
LITTLE Newsletter No. 23 

NAMESETS: A New Way to Handle Global Variables 
in LITTLE 

January 17,1973 
D. Shields 

We present a hypothetical name-scoping convention for 
LITTLE which treats uglobal" variables in a new way. Global 
variables are realised by defining sets of names, called 
name-sets. The structure of a LITTLE system using name-sets 
is also described. 

By a global variable we mean a variable which may be accessed 
in more than one routine; a local variable is a variable 
accessed by one and only one routine. A routine is a LITTLE 
subroutine (SUBR) or function (FNCT). Also, any compiler-generated 
temporary may be viewed as a local variable; and local variables 
may be viewed as user-defined temporaries. 

Global variables are realised in the current LITTLE system 
by the following simple scheme: 

Variable names are not erased from the symbol-table at the 
end of a routine, and so may be accessed by subsequently 
compiled routines. 

Such global names may be "preserved" across several compilations, 
since LITTLE currently satisfies the following 

a) Storage is allocated in the order in which variables 
are SIZE-a. 

b) All variables defined in a ccmpil3ticn arc asoigncd 
to a storage block (COMMON block) of the same name 
as the first routine compiled. 

This preservation of names is unwieldy--it assumes knowledge 
of the internal operation of the compiler, and requires careful 
monitoring of the routines involv·ea, to insure that the assumed 
name-to-memory map is never changed (as it would be if a new 
SIZE statement were inadvertendly placed in wrong location.). 



What we need is a scheme for defining global variables 
which 

l) does not depend on the order in which routines compiled 
(as is current scheme), and 

2) is able to support separate compilation of routines in 
a manner preserving definition of global variables. 

Moreover, separate compilation is desirable so that a large 
system need not be compiled in toto whenever part of it is 
altered. Unless the user is willing to use the unwieldy scheme 
sketched above, the current scheme requires total recompilation 
of large systems. This would not be a problem if the LITTLE 
compiler were very fast; a rough design goal would be to have 
a compiler sufficiently fast so that in developing a large 
system (say twenty thousand LITTLE statements) the compilation 
time is not significantly greater than the execution time for 
a typical debugging run. To satisfy this goal requires a 
compiler capable of compiling several thousand LITTLE statements 
per second, not a likely prospect. Thus it seems necessary 
to add to LITTLE the facilities for maintaining libraries of 
binary modules, i.e., predigested representations of routines 
which need only be "loaded" to be executed. 

Since LITTLE aims to be machine-and system-independent, 
library support facilities are needed to provide an interface 
between LITTLE system and the host operating system, in order 
to avoid expensive conversion from LITTLE formats to host system 
format. This suggests the inclusion in LITTLE of a pre-loader, 
which would combine the output of a compilation and libraries 
produced by previous compilations) to produce a load module 
for the host operating system. The notion of a pre-loader 
might also prove useful in the development of an "optimising" 
assembler, which would perform inter-subprogram optimisations 
and global register allocation at load-time, when the modules 
are combined. 

2 



These labyrinthine digressions have indicated the factors 
influencing the design of the name-set scheme; we now define 

this proposed scheme. 

All global variables must be defined with a new type of 
routine, called a name-definition block, or NAMEDEF. A variable 
is defined by specifying its size, dimension (if applicable), 
and any initialisations. This is accomplished by adding to 
LITTLE a new statement group of the form 

NAMEDEF name; 
••• series of SIZE, DIMS,and DATA statements 
END; 

Note that all initialisations (i.e., DATA statements) must 
occur in the NAMEDEF block in which a variable is defined; 
otherwise, some standard initialisation, say to zero, is assumed. 
This is done to insure that variables are not initialised in 
arbitrary parts of a program (as allowed in the current system), 
and thus enforces a desired programming discipline. Note further 
that the NAMEDEF block may contain no executable statements. 
For those familiar with FORTRAN, we remark that a NAMEDEF block 
is similar to the FORTRAN BLOCK.DATA block, except that no 

3 

memory map is implied (or forced), as is done when FORTRAN COMMON 
blocks are declared. 

