
LITTLE Newsletter # 30 J.Schwartz
December 28, 1973

Interrupt Handling Facilities in LITTLE

1. Introduction

Edi Franceschini has started to explore the use of

LITTLE as a language for writing the scheduling and communications

packages typical of some of the main CIMS mini-resident systems

routines. Of course, this requires interrupt handling facilities.

The proposals which follow are suggested by a recent discussion

with him.

As the correct basic notion for handling interrupts in an

orderly way we suggest the notion 'process'. This notion will

be given more formal definition in what follows; for the moment,

let us only remark that a process is a program embedded in a

complete data environment and thus ready to run. We think of a

total system as comprising several processes {which cooperate

harmoniously.) Some of the variables(and even arrays) to which

processes have access are private to the process; storage for
these variables .is reserved when the process is created (perhaps

dynamically). Other variables and arrays are pubZic, and

may be modified by any process.

The code required to define a process (but note that a

data environment is also required) consists of a 'main program'

and the subprograms (subroutines and functions) which the

process calls. We take this code to be arranged as follows

(1) PROCESS ,processname; /* a 'process header line' */

(declarations of all namesete global to the process,

with sizes, dimensions, and initialisation of

global variables)

(code for the main program)

(code for all necessary subprocedures)

END p:rooessname;

LITTLE-30-2

(See Dave Shields' Newsletter 25 for a discussion of namesets.)
The variables in a nameset may be made public by using the

declaration

(2)

instead of the alternative

(3)

which declares the members of a nameset to be global to a process

but private.

2. Setup and execution of processes. Access to process attributes.

The first process declared is the first to be given a

data environment and the first to begin executing. Additional

processes may be created dynamically by using the SETUP

statement, which has the form

when this statement is executed, space for all the private

variables of a process of the type named by pPoaessname (cf.(1))
is reserved in the designated array, starting at a location

specified by the index appearing in (4). Every item needed to

store a complete data environment will be held in this space:

this includes register contents package, instruction location,

procedure return addresses, etc. Execution of (4) involves
the following steps:

(a) Variables are initialised as indicated by the text (1) of
the process being set up.

(b) The variables var1, ..• ,vark appearing in (4) {these

names refer to variables private to the process being set up)

recceive the values specified by the expressions expn 1 , ••• ,expnk.

The array in (4) must be of some fixed, implementation

dependent, SIZE. The number of words of storage needed to hold

the complete environment of a process is given by a

pseudo-function

LITTLE-30-3

(5) PSIZE (proaessname).

In addition.to its explicitly declared variables, each process

has an additional global variable called INTMASK, of an
implementation determined SIZE IMASKSIZE. This mask is used,

in a manner to be explained later, to allow and to repress

the ability of a process to respond to external interrupts.

Once a process is set up, control may be passed to it,

either explicitly by executing a RECALL statement, or automatically

in response to an externally generated interrupt. RECALL

statements have one of two possible forms

(6a) RECALL proaeesname (array, index)

(6b) RECALL proaessname (arPay, index) FROM label

The statement (6a) resumes execution of the process proaesename,

using the data environment stored in array beginning at the

location index. Execution resumes from the instruction
location recorded in that environment; this location is

presumably that at which execution of the process with this

environment was last suspended, either by the execution of a

prior RECALL statement or by some earlier external interrupt.

Form (6b) of the RECALL statement has much the same effect as

t6a) except that execution resumes with a forced transfer to
label, which must label some point in the main program of

proaessname! in addition, register reload is ommitted.

For uniformity, we must make available the environment

storage location of the first declared process, which sets up

all the others. This is done by a statement

(7a) INITIAL SETUP proaessname (array,index) var1 = const1 , ... ,

varn = constk BEGIN

I

LITTLE-30-4

which must be prefixed to all other executable statements
defining a set of processes, and which· acts much like a SETUP
followed by a RECALL. Of course, in (7a) index must be a
constant. The same rule applies to the similar statement form

(7b} INITAL SETUP proaessname (array, index) var1 = aonst1, •.. ,

var = aonst , n n
which can be used to ensure that a number of processes are

properly set up prior to execution of the first statement of

the process entered first.

We allows one process to access (and to modify) private

global variabl_es of another. Such quantities may be referenced as

(8} proaessname.quantityname (array,index).

