
 LITTLE USER MANUAL PAGE 1

 LITTLE User Manual

 David Shields

 LITTLE Project
 Department of Computer Science
 New York University
 Courant Institute
 251 Mercer Street
 New York, New York 10012

 December 8, 1981

 The manual describes the NYU LITTLE implementation of LITTLE as
 defined by

 Guide to the LITTLE Language
 David Shields
 February 4, 1981

 LITTLE USER MANUAL PAGE 2
 INTRODUCTION

 This document describes the NYU LITTLE implementation of the LITTLE
 Language; it is organized so that material common to all
 implementations is presented first, followed by material applicable to
 particular implementations.

 The LITTLE compiler consists of three phases: lexical scan (LEX),
 parse and semantic analysis (GEN) and code generation (ASM). All
 three make use of a library (LIB) of procedures which supports both
 compile-time and run-time needs.

 Implementations currently exist for the following machines:

 S10 - Digital Equipment DECsystem-10
 TOPS-10, TOPS-20

 S32 - Digital Equipment VAX-11/780
 DEC VMS, Bell UNIX

 S37 - IBM System/370, System/360
 CMS

 S47 - Amdahl 470
 UTS

 S66 - Control Data Corporation Series 6000
 NOS, NOS/BE

 The abbreviated names such as S10 are also used in this document to
 identify the various implementations.

 LITTLE USER MANUAL PAGE 3
 COMPILER OVERVIEW

 The standard LITTLE compiler consists of three phases: lexical scan
 (LEX), parse and semantic analysis (GEN) and code generation (ASM).
 All three make use of a library (LIB) of procedures which supports
 both compile-time and run-time needs. The phases run as separate
 programs; on several implementations they are combined to appear as a
 single program, either by building overlay or using a command file.
 The chief consequence of the separation is that the compilation
 listing is generated in pieces, though this also is packaged into one
 listing where possible.

 LEX reads the input stream, performs conditional assembly, builds
 tokens, eliminates comments, and processes macros. LEX produces a
 ’token file’. LEX is kept as a separate program mainly because macros
 are global in scope, which forces the use of a global symbol table for
 the entire program; In contrast, the GEN and ASM phases work at the
 procedure level.

 GEN reads the input stream from the token file, parses it, performs
 semantic checking and transformations, and writes a set of
 operand/operation tables (the VOA) for use by ASM. The semantic
 transformations largely consist of translating the higher level
 language constructs - such as DO or WHILE loops - into a lower level.

 The parse uses a standard top-down advancing scheme with some various
 refinements; for example, expressions are parsed using operator
 precedence, and a hashed search is used to determine if the first
 token of a statement is a keyword, such as IF or DO. The parse is
 table-driven; the tables are produced by a parser generator called SYN
 which accepts as input a grammar in a BNF-like form. SYN is also used
 by the SETL compiler.

 GEN performs some local, machine-independent optimizations. The
 following optimizations are currently provided: evaluation of
 expressions at compile time; use of formal identities, such as
 replacing ’X+0’ by X; redundant subexpression elimination;
 exploitation of constant inputs to conditional branches.

 ASM reads the tables produced by GEN, expanding the machine-
 independent entries into target machine code. ASM completes storage
 allocation, allocates registers, and performs local optimizatons at
 the machine level. Some code generators produce assembly source,
 others produce loader tables.

 The LEX and GEN phases are machine independent, and have also served
 as ’off the shelf’ starting points for a number of other compilers
 written using the LITTLE system, including various SETL compilers.
 LEX contains about 5000 lines of code, GEN about 10000.

 Just as the LITTLE language provides a portable model of machine
 architecture, so the LITTLE library provides a portable interface to
 various operating systems. As much as possible, the library is
 written in LITTLE, both to simplify installation of the LITTLE System
 and, more imporant, to clarify the specifications of the library
 procedures. Much of the library is concerned with Input/Output.

 Since the language has been in use for some time, it has been the
 practice where possible to introduce new features by adding

 LITTLE USER MANUAL PAGE 4
 COMPILER OVERVIEW

 appropriate procedures to the library.

 The lowest level of the interface is typically coded in machine
 language. These procedures, collectively referred to as ENV, are for
 the most part concerned with input/output. The LITTLE I/O facilities
 ultimately call ’SIO’ procedures which are in ENV. The SIO procedures
 do such tasks as reading a single line, opening a file, and so forth.
 The SIO procedures can also be called directly from LITTLE. ENV may
 also contain recodings of procedures which are nominally written in
 LITTLE, but for which better performance can be obtained by recoding.

 The LITTLE system also includes several auxiliary programs, or
 utilities. UPD is used to maintain source files. REF is used to
 produce the cross-reference listing using auxiliary files produced by
 LEX and GEN. SYN is a meta-compiler than transforms a top-down
 grammar into a tabular form which can be easily interpreted. Both the
 LITTLE and SETL compilers use SYN to produce these parse tables.
 These are described in more detail in a separate section devoted to
 them.

 Conditional Names for Machine Environments
 --

 Conditional names of the form ’Snn’, where nn is a two digit integer,
 refer to a machine environment. The following environments are used
 in existing LITTLE programs:

 S10 - Digital Equipment DECsystem-10
 S32 - Digital Equipment VAX-11/780
 S37 - IBM System/370, System/360
 S47 - Amdahl 470, UTS
 S66 - Control Data Corporation Series 6000

 The compiler generates the line ’ .+SET Snn’ before the first line of
 input, where nn reflects the available target machine.

 LITTLE USER MANUAL PAGE 5
 COMPILATION LISTING CONTROL

 Compilation Listing Control

 The LITTLE compiler provides a number of features to control the
 content and format of the compilation listing. Since the compiler
 runs as three steps, it is possible to obtain source listings in
 either the first phase (lexical processing) or in the second phase
 (parse and semantic analysis). The second phase listing is generally
 preferable.

 Lines with ’ .=’ in columns 1 through 3 are directives.

 The ’ .=TITLE’ directive sets the listing title. The directive
 contains a quoted string which is the title text. The first title
 directive defines the main title which appears on the top of each
 page; remaining directives set the subtitle and cause a page eject.

 The ’ .=EJECT’ directive begins a new page of listing. An optional
 integer parameter may be supplied, in which case a new page is begun
 only if less than the indicated number of lines remain on the current
 listing page.

 The ’ .=LIST’ and ’ .=PUNCH ’ directives control listing and macro
 ’punch’ control, respectively.

 Each of these directives may contain a list of parameters, separated
 by commas. An option is disabled by putting the letters NO in front.
 Only the first three characters of the parameter code are examined.

 The parameters for the punch directive are DEFINE to punch macro
 definitions and EXPAND to punch expanded text.

 The parameters for the LIST directive are as follows:

 AUTOTITLE Use first line of procedure to form title.
 CODE List generated code.
 DIRECTIVE List line containing list directive.
 INPUT List source input in parse (GEN) phase.
 LINPUT List source input in scanner (LEX) phase.
 QUALIFIERS List conditional assembly qualifiers.
 REF Collect references if cross reference feature on.
 SKIP List lines ’skipped’ by conditional assembly.

 By default, only option REF is enabled.

 For example, to generate titles automatically and to list lines
 skipped by conditional assembly, use

 .=LIST INP,AUTO,QUAL

 A stack is kept of the most recent twenty or so LIST directives. The
 parameter RESUME may be used to restore list control to that
 established by the previous LIST directive.

 The listing options may be initialized by the compiler option LIST.

 LITTLE USER MANUAL PAGE 6
 PRINT FILE CONTROL

 The LITTLE system supports a variety of control functions for the
 standard print file. These features permit control of limits of print
 file size, and provide means to generate page numbers, titles and
 subtitles.

 Print file size is determined by following execution-time parameters.

 PFLP Lines per page (default 60)
 PFLL Print file line limit (default 0)
 PFPL Print file page limit (default 100)
 PFCC Print file carriage control (default on)

 If both PFLL and PFPL have value zero then there is no limit on the
 size of the print file. If PFLL is zero and PFPL is greater than zero
 then PFLL is set to PFPL*PFLP. PFLL determines maximum number of
 lines to be written. PFPL determines the maximum number of lines with
 the ’new page’ character ’1’ in position one. If PFCC has value zero,
 the first position in each line will always be blank. Normally, the
 first position in the print line is used for carriage control
 characters. Use of PFCC option permits suppression of carriage
 control characters, to provide form of print file with minimal spacing
 between lines.

 PRINT FILE TITLES

 Procedures LTITLR and STITLR provide an easy way to generate subtitles
 and titles on the standard print file. The easiest way to use this
 feature is as follows:

 CALL LTITLR(’LABEL’); $ BEGIN PAGING, LABEL UP TO 15 CHARS.

 Title text can be entered using the procedure STITLR, as in

 CALL STITLR(0, STRING); $ ENTER STRING AS MAIN TITLE.
 CALL STITLR(1, STRING); $ ENTER STRING AS SUBTITLE.

 Compilation date symbol .COMPDATE.

 An instance of the symbol .COMPDATE. is replaced by a character string
 of length 30 which gives the date of compilation. The format is that
 returned by the LSTIME library primitive.

 LITTLE USER MANUAL PAGE 7
 OVERVIEW OF STANDARD LIBRARY PROCEDURES

 Overview of Standard Library Procedures

 This section summarizes the library procedures by their function. The
 following section describes each procedure. Here we describe the
 ’packages’ into which the library is organized, so that points common
 to each package need be mentioned only once.

 TIM - Time Procedures

 The library provides three procedures to obtain various times: LNTIME
 provides various integers giving the current clock time, LSTIME
 expresses the current time and date as a character string, and LETIME
 measures elapsed program execution time. Use LSTIME only to indicate
 current time, and not to provide input data to a procedure. Use
 LNTIME to obtain a representation of the time which can be
 manipulated.

 PARM - Retrieving program parameters

 LITTLE does not permit a program (PROG) procedure to have arguments,
 as it not clear how to specify these parameters in a
 machine-independent form. However, the library includes several
 procedures which can retrieve values from the execution environment,
 and so can be used to obtain program parameters. GETIPP obtains
 integer values, GETSPP obtains character string values. GETAPP returns
 the fill parameter string.

 GETIPP and GETSPP have a similar calling sequence. There are two
 arguments, the first is a variable to receive the value, the second is
 a character string giving the parameter code, the default value, and
 the alternate value if the parameter code alone is given. The form of
 the second argument is

 ’Pcode=Defval/Altval’.

 Altval is optional, but the slash following Defval must be written.
 The value is obtained as follows:

 1. If Pcode not given, take Defval.
 2. If Pcode given with no value, take Altval if Altval
 is given; otherwise take Defval.
 3. If Pcode given with value, take the value.

 For example, to obtain file title with parameter code FT and linesize
 with parameter FL, write

 +* SPPLEN = 20 **

 SIZE FTVAR(WS);
 SIZE FLVAR(.SDS. SPPLEN);

 CALL GETSPP(FTVAR, ’FT=SYSIN/TTY’);

 LITTLE USER MANUAL PAGE 8
 OVERVIEW OF STANDARD LIBRARY PROCEDURES

 CALL GETIPP(FLVAR, ’FL=80/’);

 FILE F ACCESS=GET, TITLE=FTVAR, LINSIZE=FLVAR;

 If FT not given, title is SYSIN; if FT alone given, title is TTY; if
 ’FT=FNAME’ given, title is FNAME. The linesize is 80 unless ’FL=nn’
 given to explicitly set linesize to nn.

 The standard length of parameter code strings and the values of
 character string parameters is a program parameter. It is suggested
 that the symbol SPPLEN, defined by macro ’+* SPPLEN = 20 **’, be used
 to express this standard length.

 FIN - Program termination

 The standard manner of terminating program execution is to execute, in
 the program procedure, a RETURN statement or the END statement which
 terminates the program procedure. The library procedure LTLFIN
 permits program termination from within other procedures. LTLFIN can
 be used to indicate normal or abnormal termination. In the abnormal
 case, LTLFIN calls a procedure USRATP to permit the user to perform
 application-specific termination processing.

 STR - Character string procedures

 The library contains procedures to search character strings, effect
 string replacement and perform case conversion.

 The procedures to search character strings are based on those of the
 SNOBOL4 language. These procedures support "string sets" which
 associate a set of characters with a mask. Up to sixteen string sets
 are supported. The pre-defined string sets and their associated masks
 are as follows:

 1 1B’000001’ SS_BLANK blank
 2 1B’000010’ SS_SEPAR separators (blank, tab, form feed)
 4 1B’000100’ SS_DIGIT digits 0..9
 8 1B’001000’ SS_UCLTR upper case letters A..Z
 16 1B’010000’ SS_LCLTR lower case letters a..z
 32 1B’100000’ SS_BREAK break (underline) character ’_’

 The names SS_ are by convention used to name string sets; for example

 +* SS_BLANK = 1 **

 SS_SEPAR includes blank as well as any other characters which by usual
 practice are considered equivalent to blank for separating symbols.
 For ASCII environments, the separators include horizontal tab and form
 feed.

 The string search functions are as follows:

 ANYC(C, SS) match any character in string set SS

 LITTLE USER MANUAL PAGE 9
 OVERVIEW OF STANDARD LIBRARY PROCEDURES

 ANYS(S, SP, SS) match any character in string set SS
 BLDS(S, SS) build string set from string S
 BRKC(S, SP, C) break to character
 BRKS(S, SP, SS) break to character in string set SS
 NAYC(C, SS) match any character not in character set SS
 NAYS(S, SP, SS) match any character not in character set SS
 RBRC(S, SP, C) right break to character C
 RBRS(S, SP, SS) right break to character in string set SS
 RSPC(S, SP, C) right span character
 RSPS(S, SP, SS) right span to character in string set SS
 SPNC(S, SP, C) span character
 SPNS(S, SP, SS) span characters in string set SS

 In the above, S denotes a character string, SP an integer index, C a
 character code, and SS a string set either pre-defined or established
 by execution of BLDS procedure.

