
r,
•r

r
I
l .p , _ _)

I ,,
I

~

:I
I
I

I
I

LITTLE Newkletter 11+

Mass Storage Utilisation_j.n LITTLE.

Pete Maclean
July 21, 1972

This paper explores the possibilities for the ways in which
LITTLE m:tght use mass storage, and describes three particular
systems for mass storage transput. The first and most fundamental
one is the "Buffer I/0 Scheme" and is· designed after FTN'S Buffer in
and Buffer out. The other two systems are built on top of this -­
one is a random file scheme, the other an automatic paging system.

Buffer I/0 represents transput at its lowest level, in which
all other input/output could be implemented --
including the rec;ular READ/1'1HITE facilities.

My aim is to describe what I consider a good system for a
general systems programming language, rather than propose an exact
set of additions to LITTLE. In particular the example I/0
statements given are to indicate necessary arguments rather than

to suggest syntactical additions to LITTLE.

In researching for this my biggest problem wa,s one of
nomenclaturP?eopJ.e accustomed to different machines and different
systems use confusing terms relating to files and mass storage. So
I will now present a brief glossary to define the terms I will use
later on, giving the interpretation of them from my oi'm point of vie,-v.

Logical Entities.

11 FILE 11
-- my interpretation of a file is a generalisation of

an array -- that is, an •array' whose 'elements' are
of arbitrary size -- and which is stored in some physical medium.

"Record" -

11Tape 11
-

A f'ile is partitioned into records (its "elements").
Records are terminated by record marks. (Only

one level of record marks is assumed).
a tape is a nmu1ti-f'i1e f'ile". It is partitioned

into files by file marks and terminated by an
information mark.

2

Physical Entities.

!Fu $ U II
l'•'i• • •

"P.R.U. 11

11Magtap e 11
-

11Recall" -

a mass storage unit e.g. disc, drum.
a physical record unit. Any 1(. s. U. is assumed to
be partitioned into p.r.u.'s - the major significarce
of which is that a p .. r.u. is the only unit of
information which can be transferred and from
central memory.

refers to a reel of magnetic tape as distinct from
a logical tape. A reel of magtape is an m.s.ue
which is assumed to have physj.cal marks denoting
end-of-tape and beginning-of-tape.

a m.s.u. transfer may be executed with or without
recall .. When done with reca.11, control is not
returned to the caller until the data trans1nisston

is completed - otherwlse control is returned as
soon us the transfer initialisation has been
processed., This corresponds to automatic recall
on the 6600., and nothing corresponding to per'.i odic
recall is assumed.

Buffer T/0.

The main features of Buffer I/0 are:
(1) One call causes the transfer of one p.r.u. of information

to or from mass storage.
(2) Data transfer may be done with or without recall.
(3) This should represent in any system, r/o at its basic

and fastest level.

nBuffer In" - This should cure a lot of headaches for people
writing !/0 routines .. A call to Buffer In causes
one p.r.u. to be transferred from a m.s.u. into
central memory .. Necessary arguments are:

pru - address of per.u. to be transferred -
includes address of m.s.u. containing the p.r.u.
F - specifies whether read is binary or coded.

buff - array lnto which information is written.
1i'.his must be large enough to 8aCCOmodate

largest p.r.uo that could be accessed.
rel ~- specif:i.ern recall option~
n - returned as number of words transferred ..

11Buffer Out 11
- cau a p.r.u. to be transferred f'rom an array

in contra,l memory to a m. s. uo Necessary arguments

are ED~, F _£Uf£., _!'c!_ as above, plus:
n - no. of words to be transferred if p.r.u. size
is var:Lable (e.g. with some magtapes). If p.r.u.
size is fixed then this parameter will be ignored.

Two further items are demanded to test the status of a m.s.u.
these are exemplified by two functions ETX and EOT:-

ETX (~) tests tf a da.ta tra~sfer has been completed

3

t t must be called aftr1r every tra.nsfer. see belmr­

applies only to magta.pe and tests for an end-of-tape
mark.

msu - specifies a m.s.u.

If recall is not used then any access of the buffer
area before ETX m!ty void the process

Pa.ri ty errors and the lilrn:

In some systems an unrecoYerable pa:city error

will cause an immediate abort - othe:n,T1.se it should show up

4

when ETX is called. This should a.lso return information about
file, record and information marks(if these are defined physically)
- for instance ETX might return:

¢ - if transfer complete no. mark found.
1 - if record mark found
2 ·- if file mark found
3 - if i.nformation mark found
4 - if parity error
5 - if other error - e.g. invalid parameter

In the event of a parity error Buffer I/0 might bC

progra.rmned to retry the tr11nsfe:r so:ne numbers of times.

Rrmdom F:tle :r/0

The features and uses of this scheme are:
(1) It is designed e,round the logical record as a unit of informatlo:").

(2) It is ve.ry ver1:1nti.le and can be used i.n segmentation and

overlays as well as more conventional ways for ran.dom filer,.

(3) In order to access a random file the user must provide an index
for it-·- i.e. an array with dimension at least as big as the
largest number of' records in the file, and size to accomodate
any m.s~u. address. The user may access records by name or number.
If by number, the number refers to an element of the index. If
by name, the user must supply another array of the same dimension,
and of size to accomodatc the longest name (on which there need
be no restriction). In either case, although arrays are supplied by

the user, they are ma:.i.ntained by the random file I/0 system.