Here, proaessname is the name with which (the text of) a

process has been declared, as in {1); quantityname designates
a quantity declared global in the text(l); array and index serve to

locate the place where the data.environment pf a particular process

instance is stored. A private quantity's size {and dimension,

if any} is taken from the defining text of the process ·to

which the quantity is private. If a private quantity is

dimensioned, its components should be accessed in the form.

(9) . proaessname.quantityname (array,index, extraindex).

As compared to (8), (9) contains an extraindex which defines

the particular component of a private array to which reference

is being made •

3.

of

.. .

, External Interrupts. Enable. Disable, Mask •... Representation

Peripheral Operations

External interrupts are treated as autonomously forced

RECALL operations of one of the two forms(6a) and (6b). Some

finite set of external interrupt sources is assumed to exist,

and we number these sources 1,2,3, •.•• Then what we need

is a way of associating an interrupt coming from a particular

source with a process to be RECALLED when the interrupt occurs.

LITTLE-30-5

For this purpose, the statement forms

ATTACH n To processname (array,index) (9a)

(9b) ATTACH n To processname (array,index) FROM Zabel

are provided. Here n is an integer denoting an interrupt

.source (actually, there is no reason why n should not be

an integer-valued expression). When an interrupt with source

n occurs, the system behaves as if a statement of form (6)

corresponding to one of the statements of form (9) has been

executed.

It is well known that to manage interrupts one needs some

way of disabling interrupts temporarily in 'critical' program

sections. This possibility is provided by a statement

DISABLE.

The converse operation is effected by a statement

ENABLE

we assume that each time a DISABLE is executed a global public

quantity called WAS_ENABLED is set to 1 if interrupts were

previously enabled, and to zero otherwise. This bit may be

unpredictably modified by any other of the LITTLE interrupt

handling statements, and the programmer should if necessary

save the bit around any invocation of such a statement.

When a process is recalled, one may wish to enter it

with the ENABLE bit either on or off. The default setting is

off; to make it possible to enter a process with the ENABLE

bit on, we provide an instruction

PRENABLE.

If this instruction is executed before a RECALL, the RECALL

will leave interrupts enabled.

LITTLE-30-6

Similarly, if a process is recalled in response to an external
interrupt, one may wish further interrupts to be disabled
temporarily on entry to the process. Disabled process entry

after an interrupt will be made if we use one of the following

optional forms of the ATTACH statements (9a) and (9b):

(lOa)

(10b)

ATTACH n To prooessname(array,index) DISABLE

ATTACH n To prooessname (array,index) FROM label DISABLE.

An enable-disable condition is completely global.

Finer screening of interrupts than is provided by a

single enable/disable bit will sometimes be necessary. We

provide for this by agreeing that in addition to its explicitly

declared variables each process has an additional global variable

called INTMASK, of a size IMASIZE equal to the number of
external interrupt sources recognised. in a given implementation.

The j-th external interrupt source corresponds to the j-th bit

in INTMASK. ~f this bit is 1 in the INTMASK of a process,

t.he interrupt source is {individually) enabled and can

interrupt the process; otherwise it cannot. Note that a

different INTMASK is associated with each process. This mask

is saved when control exits from the process (either in response
to an external interrupt or by an explicit RECALL) and is
restored when control returns to the process.

We shall not attempt to invent statements for managing

the wide variety of I/0 devices that might be encountered.

We simply assume that each one of them is represented by one or

more primitive subroutine calls, written in machine language,

but obeying the linkage conventions of LITTLE. All that is

important is that external devices not generate interrupts or

require polling too frequently. Therefore in some cases

buffering actions may be associated with a routine appearing

at the LITTLE level as a device-control primitive.

I

LITTLE-30-7

When necessary, trivial high frequency actions associated
with certain special high frequency interrupts may be handled

by short assembly code sequences hidden within the physical

interrupt handler which is presupposed by the LITTLE interrupt

conventions we have described. In this way, simple but frequent

actions can be hidden, leaving only residual interrupts to be

managed at the LITTLE level. Interrupts which have to be

handled within fewer than a few dozen machine cycles probably

call for assembly code; less urgent or less frequent interrupts
can be handled using LITTLE.

