i i

4t

Y LITTLE Newsletter # 39

e

Posf-nartum refliections on the

Honeywell minicomputer implementation

of LITTLE. FMinicomputer Software

T. Stuart
September 15, 1

Dismay is the most likely response for a programmer confronted

with developing substantial systems on a minicomputer(l). If any

language other than the machine language exists, 1t is most likely

to be FORTRAN or BASIC at which point the manufacturer's software

budget ran out. And if they are available, they surely will not be

optimizing compilers. In a few instances a machine oriented language

is available, for example PL-11 and BLISS=11 on the PDP-11, PL516 on

the Honeywell Series 16, and ALIAS on the PDP-9. All of these

languages are improvements over the alternative assembly ccde for

systems programmning. They all provide access to machine characteris-

tics and produce efficient code and should have received wider use.

The efficiency is not the result of any c¢ptimization techniques but

rather the low level and direct references to registers or addresses

and imbedded assembly code. The size of minicomputers generally dic-

tates the exclusion of very much optimization in any case, sc a higher

9

level language in which optimization becomes imperative is nct practical.

For a general discusgsion of these minicomputer systems implementation

languages and several others for larger systems, see Reference 2,

faced with implementing a graphics system of some size on a

Honeywell Series 16 computer, and having previously worked in a

combination of FORTRAN and an assembly language for the same purpos

¥
5
k 4

o

there was every reason Lo consider a systens development language. An

additional criterion was machnine independence, needed gartly because

some graphlcs work would proceed on the minicomputer, while otners

vould run on a larger system, and still

othersg on boeth, and parily

D

because other winicomputers wight eventually be used.

7o
!



LITTLE~39-2
Choosing LITTLE

The choice to implement LITTLE was made primarily on the basis
of its design around the twin goals of machine independence and
efficiency. The resolution of the conflict between these somewhat
contradictory geals through design decislons involving the language
syntax and the compiler structure has been described earlier.
Beyond these assets there were some characteristics of special note

for this implementation. First, the presence of macros within LITTLE
had a beneflit other than the obvious increase in the 1anguage’é power.
Specifically, in graphics the capability for expressing command or
drawing instructions in a natural, more English-like manner was a
desirable feature; macros enable this approach. Second, the size of
the LITTLE compiler 1is much larger than any minicomputer will support.
Thus, it runs as a cross-compiler. Perhaps, this would seem a dis-
advantage, but not so. Since LITTLE is machine independent, program
development and debugging take place on the larger machine with its
extensive aids. Third is the inclusion of most of the FORTRAN syntax
in LITTLE, Though code written by experienced LITTLE programmers
generally looks more like ALGOL; programmers suffering from an exclusive
FORTRAN background can express themselves without difficulty.

Few systems implementation languages can support a claim for
machine independence. Of those with independent qualities none are

both efficient and possess these added characteristics. On the other

hand probably none are as difficult to implement well as LITTLE is.



G A e S i I

el A st R it S ST i e A 35 e el 1 R i A PR i+ s et o s i P TSP sy o

LITTLE~-39-3
Target Machine

The Honeywell series 16 computers are characterized quickly as
sectorized, accumulator,twos-complement machines. The two useful
registers are the accumulatof and the index register. Machine in-
structions are all one word in length and have a single operand.

For instructions that reference memory, the operand field occupies
nine bits, thus limiting feferences to 512 words, the size of sectors.
The references are absolute, not relative to the instruction. One bit
of the instruction allows swiltching the reference to the first'sector
of memory, sector zero. References to locations outside both sector
zero and the sector of the instruction must be accessed through indexing
or indirect addressing or both. When both are used there 1s a compli—
cation. It arises because the criginal version of the machine caused
indexing to be specified on the indirect address rather than the final
direct address. This design fault was corrected by a hardware opticn
that allows one to switch addressing modes. Not all machines possess
it. The machine instructlon repertory is rather standard. HMultipli-
cation and division are options absent from many configurations.

The only software provided by the manufacturer of interest to this
project was the FORTRAN compiler, the assembler, and the loader.

