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Interrupt Handling Facilities in LITTLE 

1. Introduction 

Edi Franceschini has started to explore the use of 

LITTLE as a language for writing the scheduling and communications 

packages typical of some of the main CIMS mini-resident systems 

routines. Of course, this requires interrupt handling facilities. 

The proposals which follow are suggested by a recent discussion 

with him. 

As the correct basic notion for handling interrupts in an 

orderly way we suggest the notion 'process'. This notion will 

be given more formal definition in what follows; for the moment, 

let us only remark that a process is a program embedded in a 

complete data environment and thus ready to run. We think of a 

total system as comprising several processes {which cooperate 

harmoniously.) Some of the variables(and even arrays) to which 

processes have access are private to the process; storage for 
these variables .is reserved when the process is created (perhaps 

dynamically). Other variables and arrays are pubZic, and 

may be modified by any process. 

The code required to define a process ( but note that a 

data environment is also required) consists of a 'main program' 

and the subprograms (subroutines and functions) which the 

process calls. We take this code to be arranged as follows 

(1) PROCESS ,processname; /* a 'process header line' */ 

(declarations of all namesete global to the process, 

with sizes, dimensions, and initialisation of 

global variables) 

(code for the main program) 

(code for all necessary subprocedures) 

END p:rooessname; 
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(See Dave Shields' Newsletter 25 for a discussion of namesets.) 
The variables in a nameset may be made public by using the 

declaration 

(2) 

instead of the alternative 

(3) 

which declares the members of a nameset to be global to a process 

but private. 

2. Setup and execution of processes. Access to process attributes. 

The first process declared is the first to be given a 

data environment and the first to begin executing. Additional 

processes may be created dynamically by using the SETUP 

statement, which has the form 

when this statement is executed, space for all the private 

variables of a process of the type named by pPoaessname (cf.(1)) 
is reserved in the designated array, starting at a location 

specified by the index appearing in (4). Every item needed to 

store a complete data environment will be held in this space: 

this includes register contents package, instruction location, 

procedure return addresses, etc. Execution of (4) involves 
the following steps: 

(a) Variables are initialised as indicated by the text (1) of 
the process being set up. 

(b) The variables var1, ..• ,vark appearing in (4) {these 

names refer to variables private to the process being set up) 

recceive the values specified by the expressions expn 1 , ••• ,expnk. 

The array in (4) must be of some fixed, implementation 

dependent, SIZE. The number of words of storage needed to hold 

the complete environment of a process is given by a 

pseudo-function 
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(5) PSIZE (proaessname). 

In addition.to its explicitly declared variables, each process 

has an additional global variable called INTMASK, of an 
implementation determined SIZE IMASKSIZE. This mask is used, 

in a manner to be explained later, to allow and to repress 

the ability of a process to respond to external interrupts. 

Once a process is set up, control may be passed to it, 

either explicitly by executing a RECALL statement, or automatically 

in response to an externally generated interrupt. RECALL 

statements have one of two possible forms 

(6a) RECALL proaeesname (array, index) 

(6b) RECALL proaessname (arPay, index) FROM label 

The statement (6a) resumes execution of the process proaesename, 

using the data environment stored in array beginning at the 

location index. Execution resumes from the instruction 
location recorded in that environment; this location is 

presumably that at which execution of the process with this 

environment was last suspended, either by the execution of a 

prior RECALL statement or by some earlier external interrupt. 

Form (6b) of the RECALL statement has much the same effect as 

t6a) except that execution resumes with a forced transfer to 
label, which must label some point in the main program of 

proaessname! in addition, register reload is ommitted. 

For uniformity, we must make available the environment 

storage location of the first declared process, which sets up 

all the others. This is done by a statement 

(7a) INITIAL SETUP proaessname (array,index) var1 = const1 , ... , 

varn = constk BEGIN 

I 
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which must be prefixed to all other executable statements 
defining a set of processes, and which· acts much like a SETUP 
followed by a RECALL. Of course, in (7a) index must be a 
constant. The same rule applies to the similar statement form 

(7b} INITAL SETUP proaessname (array, index) var1 = aonst1, •.. , 

var = aonst , n n 
which can be used to ensure that a number of processes are 

properly set up prior to execution of the first statement of 

the process entered first. 

