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History of UtiLisp Hacking

Euti Wapa*

The history of UtiLisp hacking is presented. UtiLisp is a dialect of MacLisp. In these ten years, a number of
UtiLisp interpreters and compilers have been developed by the students of our group. Each time, new methods
were employed and practical systems were put into operation. UtiLisp 360, the *rst ancestor of the series and the
system for main frame machine was coded in macro assembly language; UtiLisp 68 for workstation was
translated by macro expansion de®ned in UtiLisp. UtiLisp 32 had both address and object tags; UtiLisp/C
checks data types by means of low order bit tags. The experience of implementations with given language
speci®cation except the *rst one, exposed students in the environment where they considered the implementation
method for relatively large system in front of the new machines. This was a typical on the job training.

1. Introduction

It is often the case that around quality software
system programmers gather to improve the system ever
higher than before. What follows is one of such ex-
amples; in this case, the group of programmers are the
graduate students of a software laboratory.

In these ten years, over 30 students joined to the
author’s laboratory, worked for two to five years and
left. It was just like the comets that visit our solar
system, stay a while and then leave. While the students
were with us, most of them interacted with a UtiLisp
system, a dialect of Lisp, some very intensively (install-
ed the system; transported them to other computer;
made improvements, etc.), others rather weakly (just as
occasional users and critics) just as comets that pass
very closely around the sun, while others pass quite far
from it.

In these ten years, the central activity of our group
happened to be around UtiLisp although it was not fore-
seen. Many students expressed their interest in develop-
ing our own Lisp system of high quality in fairly stable
programming style, based on the philosophy of our
laboratory; thus strengthening the membership of the
group. In developing four generations of UtiLisp
systems, students learnt key issues in system program
design, learnt problem solving attitudes, programmed
difficult parts with concentrated mind and stamina, im-
proved the code to increase efficiency and maintenabil-
ity, and acquired manual or document writing techni-
ques. They experienced four life cycles of UtiLisp
systems.

When the author was still a student around 1960, at
Professor Hidetosi Takahasi’s laboratory where we
built the first and second Parametron Computers PC1
and PC2, all the graduate students enjoyed watching
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life cycles of computer systems in a university
laboratory. We observed all phases of the computer
system development from the circuit element design,
logical circuit design, architecture design, memory
design, assembly language design, writing many basic
programs, including initial orders, debugging programs
and programs for hardware maintenance. Presently in a
software laboratory like ours, almost infinitely more
reliable hardwares are supplied by computer manufac-
turers with convenient system development tools. With
the development of computer network systems, advanc-
ed tools are arriving from other similar laboratories
across the net. Accordingly, software laboratories need
identity around which they may show their own pro-
gramming style and philosophy.

Examples of such identities include Unix, smalltalk,
GNU etc. In our case, it was UtiLisp although we admit
that ours is not so idiosyncratic as other examples
quoted above. Nevertheless we found that it played an
essential role in software engineering education in
displaying students development of a typical software
product. New students begin to learn how to read
source program lists of UtiLisp system while they are
studying other computer science materials. Gradually
they proceed to the stage where they rewrite small part
of the system and learn how to use the operating
system, how to tackle huge system programs. This
seems to be one of the ideal courses in software engineer-
ing education. In the following, after introducing a
sketch of UtiLisp and its brief history in the second
chapter, a few examples of development and improve-
ment, in other words, hacking, will be described.

2. UtiLisp and its Development
UtiLisp, which is not well known outside Japan, is a

Lisp dialect of classical MacLisp: eval top loop, shallow
binding, dynamic scope rule interpreter, with macro
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and readmacro facilities.

