Translating a subset of
SETL/E into SETL2

W. Hasselbring

Computer Science / Software Engineering
University of Essen
F. R. Germany
willi@informatik.uni-essen.de

January 28, 1991

Abstract

A translator for a subset of SETL/E into SETL2 built with the compiler construction system
Eli will be presented. The main objective of this work was to obtain the basic specifications
for a compiler that transforms SETL/E into ANSI-C. The latter transformation is in progress
in parallel to our work. Additional benefits are the ability to execute and to experiment with
a subset of SETL/E and to obtain a comparison with some features of SETL2. This report is
assumed to be the documentation for a development step.

Contents
1 Introduction 1
2 The Specifications 1
21 Lexicalanalysis . . . v v oo v v 2
2.2 Syntax analysis 9
2.2.1 Concrete Erammaro oo v vvos e BB EWEAEE QME o 9
2.2.2 Concrete/abstract grammar tool ..« v v 3
223 ADbStract GraMmMAr . « . v v v 3
2.3 Attributeevaluation i e e s e 4
231 Staticsemanticso v i e e e, 5
232 Codeproduction vt e 6
2.3.3 Limits for the translation v e 9
2.4 Abstract data types and ANSI-Ccode . v . v v v oo v v oo 1
2.4.1 The abstract data type PutFile v v, 1
242 Errorhandlingo i, 12
243 Miscellaneous . . v v v i e e, 13
25 Derivation . o v v v e e 13
3 User’s guide 14
4 Conclusions 14
Acknowledgements 14
A The concrete grammar 15
B The symbol equivalences : 20
C The static conditions 21
References 27
List of Figures
1 Thespecificationsfile.o, 2
2 The lexical structure specification., 3
3 Concrete grammar productions where the literals were removed. 4
4 The chain start for the code production. 7
5 Code production for binary expressions.c.. . 7
6 Code production for the until statement. 8
7 AsimpleSETL/Eprogram. ocounoe ... 8
8 The produced SETL2 program. oo 8
9 A part of the indentation management. 9
10 An example for the hidden declaration. 10
11 An example for the whilefoundloop. 10
12 The error handling (Fehler.h).o ievn ot 13
13 The header filesin ses2.head.t 13

1 Introduction

The set theoretic language SETL/E is a successor of SETL [SDDS86, DF89]. For a full
account on set theoretic languages and programming we refer to these books. SETL/E is at
present under development at the University of Essen. The kernel of the language was at
first presented in [DGH90b] and the system in [DGH90a]. Considerations on persistence and
concurrency are under way but not treated in this work.

Several changes to the language definition were made since its first presentation. In
this work we refer to the version given in [DFGH90]. Originally it was intended to build
a pretty printer for SETL/E. Performing this would require approximately the same effort
as a translation into SETL2. Because of the additional benefits we decided to perform the
translation into SETL2. The SETL2 programming language was evolved from SETL too, and
developed at the New York University [Sny90a).

The compiler construction system Eli is the central tool for implementing SETL/E. Eli
integrates off-the-shelf tools and libraries with specialized language processors to provide a
system for generating complete compilers quickly and reliably [GHK*90].

In the next section the compiler specifications are presented. The differences with SETL2
are occasionally given in section 2.3 where appropriate. There’s no extra section for a com-
parison, because this was not a primary goal of this work and there were not too much
differences discovered. Section 3 gives a short guide to use the produced translator.

The presented compiler is called a translator because the language level is not changed.
We will use the word ‘compiler’ synonymous to ‘transformer’ or ‘translator’ because Eli is a
‘compiler construction system’. You could also use ‘language processor’.

2 The Specifications

Eli contains a collection of Tools for performing the respective compiler construction tasks as
producing a scanner, parser or attribute evaluator. For a full account on compiler construction
we refer to [ASUS6).

Figure 1 shows the contents of the specifications file needed for our translation. This file
is used as Eli’s input. It contains the names of all the files that are necessary to derive an
executable compiler.

The several specifications are discussed in the following sections. In section 2.1 the lex-
ical structure is presented. Section 2.2 presents the concrete grammar specification and its
relationship to the abstract grammar.

The LIDO specifications that are used to derive the attribute evaluator are presented
in section 2.3. The attribute evaluator drives the semantic analysis phase of the compiler
frontend and the code production.

The remaining specifications contain ANSI-C code. Some people would not call them as
specifications. However, this part of the compiler is presented in section 2.4.

The specifications sec.gla, sec.con, sec.sym, sec.rel, sec.abs, rules.lido, Check.c,
Cond.lido, PutFile.c and Fehler.c will be reused for the transformation into ANSI-C.

Section 2.5 will explain the way to derive an executable compiler or the source for this
compiler with Eli.

2 THE SPECIFICATIONS

/% The specifications: */

sac.gla /% Lexical structure */

8ec.con /+ Concrote grammar */

sec.sym /* Symbol equivalences %/

sec.rel /% Concreta/abstract relationship /
sec.abs /» Abstract grammar %/

rules.lido /% A1l rules without attribution /
Cond.lido /% Static conditions »/

Code.lido % Code production */

Indent.lido /% Indentation management */
Limits.lido /* Limits for the translation »/
ses2.head /* Specification headers »/
ses2.init /+ Initial statements */

ses2.finl /* Final statements %/

Fehler.c /% Error handling */

Check.c /+ Check conditions */

PutFile.c /* ADT for code production */

Figure 1: The specifications file.

2.1 Lexical analysis

GLA is in Eli a tool that generates lexical analyzers [Gra89]. Usually a lexical analyzer wil|
need to deal with input consisting of some combination of literal symbols, non-literal symbols
(such as identifiers or integers) and comments. Users of Eli need not deal with literal symbols
{such as ‘bagin’ or ‘*") because they are automatically extracted from the user’s grammars. A
complete GLA specification consists of three parts: The non-literal description part, options
and the encoding part. Eli users only give the non-literal description part; the other parts
are automatically produced from the parsing grammar.

The specification for the behavior of the lexical analyzer for SETL/E is given in Figure 2.
This is the content of sec.gla. With the exception of floating point constants we refer-
enced canned descriptions. For floating point constants it was necessary to provide a regular
expression and a processor that saves the corresponding string. For details see [Gra89).

2.2 Syntax analysis
2.2.1 Concrete grammar

The concrete grammar describes the context free syntax of the language to be compiled. The
parser for the compiler is generated from the concrete grammar.

The terminals referenced in the concrete grammar are defined in the sec.gla specification.
See Figure 2 in section 2.1.

The purpose of a concrete syntax is to describe the structure of the input program as the
programmer writes it down. This is the structure that is recognized by the parser and built
into the tree described by the attribute grammar.

2.2 Syntax analysis

{ Lexical structure: }

id: C_IDENTIFIER
int: PASCAL_INTEGER
float: $([0-91+\.[0-91+|[0-8]+\.[0-9]+(e|E)(\+I\-)?[0-9]+) [mkstr]
str: C_STRING_LIT
ADA_COMMENT
PASCAL_COMMENT

Figure 2: The lexical structure specification.