4. Implementation, Robustness, ExqmpTes, Overlays.

A main charateristic of the scheme proposed is that it

suppresses the concept of 'status package' that would appear

at a semantic lower level, absorbing this into the more general

notion of 'process data environment'. Putting this more crudely,

when an interrupt occurs we store the 'status package' of the

interrupted process with the other data constituting its

environment. The justification for this lies in the fact

that the private variables of a process, as well as subroutine

return addresses and other normally 'implicit' data items,

will ordinarily have to be treated as an extension of the status
package, e.g. saved before the code blocks belonging to the

process are re-entered for another purpose. Keeping the status
package with this other data should avoid complications that

would surface if these two classes of logically related data

were treated seperately~

To execute an interrupt, we proceed as follows:

(a} First, we store all registers in a designated group of

words within the data area associated with the interrupted

process. This data environment is located by a "current

data environment" pointer that is always maintained.

LITTLE-30-8

(b) Then we set up a new current data environment pointer.
(c) Finally, we transfer to a label associated with the

process attached to the class of the current interrupt, re­
storing registers if necessary. Immediately prior to this

jump, an ENABLE operation will be executed unless the jump

has been set up by an ATTACH ••• DISABLE statement. If there

is a hardware mask register, it will be located with the

INTMASK value corresponding to the process being entered.

However, this mask register reload will be suppressed if the

preliminary ENABLE is suppressed; in such cases, the process

being entered is responsible for loading its own mask register.

The mask register will be reloaded automatically when an

assignment is made to the private variable INTMASK.

The interrupt-handling scheme which has been described

is Pobust, in that it gives representation to all the important

interrupt..-management actions which we expect conventional

interrupt-management hardware to execute. Note in particular

that likely hardware extensions, such as the introduction of

new classes of external interrupts, can be mimicked by software.

The following example will illustrate this point. Suppose that

on some particular machine all interrupts trap to a fixed

location (so that only one'interrupt class' exists); but that

immediately after an interrupt has occured one can use an

(assembly language) routine CAUSE(J) to set a quantity J equal
to an integer representing the detailed interrupt cause

Then, by using the following code as an innermost interrupt

handler, we can make it appear at all 'outer' software levels

that a more sophisticated hardware interrupt mechanism,

capable of distinguishing between many different interrupt

sources, is at work:

I

PROCESS HANDLE_ALL_INTERRUPTS;

/* MAIN INTERRUPT HANDLER, WHICH WE ASSUME TO BE ENTERED*/

/* WITH ADDITIONAL INTERRUPTS DISABLED*/

NAMESET ATTACHMENTS (ATTACHED, ATTINDICES, ENABLES)

SIZE ATTACHED (WS); /* CODES FOR PROCESSES {AND ARRAYS)

LITTLE-30-9

ATTACHED TO VARIOUS INTERRUPT SOURCES * /

SIZE ATTINDICES(WS); /* VALUES OF ATTACHED PROCESS INDICES*/

SIZE ENABLES (1); /* FLAGS DISTINGUISTING 'AT'fACH ••• DISABLE'CASES */

DIMS ATTACHED (NSOURCES), ATTINDICES(NSOURCES), ENABLES(NSOURCES};

/* 'NSOURCES' REPRESENTS THE NUMBER OF INTERRUPT SOURCES RECOGNISED*/

SIZE J(WS}; /* QUANTITY GIVING INTERRUPT CAUSE*/

SIZE INDEX (WS); /* INDEX LOCATING ENVIRONMEN'J" OF PROCESS

TO BE RECALLED*/

SIZE PROCANDARRAY (WS); /* AUXILIARY VARIABLE */

CAUSE(J); /* GET CAUSE OF INTERRUP */

PROCANDARRAY = ATTACHED(J); /* GET DESIGNATORS OF PROCESS

AND ARRAY A'FTACHED TO INTERRUPT*/

/* NOW ESTABLISH ENABLE BIT CONDITION TO FOLLOlf RECALL*/

IF {ENABLES(J). EQ 1) THEN PRENABLE ELSE PREDISABLE;

INDEX= ATTINDICES(J);

GOBY PROCANDARRAY (CASE1 , CASE2 , ••••)

/* HERE MUST FOLLOW A LIST OF ALL THE PROCESS_MAME/ARRAY_NAME/

LABEL NAME*/

/* COMBINATIONS THAT OCCUR IN 'ATTACH' STATEMDJTS */

/CASE1/ RECALL PROC1 (ARRAY1 , INDEX);

/CASE2/ RECALL PROC2 (ARRAY2 , INDEX) FROM LABEL2 ; /* IF A LABEL IS REQUIRED*/

• •• (etc.)

END /* HANDLE_ALL_INTERRUPTS */;

When the process shown above is used as a master interrupt

handler, the following routine should be used tto simulate 'ATTACH'

operations.