There are four versions of UtiLisp:

1. UtiLisp360 on main frame machines like Hitac
M series, Facom M/S series, IBM 3000 series

2. UtiLisp68 on MC68000 (24 bit address) for Sun
1, Macintosh etc.

3. UtiLisp32 on Mc68010, 68020 (32 bit address) for
Sun 2, 3 and on Vax etc.

4. UtiLisp/C on SPARC for Sun 4 and Sparc Sta-
tion.

According to the survey on Lisp and Al application
languages conducted in early 1986, the most widely
used Lisps in the Japanese Al community are Franz
Lisp (60), then Vax Lisp (40), UtiLisp (33), InterLisp (-
D) (33) etc. In this survey, UtiLisp includes all of
aforementioned first 3 versions. (Popular Al languages
other than Lisp are: C-Prolog (46), Prolog-KABA (44),
Smalltalk-80 (38) etc.)

The main reason of the wide use of UtiLisp is its proc-
essing speed. Table 1 gives the speed comparison of
various Lisps for (tarai 10 5 0) where the function
tarai is defied as:

(defun tarai (x y z)
(cond ((> x y)(tarai (tarai (1— x) y z)
(tarai (1— y) z x)
(tarai (1— z) x y)))
(t )

UtiLisp officially stands for the University of Tokyo
Interactive Lisp. However, in the beginning UtiLisp
was said to be the language for utility programs. Thus,
it was called UtiLisp, a portmanteau word of *‘utility’’
and “‘lisp”’.

The first UtiLisp project was triggered by the Ada
system implementation experience and was proposed
and designed by Takashi Chikayama, one of the first
three students of our laboratory, who is now at ICOT
(Institute for New Generation Computer Technology).
He is one of the typical talented Lisp hackers and he
wrote many Lisp systems. His shiny micro Lisp was
designed in 1976 for Intel 8080 microprocessor with 4K
byte RAM, and the program size was only 850 byte in-
cluding garbage collector [1].

In 1979, we read the reference manual of Ada (or
Green) Programming Language published in the June
issue of ACM Sigplan Notices [2]. We were tempted to
write a simple compiler for it, firstly to check the con-
sistency of the description of the manual and secondly
to learn about the Ada system. In November and
December, 1979, a pilot Ada compiler was being coded
by Chikayama with the help of other students for a
Hitac 8800 machine at the University Computer Centre
[3]. The first phase, the token reader, was written in
Pascal 8000 which inputs the Ada source program and
outputs the persed tree in the form of nested S-expres-
sions. The remaining phases of the compiler and the run
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Table I A benchmark of Lisp systems for (tarai 10 5 0) in sec-

onds.
System Machine Interpreter | Compiler
UtiLisp360 Hitac M682 3.82 0.233
UtiLisp68 Sord M685 104 11.4
” NEC PC9801 145 16.2
” Apple Macintosh 214 —
UtiLisp32 Vax 8600 23.8 2.79
? Sun 3/260 22.0 2.10
7 Sun 3/50 53.0 4.70
i Sun 2/120 117 135
? Sord M685 108 —
UtiLisp/C Sun 4/260 21.07 0.78
» Sun4/110 31.25 2.08
? Sparc station 18.17 0.78
» RISC-NEWS(R3000) | 10.77 0.62
Franz Lisp Vax 8600 81.3 31.6
i Sun 3/52 262 86.1
» Sun 2/120 499 159
Symbolics 3640 | Symbolics 3640 369 3.85
KCL Vax 8600 393 8.38

time support routines were all coded in Hlisp which was
the only available Lisp in those days for that machine
[4]. By the beginning of the following year, the pilot
Ada compiler was completed. The time for writing the
compiler was short, however the speed of the compiled
Ada program was intolerably slow because of the
slowness of the Hlisp interpreter.

That experience in Hlisp was enough for us to con-
clude that Lisp might become a very practical system
description language if a super efficient interpreter and
ultraclever compiler are designed, since the language
already possesses full expandability or the user
definable facilities, and its interactive style of program-
ming provides high productivity in program writing.

The computer centre replaced the Hitac 8800 with a
Hitac M200H in the summer of 1980. during the replace-
ment, Chikayama designed the new Lisp processor for
the Hitac M200H. By the end of 1980, the interpreter of
UtiLisp was almost completed. In the spring of 1981,
the compiler was coded. After that, he spent all of his
time writing a UtiLisp manual [5] and the doctoral
dissertation [6][7].