 BLDS constructs a string set. The first argument is a character string
 containing the characters to be placed in the string set. The second
 argument is a mask used to identify the string set. The search
 procedures are functions which return -1 if no characters are matched;
 otherwise, the value returned is the number of characters matched.
 ANYC, ANYS, NAYC and NAYS return either zero or one. BRKC, BRKS, RBRC
 and RBRS must find a break character or they fail, yielding value -1.
 RSPC, RSPS, SPNC and SPNS must find a character in the set or they
 fail, yielding value -1. The search functions also fail if position
 SP does not lie within string S.

 Note that ANYC is used to test if character in particular set. For
 example, ANYC(C,SS_DIGIT) yields one if C is character code of numeric
 digit, or zero otherwise. BRKC permits searching for character in
 string; for example BRKC(S,1,C) yields -1 if C does not occur in S, or
 yields the number of characters before the first instance of S (BRKC
 does not match the break character). RSPC can be used to count
 trailing blanks; for example

 RSPC(S, (.LEN. S), 1R)

 yields -1 if the last character in S is not blank, or otherwise yields
 the number of trailing blanks in S. The union of character sets can
 be expressed using the inclusive or operator; for example:

 ANYC(C, SS_LCLTR ! SS_LCLTR)

 yields 1 if C is upper or lower case letter.

 Several procedures are provided to assist case conversion. Function
 CTLC(C) has as operand a character code C. If C is an upper case
 letter and lower case is available, CTLC yields the lower case code
 for C; otherwise, CTLC yields C. Similarly, CTUC(C) yields upper case
 code if argument C is in lower case. Procedure STLC(S) converts upper
 case characters in S to lower case, and STUC similarly converts to
 upper case.

 Procedures RPLD and RPLE permit efficient replacement or translation
 of a string. The call RPLD(S1,S2) defines the replacement. S1 and S2
 must have equal lengths. Subsequent calls to RPLE replace each

 LITTLE USER MANUAL PAGE 10
 OVERVIEW OF STANDARD LIBRARY PROCEDURES

 instance of a character which occurs in S1 by the corresponding
 character in S2. For example, the sequence

 CALL RPLD(’AEIOU’,’11111’)
 S = ’AEXYZ’;
 CALL RPLE(S);
 changes S to ’11XYZ’.

 FPC - Floating Point Conversion

 Procedures CEFR$IO and CREF$IO are used for floating point conversion.
 They are required for LITTLE I/O, but are necessarily
 machine-dependent in their implementation if accurate representation
 is to be achieved. They are used by the SETL system for floating
 point conversion also. Procedure VNUM$IO is used to implement LITTLE
 I/O and also may be of interest when using these procedures; it checks
 validity of numeric constant.

 LCP - LITTLE Compiler Print procedures

 These procedures are used by the LITTLE compiler to construct the
 standard output (listing) file. Some of them are also used within the
 library. Most of them are not of interest in that direct LITTLE I/O
 statements can do what is needed. However, there are additional
 procedures which permit an extra level of control in producing the
 standard output file which is not available from the LITTLE I/O
 features proper; for example, to maintain titles and subtitles, echo
 output to the terminal, etc. For example, CONTLPR provides a number
 of extra control functions. LTITLR provides simple way to provide
 title at top of each page.

 SIO - System Input Output

 These procedures are used to implement the LITTLE I/O primitives.
 They can also be called directly from a LITTLE procedure. Files are
 identified by small nonzero integers. File 1 is reserved for the
 LITTLE standard input (unit 1) and file 2 is reserved for the LITTLE
 standard output (unit 2). At least ten files are usually available,
 several implementations provide up to twenty.

 The first argument of an SIO procedure is the file number. The second
 argument is a return code. It is set to zero to indicate normal
 completion. It is set nonzero if an error occurs during the course of
 execution, except that input procedures use the convention of setting
 the return code to one to indicate end of data, reserving higher
 values for error returns. The standard convention is for SIO
 procedures not to return if an error occurs, but to issue an error
 message and terminate execution. However, it is possible to test that
 an open failed. The actions to be taken if an error occurs can be
 selected using the procedure ERETSIO. ECODSIO can be used to obtain
 the system-level error number of returns permitted.

 LITTLE USER MANUAL PAGE 11
 OVERVIEW OF STANDARD LIBRARY PROCEDURES

 OPENSIO opens a file, CLOSSIO closes it. There are a variety of
 procedures to process text and binary files. In general these
 procedures need not be used directly, as LITTLE IO should be used if
 possible.

 INC - text inclusion procedures

 These procedures implement the text inclusion (INCLUDE) feature of
 LITTLE, and can be used when implementing a similar feature for other
 applications. OPNINC intializes, POSINC positions to a particular
 member, GETINC reads a line, CLSINC terminates. UPDINC is used to
 process UPD sequence numbers (see description of UPD program
 parameter).

 MEM - Memory access and management

 These procedures permit direct access to memory contents. MPTR$LI
 returns an ’address’, MGET$LI returns the contents an addressed
 location, and MPUT$LI stores a new values in an addressed location.
 These procedures are required by LIB to implement the STRING file
 access type. They should be used with extreme caution.

 The REF program requires a ’dynamic array’ which is provided by the
 procedures DADIMS, DAGETR and DAPUTR. These procedures may be of
 interest in other applications.

 MISC - Miscellaneous Procedures

 These procedures fall into no particular grouping. The provide general
 utility functions that may be of interest; in some cases they are
 artifacts of the implementation.

 LITTLE USER MANUAL PAGE 12
 STANDARD LIBRARY PROCEDURES

 Standard Library Procedures

 This section describes the standard library (LIB) procedures.
 Arguments are represented by a name, type name, size specification and
 optional dimension specification for arguments which are arrays. The
 type specfication is RD for read, WR for write, and RW for read and
 write (the entry value of the argument is read and possibly a new
 value is stored back into the argument). The size specification is a
 parenthesized expression indicating the expected size, using the
 standard abbreviations of WS for .WS., PS for .PS., CS for .CS. and
 SDS n for a string of n characters. The dimension specification, if
 present, indicates the argument is an array, and gives the expected
 dimension. The symbol ’*’ may occur in size and array specifications
 to indicate that the actual values accessed depend on the values of
 other arguments in a manner explained in the procedure description.

 The initial line of a procedure summary is underlined. The procedure
 name is followed by a dollar sign which is followed by the ’package’
 name. Packages are summarized in the previous section.

 RES (WS) = ANYC($ STR

 CH RD (CS) ,
 SS RD (SS_SZ));

 Succeed if character CH is in string set SS; fail otherwise.

 RES (WS) = ANYS($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 SS RD (SS_SZ));

 Succeed if the SP-th character of string ST is in string set SS; fail
 otherwise.

 CALL BLDS($ STR

 ST RD (.SDS. *),
 SM RD (SS_SZ));

 Construct a string set of the characters in the string ST, where SM is
 a mask (.NB. SM = 1) used to identify the string set during subsequent
 string searches.

 RES (WS) = BRKC($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 CH RD (CS));

 Return the length of the longest substring of ST, starting at position

 LITTLE USER MANUAL PAGE 13
 STANDARD LIBRARY PROCEDURES

 SP, which is followed by an instance of character CH. Fail if the
 "break" character CH is not found.

 RES (WS) = BRKS($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 SS RD (SS_SZ));

 Return the length of the longest substring of ST, starting at position
 SP, which is followed by a character in the string set SS. Fail if a
 "break" character in SS is not found.

 CALL CEFR$IO($ CRF

 RV WR (REAL),
 ARA RD (WS) *,
 ARAPTR RD (PS),
 EXPVAL RD (WS));

 Convert exponent and fraction to real value. On entry

 ARA(1..ARAPTR) integers in 0..9
 (There is an implied decimal point after
 entry at ARA(ARAPTR).)
 ARA(ARAPTR+1) is zero for positive value, one for negative
 EXPVAL is (possibly signed) exponent value
 On exit
 RV is to contain real value
 ARA(ARAPTR+2) is set as follows
 0 conversion possible and done
 1 if invalid input, conversion not possible
 2 overflow, conversion not possible
 It is permitted to provide more digits than can be accurately
 represented; truncation is peritted. However, an error does
 result (overflow) if the implied value does not fall within the
 range of the available real values.

 CALL CHARLR($ LCP

 CH RD (CS));

 Write character CH on the standard output file.

 CALL CLOSSIO($ SIO

 FN RD (WS),
 RC WR (WS));

 FN must be a connected file. CLOSSIO closes the file by performing any
 needed actions. The "connection" to the file is terminated, and the
 file FN must be re-opened, by a call to OPENSIO, before it can again
 be used for input-output.

 LITTLE USER MANUAL PAGE 14
 STANDARD LIBRARY PROCEDURES

 CALL CLSINC; $ INC

 Close the text inclusion file established by OPNINC.

 CALL CLSTERM; $ MISC

 Close the terminal file, if one has been established.

 CALL CONTLPR($ LCP

 ACT RD(PS),
 ARG RW(WS));

 Provide for control of standard output file. ACT is an action code as
 noted below. ARG is used to retrieve or set the value of a parameter
 used in building the file, as follows:

 1 get current position in line
 2 set current position in line
 3 skip forward ARG columns, inserting blanks on way.
 4 tab to column ARG (add blanks on forward tab).
 5 new page action:
 if ARG zero, begin new page.
 if ARG not zero, begin new page if less than ARG lines
 remain on current page.
 6 set paging mode (if on, pages formed)
 7 set titling mode (if on, titles cleared)
 8 set page number field in title line
 9 set date field in title line
 10 get lines per page
 11 set lines per page
 12 get page number
 13 set page number
 14 get line number (within page)
 15 set line number (within page)
 16 get number of lines written
 17 set number of lines written
 18 get line limit
 19 set line limit
 20 get page limit
 21 set page limit
 22 get carriage control status
 23 set carriage control status
 24 get carriage control character
 25 set carriage control character
 26 set list output control flag
 27 set terminal output control flag
 28 get terminal header flag
 29 set terminal header flag
 30 get characters per line

 LITTLE USER MANUAL PAGE 15
 STANDARD LIBRARY PROCEDURES

 RES (WS) = CREF$IO($ CRF

 RV RD REAL,
 NSD WR (WS),
 SE WR (WS),
 FP WR (WS));

 Represent the real value RV as a signed exponent SE and a fractional
 part FP, rounded to NSD significant digits. NSD must be non-negative.
 If entry value of NSD is zero, set NSD to one and proceed. If NSD
 exceeds precision of available machine, set NSD to that precision and
 proceed.

 The exit value of the integer FP is such that the most significant NSD
 digits, viewed as a real with an implied decimal point after the first
 digit, multiplied by the signed exponent returned in SE, are the
 rounded value of the operand RV.

 For example, if RV=0.526E+10, NSD=3, then on exit, NSD=3, FP =
 526..., SE = +9.

 The function value is zero if conversion was possible, or one if
 conversion not possible. For S66, the function value is one if the
 real value is ’indefinite’ and two if the real value is ’infinite’.

 SUBR CRFNAM($ MISC

 NAM WR (.SDS. FILENAMELEN),
 PRM RD (.SDS. FILENAMELEN),
 NUM RD (WS));

 Return the name of a ’cross-reference’ file from PRM and NUM, by
 replacing the leftmost instance of a numeric character in PRM by the
 character corresponding to the digit NUM.

 PRM must contain a digit character and PRM must be in the range 0..9;
 otherwise execution is abnormally terminated.

 The result is returned in NAM; PRM is not altered.

 This procedure is used to derive the names of the several
 cross-reference files required for the cross-reference feature. It is
 used by cross-reference facility, and will not normally be called by
 user.

 RES = CTLC($ STR

 CH RD (CS));

 In fixed case environment, return the argument; otherwise, if argument
 is upper case, return the lower case equivalent.

 LITTLE USER MANUAL PAGE 16
 STANDARD LIBRARY PROCEDURES

 RES = CTUC($ STR

 CH RD (CS));

 In fixed case environment, return the argument; otherwise, if argument
 is lower case, return the upper case equivalent.

 CALL DADIMS($ MEM

 NW RD (WS),
 NG WR (WS));

 Allocate NW words of free storage, set NG to number of words obtained.
 This procedure is used in preparation for subsequent invocations of
 DAGETF and DAPUTR.

 RES (WS) = DAGETF($ MEM

 I RD (PS));

 Return contents of I-th entry of storage provided by DADIMS. I must
 be greater than zero and not exceed value of first argument to DADIMS.

 CALL DAPUTR($ MEM

 I RD (PS),
 V RD (WS));

 Set contents of I-th entry of storage provided by DADIMS to have value
 V. I must be greater than zero and not exceed value of first argument
 to DADIMS.

 CALL DROPSIO($ SIO

 FN RD (WS),
 RC WR (WS));

 Indicate that the file is to be "dropped" when it is closed. If
 possible, the file is to be erased and all evidence of its existence
 removed when it is closed.

 This procedure is used for a "scratch file", and is invoked by the
 reader of the file, after the call to OPENSIO, and before a call to
 CLOSSIO, to indicate that, since no further use will be made of the
 file, it should be removed.