I

LITTLE-30-10

Note that we assume this routine to be·called using the sequence

DISABLE;

CALL SIMATTACH (SOURCENO, PROCANDARRAYCODE, INDEX,DISABLE_BIT);

SUBR SIMATTACH(SOURCEND, PROCANDARRAYCODE, INDEX, DISABLE_BIT);

/* THIS SIMULATES THE ACTION OF ONE OF THE STATEMENTS*/

/* ATTACH N TO PROC(ARRAY, INDEX), OR */

/* ATTACH N TO PROC(ARRAY, INDEX) FROM LABEL, OR */

/* ATTACH N TO PROC(ARRAY, INDEX) DISABLE, OR */
/* ATTACH N TO PROC(ARRAY, INDEX) FROM LABEL DISABLE */

/* THE PROC, THE ARRAY, AND THE LABEL ARE ALL TRANSMITTED*/

/* IN CODED FORM AS THE PARAMETER 'PROCANDARRAYCODE' */

/* IN PRACTICE, IT WOULD BE CONVENIENT TO REPLACE THE*/

/* ATTACH STATEMENT BY A SET OF MACROS */

/* ATTACH_PROC_ARRAY(N, INDEX),

/* ATTACH PROC ARRAY FROM LABEL (N,INDEX), ETC.*/

/* TO GENERATE 'SIMATTACH' CALLS */
SIZE SOURCENO(WS); /* PARAMETER: SOURCE-NUMBER */
SIZE PROCANDARRAYCODE(WS); /* PARAMETER: PROCEDURE/ARRAY CODE*/

SIZE INDEX(WS); /*PARAMETER: PROCEDURE ENVIRONMENT INDE.X */

SIZE DISABLE_BIT(l); /* PARAMETER: POST_RECALL INTERRUPT SETTING*/

ACCESS (ATTACHMENTS);/* SEE DEFINITION OF THIS NAMESET

IN I HANDLE - ALL - INTERRUPTS I * /
ENABLES(SOURCENO)=DISABLE_BIT; /* NEW'ENABLE_AFTER INTERRUPT'SETTING */

ATTACHED(SOURCENO) = PROCANDARRAYCODE; /* NEW PROCEDURE,

ARRAY, AND LABEL(ONE SETTING)*/

ATTINDICES(SOURCENO) =INDEX;/* NEW DATA ENVIRONMENT INDEX*/

IF (WAS_ENABLED) THEN ENABLE;

RETURN;

END;

Note that the routines shown above give a very good

indication of what actual assembly-language code supporting the

proposed ATTACH and recall statements would be like. Of course,

at the assembly language level some additional actions

LITTLE-30-11

(such as register save and restore sequences) would have to
be made explicit; also, some things could be done more simply,
e.g. the combination ARRAY, INDEX can be condensed to a
single address.

To the reader actively concerned with implementation, the
dictions which we have proposed will suggest that individual
items belonging to the data environment of a process are accessed
by indexing to the item's address. This will be an adequate
approach to implementation on large computers, and on minis
with at least one (still better, several) index registers.

However, on a mini without any index register, it may be
important to keep the data environment of a process in a known

physical relationship to its code. In such cases, the following

variant technique might yield acceptable efficiency:
i) With each process type (as defined by a declaration (1))

associate a data area in fixed physical relationship to its code.

When control first passes to a process of this type (either

via a RECALL or an interrupt) ,load, i.e. move,the data environment

of the process into this fixed data area (using a fast loop.)
Note in a word associated with the process type, the environment

that is, in this sense, loaded.
ii) Each time control re-enters a process of given type,

check whether it is currently loaded. If so, then control may

enter it simply by a jump. If not, then the environment must be loaded
(by two fast loops.) Note that in many of the situations which
will be encountered in practice, only one instance of each
process type will exist. Thus neither loading nor unloading

will ever prove necessary.
iii) In using the technique just suggested, it will

generally be mandatory to create several copies of routines

shared between several processes, since each copy will have to

stand in a fixed physical relationship to some designated

data area.

LITTLE-30-12

iv) The type of 'jump-and-store' instruction commonly used
at the hardware level in minis to support subroutine calls has

the property, undesirable for our purpose, of scattering data
items all of which belong to the data environment of a process.

To avoid this, one may want to handle subroutine calls in a
special way, e.g. by a jump and store to a location within a

process environment block, followed immediately by an ordin~ry

jump to the subroutine entry point.