We allows one process to access (and to modify) private 

global variabl_es of another. Such quantities may be referenced as 

(8} proaessname.quantityname (array,index). 

Here, proaessname is the name with which (the text of) a 

process has been declared, as in {1); quantityname designates 
a quantity declared global in the text(l); array and index serve to 

locate the place where the data.environment pf a particular process 

instance is stored. A private quantity's size {and dimension, 

if any} is taken from the defining text of the process ·to 

which the quantity is private. If a private quantity is 

dimensioned, its components should be accessed in the form. 

(9) . proaessname.quantityname (array,index, extraindex). 

As compared to (8), (9) contains an extraindex which defines 

the particular component of a private array to which reference 

is being made • 

3. 

of 

.. . 

, External Interrupts. Enable. Disable, Mask •... Representation 

Peripheral Operations 

External interrupts are treated as autonomously forced 

RECALL operations of one of the two forms(6a) and (6b). Some 

finite set of external interrupt sources is assumed to exist, 

and we number these sources 1,2,3, •.•• Then what we need 

is a way of associating an interrupt coming from a particular 

source with a process to be RECALLED when the interrupt occurs. 



LITTLE-30-5 

For this purpose, the statement forms 

ATTACH n To processname (array,index) (9a) 

(9b) ATTACH n To processname (array,index) FROM Zabel 

are provided. Here n is an integer denoting an interrupt 

.source (actually, there is no reason why n should not be 

an integer-valued expression). When an interrupt with source 

n occurs, the system behaves as if a statement of form (6) 

corresponding to one of the statements of form (9) has been 

executed. 

It is well known that to manage interrupts one needs some 

way of disabling interrupts temporarily in 'critical' program 

sections. This possibility is provided by a statement 

DISABLE. 

The converse operation is effected by a statement 

ENABLE 

we assume that each time a DISABLE is executed a global public 

quantity called WAS_ENABLED is set to 1 if interrupts were 

previously enabled, and to zero otherwise. This bit may be 

unpredictably modified by any other of the LITTLE interrupt 

handling statements, and the programmer should if necessary 

save the bit around any invocation of such a statement. 

When a process is recalled, one may wish to enter it 

with the ENABLE bit either on or off. The default setting is 

off; to make it possible to enter a process with the ENABLE 

bit on, we provide an instruction 

PRENABLE. 

If this instruction is executed before a RECALL, the RECALL 

will leave interrupts enabled. 
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Similarly, if a process is recalled in response to an external 
interrupt, one may wish further interrupts to be disabled 
temporarily on entry to the process. Disabled process entry 

after an interrupt will be made if we use one of the following 

optional forms of the ATTACH statements (9a) and (9b): 

(lOa) 

(10b) 

ATTACH n To prooessname(array,index) DISABLE 

ATTACH n To prooessname (array,index) FROM label DISABLE. 

An enable-disable condition is completely global. 

Finer screening of interrupts than is provided by a 

single enable/disable bit will sometimes be necessary. We 

provide for this by agreeing that in addition to its explicitly 

declared variables each process has an additional global variable 

called INTMASK, of a size IMASIZE equal to the number of 
external interrupt sources recognised. in a given implementation. 

The j-th external interrupt source corresponds to the j-th bit 

in INTMASK. ~f this bit is 1 in the INTMASK of a process, 

t.he interrupt source is {individually) enabled and can 

interrupt the process; otherwise it cannot. Note that a 

different INTMASK is associated with each process. This mask 

is saved when control exits from the process (either in response 
to an external interrupt or by an explicit RECALL) and is 
restored when control returns to the process. 

We shall not attempt to invent statements for managing 

the wide variety of I/0 devices that might be encountered. 