 CALL DUMPAQ($ MISC

 ST RD (.SDS. *),
 ARA RD (WS) (*),

 LITTLE USER MANUAL PAGE 17
 STANDARD LIBRARY PROCEDURES

 LO RD (PS),
 HI RD (PS));

 Write a line with string ST, then write, four entries to a line, the
 contents of ARA(LO) through ARA(HI), in "machine" format.

 DUMPAQ provides a crude listing of the contents of an array slice.

 CALL ECODSIO($ SIO

 FN RD (WS),
 RC WR (WS),
 EC WR (WS));

 Set EC to error code for file FN. After call to another SIO
 operation, ECODSIO may be called. RC is set to the value of RC
 returned by the prior SIO procedure call. If an error has occurred, EC
 is set to a system-dependent value describing the error condition.

 CALL ERETSIO($ SIO

 FN RD (WS),
 RC WR (WS),
 ELEV RD (WS));

 Set error level for file FN to ELEV, which is interpreted as follows:

 0 No return if error, abnormal termination
 1 Terse return
 2 Verbose return: issue error message and return

 The standard input file is initially opened with level 1 (terse
 return) and the standard output file is initially opened with level 2
 (verbose return), to permit the user to detect failure attempting to
 open these files. The error level is then set to zero so subsequent
 errors will result in abnormal termination unless the level reset by
 the user program.

 CALL ENDLR; $ LCP

 End the current line, and write it to the standard output file.

 CALL ETITLR($ LCP

 LIN RD (PS),
 STR RD (.SDS. *),
 POS RD (PS),
 LEN RD (PS));

 Enter string STR into title line, beginning at position POS. Enter
 LEN characters, padding with blanks if actual length of STR is less
 than LEN.

 LITTLE USER MANUAL PAGE 18
 STANDARD LIBRARY PROCEDURES

 Enter into the main title if LIN is zero, otherwise enter into the
 subtitle.

 CALL GETAPP($ PARM

 ST WR (.SDS. SL);
 SL RD (PS));

 Return up to SL characters of the program parameter string in string
 ST. Set the string origin and length fields. The returned length of
 ST will never exceed SL.

 CALL GETBSIO($ SIO

 FN RD (WS),
 RC WR (WS),
 ARA WR (WS),
 NDX RD (PS),
 NC RW (PS));

 FN must be the file number of a connected file. On entry, NC gives
 the number of characters to be transmitted; if NC is zero, then
 execution proceeds as though NC has as value the LINESIZE of the file.

 Read the next line from file FN. Let its length be AC. If AC exceeds
 NC, set AC to NC. Then set NC to AC, and store the characters of the
 line in ARA, starting at position NDX. The characters are stored one
 character per word, right-justified with zero fill. Set NC to the
 number of characters stored in ARA.

 CALL GETCSIO($ SIO

 FN RD (WS),
 RC WR (WS),
 ARA WR (WS),
 NDX RD (PS),
 NC RD (PS));

 FN must be the file number of a connected file. On entry, NC gives
 the number of characters to be transmitted; if NC is zero, then
 execution proceeds as though NC has as value the LINESIZE of the file.

 Read the next line from file FN. Let its length be AC. If AC exceeds
 NC, set AC to NC. Store the characters of the line in ARA, starting
 at position NDX. The characters are stored one character per word,
 right-justified

 CALL GETINC($ INC

 ARA WR (WS) (*),
 LO RD (PS),

 LITTLE USER MANUAL PAGE 19
 STANDARD LIBRARY PROCEDURES

 HI RD (PS),
 FIN WR (PS));

 Obtain the next line from the standard input file, performing text
 inclusion. The line obtained is returned in ARA(LO..HI) and is padded
 with blanks if necessary. FIN is set nonzero when the end of the file
 is encountered.

 CALL GETIPP($ PARM

 PVAR WR (WS),
 PSTR RD (.SDS. FILENAMELEN));

 Return the integer value of a program parameter. PSTR has the form

 ’KEY=DEFVAL/ALTVAL’

 where KEY identifies the parameter, and DEFVAL is an integer. ALTVAL
 is an integer. ALTVAL is optional, execution proceeds as though
 DEFVAL had been written.

 Search the program parameter string for the first instance of KEY. It
 not found, set PVAR to DEFVAL and return. If found, proceed as
 follows:

 1. If no value given (no ’=’ after KEY), set PVAR to ALTVAL and
 return.
 2. If value given, convert it as integer and assign to PVAR, and
 return.

 CALL GETSPP($ PARM

 PVAR RD (.SDS. FILENAMELEN),
 PSTR RD (.SDS. FILENAMELEN));

 Return the string value of a program parameter. PSTR has the form

 ’KEY=DEFVAL/ALTVAL’

 where KEY identifies the parameter, and DEFVAL is an string. ALTVAL
 is an string. ALTVAL is optional, execution proceeds as though DEFVAL
 had been written.

 Search the program parameter string for the first instance of KEY. It
 not found, set PVAR to DEFVAL and return. If found, proceed as
 follows:

 1. If no value given (no ’=’ after KEY), set PVAR to ALTVAL and
 return.
 2. If value given, assign it to PVAR and return.

 LITTLE USER MANUAL PAGE 20
 STANDARD LIBRARY PROCEDURES

 GETVSIO $ SIO

 GETVSIO is identical to GETWSIO except that the last argument is a WR
 parameter. Input proceeds without the usual padding and the last
 parameter is set to the number of characters read.

 CALL GETWSIO($ SIO

 FN RD (WS),
 RC WR (WD),
 ARA WR (WS) (*),
 NDX RD (PS),
 NC RD (WS));

 Read the next line from file FN. If end of file, set RC to one;
 otherwise, set RC to zero. Place at most NC characters from the line
 in ARA(LO) to ARA(HI). Characters are packed. Truncation occurs if
 not all NC characters can be stored in ARA. Blanks are added as
 needed.

 CALL HEXLPR($ LCP

 ARG RD (WS),
 COL RD (PS));

 Write the hexadecimal value of ARG in the next COL columns of the
 standard output file, right adjusted with no leading zeros. Start a
 new line if less than COL positions remain on the current line.

 CALL INTLPR($ LCP

 ARG RD (WS),
 COL RD (PS));

 Write the integer value of ARG in the next COL columns of the standard
 output file, right adjusted with no leading zeros. Start a new line
 if less than COL positions remain on the current line. Set the first
 non-blank position to the minus character ’-’ if ARG is negative. If
 the value cannot be fully represented, set the first column of the
 field to ’*’.

 CALL INTLR($ LCP

 VAL RD (WS));

 CALL INTLR(ARG) is equivalent to CALL INTLR(ARG, 5);.

 LITTLE USER MANUAL PAGE 21
 STANDARD LIBRARY PROCEDURES

 CALL LCTIME($ TIM

 ARA WR (CS) (*),
 ARAMAX RD (PS));

 Determine the current time by calling LSTIME. Then return the
 ’unpacked’ time in ARA as an array of characters. If ARAMAX exceeds
 LSTIMELEN, provide extra blanks; if ARAMAX is less than LSTIMELEN,
 store at most ARAMAX characters. LSTIMELEN is macro for length of
 LSTIME result, should be 30.

 CALL LETIME($ TIM

 ETIM WR (WS));

 Set ETIM to the elapsed execution time in milliseconds. The initial
 value of ETIM is not necessarily zero. No explicit check is made for
 integer overflow, so that care should be exercised when timing ’long’
 jobs.

 CALL LNTIME($ TIM

 ARA WR (WS) (8));

 Return the current time represented as eight integers in ARA:

 TA(1) Year
 TA(2) Month: 1 to 12
 TA(3) Day of month: 1 to 31
 TA(4) Hour of day: 0 to 23
 TA(5) Minute of hour: 0 to 59
 TA(6) Second of minute: 0 to 59
 TA(7) Day of year: 1 to 366
 TA(8) Day of week: 1 to 7 (Sunday is one)

 CALL LSTIME($ TIM

 TS (.SDS. LSTIMELEN)); $ LSTIMELEN=30

 Set TS to indicate the current time. LSTIMELEN is the length of the
 result; it is currently 30, and no change in the result length is
 expected. The format is best shown by example; the next to last
 second of 23 March 1976 is represented as:

 ’ TUE 23 MAR 76 23.59.68 ’
 123456789A123456789B123456789C

 The contents of LSTIME result are derived from LNTIME. The format of
 LSTIME may be adjusted in some cases to conform to the usual
 conventions for a particular implementation. Programs that need to
 ’decode’ the current time, should use LNTIME and not muck about with
 LSTIME. The result from LSTIME is typically used to label listings.

 LITTLE USER MANUAL PAGE 22
 STANDARD LIBRARY PROCEDURES

 CALL LTITLR($ LCP

 TS RD(.SDS. *));

 Fully identify the standard output file with a title derived from TS,
 enable paging, and so forth. Standard components of the LITTLE system
 identify themselves by using LTITLR. Current practice is to use
 argument of the form

 ’NAM(ddddd)’

 where NAM is three-character component namt, and ddddd is Julian date
 of last change to component; for example, ’LEX(80023)’.

 CALL LTLFIN($ FIN

 TLEV RD (WS),
 TCOD RD (WS));

 Terminate execution of the program. LTLFIN does not return. TLEV is
 the level of termination, as follows:

 0 normal termination
 1 abnormal termination detected by LITTLE system
 2 abnormal termination due to system problem, error

 TCOD is a termination code interpreted as follows:

 1. If TLEV = 0, the program terminated, TCOD is set:
 0 normal termination
 4 ’warnings’ detected
 8 ’errors’ detected

 2. If TLEV = 1, the program terminated abnormally:

 3. If TLEV = 2, some ’system’ problem forced termination. TCOD is,
 if possible, a machine-dependent encoding of the code provided by
 the system to report the problem.

 CALL LTLINI($ MISC

 WHO RD (PS));

 Start execution of a LITTLE program. Some implementations permit
 procedures written in LITTLE to be combined with procedures written in
 other languages. WHO identifies the ’master’. It is normally zero,
 indicating that LITTLE is to open the standard input and output files,
 which are the LITTLE units one and two, respectively.

 Use of stand-alone LITTLE programs requires no explict user-provided
 calls to this procedure. The LITTLE PROG procedure implicitly includes
 a call to LTLINI(0) as the first executable statement to establish
 control.

 LITTLE USER MANUAL PAGE 23
 STANDARD LIBRARY PROCEDURES

 Usage with a non-zero argument value is machine-dependent.

 CALL LTLREGS; $ MISC

 Save the contents of the machine registers, display their current
 values, restore the registers and continue execution.

 LTLREGS is provided to assist in program checkout. It is not
 essential and will not necessarily be provided for every
 implementation. The intent is to produce on the standard output file
 a symbolic display of the current machine register contents, whatever
 that means, with a minimal corruption. Some corruption may of course
 result from the act of trying to display them, in a machine- dependent
 way.

 CALL LTLSIO($ SIO

 WHO RD (PS));

 Initiate SIO routines. WHO is normally zero to indicate call from
 LTLINI. Direct user calls to this procedure should not occur, and
 should occur only if the user is trying to bypass the normal course of
 events.

 CALL LTLTERM($ MISC

 PHASE RD (WS),
 TCOD RD (WS));

 Continue exeucution of a multi-pass program. The intent is to permit
 successive programs to operate as phases in which each phase reports
 its phase number and a return code to be used by LTLTERM to determine
 if execution is to proceed, and if so, which phase is to be invoked
 next. Where programs cannot be combined, an acceptable
 implementation, provided in the standard LITTLE library is just:

 SUBR LTLTERM(PHASE, TCOD);
 ...
 CALL LTLFIN(TCOD, 0);

 CALL LTLXTR; $ MISC

 Write the current program position on the standard output file,
 usually as a list of the active procedures and the relative position
 within them. XTR stands for ’eXecution Traceback Report’.

 This procedure is normally called only when serious errors have been
 encountered, and is invoked to attempt to describe just where the
 error occurred.

 LITTLE USER MANUAL PAGE 24
 STANDARD LIBRARY PROCEDURES

 R (WS) = MGET$LI($ MEM

 A RD (PS));

 Return contets of memory location with address A.

 R (PS) = MPTR$LI($ MEM

 ARG RD (*));

 Return address of ARG.

 CALL MPUT$LI($ MEM

 P RD (PS),
 V RD (WS));

 Set the contents of memory location P to be V. P is as returned by
 MPTR$LI. Note that

 A = MPTR$LI(V);
 CALL MPUT$LI(A, MGET$LI(A)+1));

 is one (expensive) way of incrementing value of V.

 CALL NAMESIO($ SIO

 FN RD (PS),
 RC WR (WS),
 S WR (.SDS. *),
 SL RD (PS));

 Determine the "fully qualified" name of the file currently associated
 to file FN. Format S as a string and store at most SL characters of
 the name in S. Set RC as follows:

 0 normal return, full name available
 1 string available, but full name could not be stored
 2 file not open, or error attempting to retrieve name

 RES (WS) = NAYC($ STR

 CH RD (CS),
 SS RD (SS_SZ));

 Succeed if character CH is not in string set SS; fail otherwise. NAYC
 is inverse is ANYC.

 LITTLE USER MANUAL PAGE 25
 STANDARD LIBRARY PROCEDURES

 RES (WS) = NAYS($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 SSK RD (SS_SZ));

 Succeed if the SP-th character of string ST is in string set SS and
 return the length of the longest substring of characters in SS;
 otherwise fail.

 CALL OCTLPR($ LCP

 ARG RD (WS),
 COL RD (PS));

 Write the value of ARG in octal, right adjusted in COL columns. Blank
 fill if necessary, with no indication of truncation if the value
 cannot be represented exactly in COL columns. Start a new line if the
 result cannot be fully represented on the current line.