FORTRAN was of interest mainly in order to define the calling convention
for routines; excebt for four short library routines nothing of that
language has been used. Two versions of the assembler were available,
the standard one and another which ran as a cross assembler on the CDC
6600, The latter was used, and of its use, more later. The loader used
was the most complex of those avallable, but was still primitive. The
most serious defect was a lack of provision for data blocks of global
variables. Though a "common" cxisted for the loader, its pronertics

bore no relation to a usual block of this type.



- A o ik 8 e et AP TR i i e i B b S <4 s S - PR R 117 LA 11 AP B T RS S A i A3 O e £ ST e e ey

LITTLE-39-4

Given the macnine characteristics, one can see a number

of problems:

1. Compilation must handle two addressing modes. (Mode independent
code 1s possible but inefficient.) Executlon requires two run-tim

libraries.

2. Operands of machine instructions preferably will not refer to
addresses in other sectors, because this costs space and execution
time. ,‘ .

3. HEffective use of sector zero will mean placing the most frequently

used quantities there.
L, Some convention must be devised for linking global data blocks.
These problems are unique for this implementation, but every

machine will have an equivalent set to superimpose on the basic

task of code generation.



LITILE-39-5

Design Decisions

The first choice to be made was the number of LITTLE primitives
to implement. Since there were expectations of a substantial need
for machine independent code right from the beginning of the compiler's
use, a larger set of primitives, forty, were cnosen than 1s necessary
for a useful compiler. The only primitives omitted were real number
~operators and functions. Most systems work has no need for real numbers,
and in the exception,; FORTRAN routines could take care of the problem.
Two score primitives would not constitute a major task for*implementation
in many languages, but because the primitives output by the parser are
still devoid of any features of a machine dependent nature, and because
the goal of efficiency must be attained largely through the work of the
code generator, the task in LITTLE is major.

The second choice was the form of the output, blnary or symbolic.
Proceeding directly to binary output and bypassing an assembler has two
distinct advantages. It is more efficlent in terms of execution time
for the compilation process, and it avolds the idliosyncracles of an
assembler, expecially the limitations on symbols. On the other hand,
employing an assembler also has a couple cof advantages. The assembler
wiil perform a service by checking for errors 1n the transliation. And
the presence of assembly code will then enable modifications or exten-
sions on the machine level to handle operations not available in the

nigher level gource code. 3Symbolic code emission was the cholce, and as
it turned out, the first reason lor chdosing it was the major Jjustifi-
cation. Tnere has never yet been any code tinkering; when a hardware
device must be addressed, an asserbly language routine is writtern .
fowever, a third reason did surrace; another installation desiring zome
Soitware, but without a LITILE compller, was supplied with the =zssambly

Lource,



LITTLE~39-6

Another major problem involved communication between object
modules. As noted earlier, the loader provided no means of linking
global data blocks. To be precise, the problem is to enable reference
to global variables from assembly language programs. One solution
that would have been easy on the LITTLE program writer is to adopt a
convention for naming these plocks, and then passing them off to the
“assembler and loader as subroutines. There were several disadvantages
to thig. PFirst, the assembler and the LITTLE compiler accept the same
set of characters as legal; hence no special character is available
that would be an acceptable convention for linking to assembl§ programs.
The unacceptable alternative is to impose restrictlons on symbol use in
LITTLE source code. Furthermore, reflerencing an element of an array
that is in turn a member of a global block would be a cumbersome and
error prone task in assembly language.

Yet another aspect of the problem is that the Series 16 machines
have dedicated machine locations that it would be advantageous to
address from LITTLE. Since we are writing systems programs, the lack
of a capability to tie locations to variables causes a resort to
assembly programming. Treating global blocks as external, relocatable
routines aids not at all.

It is even debatable whether there 1s always an advantage in
treating a global block that appears as an entity in source code as an
entity in object code; storage allcocation can be more efficlent when
the variables are treated'separately, and this is discussed later.

