of representation, a dependency
has been introduced for the sake of expediency; instead of requiring fixnums to be
created by calling a function at load time, the function make-fixnum transforms
the number according to the chosen representation and writes the transformed
value instead. Although this is convenient, there is an assumption that fixnums are
represented as immediate rather than pointer objects, which constrains possible
representation designs. This is also a problem for the automatic designer, since
the specification cannot designate a particular type as fixnum, so the designer in
turn cannot synthesize a definition for make-fixnum. It is to be hoped that later
versions of the compiler will not include this function of doubtful benefit.

5.3.2 Code Generation

The primitive datatype implementations are used by the code generation phase.
Since register allocation happens subsequently, the opencodings will use virtual
registers (or v regs), of which it is assumed that there are an infinite number. It is
possible to insist that certain vregs be allocated in certain register sets, or even to
use registers directly, but this should be avoided, since the allocator is moderately
intelligent about the right places for operands to be.

Since opencoding is just an alternate way of compiling a function call, a special
operand (arg i) designates the ith argument, while (result i) designates the ith
result (functions may return several values in Common Lispl).

1 For instance, bignums in Lucid Lisp [166] use multiple-valued opencoded functions in time
critical places.

Itemization

Assembly

Source
Transform

Dataflow
Analysis

Peephole

Figure 5.7. Architecture of the U CL Compiler

115

116

At the end of the code generation phase, the code is collected into basic blocks.
Some dead code removal happens here, since unreachable code is not incorporated
into any block and effectively disappears.

5.3.3 Register Allocation

The register allocator is a required phase that also does considerable optimiza
tion. It is driven from descriptions of the machine, of the function calling protocol,
and from some general decisions about the desired usage of the machine's registers
(such as dedicated registers). Since it works only on assembly language with virtual
instead of real registers, it makes no assumptions about data representation.

5.3.4 Assembly

The assembler is totally driven from the machine description. In some ways, it
resembles a Prolog interpreter, where the query is an instruction to be assembled,
and the database is the machine description, since there are logical variables, a
binding list, and backtracking. The assembler does not actually have any Lisp
specific information, so it does not depend on data representation. The output of
the assembler is a fasl file, which is essentially object code, but includes commands
to execute code while loading, and to create or manipulate symbols. The format is
largely independent of representation, but it does assume that symbols are vector
like objects with small integer offsets, and that they are named by text characters.
However, these symbols are required only to serve as convenient reference points,
and they need not be used directly as the language system's symbols.

5.3.5 Micro-kernel

Strictly speaking, the micro-kernel is not part of the compiler, but it too must
be free of any data representation assumptions. This is difficult, because the
micro-kernel does provide the basic execution environment, and does have some
characteristics imposed by the as. At present, the micro-kernel is written in C.

The micro-kernel sets up some initial data areas: a Binary Program Space
that is of fixed size, but which can be transformed into read-only space later on;
a proto-symbol table which is dynamically allocated, and a proto-heap which is
also dynamically allocated. Both the proto-symbol table and proto-heap need not
be used permanently by the system, and in fact one stage of the normal VCL
construction process transforms the symbol names from O-terminated strings (C
format) to character vectors with a length field (VCL format). Even so, the
micro-kernel could not accommodate the Spice Lisp technique of dividing up the
entire address space.

After the decision was made to use three low tag bits as the basic representation
in VCL, some dependencies on this were introduced into the micro-kernel. The
reason was to allow some of the C code to be used after the symbols had been
transformed into the VCL format; a better approach might have been to load and
use a Lisp version of the code instead, although this would make the bootstrapping
process more complicated.

117

5.4 Evaluation

The designer and coder could be evaluated by counting operations, as was
done in [141]. This method is error-prone, since the coder is fairly lax about
optimality, and the cleanup happens in the UCL register allocator. Also, counting
only allows conclusions about relative rather than absolute performance, and will
fail to distinguish between important performance differences and insignificant ones,
since overall execution time is not counted. Therefore, I shall concentrate on
evaluation in a real system.

The complete evaluation method is somewhat involved. Basically, the designer
and coder produce several files that are loaded into UCL running as a cross
compiler, whose output is then loaded and run by the micro-kernel. Figure 5.8
summarizes the process. Note that two files need to be cross-compiled: the defi
nition of primitives generated by the designer, and the benchmark program itself.
At the moment, the "boot file" does not make any direct references to data objects
and need not be recompiled for different representations.

5.4.1 Benchmarks

The standard set of benchmarks for Lisp was assembled by Gabriel [53]. Despite
their popularity, they have some serious disadvantages:

• Simplicity. Many of the benchmarks are simple enough that an analytical
model could be developed, and a language designer could calculate provably
optimal representations.

• Types. The programs require little or no dynamic polymorphism. A good type
inferencer or a small set of declarations would eliminate any need for runtime
type checking. There is a legitimate doubt, though, that real programs have
much more dynamic polymorphism than do the benchmarks.2

• Variety. Even the larger benchmarks use only one or two types of objects.
This distorts analyses by strongly favoring the one type in use and ignoring
all others.

The larger benchmarks used by Steenkiste [150] and Shaw [137] are superior,
since they are realistic programs with a greater complexity of data object usage.
Unfortunately, they are also beyond the capabilities of the UCL system at present,
and I am limited to the smaller Gabriel benchmarks.

5.4.2 Results

Designing implementations for simple s-expressions on the 68000 yielded several
designs, which are summarized in Table 5.1. Each design was then loaded into the
U CL compiler and used in compiling small benchmarks. The details of the process

2This is a complex issue in itself, and does not appear to have been studied satisfactorily.

118

fasl files{
loading
each other

Designer
Coder

UCL
Compiler

benchmark

UCL
Compiler

Micro-Kernel

timings

Figure 5.8. Evaluation Process

119

Number Type Tag Pos o Tag First Slot
0 tags high integers car
1 tags high lists car
2 tags low integers car
3 spaces na na car
4 bbop na na car

Table 5.1. Designs Produced

Program Control DO D1 D2 D3 D4
tak .23 .23 .33 ?? .23 .23
takl 2.11 ?? ?? ?? 2.49 ??

Table 5.2. Execution Times

may be found in Appendix B. To save time, several of the choice objects did not
generate multiple alternatives, for instance the structure choice did not produce
designs in which the cdr was the first slot of a list cell.

The first benchmark tak is a small highly recursive program that does int~ger
arithmetic and comparison. Takl is a version of tak that uses lists of length n
to represent the integer n. Times were measured in seconds of execution time on
an HP 9000/3ffJ workstation, a 25 MHz 68020-based machine. Since no garbage
collection was performed, and the working set size was small, the execution times
of each test case varied by less than 5%. The control case is the normal VCL
compiler, which uses 3 low tag bits, although some of the compiled code seems to
treat integers as untyped values.

The available numbers are summarized in Table 5.2. Several runs failed with
coredumps or infinite loops, and debugging attempts never uncovered the reasons.
There are several possibilities, including incorrect opencodings, incorrect cross
compilation, but most likely fatal interactions between the altered representations
and the one that has been built into VCL. Since the testing environment is essen
tially raw machine code, it is almost impossible to determine the cause of failure.
The numbers for tak are easy to interpret, since the only data operations are on
small integers, and only D1 required any actual manipulation of a tag (note that
the manipulation causes the benchmark to be 50% slower!), while the other designs
operate on the integers directly.

5.5 Discussion

The actual experimental results are limited in quantity, and of doubtful useful
ness, since the simulated results of [141] cast considerable doubt on the existence

120

of data representations that are good over a wide range of programs. However, the
process of acquiring the results has been very informative as to areas that need
further development. Each of these was resolved by taking a shortcut that should
be addressed in the future:

• Design rules frequently assume machine-like targets.

• The designer encounters combinatorial explosions frequently, so it has restric
tive rules and can only be used on simple types.

• The coder does not find and exploit puns by generating different code.

• The coder cannot allocate data to registers permanently.

• Coding frequently fails to match against machine instructions.

• Nothing is done about garbage collection or storage recovery in general, which
means that allocation-intensive benchmarks cannot be run.

5.5.1 Lack of Generality

Although the interface to the designer appears rather general-it is specified to
take two ADTs and produce an implementation of one in terms of the other, the
real~ty is considerably less impressive. In fact, the designer is likely to fail when
used for anything other than Lisp on contemporary hardware. The main limitation
is in the rules, which will not match on unusual targets, ultimately causing the
designer not to find any designs at all.

The right answer is a considerably more abstract and mathematical approach
that can reason from the axioms themselves. However, this will exacerbate rather
than alleviate the most serious problem of the designer, which is the rapid growth
in the number of different designs, as the type to be implemented gets more
complicated.

