
LITTLE Newsletter* 40

Standardised and More Efficient

Communication with the LI'rTLE

Codeg,jnera tors.

Art Grand
November 26, 1975

'l'he SETL group has begun to support a variety of translators

which have similar requirements for lexical scanners etc .

. More recent compilers have attempted to reuse portions of

their predecessors. Adaptations of existing code have been

rather ad hoc. For example, both MIDL and SETL produce LITTLE

intermediate text and then use the entire LITTLE cOJ:.piler

as a cod2 generator. Clearly to achieve more efficient trans­

lation, we must either write individual code generators for

each language, or design a standard code generator which

can be used for all of them. In this Newsletter we explore the

latter approach, and as an illustration of it outline a modular

compiler design for MIDL which will allow two-thirds of its

code to be reused efficiently and elegantly by other languages.

The widest variations found in the translators implemented

so far lie in their semantic processing routines and in their

choice of data structures. The simulaneous parsing semantic­

processing scheme used by LITTLE makes it awkard to reuse the

very flexible parser which LITTLE incorporates. The assorb0ent

of tables passed to the LIT~LE code generator are so hard to

describe and duplicate that other compilers can only coml;lunic2t.e

with it via source code.

By contrast, the new compiler design sketched here will

make a clear distinction b8tween parsing and sem~ntic procGssing.

The data structures p~ssed between parser and semantic processor

will be polish strings, a structure definE:d by a ferma.l

grarriic":ar. 'rhis will facilitate~ the comhina. tion of I custom' con'!',i ler
sections, written for a particular languuge,with 'general pu~pose '

sections.which work effectively 'nr many languages.

LITTLE-40-2

The compiler to be outlined will have four passes. The first

will use the LITTLE lexical scanner. The second pas~ will be

a table driven parser which produces a polish st.ring whose

operators correspond to the semantic routines of the language.

A third, semantic pass will produce 'VOA-like' operators which are

close to machine language. This string will then be

processed by a standard code generator. In the following

sections, we present a MIDL parser and semantic processor of

the type envisaged. Then we conclude with a brief disc~ssion

of code generation and of the adaptation of our scheme to

other languages.

Parsing

The parser we propose to use is a modified version of

the LITTLE parser. As source-text symbols are recognized,our

parser reorders and standardises them and writes them onto the

first polish string (which we call the polish I string). Unlike

the current parser, which immediately calls generator routines,

the new parser will merely wri.te special 'marker' ,nodes onto
•.,._.,

the string as necessary. ~hese will subsequently be recognized

by the semantic pass, during which the generators will actually

be called.

The parser will not require the user to write his own

auxiliary routines, but merely to supply an appropriate grammar.

To fac•ilitate the writing of parsers of the type envisaged, we

propose.to incorporate several primitives, such as branch on

literals and operator precedence parsing of expressions into

the meta-language which defines them. Our extended meta-language

will use the following notations.

LITTLE-40-3

SYMBOL

< * TP >

<CL>

<CL* N >

OP

BRONLIT 'LITI'
:LABI, ••• 'LITN': LABN

STARTEXP]

ENDEXP]

BINPREC

'+' :3:1,
,_, :3:2.

UNPREC

'NOT. ' : 6: 7

ALLRI]

OPEN(TP)]

[END]

ER(N)

.B

• L

.L(N)

• • L

•• L (N)

FUNCTION

Find a token of lexical type TP, hash it
into the symbol table, and write a

pointer to it onto polish I.

Find a clause CL

Find at least N repititions of clause CL

and write the repitition count onto

polish I.

Write the marker node OP onto polish I.

If next token is the literal 'LITi'
branch to LABi.

Initialize the precedence parser.

'Clean up' after precedence parse.

Parses binary operators. Each argument

is a triple <literal, precedence, opcode>.

When an operator is emitted, opcode BINOP

is written onto polish I.

Parses unary operators.

Set parser success flag to true.

Indicates that a compound statement of type

TP has been opened. TP is pushed onto a stack.

Pops the stack and checks that an end

statement'matches its opener.

Print error message N.

Return failure

Go to nex~ alternate production.

Go to label Lon failure •

As above, but set error number to N.

Go to label L •

As above, but set error number.