 CALL OCTLR($ LCP

 ARG RD (WS));

 CALL OCTLR(ARG) is just CALL OCTLPR(ARG, (WS+2)/3); .

 CALL OPENSIO($ SIO

 FN RD (WS),
 RV WR (WS),
 AC RD (PS),
 TITL RD (.SDS. FILENAMELEN),
 LNS RD (WS),
 LNSRET WR (WS),
 DISP RD (PS),
 SITEA RD (PS));

 Open file FN for processing. AC indicates desired access:

 1 GET
 2 PRINT
 3 PUT
 4 READ
 6 WRITE

 TITL identifies the file. If null an implicit title derived from the
 file number is to be used. If ’0’ the file is a null file. Attempts
 to read a null file (access GET or READ) always return the end-of-file
 value. Attempts to write (access PRINT PUT or WRITE) succeed, even
 though no data is actually transmitted.

 LNS is meaningful only for access GET, PRINT or PUT, and specifies the

 LITTLE USER MANUAL PAGE 26
 STANDARD LIBRARY PROCEDURES

 number of characters in a line. If zero, a ’default’ value is implied
 which depends on the access mode and the file number.

 LNSRET is meaningful only for access GET, PRIN and PUT, and is
 returned as follows:

 1. If LNS nonzero, it is set to LNS.

 2. If LNS zero and access is GET, it is set to the actual maximum
 length of lines in the file, if this can be determined.

 3. If LNS zero and access is PUT or PRINT, it is set to an
 appropriate system-dependent value.

 DISP specifies a ’disposition code’ stating what is to be done when
 the file is closed. It is currently ignored. Procedure DROPSIO is
 used to request that file be ’dropped’, and is called after OPENSIO.

 SITEA is an additional parameter provided for machine-dependent use.
 It is not currently used, and can hence be ignored.

 CALL OPNINC($ INC

 INAME RD (.SDS. FILENAMELEN),
 MNAME RD (.SDS. FILENAMELEN),
 ICODE RD (.SDS. FILENAMELEN),
 UPDARG RD (PS));

 Ignore argument INAME. It was onced used to identify file, but for now
 it is ignored as the standard input file is implied.

 Read the standard input file with text inclusion.

 ICODE specifies codes for INCLUDE and MEMBER keywords...

 If UPDARG is not zero, the first eight columns of all lines read
 contain LTLUPD sequence information which is to be ignored.

 CALL OPNTERM($ MISC

 NAM RD (.SDS FILENAMELEN));

 Open a file NAM which for interactive use is usually connected to the
 user’s terminal.

 CALL PROMSIO($

 FN ,
 RC WR (WS),
 S RD (.SDS. *));

 If file FN is opened for reading from an interactive terminal, set the
 ’prompt string’ to be S. The TERMP program parameter specifies the
 initial value of the value of the prompt string for files opened for

 LITTLE USER MANUAL PAGE 27
 STANDARD LIBRARY PROCEDURES

 input.

 CALL PUTCSIO($ SIO

 FN RD (PS),
 RC WR (WS),
 ARA RD (WS)(*),
 LO RD (PS),
 NC RD (WS));

 If NC is zero, proceed as though NC=linesize of file FN. Write a line
 consisting of the unpacked characters of ARA, starting at index LO.
 Truncate if NC>linesize, pad with blanks if NC>linesize.

 PUTWSIO $ SIO

 PUTWSIO is similar to PUTCSIO, except that the entries of ARA are
 packed, WS/CS characters per word.

 RBRC $ STR

 RBRC is similar to BRKC, except the string is searched from right to
 left.

 RBRS $ STR

 RBRS is similar to BRKS, except the string is searched from right to
 left.

 CALL RDRWSIO($ SIO

 FN RD (WS),
 RV WR (WS),
 ARA RD (WS),
 LO RD (PS),
 NW RD (PS));

 Read binary data from file FN. Read NW words into array ARA, starting
 an index LO.

 CALL READOS($ PARM

 KEY RD (WS),
 CODE RD (.SDS. *),
 IFPRES WR (1),
 IFVAL WR (1),
 INVAL WR (WS),
 ISVAL WR (.SDS. *));

 LITTLE USER MANUAL PAGE 28
 STANDARD LIBRARY PROCEDURES

 READSOS is called by by GETIPP and GETSPP; it provides some extra
 functions in obtaining program parameters that be of interest. KEY
 describes desired function, as follows:

 1 seek integer parameter
 2 seek octal parameter
 3 seek string parameter
 4 set INTVAL to number of parameters and return
 -I seek value of I-th parameter

 IFPRES is set to one if the parameter is present. If parameter value
 present IFVAL is set to one. If value present and KEY is one or two,
 INVAL is set to numeric value. If value present and KEY is three,
 ISVAL is set to string value.

 Parameter specification are separated by commas; some implementations
 accept commas between brackets as part of directory specification.

 CALL READSOS($ PARM

 CA WR (CS)(*),
 NC RW (PS));

 Return the full program parameter string in CA. Each entry contains
 one character, right-adjusted with zero fill. On entry, NC gives the
 maximum number of characters to be stored. On exit, NC gives the
 number of available characters.

 CALL REMARKL($ MISC

 S RD (.SDS. *));

 Write the string S. For interactive systems, the string should be sent
 to the user’s terminal; otherwise, it can be sent to the standard
 output file.

 REMARKL is a special procedure in that the intent is to make the
 argument available to the user ’when all else fails’. The exact
 semantics are hard to specify, but note that REMARKL is used in ’panic
 mode’ when LITTLE sees chaos approaching.

 CALL REWISIO($ SIO

 FN RD (WS),
 RC WR (WS),
 AC RD (PS));

 Rewind file FN. If AC is zero, simply rewind the file. If AC is
 non-zero it should be one of

 1 GET access
 4 READ access

 LITTLE USER MANUAL PAGE 29
 STANDARD LIBRARY PROCEDURES

 implying that writing is to be terminated and the file is to be
 repositioned at the beginning for input.

 CALL RPLD($ STR

 S1 RD (SDS. *),
 S2 RD (.SDS. *));

 S1 and S2 must have the same length. Initialize for subsequent use of
 RPLE. Each character of S1 is to be mapped to the corresponding
 character of S2.

 CALL RPLE($ STR

 S RW (.SDS. *));

 Translate the string S according to the translate table defined by
 RPLD.

 RV (WS) = RSPC($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 SS RD (SS_SZ));

 Return the length of the longest substring of ST, starting at
 position, which consists of characters in the string set SS. RSPC
 fails if no character in SS is found.

 RV (WS) = RSPS($ STR

 ST RD (.SDS. *) ,
 SP RD (PS),
 SS RD (SS_SZ));

 Return length of longest substring of S, starting at position SP,
 which consists of characters in SS. A character must be found or else
 the search fails. The search is from right to left.

 CALL SIGL$IO($ MISC

 FN RD (WS),
 IL RD (PS));

 Set the error threshhold level for the file FN to IL. IL is
 interpreted as follows:

 0 any problem treated as error
 1 ignore truncation/conversion errors
 2 continue even if severe errors

 LITTLE USER MANUAL PAGE 30
 STANDARD LIBRARY PROCEDURES

 RES (WS) = SPNC($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 CH RD (CS));

 Return length of longest substring of S, starting at position of SP,
 which consists of character CH. At least instance must be found or
 SPNC fails.

 RES (WS) = SPNS($ STR

 ST RD (.SDS. *),
 SP RD (PS),
 SS RD (SS_SZ));

 Return length of longest substring of S, starting at position SP,
 which consists of characters in the string set SS. At least one
 character must be found, or SPNS fails.

 CALL STITLR($ LCP

 L RD (PS),
 S RD (.SDS. *));

 If L is zero, enter S as the main title for the standard output file;
 otherwise enter S as the subtitle.

 CALL STLC($ STR

 S RW(.SDS. *));

 If lower-case available, convert S to lower case; otherwise, S is not
 changed.

 CALL STUC($ STR

 S RW (.SDS. *));

 If lower-case available, convert S to upper case; otherwise, S is not
 changed.

 CALL SYSFIN($ FIN

 TL RD (WS),
 TC RD (WS));

 Terminate execution. TL is zero for "normal" completion. In this

 LITTLE USER MANUAL PAGE 31
 STANDARD LIBRARY PROCEDURES

 case, TC is interpreted as follows:

 0 normal completion
 4 program completed, but warning messages issued
 8 program completed, but errors were detected

 If TL is nonzero, the program completed abnormally. TL is interpreted
 as follows:

 1 error detected by LITTLE
 2 error detected by operating system

 CALL SYSINI($ MISC

 C RD (PS));

 Perform any necessary system-dependent initialization. C is normally
 zero, indicating that LITTLE is to maintain control of the standard
 input and output files. This procedure is automatically called by a
 LITTLE program (PROG).

 CALL TEXTLR($ LCP

 S RD (.SDS. *));

 Write the string S on the standard output file.

 CALL TINTLR($ LCP

 S (.SDS *),
 I (WS));

 Send string S and integer I to standard output, with spacing and label
 information to make clear intent to take S as label for value I
 displayed.

 CALL USRATP; $ FIN

 USRATP stands for ’USer Abnormal Termination Procedure’. When LTLFIN
 is called in event of abnormal termination, it calls USRATP early on
 to give the user a chance to provide termination information of his
 own design. A default USRATP that does nothing is provided, and
 several implementations, due to loader restrictions, provide only the
 default implementation.

 CALL VNUM$IO($ FPC

 ARA RW (WS) *,
 ARAPTR RD (PS),
 EXPVAL WR (WS));

 LITTLE USER MANUAL PAGE 32
 STANDARD LIBRARY PROCEDURES

 This procedure ’verifies’ numeric constants. On entry ARA(1..ARAPTR)
 holds characters representing numeric constant. On exit:

 ARA(1..ARAPTR) holds integers in range 0..9
 ARA(ARAPTR+1) is zero for positive value, one for negative
 value
 ARA(ARAPTR+2) is zero if verified, one if failure
 ARA(ARAPTR+3) indicates presence of decimal point. It is
 zero if no decimal point; otherwise if 1 +
 number of digits after decimal point
 ARA(ARAPTR+4) is zero if no exponent, one if exponent present
 EXPVAL if ARA(ARAPTR+4) is nonzero, EXPVAL is signed
 integer holding exponent value

 CALL WORDLR($ LCP

 W RD (WS));

 Write word W to standard output as characters.

 CALL WORDSR($ LCP

 ARA RD (WS) *,
 LO RD (PS),
 HI RD (PS));

 Same as

 DO I = LO to HI;
 CALL WORDLR(ARA(I));
 END DO;

 CALL WRTWSIO($ SIO

 FN RD (PS),
 RC WR (WS),
 ARA RD (WS) (*),
 LO RD (PS),
 NW RD (PS));

 Write NW words to file FN, starting at ARA(LO).

 LITTLE USER MANUAL PAGE 33
 PROGRAM PARAMETERS

 This section describes the program parameters supported by the
 compiler and run-time library. These parameters are specified as part
 of the command line used to invoke the LITTLE system. The system
 program parameters are described in the LITTLE format

 NAME=DEFVAL/ALTVAL

 where NAME is the parameter value, DEFVAL is the default value if the
 parameter is not otherwise specified, and ALTVAL is the value taken if
 the parameter name alone is given. Parameter values are either
 decimal integers or character strings. For example, given

 P=0/1

 then if P not mentioned, value 0 is implied. If P alone specified,
 then value 1 is implied. If P=n specified, the value n is implied. A
 number of parameters have the form NAME=0/1. Such values are logical
 switches in that they select one of two cases, according as value is
 zero or non-zero. In the latter case, the option is said to be
 ENABLED or SELECTED.

 Each parameter description mentions the phases for which the parameter
 has meaning. Note that the parameter codes have been chosen so that
 the same list can be passed to all phases; i.e., the same parameter
 does not have differing meanings in different phases.

 Parameter values are sought left to right so that, for example,

 P=1,LIST,P=2

 yields value 1 for parameter P.
 Parameters specifying files tend to be machine-dependent;
 hence default filenames are given in the description of the available
 implementations.

 AD=0/1 (GEN checkout) ASM VOA Dump

 Controls whether GEN produces internal VOA dump at end of each
 procedure compiled.

 ATS=1/0 (ASM S10,S32) Assembly Time Stamp

 Controls whether the generated code (see CODE option) contains a line
 in each procedure identifying the ASM version and time of compilation.

 A0=1/0 (ASM S66) A0 Register Save

 Controls whether register A0 is saved and restored by each procedure
 that uses it. Default is compatible with FTN compiler conventions.

 LITTLE USER MANUAL PAGE 34
 PROGRAM PARAMETERS

 B=LGO/ (ASM S66) Binary File

 Specifies file to receive generated object code.

 B1=1/0 (ASM S66) B1 Constant status

 Controls whether register B1 always contains one.

 CODE=filename (ASM S10,S32)

 Specifies file to receive generated code.

 DMP=0/1 (LIB S66) Abnormal Termination Dump

 Controls whether storage dump is to be generated if program terminates
 execution abnormally.

 CIS=0/... (GEN) Check Index Size

 Controls whether compiler checks that the size of array subscript does
 not exceed the specified value. CIS=0 suppresses this check. The value
 obtained if CIS alone is specified is the machine-dependent pointer
 size (.PS.).

 DA=1/0 (GEN) Default Access

 Controls whether each procedure compiled is to be given access to each
 NAMESET defined in the first procedure compiled. If not selected, then
 each procedure can only reference global variables in NAMESETs
 explicitly named in an ACCESS statement in the procedure body.