5.5.2 Combinatorial Explosion

As observed previously, the number of possible designs is huge, since there are
usually several "opportunities" for combinatorial explosion. This means that a
simple forward or backward chaining inference mechanism (as used both here and
in [141]) is undesirable.

A better approach might be derived from the recent literature on expert systems
in design (see Mostow's review [113] for work prior to 1985). Design is characterized
as a task of describing an artifact that satisfies functional specifications including
constraints on size, performance, etc. Clearly, the design of primitive datatype
implementations fits this model; the functional specification consists of the abstract
data type and the target machine, while constraints are time and space, on both the
resulting design and on the designer itself (i.e. it cannot explore all alternatives).

121

After some time spent experimenting with versions of the more sophisticated
algorithms for design, I found that the published systems were insufficiently adapted
to the needs of datatype design.

The main problem with controlling the size and shape of the search space is
that we have very little idea of how to determine which parts are uninteresting. In
contrast to the design of physical objects, software design is highly "nonlinear"-in
other words, small changes in the design may have a large effect on performance,
while large changes may not have any effect at all. For instance, changing one
bit of a 0 tag causes all operations to require tag operations, or incrementing a
range of numbers by one may force storage allocation and reclamation. In these
circumstances, design constraints are of little use, since all algorithms based on
constraints assume some kind of continuity, that guides the algorithm toward a
"nearby" better solution.

5.5.3 Coding Optimizations

Consider the use of a single low tag field on fixnums. The default wrapping will
compose fixnum addition as a sequence of shifting the numbers down to remove
the tag, adding them, then shifting up and adding the tag back in. In other words,
given two tagged fixnums a and b, a tag field of n bits, a tag of t, and modelling
the shifts as multiplication and division:

This formula does 3 shifts and 2 adds, which is unnecessary. Distributing the
multiplication and using the definition of integer division yields

a ffi b = a - a mod 2n + b - b mod 2n + t

Since t = a mod 2n and t = b mod 2n , we can cancel:

affib=a+b-t

Thus, for any fixnum tag, addition can be reduced to the addition alone plus a
subtraction of the tag. If the tag is zero, then no adjustment is needed at all. The
derivation needs to be done for each individual primitive-subtraction requires an
add of the tag, multiplication requires an extra shift, and so forth.

The reasoning here is moderately sophisticated and of sufficient difficulty that a
term rewriting or computer algebra system would be appropriate. This is necessary
to achieve human-quality primitives, since this is how low tag arithmetic functions
are best written. An interesting piece of related work was done by ~fassalin [103],
who set up lengthy searches for optimal machine language sequences for various
arithmetic operations. This may prove useful for primitive functions as well.

122

5.5.4 Use of Registers

The coder does not know much about registers, mostly because the opencoding
is assumed to happen before register allocation, so the coder produces references
to virtual registers (temporary names).

However, some objects are sufficiently important that they should be perma-
nently assigned to a fixed register. Some examples:

• Heavily-used objects such as nil and O.

• Bit patterns such as tag and data masks.

• Heavily-used addresses such as a pointer to the next free heap location.

The coder could handle this by noting any constant or variable that is referenced
extensively, based on estimating expected uses (references in functions times the
number of calls to the functions). The most-used things should go into registers,
if enough are available. This decision interacts with other parts of the system,
since for instance tying up a register with a constant means fewer available for
allocation. This is an important tradeoff: the Cray-l has dozens of registers while
addressing memory is expensive (so each dedicated register has a measurable effect
on performance [8]), while the Intel 80386 has only a few registers, all of which are
needed as temporaries.

In DCL, it is possible to dedicate a register, but requires some extra work:

1. Add a declaration into the information used by the register allocator, so it will
avoid using the register as temporary storage.

2. Add a load operation into the initialization code, ensuring that it comes after
any prerequisite initializations. (A special cons cell cannot be created until a
cons cell heap exists, for example.)

3. Add a declaration to some table that the compiler will use to decide how to
compile references to that object (it should not go via the default). This table
does not presently exist, and would require new compiler code.

5.6 Summary

The experimental work described here is rather limited in its extent, and could
be expanded to answer a variety of questions. Although the machinery described
makes accurate evaluation possible, it is by no means easy, since there are still issues
of effects from the specification, and the validity of benchmark programs.

The designer program is limited because of combinatorial problems, while the
coder is too simple to do justice to the more interesting design rules. Getting the
entire language implementation to allow different designs is moderately difficult,
because of the many places that dependencies creep in. This problem has already
occurred in DCL, and constitutes a serious obstacle to further experimentation.
Further efforts will be required to remove those dependencies.

CHAPTER 6

CONCLUSION

The design of the execution environment of programs seems to be the
subject of sporadic, disjointed research that is usually conducted as a
part of some other activity.

W.A. Wulf, IEEE Computer (1980)

Automatic design of primitive datatype representation can work. The pro
gression, from formal definitions of datatypes and machines, to pieces of code
incorporated into a real implementation, has been handled almost completely by a
program. In order to do this, it was necessary to study past implementations, to
arrive at a set of heuristics that could build designs in a reasonable amount of time,
and to design a system for unbiased testing of different designs.

On the other hand, we should be careful not to overestimate this work. Nlany
problems and issues have been glossed over, simplified, or ignored entirely. I am
doubtful that all of these merely need patching up-some will require fundamental
insights into the nature of implementation, others may be inherently insoluble.
Even so, some extensions are promising, and there are potentially valuable appli
cations for automatic design. Whether or not this particular work is a deadend, it
may have uses in a somewhat different area, which will be described.

6.1 Contributions

Information about previous implementations has never before been gathered into
one place and analyzed. There were no great surprises or overlooked geniuses, but
this negative observation is itself useful information.

The formal model for implementations is not a particularly strong one, since it
is essentially equivalent to general ADT models. Still, its use has revealed tacit
assumptions in implementors' reasoning, as well as in Lisp language standards.

The heuristics for data structure design are somewhat more novel. Some have
never been written down before, while others have more complete sets of precondi
tions than have been expressed previously. It has also become clear that adequate
solutions to the problem require deeper reasoning than that offered by rules alone.

Experimentation with machine-generated datatype designs is new. It has been
shown to work, but at the same time, the quality of the code is poor. For regular

124

use, the existing designer and coder would need considerable augmentation; less if
they are intended only as a sort of "designer's assistant." The design-independent
Lisp system is also a first; its importance in getting meaningful comparisons cannot
be overemphasized.

Overall, the most important contribution of this work is the strong light that it
casts on what had been a relatively unknown topic. In the future we can expect
a more formal and systematic approach to the implementation of runtime systems
of higher-level languages, leading perhaps to wider use of such languages and a
corresponding increase in the quantity and quality of software in general.

6.1.1 Recommendations for Lisp Standards

The Common Lisp and Scheme standards need some additional parameters that
describe the limits of implementations. For Common Lisp, the following should be
defined:

max-integer-Iength The maximum number of bits appearing in any integer;
therefore, it is an upper bound on the integer-length function. Can be
nil if there are no limits short of memory availability.

random-state-Iength The number of bits in a random state. An alternate form
is max-random-period, since the number of bits in a random state sets only
the crudest bound on the period of the generator.

max-number-package-symbols The maximum number of symbols that can be
in a package, either as internal or external symbols. Can be nil if there are
no limits short of memory availability.

max-number-external-symbols The maximum number of symbols that can be
external in a single package. Can be nil if there are no limits short of memory
availability.

max-hash-table-size The maximum possible size for a hash table. Can be nil if
there are no limits short of memory availability. Should be at least 1000.

max-structure-size The maximum number of slots allowed in a structure. (This
one is dubious, since the syntax of defstruct makes> 100 slot structures
highly unlikely.)

These may be variables or constants defined for each system individually, or uni
versal values that all conforming implementations can be expected to support. In
addition, the standard should assert that properties of types carryover their uses,
for instance, that symbol names inherit the 1000-character minimum imposed on
strings.

Scheme as defined in [126] is a somewhat "looser" standard, as it seems to be
intended to define common concepts and vocabulary, rather than to make promises
about what a portable program can or cannot depend on. At the very least, a

125

Scheme system should define the allowable ranges of numbers (particularly integers)
and the allowable sizes of strings and vectors. In addition, since a Scheme system
is permitted to support only a small range of integers, the standard should state
what will happen on integer arithmetic overflows.

Both Scheme and Common Lisp need characterizations for the memory space
available. There are two possibilities, both of which could be used with either
language.

One way is to use a version of the sizeof operator in C that would return the
number of bits in an object or type, along with another function returning the
number of bits currently available in the system. (Bits are really too fine-grained,
but are also universal in a way that bytes, words, etc are not.)

(object-size obj) Returns the minimum number of bits required for the general
representation of the object.

(available-memory) Returns the number of bits available in memory.

