
Computer Science Department

TECHNICAL REPORT

t-H

<^^'>-
,<^^#>^

^^;^^^'

FROM PROTOTYPE TO
EFFICIENT IMPLEMENTATION:

A CASE STUDY USING SETL AND C.

Edmond Schonberg

David Shields

Technical Report #170

July 1985

jO-

i:

,£bA -,c

c.

FROM PROTOTYPE TO EFFICIENT IMPLEMENTATION:

A CASE STUDY USING SETL AND C.

Edmond Schonberg

David Shields

Courant Institute of Mathematical Sciences

New York University

251 Mercer Street

New York, NY 10012

ABSTRACT

We report on a large-scale experiment in Software Prototyping using very-

high level languages, by describing the evolution of the Ada/Ed system

from initial prototype to production-quality translator. Ada/Ed was the first

validated translator for Ada, and was written entirely in SETL. A new

version of Ada/Ed, written in C, is currently undergoing testing. We discuss

the problems associated with a translation from SETL to C, including data

structure choices, semantic conflicts between languages, and their impact

on the practice of Software Prototypmg. We also discuss the promise that

wide-spectrum languages hold for Software Technology.

1. Introduction.

This paper reports on an ongoing experiment in the use of very high level languages

(VHLLs) for software design and prototyping (see Bui] for a recent survey of the

practice of Software Prototyping). The work of the NYUAda group revolves around

the use of SETL, a VHLL whose most salient feature is the use of constructs taken

from the mathematical theory of sets. Using SETL, our group was able to construct

the first validated translator for Ada® . The first Ada/Ed system, validated in April

1983, was intended to serve as an operational definition of Ada and as a very

abstract design for an Ada compiler, and as such was no more than an executable

definition, (and barely executable at that: a few source lines of Ada per second of

CPU time on a VAX/780). Ada/Ed proved nevertheless to be a useful teaching tool,

and an excellent testbed for the use of VHLLs m software prototyping; thanks to the

exclusive use of SETL, it proved possible to construct a full translator for Ada in

about 16 person-years, within a typically unstructured academic environment,

without any rigorous Software Engineering procedures, and no design documents

other than the program itself [Kri]. It must be added that roughly half of those 16

years were spent in tracking language changes between preliminary Ada and ANSI

Ada, a period in which the prototype did indeed evolve with shifting requirements!

The remarkable inefficiency of the Ada/Ed prototype is due in small part to the

inefficiency of SETL itself. More importantly, it is due to the very abstract model

that Ada/Ed takes of both the compilation and the run-time environment. In order

to show conclusively that Ada/Ed is nevertheless a useful prototype of a production

compiler, we have been using it as the design document for a new version of

Ada/Ed, written in C, which is to have the performance of an acceptable commercial

translator / interpreter. In this paper we report on the construction of the front-

end (parser and semantic analyzer) of the nevv Ada/Ed system, and examme the

advantages of using executable prototypes in constructing software systems . This

front-end (16,000 lines of C for the parser, 40,000 for the semantic analyzer)

represents a sizeable system in its own right, and its completion (as of July 1985) is a

good vantage point from which to carry on this examination. A rough chronology

of the NYUADA project is given in Fig. 1.

The rest of this paper is organized as follows: section 2 gives a thumbnail sketch of

SETL, in order to make subsequent examples intelligible. Section 3 summarizes the

evolution of the Ada/Ed system from specification to prototype to production

software. Section 4 discusses the central problems which must be addressed in

translating a SETL program into C, and the specific solutions that were chosen for

Ada/Ed-C. Section 5 describes the performance of the new system. Section 6 briefly

discusses some aspects of SETL that hamper rather than facilitate prototyping.

Section 7 examines the characteristics of VHLLs such as SETL which contribute to

their use as prototyping tools, and concludes with a strong endorsement of the use

of wide-spectrum languages for all phases of software design and implementation.

Ada Language
definition

a) Sets in SETL have their standard mathematical properties: they are unordered

collections of values of arbitrary types, containing no duplicate values, and on which

the usual operations are defined: membership, union, intersection, power set

construction, etc. Set iterators and constructors are built-in control structures that

operate on sets. For example:

{xinSIP(x)} •

denotes a subset of the set S, all of whose members x satisfy the predicate P(x).

Quantified expression over sets use the quantifiers of first-order predicate calculus,

and describe common search constructs, For example:

exists x in S I P(x)

is a boolean-valued expression whose value is true if some member of S does satisfy

the predicate P. As a side-effect of its execution, the existentially quantified

expression assigns to the bound variable x the value of some such member of S, if

some exists.

b) Tuples in SETL are ordered sequences of-arbitrary size, which are indexed by

positive integers. The components of a tuple can be of arbitrary types, so that sets

of tuples, tuples of sets, tuples of tuples of sets of integers, etc. can be constructed..