 DECK=0/SYSPUNCH (ASM S37,S47) Object DECK file

 Specifies file to receive object deck. Parameter NODECK suppresses
 generation of object deck.

 END=PRG/SEC (ASM S10 only) END option

 Specifies how ASM is to end the generated code file. If END=0 no last
 line generated. END=PRG indicates end of program; END=SEG indicates
 end of segment.

 ETIM=1/0 (LIB) Execution Time

 Controls whether the amount of execution of time is reported on the
 terminal. Specify zero to suppress this report. The default for this
 option varies according as it is considered appropriate to report this
 time.

 LITTLE USER MANUAL PAGE 35
 PROGRAM PARAMETERS

 EXPIRE=0/366 (GEN) Expiration date

 Controls whether call to procedure to check expiration date is to be
 included. If nonzero value specified, it gives the number of days from
 compilation for which execution is permited.

 FAG=0/1 (ASM S10,S32,S37,S47) Functions Alter Globals

 Controls whether generated code must assume that functions may alter
 global variables. This is required for some parts of the SETL system,
 which (unfortunately) violate LITTLE specifications.

 GS=1/0 (GEN)

 Controls construction of a "Global Start" NAMESET for the first
 procedure compiled which contains all variable not explicitly
 allocated to a NAMESET. If the GA option is nonzero, subsequent
 procedures will be given access to this NAMESET.

 HELP=/ES (GEN)

 MONITOR option which enables MONITOR debugging features. The default
 is no debugging, and HELP along enables ENTRY and STORES MONITOR
 traces. Help string may contain any of

 E trace entry
 S trace stores
 F trace flow
 C check indexed array assignments
 0 to suppress HELP

 I=filename (LIB) Input file

 Specifies the standard input file.

 ILIB=filename (LIB) Inclusion library file

 Specifies the name of the file to be searched to resolve .=INCLUDE
 text inclusion directives.

 IMEM=/ (LEX) Initial MEMBER

 Specifies name of MEMBER from standard inclusion library to be
 included before reading source. In effect, this text is processed as
 if it occurred just before the first source line.

 LITTLE USER MANUAL PAGE 36
 PROGRAM PARAMETERS

 ISET=/ (LEX) Initial SET

 Specifies name of one or more conditional assembly symbols to be initi
 SET. If specified, the effect is as if the line

 .+SET name

 occurred just before the first line of the source file for each symbol
 specified. Multiple symbols are specified by separating them with plus
 signs; for example

 ISET=N1+N2

 Note also that the symbol Snn is also initially defined, where nn
 identifies the machine on which the compilation occurs.

 IV=0/1 (ASM S32) Integer Overflow

 Controls whether the generated code enables integer overflow
 interrupts. The default (zero) requests that iteger overflow
 condition be ignored.

 L=filename (LIB) Standard Listing (Output) File

 Specifies the standard output file. Use L=0 to suppress output file.

 LCP=1/0 (LEX, GEN, ASM) List Compilation Parameters
 --
 Determines if program parameters are listed. Use zero value to
 suppress listing of program parameters.

 LCR=0/1 (LEX)

 Controls whether lexical cross reference map is to be generated.

 LCS=1/0 (LEX, GEN, ASM) List Compilation Statistics
 --
 Controls whether statistics on performance and resource usage are to
 be listed on the standard output file.

 LEL=25/ (LEX) Lexical Error Limit

 Specifies the error limit for LEX. When more than specified number of
 lexical errors are detected, abnormal termination of the compilation
 is forced.

 LITTLE USER MANUAL PAGE 37
 PROGRAM PARAMETERS

 LIST=QS/AIQS (LEX,GEN) LISTing options
 --
 Determines initial listing parameters. Codes are as follows:

 A - autotitle, automatic title mode.
 C - code, list generated code.
 D - define, punch macro definitions.
 E - expand, punch expanded text.
 I - input, list input (GEN phase).
 L - linput, list input (LEX phase).
 Q - qualifier, list conditional assembly
 qualifiers.
 R - reference, enable reference option.
 S - skip, list lines skipped by
 conditional assembly.
 0- ignore LIST directives in input.

 Note that default is not to list source text so that LIST or LIST=x
 with L or I in option string x must be specified to include source
 text in compiler listing file.

 LOAD=SYSLIN (ASM S37,S47) LOAD module name file spec
 --
 Specifies file to receive generated load module. The NOLOAD parameter
 can be used to suppress load module generation.

 LT=0/1 (LEX checkout) List Tokens

 Controls whether LEX lists tokens to be sent to GEN phase.

 MDC=0/1 (LEX) List Machine Dependent Constants
 --
 Controls whether machine-dependent constants are to be listed at end
 of LEX listing. The list includes S type constants and R type
 constants containing more than one character.

 MEAL=1/0 (GEN) Monitor Entry Argument List
 --
 Controls whether TRACE ENTRY option for Monitor package. is to list
 values of arguments on entry will not be listed; otherwise, argument
 values will be listed.

 MLEV=1/2 (GEN) Monitor Level

 Specifies MONITOR debugging package options, as follows:
 0 ignore all MONITOR directives
 1 process only ASSERT directives, ignore others
 2 process all MONITOR directives.

 LITTLE USER MANUAL PAGE 38
 PROGRAM PARAMETERS

 NCF=1/0 (GEN) Negative Constant Folding
 --
 Controls whether constant folding with negative results is permitted.
 Usually enabled, constant folding may need to be disabled for
 cross-compilations.

 NOLOAD=0/1 (ASM S37,S47) Suppress LOAD Module output
 --
 Select NOLOAD to suppress LOAD module generation.

 NOOPT=0/1 (ASM S37,S47) Suppress optimizations
 --
 Select NOOPT to suppress all optimizations. Use of this option not
 recommended as ASM normally developed and tested with the default
 optimizations enabled.

 NSHEAP=/NSHEAP (ASM S10,S32,S37,S47) Dynamic nameset addressing

 If a name is given, then the nameset of that name is addressed
 indirectly so that it can be allocated dynamically.

 NSPAGE=0/1 (ASM S32) Align namesets on page boundaries
 --
 Select NSPAGE to align all namesets on page boundaries.

 OPT=... (ASM S10,S32,S37,S47) ASM Optimization level
 --
 Default is OPT=BDFL/ for S32, OPT=DFL/ for S10 and S32.
 Specify a character code to select an optimization as follows:

 B branch (S37,S47 only)
 D ’deferring’
 F ’if’
 L label
 Specification of values other than the defaults is not recommended.

 PC=/1 (ASM S37,S47) Permanent Constant Register

 Controls whether ASM is to permanently dedicate a register to hold a
 specified constant value or values. Values are specified in
 hexadecimal and are separated by slash (/). By default, no register
 is so dedicated.

 PDIR=0/1 (GEN) Procedure DIRectory

 Controls whether GEN is to produce procedure directory at end of
 listing. If nonzero, GEN is to produce a directory giving procedure
 names and page numbers at end of listing. Nonzero values should be
 used in conjuction with I option in LIST to produce full listing by
 GEN phase. This option selected if LCR also selected.

 LITTLE USER MANUAL PAGE 39
 PROGRAM PARAMETERS

 PEL=50/10000 (GEN) Parse Error Limit

 Specifies the error limit for GEN. If more than the specified number
 are errors are detected, compilation is abnormally terminated.

 PFCC=1/0 (LIB) Print File Carriage Control
 --
 Controls whether carriage control information is to be included in
 PRINT files. Specify zero to suppress carriage control.

 PFCL=0/80 (LIB) Print File Characters per Line
 --
 Specifies number of characters per line in a PRINT file. Use zero to
 select the LINESIZE of the file. Small values useful when sending
 output to a terminal.

 PFLL=0/0 (LIB) Print File Line Limit

 Specifies print file line limit. If specified, execution abends if
 more than specified number of lines written. Otherwise, limit derived
 from PFPL paramater.

 PFLP=60/ (LIB) Print File Lines per Page
 --
 Specifies number of lines per page.

 PFN=filename (LEX) Punch File Name

 Specifies name of LEX "punch file" generated if LIST E or D options
 selected.

 PFPL=100/... (LIB) Print File Page Limit
 --
 Specifies print file page limit. If specified and PFLL=0 then the
 print file limit is PFPL*PFLP. An explicit value for PFLL overrides
 the PFPL specification.

 PT=0/1 (GEN checkout) Parse Trace

 Controls whether trace listing of parse internal actions is generated.

 REP=0/PG (GEN) Report opton

 Controls whether GEN produces a ’report’ file. Specify zero to
 suppress this feature. If selected, the report is written on unit 6.
 Options are as follows:

 LITTLE USER MANUAL PAGE 40
 PROGRAM PARAMETERS

 P write line for each procedure giving
 proc.name,proc.type,proc.args
 where proc.name is 1 for subr, 2 for fnct, 3 for prod
 C write line for each call giving
 caller.name,called.name,number.args
 G write line for each global variable in form
 var.name,size,dimen,nameset.name,address.offset
 N write linefor each nameset giving
 nameset.name,nameset.length (in words)
 If G parameter selected, then both G and N entries generated.
 Parm string may have any combination of C P G.

 RF=... (LEX,GEN) Reference File Skeleton
 --
 Specifies name of cross-reference file used by LEX and GEN.

 SC=0/1 (ASM S66) Set Core

 Controls whether LDSET PRESET directive is to be generated to preset
 otherwise uninitialized storage to zero.

 SFP=0/1 (GEN) Suppress First Procedure

 Nonzero to request that GEN not write to the VOA file the text of the
 first procedure compiled.

 SUSP=0/0 (LEX) List Suspicious Names

 Controls whether LEX lists ’suspicious’ names. A name is deemed
 suspicious if it occurs only once in the source.

 TERM=/filename (LIB) TERMinal File Name

 Specifies name of file to receive messages sent by LITTLE system to
 the "terminal". Use L=0,TERM to receive errors only at terminal.

 TERMH=1/0 (LIB) Terminal Header

 Controls whether a "header" line is sent to the terminal if TERM
 option used. Specify zero to suppress this header. The default is
 zero for systems where ’quiet’ operation preferred.

 TERMP=>/> (LIB) Terminal Prompt

 Specifies prompt string to be written to terminal when requesting
 input from terminal. Specify zero to suppress the prompt.

 LITTLE USER MANUAL PAGE 41
 PROGRAM PARAMETERS

 TERMLEX=0/1 (LEX)

 Controls whether compilation ends after LEX phase. Generally only
 needed when using SYN program.

 TM=/ (GEN) Target Machine

 Specifies target machine, and need be specified only when generating
 code for a machine other than machine at hand.

 TMP=xxxxx/ (GEN) Target Machine Parameters
 --
 Related to TM, this parameter specifies target machine parameters.
 Needed only for cross-compilation. Defaults are

 S10 3618091818
 S32 3230081616
 S37 3224081616
 S47 3224081616
 S66 6017061113

 The string specifies five decimal values, each of two digits. In
 order they are word size (.WS.), pointer size (.PS.), character size
 (.CS.), length of string length field (.SL.) and length of string
 origin field (.SO.).

 TOKENS=filename (LEX, GEN) Token File

 Specifies "token" file written by LEX and read by GEN.

 TRACE=/ACDORV (ASM S10, S32, S37, S47 checkout) Trace

 Controls whether internal trace listing generated.

 UNV=T10MAC/ (ASM S10) Universal file

 Specifies file to be used for macro definitions. A SEARCH directive is
 generated for this file.

 UPD=0/1 (LEX) UPD Sequence

 Controls whether source is assumed to be in UPD format. If selected,
 then the first 8 characters are assumed to contain UPD sequence
 numbers.

 LITTLE USER MANUAL PAGE 42
 PROGRAM PARAMETERS

 VOA=filename (GEN, ASM) VOA file

 Specifies file used for intermediate representation writtten by GEN
 and read by ASM.

 ZP=0/1 (S66 ASM) Zero Word to End Parameter List
 --
 Controls whether a word of zeros is placed at end of each parameter
 list. The default not to generate this word. The word is used by FTN
 procedures (and others) to determine number of arguments actually
 passed. LITTLE never requires this word be present.

 LITTLE USER MANUAL PAGE 43
 UTILITIES

 Utilities

 The LITTLE system includes various utility programs.

 The compiler can produce a cross-reference list. Program REF writes
 the print file for the cross-reference list.

 The compiler uses a table-driven top-down advancing parsing scheme
 implemented by the program SYN. SYN and GEN have the same structure,
 and SYN is used to produce the parse tables used by GEN. A separate
 writeup for SYN exists.

 There are various utilities, the most important being the simple
 document processors LTLDOC and LTLPAD. LTLPAD justifies text, LTLDOC
 formats it. LTLDOC and LTLPAD are used to list the LITTLE guide, and
 several other documents of the LITTLE system.

 The program UPD is used to maintain source file libraries. A separate
 writeup exists.

 For ease of reference, the program parameters for REF, SYN and UPD are
 summarized in this section.

 The following utility programs are of interest to all sites:

 ASCINT - format ASCII files for interchange
 LTLDOC - list little document
 LTLPAD - pad (justify) little document
 MERGER - combine files
 P8020L - process 80/20l format text
 REF - list cross-reference files
 SHRINK - eliminate blank lines and comments
 SYN - parser generator
 ULST - structured list of UPD OPL files
 UPD - source maintenance program
 UPDFND - extract lines with given string in UPD OPL

 LITTLE USER MANUAL PAGE 44
 UTILITY ASCINT - Format ASCII files

 Purpose: Format ASCII files for interchange

 Parameters:

 P /P input file
 N /N outupt file
 FF 0/1 form feed option (see below)
 W 0/1 zero to read ASCINT, one to write ASCINT

 This program permits transmission of full ASCII files using only the
 64 character subset of ASCII. Each character is transmitted as two
 characters. The first character indicates if further translation
 needed, and second character is data character. The first character is
 one of following:

 blank no further translation needed
 < (less than) subtract 32 to get true code.
 > (greater than) add 32 to get true code.