In those days, two other students in our group were
endevouring to write programs. One was Hideyuki
Nakashima, who was implementing Prolog/KR (KR
stands for Knowledge Representation) [8] on UtiLisp,
and the other, Michio Kimura, who was developing a
medical expert system called Anticipator (ANTIbiotics
Counsellor for Infectious PAThogenic Organisms) [9]
[10] on Prolog/KR. Those two parallel implementa-
tions are quite effective in improving their systems
mutually. These pair implementations proved that
UtiLisp was a practical system description language.

Then UtiLisp was transferred to Facom main frame
machines by members of the Institute of Physical and
Chemistry Research and this UtiLisp was subsequently
improved by Fujitsu Laboratory. UtiLisp was also
transferred to IBM main frame machines (VM and
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CMS). This version of UtiLisp is referred to as
UtiLisp360 in this article.

Our laboratory installed a Sun 1 Workstation in the
spring of 1983. The students naturally wished to have
UtiLisp on it. Because Hitac M200 and MC68000
microprocessor of Sun Workstation both have 16
registers 32 bits long and 24 bit address, it seemed rela-
tively simple to move. In the winter from 1983 to 1984,
an undergraduate student, Yutaka Tomioka, under-
took this operation [11][12]. The main frame UtiLisp
was coded in assembly language with fully spangled
macro definitions and calls. Unfortunately, the
assembly program for MC68000 we used has no macro
assembly facilities. Therefore, the first step of transpor-
tation was to devise the means to expand macros. This
was done in Franz Lisp on Vax on which we developed
another UtiLisp interpreter and downloaded it to the
Sun Workstation. As will be described later, it worked
well. In the case of UtiLisp360, the copying garbage
collector was employed because of the large virtual
memory space. However, the workstation had only a 1
MB RAM and accordingly, the copying garbage collec-
tor was not suitable. So, the ordinary mark and sweep,
compactifying garbage collector was designed. The com-
piler was developed by Hideya Iwasaki in the next
spring. This version of UtiLisp was called UtiLisp68.
UtiLisp68 was transferred to Sord M685, NEC PC9801,
Sharp OA-90 and facom 168 with MC68000 CPU
board [13]. It was also transferred to U-station at
Shimura Laboratory of Tokyo Institute of Technology.

In the fall of 1985, the UtiLisp68 interpreter was in-
stalled on Apple Macintosh with 512 kB RAM except
floating point number and reference types by Keiichi
Kaneko and Kei Yuasa [14].

Then came the era of Sun 2 and Sun 3 Workstations
which have 32 bit data busses. This posed a new prob-
lem because we could not use the most significant 8 bits
for pointer tags [15]. In the summer of 1986, after con-
siderable time of discussions, a hybrid implementation
of pointer tag and object tag was proposed as the best
solution. The main transportation was undertaken by
Kaneko [16]; the garbage collector was coded by
Toshinari Takahashi [17]; the compiler by Shin Ishii
[18]. This UtiLisp is now known as UtiLisp32 because
of its 32 bit data bus. Until the development of
UtiLisp32, UtiLisp didn’t have bignum data type. This
caused a problem in installing Reduce (a formula
manipulation system) on UtiLisp. Bignum should have
been implemented much earlier. Thus, Kaneko design-
ed the bignum package for UtiLisp32 [19] and then this
system became the first class Lisp.

UtiLisp 32 on Sun 3 was similarly developed using
macro functions expanded by user defined Lisp func-
tions. We realized that if the macro definitions are
modified properly, the same source code will generate a
UtiLisp interpreter for Vaxen. Motivated by this idea,
Kaneko wrote a set of macro definitions which will pro-
duce a code for Vax. In the course of two weeks, he suc-
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ceeded in installing a new interpreter for Vax 8600 at
the University Computer Centre [20].