The problem with this is that the structure of the program written by the programmer
is governed by rules of operator precedence that are not involved in the process of gathering
and distributing information over the tree. Operator precedence and bracketing rules play
an important part in building the tree, but no role whatsoever once the tree is available.
Therefore if operator precedence and bracketing rules are to be provided then they should be
described by a concrete syntax that is distinct from the attribute grammar.

Eli uses parser generators that accept LALR(1) grammars. An introduction to this class of
lookahead-LR context free grammars is given in [ASU86, section 4.7]. The LALR(1) grammar
for SETL/E is given in appendix A.

All the names of the nonterminals begin with the character ‘x’. This is not necessary,
but seems to be useful for the attribution rules (section 2.3). The nonterminals that occur
only in the concrete grammar and not in the abstract grammar (thus not in the attribution)
begin with ‘xc’.

Exceptions and operator declarations are at present not handled. See also section 2.3.3.

2.2.2 Concrete/abstract grammar tool

The productions in the concrete grammar are mapped into the attribute grammar using
the concrete/abstract grammar tool (CAGT) [Gro89a). CAGT is a tool that is used to
specify the relationship between a concrete grammar and an abstract grammar. The user
provides a concrete grammar to CAGT, and interactively transforms it into the desired
abstract grammar. It produces the files sac.rel, sec.abs, and sec.sym, which describe
the mapping of the concrete grammar into the attribute grammar.

CAGT records the relationship between the original concrete grammar and the trans-
formed abstract grammar in the file sec.rel. The abstract grammar itself is put in sec.abs
and the symbol equivalences in sec.sym.

2.2.3 Abstract grammar

An abstract grammar describes all of the possible forms taken by each of the syntactic classes
of a language, and therefore determines the structure of the tree used to represent programs
internally. It does not, however, define the set of character strings that are well-formed
program texts or specify their phrase structures.

For example, the abstract grammar for SETL/E contains a rule describing

< Ezpression> < Operator> < Ezpression>

4 2 THE SPECIFICATIONS

as one form of an expression, but it would not determine whether a +l , "wc]?dnl:‘:dl-rmmed
expression or, if it is, whether b is an operand of + or of *. Such questions wWould be answereq
by the concrete grammar. . :

’ In SPEdfyingg: language processar, the abstract grammar describes thle p?smble shapeg
of the trees which will be used to represent programs internally. Each rule of the abstrac,
grammar corresponds to one particular kind of tree node. The concrete sm;um“- on the other
hand, describes the possible character strings that make up well-formed programs. Thegq
character strings are recognized by the parser, which is cm:tr.olled by the concrete grammar
and invokes tree-building actions to construct the program § internal representation. .

How does the parser know when to invoke a tree-building action, a-n.d Whld} action tq
invoke? Since each rule of the abstract grammar corresponds to a particular kind of tree
node, the action to create that node can be attached to the abstract grammar rule a5 5
decoration. Unfortunately, that action must be attached to some concrete grammar pyq
in order to be available to control the parser. But CAGT understands and records the
relationship between the abstract grammar and the concrete grammar.

Distinct symbals of the concrete grammar are represented by a 51“5!*’ SY“nbOl in the
abstract grammar. Thus certain rules of the concrete grammar lfave no identical rules jj
the abstract grammar. These symbol equivalences are recorded in sec.sym and given j,
appendix B.

The content of sec.abs (the abstract grammar) is not given here to save space. You have
only to replace in the concrete grammar all occurrences of nonterminals starting with ‘xc’ op
the right sides in sec.sym with their respective left hand sides, and to remove the identica)
productions. In addition the literals in the productions of figure 3 were removed.

xParamlList ::= '(’ xcParams ')’ .
xcCaselist ::= 'vhen’ xExprlist '=>' .
xcPrimary ::= *(* xExpr ')’ .

Figure 3: Concrete grammar productions where the literals were removed.

Thus these productions are not present in the abstract grammar. Especially, parentheses
in expressions are of no interest in an abstract grammar. In principle it would be possible to
remove more literals from the abstract grammar. But the resulting grammar would not be
very readable.

2.3 Attribute evaluation

An attribute grammar (AG) specifies context dependent computations of attribute values
associated to nodes of a tree. If applied to the semantic analysis phase of a compiler the
tree is the structure tree of the program, which usually is determined by the parser as an
abstraction of the derivation tree. Hence the AG augments a context-free grammar (CFG)
specifying the structure of that tree. Attributes are associated to symbols of the abstract
grammar. An attribute value of a tree node for a symbol describes a context dependent
property of that symbol instance in its tree context (like the type of an expression). Since
the computation of attribute values is determined by the context of the symbol, attribution
rules are associated to the productions of the CFG. Here this CFG is the above-mentioned
abstract grammar.

2.3 Attribute evaluation

AGs are well suited for formal and declarative descriptions of any kind of systematijc
information flow through recursive tree structures. They have been proven to be a suitable
means for specification of the semantic analysis phase of compilers. Such compiler modules
are systematically implemented by attribute evaluators which compute language Properties
as attributes associated to nodes of the structure tree for the program. Furthermore the AG
specifies context dependent conditions which must hold if the program is correct according to
the static semantics (e.g. type and scope rules). They are specified by functions over attribute
values associated to productions, too.

LIGA is a language independent generator for attribute evaluators in Eli [Kasg[]b]_ An
attribute evaluator is specified by an AG written in LIGA's input language LIDO [KasQUa]_
The specification comprises a context-free grammar augmented by typed attributes and spec-
ifications of context dependent attribute computations. Exchangeable backends allow to im-
plement the evaluator in different implementation languages and to vary the implementation
techniques. Its basic concepts include specific notations and structures which support com-
mon attribution schemes, refinement of the attribute grammar, and the systematic use of
abstract data types in the attribution.

The AG class accepted by LIGA is that of ordered attribute grammars [Kas80]. It belongs
to the classes which on the one hand frees the AG designer from planning the evaluation
order as far as possible, and on the other hand allows to compute the control structure of the
attribute evaluator in polynomial time. Furthermore methods for attribute storage reduction
are applied at generation time.

LIDO has a functional interface to any language suitable for the specification of attribute
computation. It restricts the attribution to the functional dependencies only. The functions
themselves are supplied separately, written in the implementation language of the generated
attribute evaluator. In the present version of LIGA this language is C. The natural and only
means to influence evaluation order are attribute dependencies. Shorthand denotations are
available for description of common attribution structures. LIDO is completely declarative
and the attributes are typed. Their context dependent computation is specified by expressions
constructed as nested function calls. The implementations of both the types and functions
used in the AG is opaque to the LIGA system. They are supplied separately to be integrated
into the generated attribute evaluator (see also section 2.4.1).

In our application the attribute evaluator drives the static semantic analysis phase of the
compiler frontend and the code production.

LIDO permits splitting the specification of attribute computation for the productions over
several files. To obtain a reusable basis we put all the rules without attributionin rules.lido.
This represents the abstract grammar discussed in section 2.2.3 in LIDO syntax. However,
sec.abs is necessary because the integers contained in the relationship file sec.rel refer to
the respective positions in sec.abs. The content of rules.lido is not given here to save
space. The remaining LIDO specifications are presented in the following sections. They
only apply to subsets of the abstract grammar. You could remove these specifications from
ses2.specs (figure 1) to obtain a pure syntax checker for SETL/E. But at least rules.lido
is necessary.