There are some practical difficulties, since optimizations like cdr coding will require
that consistent numbers assume the worst case, which may be much worse than
reality. The effect would be to make some programs fail, even though enough space
is available.

A better approach is somewhat more abstract, since it only counts objects:

(maximum-number type) For any type specifier, returns the maximum number
of this type of object that can be created. Returns nil if the number is
unbounded; this will typically be the case only for fixnums, characters and
other small immediate objects.

(number-left type) For any type specifier, returns the number of objects that may
be created before memory is exhausted. This may return different results after
a reclamation.

Both approaches to calculating space have their problems, but experience with
these would be necessary before a final assessment is possible.

6.2 Extensions

The existing designer and coder can be improved in many ways, most of which
were mentioned in Chapter 5. There are also some broader extensions.

The current exhaustive algorithm is inadequate in realistic design spaces. Unless
some means can be found to locate good designs before evaluation, the entire
designer will be greatly limited in what it can do. One possibility is to change
the shape of the design space, so that classes of designs can be handled as a unit.

The rules as they stand work only on the predefined schemas. Some of the
work mentioned in the first chapter can derive implementations from arbitrary
equations, but it is very limited at present. One attractive point of a more general
and less heuristic designer is the possibility that it could discover new methods for

126

representation. This might be approached by having the machine build a language
system and test it on benchmarks itself, then use the data so generated to alter its
design heuristics. This approach has a real possibility for generating new knowledge
about implementation, but it requires too much from the machine to be feasible at
present.

Data type design is actually a subject of lesser significance; the design and
implementation of control-related objects is much more important, but also more
complicated in its demands on the available theory. Datatypes are simple because
their formal specification involves a handful of simple axiom schemas; control
structures involve the entire semantic definition of a language. There has been
some work exploring this topic. Wand [161] has done some elegant development
from language definition to closure-like structures built from combinators, using
continuation semantics as an intermediate step. More pragmatic analyses by Biswas
and Dasgupta [21] have compared various possibilities for stack structures in con
ventionallanguages. I should also mention that the formalism of this dissertation
has a subtle bias towards heap-allocated objects (they are assumed to be inde
pendent of program scopes, for instance), but that eliminating this bias would also
require knowing a lot about language semantics in general (see [114] for an example
of using data flow information to deduce properties of list data structures).

Although I have not been directly concerned with parallelism, the importance
of the topic demands some consideration. Parallel machines do offer some oppor
tunities for optimization, for instance by requiring that datatypes be defined more
abstractly, which in turn opens up new implementation possibilities. Many of the
design rules will change, although this depends on the architecture. For message
passing and large-grained architectures, the rules will not be much different. Shared
memory, however, can change the situation in at least two ways: the costs of
getting to local vs remote memory must be taken into account, and the increased
quantity of total memory may require more unusual addressing schemes. Perhaps
the most significant tradeoff in data representation for parallelism is the choice
between sharing and copying. Sharing uses less space, but slows things down by the
serialization necessary to control indeterminacy. Copying, on the other hand, uses
more space, and may still introduce problems with merging changed copies, if such
becomes necessary. Issues like these point up the importance of overall language
semantics; merging changed copies of data structures is not a major problem for a
purely functional language.

6.3 Applications

One of the applications not mentioned in this section is the use of a designer
on a regular basis. The prospects for a designer as a standard tool like Unix
yacc are not very good. Even if the various problems were to be solved, the
actual amount of effort saved by this system is relatively small. The effort saved
is greater in those cases where extreme optimization is important, but this also
requires more detailed data on usage statistics than is generally available, especially
before a system has come into use. At the same time, the abstraction required in

127

the rest of the implementation is high, enough to overwhelm any savings from
automatic design. Changing the designer to be a design-checking assistant might
be worthwhile, particularly in the case of complex designs. This would eliminate
combinatorial explosion as a problem, but the designer would also need a more
elaborate human interface.

Another use for the design rules is as a way to explore the representation of
critical data structures in normal programs. Evaluation would have to be altered
to take the compiler into account. For instance, a frequently used structure in a C
program could be analyzed to decide if bit encoding of fields would yield acceptable
performance.

Other uses include the design of new hardware architectures. The degrees of
freedom for a designer are much more numerous, resulting in a problem of knowing
what to look for. Should an operation be done in hardware or software? If hardware
can handle more kinds of representations, when does this impinge on chip real
estate? The potential payoffs are very high, enough to justify significant amounts
of supercomputer time searching the design space.

6.4 Abstract Data Types in General

Since this work is about implementation, there has been an underlying assump
tion that both the source language and the target machine have already been
decided upon. A criticism of this basic viewpoint is that fitting the software to the
language and machine is solving the wrong problem. Instead, either the machine
must be fitted to the language, or the language designed to be readily implemented.
The second point of view leads to languages like C, that are efficient to use, but
offer little more than does assembly language, while the first leads to attempts to
build "higher-level" machines, which have been tried many times, but have been
almost completely unsuccessful.

A more subtle criticism has to do with the languages being implemented. Per
haps even Lisp and Prolog are too low-level; after all, many of the implementation
and usage problems of Lisp ultimately derive from the possibility that circular lists
may occur, and Prolog systems are complicated by the requirement to handle cuts
at any point in a predicate. A higher-level language will make fewer compromises
on such matters, perhaps simplifying the requirements on the implementation. For
instance, EQLOG [57] is completely based on term rewriting in initial algebras
defined by abstract data types. Although implementation by general term rewrit
ing is very inefficient, programs are so abstract that dozens of wildly differing
translations are possible. One important step in a translation process will be to
select data representations that are best suited to a particular program. Instead of
running for a long time to produce a fixed design for a language, the designer will
be part of a compiler and produce designs adapted to specific programs. Although
this is not a new idea, only limited success has been achieved so far. I believe
that future progress will depend on a combination of techniques, including the ones
described in this dissertation, on human assistance when necessary, and on the
analysis of high-level programs to determine which techniques are the most useful.

128

Success could lead to a revolution in programming; the next several years will be
interesting to watch.

APPENDIX A

SPECIFICATIONS OF TYPES

A.l Basic Lisp Definition

;;;; Definition of datatypes for "pure Lisp"

(defadt purelisp
(sum (atom smallints) (consp conses»)

(defadt conses
(structure cons (car purelisp) (cdr purelisp»
(maximum-number 1000000»

(defadt smallints
(range 0 1000)
(define fix+

(lambda (x y)
(declare (smallints x y»
(int+ x y»)

(define fix>=
(lambda (x y)

(declare (smallints x y»
(int>= x y»)

(maximum-number 100000»

A.2 Common Lisp Definition

, , , , Definition of CL (UCL version)

(defadt t+bottom
(sum (tp cl) (bottomp bottom»)

(defadt bottom (set bottom»

(defadt cl
(sum (numberp number)

(symbolp symbol)

130

)

(arrayp array)
(characterp character)
(consp cons)
(null null)
(packagep package)
(hash-table-p hash-table)
(random-state-p random-state)
(readtablep readtable)
(streamp stream»

(defadt number
(sum (rationalp rational)

(floatp float)
(complexp complex»)

(defadt rational
(sum (integerp integer)

(ratiop ratio»)

(defadt integer (bits #.(expt 2 30»)

(defadt ratio
(structure make-ratio

(numerator integer)
(denominator integer»)

(defadt float

)

(sum ; (short-float-p short-float)
(single-float-p single-float)
; (long-float-p long-float)
; (double-float-p double-float)

)

(defadt single-float

need better repn

(structure make-float (exponent exponent) (mantissa mantissa»
ieee-float

)

(defadt exponent (bits 7»

(defadt mantissa (bits 23»

" , Complex numbers have components,

" , but they are not required to be mutable.