Considering the above, two realistic solutions appeared; one was
to re-write the loader, to change ocur universe as it were, and the other
was to establish a procedure for specllying machine addresses to the

compiler to be used whenever a communications 1link to an assambly progzran

LA

Lo

or a dedlcated location was required. The code generator then ploces Uhe



b

e TR A NI i B P e e & NN ) L 5 B IR KD SIS T YT S 1 BT R ae kainne  eBE

LITTLE-39-7

global block or nameset at the specified location. Directives to the

compiler take a simple form. For example,
/CHARNEL/ = 73 ;

puts block CHANNEL at locaticn 73. The directives are on a file
entirely separated from source code, source code of course has no
access to the addresses, and the solution imposes no conventions or
limitations on LITTLE source code.

The three preceding problems involve the world external to the
code generator; its internal structure constituted the next to last
major design problem. Though the top most structure»of,the translator
could nave been quite simple with just two passes over the parser output,
one for resolving "forward references" and a second for code generation,
the extravagant choice of four passes was made. Partly 1t was done to
separate processes that were conceptually different so program develop-
ment could proceed independently and so that debugging and compiler
modification would be more straightforward. But it was also done to
allow more chances for optimization; the longer one can postpone storage
allocation, the better the job becomes. The philosophy here is simply
that in implementation o¢f a language for systems development, almost no
effort by the compiler in behalfl of optimization 1s too excessive. Kot
surprisingly, there was some expectation that the translator would run
rather slowly. This did not, however, prove to be the case; the code
generator accounts‘for about one-third of the execution time of the
compiler. The functicns performed in each of the four passes were:
1, symbol resolution to adapt LITTLZ source Into legal, non-redundant
assembly language symbols,
2, a preparatory pass to determine the optimum code to generate and set

directions for the succeedlas pass,



LITTLE-39-8

-3, code generation itself, and
4, a storage allocation pass.
This gross descriptlion of the structure i1s amplified in a detailed
systems manual (3).

The final decision transformed the structure of the object
output. The usual compiler converts a series of programs or routines
or procedures into a series of independent object modules, to be linked
by a loader. The ftranslator creates a single assembly language progran

with multiple entry points. A single program causes all symbols to

become global, so of course this creates work: the decision is the major

cause of the first pass over the data, although some symbol resoclution
would have been necessary without it because, like any -higher level
language, LITTLE is not as restrictive’in its use of symbols as an
assembly language. 'The Jjustification for the transformation lies, orice
again, in the optimizations 1t allows; these advantages are discussed

later in the account of storage allocation.

ey R AT A S qmen ge



LITTLE-~39-9

Optimizing Machine Code

If the LITTLE goal of efficiency is viewed seriously in writing
a cocde generator, then at least half of the result will depend on the
care taken in choosing the machine instructions to implement each
LITTLE primitive. For many machines a concurrent concern with register
allocation is also important 1n reducing connective (loading and storing)
code; for fthe accumulator machine here it is insignificant. Without
going inﬁo any détails of the code, tne following paragraphs dilscuss a
number of subjects that offer opportunities for optimization, and that

might- be of beneflt in generating code for any language.

Varied Realizaftions

It is not uncommon practice to realize a primitive with a single
macro or template, but for this LITTLE generator a single implementation
is the exception. Most primitives give rise te several code sequences.
In séme cases the determinating influsnce 1is the code environment
{preceding or succeeding primitives) while in others it is the character-
istics of the arguments of the primitive itself. A good example cf the
latter type is the LITTLE field extraction operator. This primitive can
lead to more than two dozen machine code sequences depending on the
nature of the variable from which the field is extracted, the size of the
field, its »nosition, whether or not the size and position are constants,
etc. Generally, for this primitive 1t 1is difficult to think of many
situations where the assembly language programrmer could turn out better

code.

Space versus JTime

Usually wihen two means Lo implement a2 primitive are available, one

of them will be both shorter in code lengih and faster in executine

(S

Inere will be no difficulty in choosing the better one. But occasicornallv



LITTLE-39-10

execution time and code space are in confliet. One way this may happen
is when the code reguired by a primitive is a few instructions too long
to be entirely reasonable in line, but as a run time library routine
would require two or three times as long to execute. A typical solution
is to allow the programmer to choose between the two possible optimizationcs
at compile time; and the original design of this generator incorporated
such a feature. Once the generators were begun, however, there appeared
only three primitives that could pose any conflict of this sort, and two
of them were rarely used. After hearing of a case where a version of a
FORTRAN compiler that had been optimized to produce fast code actually
turned out slower code than the unoptimized version, the désign declision
was reversed and the choice was made arbitrarily.