2.3.1 Static semantics

In languages as Pascal the static semantics analysis could result in error messages like the
following:

“Error: Variable not declared!”

: 2 THE SPECIFICATIONSG

In SETL/E such messages would not be appropriate, because it is not necessary to declare
objects. We use the term ‘object’ not as ¢.g. Smalltalk does. We don’t want to give the n-th
definition of object-oriented or object-based, but a definition! for our terminology:

Definition: Each variable or constant of type integer, real, string, boolean,
atom, tuple, set, or proctype is meant to be an object in SETL/E. These
objects have first-class rights. First-class means to be expressible without giving
a name. It implies having the right to be anonymous, being storable in variables
and in data structures, being returnable from or passable to a procedure.

This has the consequence that exceptions and user-defined operators have no first
class rights, which is justifiable because of their restricted way of use. E.g. binary
operators are used syntactically where other objects cannot be used and vice
versa.

However, warnings like the following would be useful:
“Warning: Object used before being initialized!”

This kind of static semantics is not considered in this work. It would be necessary to construct
e.g. a program dependence graph to do this analysis.
The following static semantics are checked:

o Equivalence of header and trailer names in programs, procedures and labeled control
statements is checked.

o It is assured that constants are initialized.

o Return statements are only allowed inside procedures or lambdas.
¢ Recursive lambda calls with self are only allowed inside lJambdas.
¢ Quit and continue statements are only allowed inside loops.

For details on the specification of these constraints see appendix C, which is the content
of Cond.lido.

2.3.2 Code production

The set of shorthand notations in LIDO for abbreviation of systematic attribute value prop-
agation is extended by a notation for chaining propagation. Chain constructs are used to
propagate attribute values left to right depth first through the structure tree.

Our chain path of chain attribute Code begins in the root production in the file Code.1lido
(figure 4). It is necessary to have such a production to initialize the chain. For details see
[Kas90a). We use the initialization to open the output file. The functions OpenFile, PutStr
etc. are discussed in section 2.4.1.

A chain leads through all subtrees reaching any access of that chain and goes up again to
the chain start context. Any nonterminal on the chain path has a pair of implicit attributes
for that chain (one inherited, and one synthesized). If these attributes of some nonterminals
are not defined in the attribution rules, default settings are generated by the system.

!This definition is only valid for the presented work. It is not part of the language definition.

2.3 Attribute evaluation

CHAIN Code: VOID;

RULE rInitChain: xInitChain ::= xProgDefn
STATIC

CHAINSTART Code;

xProgDefn.Code := OpenFile ();
END;

Figure 4: The chain start for the code production.

Attributes of the predefined type VOID are used only to state attribute dependencies.
Their value is not relevant. They do not occur in the attribute evaluator.

These assumptions are well suited for our code production. For reasons of space, and
because we will not reuse this attribution we don’t give the whole content of Code.lido here.
As an example see the code production for binary operations in figure 5. This attribution
enforces that all binary operations are set in parentheses in the produced SETL2 program to
assure the right precedences and associatives.

NONTERM xBinOp: opsym: STRING SYNT;

RULE rExprBinop: xExpr ::= xExpr xBinOp xExpr

STATIC
xExpr[2].Code := PutStr (SL, ’(’);
xExpr([3].Code := DEP(PutStr (SL, xBinOp.opsym), xExpr[2].Code);
xExpr[1].Code := PutStr (SL, ’)’);

END;

RULE rBinopi: xBinOp ::= ’or’
STATIC

xBinOp.opsym := 'OR’;
END;

Figure 5: Code production for binary expressions.

DEP determines the evaluation order. It makes the first parameter dependent on the
second. The attribute type STRING was previously defined in rules.lido.

The differences between SETL/E and SETL2 concerning the code production are of syn-
tactical nature and not worth a great discussion. As an example see the code production for
the until statement in figure 6. It is necessary to exchange the ordering of the expression and
the statements and to change the keywords. As an example for a SETL/E-until statement
see figure 7 on page 8. In figure 8 the produced SETL2-until statement is given. This simple
program is not very sophisticated.

The Indentation is controlled with the Indent attribute on the nonterminals xProgBody
and xStmts. This attribute is passed to the function PutStr (see section 2.4). The manage-
ment is done in Indent.lido. As a part see figure 9 on page 9. OFFSET is a defined integer
constant that controls the additional indentation for inner blocks.

2 'THE SPECIFICATIONS

RULE rUntilStmt: xLoops :i= 'do’ xStmts 'until’ xExpr

STATIC

xExpr.Code t= PutStr (INCLUDING xStmts.Indent, 'UNTIL');

xStmta.Code := DEP (PutStr (INCLUDING xStmts.Indent, 'LOOP*),
xExpr.Code);

END;

Figure 6: Code production for the until statement.

program example;
x = 0;
do
X 4=
until x > 10 or x > 11
end do;
end example;

Figure 7: A simple SETL/E program.

PROGRAM example ;
x =0 ;
UNTIL ((x> 10) OR (x> 11))
LOOP
x+:=1;
END LOOP ;
END example ;

Figure 8: The produced SETL2 program,

2.8

Attributo evaluation 0

NONTERM xProgBody, x8tmts: Indent: INT INH; % A priori Indentation

RULE rProgDefn:
xProgDoefn (i= 'program’ id ';'

xProgBody
'end’ id ';’
STATIC
xProgBody.Indent := OFFSET;
END;

RULE rProcDefn:
xProcDefn :i= 'procedure’ id xParamList ';’
xProgBody)
'end' id ;!
STATIC
xProgBody .Indent := ADD (INCLUDING xProgBody.Indent, OFFSET);

END;

Figuro 0: A part of the indentation management,

2.3.3 Limits for the translation

In principle it would be possible to translate all SETL/E constructs into SETL2 because of
their ability to simulate the universal Turing-Machine. But some features would demand a
not justifiable effort for our purposes. These features are:

.

Exceptions are not handled because SETL2 has no exceptions.

Oporators are not handled because SETL2 has no user-defined operators. An extension
supports operator overloading [Sny90b], but this is not the same.

SETL2 does not support recursive lambda calls. In SETL/E this is done with self.

Control statements with labels are handled with an appropriate warning message, but
quit and continue statements on such labels are refused.

The scope of objects is by default local to the program body where these objects are
used. In SETL/E it is possible to make objects visible in inner blocks via visible-
declarations. Thisis donein SETL2 with var. It is possible to hide visible-declarations
from outer blocks in inner blocks with new visible-declarations. This works in both
languages.

Additionally it is possible in SETL/E to hide such objects only for the corresponding
program body with a hidden-declaration. Because this is new with respect to [DGH90b]
see the example in figure 10.

Such declarations are not available in SETL2.

In SETL2 the only exception to the rule that bound variables are local to iterators is
in the exists expression [Sny90a, page 7]. In SETL/E this exception was not made.