Insertions and deletions from either end allow tuples to be used as stacks and

queues; Concatenation makes tuples akin to lists for certain purposes.

Heterogeneous tuples (whose components have distinct types) are often used in

the manner of the record structures of other languages. Tuple constructors and

iterators are similar to the corresponding constructs for sets. For example:

[x: xin [2. .100] I (not exists y in [2..X-1] I x mod y = 0]

constructs (inefficiently) the sequence of primes smaller than 100.

c) Maps in SETL faithfully reproduce the notion of mapping in set theory: a map is a

set of ordered pairs, i.e. tuples of length 2; the first components of these tuples

constitute the domain of the map, the second components its range. The elements

of the domain and range of a map can be of arbitrary types. Maps can be used as

tabular functions, and the application M(x) can be evaluated (a map is an

associative structure) or be the target of an assignment. Finally, mappings can be

multivalued (relations) or single-valued (functions) and the image set M{x} of a

value X underthe mapping M can also be retrieved and assigned to.

d) Input-ouput is defined for all SETL values, be they atomic or composite. A smgle

command can read or write to a designated file an arbitrary complex structure (set,

map, etc.)

These familiar notions constitute the core of SETL. What distinguishes SETL from

purely mathematical discourse is the requirement of executability. To guarantee

that all valid SETL constructs are executable, only finite objects can be denoted, and

they must be built explicitly before they can be used elsewhere (there is no lazy

evaluation in SETL). In order to speak about infinite objects in SETL, standard loop

and recursive procedure mechanisms are provided, in a conventional syntactic

framework akin to that of PASCAL, but without full nesting.

In summary, sets, tuples and maps are abstract data types for which the SETL run-

time environment has available a full implementation, freemg the user from the

need to specify how they should be represented and manipulated. For example,

the Ada/Ed interpreter [NY1] describes execution of an Ada program in terms of

the state of an abstract mapping (the store) which takes entities into their locations,

and a second map (the contents) which associates \/a/ues with each location. These

mappings make no assumptions about an actual memory model (sequential,

segmented, etc.) and are thus similar to the constructs used in denotational

definitions (and no less abstract than these).

3. The evolution of the Ada/Ed system.

Figure 2 summarizes the successive stages of the Ada/Ed system, from its initial

specification to its current status. The box labelled Ada/Ed is the original

interpreter, validated in April 1983. The box labelled Ada/Ed-C is the system whose

construction is the subject of this paper. The layers m between represent

intermediate versions of the prototype, whose purpose was to bridge the semantic

gap between SETL and C. It is worth emphasizing here that the conventional

distinction between specification and prototype has been blurred m the evolution

of Ada/Ed: the description of the executable semantics of Ada m Ada/Ed is certainly

no more than a specification, in that a large number of algorithmic details on

Semantic
Analysis

Setl

Binder
Setl

Semantic
Analysis

Setl

--'^

I I

Data^ flow

Semantic
Analysis

Setl

X
I

Semantic
Analysis

C

Code

memory and processor management are not explicitly described in it. Ada/Ed (and

all its subsequent versions) are nevertheless executable SETL programs, and in fact

modules from different versions have coexisted and operated on common program

representations, as various data flow paths in the figure show. By the addition of

detailed algorithms, additional compiler phases, and the choice of conventional

intermediate representations, the initial system has been refined to the point

where coding in a conventional systems language is relatively straightforward (and

yetfar from automatic). This refinement had a different flavor for each of the two

main portions of the system. We refer to this low-level SETL version as Ada/Ed-2.

3.1. Evolution of the semantic analyzer.

The original front-end, includng parser and semantic analyzer, is written in a

functional style in which tree fragments are constructed and exchanged by

procedures with few if any side effects. The only global structure is a simple symbol

table with few attributes. The intermediate representation, an abstract syntax tree

(AST), is described in SETL as a nested tuple, in a style akin to that of LISP, which in

particular implies a large amount of copying . Refinement of the front end consisted

in introducing an explicit global tree, whose attributes are modified by procedures

with side-effects. The TRE intermediate format is a labelled tree defined by SETL

maps. The map retrieval needed to go from node to descendant node thus

amounts to an explicit dereference, and brings the SETL text closer to the semantic

level of conventional systems languages.

The prototype version uses exclusively the AST as a means of communication

between the front-end and the interpreter. This narrow interface is economical for

definitional purposes, but unduly restrictive for use by the code generator. As a

result, Ada/Ed-2 transmits both TRE and the symbol table to the back-end of the

system. The symbol table organization itself is unchanged.

These are the only substantial changes in the evolution of the front-end. The code

size is virtally unchanged (around 25,000 lines of SETL) and the algorithms for type

checkmg, overload resolution, generic instantiation and other important aspects of

Ada compilation have been kept intact from Ada/Ed to Ada/Ed-2.