 For example, word LITTLE in lower case transmitted as >L>I>T>T>L>E.

 If FF=1 and W=1 then express form feed by writing line with ’ 1’ in
 first two columns, otherwise write line with ’ ’ in first two
 columns. If FF=0 translate formfeed as any other ASCII character.

 LITTLE USER MANUAL PAGE 45
 UTILITY LTLDOC - List LITTLE document

 Purpose: Format document

 Description:

 Input consists of lines with control characters in the first two
 columns, and text in the remaining seventy columns. Control
 characters are as follows:

 D document: initialize. should be first control line.
 E eject: set eject flag, do not list text.
 P page: set eject flag, list text.
 Q define symbolic page number.
 S subtitle: use text to define subtitle, set eject flag.
 T title: use text to define main title, set eject flag.
 U underline: list text, then underline it.
 Y enable expansion of symbolic page numbers.
 Z disable expansion of symbolic page numbers.
 0 skip line before listing text.
 1 same as P.
 2..9 start a new page if less than the specified number of
 lines remain on the current page.

 The Q, Y and Z directives permit the construction of a simple table of
 contents at the end of a document. A symbolic page number consists of
 a string starting with ’<’ and ending with ’>’. The Q directive
 associates the current page number with the symbolic page number.
 Later Y and Z directives determine if symbolic page numbers are to be
 replaced by page numbers.

 LITTLE USER MANUAL PAGE 46
 UTILITY LTLPAD - pad (justify) text

 Purpose: To collect specified lines into paragraphs and to
 align the margins of these paragraphs.

 Parameters:

 P /P input file
 N /N output file
 PACK 0/1 if selected, no justifying, and output
 file contains input text packed into
 minimum number of lines

 Description:

 LTLPAD uses directives in column two to mark groups of lines to be
 padded, i.e., aligned on left and right margins. Command characters
 are in column two:

 N - begin numeric paragraph.
 X - begin text paragraph.

 A paragraph ends with next paragraph begin, blank line, or line with
 directive in column one. The left margin of a text paragraph is the
 first nonblank in the opening line. The first line of a numbered
 paragraph must contain an instance of ’. ’, and the left margin is the
 first nonblank following this instance.

 LITTLE USER MANUAL PAGE 47
 UTILITY MERGER - combine files

 Purpose: Combine several files into one file

 Parameters:

 N /N output file
 V 0/1 nonzero for verbose output
 A / string put after each file name
 B / string put before each file name

 Description:

 The standard input file is copied to the specified output file. Lines
 beginning with ’<INCLUDE’ followed by a file name are replaced by the
 contents of the specified file. If V option selected, each inclusion
 is reported by writing a message on the standard output file.
 Parameters B and A give strings put before and after each file name,
 respectively.

 INCLUDE’s can be nested to a depth of six.

 LITTLE USER MANUAL PAGE 48
 UTILITY P8020L - process 80/20L format ext

 Purpose: This program provides a means of transmitting
 text files using upper-case in a form that indicates
 the correct upper-lower case representation.

 Parameters:

 P /P input file
 N /N output file
 M 0/1 mode, zero to read 80/20L, one to write
 80/20L format

 Description:

 The 80/20L format permits the distribution of mixed case text using
 only upper case characters. A line of 80 characters is followed by a
 line with a shift string of 20 hexadecimal digits which associate a
 ’shift’ bit with each text character. The shift bit is one to
 indicate a character should (if possible) be translated to
 corresponding lower case character by the receiver. Each original
 line is thus transmitted as two lines.

 Each hexadecimal digit in the shift string gives the shift bits for
 four text characters. The most significant bit in the digit gives the
 shift bit for the leftmost character. The shift string is in the same
 order as the text string: column 1 contains the shift bits for columns
 1-4, column 20 contains the shift bits fol columns 77-80.

 LITTLE USER MANUAL PAGE 49
 UTILITY REF - List Cross-Reference Files

 Purpose: List cross-reference files

 Parameters:

 REF uses the RF parameter to obtain the names of the cross-reference
 files. It also checks the LCP and LCS parameters.

 Description:

 REF merges cross-files produced by LEX and GEN in response to a
 request for a cross-reference listing. See descriptions of LCR and
 PDIR program parameters. The cross-reference listing is written to the
 standard output file.

 LITTLE USER MANUAL PAGE 50
 UTILITY SHRINK - eliminate blank lines and comment

 Purpose: eliminate blank lines and comments

 Parameters:

 P /P input file
 N /N output file
 OPT BC/ABC options

 Description:

 The input file is copied to the output file with possible reduction in
 file size according to options:

 A Replace initial three or more blanks by two blanks
 B Discard blank lines
 C Discard comments (first non-blank is dollar sign)

 A line size of 72 characters is assumed.

 LITTLE USER MANUAL PAGE 51
 UTILITY SYN - Parser Generator

 Purpose: Generate parser tables from grammar description

 Parameters:

 ASM 0/Snn assembler option
 SYNASM filename generated assembler file
 SYNOUT filename output file with parse tables
 SYNBIN filename generated parser binary file
 EPC 2/3 entries per generated parse table entry
 HA 0/1 on to list syn symbol table
 IM / immediate macro codes
 MACP PARSE/ prefix for macro names
 MEMP SYN/ prefix for member names
 SETL 0/1 SETL option
 PT 0/1 parse trace flag

 Description:

 SYN interprets options LCP, LCS, TERM and TOKENS in the same way as
 the compiler.

 SYN is described in the SYN Reference Manual.

 LITTLE USER MANUAL PAGE 52
 UTILITY ULST - Structured Listing of UPD OPL

 Purpose: Provide structured listing of UPD library file,
 with index to procedure header lines.

 Parameters:

 P 1/0 Procedure header option
 S 0/1 SETL option
 C 1/0 Select to list comments
 T 1/0 Select to list text (non-comments)
 H / Header word put at top of every page
 B 1/0 Select to list blank lines

 Description:

 ULST reads the standard input file and writes to the standard output
 file. The input should be prepared by using UPD and specifying IM, D
 and NS=L options; for example

 LTLUPD P=X.OPL,F,IM,D,NS=L,N=X.TMP
 ULST I=X.TMP,L=X.LST

 ULST produces a structured listing with a procedure directory. Some
 duplicate instances of an ident name are eliminated, but the name will
 appear at least every 10 lines. Pages are numbered, and include time
 and date of program run. Lines which are probably the last of a
 procedure are followed followed by blank line and line of asterisks.
 The listing concludes with a list of each line which is the header of
 a procedure, followed by a sorted list of procedure names and paged
 numbers.

 The procedure processing requires that the keywords SUBR, FNCT, and
 FUNC begin in column 7. The END statement must also begin in column
 7, and must include SUBR or FNCT for LITTLE procedures.

 The ’S’ option allows procedures to begin with the keywords MODULE,
 DEFINE, DEFINEF, and MACRO. These keywords must begin in column 7.

 LITTLE USER MANUAL PAGE 53
 UTILITY UPD - Source Update Program

 Purpose: Identify source lines, provide simple batch
 editor

 Parameters:

 P OLD/ Input file
 N NEW/ Output file
 UCS / file to receive UPDATE form of corrections
 M 2/1 Mode
 PS L/R Old sequence mode
 NS N/R New sequence mode
 F EC/F edit, copy options
 D 0/1 copy MEMBER lines
 IM /EC6 identify member option
 LO ACDIPU/ADIPU listing options

 Description:

 UPD is described in the UPD Reference Manual.

 LITTLE USER MANUAL PAGE 54
 UTILITY UPDFND - Find lines in UPD library

 Purpose: Extract lines from a UPD library containing
 a specified string, with output in the form
 of a UPD correction set.

 Parameters:

 P /P input file
 N /N output file
 COM 1/0 nonzero to skip $ comments
 EXACT 0/1 nonzero for exact case in matching
 MOD MOD/ name of generated correction set

 Description:

 UPDFND reads a UPD OPL file and extracts all lines containing an
 instance of a specified string. The output file is in the form of a
 UPD correction set. The program reads a match string from the
 standard input file. This string is delimited to permit precise
 specifications of blanks in the match string; for example

 / LITTLE /

 indicates instance of LITTLE with two blanks before and after.

 LITTLE USER MANUAL PAGE 55
 ERRORS

 Compilation Errors

 Compilation errors cause generation of an error message on the
 standard output file. Since the compiler runs in three phases, three
 distinct listing files may be produced. Errors in token formation and
 macros are detected by the first (LEX) phase. Syntactic errors are
 detected by the second (GEN) phase. Several program parameters are
 related to error processing. The LEL and PEL parameters can be used
 to set error limits for LEX and GEN phases respectively. A choice of
 low values can force compilation to terminate after the detection of a
 small number of errors.

 The compiler contains a number of tables which in some cases may
 overflow. Overflow is reported by the generation of an error message,
 usually containing the internal name of the table, and compilation is
 abnormally terminated. Errors of this sort require that the program
 be made "smaller", for example, by dividing a large procedure into
 several smaller procedures. The error message ’EXPECT LESS THAN 512
 PARAMETERS OR DATA STATEMENT ENTRIES also indicates a table overflow,
 due to combination of length of procedure argument lists and DATA
 statements.

 The compiler reads only the first 72 characters of source lines and
 provides no special indication of longer lines. Thus program text
 running past column 72 is skipped, and errors may result.

 Execution errors

 Errors detected during execution are if possible intercepted by the
 system. Procecure LTLFIN is called with nonzero first argument to
 indicate abnormal termination. Error messages are intended to be
 self-explanatory. Procedure LTLXTR is called to obtain an execution
 ’traceback’ of active procedures; while not of interest to the normal
 user, this may assist the system manager in resolving or reporting the
 problem.

 The standard LTLFIN error codes are as follows:

 1001 Line limit exceeded
 1002 Bad goto index
 1003 inclusion depth exceeded, inclusion recursion
 1004 bad name for cross-reference file
 1005 array index out of range
 1006 assertion failed
 1007 unable to open standard print file
 1008 request for undefined/unsupported function
 1009 expiration date passed
 1101-1199 math library error
 1201-1299 multiword error n-1200
 1301-1399 little input/output error n-1300
 2000+ env error

 LITTLE USER MANUAL PAGE 56
 EFFICIENCY CONSIDERATIONS

 This section describes a number of efficiency considerations which may
 assist in writing more efficient LITTLE programs.

 The CODE option of the LIST directive requests listing of the
 generated code; this feature also enabled by C option of LIST program
 parameter. This permits examination of the generated code.

 The compiler always allocates storage in units of words; there is no
 automatic packing of distinct variables. For example,

 SIZE A(1),B(1);

 reserves two words of storage. Any required packing is done using
 fields.

 Assignments to ’large’ variables require in general that all bits be
 set. A common case is setting a string to the null string; hence,

 .F. 1, .SL., S = 0;

 is usually more efficient than

 S = ’’;

 Experience has revealed a number of ’critical sections’ in the
 standard library (LIB). Where feasible, these sections admit a more
 efficient implementation by writing a more efficient version, usually
 in assembly language. In particular the string search primitives
 (ANYC, SPNS, etc.) typically are an order of magnitude more efficient
 when hand-coded, so that differences in the performance of programs
 using these primitives may differ according as the (hoped for)
 recoding has been done. Also, it is generally advisable to put the
 SKIP part of a GET statement at the start, and the SKIP part of a PUT
 statement at then end; for example,

 GET IFILE ,SKIP :A,A(10);
 PUT OFILE :A,A(10) ,SKIP;

 Also, A format is generally faster than R format. STRING files
 tend to be slow.

 In practice, LITTLE achieves much of its expressive power by
 systematic use of the macroprocessor features. However, these can lead
 to a code explosion which merits periodic review. The EXPAND option of
 the LIST directive requests a listing of the program text after macro
 expansion. This listing is written to the file specified by the PFN
 program parameter; indeed, PFN was supported originally for checkout,
 but has been retained primarily to monitor macro usage. The E option
 of the LIST compiler program parameter selects EXPAND.

 LITTLE USER MANUAL PAGE 57
 IMPLEMENTATION-DEPENDENT INFORMATION

 Substantial work has been done to make the NYU LITTLE
 plementation portable so that implementations for different
 chines will be compatible. Some features, such as file
 mes, command line format, and so forth, are necessarily
 chine dependent, and are described in this section.

 The following sections describe available implementations, indicating
 features not supported, additional features supported, implementation
 restrictions, and demonstrations of control statements required to use
 the LITTLE system.

 LITTLE USER MANUAL PAGE 58
 CDC 6000 IMPLEMENTATION

 Configuration requirements

 This implementation runs on the Control Data Corporation 6000 Series
 hardware. It can be configured for NOS or NOS/BE operating systems, 63
 or 64 character set. The LEX, GEN and ASM phases are combined into a
 single overlay LITTLE which requires about 116000B to run.

 Operating Instructions

 Needed files are kept in directory LITTLE.
 The control statements to compile and execute program
 on file LITTLEI, with listing, are as follows:

 ATTACH,LITTLE,LTLLIB/UN=LITTLE.
 LITTLE. (I=LITTLEI,LIST)
 LGO.