LITTLE-40-4

M I D L

THE FOLLOWING rs THE GRAMMAR FOR MICL. MANY ER~OR
MESSAGES HAVE BEEN CMITTED FOR SAKE OF CLARITY, IN
THE Kl::YPUNCHED VEHSION, MARKER NODES ARE WRITTE~:

<STATEMF:>

<CNAME>

<OKSUB>

<l.AB>

<UNLAB>

<l-FS>

.. NOD!::- ,

➔ SUBR <•NArE> '1-(t <•NAME> <C~AME•0>t)t cRWORD> -SUBRl•/
,ER ,OKSU8 ,ER ,ER

➔ FNCT <•NA~E> ;z!(- <*NAME> <CNAME•0> t)# <RWORO> •SUAR3•/
.ER ,ER ,EH ,ER

➔ <LAB> ,,U~LAB
,. <UNLAB>

➔ ,,t <NA~E> / ,B ,ER

➔ ;(RECURSIVEt ~RECURSIVE•/,
➔ [ALLRil

,. <RWORD> •SUBR2•

➔ t/'1- <*NAME> '1-l'I- ,-1-AfH:L- /,B .ER ,ER

,. BRONl-lT
nF;(; IFS,
;i!WHILE;t: WHILS,
,uNTJL;t;UNTLS,
tDOt I DOS,
i!!END;i! : tND,
tELSt'I- : ELSl:,
;i!SIZE:t : s12s,
tREALi : RLS,
iDCL;z! : IJCLS,
tEXPl:CTt:ExPECTS,
'1-TYP.t : TYPS,
;11!0ATAil! : DATAS 1
;,!NAMl:Si::T?!I NMS 1
;(ACCl::SSt ; ACS,
tFOR;z! : FOH /,

➔ <SIMPST>

➔ <EXP> ;i!T~ENt [OPEN(IfTHE~lJ -IFT-,~ 5TATEME/
,. ;z!(;(<EXP> I);(•SIMPLEF1- <$IMPST> •SIMPLIF2- ,,REST/

LITTLE-40-5

<WHIL.S>

! <UNTLS>

<BYPART>

<END>i

· <ELSE>

<SIZE>

<RLS>

I <STRWOHlJ>

<ATTRSP>

<CATTRSP>

<DCLS>

<VAfWCL>

<CVARDCL>

<TYPUES>

<TYPEXP>

<TPTR>

<OKP'rR>

4 (OPEN(WHILE)] -WH[L~l- <EXP> ~WHILE2• ,,REST/

• [OPENCUNTIL>l ~UNTIL1- <EXP> •UNTIL2• ,,REST/

4 tOPEN(OO)] <*NAME> -uo1- -=- <EXP> ~002- tTOi <EXP> -Uo3-
<BYPART> •U04• ,,REST/

,[:R ,Er~ ,E~ ,ER .ER
➔ /•NO .-BYFAHT- *I -on~- .,REST

• t8Y- --- <~XP> ~nuwN~ /,~
➔ <EXP>/ , fl

• (ENO] ~E~O- (ALLRI]/

,,STATEME: /

• <AT TR SP> <CATT rm P * 0) <ST R WORD> - S I Z = - , , REST I

• <•NAME> <CNAME •0> <STR~ORD> ~REAL~ ,,REST/

➔ ;,!STACK¢ •STACK~/,
➔ -NOSTACK- ~NQSTACK- /,
• CALLRI l

• ,,, <ATTHSP> / 1 H 1 ER

• <VARDCL> <CVARttCL•O> <STRWORD> •DCL~

➔ <TYPEXf'>/,
• <•NAME> •TNAME·

➔ BRONLIT
tPTR?! TPTH,
tBITSt TB ITS,
tREALt. : TREAL,
?!SETL08Jt:rsOl:1J,
tMAPt : TMAP,
,ENTRY- : TENTR /,U

• ,ct t*t <•NAME>, t)¢ •TFTR1• I.OKPTR
~ <•NAME> t)¢ -TPTH2•

~ ·TPTR3• (ALLRll

LITTLE-40-6

<TBITS>

<REAL>

<TS08J>

<TMAP>

· <TF,NTR>

<DATAS>

<DATAREST>

. <DATAEI..T>

<CDATAE:LT>

<NMS>

<ACS>

<EXPECTS>

<TYPS>

<TDESPART>

<TYPEREST>

<TOESCP>

<FORS>

<SIMPS>

<SJMPST>

.. , (;t <!EXP> ;!) ;(-Tt:IITS ..