In the summer of 1988, the first Sun 4 Workstation ar-
rived. Its heart was the SPARC Integer Unit, entirely
different architecture from MC68000. Naturally, our
previous UtiLisp’s were not runnable on it. However,
only a couple of weeks after the arrival, Tetsurou
Tanaka tested his Lisp interpreter written in C language
on the Sun 4 [21]. He had already designed the basic
data structure of UtiLisp/C, (because it is in C
language,) and continued to implement the rest part of
the interpreter. The data structures were carefully
chosen to suit the SPARC architecture though it also
might be compiled for other machines of different ar-
chitecture.

Then an undergraduate student, Masakazu Murama-
tsu, started his work on a UtiLisp/C compiler which
compiles UtiLisp/C functions into C code to be C-com-
piled and loaded in the later stages [22]. This speeded
up the coding time for compilers. This was particularly
possible because many primitive functions in
UtiLisp/C were coded in C and the coding styles were
easy to follow by the compiler.

One of the drawbacks of UtiLisp/C written in C
language was the routine set for bignum arithmetic. Pro-
grams in C language are not so flexible to treat the carry
propagation. In the spring holidays of 1988, the author
wrote bignum arithmetic in SPARC assembly language,
partly to learn the instruction set and the basic architec-
ture of the SPARC chip [23].

As described above, many students contributed in im-
proving a series of versions of UtiLisp. Although not
mentioned explicitly in the previous paragraphes, many
more students improved systems partially or gave good
suggestions or cooperated with their colleagues in trou-
ble shooting.

When we were requested, we shipped UtiLisp system
to any computer center. Some of these centers are eager
users of the system; they send us bug information they
found. They helped us in fixing bugs of the system too.
UtiLisp systems have been developed by NEC in-
dependently. They installed UtiLisp on Acos 4 and
Acos 6 (their main frame machines). When NEC re-
leased an Engineering Workstation EWS 4800, they
implemented a UtiLisp MC68020 version with their
own scheme [24].

When an expert shell which was installed on UtiLisp
is exported, UtiLisp is also exported with the expert
system to customers abroad.

3. UtiLisp for Hitac M200H—UtiLisp360

As already introduced, UtiLisp was developed by
Chikayama on a Hitac M series machine with VOS3
operating system. UtiLisp was designed not only for
symbol manipulation but also for system description.
Accordingly, it is highly tuned up for character and bit
string manipulation without sacrificing the flexibility
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and expandability of original Lisp. For flexibility, it has
a set of functions for use with the operating system
facilities. Users may have access to the key data struc-
ture of the system. For instance, users may see the
stack, know the address of symbolic atom information,
modify read table, may create his own obvector
(=oblist in vector form), may check the number of
arguments for machine code functions etc.

Data types of UtiLisp include: cons cell, symbolic
atom, fixnum (=fixed point number), flonum
(=floating point number), (in the later versions,
bignum (=multiple precision fixed point number,)) str-
ing, input/output stream, vector, reference (=vector
element), and code piece (=function in machine
language). These types are discriminated by pointer tags
like Cambridge Lisp [25]. Type discrimination was not
accelerated by solely employing pointer tags. Tag values
are arranged in sophisticated fashion so that the most
basic discrimination would be performed quickly.

Strings are implemented in packed form to utilize the
hardware functions. The elements of string are
characters; however by character we mean a short
fixnum from 0 to 255. So, all character positions of the
8 bit code table are treated uniformly as characters. The
string type has a set of bit manipulating functions.

UtiLisp has one dimensional vectors. Accessing an
element of a vector is quicker than accessing an element
of a list data, although the necessary size must be
known in advance for the vector.

In UtiLisp, you are not allowed to write functions,
whose parameter will not be evaluated like fsubr in Lisp
1.5. Special forms only exist in built-in functions.
When it becomes necessary for a user to write special
forms, he is recommended to use macros. The macros
of UtiLisp are similar to those of MacLisp, a list of
unevaluated parameters is sent to the macro with one
parameter and the body is evaluated, then the result is
evaluated again. The macro speed might be mistaken to
be slow. However, the compiled macro has no overhead
at all.