3.2 Evolution of the interpreter.

As we have Indicated above, the original interpreter is close in spirit to a

denotational definition of Ada. As a program, it combines the functions of a code

generator and of an interpreter (code generation being described as an activity of

the interpreter that builds the continuation to the program, instruction by

instruction). This semantic level of description is convenient for a language

definition, but is much too abstract to serve directly as a basis for a production

compiler. Thus the intermediate version of the interpreter represents a much

greater departure from the original than does the front-end. A prototype code

generator had to be constructed first, to produce conventional interpretable code

for a simple stack machine (the Ada machine). Aa additional compiler phase was

then added (the expander) in order to simplifyjmany aspects of code generation.

The three resulting modules: expander, code generator, and Ada machine

interpreter, were then ready to be translated into C without additional algorithmic

design. It must nevertheless be emphasized that the original Ada/Ed interpreter

provided the specification for the compiler phases that subsequently replaced it.

4. Design Issues in translating SETL into C.

The transition from a prototype written in SETL to production software written in a

lower-level language consists mainly in chosing concrete representations for the

abstract objects appearing in the SETL program, and in tailoring the abstract

algorithm therein to these concrete structures. This is typically the province of the

programmer qua artist, and all of the literature on the efficiency of dynamic search

structures can be enlisted in order to choose these representations. Nevertheless, a

large number of cases can be covered with a few standard structures of varying

complexity. Sets are most frequently represented as hash-tables, as bit-vectors, or as

membership bits in property lists; mappings can be encoded as sequences (arrays),

if a dense ordering exists on its domain, and so on. We discuss below the more

important choices made in Ada/Ed-C.

Apart from bridging the gap between the data structures of the two languages, the

passage from prototype to production software must resolve a miscellanea of

differences between the semantics of the two languages in the areas of procedure

linkage, value vs. pointer semantics, control structures, etc. Here there are few

general methods that can be used, and we discuss below what we found most

interesting about the use of C as the target language of this translation.

The construction of Ada/Ed-C was influenced by the decision to emphasize

readability of the resulting C code, and to try to keep the C code as close as possible

to the SETL version. This decision was taken in order to simplify the debugging and

testing of the C version, and to simplify subsequent maintenance tasks, The SETL

version of Ada/Ed is expected to evolve into a formal definition of Ada, and it will be

critical to ensure agreement between the SETL and C versions. Section 5 discusses

briefly the efficiency penalties that Ada/Ed-C has incurred because of this decision.

One way to assist readability is to use procedural interfaces to hide the data

structure choices and implement set primitives, even in those cases where the

structures chosen support efficient set operations that can be coded in-line. By

using procedural interfaces, the data structu'e choices remain flexible, and can be

modified once precise meas^jremGnts are available on the performance of Ada/Ed-

C. In this fashion the system still retains some of the flexibility and modifiability of

the SETL prototype, and leaves room forfurthertuning and optimization.

4.1 Structures for sets and iterators.

The following are the important factors in choosing the concrete representation

for a set appearing in a SETL program:

a) The operations that apply to it.

b) Its expected size.

c) Whether its representation may safely contain duplicate elements. This last item

follows from the fact that in SETL duplicate elements are always removed, which

forces a potentially expensive membership test whenever a new element is inserted.

If it can be determined that duplicates are harmless, then the set can be described

by a bag, and implemented efficiently, e.g. as a list. This representation can also be

used if it is known a priori that insertions always add new elements to the set.

Examination of the text of Ada/Ed indicates that sets are less frequent than tuples or

maps, and typically are small (< 10 elements). Examples of sets include the overload

set of subprograms (the set of subprograms with the same identifier that are visible

at a given point in the compilation), the set of possible types of an overloaded

expression, the set of visible packages in a compilation unit, etc. All of these cases

were covered with two representations: sorted arrays, and hash tables. It is

interesting to note that the most common set operations in Ada/Ed are membership

tests and single insertions and deletions; union and intersection are extremeley rare

(less than 20 occurrences in all). This accounts for the fact that no set is represented

as a bit-vector.

For sets represented as hash-tables, additional structures are needed to iterate over

them. The SETL loop construct:

loop for X in S I P(x) do ...

is translated by means of a series of iteration macros into the following C fragment:

FORSET(x= (Symbol), S,fs1); -: bn^jcy 9. k •.

if P(x) {

}

ENDFORSET(fsl); . -
-

In the above, the bound variable x is given an explicit cast (in this case as a Symbol,

i.e. a symbol table pointer) in order to allow the macro to be used for sets of

different types without triggering spurious errors messages from the lint

typechecker of the C compiler. The internal variable fsl is used to hold pointers into

the set being iterated upon, and the current value of the bound variable. The

ENDFORSET macro does the actual increment and test on the internal pointers that

traverse the set.

The implicit iterators appearing in quantified expressions are translated according

to similar rules. The common fragment; if exists x in S I P(x) then action(x)...

becomes in C:

exists = FALSE;

FORSET(x = (Symbol), S, fsl)

ifP(x){

exists = TRUE;

break;

}

10

ENDFORSET(fsl);

if exists {

action(x)...