.. ·TREAL- [ALL,HIJ

.. •TSOBJ"' (ALl.,RIJ

.. ;! (;! <IEXP> ~, ;! <•NAME> it) ;! -.TMAP•

.. <TYPEOES> "'TENTRY1 .. I, TENTRY2· CALUql/

➔ <ATTRSP> <CATTRSP wU> •Pif.',S- I

,. <•NAME> t(t <IEXP> ;)¢ -DATA1- ,,OATAREST/,ER ,
,. -DATA2- ,,UATAR~ST
➔ ;!:¢ <DATAELT> <CUATAELT•O> ~DATA3" -;i ,,DATAS/

.. ,ER
<IEXP>

,. -DATAS~ fAlLRIJ/,

,REST
;!)t ~OATA4- /,B •

,. <OATAELT> / ,H 1 ER

,ER ,ER

,. <NAME> -~AMESET" [OP~N (~A~ESET)l ,,~EST /,ER

➔ <NAME> cCNAME*O> "ACCESS .. ,,REST/,ER

➔ <TOESPART> ,.REST/ ,ER ,ER ,ER

.. <TYPEXP> •COMPl~ I,
➔ <•NAME>; -INHERIT .. <TYFE~EST> ·TYPS2- / ,TYPEREST

,. <TDESCP> <CTOESCP wU> I ,B

.. <•NAM~> _,_ <IEXP> t); <TYPEXP> •COMPD .. /,ER , FH ,
➔ <TYPEXP> l,ER

.. <•NAME> [OPEN(FOR)l eFOR1• ,INt <EXP> ~FOR2· .,REST/
,.. ,ER ,ER ,EH

➔ <SIMPST> ,.REST /,Ii

.. BRONL1T
tCALL.t : CALLS,
tCONT;t : CQNTS,
.i!OUIT¢ : QUITS,

LITTLE-40-7

<ASSJGN>

<CALL,S>

<COtHS>

<GOTO>

<GOBVS>

<LABL,IST>

<ARGS>

<ARG>

<QUITS>

<RESTS>

<DROPS>'

<INS>

<OUTS>

<EXP>

<NEW2>

<IEXP>

<EX>

..

;tGOit'
iJ!GOBY#
;tDROP;t
¢ 1 Nt
iJ!OUT;t
;tf~ETURt-- ?! ;

<ASSIGN>

GOTUS,
GOIHS,
DROPS,

INS,
OUT~,
RETS /,

◄ <FACTOH> ;t:t •ASSIGNl~ <EXP> -ASSIG~2- ,,RESTI.ER ,ER ,E

◄ <•NAME> JC¢ ~CALL1· <ARGS> ;t);t -CALL2~ ,,REST /,ER • ,ER
◄ -CALL3• (ALLRil

◄ --COtllT- tALLRIJ ,,RcST/

◄ <EXP> ,,LABLIST / I .ER ,ER

◄ <ARG> <CARG•0>

.. -QUIT .. CALLRIJ a,RCST/

◄ -RETURNff (ALLRl) ,,~EST/

◄ <•NAME> .. OHop1- -Ct <EXP> ->;t ~DROP2- ,,REST/ ,ER 'ER I

,. •DR0P3"' [ALLRIJ -,Rl::ST

◄ <EXP> ;t(;t <EXP> ~IN• ,,REST/,ER ,ER 1 ER

◄ ;tNEW;t ;t(~ <*NAM~>;,; <~XP> -NEW1• /, ,ER ,ER ,NF.W2
◄ tSTARTEXPl <EX> [l::NIH:XPJ / ,ER

◄ tSTARTl::XFl '!IIEXP1- <l:X> .. If,xp2 .. CENDEDXPJ / ,ER

◄ <UNOP> <TERM> <~XPTAIL*0> /, ,ER
◄ <TERM> <EXPTAIL•O>

LITTLE-40-8

<UNOP>

<EXPiAIL>

<BlfJOP>

<TEftM>

<FACTOR>

..

..

..

..

..