Default parameters are so convenient to use. If an ele-
ment of a lambda list is a list whose car is a symbolic
atom, then if the corresponding actual parameter is not
supplied, the cdr of the list is evaluated from left one
after another and the final result of evaluation is bound
to the symbolic atom as a default value. Default
parameters may be implemented by other means.
However, this default parameter system is quite
readable.

During evaluations, several errors may take place.
UtiLisp has a set of default error handling functions.
For instance, standard function err:end-of-file is
stored in the variable err:end—-of-file. The user may,
however, replace the error functions at will if he wishes
to. As an example, if he is to read in a file and finish the
reading gracefully at the end of file, he stores the stan-
dard end-of-file error function in his temporary
variable, sets his own error function instead of the stan-
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dard one. Then at the end of file, his function gets the
control; it restores the end-of-file function with the stan-
dard one and he may return to the master program.

A stream is a set of standard functions and data
areas. In a sense, it is a kind of package; the idea of i/ o
stream was borrowed from OS6 designed by Strachey
and Stoy of Oxford University [26][27].

In implementing the main frame UtiLisp system,
macro assembly facilities were used to a great extent.
Nevertheless, the list is not so difficult to read. As a sim-
ple example, the macro “‘iflist”’ is shown. This sequence
checks whether the tag in a special register &r is negative
or not.

macro
&1 iflist &r, &adr if &r is a list then go to &adr
& 1tr &r, &r

bnh &adr

mend

Combinations of car’s and cdr’s are expanded by
macros, and as a natural extension, UtiLisp has func-
tion cr as the least element of cars’ and cdrs’ family.

UtiLisp has its own editor called Use (UtiLisp Struc-
ture Editor) and a pretty printer called Prind. Use is
almost similar to the structure editor of InterLisp.
Prind is a clever pretty printer. It folds back a back-
quote read macro facility. For example, (list. ’setq
(list . ’plus x n)) will be printed as ‘(setq ,x
(plus ,x ,n))).

4. UtiLisp on MC68000—UtiLisp68

The first Sun Workstation came with a simple
monitor implemented in its ROM. Therefore, we had to
develop many system programs ourselves. We already
know that UtiLisp is a general-purpose language, so we
began to develop a UtiLisp system on MC68000 with
the top priority. To transfer UtiLisp means, conceptual-
ly, to transfer that speed and flexibility and that ex-
cellent human interface and, technically, to copy the
precise structure and functionality of main frame
UtiLisp as close as possible. Functionality is
represented in the form of macro definitions. So the
necessary work was to invent mechanisms to expand
macros of the main frame computer for MC68000
assembly programs and to define each macro in terms
of the MC68000 machine instructions.

Our solution was to write a system like LAP (Lisp
assembly program) of Lisp 1.5 where all machine in-
structions, macro calls, pseudo instructions (=direc-
tives) in the form of S-expressions. Then, any Lisp pro-
gram may treat the source program freely. A 68000
assembly program has its unique instruction format
especially for address modes. We need to express that in
a simple list format. Our orthography is:
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Rn —>Rn  data and address register direct
an@ —>an@  address register indirect
an@+ —>an@+ ditto with postincrement
an@— —>an@—  ditto with predecrement
an@(d) —>(an@ d) ditto with displacement

an@(d, Ri: ¥) —> (an@ d Ri W) ditto with index

normal —>normal absolute address

#immediate —>’immediate immediate data

Labels are in the form of symbolic atoms just like
those in program feature. Comments are preceded by
semicolon like Lisp programs. The lap thus developed
is called lap68. In lap68, ‘‘iflist”” macro is defined as:

(dm iflist (an addr)
(lapl ‘((movl, and d0)
(jmi, addr)))))