(defadt complex

(structure make-complex (realpart number) (imagpart number»)

(defadt symbol

)

(structure make-symbol
(symbol-name simple-string)
(symbol-package package)
(symbol-plist list set-symbol-plist)
(symbol-value t+bottom set-symbol-value)
(symbol-function function set-symbol-function»

(define boundp
(-> (symbol) (boolean»
(lambda (x) (eq (symbol-value x) bottom»)

(define fboundp
(-> (symbol) (boolean»
(lambda (x) (eq (symbol-function x) bottom»)

(def adt array

)

(sum (general-array-p general-array)
; bit-vector
(simple-string-p simple-string»

(defadt general-array (structure make-raw-array»

(defadt simple-string
(vector make-string

(0 1000 string-length)
(schar character set-schar»)

(defadt character (range 0 256»

(defadt cons
(structure cons

(car t set-car)
(cdr t set-cdr»)

(defadt null (range 0 1»

;;; Not really a primitive type in CL

; (defadt list
(sum cons null»

(defadt package
(structure make-package

(package-use-list list set-package-use-list)
(package-internals symbol-vector set-package-internals)

131

132

(package-externals symbol-vector set-package-externals»)

hash-table, etc

(defadt hash-table (structure make-hash-table»

(defadt stream (structure make-stream»

(defadt readtable (structure make-readtable»

(defadt random-state (range 0 1000»

A.3 68000 Definition
;;;; Definition of 68000 (not 68020)

(defadt m68k (structure make-m68k (a areg) (d dreg) (m memory»
(-> (setf ?d (lref (+ ?s ?i»)

(move long (displacement ?s ?i) ?d»
(-> (setf ?d (lref ?s»

(move long (indirect ?s) ?d»
(-> (setf ?d ?s)

(move long ?s ?d»
(-> (setf (lref (+ ?d ?i» ?s)

(move long ?s (displacement ?d ?i»)
(-> (setf (lref ?d) ?s)

(move long ?s (indirect ?d»)
(-> (setf ?x (setf-lref ?d ?s»

(move long ?s (indirect ?d»
(move long ?d ?x»

(-> (setf ?d (logand ?sl ?s2»
(move long ?sl ?d)
(and long ?s2 ?d»

(-> (setf ?d (logior ?sl ?s2»
(move long ?sl ?d)

add only works because we only OR non-overlapping fields
(or long ?s2 ?d)

(add long ?s2 ?d»
(-> (setf ?d (int+ ?sl ?s2»

(move long ?sl ?d)
(add long ?s2 ?d»

(-> (setf ?d (int- ?sl ?s2»
(move long ?sl ?d)
(sub long ?s2 ?d»

(-> (setf ?d (ash ?s 1»
(add long ?s ?s»

(-> (setf ?d (ash 1s -1»
(asr long ?s ?d»

)

(-> (setf ?d (eq ?sl ?s2))
(cmp long ?sl ?s2)
(%cjump ne (label false)))

(-> (setf ?d (int>= ?sl ?s2))
(move long ?sl (temp d 1))
(%cjump ?s2 (temp d 1) It (label false)))

(-> (setf nil (int>= ?sl ?s2))
(move long ?sl (temp d 1))
(%cjump ?s2 (temp d 1) It (label false)))

(define lref
(-> (integers) (longvord))
(lambda (x) (mref (m *machine*) x)))

(defadt areg
(vector make-areg 8 (a-ref address)))

(defadt dreg
(vector make-dreg 8 (d-ref longword)))

(defadt memory
(vector make-memory 16000000 (mref byte setf-mref)))

(defadt byte (bits 8))

(defadt address (bits 24))

(defadt longword (bits 32))

;;; Miscellaneous definitions (all are kludges).

(defun machine-word-size (m) 32)

(defun machine-word-accessor (m) 'lref)

(defun machine-word-setter (m) 'setf-Iref)

133

;;; To decide what is main memory, look for a vector with >500 elements?

(defun vector-accessor (adt)
(car (fourth (adt-schema adt))))

(defun memory (adt)
(find-adt 'memory))

134

APPENDIX B

COMPLETE DESIGNER RUN

B.l Designer Session

Common Lisp

Part No. 98678A Rev. 1.01
(c) Copyright 1986, Heqlett-Packard Company. All rights reserved.

UCL Cross Compiler, 4-Jul-88

, , ,
, , ,

This Lisp is already set up as a cross-compiler, but qe can still
load the data structure designer and coder.

(load "dsd")
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: No declaration
!! Warning: BYTE already defined
/u/shebs/kbi/dsd.l"

, , ,
, , ,
, , ,

, , ,
, , ,
, , ,

, , ,

A number of ADT definitions are already loaded, including those for
simple S-expressions and for the 68000, so can go ahead and start
designing.

Each choice announces its success (though not on which design),
and the lists separated by ellipses are lists of successful and
untried goals after each choice has executed.

When all the designs have been found, the coder starts work.

136

(impl 'purelisp 'm68k)
NIL ... NIL
Choice REALITY-CHECK succeeded ...
(FEASIBLE) ... (PURELISP)
Making decision (PURELISP . BBOP) ...
Choice BBOP-SUM succeeded ...
(PURELISP FEASIBLE) ... (CONSES SMALLINTS)
Choice BLOCK-STRUCTURE succeeded ...
(CONSES PURELISP FEASIBLE) ... (SMALLINTS)
Choice DIRECT-RANGE succeeded .. .
(SMALLINTS CONSES PURELISP FEASIBLE) ... NIL
Making decision (PURELISP . SPACES) .. .
Choice SPACED-SUM succeeded ...
(PURELISP FEASIBLE) ... (CONSES SMALLINTS)
Choice BLOCK-STRUCTURE succeeded ...
(CONSES PURELISP FEASIBLE) ... (SMALLINTS)
Choice DIRECT-RANGE succeeded .. .
(SMALLINTS CONSES PURELISP FEASIBLE) ... NIL
Making decision (PURELISP . TAGGED) .. .
Choice LO-TAGGED-SUM succeeded ...
(PURELISP FEASIBLE) ... (CONSES SMALLINTS)
Choice BLOCK-STRUCTURE succeeded ...
(CONSES PURELISP FEASIBLE) ... (SMALLINTS)
Choice DIRECT-RANGE succeeded .. .
(SMALLINTS CONSES PURELISP FEASIBLE) ... NIL
Making decision (PURELISP TAGGED 0 1) .. .
Making decision (PURELISP TAGGED 1 0) .. .
Choice HI-TAGGED-SUM succeeded ...
(PURELISP FEASIBLE) ... (CONSES SMALLINTS)
Choice BLOCK-STRUCTURE succeeded ...
(CONSES PURELISP FEASIBLE) ... (SMALLINTS)
Choice DIRECT-RANGE succeeded .. .
(SMALLINTS CONSES PURELISP FEASIBLE) ... NIL
(PURELISP FEASIBLE) ... (CONSES SMALLINTS)
Choice BLOCK-STRUCTURE succeeded ...
(CONSES PURELISP FEASIBLE) ... (SMALLINTS)
Choice DIRECT-RANGE succeeded .. .
(SMALLINTS CONSES PURELISP FEASIBLE) ... NIL
5 designs found.
!!! Warning: No meaning for NEXT-FREE-CONSES
!!! Warning: No meaning for NEXT-FREE-CONSES
!!! Warning: No meaning for NEXT-FREE-CONSES
'" GC starting
'" GC 4: time 12400 milliseconds
", GC 160114 stable, 69798 active, 514054 recovered, 584031 free
!!! Warning: No meaning for NEXT-FREE-CONSES
!!! Warning: No meaning for NEXT-FREE-CONSES

!! !
!! !
!! !
!! !
, , ,
, , J

, , ,
!! !
!! !
!! !
!! !
NIL

Warning: No meaning for NEXT-FREE-CONSES
Warning: No meaning for NEXT-FREE-CONSES
Warning: No meaning for NEXT-FREE-CONSES
Warning: No meaning for NEXT-FREE-CONSES
GC starting
GC 5: time 10460 milliseconds
GC 24636 stable, 210174 active, 569738 recovered, 579733 free
Warning: No meaning for NIL
Warning: No meaning for NEXT-FREE-CONSES
Warning: No meaning for NEXT-FREE-CONSES
Warning: No meaning for NEXT-FREE-CONSES

137

" ,
, , ,
, , ,
, , ,

The file cO.1 contains opencodings for cross-compilation. Loading it
causes some opencodings to be redefined, leaving others as they yere
originally (there are a lot of opencodings, many specific to the
machine but not to a particular data representation).

(load "cO.I")
"cO.I"

;;; Now ready to compile both the benchmark ...

(ucf "tak.l")
Compiling "tak.l ll to "tak.b ll

•••

RUN-BENCHMARK TAK
Compilation of "tak.l" complete.
T

, , , and the primitive function definitions.

(ucf IIpO.I")
Compiling IIpO.11l to IIpO.b ll •••

INIT-PURELISP FIX+ FIX>= ALLOCATE-CONSES
!!! Warning: Using NEXT-FREE-CONSES as Special
!!! Warning: Using NEXT-FREE-CONSES as Special
CONS
, " GC starting
;;; GC 6: time 11560 milliseconds
;;; GC 234572 stable, 8194 active, 561800 recovered, 571777 free
T2 CDR T1 CAR CONSP ATOM
Compilation of IIpO.11l complete.
T

, , J Lisp system's work is noy done.