Variables defined in a NAMEDEF block may be accessed from 
a LITTLE routine in several ways, all of which involve extensions 
to LITTLE: 

a) By using the name-set name as a qualifier, innicated 
by writing 

variable-name -+ name -sat-name 
For example, 

I-+ND=J+K-+MD 

indicates that the variable I in block ND is to be 
a~signed the sum of J defined in current routine 

and the v0 r1able K 1n block MD 



2) By use of the ACCESS statement, which has the form 
ACCESS name-set (list of names); 

For example, 
ACCESS ND (I, ITOT) 

indicates that any (unqualified) use of I or (ITOT) in current 
routine is to be taken as use of the variable I or (ITOT) in 
name-set ND. For con1renience, default forms of the ACCESS 
statement are defined as follows: 

a) ACCESS name-set1, ••• , name-setk; 
which indicates the:t references to variables not defined in 
current routine should be taken as references to variables of 
same name in any of indicated name-sets. 

b) ACCESS; 
which is similar to (a), except that all name-sets known to 
compiler are to be checked. In addition, to provide convenient 
variable-renaming we allow an "alias" option in the ACCESS 
statement; e.g. 

ACCESS ND (I = IHERE) 
indicates that the variable IHERE is the current routine 
corresponds to the variable I in name-set ND. 

Variables may be defined (SIZED) within a routine in the 
current fashion; all such variables are local, and hence may 
not be used outside the routine in which they are defined. 

_(Note that we might extend the ACCESS statement to allow 
read-only use of global variables, so that a routine could use, 
but not alter, a global variable. Similarly, a "password" might 
be required to access a name-set. These considerations might 
prove useful ~-n designing an operating system; questions of 
privacy and security of global variables are perhaps best viewed 
by thinking of NAMEDEF blocks as 11files 11 with well-defined, 
and protected, access paths,) 

4 



A further extension, which would enforce the same 
discipline on macros which the name-set method enforces 
on the use of global bariables, would be the addition of a 
macro-definition block, or MACDEF. Such blocks would contain 
macros ~sed in more than one routine, and would distinguish 
system-wide macros from those programmer-defined macros used 
with a single routine to simplify coding. Such blocks might 
take the form 

MACDEF macro-set; 
••• series of macro definitions ••• 

E!'ID; 

There remains an important class of global names--subrqutine 
and function names. Function names may be elements of name-sets, 
since they need only be sized. It might be convenient to 
distinguish a special name-set, SUBRS, to which the compiler 
adds the name of each routine as it is compiled. 

In a projected implementation, name-sets could be maintained 
in two auxiliary forms: 

a) as auxiliary input to the compiler, so that NAMEDEF 
block need not be included in input source for each compilation. 
The representation might consists of a pre-hashed symbol table 
permitting fast determination of name-set membership. 

b) as auxiliary input to the pre-loader mentioned previously. 
The representation might be similar to {a), with possible 
additional information of interest to loader. A LITTLE job 
using this system would take the form 

5 

USER souicE NAM~ET FILE * 

*LITT' COMPILER 

USER - MODUL~ ~IBRARY-MODULES NAMESET LDR-FILE * 
~ .t --- . 

PRE-I,e~DER~ 

INPUT F? J1'0S1I' LOADER 

EXECUTABLE !~GDULE 

* indicates a file produced durin~"; previous use of system. 



Since the pre-loader has an input only files produced by 
the LITTLE system, it should admit an efficient implementation. 
The issues here are the complexity of generating the libraries, 
the size of the libraries, and the interface problem with the 
host operating system. The pre-loader should be viewed as a 
"table-unifier", as is the case with most loaders. 

6 

The pre-loader could also provide another useful optimisation 
by loading (i.e. allocating stovage for) only those global 
variables which are used. This eliminates needless use of 
memory. 

In summary, we have indicated some of the problems in 
using current LITTLE system for defining global variables, 
particularly in developing large systems. We outlined an 
extension to LITTLE which groups global variables into sets, 
and suggested an implementation approach which allows separate 
compilation and testing of subparts of a large system. 