Function dm defines macro iflist and, at the same
time, places the indicator in the property list of iflist say-
ing that this is a lap68 macro. Function lapl expands
each element of the list given as the parameter. In case
of a complicated macro definition like that of the car-
cdr expander, the macro is defined as:

(dm cxr (fname)
(lapl ‘(subr ,fname (x)))

(setq fname (string fname))
(do ((index (/- (string-length fname) 2)
(/1- index)))

((/0= index)(lapl ’((return0)(codend))))

(lapl (cond ((=(sref fname index)
(character ‘‘a’’))
’(cara))

(t ’(cdra))))))
(dm cara nil
(lapl ’((ifatom A typerr)(movl (A@ car) A4))))
(dm cdra nil
(lapl ’((ifatom A typerr)(movl A@ A))))

Here, lapl is a lap function to be used when the argu-
ment list contains single element. Other functions
shown here are used without definition. Now, car-cdr
composite functions are defined as:

(cxr cr)

(cxr car)

(cxr cddddr) etc.

The first version was written in Franz Lisp. However
once the first UtiLisp was completed, the lap and source
were converted to UtiLisp and the production system
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was moved to Sord M68S at our laboratory (CPU of
Sord M685 is MC68000). Debugging and productions
were repeated on this version.

The garbage collector of UtiLisp68 is mark and
sweep, compactifying one. To mark all reachable ob-
jects, the pointer reverse method, i.e., Deutsch, Schorr
and Waite algorithm, is used [28]. Compaction is based
on Morris’ algorithm [29]. However, applying those
algorithm was not simple. First, there are various size
of objects in a heap area; binary cons cells, symbolic
atom objects, various length vector and string cells.
Machine code pieces are allocated in a different area
because these objects seldom become garbages.

Marking a reference pointer is performed as follows.
A reference pointer points to an element of a vector.
First, the marker traces up the vector body to find the
header. If it is marked, descendant marking is finished.
If not, the pointed element pointed is marked with
‘‘stop’’ bit in tag field, and the element immediate
above the pointed one is marked, i.e., the pointer is
reversed to point to the parent object. Then elements
are marked upward one after another and when mark-
ing reaches the header, using the information about the
length of the vector object contained in the header, the
marker goes down to the bottom element. By repeating
this it finally reaches the element marked with stop.
After marking that one, marking of that reference
pointer ends.

When Morris’ algorithm is used, the whole heap area
should be scanned twice, once downward then upward.
For downward scanning, the large objects have special
header object tags; so its whole body is skipped based
on the size information stored in the header. For binary
cons cell, the sweeper skips two; as the size of the sym-
bolic atom object is four, the third word is also marked
as nodn garbage, therefore it is skipped by two words
twice. So it is all right to sweep down. However, since
there is no header information at the bottom of the ob-
jects, while sweeping downward, the contents of the
header and the bottom word are swapped. And
moreover, while sweeping the continuous garbages, the
sweeper remembers the last non garbage word; when it
finds the next non garbage word, it places so called up-
ward garbage skip links so that in upward sweeping, gar-
bages are skipped in one action. Of course, the swapped
contents should be restored.

5. UtiLisp for MC68020—UtiLisp32

When UtiLisp was first implemented for Hitac M
series machines and then transferred to MC68000, since
those architectures use only 24 bit address, top 8 bits
were used for tags with which type discrimination was
accelerated. However, with the newest microprocessor,
MC68020, as it uses all 32 bits for address, UtiLisp68
could not be directly transferred to the new machine.
So, we changed the object representations slightly.
Speed of UtiLisp was gained by its quick type checking



History of UtiLisp Hacking

based on the tag information. In the new implementa-
tion, types should be discriminated quickly. In this new
implementation, types are represented as follows. The
size of fixnum is limited to 28 bits. The value is shifted 2
bits to the left; the least significant 2 bits are for garbage
collection marking. The most significant 2 bits are set to
11, thus the representation of fixnum is seen as
negative. Next, the heap address is assumed as positive,
i.e. the address is less than 0x40000000. The heap area is
divided in three, that is:

¢ for symbols,

» for other atoms (or others for short) and

« for cons cells
and located in that order placing the symbol area in the
smallest address. (In ‘‘other atoms’’ area, vector, str-
ing, stream, head part of code pieces, flonum and
bignum objects are placed.) Two address registers are
provided for type checking; one is nil address which
points to the symbolic cell for nil that is placed at the
largest address of the symbolic area. The other is a
pointer which always points to the boundary of cons
cell area which grows to the smaller address direction.
This pointer is called list top in the next paragraph.