138

B.2 Abstract Design 0

;;; Design 0 for purelisp on m68k
;;; Decisions:
«purelisp tagged 0 1) (conses . block) (smallints . direct»

(define
init-purelisp
(lambda ()
(let «space (allocate-proto-heap 10000»)

(setq heap-lower-bound space)
(setq heap-upper-bound (fix+ space 10000»
(setq next-free-heap space»»

(define fix+ (lambda (x y) (int+ x y»)

(define fix>= (lambda (x y) (int>= x y»)

(define
allocate-conses
(lambda ()
(let «new next-free-conses»

(setq next-free-conses (fix+ next-free-conses 8»
new»)

(define
cons
(lambda (t11 t12)
(let «new (allocate-conses») (t1 new t11) (t2 new t12) new»)

(define t2 (lambda (x v) (setf-lref (int+ x 1) v»)

(define cdr (lambda (x) (lref (int+ xi»»

(define t1 (lambda (x v) (setf-lref (int+ x 0) v»)

(define car (lambda (x) (lref (int+ x 0»»

(define next-free-heap nil)

(define heap-upper-bound nil)

(define heap-lower-bound nil)

(define consp (lambda (x) (eq (logand x 2147483648) 0»)

(define atom (lambda (x) (eq (logand x 2147483648) 0»)

B.3 Opencodings for Design 0

, , , , Machine-generated opencodings

(defopen fix+

(progn

(move long (arg 0) (temp * 1))
(move long (arg 1) (temp * 0))
(move long (temp * 1) (result 0))
(add long (temp * 0) (result 0)))

(defopenp fix>=
jumpnil
(move long (arg 0) (temp * 1))
(move long (arg 1) (temp * 0))
(move long (temp * 1) (temp d 1))
(%cjump (temp * 0) (temp d 1) It (label false)))

(defopenp fix>=
jumpt

(defopen t2

(move long (arg 0) (temp * 1))
(move long (arg 1) (temp * 0))
(move long (temp * 1) (temp d 1))
(%cjump (temp * 0) (temp d 1) ge (label false))))

(move long (arg 0) (temp * 3))
(move long (immediate long 1) (temp * 2))
(move long (temp * 3) (temp * 1))
(add long (temp * 2) (temp * 1))
(move long (arg 1) (temp * 0))
(move long (temp * 0) (indirect (temp * 1)))
(move long (temp * 1) (result 0)))

(defopen cdr
(move long (arg 0) (temp * 2))
(move long (immediate long 1) (temp * 1))
(move long (temp * 2) (temp * 0))
(add long (temp * 1) (temp * 0))
(move long (indirect (temp * 0)) (result 0)))

(defopen t1
(move long (arg 0) (temp * 3))
(move long (immediate long 0) (temp * 2))
(move long (temp * 3) (temp * 1))
(add long (temp * 2) (temp * 1))
(move long (arg 1) (temp * 0))
(move long (temp * 0) (indirect (temp * 1)))
(move long (temp * 1) (result 0)))

139

140

(defopen car
(move long (arg 0) (temp * 2»
(move long (immediate long 0) (temp * 1»
(move long (temp * 2) (temp * 0»
(add long (temp * 1) (temp * 0»
(move long (indirect (temp * 0» (result 0»)

(defsysvar next-free-heap)

(defsysvar heap-upper-bound)

(defsysvar heap-lower-bound)

B.4 Primitives for Design 0

", , Machine-generated primitives

(defun init-purelisp ()
(let «space (allocate-proto-heap 10000»)

(setq heap-lower-bound space)
(setq heap-upper-bound (fix+ space 10000»
(setq next-free-heap space»)

(defun fix+ (x y) (declare (inline fix+» (fix+ x y»

(defun fix>= (x y) (declare (inline fix>=» (if (fix>= x y) t nil»

(defun allocate-conses ()
(let «new next-free-conses»

(setq next-free-conses (fix+ next-free-conses 8»
new»

(defun cons (tll t12)
(let «new (allocate-conses») (tl new tll) (t2 new t12) new»

(defun t2 (x y) (declare (inline t2» (t2 x y»

(defun cdr (x) (declare (inline cdr» (cdr x»

(defun tl (x y) (declare (inline tl» (tl x y»

(defun car (x) (declare (inline car» (car x»

(defun consp (x) (eq (logand x 2147483648) 0»

(defun atom (x) (eq (logand x 2147483648) 0»

141

B.5 Bootstrap File

The bootstrap file boot .1, when compiled to boot. b, will be automatically
loaded by the micro-kernel when it starts execution. When the file is loaded,
the symbol boot-system is searched for and its code executed. In this case,
the symbol's code loads more files and eventually executes run-benchmark, which
should run the benchmark itself.

iii;;;iii;;;;;;
File:
Description:
Author:
Created:
Package:

boot9.l

Leigh Stoller
19-Mar-88

RCS $Header: boot9.l,v 1.1 88/04/02 20:56:49 stoller Exp $

(c) Copyright 1988, University of Utah, all rights reserved.
iii;;;iii;;;;;;

" This must always be the first function defined. It redefines the C
" version so that we can figure (by opencode) what function we were
" trying to call. It is very dependent on the calling model, and must
" looked at if we drop the frame pointer. Further, because we cannot
" define strings yet, use a *large* symbol for the error message.

(defun undefined-function ()
(declare (inline get-undefined-function-symbol»
(console-print-string (symbol-name 'IUndefined function called: I)
(console-print-symbol (get-undefined-function-symbol»
(console-print-newline)
(exit-to-os -1»

(defun boot-system ()
(fasl-Ioad (symbol-name' Iprims.bl»
(init-purelisp)
(fasl-Ioad (symbol-name 'Ibench.bl»
(run-benchmark»

B.6 Benchmark Run
'l. mv tak.b bench.b
'l. mv pO.b prims.b
'l. kernel
Time elasped: 0.230000 user, 0.000000 system

7
'l.

REFERENCES

[1] Abrahams, P. LISP 2 interim programming manual. Tech Memo TM-
2710/111/00, System Development Corp., Jan. 1966.

[2] Abrahams, P., Barnett, J., Book, E., Firth, D., Kameny, S., Weissman, C.,
Hawkinson, L., Levin, M., and Saunders, R. The LISP 2 programming
language and system. In AFIPS Fall Joint Computer Conference (1966),
pp. 661-676.

[3] Military standard: Ada programming language. Department of Defense,
Washington, D. C. 20301, 1980. MIL-STD-1815.

[4] Aho, A., Sethi, R., and Ullman, J. Compilers: Principles} Techniques} and
Tools. Addison-Wesley, 1986.

[5] Alberga, C. N., Bosman-Clark, C., Mikelsons, M., Deusen, M. S. V., and
Padget, J. Experience with an uncommon Lisp. In Proc. 1986 A eM Con
ference on Lisp and Functional Programming (Cambridge MA, Aug. 1986),
ACM SIGPLAN/SIGACT/SIGART, pp. 39-53.

[6] Allen, J. R. The Anatomy of LISP. McGraw-Hill, 1978.

[7] American National Standards Institute. ANSI C Standard. 1986.

[8] Anderson, J. W., Galway, W. H., Kessler, R. R., Melenk, H., and Neun, W.
Implementing and optimizing lisp for the cray. IEEE Software (July 1987),
74-83.

[9] Arvind, and Culler, D. E. Dataflow architectures. In Annual Review in
Computer Science (Palo Alto CA, 1986), Annual Reviews Inc., pp. 225-254.

[10] Backus, J. Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs. Commun. ACM 21, 8 (Aug.
1979),613-641.

[11] Backus, J., et al. The Fortran automatic coding system. In Western Joint
Computer Conference (1957), pp. 188-198.

[12] Barbacci, M. Instruction Set Processor Specifications (ISPS): the notation
and its applications. IEEE Transactions on Computers C-30, 1 (Jan. 1981),
24-40.

[13] Barr, A., and Feigenbaum, E., Eds. The Handbook of Artificial Intelligence.
Vol. 1, William I{aufmann, Inc., Los Altos CA, 1982.

143

[14] Barron, D. Pascal-The Language and its Implementation. Wiley, Chich
ester, 1981.

[15] Barstow, D. I(nowledge-Based Progmm Construction. North Holland, 1977.

[16] Bartley, D. H., and Jensen, J. C. The implementation of PC Scheme. In
Proc. 1986 A CM Conference on Lisp and Functional Programming (Cam
bridge MA, Aug. 1986), ACM SIGPLAN /SIGACT /SIGART, pp. 86-93.

[17] Bates, R. L., Dyer, D., and Kooman, J. A. G. M. Implementation of Interlisp
on the VAX. In Proc. 1982 A CM Symposium on LISP and Functional Pro
gramming (Pittsburgh PA, Aug. 1982), ACM SIGPLAN/SIGACT/SIGART,
pp. 81-87.

[18] Bawden, A., Greenblatt, R., Holloway, J., Knight, T., Moon, D., and Weinreb,
D. Lisp machine progress report. AI Memo 444, MIT AI Lab, August 1977.

[19] Bell, C., and Newell, A. Computer Structures: Readings and Examples.
McGraw-Hill, New York NY, 1971.

[20] Berkeley, E., and Bobrow, D., Eds. The Programming Language LISP: Its
Operation and Applications. Information International, Inc., 200 6th St.,
Cambridge MA 02142, 1964.