2 THE SPECIFICATIONS
10

program prog.
visible x := 5;
p();

procedure p;
hidden x := 1
qQ);

procedure q;
--now: X =5
end q;
end p;
end prog;

Figure 10: An example for the hidden deduatio;l.bﬂ x would be de-
uld be 1.

clared visible in p, then the value of x in g WO

However, the exists and notexists expressions are translated with a warning message
that the visibility rules are not preserved.

o In SETL2 the exists expression sets its bound variables on exit, to the value founq jf
successful or om if unsuccessful. This is sometimes useful in constructs as

“ghile exists x in { ... } | condition(x) do ...”

A found set-element is directly available via x, but this bound variable is not local to
the loop, what is the case in for loops.

For these reasons we introduced the whilefound loop. Because this is new with respect
to [DGHY0b) see the example in figure 11. The loop body is executed, if an exists
expression with the same iterator would yield true. The bound variables are local to
the whilefound loop as they are in for loops. The iterator is reevaluated for every

iteration unlike in for loops.

program prog;
x :=5;
S =11, 2, 3};
whilefound x in S | x < 4 do
eat (x); --nov: x=lorx=2o0rx=3
S less :=x ;
end whilefound;
~-now: x=5and S={}
end prog;

Figure 11: An example for the vhilefound loop.

The whilefound loop is translated into an appropriate “#hile exists ..." loop with

a warning message that the visibility rules are not preserved.

2.4 Abstract data types and ANSI-C code 1

o In SETL/E there are the selection operators arb for deterministic selection and select
for non-deterministic selection. In SETL2 there is only the deterministic selection.

There is no multivalued map iterator in SETL2. For a description of this iterator see
e.g. [SDDS86, page 129].

The predefined unary operator type provides in SETL/E the type of its operand as a
predefined atomic constant. Whereas in SETL2 the built-in procedure type returns a
character string representation of the type of its argument. However, these constructs
are translated with appropriate warning messages.

But take into account that e.g. “type(type(x))” will not produce what would be
expected! This problem is ignored for the moment.

In SETL2, there are additionally is_type(v) built-in procedures for all types and for
maps. In SETL/E, there are the unary set operators is_map (provides true for sets that

are multi- or single-valued maps) and is_smap (provides true only for for sets that are
single-valued maps). Thus is_map is translated with an appropriate warning message

and is_smap is refused.

-

Messages for these restrictions are generated by directly calling the error handling function
fehler (see section 2.4.2) in the attribution rules in Limits.lido.
However, we cannot give the guaranty that all the programs that our compiler translates

are accepted by the SETL2 compiler.

2.4 Abstract data types and ANSI-C code

2.4.1 The abstract data type PutFile

In LIDO attribute domains are considered as abstract data types (ADTs). The AG specifica-
tion and the generation of evaluators is independent of the implementation of the ADT's used
in the AG. Implementation considerations are completely opaque to the AG specification.

ADTs may define some state transition model. In that case the values of the ADT
represent states. Its operations are state transition functions and access functions which
yield results depending on the ADT state. A simple example with only state transition
functions is an output ADT.

Any restrictions on the state transition protocol of the ADT can be specified by attribute
dependencies. These restrictions will be obeyed automatically by the generation of the at-
tribute evaluator.

In our application the output ADT is a data sink. No information is accessed via the
attributes representing its states. They serve only one purpose, to guarantee the specified
sequence of operations. Such pure state attributes can be eliminated completely from the
evaluator. In LIDO such attributes are specified to have the predefined type VOID (see figure 4
on page 7). It indicates that no storage has to be allocated. The function DEP yields its first
argument as result and discards the second. Hence, it establishes only a dependency on the
second argument. Such attribution rules are translated simply to the function calls at the

appropriate place in the attribute evaluator.
The abstract data type PutFile implements the following functions for producing an

output file:

extern void OpenFile (); Opens the output file.

2 THE SPECIFICATIQ g

12
output file- ; -
File (; Closes te +y; Outputs the string that is givey o
onst ints const char nt'rols the indenmtnonl. !f it is the defingq
o first puametcr €0 ol line. Otherwise it is put on the peyy

tu ;
the::i as & negative integer and means sy,

extern void Close

extern void PutStr (e

the second parameters LG HE T
integer constaut SL, the string 18 E’su[‘ e
line with the given indentation

line).
extern void Putld (cons

dentifier given as the secon g:;
the attribute evaluator only

trols the .
The first parameter con J© Outptl the string that represents the integer constany
int); VU

st S actual line.
i P:txo::i:o:arameter. The string 18 put on the
given as the

s, t
extern void PutFloat (const int); (_)U'-I:‘{ts
given as the second parameter. This string
The string is put on the actual line.

¢); Outputs the string t!mt represents the .
¢ int, t:m\;tt in GI:A stores these strings in a global array and
ameter.

dles the indices to this array.

indentation as above.

he string that represents the float constan;
is stored in the same array as identifiers,

the string that represents the string cop.

int) s uts :
extern void PutstxVal (const int); Outp tring is also stored in the same array a5

stant given as the second parameter. T:l:llslj ;e
identifiers. The string is put on the actu ;

i tation in PutFile.c.
. w v T . ile.h and the lmplemen
'g;lilspedﬁca::on igﬁ;‘?ﬁis output. But this output module seemed not to be
so provides

appropriate for our purposes.

2.4.2 Error handling

The error handling function fehler emit
six message types:
WARN Warning.

s the messages to the user on stderr. It distinguishes

ABORT Unrepairable error.

RECOVER Repairable error.

COMPILER Compiler error.

DATEI File error as “Incorrect extension of input file”.
SYSTEM File error as “Permission denied”.

The type definition for this type and the function prototype are given in figure 12. The
function definition is given in Fehler.c. o))

The functions Assert and Equal call the error handling function if appropriate with error
type RECOVER. They check conditions in the attribution and are defined in Check.c:

void Assert (const int cond, const char #report) calls fehler with the report, if
the condition is not satisfied.

void Equal (const int a, comst int b, const char *report) calls fehler with the
report, if the first two parameters are not equal.

2.5 Derivation 13

/* Type for error handling: */
typedef enum {WARN=1, ABORT, RECOVER, COMPILER, DATEI, SYSTEM} ERRORTYPE;

extern void fehler(
const char functionname[] , /#* Name of calling function */
const ERRORTYPE type , /* Error type */
const char message[] /* Error message */

bH

Figure 12: The error handling (Fehler.h).

2.4.3 Miscellaneous

The header files for the above-mentioned C functions are given in figure 13. They supply the
derived compiler with the necessary constant and type definitions and the function prototypes.

#include "Fehler.h"
#include '"Check.h"
#include "PutFile.h"

Figure 13: The header files in ses2.head.

In ses2.init there are C-statements that are to be executed before the scanner starts
lexical analysis. At present this is used to print out the actual compiler version.

In ses2.finl there are C-statements that are to be executed after attribute evaluation.
At present this is used to print out the error counts.

2.5 Derivation

Eli is a particular instantiation of a system for managing software tools called Odin [CO90].
It operates within a universe of objects, each of which is a UNIX? file or directory. A user

manipulates the objects in Eli’s universe by making requests to Eli during a session or in
batch mode.