We simply assume that each one of them is represented by one or 

more primitive subroutine calls, written in machine language, 

but obeying the linkage conventions of LITTLE. All that is 

important is that external devices not generate interrupts or 

require polling too frequently. Therefore in some cases 

buffering actions may be associated with a routine appearing 

at the LITTLE level as a device-control primitive. 

I 
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When necessary, trivial high frequency actions associated 
with certain special high frequency interrupts may be handled 

by short assembly code sequences hidden within the physical 

interrupt handler which is presupposed by the LITTLE interrupt 

conventions we have described. In this way, simple but frequent 

actions can be hidden, leaving only residual interrupts to be 

managed at the LITTLE level. Interrupts which have to be 

handled within fewer than a few dozen machine cycles probably 

call for assembly code; less urgent or less frequent interrupts 
can be handled using LITTLE. 

4. Implementation, Robustness, ExqmpTes, Overlays. 

A main charateristic of the scheme proposed is that it 

suppresses the concept of 'status package' that would appear 

at a semantic lower level, absorbing this into the more general 

notion of 'process data environment'. Putting this more crudely, 

when an interrupt occurs we store the 'status package' of the 

interrupted process with the other data constituting its 

environment. The justification for this lies in the fact 

that the private variables of a process, as well as subroutine 

return addresses and other normally 'implicit' data items, 

will ordinarily have to be treated as an extension of the status 
package, e.g. saved before the code blocks belonging to the 

process are re-entered for another purpose. Keeping the status 
package with this other data should avoid complications that 

would surface if these two classes of logically related data 

were treated seperately~ 

To execute an interrupt, we proceed as follows: 

(a} First, we store all registers in a designated group of 

words within the data area associated with the interrupted 

process. This data environment is located by a "current 

data environment" pointer that is always maintained. 
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(b) Then we set up a new current data environment pointer. 
(c) Finally, we transfer to a label associated with the 

process attached to the class of the current interrupt, re­
storing registers if necessary. Immediately prior to this 

jump, an ENABLE operation will be executed unless the jump 

has been set up by an ATTACH ••• DISABLE statement. If there 

is a hardware mask register, it will be located with the 

INTMASK value corresponding to the process being entered. 

However, this mask register reload will be suppressed if the 

preliminary ENABLE is suppressed; in such cases, the process 

being entered is responsible for loading its own mask register. 

The mask register will be reloaded automatically when an 

assignment is made to the private variable INTMASK. 

The interrupt-handling scheme which has been described 

is Pobust, in that it gives representation to all the important 

interrupt..-management actions which we expect conventional 

interrupt-management hardware to execute. Note in particular 

that likely hardware extensions, such as the introduction of 

new classes of external interrupts, can be mimicked by software. 

The following example will illustrate this point. Suppose that 

on some particular machine all interrupts trap to a fixed 

location (so that only one'interrupt class' exists); but that 

immediately after an interrupt has occured one can use an 

(assembly language) routine CAUSE(J) to set a quantity J equal 
to an integer representing the detailed interrupt cause 

Then, by using the following code as an innermost interrupt 

handler, we can make it appear at all 'outer' software levels 

that a more sophisticated hardware interrupt mechanism, 

capable of distinguishing between many different interrupt 

sources, is at work: 

I 



PROCESS HANDLE_ALL_INTERRUPTS; 

/* MAIN INTERRUPT HANDLER, WHICH WE ASSUME TO BE ENTERED*/ 

/* WITH ADDITIONAL INTERRUPTS DISABLED*/ 

NAMESET ATTACHMENTS (ATTACHED, ATTINDICES, ENABLES) 

SIZE ATTACHED (WS); /* CODES FOR PROCESSES {AND ARRAYS) 
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ATTACHED TO VARIOUS INTERRUPT SOURCES * / 