[21] Biswas, P., and Dasgupta, S. Architectural support for variable addressing in
Ada-a design approach. International Journal of Computer and Information
Sciences 14, 1 (Feb. 1985),51-72.

[22] Bobrow, D., and Clark, D. Compact encodings of list structure. ACNI
Transactions on Progmmming Languages and Systems 1, 2 (Oct. 1979),
266-286.

[23] Bobrow, D., and Murphy, D. The structure of a LISP system using two-level
storage. Commun. A CM 10, 3 (March 1967), 155-159.

[24] Brooks, R. A., Gabriel, R. P., , and Steele Jr., G. L. An optimizing compiler
for lexically scoped lisp. In Proceedings of the SIGPLAN 82 Symposium on
Compiler Construction (Boston MA, June 1982), ACM SIGPLAN, pp. 261-
275.

[25] Brooks, R. A., Gabriel, R. P., and Steele Jr., G. L. S-l Common Lisp im
plementation. In Proc. 1982 A CNI Symposium on LISP and Functional Pro
gramming (Pittsburgh PA, Aug. 1982), ACM SIGPLAN/SIGACT/SIGART,
pp. 108-113.

[26] Budd, T. A Little Smalltalk. Addison-Wesley, 1987.

[27] Campbell, J., and Hardy, S. Should Prolog be list or record oriented? In
Implementations of Prolog (1984), J. Campbell, Ed., Ellis Horwood, pp. 369-
375.

144

[28] Cardelli, L., and Wegner, P. On understanding types, data abstraction, and
polymorphism. Computing Surveys 17, 4 (Dec. 1985).

[29] Cartwright, R. A constructive alternative to axiomatic data type definitions.
In Proc. 1980 LISP Conference (1980), pp. 46-55.

[30] Cattell, R. Automatic derivation of code generators from machine descrip
tions. ACM Transactions on Progmmming Languages and Systems 2,2 (Apr.
1980), 173-190.

[31] Caudill, P. A third generation Smalltalk-80 implementation. In Object
Oriented Programming Systems, Languages, and Applications 1986 Confer
ence Proceedings (Portland OR, Oct. 1986), ACM SIGPLAN, pp. 119-130.

[32] Chailloux, J., Devin, M., and Hullot, J. LE LISP, a portable and efficient
LISP system. In Proc. 1984 A CM Symposium on LISP and Functional
Programming (Austin TX, Aug. 1984), ACM SIGPLANjSIGACTjSIGART,
pp. 113-122.

[33] Clark, D. W., and Green, C. An empirical study of list structure in Lisp.
Commun. ACM 20,2 (Feb. 1977),78-87.

[34] Cohen, J. Garbage collection of linked data structures. Computing Surveys
13,3 (Sep. 1981),341-367.

[35] Computation Center, The University of Texas at Austin. LISP Reference
Manual. 1975.

[36] Darlington, J. An experimental program transformation and synthesis sys
tem. Artificial Intelligence 16 (1981),1-46.

[37] Davidson, J., and Fraser, C. The design and application of a retargetable
peephole optimizer. A CM Transactions on Progmmming Languages and
Systems 2,2 (Apr. 1980),191-202.

[38] Davidson, J. W., and Fraser, C. W. Automatic generation of peephole
optimizations. In Proceedings of the SIGPLAN 84 Symposium on Compiler
Construction (Montreal, Canada, 1984), ACM SIGPLAN, pp. 111-116.

[39] Debray, S., and Warren, D. SB-Prolog. Tech. Rep., SUNY Dept. of Computer
Science, 1987.

[40] Digital Equipment Corporation. VA./Y Architecture Handbook. 1981.

[41] Deutsch, L. ByteLisp and its Alto implementation. In Proc. 1980 LISP
Conference (Stanford CA, 1980), pp. 231-242.

[42] Deutsch, L. A LISP machine with very compact programs. In Proceedings of
IJCAI (1973), pp. 697-703.

145

[43] Deutsch, L. P., and Bobrow, D. G. An efficient, incremental, automatic
garbage collector. Commun. ACk! 19, 10 (October 1976),522-526.

[44] Ellis, J. Bulldog: a Compiler for VLIW Architectures. l\fIT Press, 1986.

[45] Fateman, R. Reply to an editorial. ACM SIGSAN! Bulletin 25 (March 1973),
9-11.

[46] Fitch, J., and Norman, A. Implementing LISP in a high level language.
Software-Practice and Experience 7 (1977),713-737.

[47] Fladung, B. The XL/SP Primer. Prentice-Hall, 1987.

[48] Foderaro, J. K., and Sklower, K. L. The Franz Lisp klanual. Berkeley CA,
September 1981.

[49] UC Berkeley. Berkeley FP User's Manual, Rev. 4.1. 1983.

[50] Fraser, C. W. A knowledge-based code generator generator. In Proc. Symp.
on Artifical Intelligence and Programming Languages (Rochester NY, Aug.
1977), ACM SIGARTjSIGPLAN, pp. 126-129.

[51] Freudenberger, S., Schwartz, J., and Sharir, M. Experience with the SETL
optimizer. ACM Transactions on Programming Languages and Systems 5, 1
(Jan .. 1983), 26-45.

[52] Friedman, D., Haynes, C., Kohlbecker, E., and Wand, M. Scheme 84 reference
manual. Tech. Rep. 153, Computer Science Department, Indiana University,
February 1984.

[53] Gabriel, R. Performance and Evaluation of Lisp Systems. MIT Press, 1985.

[54] Ganapathi, ~L, and Fischer, C. Affix grammar driven code generation. A CJvl
Transactions on Programming Languages and Systems 7,4 (Oct. 1985),560-
599.

[55] Gelernter, H., Hansen, J., and Gerberich, C. A compiled Fortran list
processing language. Journal of the ACM 7 (1960),87-101.

[56] Glanville, R. S., and Graham, S. L. A new method for compiler code
generation. In Conf. Rec. of the Fifth Annual Symposium on Principles of
Programming Languages (January 1978), ACM SIGACTjSIGPLAN, p. 231.

[57] Goguen, J., and Meseguer, J. EQLOG: equality, types and generic modules
for logic programming. In Logic Programming: Functions, Relations, and
Equations (1986), Prentice-Hall, pp. 295-363.

[58] Goldberg, A., and Robson, D. Smalltalk-80: the Language and Its Implemen
tation. Addison-vVesley, 1983.

146

[59] Gotlieb, C., and Tompa, F. Choosing a storage schema. Acta Informatica 3
(1974),297-319.

[60] Goto, E., Soma, T., Inada, N., Ida, T., Idesawa, M., Hiraki, K., Suzuki, M.,
Shimizu, K., and Philipov, B. Design of a Lisp machine - FLATS. In Proc.
1982 ACM Symposium on LISP and Functional Programming (Pittsburgh
PA, Aug. 1982), ACM SIGPLAN/SIGACT/SIGART.

[61] Gries, D. Compiler Construction for Digital Computers. John Wiley and
Sons, Inc., New York NY, 1971.

[62] Griss, M. L. A portable implementation of standard LISP. Utah Symbolic
Computation Group Opnote No. 47, University of Utah, Department of
Computer Science, August 1980.

[63] Griss, M. L., Benson, E., and Maguire Jr., G. Q. PSL: a portable LISP sys
tem. In Proc. 1982 A CM Symposium on LISP and Functional Programming
(Pittsburgh PA, Aug. 1982), ACM SIGPLAN/SIGACT/SIGART, pp. 88-97.

[64] Griss, M. L., and Hearn, A. C. A portable LISP compiler. Software-Practice
and Experience 11 (June 1981),541-605.

[65] Griss, M. L., and others. PSL implementation guide. Utah Symbolic
Computation Group, University of Utah, Department of Computer Science,
May 1982.

[66] Griswold, R. The Macro Implementation of SNOBOL4. W.H. Freeman, 1972.

[67] Griswold, R., and Griswold, M. The Implementation of the Icon Programming
Language. Princeton University Press, 1986.

[68] Hellerman, H. Addressing multidimensional arrays. Commun. ACM 5
(1962), 205-207.

[69] Hennessy, J., and Ganapathi, M. Advances in compiler technology. In Annual
Review in Computer Science (Palo Alto CA, 1986), Annual Reviews Inc.,
pp.83-106.

[70] Hewlett-Packard. LISP Programmer's Guide. 1986.

[71] Hill, F., and Peterson, G. Digital Systems: Hardware Organization and
Design, 2nd ed. John Wiley and Sons, Inc., 1978.

[72] Hisgen, A., Lamb, D. A., Rosenberg, J., and Sherman, lV1. A runtime repre
sentation for Ada variables and types. In Proceedings of the ACM-SIGPLAJ.V
Symposium on the Ada Programming Language (Dec. 1980), pp. 82-90.