To derive an executable compiler the following request would be appropriate:
ses2.specs +fold: exe > ses2

For details see [Gro89b]. The parameter fo1d® causes Eli to manufacture a compiler without

case distinctions, what is necessary in SETL/E for identifiers and keywords, but not in string
constants.

To put the source for this compiler e.g. in the directory COMPILER the following request
would be appropriate:

ses2.specs +fold: source > COMPILER

2UNIX is a trademark of AT&T.

’A? present this parameter is ignored by Eli, but we hope that this problem will be eliminated by the
Compiler Tools Group in the near future. Possibly this will require changes in the GLA specification.

14

3 User’s guide

e 80", To translate ¢.g. input.sa ente,
ut file must have

extension
The SETL/E inp
) / sos2 input.se

n input.stl see [Sny90a, section 3].

To execute the produced SETL2 program !

4 Conclusions
os a subset of SETL/E into SETL2 Were

t translat
er tha be reused for a transformation of SETL/E

) R "
The Eli specifications for a comprier === =~ .
presented.pe];lssential parts of these specification will

: .y |
:ntomAi:SIt gr the limits for the translation the differences fO\l[.ld between 'SE.TL /E and SETL,
are merery of syntactical nature and not worth a great discussion. But take into account that
we only considered subsets of both languages in this work.

Acknowledgements

Thanks to K.J. Prott for the help with Eli.)
The extensive comments on the first version
are appreciated and the discussion of some features

of the language definition by Fritz Henglein
of SETL/E with him was very helpfyl,

A The concrete grammar

/exnx . * shnE

Concrete grammar for SETL/E

. ros PrTTTTIT ./
xInitChain ::= xProgDefn .
[ARERRERRRRRRRE RS EREARI SRR RRE AL SRR RRRS

Program and procedure definition:

PO TR R L L L AL A b /
xProgDefn : 'program’ id ’;' xProgBody ’'end’ id ’;’ .
xProgBody : xDecls xStmts xProcDefns .
xProcDefns ::= xProcDefns xProcDefn .
xProcDefns ::= .
xProcDefn ::= ’procedure’ id xParamList ';’ xProgBody ‘'end’ id ';’ .
xParamList ::= 5
xParamList ::= '(’ xcParams ')’ .
xParamMode ::= 3
xParamMode ::= 'rd’ .
xParamMode ::= ‘rw? .
xParamMode ::= ‘wr’ .
xcParams :: xcParams ’,’ xParamMode id .
xcParams xParamMode id .
xProcDefn : 'exception’ . % to be completed
xProcDefn :: 'operator’ . % to be completed
[ex* EEREE
Declarations:
/
xDecls ::= xDecls xDecl .
xDecls ::= .
xDecl ::= xDeclKey xcVars ';’ .
xcVars ::= xcVars ’,’ xSingleVar .
xcVars ::= xSingleVar .
xSingleVar ::= id ’:=’ xExpr .
xSingleVar ::= id .
xDeclKey ::= 'visible’ .
xDeclKey ::= ’hidden’ .
xDeclKey ::= 'visible’ ’constant’ .
xDeclKey ::= 'hidden’ ’constant’ .
xDeclKey ::= 'constant’ .
/ enan
Statements:
% ' 11 .‘../
xStmts ::= xStmts xStmt *;’ .
xStmts ::= xStmt ';? .

%
% Simple Statements:

xStmt ::= ‘pass’ .

xStmt ::= 'stop’ .

xStmt ::= ‘return’ xExpr .

xStmt ::= ‘return’ .

%

% Assignments:

xStmt ::= xLValue ’:=’ xExpr .

xStat ::= xLValue xBinOp ’:=’ xExpr .

A THE CONCRETE GRAMMAR

16

\' B
xStmt ::= xLValue XFrom xcSimplel
xFrom ::= ’'from’ .
xFrom ::= 'frome' .
xFrom ::= ‘'fromb’ .
%

% Function calls:

«Stmt ::= id '(' xBxprList)Y
xStmt ::= dd (')

%

% Recursive lambda calls:

xStmt ::= ‘self’ '(’ xExprlList L) LA
xStmt i:= Cself? (' ') .
3

% Conditional statements:
xStmg ::= i’ xBxpr 'then’
xStmt ::= ’if’ xExpr 'then’ xStmts
xELIfStmt ::= ‘elseif’ xExpr 'then’ xStmts
xElIfStmts ::= xElIfStmts xE1lI{Stmt .
xElIfStmts ::% .

%

% Case statements:

xStmt ::= 'case’ XExpr xCaseStmts 4
xStmt ::= ‘case’ xExpr xCaseStmts ‘end’ 'case
xCaseStats ::= xCaseStmts xcCaseStmt

xCaseStmts ::= xcCaseStmt .

xcCaseStmt ::= xcCaseList xStmts

xcCaseliat ::= 'yhen' xExprList '=>' .

%

% Loop statements:

xStmt ::= xcLoopStmt 'end’' 'loop’

xStmt ::= xcForStmt ’end' 'for’' .

xStmts xBlIfStmts tend' 'if'! .

1else’ xStmts 'end’ ‘case’ .

xStmt ::= xcWhileStmt 'end’ 'while' .
xStmt ::® xcWhilefound 'end’' 'whilefound’ .
xStmt :;= xcUntilStmt ‘end’ 'do’ .

xStmt ::= id ':' xLoops 'end’' id .

xLoops ::% xcLoopStmt

xLoops ::# xcForStmt

xLoops ::® xcWhileStmt

xLoops (i xcWhilefound .

xLoops ::® xcUntilftmt ,

xcLoopStmt :i# ’'loop’ xStmts .

xcPorS8tmt ::= 'for’ xIterator 'do’ xfStmts
xcWhileStmt ::# 'while’ xExpr 'de’ xStmts .
xcWhilefound ::s 'whilefound' xSimplelts '|’ xExpr 'do’' xStmts ,
xcUntilStmt ::= ‘do’ xStmts 'until’ xExpr
xStmt ;:s quit’

xStmt (:= quit’ id .

xStmt ::= ‘continue’ ,

xStmt ::® ‘continue’ id ,
/00.00'00‘lit".‘."#.."l."'..‘O‘O.t.‘..‘t
Iterators:
‘00..0‘01't.‘tOQ!‘0&.00t‘.ttt'.t"‘t.'ttt.t/
xIterator ::= xSimplelts '|[’ xExpr .
xIterator ::= xSimplelts

xE1IfStmts 1elge’ xStmts ‘end’ 'if’ |

17

xSimpleIts ::= xSimplelts ’,’ xSimpleIt .

xSimpleIts :: xSimplelt .

xSimpleIt ::= xLValue ’in’ xExpr .
xSimpleIt ::= xLValue ’=’ id xMapSel .

, T L

Map Selectors for simple iterators:
SRERRRERRE LEE L e /
xMapSel ::= '(’ xcLValList ')’ .

xMapSel ::= '{’ xcLVallList '}’ .
xcLVallist ::= xcLValList ’',’' xLValue .
xcLVallist ::= xLValue .