SIZE ATTINDICES(WS); /* VALUES OF ATTACHED PROCESS INDICES*/ 

SIZE ENABLES (1); /* FLAGS DISTINGUISTING 'AT'fACH ••• DISABLE'CASES */ 

DIMS ATTACHED (NSOURCES), ATTINDICES(NSOURCES), ENABLES(NSOURCES}; 

/* 'NSOURCES' REPRESENTS THE NUMBER OF INTERRUPT SOURCES RECOGNISED*/ 

SIZE J(WS}; /* QUANTITY GIVING INTERRUPT CAUSE*/ 

SIZE INDEX (WS); /* INDEX LOCATING ENVIRONMEN'J" OF PROCESS 

TO BE RECALLED*/ 

SIZE PROCANDARRAY (WS); /* AUXILIARY VARIABLE */ 

CAUSE(J); /* GET CAUSE OF INTERRUP */ 

PROCANDARRAY = ATTACHED(J); /* GET DESIGNATORS OF PROCESS 

AND ARRAY A'FTACHED TO INTERRUPT*/ 

/* NOW ESTABLISH ENABLE BIT CONDITION TO FOLLOlf RECALL*/ 

IF {ENABLES(J). EQ 1) THEN PRENABLE ELSE PREDISABLE; 

INDEX= ATTINDICES(J); 

GOBY PROCANDARRAY (CASE1 , CASE2 , •••• ) 

/* HERE MUST FOLLOW A LIST OF ALL THE PROCESS_MAME/ARRAY_NAME/ 

LABEL NAME*/ 

/* COMBINATIONS THAT OCCUR IN 'ATTACH' STATEMDJTS */ 

/CASE1/ RECALL PROC1 (ARRAY1 , INDEX); 

/CASE2/ RECALL PROC2 (ARRAY2 , INDEX) FROM LABEL2 ; /* IF A LABEL IS REQUIRED*/ 

• •• (etc.) 

END /* HANDLE_ALL_INTERRUPTS */; 

When the process shown above is used as a master interrupt 

handler, the following routine should be used tto simulate 'ATTACH' 

operations. 

I 
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Note that we assume this routine to be·called using the sequence 

DISABLE; 

CALL SIMATTACH (SOURCENO, PROCANDARRAYCODE, INDEX,DISABLE_BIT); 

SUBR SIMATTACH(SOURCEND, PROCANDARRAYCODE, INDEX, DISABLE_BIT); 

/* THIS SIMULATES THE ACTION OF ONE OF THE STATEMENTS*/ 

/* ATTACH N TO PROC(ARRAY, INDEX), OR */ 

/* ATTACH N TO PROC(ARRAY, INDEX) FROM LABEL, OR */ 

/* ATTACH N TO PROC(ARRAY, INDEX) DISABLE, OR */ 
/* ATTACH N TO PROC(ARRAY, INDEX) FROM LABEL DISABLE */ 

/* THE PROC, THE ARRAY, AND THE LABEL ARE ALL TRANSMITTED*/ 

/* IN CODED FORM AS THE PARAMETER 'PROCANDARRAYCODE' */ 

/* IN PRACTICE, IT WOULD BE CONVENIENT TO REPLACE THE*/ 

/* ATTACH STATEMENT BY A SET OF MACROS */ 

/* ATTACH_PROC_ARRAY(N, INDEX), 

/* ATTACH PROC ARRAY FROM LABEL (N,INDEX), ETC.*/ 

/* TO GENERATE 'SIMATTACH' CALLS */ 
SIZE SOURCENO(WS); /* PARAMETER: SOURCE-NUMBER */ 
SIZE PROCANDARRAYCODE(WS); /* PARAMETER: PROCEDURE/ARRAY CODE*/ 