5.Debugging, Polling, Higher and Lower Levels of Multiprocess Semantics.

One will often wish to exploit the machine independence of

LITTLE by using a large machine with no convenient source of

external interrupts to debug a system intended to execute on a

mini with an elaborate interrupt-system. A related possibility

is that of using a computer with no interrupt system to contro"i

external devices which require fairly frequent polling. Note

that the advantage of an interrupt-driven system over a programmed

system which polls is its greater stability: in an interrupt­

driven system, an external device can be sure of receiving

service within some relatively short time after a service request
is posted; by contrast, a programmer constrained to use only polling
Cgn find it very difficult to ensure that his programs

contain no loops which run long enough to miss a poll deadline.

The following easy technique for mimicking clock interrupts on

a machine with no actual interrupt source is therefore of interest.

a) In compiling LITTLE source text, compile each backwards

branch, i.e. each jump which can have a target address smaller

than its physical address, and also each subroutine call, as

follows:

ai) decrement a global counter EXEC COUNT by an amount

equal to a (compile-time) estimate of the number of instructions

executed before the last proceeding point of backward branch.

If this quentity remains positive, take the branch (or execute

the call). If it is negative, call a (parameterless) routine

to simulate an interrupt.

LITTLE-30-13

aii) This interrupt simulation routine will restore
EXEC_COUNT to some reasonable positive value,assign an interrupt

type (perhaps using a random number generator to do so), call
additional subprocedures to mimic any changes in core locations

or accessible registers which may be associated with an

interrupt, and then RECALL whatever process has been ATTACHED

to an interrupt of the class which it has decided to simulate.
Note that in such a software interrupt simulation, the

ENABLE flag is represented by a 1-bit global quantity, ENABLE
and DISABLE being compiled merely as instructions which
modify this quantity. Note also that this technique_ of

interrupt simulation will generally slow execution only

moderately.

To debug interrupt-driven families of procesees, it will

be convenient to supplement the presently planned LITTLE

execution~time trace facilities with a facility which either

builds up an interrupt history file and prints it out on

demand, or prints such a file out piecemeal. This file

should contain at least the following information: interrupt

class, process to which control is transfered by interrupt,

manner of re-entry (restart at Zabel or process resume,

state of ENABLE bit), process interrupted, and execution

location at moment of interrupt. Also: interrupts ignored

by virtue of ENABLE bit or MASK setting; process in control

when interrupt ignored, with ENABLE bit, mask setting, and

instruction location.

LITTLE, with the extension we have described, can also

be used in a related but somewhat more sophisticated way to

allow the development, within a single computer, of programs

ultimately intended to run in several physically seperate

computers, eventually as part of a system which can involve

various peripheral devices and communications channels.

LITTLE-30-14

We are suggesting that the whole system can conveniently be
simulated during development. Note that here the development

of an entire system on a single machine can have really big

practical advantages, not the least of which is the elimination

of the severe logistic problems that associate themselves
with work on pieces of hardware located remotely from each

other. For the development of multicomputer and communications
software, we propose the following approach:

i) A total family of processes, which in sum represent

all parts of the proposed system, will be written in LITTLE.

These routines should be grouped into several process

subfamilies, each such subfamily representing the software

for one physical device. Note that even passive devices

such as disc memories, etc. are to be simulated by appropriate

subfamilies of processes.

ii) A single global EXEC_COUNT, serving for interrupt

simulation in the manner described earlier in the present

section,will be maintained. When EXEC_COUNT becomes zero,

interrupt action will be taken, and a central process, which

we shall call SUBFAMILY_SCHEDULER, will begin to execute.

iii) Within each. (device- or) computer-representing

subfamily of processes, there will exist one, designated

as the {interrupt) entry process for the subfamily. Within

this process a private qqantity called INTERRUPT_STATE, whose

bits correspond to the interrupt sources physically recognised
by the computer represented by the subfamily, will be declared.
SUBFAMILY_SCHEDULER will always pass control back into a

subfamily of processes by RECALLING the interrupt entry

process of the subfamily, which will examine its INTERRUPT_STATE,

will assume that any '1' bits in this quantity represent

external interrupts just received and still pending, and will

either RECALL a process still noted as current within the

subfamily, or {if an interrupt was found pending) simulate

the RECALL action ATTACHED to this interrupt.