So, if this arrangement is seen as unsigned, the
smallest is symbols, then nil, others, cons cells,
fixnums. Now if it is seen as signed, then the smallest is
fixnum, then symbol, others, and cons cells. Therefore,
atoms are smaller than list top in signed; lists are larger
than list top in signed. Symbols are smaller than or
equal nil pointer unsigned; fixnum is negative or smaller
than 0xc0000000 signed.

Each object placed in the others area has an extra 32
bit header which has an object tag beginning with 10.
The header also contains the length of the object. When
a pointer points into the others area and the object
pointed to has object header, then the type is known by
that header information. If the pointed object has no
header tag, then the pointer was reference type which
points to the vector element. Thus, the discrimination is
slowed down for special objects located in the others
area. But for other genuine Lisp objects, speed is main-
tained as in the former implementation.

Another remarkable story about UtiLisp32 is a
bignum print routine. As introduced earlier, UtiLisp32
included a bignum package. When many bingum ben-
chmark programs are evaluated and cpu times were
compared between UtiLisp32 and Franz Lisp on Vax,
Franz Lisp won in printing big numbers. The reason
was that Vax has no unsigned division necessary for
bignum conversion represented as the sequence of 32
bits long words. The Franz Lisp representation is a
series of 31 bits words. So, a big number could be con-
verted by dividing larger powers of ten with Franz Lisp
than with UtiLisp32. One student, Takahasi, tried to im-
prove the conversion. Finally he invented the conver-
sion methods in which a big number is divided by 10"
(or more precisely, by 5'2#2%), thus gaining the conver-
sion speed. This is too tricky yet it works perfactly [30].
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6. Multiprocess UtiLisp—mUtiLisp

We are interested in a multi-processing version of
UtiLisp which is called ‘““mUtiLisp’’ [31]. It was design-
ed and implemented by Iwasaki. In mUtiLisp, a process
may create its child process with the function:

(fork process-name . body)

Interprocess communication or synchronization are
made through the message passing with:

(send process message)
and
(receive process) or (receive)

A child process inherits the environment from its
parent. A process may be stopped with the functions:

(suspend) or (suspend process).
Or it may be restarted with the function:
(resume process).

A simple example is a prime number generator as
shown below:

(defun sift nil
(lets ((prime (cdr (receive)))
(n}(x)(next))
(cond
(prime
(print prime)
(setq next (fork (genprocname)(sift)))
(setqn (+ prime prime))

(loop
(setq x (cdr (receive)))
(cond ((null x)(send next nil)(exit)))
(do nil
((<= xn)(and(< xn)(sendnextx)))

(incr n prime)))))))
(defun prime (to)
(do ((next (fork (genprocname)(sift)))
(i2(1+ 1))
((<= to i)(send next nil))
(send next i)))

On this multi-process kernel in UtiLisp, a prototype
operating system is being implemented. The
preliminary operating system was once designed by an
undergraduate student, Nishio, with a Unix like file
system [33]. The file system was in the form of the
nested S-expression with files at its terminal nodes; the
file system was installed in a large heap area.

Work on multi-process UtiLisp are still in progress.
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The interpreter is being implemented on the worksta-
tion with multiprocessors. The single processor version
of mUtiLisp was evaluated by Minoru Terada through
three experiments, i.e., operating system described in
mUtiLisp, the multiprocess GHC interpreter and the
remote evaluator over the mUtiLisp system coupled via
network [34].