SIZE INDEX(WS); /*PARAMETER: PROCEDURE ENVIRONMENT INDE.X */ 

SIZE DISABLE_BIT(l); /* PARAMETER: POST_RECALL INTERRUPT SETTING*/ 

ACCESS (ATTACHMENTS);/* SEE DEFINITION OF THIS NAMESET 

IN I HANDLE - ALL - INTERRUPTS I * / 
ENABLES(SOURCENO)=DISABLE_BIT; /* NEW'ENABLE_AFTER INTERRUPT'SETTING */ 

ATTACHED(SOURCENO) = PROCANDARRAYCODE; /* NEW PROCEDURE, 

ARRAY, AND LABEL(ONE SETTING)*/ 

ATTINDICES(SOURCENO) =INDEX;/* NEW DATA ENVIRONMENT INDEX*/ 

IF (WAS_ENABLED) THEN ENABLE; 

RETURN; 

END; 

Note that the routines shown above give a very good 

indication of what actual assembly-language code supporting the 

proposed ATTACH and recall statements would be like. Of course, 

at the assembly language level some additional actions 
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(such as register save and restore sequences) would have to 
be made explicit; also, some things could be done more simply, 
e.g. the combination ARRAY, INDEX can be condensed to a 
single address. 

To the reader actively concerned with implementation, the 
dictions which we have proposed will suggest that individual 
items belonging to the data environment of a process are accessed 
by indexing to the item's address. This will be an adequate 
approach to implementation on large computers, and on minis 
with at least one (still better, several) index registers. 

However, on a mini without any index register, it may be 
important to keep the data environment of a process in a known 

physical relationship to its code. In such cases, the following 

variant technique might yield acceptable efficiency: 
i) With each process type (as defined by a declaration (1) ) 

associate a data area in fixed physical relationship to its code. 

When control first passes to a process of this type (either 

via a RECALL or an interrupt) ,load, i.e. move,the data environment 

of the process into this fixed data area (using a fast loop.) 
Note in a word associated with the process type, the environment 

that is, in this sense, loaded. 
ii) Each time control re-enters a process of given type, 

check whether it is currently loaded. If so, then control may 

enter it simply by a jump. If not, then the environment must be loaded 
(by two fast loops.) Note that in many of the situations which 
will be encountered in practice, only one instance of each 
process type will exist. Thus neither loading nor unloading 

will ever prove necessary. 
iii) In using the technique just suggested, it will 

generally be mandatory to create several copies of routines 

shared between several processes, since each copy will have to 

stand in a fixed physical relationship to some designated 

data area. 
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iv) The type of 'jump-and-store' instruction commonly used 
at the hardware level in minis to support subroutine calls has 

the property, undesirable for our purpose, of scattering data 
items all of which belong to the data environment of a process. 

To avoid this, one may want to handle subroutine calls in a 
special way, e.g. by a jump and store to a location within a 

process environment block, followed immediately by an ordin~ry 

jump to the subroutine entry point. 

5.Debugging, Polling, Higher and Lower Levels of Multiprocess Semantics. 

One will often wish to exploit the machine independence of 

LITTLE by using a large machine with no convenient source of 

external interrupts to debug a system intended to execute on a 

mini with an elaborate interrupt-system. A related possibility 

is that of using a computer with no interrupt system to contro"i 

external devices which require fairly frequent polling. Note 

that the advantage of an interrupt-driven system over a programmed 

system which polls is its greater stability: in an interrupt­

driven system, an external device can be sure of receiving 

service within some relatively short time after a service request 
is posted; by contrast, a programmer constrained to use only polling 
Cgn find it very difficult to ensure that his programs 

contain no loops which run long enough to miss a poll deadline. 

The following easy technique for mimicking clock interrupts on 

a machine with no actual interrupt source is therefore of interest. 

a) In compiling LITTLE source text, compile each backwards 

branch, i.e. each jump which can have a target address smaller 

than its physical address, and also each subroutine call, as 

follows: 

ai) decrement a global counter EXEC COUNT by an amount 

equal to a (compile-time) estimate of the number of instructions 

executed before the last proceeding point of backward branch. 

If this quentity remains positive, take the branch (or execute 

the call). If it is negative, call a (parameterless) routine 

to simulate an interrupt. 