Por library routines a substantial factor in execution time can
sometimes be found in the transfer of arguments. Though an inefficient
procedure may be chosen for other characteristics such as traceback
facilitiles or inter-language communications, there is no reason to maintair
the same procedure in designing library routines; several more efficient

cnes were used here.

Compile Time Optimigation at Run Time

Every good compiler will take a division by two or a power of two
and optimize with a register shift if the machine has no hardware for
the operation. As a rule this optimization is confined to situations
where the divisor is a compile time constant, but this need not be the

case. If D is the divisor then the expression (7)

DA (D=1).
is zero if D is a power of 2. It 1s, on the average, much faster to
perform this test and carry ouf division only nupon failure than to supply

a somewnat sherter division roufiine lacking the test. Of course the same

.
[N
[}

situation exists for multiplication, and an analogous optimizatio:

S

possiblie with some of LITTLEYs {fileld oporators.



LITTLE-39-11

Run Time Library

Several considerations here cause conflict in choosing a best
implementation. On the one hand, the vuse of previously written machine
independent code for the library routines is preferable because it re-—
quires no work. On the other hand, these routines are at the lowest level
and an argument can be made for writing machine dependent, efficient
code. An individual who has written the code generators has an excellent
assessment of what source level code gives good machline level cdde, and
what 1is impractical to express at the higher level. In this instance
there might be about 100 words of assembly code in the run time library
that could not be avoided, but the actual library has about 400 words on
the basis of efficliency. Half the remaining LITTLE coded library was
taken from previous libraries and the other half was fe written mainly
because of differing conventions.

Another aspect Qf the library mirrors the multiple realizations
discussed above. JuSt as 1t makes sense to optimlize with several code
sequences in-line, so does it in the library. For example, both field
extraction and field assignment operators can generate use of four

different library routines.

Addressing
If one wishes to take advantage of procedures written in ancther

language then adherence to the language's addressing conventions is
helpful., In this case compatibility with FFORTRAN was desirable, but

its conventions were not, The point of dispute was the convention which
stipulates that the address of an array 1s the address of the first
element of the array. In every reference to an element, then, an extra
opecration is required to correct the address by one word. Moreover, the
calculation can sometimes reguire a regiocter and causce extra memoly

references for bumped temporaries., 'or the sake of efficiency it wales



LITTLE~39-12

good sense to define the address of an element (where the number of
bits in the element 1s egqual to the number of bits ih a machine word)
as either the sum or difference of the address of the array and the
index to the element; whether memory 1s accessed up or down is not of

consequence to efficiency.



LITTLE-39-13

Storage Allocation

For the Honeywell Serles 16 machines storage allocation offers
the compiler writer a real challenge. For computers that have homoge-
nous memory and homogeneous addressing in the machine instructions,
there will be no gains from any particular allocation scheme. For
computers unlike the Honeywell but with addressing relative to the
instruction, some of the problems and opportunities may be the same as
those described here. Storage allocation does not ofteh get serious
consideration in compilers, but for a systems implementation language
it should. Assembly language programmers only occassionally take the
pains to optimize their Storage; and for good reason: it takes too
much time. But in writing a code generator for the general case the
effort is made only once, and the excuse 1s insufficient. Herewith,

some improvements.

Use of High Priority Memory

As noted earlier the target machine has a sector zero of 512 words
that may be referenced from anywhere in core. With another computer
the priority of a part of memory might be high because access is
especially fast. In either case one 1is concerned with using the space
to best advantage. Here, several disparate guantities were assigned
to this sector. First were intersector references. Sometimes source
code can generate significant numbers of cross sector addresses; even up
to ten per cent of a sector can consist of these resolutions. Since
there is much dupliéation among sectors, placing them in sector zerc
reduces code length. A second‘type of quantity is the literal. Some
constants get repeated use, while others appecar but once; it was a simnple
matter to keep track of tne number ¢l rouvines in which a constant ocours.