(4) This system may be thought of as a log:i.cal derive,tion of
Buffer I/0. That i.s a random file may be considered a

virtual m.s.u. - and the rocerds may be virtually thought
of as existing contiguously since they do in the index -
however no assumptions can be made about how they are stored
physically.

Four calls are needed to use random files - one to open,
close, read and u-rite,. For example:

open fs, index, L ' names

read fs, EE_, n , wksp
write fs, ;re _,;;:_, _!!, wksp

close fs

arguments are:

fs file specifier e.g. filename,
address.

tape number, fet

index

L-
names

rs -­
n -

index array
dtmenslo;1 of index array

name of ni:ur:es array if' accessing is to be done

by na .. rne.

record specifier.i.e. name or number
no. of words to be transferred

5

Open will open the random file and set up the index parameter -­
if the file is alrea.dy open this serves to associate a new or
extended index with it.

Read will transfer n words to the userts workspace starting
from the first word of the record specified.

Write will '-'ir•.ite n words f'rom the user's workspace to the record

specified. If the record already exists a write will replace
it-- if it does not exist it will be added to the index, provided
the index is not full.

6

Close writes the index to a special record on the file and closes it.

I have tried to think of alternative ways to acc,:,ss random
files, and othershave been suggested, but none has come up that

will fit well into this system. The prime aim has been to invent
a way not requiring an index. The trouble is that iilthough it
would be possible to find anygiven record without an index, it

cannot be expected that any such method will always be efficient.
One must consider the worst case - which would probably be with
the file distributed over random p.r.u.•s on an m.s.u. chained
in one direction, like a list.

Paging System.

The paging system is the most sophisticated part of this
package. Its main features are:

(1) It is hi.ghly automatic.
(2) It allows optional optimisation parameters.
(3) It is primarily designed to handle the paging of

large arrays.
The minimal necessary code to cause a.n array to be

paged is exemplified by:

Page l'l,rrayname

There are certain pieces of information which could be made
available to the pager to improve efficiency in certain co,ses.

In other cas(~s, greater efficiency w-5.11 result from the pager
defaulting parameters to best suit the system. My idea is
that such information may be made available to the pager at 3
levels, from which it will select the highest. These levels arc:

3. The programmei·.

2., The compiler/optimiser.
1. Default set.

In particular this allows the programmer to optionally specify

extra paging parameters and calls if he thinks they will help.
Such items include:

(1). Page size. The "reference string" (i.e. the sequence
of elements referenced) of an array, may suggest specifying a

special page size - i.e. if the reference string has some special
non-serial pattern. For a serially-referenced array one is
always best to leave it for the pager.
e.g. Page A, Pagesize = 3al10_;

However the pagesize must represent a number of words thai~ is a

power of 2, not less than 64c This helps all around - common

fixed p.r.u. sizes are powers of 2 - housekeeping is much easier
and page frames can be optimally arranged according to the "Buddy
System n. It would probably often be the case that in any program
all pagesizes would be the same) ,making things even simpler, but

it would be too much to demand this.

(2). Paging m.s.u. If more than one m.;s.u. is available
the user may want to specify a particular one. By default the

fastest dev:i.ce would normally be chosen.

(3). Rewrite. When a page :Ls referenced for a wrl.te a flag
a,ssociated with it is set saying that this page has been

altered and when it is to be replaced it must be written back
to disc. Then if it has been referenced only f'or read, it will
not be rewritten to disc and some time will be saved. It would
help if thj_s information could come from the user or optimiser.

7

(4). Anticipatory fetches .. The pagG:r keeps a, coefficient repesentin3
the randomness of the reference string to each paged array.
This is cn.llod the "page reference string coefficient" (prsc)

and is such the,t - -1 (prsc < 1, a.nd

prsc =¢indicates referencing is random.
prsc = 1 indicates fetch of pa.ge i always follm·1ed by page :l. +l

prsc = - 1 indicates fetch of page i always follm·rnd by i-1.

then when a fetch of one page is demanded, the pager may ac'b..1ally

fetch several consecutive pages, depending of availability of page

frames and the prsc.

Anticipatory fetches can be enhanced by explicit
to retch pages placed suitably before references

e.g. Fetch Page (A(I))

commands

meaning fetch the page of A containing element I of paged array A.

Also the programmer might be given the opportunity to suggest
an init:tal value for th~ prsc.

(5). Release. A call may be inserted by programmer or optim:J.ser
following a section of code accessing a paged array saying this
array will not be referenced again (or at least not for a time) if

appropriate. In this case the page frames devoted to this array

may be freed.

8

A Problem.

In order that this package be implemented on the 6600 it is
essential that one very basic addition be made to the LITTLE
language. In order to communicate with the operating system

(if egardless of which, including an imaginary one also written in
LITTLE) some measure of absolute addressing must be available.

The i1mnediate need is to reference absolute location 1 (absolute

within the field length that is). Externally this is trivial. I

suggest the addition of some token meaning abaolute zero -- this
is enough to address any bit within the field length absolutely.
Call this token O , then to store in RA + 1 for example one
requires only

.F. 61, 60, 0 = •• , •••
Then O really denotes the bit string that is your F.L.

I intend to follow this paper with one dev·oted to the paglne;
system in detail, and the al.gpri thms it uses. Also consider.:3,tion

is called for on the subjects of interrupts, M.s.u. addressing, and
transp":t to other deYices than M, Sc U. 'S

9