LITTLE-30-13 

aii) This interrupt simulation routine will restore 
EXEC_COUNT to some reasonable positive value,assign an interrupt 

type (perhaps using a random number generator to do so), call 
additional subprocedures to mimic any changes in core locations 

or accessible registers which may be associated with an 

interrupt, and then RECALL whatever process has been ATTACHED 

to an interrupt of the class which it has decided to simulate. 
Note that in such a software interrupt simulation, the 

ENABLE flag is represented by a 1-bit global quantity, ENABLE 
and DISABLE being compiled merely as instructions which 
modify this quantity. Note also that this technique_ of 

interrupt simulation will generally slow execution only 

moderately. 

To debug interrupt-driven families of procesees, it will 

be convenient to supplement the presently planned LITTLE 

execution~time trace facilities with a facility which either 

builds up an interrupt history file and prints it out on 

demand, or prints such a file out piecemeal. This file 

should contain at least the following information: interrupt 

class, process to which control is transfered by interrupt, 

manner of re-entry (restart at Zabel or process resume, 

state of ENABLE bit), process interrupted, and execution 

location at moment of interrupt. Also: interrupts ignored 

by virtue of ENABLE bit or MASK setting; process in control 

when interrupt ignored, with ENABLE bit, mask setting, and 

instruction location. 

LITTLE, with the extension we have described, can also 

be used in a related but somewhat more sophisticated way to 

allow the development, within a single computer, of programs 

ultimately intended to run in several physically seperate 

computers, eventually as part of a system which can involve 

various peripheral devices and communications channels. 
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We are suggesting that the whole system can conveniently be 
simulated during development. Note that here the development 

of an entire system on a single machine can have really big 

practical advantages, not the least of which is the elimination 

of the severe logistic problems that associate themselves 
with work on pieces of hardware located remotely from each 

other. For the development of multicomputer and communications 
software, we propose the following approach: 

i) A total family of processes, which in sum represent 

all parts of the proposed system, will be written in LITTLE. 

These routines should be grouped into several process 

subfamilies, each such subfamily representing the software 

for one physical device. Note that even passive devices 

such as disc memories, etc. are to be simulated by appropriate 

subfamilies of processes. 

ii) A single global EXEC_COUNT, serving for interrupt 

simulation in the manner described earlier in the present 

section,will be maintained. When EXEC_COUNT becomes zero, 

interrupt action will be taken, and a central process, which 

we shall call SUBFAMILY_SCHEDULER, will begin to execute. 

iii) Within each. (device- or) computer-representing 

subfamily of processes, there will exist one, designated 

as the {interrupt) entry process for the subfamily. Within 

this process a private qqantity called INTERRUPT_STATE, whose 

bits correspond to the interrupt sources physically recognised 
by the computer represented by the subfamily, will be declared. 
SUBFAMILY_SCHEDULER will always pass control back into a 

subfamily of processes by RECALLING the interrupt entry 

process of the subfamily, which will examine its INTERRUPT_STATE, 

will assume that any '1' bits in this quantity represent 

external interrupts just received and still pending, and will 

either RECALL a process still noted as current within the 

subfamily, or {if an interrupt was found pending) simulate 

the RECALL action ATTACHED to this interrupt. 
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vi) SUBFAMILY_SCHEDULER merely passes control, round­

robin fashion, among all the subfamily interrupt entry 
processes of a total system. 

v) To transmit an interrupt to a device, a process only 

needs to set an appropriate bit of the INTERRUPT STATE 

quantity belonging to the entry process of the subfamily 

which represents the device. 

vi) The central SUBFAMILY_SCHEDULER maintains a global 
clock. clock is readable by all processes supposed to 

• have access to a real-time clock; it is advanced by an 
appropriate, slightly randomised amount each time 

SUBFAMILY_SCHEDULER gains control. 

vii) It is appropriate to provide some standardised 

means whereby a subfamily entry process can signal the 

central SUBFAMILY SCHEDULER that it has no work to do and 

is willing to give up the remainder of its turn to execute. 