I it appears more than once, 1t is assigned to sector zero. This



LITTLE-39-14

procedure would have been impractical without the global symbolj one
program approach. A third category is the global variable. Though

this is a natural choice, space in the sector is quite limited and

might easily be exhausted, so only global variables no larger than

the machine word silze were assigned. In daddition, some address constants
pointing to word size arrays are placed here, again eliminating much

duplication.

Juxtaposing Operators and Operands

This target machine 1is similar to a number of others in deriving
space and time advantages from close proximity of operators and operands;
specifically, if the operand is not in sector zero, there is advantage
to having 1t in the same sector. Several tacks were made in this
direction. The simplest was merely to allocate variables and temporaries
to storage as soon as they were referenced in the code (actually after
the first succeeding unconditional transfer). A second was generally to
allocate storage for a nameset Immediately after the routine in which it
was declared. A third procedure created a new set of Temporaries when-
ever a sector boundary was crossed, And the last procedure attempted to
avoid loops over sector boundaries: on the average half the memory refer-
ences in a loop will lie in the other sector. This attempt was quite
difficult to implement and, although productive occésionally, was perhaps

not worth the effort.

Minor optimizations

Two means causing slight improvements were an allocation check and
a packing algorithm. The check merely prevented assignment of a variable
to storage if it had not peen referenced. Though newly written routines
seldom contain enough instances to make 1t worthwhile, older, modified

programs need some garbage collectlon. A simpie packing algorithm proved



o M e R S T e B K

g A e R S A S i e 3 B s ARt 0 L i D a0 DB B i e TR i B 1 ik 0 AN Rl KA AT e s or

LITTLE-~39-15

quite efflcient in cramming small rcutines into sectors, almost always
filling ninety to ninety five per cent of the space. Of course it igs
possible to emit code withoul regard for sector boundaries, but the
number of inter-sector references rises so sharply that more rather

than less space 1s required,

b oy (I B[R SRR 5 ey o

g T

AT il



virt

A RO Y B R Tl ol e o i ot W T K SR U RS 5 e MR R s ke S e AN WA T T AREAGE L men. SN RO L D P R AT TR Ve L SR T 5 e

AN

LITTLE-39~1(

s

Unexpected Problens

There are always a few of these, but the 1list 1s not terribly
dong. The biggest'problem was that the translator was rather
difficult to debug. The most important causes were the difficulty
of following directions given during one pass in a subsequent one,
the lack of enough top down design in standardizing procedures or
macros for code emission, and the slow growth of storage optimization
features during the writing of the translator. This last cause gave
rise to patchwork-like source and in one case a procedure got.so
complicated it had to be abandoned and redesigned as a structured
program.

A second problem was the parser. The translator was one of the
first large application programs for the compller, so a few bugs would
not be entirely surprising. Bxcept for one, they were minor. The
exception resulted from a confusion over the word size in the pavser
host and the word size in the target code, and 1llustrated once again
the difficulty in writing machine independent software. What was a
surprise in the parser 1s that the only parameters needed by it at
compile time to shift to another target were the new word and character
sizes. One other change in the parser to produce more efficient code
has been shelved; fhe loop dictions in LITTLE, such as do, while and
until, are not primitives and the cnoice of primitives to implement them
is not the most efficient on all machines.

Another source of problems was the assembler. Though this progran
had been executing for several years, it broke under the impact of
LITTLE. Two principal causes could be discerned; one was the product of
the extensive storage allocation mechanisms in the translator which |

employed many pseudo cperations rarely encounterced in the small programs



LITTLE-39--17

previously assembled; the other cause was the sheer size of LITTLE
programs which overflowed the assenbler's tables. During the diffi~
culties it would have been possible (if not very convenient) to have
jumped to the other assembler running on the target machine, but after
some experience with the loader, there was no longer any confidence in
official software.