}

This is a simple but telling example of the conciseness of the SETL dictions, and the

clutter that lower-level languages impose on the programmer. Most of the code

expansion in going from SETLto C and the corresponding loss of readability are due

to such mundane control structures.

4.2 Structures for tuples.

After some experimentation we found the following choice to be the most

convenient:

typedef char **Tuple;

which states that in C a tuple is a pointer to an array of pointers to characters. In

practice, not all components of a tuple are pointers to characters, and casts are used

wherever needed. SETL tuples are one-origined (the first component has index one)

while in C arrays are zero-origined. We found it convenient to use the first

component of the C array (the one with index zero) to hold the tuple size. This

allows index expressions to be identical in both languages. We note that is

somewhat of an abuse of the weak typing of C, where such an object (a dynamic

array and its current size, e.g. used as a stack) would more typically be represented

by a structure consisting of a size component and an array component. We find

nevertheless that the advantage of translating the SETL construct:

tup(i) : = val
;

into

tup[i] = val;

ratherthan into the heavier notation:

tup->tup value [i] = val

11

far outweighs the considerations regarding C style. The same holds for those cases

in which SETL uses heterogeneous tuples in the manner of PASCAL records; we use

arrays in the C version as well.

The SETL tuple primitives are realized as procedures in C. For example, the code

sequence:

tup:= [1,3];

tup with: = x; $ append x to the end of tup. Nowtup = [1,3, x]

z fromb tup; $ assign the first element of tup to z, and delete it.

becomes in C:

tup = tup_new(2); tup[1] = (char*) 1;tup[2] = (char*) 3;

tup = tup with(tup, (char *)x)
;

z = tup fromb(tup);

Procedure tup new allocates an initial tuple of the specified length using the

standard C library procedure malloc. The assignment is necessary in the call to

tup with, as the value of the tuple may be changed because of reallocation.

SETL has copy semantics for assignment, unlike most low-level languages. This

means that after:

tupl := [1,2];

tup2 : = tupl;

tupl with: = 3;

tupl has value [1, 2, 3] but tup2 is still [1, 2]. The translation of any destructive

operation such as with: = thus requires a copy in principle, to avoid side-effects on

shared values. In practice, most such destructive uses are safe (values of composites

are seldom shared). In the C version, the operation tup with and its cognates use

their first argument destructively, and an explicit procedure tup copy is used

where needed. Note however that only a careful examination of the SETL code will

indicate whether a copy is actually needed. The SETL prototype seems here to

impose inefficiencies on the production version. This is an area in which the

information obtainable from global data-flow analysis may be of considerable help

(See [Fr2] for examples).

12

The converse is that the value semantics of SETL are an important asset to the

translation precisely because we know that an assignment is free of side-efects:

given that a value in SETL cannot be shared among various objects (there are no

pointers in SETL) we know that it is always possble to relocate a composite after it

has been modified, because this modification involves only the target of the

assignment and is otherwise free of side effects. This is an important simplification

in the management of dynamic objects whose size can be expected to vary widely.

4.3 Structures for maps: the parse tree.

As with conventional compilers, the principal data structures manipulated by the

front end are the parse tree and the symbol table. Both are represented in SETL as a

set of mappings.

Nodes on the parse tree are simply integers, on which several mappings are defined;

a kind map, a successor map, whose range type is a tuple of nodes, a value map for

terminal nodes (literals and identifiers), a type map for expression nodes, etc.

Parse tree nodes are represented in C as structures. Not all mappings are defined on

all nodes. The kind of the node functions as a discriminant to interpret the contents

of each structure, but the current version allocates the same storage to all nodes,

and avoids sharing of storage among maps whose domains are disjoint. The

syntactic structure of Ada is such that a node has no more that 4 descendants, or

else has a list of them. This allows us to represent the range of the successor map as

a tuple of fixed size, or as a list of nodes of the same kind. Other node maps are

tuples, sets , and symbols (unique names) which m turn are represented in the C

structure by pointers. On the VAX the node structures requires 66 bytes of storage.