7. UtiLisp for SPARC—UtiLisp/C

UtiLisp system should also be implemented for the
new machines with SPARC cpu. The implementation
was undertaken by Tanaka, and even before the
machine arrival, he weighed the alternative implementa-
tion techniques and decided to write the UtiLisp iter-
preter in the C language for the first time. The main
reasons were:

e The architecture was quite new for us to write cor-
rect and efficient code in assembly language.

* The optimizing C compiler will generate good
code.

» The interpreter will be transferable.

e The correctness of the interpreter will be easily
checked.

¢ Debugging will also be easy.

Thus the interpreter is called UtiLisp/C. .

Of course, many architectural facilities were fully
used in the program for instance, the tagged arithmetic
were employed where appropriate. Tagged arithmetic
was included in the code by means of macro expansion.

Data structures were redesigned for the new machine.
Since most date types are multiple of four bytes, the
least two bits are assigned as tags. As in the case of
UtiLisp32, the principal data types are cons’es, symbols
and fixed point numbers (fixnums). Flonums, bignums,
vectors, strings, streams and code are grouped as
““others’’. Others is the fourth main data type.

Tag bit combinations correspond to the four main
data types as:

¢ 00 fixnum

¢ 01 symbol
¢ 10 cons
+ 11 others

Types of others group listed above have data which
point to object tags that further classify the data types.
One exception is the data type ‘‘reference’” which is sim-
ply the pointer to the vector elements. No Lisp object
corresponds to reference data type. References are iden-
tified by the fact that it has ‘‘others” tag and the
pointed location is not the place for object tags.

The two bit tags are so designed that the word bound-
ary error may catch the data type error. In other words:
in case of fixnum, tagged arithmetic will detect addition
or subtraction on non fixnum operands; in case of cons,
the pointer refers the second byte of car part and the
basic operation ‘‘car” adds offset —2 to the pointer,
“cdr’’ adds offset +2 to the pointer. If the operand is
the genuine cons type data, the resultant values correct-

ly indicate the word boundaries. Otherwise, e.g., in case
of symbols, the resultant values indicate inside word
boundaries, generating bus error traps.

UtiLisp/C adopted copying garbage collection.

The UtiLisp/C compiler is unique too in the series of
UtiLisp compilers because it first generates the object
program in C language. Until the previous implementa-
tion, i.e., upto UtiLisp32, compilers generated object
code in assembly language in the computer, local
assembly programs produced the object in machine
code, and the object then was linked. In case of
UtiLisp/C compiler, it compiles Lisp functions to C
code, evokes C compile to compile the generated pro-
grams, then ‘“‘incrementally loads’’ the compiled file
into a Lisp process. Finally the Lisp object of code type
is created.

The decision criteria for C code generation are:

* Transference to other machines is simple.

* Good optimizing C compiler is available.

« It is amicable to an interpreter in C language.

However, compilation is apparently slower since
many operations must be executed. As the purpose of
compilation is to obtain a faster version of programs, it
seems that the compiler’s mission is fulfilled when
efficient object programs are generated though the com-
piling speed is a little bit slow.

8. Conclusion

Software development seems to be a complicated
social and psychological phenomena where many fac-
tors contribute or interact. In the case described so far,
the first corner stone was an idea of one of the students
to implement an efficient Lisp interpreter. This nucleus
indeed worked so well that it kept interest of the
newcomer students. They in fact improved the system
in various sections. Concrete examples were presented
in each of the sections. Although the number of ex-
amples is limited, in the real system, there appeared
many interesting ideas. And all in all, the systems
presented such high efficiency without sacrificing flex-
icility of the Lisp language.

As the result of almost ten years’ discussion, coding,
retrospect and maintenance, five UtiLips systems came
to exist. (UtiLisp68 is now absorbed by UtiLisp32
because of the compatibility.) They are real software
products. However, inside the laboratory, rather
autonomous production process only motivated by the
pure spirit to produce faster system seems, at least to
the author, more interesting.
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