Jaehb b R R R R R R R R
Left hand side values:
e e T T LT PR T LR R P R D L R
xLValue ::= xcSimpleLV .

xcSimpleLV ::= id .

xcSimpleLV ::= id xSelector .

xLValue ::= ‘[’ xcComps ']’ .

xcComps ::= xcComps ’,’ xcComp .

xcComps ::= xcComp .

xcComp ::= xLValue .

xcComp ::= L g
T L R L P AL L
Selectors:

‘.U"l‘l“"'.'."'.“"".."#"""#t“"/
xSelector ::= '(’ xExprLiat ')’ .
xSelector ::= '{' xExprList '}’ .

xSelector :is '(’ xExpr ’,.' ')’ ,
xSelector ::= (' xExpr '..’ xExpr ')’
/"'.P."'.."“."'V".“’...'0'...“.'..'.
Former:

L T T ey
xFormer ::= xExpr .
xFormer ::® xExpr ',' xExprList

xFormer ::® xExpr ',,' xExpr .,

xFormer ::s= xExpr ',' xExpr '..' xExpr .
xFormer ::®= xExpr ':' xIterator .
AL T T T T YT T T T)
Expressions!

L T T T T TP T Y T)
xExprList ii= xExprList ',' xExpr .
xExprList i:= xBxpr .
AL T T T T T Y T T)
Primary Expressions:
L T T P T T T T T 72
xcPrimary ::# 4d ,

xcPrimary (i= 4nt .

xcPrimoary :i= float .

xcPrimaxy (i str .

xcPrimary ::i= 'true' .

xcPrimary = 'falae’' .,

xcPrimary ::i= 'om' .,
xcPrimary ::= 'atom’
xcPrimary ::= 'boolean’' .

18

xcPrimary @
xcPrimary ¢
xcPrimary :
xcPrimary ::
xcPrimary :i®
xcPrimary ::®
xcPrimary ::®
xcPrimary ::®
xcPrimary ::®
xcPrimary ::=
xcPrimary ::®
%

% Quantifiers:

xcPrimary ::®=
xQuantifier :

xQualifier ::=

xQualifier :

xQualifier ::=

X

% Conditional Expressions:

xcPrimary ::=
xcPrimary ::=
xE1IfExprs :
xE1IfExprs ::

xE1I{Expr ::=

%

A THE CONCRETE GRAMMAR

sinteger’ .
‘real’ .

tptring’ -
‘tuple’ .

‘pot’ .
tproctype’ .
‘argv’ .

1{» xFormer '}’ .
'[* xFormer ']’ .
xUn0p xcPrimary .
xBinOp '/’ xcPrimary .

xQuantifier .
xQualifier xSimplelts
‘exists' .

‘notexists’ .
‘forall’ .

| xcPrimary .

'then’ xExpr XE1IfExXprs tend’ 'if’ .

'if' xExpr IfExprs 1glge’ xExpr ’end’ 'if’

*if’ xExpr 'then’ xExpr xEl
xE1IfExprs xELIfEXpr .

.

selseif’ xExpr ’then’ XEXpr .

% Case Expressions:

xcPrimary ::=
xcPrimary ::=
=

xCaseExprs :
xCaseExprs :
xcCaseExpr ::

%

'case’ xExpr xCaseExprs ’'end’ 'case’ .

scase’ xExpr xCaseExprs ’else’ xExpr 'end’ 'case' .
xCaseExprs xcCaseExpr .

xcCaseExpr .

xcCaselist xExpr .

% Lambda Expressions:

xcPrimary ::=

xLambda ::=
%

xLambda .

‘lambda’ xParamList ':’' xProgBody 'end’ 'lambda’ .

% Recursive lambda calls:

xcPrimary ::=

Jesssssss

'self’ ’(’ xExprList ')’ .
rgelt’ *(? ') .
‘self’ .

id xSelector .
id l(l I)l .

*(’ xExpr ')’ .

Binary operations:

xExpr ::=
xc0x0p ::=
xcOrTerm ::=
xcAndOp ::=
xcAndTerm ::=

/

xExpr xcOr0Op xcOrTerm / xcOrTerm .
‘or’ .

xcOrTerm xcAndOp xcAndTerm / xcAndTerm .
'and’ .

xcAndTerm xcBoolOp xcBoolTerm / xcBoolTerm .

19

xcBoolOp ::= 7=
xcBoolOp ::= !/=' .|
xcBoolOp ::= ‘<’ .
xcBoolDp ::= '<='
xcBoolOp ::= >’
xcBoolOp ::= '>=' |
xcBoolOp ::= ’in’' .
xcBoolOp ::= ’'notin’ .
xcBoolOp ::= 'subset’ .
xcBoolOp :: 'incs’' .
xcBoolTerm ::= xcBoolTerm xcSetOp xcSetTerm / xcSetTerm .
xcSetOp ::= 'with’ .
xcSetOp ::= 'less’ .
xcSetOp ::= ’'lessf’ .
xcSetTerm ::= xcSetTerm xcAddOp xcAddTerm / xcAddTerm .
xchddOp ::= L
xcAddOp ::= o
xchddOp ::= 'max’ .
xchddOp ::= ’min’ .
xcAddTerm ::= xcAddTerm xcMulOp xcMulTerm / xcMulTerm .
xcMulOp ::= e
xcMulOp ::= 'div’ .
xcMulOp ::= 'mod’ .
xcHMulTerm ::= xcMulTerm xcPowOp xcPowTerm / xcPowTerm .
xcPowlp ::= Tes’?
xcPowTerm ::= xcPrimary .
%
xBinOp ::= xcOrOp .
xBinOp : xcAndOp .
xBinOp : xcBoolOp .
xBinOp ::= xcSetOp .
xBinOp ::= xcAddOp .
xBinOp : xcMulOp .
xBinOp :: xcPowOp .
/ Ll Ty
Unary Operators:

. . sradnie/
xUnOp ::= '+ .,
xUnOp ::= il
xUn0p ::= '8,
xUn0p ::= ’mot’ .
xUn0Op ::= ‘pow’ .
xUnOp ::= ‘’arb’ .
xUnOp ::= ’select’ .
xUnOp ::= 'domain’ .
xUnOp ::= 'range’ .
xUnOp ::= 'type’ .
xUnOp ::= ’is_map’ .
xUnOp ::= 'is_smap’ .

5 TIE SYMBOL EQUIVALENGpg

20
B The symbol equivalences
e casList.

rn xchddTern xcAndTern xcBoolTorm

y =;:Prhu‘! xcNulTern xcPowTer® xc0rTe
xcSetTern.
. 10p xcSet0p.
xBinOp ::= xchddop xcAndOp xcBoo
xc0r0p xcNulOp xcPovOp

xSingleVar ::=
xcVars.

xParanList ::=
xcParams.

xCaseExprs ::=
xcCaseBxpr.

xCaseStats ::®
xcCaseStat.

xLoops ::=®

xcLoopStat xcForStat xcWhileStat xcWhilefound xcUntilStmt.

zLValue ::=
xcComps xcComp xcLVallist xcSimplelV.