The semantic analyzer is a (mostly) top-down pass over the tree, and the most

common operation it performs is the unpacking of the descendants of a given node

in order to effect semantic checks on them. It is instructive to examme how the

code corresponding to a given production (that for an /^-statement) has evolved in

all three versions of Ada/Ed. The tree for this production has the following

structure in all three cases:

13

if part

condition

if node

optional else node

statement list

Fig. 3 Syntax tree for if statement.

a) In Ada/Ed, the tree is represented as a nested tuple, and the first component of

each tuple is a string that indicates its kind, (in this case, 'ti'). At the top level , the

semantic processing for this node is expressed as follows:

if part : = [[adasem(cond), adasem(stats)] : [cond, stats] in tree(2)] ;

result : = ['if, if part, adasem(tree(3))] ;

This simply says: process each condition and each corresponding statement list, and

then process the final else clause. In the above, result mdicates the tree produced

by the semantic processing of this node. The semantic processing of the cond node

will verify that it is an expression of some boolean type, and so on. (Note the syntax

for the iterator over tree(2), which unpacks the pairs into two named constitutents

which are bound by the iteration).

b) In Ada/Ed-2, the tree is a global object, and the semantic actions modify and

annotate it , rather than rebuilding it. The mapping N AST, defined over all non-

terminal nodes, takes a node into the tuple of its descendants, if there is a fixed

number of them. If it is a list node, the mapping N LIST gives instead the sequence

of its descendants, all of which have the same kind. The procedure that performs

semantic checking of the if statement now takes the following form:

14

[\f_pan, else_node] : = N_AST(if_node) ;

(for node in N_LIST(if_part))

[cond_node,stat_node] : = N_AST(node)

;

adasem(cond node);

adasem(stat node) ;

end for;

adasem(else node)
;

What makes the semantic level of this fragment lower than the first, is the explicit

appearance of the mappmgs N AST, N LIST, whose use is equivalent to an explicit

dereference operation. It is characterisitic of the transition to a lower semantic level

that storage allocation and pointer mechanisms, which are mvisible to the user at

the abstract level, must be made manisfest

.

c) In Ada/Ed-C, the node is a record whose descendants are accessed through 4

fields called N_AST1,..., N_AST4. If it is a list node, a separate field called N_LIST

holds a pointer to a tuple of varymg size. The processing of the if statement now

becomes:

if_part = N_AST1(if_node);

else node = N AST2(if node)

;

(FORTUP(node = (Node), N_LIST(if_part), ftl);

cond node = N ASTI(node);

Stat node = N AST2(node);

adasem(cond node);

adasem(stat node);

ENDFORTUP(ftl);

adasem(else node);

In this case, the distance between first and second version appears larger than

between second and third. In fact the later transformation includes several

important data-structuring choices (4 fixed locations for AST descendants, a tuple

for N LIST rather than a conventional linked list) but once these choices have been

made (at the global level) the C text can be obtained from the SETL one by

15

following simple coding conventions (which are for the most part embedded in

well-chosen macros for control structures).

4.4 Structures for maps: the symbol table.

In Ada/Ed all declared entities are represented internally by unique names, i.e. the

equivalent of symbol table pointers. The symbol table proper is a set of maps

defined on these unique names. Mappings called Nature, Type, Signature, Scope,

Alias, are self-explanatory. A few other mappings are defined for entities of specific

kinds. For each entity that may contain other declared entities (subprograms,

blocks, packages, tasks, etc.), a separate mapping relates source identifiers to the

corresponding unique names. This mapping, called DECLARED, corresponds to the

conventional hash-structure used to access the symbol table itself. The structure of

DECLARED can be described thus:

DECLARED: scope name -»•(id -»• unique name)

that is to say, DECLARED(scope name) is a mapping that associates the identifier id

of any entity declared in scope name, with the unique name for symbol) of that

entity.

In Ada/Ed-C symbols are represented by a pointer to a C structure. The range of

DECLARED is thus a set of symbols (rather than strings as in the SETL version).

Because of the central role played by the DECLARED mapping, several special

procedures exist to add a declaration, iterate over the declarations appearing in a

scope, search the declarations corresponding to some scope, or to all visible scopes,

etc. A typical example is the iteration:

(for [id, u name] in DECLARED(some scope))... end for
;

which uses the SETL map iterator, in which the bound variables are an element of

the domain of the map, and the corresponding element of the range (maps being

equivalent conceptually and structurally to sets of ordered pairs).

In Ada/Ed-C the structure used for a DECLARED map isdefined as follows:

16

typedef struct Declaredmap s; {

short dmap length; /* number of elements */

short dmap hashn; /* number of hash headers */

struct Dment **dmap_hasht; /* pointers to hash table */

} Declaredmap s;

Each entry in the hash table is a pointer to the following structure:

typedef struct Dment {

char *dment id; /* source identifier*/

unsigned short dment hash; 1- /* hash code of identifier*/

struct Dment *dment next; '^•'-'''/*pointer to next entry in hash list*/

Symbol dment_symbol; ""- 7* symbol table pointer */

short dment visible; /* non-zero for visible identifier*/

} Dment

;

This representation is similar to that used within the SETL system for general sets,

except that the types of the domain values (strings) and range values (Symbol table

pointers) are known a priori. In the SETL system, hash tables are changed as the size

of the underlying set changes; this is not yet done in the C version . The number of

hash buckets is thus determined by the initial estimate of the map size given in the

call to the procedure del new() that is used to initialize a declared map.