 Specifying parameters

 Program parameters are NOT specified in the usual CDC fashion, but are
 given in a separate list which follows program name. Parameters are
 enclosed within parentheses and separated by commas. Note that

 LITTLE(I=LITTLEIN)

 is WRONG. The correct specification is:

 LITTLE. (I=LITTLEIN)

 Character set

 DISPLAY code. For 64 set sites, the per-cent character can be used
 where colon required.

 Source program format

 The compiler examines only the first 72 columns of each line of LITTLE
 source text, and lists 90 columns to permit use with UPDATE.

 Default file names

 Default file names are as follows:

 I INPUT/COMPILE
 ILIB INCLIB/
 L OUTPUT/LIST
 TERM /TERM
 TOKENS TOKENS/
 PFN LEXOUT/
 RF REF0/
 VOA VOA/

 LITTLE USER MANUAL PAGE 59
 CDC 6000 IMPLEMENTATION

 Sample control statements

 Consider the following program DEMO:

 prog demo;
 $ obtain integer given by N parameter, write to file given
 $ by F parameter. If F not specified, write to unit 4.
 size num(.ws.); size filename(.sds. 10);
 call getipp(num,’N=0/1’); call getspp(filename, ’F=/F’);
 file 4 access=put, title=filename;
 put 4 :num,i ,skip;
 end prog;

 The following text shows how to compile the program, execute it,
 compile with listing, and compile with cross-reference listing. Text
 to be entered by the user is at the left in upper case, explanatory
 comments in lower case are to the right:

 $ standard commands needed to use LITTLE
 ATTACH,LITTLE,LTLLIB/UN=LITTLE.
 $ compile and execute
 LITTLE. (I=DEMO,B=DEMOLGO)
 DEMOLGO. (N=10,F=DEMOUT)
 $ compile with listing
 LITTLE. (I=DEMO,LIST)
 $ compile with listing, cross-reference
 LITTLE. (I=DEMO,LIST,LCR)
 GET,LTLREF/UN=LITTLE.
 LTLREF.

 S66 Procedures

 The following additional procedures are available for this
 implementation. They are described using the conventions of the
 section on standard procedures.

 CALL LRECLSIO($ S66 SIO extension
 --
 FN ,
 RC WR (WS));

 RC is set to zero unless the last I/O operation on file FN was a
 binary read which encountered an end marker (EOR, EOF or EOI) before
 all requested information transmitted. In this case, RC is set to the
 the number of words actually transmitted.

 CALL WEORSIO($ S66 SIO extension

 LITTLE USER MANUAL PAGE 60
 CDC 6000 IMPLEMENTATION

 FN ,
 RC WR (WS));

 An end of record mark (EOF) is written on file FN.

 CALL WEOFSIO($ S66 SIO extension

 FN ,
 RC WR (WS));

 An end of file mark (EOF) is written on file FN.

 Utilities

 The following utility programs are principally of interest to sites
 using S66, the CDC 6000 series implementation:

 BLDLTL - build little overlay input
 P8020C - convert 80/20l format to cdc 6/12 bit
 RFLOVL - set field length of overlay
 TIC - translate individual character
 UPDBRK - break out comments
 UPDEDT - update/edit interface
 UPDLST - list update compiler file

 LITTLE USER MANUAL PAGE 61
 S66 UTILITY P8020C - convert 80/20l to CDC 6/12 bit

 Purpose: Convert 80/20l format text to CDC 6/12 bit text
 so those sites which support 6/12 bit can print LITTLE
 documents (especially LITTLE guide) in upper-lower case.
 Parameters:

 P /P Input file
 N /N Output file
 M 0/1 Mode, 0 to read 8020/L

 Description:

 This program is a variant of P8020L (deck P8020L on UTLPL) which reads
 a 80/20L format file and writes CDC 6/12 bit codes. Lower case
 letters are represented by writing the escape character 3b’76’ before
 the upper case code.

 This version supports only conversion from 80/20L format to CDC 6/12.
 the characters circumflex, at sign and colon are translated to 12 bit
 codes; apostrophe is translated to a 6 bit code.

 LITTLE USER MANUAL PAGE 62
 S66 UTILITY TIC - translate individual character code

 Purpose: Translate code for single character, assist
 translation to and from CDC 63/64 character sets.

 Parameters:

 P OLD/C input file (rewound before and after)
 N NEW/CE output file (rewound before and after)
 PC 00/51 old code to translate
 NC 51/00 new code desired
 M 63/ translation mode
 if M=63, set PC=00, NC=51, and so
 translate to 63 set.
 if M=64, set PC=51, NC=00, and so
 translate to 64 set.
 otherwise, take specified values of
 PC and NC.
 U 0/1 if nonzero, set ’UPDEDT’ mode and blank
 columns 81-90 of each line changed (this
 for later use of UPDEDT).
 RL 90/130 length of input lines

 Description:

 The principal use of TIC has been to ’combine’ percents and colons in
 generating files for export, though in practice this function now done
 largely by MAKUPL. TIC is not just ’replace’, but is additive in that
 it permits two character codes to be mapped into one code.

 LITTLE USER MANUAL PAGE 63
 S66 UTILITY UPDBRK - break out comments

 Purpose: Identify comments and list them to right
 of program text.

 Parameters:

 C 1/0 nonzero to list comments
 CC 62/ column to begin comments
 DC 1/0 process dollar-sign comments
 PL1 1/0 process pl/i / * .. */ comments
 FC 0/1 process FORTRAN comments
 F 3/ file format:
 1 - data, text in columns 1-72.
 2 - compile, UPDATE compile file, 1-90.
 3 - upd, output of UPDLST program

 Description:

 UPDBRK identifies the comments in the input file, and writes a file in
 which the comment text is separated and appears on the right.

 LITTLE USER MANUAL PAGE 64
 S66 UTILITY UPDEDT - UPDATE/EDIT interface

 Purpose: To permit use of CIMS Reich/Russell editor
 to interactively edit an UPDATE compile file and
 express edit as UPDATE correction set.

 Parameters:

 C C/COMPILE input compile file from UPDATE r
 CE CE/ edited compile file
 ID ID/ output file with correction set

 Description:

 UPDEDT compares an UPDATE compile file and an edited version of the
 file to produce an UPDATE correction set (IDENT) expressing the
 results of the edit.

 UPDEDT rewinds all files before and after processing.

 UPDEDT assumes that editing done using Reich/Russell editor ’E’ in
 ’UPDATE’ mode (edit command ’UPD’).

 LITTLE USER MANUAL PAGE 65
 S66 UTILITY UPDLST - neat listing of UPDATE compile fi

 Purpose: Provide neat listing of UPDATE compile file
 which is divided into pages and displays procedure
 boundaries and location.

 Parameters:

 UPDSCR scratch file used by UPDLST
 B 1/0 on to list blank lines
 C 1/0 on to list comments
 H / title for listing (seven chars)
 P 1/0 on to process procedures, and give
 list of first line of each procedure
 S 0/1 on to process setl procedures
 T 1/0 on to list text (non-comments)

 Description:

 UPDLST provides a structured listing of an UPDATE compile file.
 Sequence numbers are given on the left (this also assists subsequent
 use of UPDBRK to list comments to the right).

 Lines which are probably the last of a procedure are followed by blank
 line and line of asterisks. The listing concludes with a list of each
 line which is the header of a procedure, followed by a sorted list of
 procedure names and paged numbers.

 The procedure processing requires that the keywords SUBR, FNCT, and
 FUNC begin in column 7. The END statement must also begin in column
 7, and must include SUBR or FNCT for LITTLE procedures.

 The ’S’ option allows procedures to begin with the keyword ’MODULE’,
 ’DEFINE’, ’DEFINEF’, and ’MACRO’. These keywords must begin in column
 7.

 LITTLE USER MANUAL PAGE 66
 IBM SYSTEM/370 IMPLEMENTATION

 Configuration requirements

 This implementation runs on the International Business Machines
 Corporation System/370 hardware. It is configured for the CMS
 operating system; it should be usable using OS and its extensions
 (MVS, etc.), though usage for these systems has not been tested. The
 LEX, GEN and ASM phases are combined into a single program LITTLE.

 Operating Instructions

 Needed files are kept on a minidisk of user LITTLE. See the
 system manager for information about accessing this disk.
 The control statements to compile and execute program
 on file LITTLEI LITTLE A1, with listing on file LITTLEI LISTING A1,
 are as follows:

 LITTLE LITTLEI (LIST RUN

 The single (required) operand of the LITTLE command is a file identifi
 (LITTLEI in the previous example) of the form:

 fn ft fm

 The filename is used as the filename for files accessed by the
 program. The default ft is the name of the program (LITTLE in this
 example); the filetype is used as the filetype for the standard input
 file. The default fm is A1. An additional parameter LDISPMOD may be
 specified to indicate that the standard output file is to be
 concatenated with an existing file of the same filename and filetype.

 For example, consider

 UPD ASM (P=OPL N=LTL F
 LITTLE ASM

 where UPD is assumed to UPD utility program. The UPD command will do
 full update of ASM OPL, creating ASM LTL, with standard input taken
 from ASM UPD.

 Specifying parameters

 Program parameters are entered as CMS options. However, to overcome
 the CMS limitation of eight characters per argument, the parameter
 scanner also does the following:

 Blanks not following an equal sign are taken as commas.
 Blanks just after an equal sign are ignored.

 As a result, the following are equivalent:

 LITTLE LITTLEI (LIST, H=4
 LITTLE LITTLEI (LIST H=4
 LITTLE LITTLEI (LIST H= 4

 LITTLE USER MANUAL PAGE 67
 IBM SYSTEM/370 IMPLEMENTATION

 Note that the (added) parameter RUN causes LITTLE LIB to execute the
 once it has been compiled. To execute an already compiled, program,
 use the command:

 LITTLE PROG (I=0

 Character Set

 EBCDIC with upper and lower case letters. Lower-case letters are
 generated only by user request and are not generated during normal
 operation.

 Source program format

 The compiler examines only the first 72 columns of each line of LITTLE
 source text, and lists 80 columns to display any sequence information
 in positions 73..80.

 File names

 The file names used by LITTLE (and specified as parameters) are DDNAME
 If an explicit FILEDEF has been given for the DDNAME, it is used.
 Consistent with the normal conventions for OS compilers running under
 CMS, the following DDNAMEs are translated in the absence of a FILEDEF
 for them:

 SYSPRINT to LISTING
 SYSPUNCH to PUNCH
 SYSTERM to TERM
 SYSUTn to CMSUTn

 If an explicit FILEDEF is specified, it will be used. Otherwise, an
 implicit FILEDEF will be executed. This implicit FILEDEF will be of
 the form:

 FILEDEF ddname DISK fn ddname A1

 where fn is the filename of the operand of the command. If no FILEDEF
 is specified for SYSIN, the following is done:

 FILEDEF SYSIN DISK fn ft fm

 where fn ft fm are the components of the operand with the defaults
 supplied as described above. There are exceptions to the implicit
 FILEDEF described above. These are ddnames of TERMx, PRINT and PUNCH.
 In these cases the device represented by the ddname specified will be
 used, i.e., the following FILEDEF will be executed:

 FILEDEF ddname ddname

 Default file names are as follows:

 LITTLE USER MANUAL PAGE 68
 IBM SYSTEM/370 IMPLEMENTATION

 I SYSIN/
 ILIB SYSLIB/
 L SYSPRINT/
 TERM SYSTERM/
 TOKENS SYSUT1/
 PFN SYSPUNCH/
 RF SYSREF(REF0)/
 VOA SYSUT2/

 Restrictions

 Integer arithmetic restricted to single word operands. Integer
 arithmetic is correct in the range -2**31+1 to 2**31-1. Real
 arithmetic restricted to single precision.

 Sample control statements

 Consider the following program DEMO:

 prog demo;
 $ obtain integer given by N parameter, write to file given
 $ by F parameter. If F not specified, write to unit 4.
 size num(.ws.); size filename(.sds. 10);
 call getipp(num,’N=0/1’); call getspp(filename, ’F=/F’);
 file 4 access=put, title=filename;
 put 4 :num,i ,skip;
 end prog;

 The following text shows how to compile the program, execute it,
 compile with listing, and compile with cross-reference listing. Text
 to be entered by the user is at the left in upper case, explanatory
 comments are at the right in lower case.

 [See system manager] $ standard commands needed to use LITTLE
 LITTLE DEMO (RUN $ compile and execute
 LITTLE DEMO (LIST $ compile with listing
 LITTLE DEMO (LIST LCR $ compile with listing, cross-reference
 DEMO $ execute previously compiled program
 DEMO (N=10 $ execute with N set to 10

 LITTLE USER MANUAL PAGE 69
 DEC DECSYSTEM-10 IMPLEMENTATION

 Configuration requirements

 This implementation runs on the Digital Equipment Corporation
 DECsystem-10 hardware using the TOPS-20 operating system. The
 implementation should also be usable on TOPS-10 and TENEX, although
 this has not been verified.

 Operating Instructions

 At Rutgers, using TOPS-20, LITTLE is currently available on
 s:<setl.final>. The phases of the compiler should be run in turn. For
 example, to compile and execute X.LTL, proceed as follows: .s.nf def
 sys: s:<setl.final>,sys: ltllex(i=x.ltl) ltlgen(i=x.ltl)
 ltlasm(i=x.ltl) ltllib(i=x.ltl)

 Specifying parameters

 Program parameters are specified in the usual LITTLE fashion, i.e., as
 list enclosed in parentheses following program name. The I= parameter
 should always be specified, even if a dummy file must be created; for
 example, .s.nf ltlupd(i=foo.ltl) .s.f The maximum length of the
 parameter list is 120 characters; the maximum length of a single
 parameter is 30 characters. When running the individual phases
 separately, the parameter list may be entered on the command line
 which invokes the program; if not entered, the program will prompt for
 parameters. For example,

 $ run stlprs

 Note that the parameter line is converted to upper case. This is
 generally not significant. However, arguments to the procedures GETIPP
 and GETSPP should thus be specified in upper case. For example,

 TRVAL := GETIPP(’TRACE=0/1’);

 Character set

 Full ASCII character set with upper and lower case letters.