C The static conditions

Tl e A o e Yok A Y A A A KV KK KUK UK AL UKL L KK AR LN NN
%
% Static conditions:

%
AR AN AR N VAR AN AN N AR NS YRR A AR TE AR RIARA ARG R TS T AT

o e o o T oA ok e o Y S e o U L A K AR AL KA AN R AN NLR
% Hoader and trailer names:
Ul R T e TR A T T R R K Ak Y At Y VX A A U R L NN R R AR ALK L

RULE rProgDefn:
xProgDefn ::= ’'program’ id ';°
xProgBody
'end’ id ';’

STATIC

CONDITION Equal (id[1].sym, id[2].sym,

'Program name in header and trailer have to bs identical’);

END;

RULE rProcDefn:
xProcDefn ::= 'procedure’ id xParamList *;°
xProgBody
'end’ id ';°
STATIC
CONDITION Equal (id[1].sym, id[2]).sym,
'Procedure name in Header and Trailer have to be identical’);
END;

ARRRARRAR AR AR ARARAARRA R RRAR R AR AR KL AA AL ARR AR ARR AR LAARA LR LR LA
% Control statements with labels:
SRARARRARRR A RARAULA LU RRARUAR LSRR AR AR L L LR LR A LR AR LA LR LR LS

RULE rStmtLS: xStmt ::= id ’:' xLoops 'end’ id
STATIC
CONDITION Equal (id[1].sym, id[2].sym,
'Label name in Header and Trailer have to be identical’);
END;

PAR A AN AN N AN A AN AN A AN TN AN AN A AN A S SN Y VAR NS AN NN YA A NN YA RS YNy S %% 44 kA
% Constants initialized?

PR NS AN A R AN AN S AN AN YA N A SN SR TN YA A AR A AN S AN A AR RO AR N A A KA YA
NONTERM xDecl, xDeclKey: IsConst: BOOL SYNT;

RULE rDecl: xDecl ::= xDeclKey xSingleVar ’;’
STATIC

xDecl.IsConst := xDeclKey.IsConst;
END;

RULE rDeclKeyV: xDeclKey ::= ’visible’
STATIC
xDeclKey.IsConst := FALSE;

21

¢ THE STATIC CONDITIOg

22

END; . i
RULE rDeclKeyH: xDeclKey ::® 'hidde
STATIC
xDeclKey.IsConst .
END;) 1constant
Ruu:: rDec1KeyVC: xDeclKey ::i ryisible
STATIC .
xDeclKey. IsConst := TRUE;

:= FALSE;

END;
RULE rDeclKeyHC: xDeclKey
STATIC

xDeclKey.IsConst := TRUE;

.= 'pidden’ 'constant’

END; '
RULE rDeclKeyC: xDeclKey ::= ’constant
STATIC

xDeclKey.IsConst := TRUE;
END;

RULE rSingleVar2: xSingleVar ::= id
STATIC
CONDITION Assert (KOT (INCLUDING xl?ec.l..
It is necessary to imitl

IsConst), S
alize a constant!');

END;

vy
sy o

Y%,
L UL Y AR UN LR DI LR b s sts e

% Conditions for return:
Y Y Y Y YY) YAy Y Y b b Y ladel o FedTadede e

WYY Yl 0y Yy Y hdstlale

RULE rStmtRET1: xStmt ::= 'return’ XEXpr
STATIC
CONDITION Assert (INCLUDING xProgBody.InProcedure, s
Return statements are only allowed inside of procedures’);
END;
RULE rStmtRET2: xStmt ::= 'return’
STATIC
CONDITION Assert (INCLUDING xProgBody.InProcedure, .
’Return statements are only alloved inside of procedures’);
END;

YANAYANAN
Y YA KN AIAARLT R s s eJataaTatols adal

% Conditions for self:
AN A A N & oy b i o o A A A o A A N A A Y Y A Y Y

RULE rStmtSelfi: xStmt ::= ’self’ ’(’ zExprList ’)’
STATIC
CONDITION Assert (INCLUDING xProgBody.InLambda,
'Recursive lambda calls are only allowed inside of lambdas’);
END;
RULE rStmtSelf2: xStmt ::= ’self’ ’(’ ’)’
STATIC
CONDITION Assert (INCLUDING xProgBody.InLambda,
'Recursive lambda calls are only allowed inside of lambdas’);
END;

RULE rExprSelfi: xExpr ::= ’gelf’ '(’ xExprlist ')’
STATIC
CONDITION Assert (INCLUDING xProgBody.InLambda,

'Recursive lambda calls are only alloved inside of lambdas’);
END;

RULE rExprSelf2: xExpr ::= ’'self’ '(’)’
STATIC
CONDITION Assert (INCLUDING xProgBody. InLambda,

'Recursive lambda calls are only alloved inside of lambdas’);
END;

RULE rExprSelf3: xExpr ::= ’'self’
STATIC
CONDITION Assert (INCLUDING xProgBody. InLambda,

'Recursive lambda calls are only allowed inside of lambdas’);
END;

VIIIIIIIllIIIlIIIIlIlIllllll'llll‘l'llllr'l'llllr771177‘1117777‘l177171177
% Procedure and lambda environment:

IIIIIIIIIIIIIIIIIIIIIIllllIlIlIlflll'lllllIII7717‘LL71II‘I‘III‘IT77117.IT

NONTERM xProgBody: InProcedure, InLambda: BOOL INH;

RULE rProgDefn:
xProgDefn ::= ’program’ id ’;'
xProgBody
’end’ id ';’
STATIC
xProgBody. InProcedure := FALSE;
xProgBody.InLambda := FALSE;
END;

RULE rProcDefn:
xProcDefn ::= 'procedure’ id xParamList
xProgBody
’end’ id ’;?

STATIC
xProgBody.InProcedure := TRUE;
xProgBody.InLambda := FALSE;

END;
RULE rLambda:
xlambda ::= ’lambda’ xParamList ’:°’
xProgBody
'end’ 'lambda’
STATIC

xProgBody.InProcedure := TRUE;
xProgBody.InLambda := TRUE;
END;

II7III7117I7lIIIIIIII'IIllllllllllllllTlll’ll'l'l’ll‘lL'lIIIII.'II.‘!‘I'.'I'I.
% Conditions for quit and continue:

WY Y Y Y A A AN AN AN NN NN N o N A b b b b b i e o A oy A

RULE rQuitStmt: xStmt ::= ’quit’

¢ THE STATIC CONDITIq NS

24
5. 0L0oP» ”
o Assert (IICI.UDIIG xSf-l Jside 0 of 100P
s
cnfgi::n:tﬂtuﬂwl are on.
END;)
s » s“l i
RULE rQuitLstmt: xStu® RERLL
“ ano p of 100P8 U H

CONDITION Assert
'Quit statements are ol

END;

STATIC (IICLUDI]G xSt
nly 2110

= ! continnc'

RULE rContinueStat: zStat 1T
e + (INCLUDING xStmts. Inmp- ide of 100P* s
Asser
co{ﬁ:::g:un.statclents are only alloved
END;)
= inue’ 1
RULE rContinueLStmt: xStmt 137 rcont
STATIC
CONDITION Assert (1N
1Continue statemen

END;

'nLoOPs

cl:s I
CLUDING X5 ed 128

ide of 1009");
ts are only 2l

e L A

yAat
Kl}ilkl}}khklllllklklkhiklhlkh

%ﬂ%‘ﬁ%‘/.m%‘l.‘/.‘/.‘/.%'/.'/.'l.