The form used within the C text for iteration over a declared map is the macro

FORDECLARED(id, sym, dmap, dmapiv)

which iterates over the declared map dmap given as the third argument using the

iteration structure dmapiv given as the last argument. For each pass through the

iteration, the first argument is set to an identifier string, and the second argument

is set to the corresponding symbol table pointer, as in the case of the SETL iterator

given above. A sample iteration takes the form

:

Fordeclared dmapiv
;

char id; Symbol sym;

17

FORDECLARED(id, sym, DECLARED(current_scope), dmapiv)

The structure used to control the iteration is among the more complicated needed

in the translation, and takes the following form:

typedef struct Fordeclared {

Declaredmap fordeclared map;

int fordeclared i; /* iteration index */

int fordeclared n; /* number of hash headers*/

struct Dment *fordeclared p; /*points to current element*/

struct Dment *fordeclared pnext; /* points to next element*/

short fordeclared more; /* set while entries may exist */

short fordeclared vis; /* set if visible entry */

} Fordeclared;

The macro definitions for iteration over a declared map are then defined as follows:

#define FORDECLARED(str,sym,dmap,iv)

fordeclared 1(dmap,&iv); /* initialize iteration */

while (iv. fordeclared more) { /* while more elements */

fordeclared 2(&iv); /* advance to next one*/

if (iv.fordeclared-more = =0) break; /* quit if done */

str = iv. fordeclared p->dment id; / *get identifier*/

sym = iv. fordeclared p->dment symbol; /*get symbol */

iv.fordeclared vis =

iv.fordeclared p->dment visible; /*save visibility bit */

iv.fordeclared pnext =

iv.fordeclared p - > dment next; /* point to next */

#defineENDFORDECLARED(iv) }

The procedures fordeclared 1 and fordeclared 2 are used within the macro to

reduce the amount of inline text obtained during macro expansion. The first sets

the initial values to start the iteration The second advances to the next element
,

either in the current hash chain, or by moving ahead to a non-empty hash chain. The

18

iteration variable fordeclared_more is used to signal the end of the iteration, and

is updated in the auxiliary procedure fordeclared 2..

The Nature of a symbol functions as a discriminant for the other fields in the

structure, but here again the current version simply allocates a fixed size (40 bytes)

to all symbols. An additional 28 bytes are added for code generation information.

Other mappings are handled on a case by case basis. Infrequently used maps are

represented as tuples of pairs, more common ones as hashed structures, where the

hash code of an element of the domain is used to retrieve efficiently the

correspondng value of the range.

4.5 External form of intermediate code and separate compilation.

The rules of separate compilation for Ada require that full symbol table information

be maintained for separately compiled units to allow for complete semantic

checking. The name space of a given unit is affected by other units in the program

library, and a unit may make reference to symbols appearing in several other

compilations. In SETL, symbols are simply character strings of any length, and no

particular distinction need be made between their internal form during

compilation, and their external form in a file that holds the result of a given

compilation. This simple scheme is not available in C, where symbols are pointers

with no a priori external representation. In the C version we choose to represent

symbols externally as a pair [file, offset], and to represent the result of a

compilation by means of a random-access file. Internally, symbols are also

represented by a structure that includes the unit number and sequence number

within the unit. The conversion from external to internal form is effected in

transparent fashion when a file is read for purpose of separate compilation, and

leads to a simple paging scheme for symbol table information.

The single aspect of Ada/Ed where the largest code expansion took place is precisely

in the input-ouput of intermediate program representations. As mentioned above,

a single SETL statement suffices to perform I/O on arbitrary objects, such as the

whole of the DECLARED map. In C such structures must be iterated upon explicitly
,

and traversed recursively to transform each of their components into or from their

19

external representation. The freedom afforded by the high-level I/O primitives of

SETL is one of its greatest assets as a prototyping tool, because it is often the case

that in a lower-level language external representations and interfaces are chosen

very early in .the design, and are prematurely frozen. In the passage from SETL to C,

the last design choice was that of external representations, in complete reversal of

the usual practice, and providing an elegant example of the principle of decision

postponement.

5. Some figures.

We estimate that the translation of the semantic phase into C has taken 28 person-

months from its inception until the point at which ail validation tests of the Ada

Compiler validation facility (ACVC) that pertain io semantic checks were

successfully passed. The chronology is as follows:

a) One of us (D.S.) began the design of the C version in Fc'il 1983. Work began with a

careful reading of the SETL source and the choice of C coding conventions. The first

module to be translated following these coding conventions was a self-contained

package for arbitrary precision arithmetic . This initial step took two months and

included the time needed to learn C.

b) The data structures for parse tree and symbol table, and the macros for their

manipulation were then designed overtwo months.

c) One month was spent on translating the initialization code (which includes the

internal form of the predefined environment and packages of an Ada compilation).

d) Four months were then needed to translate the rest of the code, and three

months were spent integrating the system to the point where it could be tested

against the existing back-end of Ada/Ed. This required the coding of a first version

of the library interface that produced valid mput for the SETL version of the code

generator.