[73] Huet, G., and Oppen, D. C. Equations and rewrite rules: a survey. In Formal
Language Theory: Perspectives and Open Problems (1980), R. V. Book, Ed.,
Academic Press.

147

[74] Jalote, P. Synthesizing implementations of abstract data types from ax
iomatic specifications. Software-Practice and Experience 17, 11 (Nov. 1987),
847-858.

[75] Jenkins, M. Q'Nial: a portable interpreter for the nested interactive array
language, Nial. Tech. Rep. 87-202, Queen's University, Dec. 1987.

[76] Jenkins, M., and Jenkins, W. The Q'Nial Reference Manual. Nial Systems
Ltd., 1985.

[77] Kaehler, T. Virtual memory on a narrow machine for an object-oriented
language. In Object-Oriented Progmmming Systems, Languages, and Ap
plications 1986 Conference Proceedings (Portland OR, Oct. 1986), AClVI
SIGPLAN, pp. 87-106.

[78] Kahn, G., Macqueen, D., and Plotkin, G. Semantics of Data Types. Lecture
Notes in Computer Science, Springer-Verlag, 1984.

[79] Kaneko, K., and Yuasa, K. A new implementation technique for the UtiLisp
system. In Proceedings of the SIGSYM Meeting (June 1987), Information
Processing Society of Japan, pp. 1-7.

[80] Kant, E. The selection of efficient implementations for a high-level lan
guage. In Proc. Symp. on A rtifical Intelligence and Programming Languages
(Rochester NY, Aug. 1977), ACM SIGART/SIGPLAN, pp. 140-146.

[81] Kapur, D., and Srivas, M. A rewrite rule based approach for synthesizing
abstract data types. In Mathematical Foundations of Software Developmen~
Springer-Verlag, 1985, pp. 188-207.

[82] Kessler, R. R. COG: An Architectural-Description-Driven Compiler Genera
tor. PhD thesis, Department of Computer Science, University of Utah, Salt
Lake City, Utah 84112, January 1981.

[83] Kessler, R. R. Peep - an architectural description driven peephole optimizer.
In Proceedings of the SIGPLAN 84 Symposium on Compiler Construction
(Montreal, Canada, 1984), ACM SIGPLAN, pp. 106-110.

[84] Kessler, R. R., Peterson, J. C., Carr, H., Duggan, G. P., Knell, J., and
I(rohnfeldt, J. J. EPIC - a retargetable, highly optimizing Lisp compiler.
In Proceedings of the SIGPLAN 86 Symposium on Compiler Construction
(1986), pp. 118-130.

[85] Kirby, R. ULISP for PDP-11s with memory management. Tech. Rep. TR-
546, Computer Science Center, University of Maryland, June 1977.

[86] I(nuth, D. The Art of Computer Programming: Fundamental Algorithms, 2
ed. Vol. 1,Addison-Wesley, 1981.

148

[87] Knuth, D. The Art of Computer Programming: Seminumerical Algorithms,
2 ed. Vol. 2, Addison-Wesley, 198I.

[88] Knuth, D. The Art of Computer Programming: Sorting and Searching. Vol. 3,
Addison-Wesley, 1981.

[89] Kodasky, J. LISP-II. Tech. Rep., DECUS, Jan. 1977.

[90] Krasner, G., Ed. Smalltalk-80: Bits of History, Words of Advice. Addison
Wesley, 1983.

[91] Landin, P. J. The next 700 programming languages. Commun. ACM 9, 3
(March 1966), 157-164.

[92] Lecarme, 0., and Gart, M. Software Portability. McGraw-Hill, 1986.

[93] Lenat, D. Eurisko: a program that learns new heuristics and domain concepts.
Artificial Intelligence 21 (1983), 61-98.

[94] Leverett, B. W., Cattell, R. G. G., Hobbs, S. 0., Newcomer, J. M., Reiner,
A. H., Schaltz, B. R., and Wulf, W. A. An overview of the production quality
compiler-compiler project. IEEE Computer 13, 8 (August 1980),38-49.

[95] Levin, M. 1., and Berkeley, E. C. LISP 2 primer. Tech Memo TM-
2710/101/00, System Development Corp., July 1966.

[96] Lewis, D., Galloway, D., Francis, R., and Thomson, B. Swamp: a fast proces
sor for Smalltalk-80. In Object-Oriented Programming Systems, Languages,
and Applications 1986 Conference Proceedings (Portland OR, Oct. 1986),
ACM SIGPLAN, pp. 131-139.

[97] Lieberman, H., and Hewitt, C. A real-time garbage collector based on the
lifetimes of objects. Commun. A CM 26, 6 (June 1983), 419-429.

[98] Liskov, B., Atkinson, R., Bloom, T., Moss, E., Schaffert, C., ScheiRer, R.,
and Snyder, A. CLU reference manual. Tech. Rep. TR-225, MIT Laboratory
for Computer Science, Oct. 1979.

[99] Loosemore, S. J. A-LISP: a small Lisp implementation. 1988. Manual and
implementation details.

[100] Low, J. R. Data structure selection: an example and overview. Commun.
ACAtf 21,5 (May 1978),376-385.

[101] Malcolm, M. A., and Stafford, G. J. The Thoth assembler writing kit. Tech.
Rep. CS-77-14, University of Waterloo Dept. of Computer Science, September
1977.

[102] Marti, J. B., Hearn, A. C., Griss, M. L., and Griss, C. Standard LISP report.
SIGPLAN Notices 14, 10 (October 1979), 48-68.

149

[103] Massalin, H. Superoptimizer: a look at the smallest program. In Pro
ceedings of the Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Oct. 1987), ACIVI
SIGARCH/SIGPLAN/SIGOPS, pp. 122-126.

[104] Matula, D., and Kornerup, P. Finite precision rational arithmetic: slash
number systems. IEEE Transactions on Computers C-34, 1 (Jan. 1985),
3-18.

[105] McCarthy, J., Abrahams, P., Edwards, D., Hunt, T., and Levin, M. LISP 1.5
Programmer's Manual. MIT Press, 1965.

[106] McDonald, D., Fahlman, S., and Wholey, S. Internal design of CMU Common
Lisp on the IBM RT PC. Tech. Rep. CMU-CS-87-157, CMU CS Dept., Sep.
1987.

[107] Meehan, J. The New UCI LISP Manual. Lawrence Erlbaum Associates,
Hillsdale N J, 1979.

[108] Miranda, E. BrouHaHa - a portable Smalltalk interpreter. In Object-Oriented
Programming Systems, Languages, and Applications 1987 Conference Pro
ceedings (Orlando FL, 1987), ACM SIGPLAN, pp. 354-365.

[109] Moon, D. Symbolics architecture. IEEE Computer 20, 1 (Jan. 1987),43-52.

[110] Moon, D. A. Garbage collection in a large Lisp system. In Proc. 1984 AC}v[
Symposium on LISP and Functional Programming (Austin TX, Aug. 1984),
ACM SIGPLAN/SIGACT/SIGART, pp. 235-246.

[Ill] Moore II, J. S. The Interlisp virtual machine specification. Tech. Rep. CSL-
76-5, Xerox Palo Alto Research Center, Sep. 1976.

[112] Morris Jr., J. B., and Singleton, D. J. The University of Texas 6400/6600
LISP 1.5: an adaptation of MIT LISP 1.5. Tech. Rep. TPB-76, Computation
Center, The University of Texas at Austin, Apr. 1967.

[113] Mostow, J. Toward better models of the design process. AI Afagazine 6, 1
(Spring 1985), 44-57.

[114] Muchnick, S., and Jones, N. Program Flow Analysis. Prentice-Hall, Inc.,
Englewood Cliffs N J, 1981.

[115] Nordstrom, M. LISP 1.5 interpreter written in Fortran. SIGPLAN Notices
6, 5 (July 1971), 6.

[116] Nori, K., Kumar, S., and Kumar, IV!. Retrospection of the PQCC compiler
structure. In 7th Conference on the Foundations of Software Technology and
Theoretical Computer Science (Dec. 1987), K. Nori, Ed., Springer-Verlag,
pp. 500-527.

150

[117] Norman, E. Implementation notes for Univac 1108 LISP. 1968. Description
of internal structure.

[118] of Electrical, I., and Engineers, E. Binary floating-point arithmetic. Stan
dard 754-1985, ANSI/IEEE, 1985.

[119] Padget, J., et al. Desiderata for the standardisation of Lisp. In Proc. 1986
A CM Conference on Lisp and Functional Programming (Cambridge MA,
Aug. 1986), ACM SIGPLAN/SIGACT/SIGART, pp. 54-66.

[120] Pemberton, S., and Daniels, M. Pascal Implementation: the P 4 Compiler.
Ellis Horwood, 1982.