X Loop e LR

NONTERM xStmts: InLoop: pooL INE;
1s xStmts xProcDefns

RULE rProgBody: xProgBody ::% xDec
STATIC

xStats.InLoop := FALSE;
END;
RULE rStmtsi: xStats ::% sStats xStat ';’
STATIC

TRANSFER InLoop;
END;

WRRAANAILS RKAAXARAN AR

Yy Y Tl a el ala

Y
Y Y Vata e s dutadn o In UYSS AR sdshinlols

% Conditional statements:

;-.,.,,,,,11;7:::,1:71!1111

Y%
YA AN o3 by Yy Y Y Y e Te s Tada e lal

RULE rIfStmt: xStmt ::= 'if’ XExpr Ithen’ xStmts

xE11fStmts
iend’ 'if’
STATIC
xStmts. InLoop := INCLUDING xStmts. InLoop;
END;

RULE rIfE1Stmt: xStmt ::= ’if’ xExpr ’'then’ xStmts
xE1IfStats
'else’ xStmts
l“dl lix:

STATIC
xStmts[1].InLoop
xStmts [2] . InLoop :

END;

INCLUDING xStmts.InLoop;
INCLUDING xStmts.InLoop;

RULE rE1IfStmt: XE1IfStmt ::= ’elseif’ xExpr ’then’ xStmts
STATIC

xStmts. InLoop := INCLUDING xStmts.InLoop;
END;

A NN A YA A AN AN NS AN AN NN R AN AN AN AN AN
Y% Case statements:
e e e e e U U Y Y L L%

RULE rSwitchEStmt: xStmt ::= ’case’ xExpr xCaseStmts

‘else’ xStmts
'end’ ’case’
STATIC
xStmts.InLoop := INCLUDING xStmts.InLoop;
END;

RULE rCaseStmt: xCaseStmts ::= xExprList xStmts
STATIC

xStmts.InLoop := INCLUDING xStmts.InLoop;
END;

AR A AN AN AN AN AN NS AN A AN NS AN YA AA YA AN A AN AR NS AN A
% Loops:
YARAANAAS

Y N A A S A AN N NS N AN AN A A A YA A YA YA AN

RULE rLoopStmt: xLoops ::= ’loop’ xStmts

STATIC
xStmts.InLoop := TRUE;
END;
RULE rForStmt: xLoops ::= ’'for’ xIterator 'do’
xStmts
STATIC
xStmts.InLoop := TRUE;
END;
RULE rWhileStmt: xLoops ::= ’'while’ xExpr ’do’
xStmts
STATIC
xStmts.InLoop := TRUE;
END;
RULE r¥hilefound: xLoops ::= ’whilefound’ xSimpleIts ’'|’ xExpr ’do’
xStats
STATIC
xStmts.InLoop := TRUE;
END;

RULE rUntilStmt: xLoops ::= 'do’ xStmts ’until’ xExpr

25

20

STATIC ‘ :
Stmtae. InLoop i* TRUB!

¢ THE STATIC CONDyyy
O

REFERENCES

References

(ASUBG) A.V. Aho, R. Sethi, and 1.D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1086,

[(c090] G. Clemm and L. Osterweil. A mechanism for environment integration. ACM
Transactions on Programming Languages and Systems, 12(1):1-25, January 1990.

[DF89) E.E. Doberkat and D. Fox, Software Prototyping mit SETL. Leitfaden und Mono-
graphien der Informatik. Teubner-Verlag, Stuttgart, 1989.

[1)FG1190] E.E. Doberkat, W. Franke, U. Gutenbeil, and W. Hasselbring. SETL/E Sprach-
beschreibung Revision 0.3. Internal memo, University of Essen, December 1990.

[l)GIlQOa] E.E. Doberkat, U. Gutenbeil, and W. Hasselbring. SETL/E - A prototyping

system based on sets. In W. Zorn, editor, Tagungsband TOOL90, pages 109-118.
University of Karlsruhe, November 1990.

[DGH90b] E.E. Doberkat, U. Gutenbeil, and W. Hasselbring. SETL/E Sprachbeschreibung
Version 0.1. Informatik-Bericht 01-90, University of Essen, March 1990.

(GHK*90] R.W. Gray, V.P. Heuring, S.P. Krane, A.M. Sloane, and W.M. Waite. Eli: A
complete, flexible compiler construction system. Software Engineering Group
Report 89-1-1, University of Colorado, Boulder, June 1990.

[Gra89) R. Gray. GLA: Non-literal symbol specification. Technical report, Electrical and
Computer Engineering Department, University of Colorado, Boulder, 1989.

[Gro89a] Compiler Tools Group. CAGT reference manual. Technical report, Electrical and
Computer Engineering Department, University of Colorado, Boulder, 1989.

[Gro89b] Compiler Tools Group. Eli user interface reference manual. Technical report, Elec-
trical and Computer Engineering Department, University of Colorado, Boulder,
1989.

[Kas80] U. Kastens. Ordered attributed grammars. Acta Informatica, 13:229-256, 1980.

[Kas90a] U. Kastens. LIDO: A specification language for attribute grammars. Technical
report, University of Paderborn, 1990.

[Kas90b] U. Kastens. LIGA: A language independent generator for attribute evaluator.
Technical report, University of Paderborn, 1990.

(SDDS86] J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with
Sets — An Introduction to SETL. Graduate Texts in Computer Science. Springer-
Verlag, 1986.

[Sny90a) W.K. Snyder. The SETL2 programming language. Technical Report 490, New
York University, September 1990.

[Sny90b] W.K. Snyder. The SETL2 programming language: Update on current develop-
ments. Technical report, New York University, September 1990.

i

ei—

Informatik-Berichte der
Universitdt — Gesamthochschule — Essen

01-89 E.-E. DOBERKAT, Tangramc ~ A Program Description Language for Ada
02-89 E.-E. DOBERKAT, DIETMAR FoX, Eine erste Einfihrung in die Programmiersprache SETL

01-00 E.-E. DoBERKAT, U. GUTENBEIL, W. HASSELBRING, SETL/E Sprachbeschreibung
Version 0.1

02-90 E.-E. DOBERKAT, A Proposal for Integrating Persistence into the Prototyping Language
SETL/E

03-90 U. GUTENBEIL, Eine Implementation der Programmiersprache LA mit ELI - Fallstudie zur
Benutzung cines Compilerbau-Werkzeugs —

04-90 Cu. IcKING, R. KLEIN, TH. OTTMANN, External Priority Search Trees

05-90 E.-E. DOBERKAT, D. Fox, Praktischer Ubersetzerbau

06-90 E.-E. DOBERKAT, A Tool for Converting Persistent Data
Based on an Algebraic Specification

01-91 T. KAULE, E.-E. DOBERKAT, PDQ: Eine interaktive Prototyping-Sprache

02-91 W. HASSELBRING, Translating a subset of SETL/E into SETL2