e) At that pomt two other members of the NYUADA project took over the

completion of the semantic phase including the library interfaces to the C version of

the code generator, and the systematic testing using ACVC tests. This process has

20

taken eight months. We expect at least another person-year to be needed for

tuning and optimization, for a total investment of under 4 person-years for the

production of 40,000 lines of production-quality C-code. This compares to the 5

person-years spent on the 20,000 lines of SETL of the initial initial prototype of the

semantic analyzer (about 1/3 of the total spent on Ada/Ed from inception of the

project to the first validation), and the 3 person-years needed to produce the

intermediate SETL version of the semantic phase. A crude generalization from

these figures suggests that roughly equal time be spent on the initial running

prototype, the first set of algorithmic transformations, and the production version.

Little attention has been payed to performance so far, and it is only after full ACVC

validation of the translator that, time will be spent tuning the system. In the

meantime, the front-end of the system processes about 1000 lines/min on the

\JAXJ7S0 under BSD4.2 . This is roughly 25 times faster than the SETL version. We

expect that an additional factor of two can be gained by fine-tuning and replacing

some procedure calls by in-lne expansions.

6. Weak points of SETL as a prototyping tool.

Some aspects of SETL were the cause for (surmountable) difficulties in the course of

translation to C. The most salient of these is the weak typing of SETL: variable are

not typed, and can assume values of different types in the course of program

execution. There are three situations in which weak typing appears in the program:

a) The programmer has simply reused a name for two unrelated purposes in the

same scope. This is both inexcusable and easily remedied.

b) A variable may be weakly typed because it represents a recursive structure (say

the parse tree in Ada/Ed) and may correspond to a non-terminal node or a terminal

node. Because SETL does not have the equivalent of discriminated unions, the only

way to distinguish between them is to use the type predicates is tuple, is string.

This problem disappears in Ada/Ed-2, where discriminants for nodes appear

explicitly (but are built by hand, as it were, using SETL mappings, and are not as type

safe as discriminants in other languages).

21

c) A variable may be weakly typed because the problem domain itself suggests

several possible types for it. A prime example of this is found in the name resolution

routines of Ada/Ed. The notion of overloadable entitites is central to Ada, and refers

to the fact that several subprograms or operators with the same identifiers and

different parameter profiles may be visible at the same point in the program. When

an identifier id appears, e.g. in an expression, the name resolution routines examine

several scopes (according to the rules of visibility of the language) to determine the

meaning of id. If it is not an overloadable entity, it has a unique meaning, given by

some unique name u n. It may on the other hand be the identifier for several

overloadable entities, in which case name resolution yields the set of its possible

meanings {a n 1, u n2, ...} (it is then up to the overload resolution process to find

the single member of this set that is compatible with the context in which id

appears. See Fig. 4).

Unique
name

dentifier

22

the decision to regard the Ada/Ed predicate is_overloaded as synonymous with

the SETL predicate is set.

There were other minor instances that may be termed "abuses of the language" in

Ada/Ed. In these, SETL itself was not at fault, but instead its power led to

programming shortcuts that should be considered unacceptable style. An example

relates to the use of strings as unique names. It seemed convenient to construct

unique names in the form of expanded names, so that the interpretable code (in

which source identifiers are replaced by unique names) should retam some

readability, and should have an obvious external representation. Thus, the variable

X defined in package P was given the unique name "P.X#18" (the numeric suffix

being added to insure uniqueness m the case of overloaded entities). This innocent

choice allowed the retrieval of the original name (that is to say X) from the unique

name, by means of string manipulations. This usage, intended initially only for

error messages, in fact allowed the encoding of additional information in the

unique name itself. All such uses had to be removed to produce Ada/Ed-2. In a

sense, this mdicates a real weakness of SETL, namely the absence of user-defined

abstract objects. It also exemplifies a low-level coding trick that should have no

place in a software prototype.

7. Conclusions: very-high levellanguages as tools for prototyping.

The Software methodology exemplified by the Ada/Ed experience is one m which

the standard sharp distinction between design and implementation is replaced by a

series of refinements applied to successive executable versions of a Software system.

The first version is conventionally described as a prototype, and its construction is

much facilitated by the use of very high level languages. The successive refinements

that are brought to it correspond to a lowering of the semantic level of description

of the original system, for example by introducing explicit storage management,

removing global operations on composite objects, and mainly by choosing concrete

representations for abstract data types.