 Source program format

 The compiler examines only the first 72 columns of each line of LITTLE
 source text. Instances of horizontal tabs and form feeds in the
 source are processed in the same way as blanks.

 Input/Output

 Text lines cannot exceed 132
 characters. On text output, trailing blanks and tabs are removed.

 Default File Names

 Default file names are as follows: I *.LTL/*.LTL (however, see
 section on program parameters below) ILIB SYSLIB/SYSLIB L

 LITTLE USER MANUAL PAGE 70
 DEC DECSYSTEM-10 IMPLEMENTATION

 .LST/.LST S10 I=*.LTL/ L=*.LST/ TERM=TTY:/ ILIB=SYSLIB/ TOKENS=*.TOK
 PFN=*.PUN RF=*.RF0 VOA=*.VOA CODE=*.MAC TERM TTY:/

 Note that * indicates that name given by I= parameter is used to
 derive filename and extent is then chosen based on at most first three
 characters of parameter values as shown above.

 Restrictions

 Integer arithmetic is correct in the range -2**35+1 to 2**35-1.

 Sample control statements

 Consider the following program DEMO:

 prog demo;
 $ obtain integer given by N parameter, write to file given
 $ by F parameter. If F not specified, write to unit 4.
 size num(.ws.); size filename(.sds. 10);
 call getipp(num,’N=0/1’); call getspp(filename, ’F=/F’);
 file 4 access=put, title=filename;
 put 4 :num,i ,skip;
 end prog;

 The following text shows how to compile the program, execute it,
 compile with listing, and compile with cross-reference listing. Text
 to be entered by the user is at the left in upper case, explanatory
 comments are at the right in lower case.

 $ standard commands needed to use LITTLE
 $ compile and execute
 $ compile with listing
 $ compile with listing, cross-reference

 LITTLE USER MANUAL PAGE 71
 DEC VAX IMPLEMENTATION

 Configuration requirements

 This implementation runs on the Digital Equipment Corporation VAX-11
 using the VMS V2 operating system.

 Operating Instructions

 Symbol definitions and command files for using LITTLE are available in
 file NYU$LITTLE:LTLDEF.COM. The easiest way to access them is to add

 $ @NYU$LITTLE:LTLDEF

 to your LOGIN.COM file.

 Individual phases may be run by using the symbolic names LTLLEX,
 LTLGEN, and LTLASM. However, for most applications the LTL command is
 more convenient. LTLDEF also defines various symbols such as LTLPAD,
 LTLDOC, and so forth; this is done to meet the VMS requirement that
 programs be declared as ’foreign commands’ if they are to receive the
 parameters on the command line that invokes them.

 Command LTL compiles a LITTLE program; use symbol LTLLIB to LINK it.
 For example, to compile and link T.LTL to produce T.EXE, do

 $ LTL T
 $ LINK T+’LTLLIB

 The form of the command line is:
 $ ltl sourcefile [/option...]

 Sourcefile is the LITTLE source file. The sourcefile by default has
 extension "LTL", so specification of this extension is unnecessary.
 The LTL command permits specification of the program parameters in
 standard VMS format.

 /DLTL
 Controls whether the LITTLE source file is deleted after LEX phase,
 thus reducing disk requirements when LITTLE source file obtained
 from UPD library and need not be retained. This switch can not be
 negated.

 /KMAR
 Controls whether generated MAR files are to be kept (not deleted).
 By default they are deleted.

 /KOBJ
 Controls whether generated OBJ files are to be kept (not deleted).
 By default they are deleted and only the result OBJ file obtained by
 appending them all together is retained.

 LITTLE USER MANUAL PAGE 72
 DEC VAX IMPLEMENTATION

 /KT32
 Controls whether generated T32 file is kept (not deleted). By
 default it is deleted.

 /LIST[=file]
 /NOLIST (D)
 The option /LIST is used to obtain a listing of the source file. If
 no file is specified, then the input file name together with the
 default extension "LIS" will be used. If an explicit listing file is
 given, the extension may be omitted, in which case the default,
 "LIS", will be used. The option /NOLIST signifies that no listing
 file is to be generated.

 /LO=SQ
 Specifies list options. This is one case where command differs from
 normal parameter passing in that LITTLE uses LIST for LIST options
 while VMS uses LIST for listing file name.

 /OBJ=file
 /NOOBJ
 Specifies name of object file. The default is to generate an object
 file of the same name as the input with extension OBJ.

 /PARM=
 Specifies string to be included in parameter list passed to all
 compiler phases. If the string begins "NO", then these characters
 are removed, and the characters "=0" added at the end before passing
 along the argument. For example, /PARM=NOSUSP is translated to
 SUSP=0 which disables list of suspicious names.

 /TERMGEN
 Controls whether compilaton ends after GEN phase. This switch
 cannot be negated.

 /TERMLEX
 Controls whether compilation ends after LEX phase. This switch
 cannot be negated.

 /T32MLB=file
 /T32MLB=NYU$LITTLE:T32.MLB (D)
 Specifies MACRO library containing definitions of the macros used to
 assemble the generated T32 file.

 The translation process from the T32 file to produce the OBJ file is
 done in a subdirectory of the same name as the input file. If no
 directory exists, one is created for the compilation and deleted at
 the end of compilation. If the directory already exists it will be
 filled with a MAR and OBJ file for each procedure in the input.

 Given a T32 file, it is possible to obtain the OBJ file by

 $ LTLMAC X

 Linking the program

 LITTLE USER MANUAL PAGE 73
 DEC VAX IMPLEMENTATION

 Given the OBJ file X.OBJ, the EXE file is obtained by

 $ LINK X+’LTLLIB

 Specifying parameters

 Program parameters for the LITTLE command are specified in standard
 VMS fashion. The maximum length of the parameter list is 300
 characters; the maximum length of a single parameter is 63 characters.
 When running the individual phases separately, the parameter list may
 be entered on the command line which invokes the program; if not
 entered, the program will prompt for parameters. For example,

 $ LTLLEX I=T.LTL

 Character set

 Full ASCII character set with upper and lower case letters.

 Source program format

 The compiler examines only the first 72 columns of each line of LITTLE
 source text. Instances of horizontal tabs and form feeds in the
 source are processed in the same way as blanks.

 Input/Output

 Text lines cannot exceed 132 characters. On text output, trailing
 blanks and tabs are removed. The implementation has default PFPL=0/0
 so that print file limits are not enforced by default.

 Default file names

 Default file names are as follows:

 I SYS$INPUT/
 ILIB SYSLIB.DAT/
 L SYS$OUTPUT/
 TERM SYS$ERROR/
 TOKENS TOKENS.TMP/
 PFN LITTLE.PUN/
 RF LITTLE.RF0/
 VOA VOA.TMP/
 CODE LITTLE.COD/

 Sample control statements

 LITTLE USER MANUAL PAGE 74
 DEC VAX IMPLEMENTATION

 Consider the following program DEMO:

 prog demo;
 $ obtain integer given by N parameter, write to file given
 $ by F parameter. If F not specified, write to unit 4.
 size num(.ws.); size filename(.sds. 10);
 call getipp(num,’N=0/1’); call getspp(filename, ’F=/F’);
 file 4 access=put, title=filename;
 put 4 :num,i ,skip;
 end prog;

 The following text shows how to compile the program, execute it,
 compile with listing, and compile with cross-reference listing. Text
 to be entered by the user is at the left in upper case, explanatory
 comments are at the right in lower case.

 $ standard commands needed to use LITTLE
 $ @NYU$LITTLE:LTLDEF
 $ compile and execute
 $ LTL DEMO $ assume program in DEMO.LTL
 $ LINK DEMO+’LTLLIB
 $ RUN DEMO
 $ will get prompt PARAMETERS:
 N=10,F=DEMO.OUT
 $ compile with listing
 $ LTL T/LIST $ listing to DEMO.LIS
 $ compile with listing, cross-reference
 $ LTL T/LIST/LCR
 $ LTLREF L=DEMO.REF $ cross reference to DEMO.REF

 S32 VAX/VMS Procedures

 The following additional procedures are available for this
 implementation. They are described using the conventions of the
 section on standard procedures.

 CALL EXEC$LI($ S32 extension

 S1 RD (.SDS. *),
 ...
 Sk RD (.SDS. *),
 ...
 Sn RD (.SDS. *));
 The argument strings are executed in order in a subprocess, using the
 VMS library procedure LIB$EXECUTE_CLI. This procedure accepts a
 varying number of arguments. The generated subprocess does not inherit
 the current context, especially that established by the LOGIN.COM
 file, so symbols used must be defined.

 CALL SPOLSIO($ SIO S32 Only

 LITTLE USER MANUAL PAGE 75
 DEC VAX IMPLEMENTATION

 --
 FN RD (WS),
 RC WR (WS));

 Send the file to the print queue when it is closed. This is S32 (VAX
 VMS) extension.

 CALL SUBMSIO($ SIO S32 Only
 --
 FN RD (WS),
 RC WR (WS));

 When the file is closed, submit it to the system batch queue. This is
 S32 (VAX VMS) extension.

 LITTLE USER MANUAL PAGE 76
 HISTORY

 In this section we present a brief history of the development of the
 language, summarize its current status, and indicate future plans.

 The language was designed by Jacob Schwartz in 1968. A first version
 of the compiler, using the parsing scheme described in Cocke and
 Schwartz, and providing simple optimization of formally redundant
 expressions at the basic block level, was coded in LITTLE. LITTLE
 source was mapped into machine language macros, and debuging of the
 bootstrap compiler began. These efforts, involving one man working
 part time, culminated in the summer of 1971 in a bootstrap compiler
 which ’almost’ compiled itself.

 In 1970 Jacob Schwartz designed the SETL language. SETL is a very
 high level language which has finite sets as its fundamental data
 type. SETL requires an elaborate run-time library to perform the
 basic set operations, such as set membership, union, etc. Preliminary
 experiments indicated that an acceptable level of efficiency for this
 library, called SRTL, was obtainable only if SRTL were coded at quite
 a low-level. LITTLE was chosen as the implementation language for
 SRTL, and the implementation efforts for LITTLE were consequently
 intensified.

 These intensified efforts began in the fall of 1971 with the
 specification of the LITTLE macro processor. The macro processor was
 coded in FORTRAN, and added to the compiler as a separate job step.
 During the winter of 1971, a ’LITTLE to FORTRAN’ translator, based on
 the newly available macro processor, also coded in FORTRAN, was
 constructed. As a result, the LITTLE compiler was mapped onto a large
 (15000 lines) FORTRAN program, which was then debugged. An
 operational compiler for LITTLE became available in September 1972.
 At this time, debugging work on SRTL began, and the bootstrapping of
 the compiler started.

 The code generator for LITTLE was completely redesigned in February
 1973. In November 1973 the entire compiler was successfully
 bootstrapped, and the FORTRAN bootstrap compiler was discarded.
 Language changes were much easier to effect once a LITTLE-written
 version of the compiler was available.

 Work on the construction of a cross-compiler from the S66 compiler for
 the Honeywell Series 16 minicomputer began in 1974. This compiler has
 been used to construct a graphics package which uses both S66 and S16.
 The S16 compiler has also been used to write part of the S16 operating
 system, as well as an operating system for an experimental computer
 developed at NYU which uses the S16 as a front end. This compiler is
 no longer supported, but did provide valuable experience as it
 represented the first attempt to mount LITTLE on a minicomputer.

 Work on the IBM 370 code generator began in 1973. This compiler was
 successfully bootstrapped to the 370 by the summer of 1975. The code
 generator has since been rewritten.

 The modified S37 code generator was adapted in 1978 to produce source
 code for a "made-up" machine called T10, and this variant was used to
 bootstrap LITTLE to the DEC-10. This code generator was extended in
 early 1979 to produce a code generator for the DEC VAX-11/780. The
 first VAX (S32) implementation was for the DEC operating system VMS.

 LITTLE USER MANUAL PAGE 77
 HISTORY

 In the latter half of 1980, Bell Labs did an implementation for the
 UNIX operating system for the VAX.

 NYU has also done substantial work for the DEC PDP-11. This version
 has not been exported. It was developed as a result of the replacement
 of the S16 hardware by the PDP-11. The PDP-11 version (S11) is for the
 DEC RSX-11M operating system.

 LITTLE USER MANUAL PAGE 78
 CONTENTS

 Table of Contents

 Introduction 2

 Overview of Compiler Features 3

 Overview of Standard Library Procedures . . . 7

 Standard Procedures 12

 Standard Utilities 43

 Errors . 55

 Efficiency Considerations 56

 Machine-Dependent Information

 CDC 6000 (S66) Implementation 58

 IBM System/370 (S37) Implementation 66

 DEC VAX-11 (S32) Implementation 71

 DEC DECsystem-10 (S10) Implementation . . . 69

 History 76

 Table of Contents 78

	Contents
	Compiler overview
	Standard library overview
	Standard procedures
	Utilities
	Errors
	Efficiency considerations
	Machine-dependent information
	CDC 6600
	IBM System/370
	DEC DECsystem-10
	DEC VAX

	History