Like the assembler the loader had been around for a while. Like
the assembler 1t too cracked under the impact. To begin with 1t was a
rather difficult piece of system software to use with complex input,
but when it finally failed to meet its own Specifications: a rewrite
and extension was undertaken. The new code was written mostly in LITTLE,
making this one of the few minicomputer loaders not in assembly code.
The task was particularly painful in that, if a new loader had been
foreseen, then it would have been wrltten at the start, and the structure
of the code generator would have been more standard with conventicnal
global blocks and storage allocation.

The biggest surprise of zll was the length of time needed to do 1%

all - almost a man year.



LITTLE~39-18
Results and #xpected Problems

Some test of the quality of code produced was desirable. There
is, however, a difficulty in that any comparison of code among
languages will reflect theilr biases. The choice of an algorithm should
be grounded in some domain where the languages are at least not at their
most awkward. The Heapsort algorithm of Williams (4) met this criterion
for FORTRAN and LITTLE; it consists entirely of simple arithmetic, a few
comparisons, and program flow statements. It was programmed in these
two languages, and then the intermedliate assembly code was inspected to

find possible short cuts, giving an estimate of the shortest and fastest

code obtainable.

Language Execution Time Code Length
FORTRAN ' 100 246
LITTLE 15 160
Assembler 13 138

FORTRAW is actually worse than shown in terms of code length, because
the library routines it invoked were not included; LITTLE code was all
in=1line.

While the comparison between LITTLE and assembly code looks good,
it is in reality even better. The test excluded two very important
features that would be imperative to consider in an evaluation for
systems programming. One of LITTLE's major assets is its bit and field
operations. FEven a good assembly language programmer will not always
find the shortest ccode for each and every case of fleid manipulation.
Second, and more important, no programmer has the time for all the global
optimization undertaken and described in the preceding section on storage
allocation. For a single, chort routinc such as the Heapsort test this

does not come into play, but for large programs it is significont.



i B BT i N W ik BT N 1+ b 10 e R S i s 5 B i e 57 L e A 0 1R i T et i v e A g i b 8 e S & et

LITTLE-39-19

Taking account, there seems no reason to prevent the assertion: for
systems programming the LITTLE object code may run faster than assemply
code. It is certainly easier to debug.

Currently, efforts are nearing completion on implementing the
extensive I/0 of LITTLE and at least the most frequently used portions
should be operational shortly. There are still no plans to implement
real numbers. Conversely, the interrupt facilities of LITTLE are ninety
per cent complete, and with some luck may become useful within weeks.

Two projects remain to complete the work on Series 16 LITTILE.
First, the machine dependencies of the translator should be removed to
allow execution on other hosts. These mainly result from poor character
handling and could require two or three weeks to finish., Second, the
generator should be extended to handle the FYRIME computer, which in-
cludes the Series 16 machine language as an incomplete subset.

Brief guides to compiling for the Series 16 machires (5) and

running on them (6) are available.

Acknowledgements

Day to day advice from E. Deak and D. Shields was a life saver,
and the assistance of E. Guth with the code generators is much

appreciated.

This work was supported by grant NS-10072 from the Public

Health Service.



Bl T i N e e 0 e e s ST G Tt

e R T P N A o e T T 8t N AR e e e S L e iRt G 1

LITTLE-39-20

. References
1. C. Weiltzman, Minicomputer Systems, Prentice~Hall (1974).
A discussion of software avallability may be found herein.

2. Machine Oriented Higher Level Languages, W.L. van der Poel and
L.A. Maarsen, eds. American Blsevier (L974).

3. T. Stuart, "The LITTLE Compiler for the Honeywell," internal
report, Courant Institute of Mathematics, Hew York (1975).

Y, J.W.J. Williams, CACM 7 (1964) p.347.

5. T. Stuart, "A Guide to LITTLE on the Honeywell Series 16 Machines,"
internal report, Courant Institute of Mathemtics, New York "(1975).

6. T. Stuart "Loading and Running LITTLE on the H-316," internal report,
Courant Institute of Mathematics, New York (1975).

7. D.H. Lehmer, "The Machine Tools of Combinatorics" in Applied
Combinatorial Mathematics, L.F. Bechenbach,ed., John Wiley and Sons,
New York (1964},

N R e e S, AT ¢ e T 7 g SN S

T A . S AR