We cannot emphasize enough the extent to which the executability of early

versions of the system aids in the construction of subsequent refinements: in the

absence of reliable methods for the formal verification of large systems, operational

testing remains the best way of ascertaining that the system does what it is

23

intended to do. What distinguishes this use of prototyping from simply "design by

debugging" is the use of a VHLL . If written at a sufficient level of abstraction, the

prototype can be as free of implementation biases as any non-executable

specification. Its executability will however simplify considerably the construction

of successive refinements. For example, the testing of Ada/Ed-2 and of Ada/Ed-C

consisted to a large part in verifying that their internal trace output was the same

as that of the Ada/Ed prototype. It must be added that the decision of keeping the C

source close to the SETL text has also simplified testing and integration: bugs in

Ada/Ed-C were most of the time transcription errors (thus easily detectable) and not

conceptual errors. Finally, to the extent that Ada/Ed is free of design errors (it is a

validated translator) so is Ada/Ed-C.

After validation of Ada/Ed-C, we intend to continue using .Ada/Ed for maintenance.

The need for continued maintenance follows from the existence of known semantic

gaps in Ada, whose resolution by the Language Maintenance Committee will result

in new ACVC tests. Ada/Ed remains a malleable software product, and it will always

be easier to modify it first, and then propagate changes to Ada/Ed-C. We thus

expect the lifetime of the prototype to be coterminous with that of the production

software.

Ada/Ed-2 was also written in SETL, thanks to the fact that SETL can be used at a

variety of semantic levels, from the barely executable to the PASCAL-like. SETL is in

that sense a wide-spectrum language (the term was introduced m [Bal]). The

advantages of programming in such a language are clear: refinements can be

applied to critical portions of the system, while less used modules can remain in

their original state. In this fashion, an efficient system can be derived from the

prototype with a minimum of reprogramming. Ideally, the spectrum of the

language should be wide enough to incorporate some machme characterisitics

(such as the register declaration of C), or at least the semantic level of FORTRAN.

This is not the case for SETL, nor any other existing wide-spectrum language, and

the Ada/Ed experience indicates that the passage from 'low-level' SETL to C remains

a task requiring substantial programming skills. Even though much of this passage

resembles standard compilation of high-level control structures, the

transformations that we have described are m fact clearly beyond the reach of

current optimization techniques. One may hope that purely linguistic mechanisms

(data-description languages, libraries of transformations, etc.) could be used to

24

obtain out of low-level SETL code the efficiency of a standard systems language.

Work in this area appears promising [Del, Fri, Scl] but is still the subject of active

research, far from industrial applicability. In the meantime, the use of VHLLs for the

first phases of Software production, coupled with the use of prototypes during the

lifetime of the software, seems to us the most promising approach for the

economical realization of large systems.

Acknowledgements.

This work has been supported in part by US Army contract #DAAB027-82-K-J196

(CORADCOM- Fort Monmouth, N.J), and by ONR contract NO0014856K0413.

We want to express our thanks to Gail Shenker and Bernard Banner, who have

completed the translation work on the semantic phase of Ada/Ed-C, and to all the

members of the NYUADA group, past and present.

References.

[Bal] F.Bauer and H. Wiener, Algorithmic language and Program Developement,

Springer Verlag, Berlin, 1981.

[Bui] R. Budde etal. Approaches to Prototyping, Springer Verlag, Berlin, 1983.

[Del] R. Dewar, A.Grand, S.C. Liu, J.Schwartz and E. Schonberg, "Programming by

refinement, as exemplified by the SETL representation sublanguage",>^C/V/ Trans.

Program. Lang. Sys. Vol.1, no. 1, July 1979, pp.27-49

[De2] R. Dewar, E. Schonberg and J.Schwartz, High Level Programming: an

introduction to the Programming language SETL, Counrant Institute of

Mathematical Science, New York, 1982.

[Fri] S. Freudenberger, J.Schwartz and M.Sharir, "Experience with the SETL

optimizer", /AC/W Trans. Program. Lang. Sys. Jam. 1983, pp. 26-45

25

[Fr2] S. Freudenberg, On the Use of Global Optimization Algorithms for the

detection of semantic programming errors. Courant Insitute of Mathematical

Sciences Report NSo-24, New York, 1984.

[Kri] P. Kruchten, E. Schonberg and J. Schwartz, Software Prototyping using the

SETL Programming language, IEEE Software, Vol.1, No. 4, Oct. 1984, pp. 66-76.

[NY1] NYUADA group, "An executable Semantic Model of Ada", Courant Institute

of Mathematical Sciences, Technical report 84, New York, 1983.

[Scl] E. Schonberg, J.Schwartz and M.Shanr, "An Automatic technique for Selection

of Data Representations in SETL programs", ACM Trans. Program. Lang. Sys. Vol. 3,

no. 2, April 1983 pp. 126-143.

This book may be kept

FOURTEEN DAYS
A fine will be char?red for each day the book is kept overtime.

NYU COMPSCI TR-170
Schonbe r g , Edmond

c.l

From prototype to
efficient

NYU OOMPSCI TR-170
^honberg, Edmond

LIBRARY
N.Y.U. Courant Institute of

Mathematical Sciences

251 Mercer St.

NewYork, N. Y. 10012

