
LITTLE Newsletter# 31 

Representation of BALM in LITTLE 

1. Introeuction. 

January 9,1974 
J. Schwartz, 
A. Stein 

The BALM semantic environment provides recursive procedures 

and allows procedures to be ordinary, assignable semantic 

objects, which LITTLE does not. This raises the question of 

how these features are to be provided when BALM is translated 

into LITTLE. Unless the whole of a BALM source code is 

represented by a single LITTLE subroutine (which is hardly 

COmJ?atible, with the incremental character of BALM) this 

requires some semantic extension of LITTLE. This note will 

suggest what seem to be fairly minimal sufficient extensions. 

These extensions may at a later date be added as new 

LITTLE statements, and cause the compilation of in-line code. 

For present use however we will suggest an off-line technique 

which exploits the known structure of the LITTLE linkages 

and makes use of a very few quite simple assembly language 

routines. 

2. Representation of BALM Procedures • 

. A BALM procedure will be ~epresented by a code block 

generated by the LITTLE compiler and the system loader. The 

starting location at which a newly compiled group of code 

blocks is to begin will be chosen by the garbage collector 

which will pass this starting address to the loader. Presently 

these blocks are non-relocatable, and hence not garbage-collectible. 

For this reason, they will probably be placed for the time 

being immediately below the BALM stack. Small assembler 

charges (available as an assembler option for generating 

this type of code) can_ make these blocks relocatable; 

when this is done, they can be represented by standard garbage­

collector many-word blocks consisting e''ntirely of 'header' 



LITTLE-31-2 

area with no 'pointer' area (see On Programming, Installment I, 

p. 50). 

When a procedure F is set up, its root word (see the 

diagram in Installment 1, p. 52) will be established by 

executing a macro (perhaps later to become a LITTLE statement) 

(1) RECENTRY(V,F). 

This macro will place the entry address of F, with the 

additional garbage-collector boiler-plate shown in the cited 

diagram, into V, which must be a variable having the same 

size as heap and stack entries. (Note that Fis simply a 

unique dummy name generated 'for loader purposes; BALM procedures 

are in principle values and as such have no inherent names). 

For the time being, this macro can expand as 

(2) CALL ENTROUT; 

CALL F (V) ; 

where ENTROUT is an assembly language routine which, knowing 

what code the statement CALL F(V) will generate, uses this 

information to get the entry address of F, forms the required 

root word, stores it in V, and then on return jumps over 

the call to F(V). 

BALM source code 

(3) V = PROC(args) body; 

is then compiled into 

RECENTRY(V,F), 



LITTLE-31-3 

with F being a unique name generated for the PROC standing 

on the right of (3). The code actually representing the 

PROC is of course collected elsewhere. All the 'main program' 

code collected from a single BALM 'compute block' will be 

collected into a procedure represented in the same way, but 

called by the BALM master compiler-controller responsible 

for reading and compiling source code. When the 'main pro9ram' 

terminates it will return control to the master compile-controller. 

3. Recursive Calls, recursive returns. 

{4) 

The invocation of a BALM procedure with root word V 

i_:;; accomplished by executing a macro 

CALLREC (V) ; 

At a later date, some version of this might also be made into 

a LITTLE statement. For the present, it can expand simply as 

(5) INPUTl = V; 

CALL KALLER; 

where INPUTl is one of the global SRTL variables likely to be 

'registerised' and KALLER is an assembly language routine. 

Thi_s routine is 'minimally recursive' : it will stack the 

addr~ss to which it would' return on the SRTL stack (without 

checking for overflow: this check can be combined with the 

overflow check associated with other subroutine-entry 

stacking operations). 

Returns from recursive routines can then be made by 

executing a macro 

.< 6) RETREC; 



LITTLE~31-4 

A version of this might at a later date become an additional 

LITTLE statement. For the moment, it can expand simply as 

CALL RECTRTRN; 

where RECRETRN gets an address from the top of the SRTL stack 

(without needing to check for underflow) and jumps to this 

address. 