[121] Pereira, F. C-Prolog User's Manual. 1984.

[122] Peyton Jones, S. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

[123] Pleban, U. Compiler prototyping using formal semantics. In Proceedings of
the SIGPLAN 84 Symposium on Compiler Construction (Montreal, Canada,
1984), ACM SIGPLAN, pp. 94-105.

[124] Quam, L., and Diffie, W. Stanford Lisp 1.6 Manual. Operating Note 28.7,
Stanford Artificial Intelligence Laboratory, 1969.

[125] Quintus Computer Systems. Quintus Prolog User's Manual. 1987.

[126] Rees, J., and Clinger, W. Revised3 report on the algorithmic language
Scheme. SIGPLAN Notices 21, 12 (Dec. 1986),37-79.

[127] Rees, J. A., and Adams, N. I. T: a dialect of Lisp or, LAMBDA: the ultimate
software tool. In Proc. 1982 A CM Symposium on LISP and Functional Pro
gramming (Pittsburgh PA, Aug. 1982), ACM SIGPLAN/SIGACT/SIGART,
pp. 114-122.

[128] Robison, A. D. The Illinois functional programming interpreter. In Pro
ceedings of the SIGPLAN 87 Symposium on Interpreters and Interpretive
Techniques (June 1987), pp. 64-73.

[129] Rosenberg, A. Storage mappings for extendible arrays. In Current Trends in
Programming Methodology, Prentice-Hall, 1978, pp. 263-311.

[130] Rosenschein, S. J., and Katz, S. M. Selection of representations for data struc
tures. In Proc. Symp. on Artifical Intelligence and Programming Languages
(Rochester NY, Aug. 1977), ACM SIGART/SIGPLAN, pp. 147-154.

[131] Rowe, L., and Tonge, F. Automating the selection of implementation struc
tures. IEEE Transactions on Software Engineering SE-4, 11 (Nov. 1978),
494-506.

151

[132] Russell, S. Compleat guide to mrs. Report KSL-85-12, Computer Science
Department, Stanford University, June 1985.

[133] Sammet, J. Programming Languages: History and Fundamentals. Prentice
Hall, 1969.

[134] Schwartz, J. T., Dewar, R. B. K., Dubinsky, E., and Schonberg, E. Program
ming with Sets: An Introduction to SETL. Springer-Verlag, 1986.

[135] Scott, D. Data types as lattices. SIAN! Journal on Computing 5 (1976),
522-587.

[136] Shaw, 1'1. Research directions in abstract data structures. In Proceedings of
Conference on Data: Abstraction, Definition, and Structure (March 1976),
pp.66-68.

[137] Shaw, R. Empirical analysis of a Lisp system. Tech. Rep. CSL-TR-88-351,
Computer Systems Laboratory, Stanford University, Feb. 1988.

[138] Shebs, S. T. A Common Lisp implementation of 3-Lisp. 1985. Description of
a simple portable implementation.

[139] Shebs, S. T. IDRIL: an interrupt-driven functional language. Technical
Report TAMUDCS-82-101-R, Texas A & M University, Oct. 1982.

[140] Shebs, S. T. An machine-description-driven assembler for UCL. 1988.
Description of a portable assembler.

[141] Shebs, S. T., and Kessler, R. R. Automatic design and implementation
of language datatypes. In Proceedings of the SIGPLAN 87 Symposium on
Interpreters and Interpretive Techniques (June 1987), pp. 26-37.

[142] Sherman, M. Paragon: A Language Using Type Hierarchies for the Specifi
cation, Implementation, and Selection of Abstract Data Types. Vol. 189 of
Lecture Notes in Computer Science, Springer-Verlag, 1985.

[143] Sipala, P. Compact storage of binary trees. A CN! Transactions on Program
ming Languages and Systems 4,3 (July 1982),345-361.

[144] Smith, B. Reflection and semantics in a procedural language. Tech. Rep. TR-
272, MIT Laboratory for Computer Science, 1982.

[145] Free Software Foundation. GNU Emacs kfanual. 1985.

[146] Steele Jr., G. L. Common Lisp: the Language. Digital Press, Burlington NIA,
1984.

[147] Steele Jr., G. L. Data representations in PDP-10 MACLISP. AI Nlemo 420,
MIT AI Lab, Cambridge MA, September 1977.

152

[148] Steele Jr., G. L. An overview of Common Lisp. In Proc. 1982 ACM
Symposium on LISP and Functional Programming (Pittsburgh PA, Aug.
1982), ACM SIGPLAN/SIGACT/SIGART, pp. 98-107.

[149] Steele Jr., G. L., and Sussman, G. J. Design of a LISP-based microprocessor.
Commun. ACM 23, 11 (Nov. 1980), 628-645.

[150] Steenkiste, P. LISP on a reduced-instruction-set processor: characterization
and optimization. Tech. Rep. CSL-TR-87 -324, Computer Systems Labora
tory, Stanford University, March 1987.

[151] Steury, C., Leavitt, K., and Likes, K. Portable bignums for PCLS. 1987.
Implementation details for class project.

[152] Stoy, J. Denotational Semantics. MIT Press, 1977.

[153] Stoyan, H. Early LISP history (1956-1959). In Proc. 1984 AC.t\II Sympo
sium on LISP and Functional Programming (Austin TX, Aug. 1984), ACM
SIGPLAN/SIGACT/SIGART, pp. 299-310.

[154] Sun Microsystems, Inc. The SPARC™ Architecture Manual. 1987.

[155] Takeuchi, 1., and Okuno, H. A list processor LIPQ. Review Electronic
Communications Laboratory (Japan) 26,5-6 (May-June 1978), 767-779.

[156] Teitelman, W., et al. Interlisp reference manual. Tech. Rep., Xerox Palo Alto
Research Center, 1974.

[157] Thompson, B., and Thompson, B. Using Pascal to implement functional
LISP. AI Expert 2,4 (Apr. 1987),21-28.

[158] van Katwijk, J. Addressing types and objects in Ada. Software-Practice
and Experience 17, 5 (May 1987),319-343.

[159] Wada Laboratory, University of Tokyo. UtiLisp Manual. 1988.

[160] Waite, W., and Goos, G. Compiler Construction. Springer-Verlag, 1984.

[161] Wand, M. Deriving target code as a representation of continuation semantics.
ACM Transactions on Programming Languages and Systems 4, 3 (July 1982),
496-517.

[162] Warren, D. H. D. Implementing PROLOG - compiling logic programs. DAI
Research Report 39,40, University of Edinburgh, 1977.

[163] Weizenbaum, J. Review: LISP 2. IEEE Transactions on Electronic Comput
ers EC-16, 2 (Apr. 1967),236-238.

[164] vVhite, J. LISP /370: a short technical description of the implementation.
ACNI SIGSAj}[Bulletin (1978).

,

153

[165] White, J. L. Address/memory management for a gigantic lisp environment.
In Proc. 1980 LISP Conference (Stanford CA, 1980), pp. 119-127.

[166] White, J. L. Reconfigurable, retargetable bignums: a case study in ef
ficient, portable Lisp system building. In Proc. 1986 ACM Conference
on Lisp and Functional Progmmming (Cambridge MA, Aug. 1986), ACM
SIGPLAN/SIGACT/SIGART, pp. 174-191.

[167] Wholey, S., Fahlman, S. F., and Ginder, J. Revised internal design of Spice
Lisp. Tech. Rep. S026, CMU CS Dept., Jan. 1985.

[168] Wick, J. Automatic generation of assemblers. Tech. Rep. RR50, Yale
University Dept. of Computer Science, December 1975.

[169] Wise, D. Parallel decomposition of matrix inversion using quadtrees. In 1986
International Conference on Parallel Processing (Aug. 1986), pp. 92-99.

[170] Yokote, Y., and Tokoro, M. The design and implementation of Concurrent
Smalltalk. In Object-Oriented Programming Systems, Languages, and Ap
plications 1986 Conference Proceedings (Portland OR, Oct. 1986), ACM
SIGPLAN, pp. 331-340.

[171] Yuasa, T. Kyoto Common Lisp documentation. 1985. Notes on internal
structure and porting.

[172] Zipf, G. Human Behavior and the Principle of Least Effort. Addison-Wesley,
1949.

[173] Zorn, B., Hilfinger, P., Ho, K., and Larus, J. SPUR Lisp: design and
implementation. Tech. Rep. UCB/CSD 87/373, Computer Science Division,
UC Berkeley, 1987.

	Abstract
	Contents
	Acknowledgments
	1 Introduction
	2 Review of Data Structure Designs
	3 Descriptive Formalisms
	4 Implementation Design Rules
	5 An Automatic Designer
	6 Conclusion
	Appendix A: Specifications of Types
	Appendix B: Complete Designer Run
	References

