
LITTLE Newsletter No. 20

Remarks on structure of SETL Run-time Library

November 16 1972
David Shields

We remark on some of the properties of the LITTLE coded
run-time library for SETL (SRTL). Based on a casual reading
of the routines currently available, these remarks are intended
to describe the 'feel' of the code, especially from the optimiser's
point of view, and to indicate which optimisations in LITTLE
may have the most immediate payoff for SRTL.

The code section examined contained about 2500 executable
LITTLE statements. There were about 60 subroutines (SUBR's)
and about 30 functions (FNCT's), and about 80 CALL statements.

Basic blocks typically contained three to five statements,
for a total of about BOO basic blocks. As expected, the handling
of types accounted for most of the program flow.,- the typical
subroutine takes the form

SUER XXX;
GO BY type-of (object) (intlab,reallab., setlab, •••);
/INTLAB/ ••• ; GO TO DONE

•••
/SETLAB/ ••• ; GO T.O DONE;

many of the blocks generated by type-branching were null, i.e.,
of the form

/SETCASE/;
/NEXTCASE/ •••

The following situation occurs perhaps a hundred times:

IF (c) GO TO TRUECASE;

GO TO FALSECASE;
/TRUECASE/ ••• ;GOTO NEXT;
/FALSECASE/ ••• ;

where the /TRUECASE/ block has the IF-statement as its only
predecessor. The preferred code sequence is

IF (.NOT. c) GO TO FALSECASE;
••• TRUECASE code ••• ; GO TO NEXT;
/FALSECASE/

Almost all of the subprograms have no arguments since the
SRTL routines use their own conventions for passing arguments.
Thus the following pattern is common

MEMORY (c) = arg-value $ c is constant
CALL XXX;

••••
where XXX is of the form

SUBR XXX;
IF (MEMORY (c)) •••••

Thus, on entry to many of the routines, input arguments could
have their input values available in registers; assuming we
perform the suggested global optimisation between subroutines.

The need for optimisation of array references is self-evident.
The great majority of memory references have the form

STORAGE (1000 - constanta + ~onstantb)
due to the manner in which arguments are passes between routines.
Note that since STORAGE is a global variable we should be able
to compile

= STORAGE + 887
so that the loader can do subscript reference.

2

The following uses of the field-extractor .F. are common:

The

a) • F. 52,5, X = .F • 52,5,Y
b) .F. 18,17,x = • F • 18,17,y

• F. 35, 17,x = .F • 35,17,y

c) IF (.F. 52,5 X .EQ. 10) GO TO •••

d) STORAGE(. F. 1, 17, x) =
extractor will in general compile as follows

generate-mask (by load or perhaps
for certain masks)

shift-input
and input with mask

special code

Example a) above contains a repeated instance of same field.
Thus compiler should avoid duplicate generation of mask, either
by constant propogation, or by code-generator for extractor.

Example b) is instance of "parallelu field assignments, in
-which no shifts are necessary, and only one mask need be used.

Example c) is instance of an optimisation suggested by in LITTLE
newsletter 18, in that inputs to conditionals need not always
be reduced to final boolean form.

In exampled), the subscript is a "pointer". Note that LITTLE
does not allow pointers as separate data type, and that references
of this form result when the user manages his own memory.

3

In summary, the LtTTLE code for the SRTL has the following
major characteristics

-- few if any formal arguments
small basic blocks, including many null blocks
many references to global array with subscript
an constant expression known at compile time
extraneous branches due to manner in which macros
used to generate LITTLE code expand, so that
simple reodering of code would be quite helpful
many "pointer" variables, ie, variables used to
index STORAGE, which should be kept in
B- registers, particularly for 1·oops
a substantial a.mount of address arithemtic, or
computations whose result is used as subscript
substantial redundancy in use of field~extractors
especially those used in address-arithetic

4

The suggested LITTLE optimisation efforts may be

conveniently devidied into those with an immediate payoff and
which might be implemented fairly easily, and those which are
more difficult to implement. The immediate optimisations are
those suggested by Jack Schwartz in Newletter 18, i.e. constant
propoga.:tion, good generation of constants, better basic block
processor, and better register allocation within blocks. However,
the small size of most basic blocks indicates that over-elaborate
basic block processors would not be of much help now.

The longer term efforts should concentrate on global flow
analysis within routines, the isolation of address arithmetic,
especially the machine-dependent parts. Perhaps the major obsta~le
in implementing the machine-dependent optimisations is the structure
of the current assembler in the LITTLE compiler; it is suggested
that the assembler should be "isolated" from the parser by having
the~ communicate through files.

Also, havin~ the compiler produce code for a hypothetical LITTLE
machine which is then assembled in a machine-dependent way, seems
much better in the long run than having the compiler produce
absolute load modules.

In a subsequent newsletter we intend to present some of
the machine code currently produced by the LITTLE compiler nor

precisely the payoff of the optimisations suggested. Intuition
suggests that it should be possible to reduce memory requirements
and running time for SRTL by 40 to 60 percent by impoementing
just the optimisations mentioned above.

5