LITTLE-30-15

vi) SUBFAMILY_SCHEDULER merely passes control, round­

robin fashion, among all the subfamily interrupt entry
processes of a total system.

v) To transmit an interrupt to a device, a process only

needs to set an appropriate bit of the INTERRUPT STATE

quantity belonging to the entry process of the subfamily

which represents the device.

vi) The central SUBFAMILY_SCHEDULER maintains a global
clock. clock is readable by all processes supposed to

• have access to a real-time clock; it is advanced by an
appropriate, slightly randomised amount each time

SUBFAMILY_SCHEDULER gains control.

vii) It is appropriate to provide some standardised

means whereby a subfamily entry process can signal the

central SUBFAMILY SCHEDULER that it has no work to do and

is willing to give up the remainder of its turn to execute.

This can be done by reserving a global flag location IDLE_FLAG,

always set to 1 by SUBFAMILY_SCHEDULER. Then if an entry

process sets IDLE FLAG to zero and RECALLS SUBFAMILY_SCHEDULER,

control will pass into the next process-subfamily at once.

viii) Each interrupt ENABLE bit is of course private

to some particular device and should be represented by a
quantity private to the entry process of the subfamily

representing the device. Call this quantity ENABLEBIT_J
(where J varies, and designates some particular device).

Then a LITTLE macro can be used to redefine the ENABLE and

DISABLE statement as

+*ENABLE= ENABLEBIT J = l**• *DISABLE= ENABLEBIT J = O**
- I

within the code representing the activity of the J-th device.
To realise the possibilities described in the present

section, only one feature needs to be added to the group of

LITTLE interrupt handling statements which have already been

described. This is a declaration

LITTLE-30-16

INTERRUPT TO proaessname (array, index)

which,prefixed to the text of a complete family of processes,

modifies the compilation of all backward branches in the

manner explained in the proceeding pages. Note that this

declaration tells the system which process is to be RECALLED

when EXEC_COUNT goes to zero. Of course, branches in the

routine proaessname are exempt from modification.

There exists (see SETL Newsletter 110} a literature on

multiprocess semantics in which process-handling facilities

more advanced than those discussed in the present newsletter

are described. It might be asked if these ought not be

provided in LITTLE. On the other hand, it might also be asked

if it would not be better to provide only more primitive

interrupt handling facilities, thereby avoiding some of the

overhead implied by the scheme which we have suggested. At

a more primitive semantic level, the explicit notion of

process would vanish, and an explicit 'status package' concept

would appear. The RECALL statement we have proposed would

then be replaced with a statement

RELOAD (array, index)

which reloaded a status package stored at a specified address
' in an array. The ATTACH statement could be replaced by two

statements. The first, which might be

DUMP (array, index),

could store a status package (including pre-interrupt instruction

location, which could probably be fetched from core} in a

specified location. The second could control the location to

which transfer was made when an interrupt with given source

was executed. The statements DISABLE and ENABLE would remain

available.

LITTLE-30-17

The LITTLE multiprocessing primitives which we have
described include facilities for process initiation,
resumption, termination (by re-using the area in which a
data environment is stored) and suspension (e.g., by detaching
one process from a given interrupt source and attaching another.)
The most important additional concepts which would appear at a
higher semantic level are the notions of process priority
and priority scheduling, event variables and 'non-busy'
event variable monitoring, and process coordination by the
use of semaphores. We omit to provide these notions because
to provide them in full generality would probably imply the
use of a standard system space-management routine, which we
wish to avoid as being inconsonant with the 'low level'
semantic spirit of LITTLE. In general, these relatively

advanced multiprocess semantic notions relate to environments
in which, in addition to the processes directly attached to
interrupt sources, there exists a pool of other processes
attempting to execute. These processes will generally fall
into several classes, represented at the implementation level
by several lists. One group of processes will be active, i.e.,
asking for immediate execution. These processes may further
be subdivided according to their execution priorities.
Other processes may .be in monito:tting state, i.e., momentari.ly
dormant but attached to lists associated with one or more
'evant' varia_;>les1 when ~ew values are assigned to an event
variable, all the processes attached to it are detached,
and, provided that they are not monitoring any other variables,
transferred to the active list. Semaphores are special event
variables, always·accessed while all interrupts are DISABLED.
It is not hard to represent semantic facilities of this type
using the proposed LITTLE interrupt-handling features. Note

that the details· of:"'an implementation of these facilities
will vary widely,depending on such system-specific facts as
whether a fixed number, a varying but small number or a

varying and possibly larqe number of processes and/or priority

levels are possible, etc.