This can be done by reserving a global flag location IDLE_FLAG, 

always set to 1 by SUBFAMILY_SCHEDULER. Then if an entry 

process sets IDLE FLAG to zero and RECALLS SUBFAMILY_SCHEDULER, 

control will pass into the next process-subfamily at once. 

viii) Each interrupt ENABLE bit is of course private 

to some particular device and should be represented by a 
quantity private to the entry process of the subfamily 

representing the device. Call this quantity ENABLEBIT_J 
(where J varies, and designates some particular device). 

Then a LITTLE macro can be used to redefine the ENABLE and 

DISABLE statement as 

+*ENABLE= ENABLEBIT J = l**• *DISABLE= ENABLEBIT J = O** 
- I 

within the code representing the activity of the J-th device. 
To realise the possibilities described in the present 

section, only one feature needs to be added to the group of 

LITTLE interrupt handling statements which have already been 

described. This is a declaration 



LITTLE-30-16 

INTERRUPT TO proaessname (array, index) 

which,prefixed to the text of a complete family of processes, 

modifies the compilation of all backward branches in the 

manner explained in the proceeding pages. Note that this 

declaration tells the system which process is to be RECALLED 

when EXEC_COUNT goes to zero. Of course, branches in the 

routine proaessname are exempt from modification. 

There exists (see SETL Newsletter 110} a literature on 

multiprocess semantics in which process-handling facilities 

more advanced than those discussed in the present newsletter 

are described. It might be asked if these ought not be 

provided in LITTLE. On the other hand, it might also be asked 

if it would not be better to provide only more primitive 

interrupt handling facilities, thereby avoiding some of the 

overhead implied by the scheme which we have suggested. At 

a more primitive semantic level, the explicit notion of 

process would vanish, and an explicit 'status package' concept 

would appear. The RECALL statement we have proposed would 

then be replaced with a statement 

RELOAD (array, index) 

which reloaded a status package stored at a specified address 
' in an array. The ATTACH statement could be replaced by two 

statements. The first, which might be 

DUMP (array, index), 

could store a status package (including pre-interrupt instruction 

location, which could probably be fetched from core} in a 

specified location. The second could control the location to 

which transfer was made when an interrupt with given source 

was executed. The statements DISABLE and ENABLE would remain 

available. 
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The LITTLE multiprocessing primitives which we have 
described include facilities for process initiation, 
resumption, termination (by re-using the area in which a 
data environment is stored) and suspension (e.g., by detaching 
one process from a given interrupt source and attaching another.) 
The most important additional concepts which would appear at a 
higher semantic level are the notions of process priority 
and priority scheduling, event variables and 'non-busy' 
event variable monitoring, and process coordination by the 
use of semaphores. We omit to provide these notions because 
to provide them in full generality would probably imply the 
use of a standard system space-management routine, which we 
wish to avoid as being inconsonant with the 'low level' 
semantic spirit of LITTLE. In general, these relatively 

advanced multiprocess semantic notions relate to environments 
in which, in addition to the processes directly attached to 
interrupt sources, there exists a pool of other processes 
attempting to execute. These processes will generally fall 
into several classes, represented at the implementation level 
by several lists. One group of processes will be active, i.e., 
asking for immediate execution. These processes may further 
be subdivided according to their execution priorities. 
Other processes may .be in monito:tting state, i.e., momentari.ly 
dormant but attached to lists associated with one or more 
'evant' varia_;>les1 when ~ew values are assigned to an event 
variable, all the processes attached to it are detached, 
and, provided that they are not monitoring any other variables, 
transferred to the active list. Semaphores are special event 
variables, always·accessed while all interrupts are DISABLED. 
It is not hard to represent semantic facilities of this type 
using the proposed LITTLE interrupt-handling features. Note 

that the details· of:"'an implementation of these facilities 
will vary widely,depending on such system-specific facts as 
whether a fixed number, a varying but small number or a 

varying and possibly larqe number of processes and/or priority 

levels are possible, etc. 




