
l 
) 

LI'I"J.'LE Newsletter Number 5 

User In_for:.mation Concerning 
LITTLE-to-FORTRAN Translator. 

J. T. Schwartz 
November 29, l97l 

1. The LITTLE-to-FORTRAN translator will be maintained 
as an UPDATE 'oldpl', catalogued as LTF1077. A binary version 
of this file may also be catalogued subsequently as LTFE1077. 
Proper use of the translator should yield a FORTRAN text with 
few FORTRAN errors. 

f. The program is an adaptation of the (new) LITTLE 
scanner-macroprocessor. It accomplishes translation in four 
successive phases, with each of which a group of macros may be 

associated. Normally only the input to the first phase and the 
output from the last phase are pr:tnted. If one wishes to exam1ne 
the translation process in more detail, the input to the inter­
mediate phases may be displayed by turning sense suitch 1 on. 

3. A group of macros must be supplied to each phase of the 
translatiQn process; thQugh of course any such group may be null. 
The macro-tables are re-initialized at the beginning of each 
translation phase. The input conventions are as follows: a 

deck _!;_o be translated must init:lally be present on TAPE3; a 

macro-file on TAPEl~. The macro file consists of' four separate 
macro eroups, separated by cards containing the character'*' 
in column 1. Thus the minimum possible macro file consists of 
four such cards. The final output appears on TAPE3, which is 

rewound, and ready for punchj_ng, or for printing using 
COPYSBF(TAPE3,0UTPUT). 

4. The overall sequence of phases is as follows. 
Phase 1: detects statements of the form 

NAMEl NAME2 <textl> = <text2>., 

and converts them to 

ZQN/1liIE.l (NAMJ-:2-<textl>, -<text2>) ., · 



- 2 -

an appropriate macro ZQNAMEl will then give the field insertion 
operation that is desired. LITTLE reserved words such as CALL, 

DATA, etc., are exempt from __ this transformation. 1 SIZE' cards 
are transformed into LITTLE-format comments. 

Occurrences of 'NAMEl NAME2 1 in other positions within a' 
statement should be expanded into whatever field extract operation­
is desired by supplying appropriate macros. LITTLE keywords shQuld 
be changed to corresponding FORTRAN keywords by supplying appro­
priate macros. 

Phase 2: Performs macro expans:I,_on in the normal manner. 
Phase 3: Detects labels and GO-TO statements, an9 makes 

certain related transformations of text. LITTLE 1named 1 labels 
are transformed into FORTRAN'numbered1 labeis, and comments 
recording the correspondence between named and numbered labels 
inserted into the text. Note in this connection that 'numbered 
labels' of the form /number/ will be processed in t_he same way, 
except that no comment will be inserted. This is convenient 
for labeling FORMAT statements inserted into the ultimate 
FORTRAN text. Cf. the remark concerning generated symbols 
which follm'is below. 

Phase!~: Revises the phase 3 output to force conformity 
with FORTRAN column conventions. Note that rnacroprocessing may 
also be done in this phase. LITTLE terminators 1 .,' are stripped 
off. 

5. Deduced macroformats. If a name is declared in phase 
1 as a macro with arguments, but called without any arguments 
being supplied, a left parenthesis will be inserted following 
the occurrence of the name, and a right parenthesis at the next 
following occurrence of the _terminator '., '. This can be used 
to transform LITTLE keyword-opened statements to corresponding 
FORTRAN forms. For example, if the phase 1 macro 

+~WRITE(A, B) :::: FWRITE(A, B)/¾ 



and the phase 2 macro 

+ FWRI1rE(A, B) = WRITE(l, 1000) B 

are supplied, then any LITTLE 'WRITE' statement of the form 

WRI'rE 1, ARRAY., 

will be transformed during phase 1 into 

F'HRITE(l,ARRAY)., 

which during phase 2 can be changed to 

WRITE(l,1000) ARRAY., 

This last will appear in the ultimate FORTRAN as 

WRITE(l,1000) ARRAY 

6. Additional remarks. Since four separate phases of 
macroprocessing are possible, appropriately planned macros can 
accomplish quite useful transformations. 

Numerical FORTRAN labels generated from named LITTLE 
labels will start with 1 in each SUBR, and proceed progressively. 
Other numerical labels may ~e generated by macros containing 
the generating symbols ZZYA-ZZYZ. (See an earlier newsletter 
concernlng the use of these symbols in macros.) In order to 
avoid label overlap, the counte~s for these symbols are started 
1000 _units apart. That is Z2YA-ZZYE will generate 1, 2, 3, 
ZZYF-ZZYG will generate 1001, 1002, 1003, etc • 

• 