UNPREC
t--t- :a:1,
t-.N,;. :8:1,
t-.NH,t- :b:2,
t.TYPE,t 18:3 1
t-.ARH,t- :8;4,
t-,OCT,;t ;8:5,
t-,MAX,;. :8:6,
t-.TOP,;t :8:7,

'1,NUT,t :8:1,
1--'I- :B;e,
t-,Ff3,;t :g:q,

BINPREC

t , tJ E: LT , ;i : 8 : 1 O ,
1,n1:::c,t :s:11,
1 , M I r.J , t. : B : 1 2 ,
r , f!llT , ;t : 8 113,
'l-,POl-/,1- :8:14,
t-,NPOW,;t :e:15

t-.C,1- :1:16, ¢,FQ,t- :4:21,
t-.CC,t :1117, t-=t- :4:21,
'#-,0,t- :2:1a, t-,NE;t :4:22,
'#-,OR,t- :2;1a, t-~t :4:23,
t-Vt- :2:1~, t,L~,t- :4:24,
t-.EX,t :2:19, t~LT,t :4:?5,
t-,EXOR,t 12119,t,G~,t- :4:?6,
t-,A,t- :3:2o, t-,GT,t- :4:27,
t-.ANUtt- ;3:20, t<r- :4:25,
;.~;. ;3:20, t>;. :4:27

BRONL IT
t-TRIMt
t-SETOF;t
t-TUPl.Of- ;t
t-DlMFt
'#-DEFt­
t-NEWATt­
t-,NL,'1-
t-.NULT,t­
t-.NULC,t­
t-.NULB,t
'#-,OM,t­
'#-,TRUE,t­
'#-,FALSE,i!!
'#-,NIL.t
t-.CN,t-

Tl·n M,
St: T,
TUP,
DIM,
IJEF,
NcWAT,
NL,
NULT,
NLJl,.G,
NULf-:l,
on,
T Hl) E,
F ALS!::,
NIL,

CN
<CONSTANT>
<FACTOR>

.. CONST-- / 1

t-(t- <EXP> t>;.

BRO ML IT
,F, FX,
,E, EX,
.s, sx,
,CH, CHX,
.SUB, sugx I,

I•

.. <ATOM> '"ATOM"

'1--t- :5128,
t-+;. :5:29,
t-•t :6:30,
f./t :6:31,

t.IN,t- p:32,
;t,ELMT,t- :4:33

LITTLE-40-9

.. <DEREF •> '"DEREF• <ATOM>

<Of.REF> .. ;. '"t I '8

<ATOH> ➔ <*NAME> 1,'S:1, <EXP> <C.:t:XP-tQ> t~t .. QFA• .. ;t('I- <EXP> <CEXP .. 0 > 1-) ,. -OF"B-.. ;r('I- ,,.INlJEX1 .. <Af~E> <CARG*O>,..INDEX2• 1-) t
<TAIL> •CUMPRl· I • ,ER ,ER ,NOTAIL

➔ :<TAIL> "'CUMPR2- I 1 i~ 0 TA t l.

<TAIL,> .. ;. : t ;t ; ;. <ATOM> •OUAL .. I• ER, ER, .. 'I-, 'I- <ATCM> .. <ATOM>

<NOTAIL> .. (ALlRIJ/

<TRIM> .. ;. ("t <EXP> ,. , ,;. <1::XP> ,.) ;t --TR IM .. /,ER .ER ,ER ,ER

<SET> .. 'I- ("t <EXP> <CEXP•O> n t •SET~ /,ER 'ER ,ER

<TUP> ➔ 'I- (,i! <EXP> <CEXP•O> ,q;. •TllP• I ,ER ,ER ,ER

<DIMF> .. 'I- (;i! <EXP> <CEXP•l> n t I 'f; R ,ER ' :: R 1 ER

<DEF> .. <•NAME> ;. ('I- <EXP> ;i!) ;c -tJFF"1· /,ER, ,ER ,ER DEF2- (ALLRIJ/

<NEWAT> .. -NEWAT'" (A~LRI>

<NL> .. --NL- [ALLHIJ/

<NULT> .. -NULT.., (ALLRil/

<NULC> ,,. -NULC"' [ALLRll/

<NUL8> ➔ .. NULB,., (ALL.RI]/

<OM> .. -OM- (ALLRI)/

<TRUE> .. -TRUE- [ALLRlJ/

<FALSE> .. -FALSE• (Al,,LRIJ/

<NIL> NIL- [ALLRI)/

<CN> .. BRONLIT
tSETLlf',Ti!! I CN1,
.tSETLPTRt CN2, ·
tSETl.BCOL;i! CN3,

/"'"It:,.
V

<CN1>

<CN2>

'<CN3>

,<;CN4

<CN5>

<CN6>

<CN7>

<FX>

<EX>

<SX>

<CHX>

<SUBX>

LITTLE-40-10

..

..

..

..

..

..

..

..

..

..

..

..

;tSETLChAR;c
tBlT8t
;tCHARS;t
:tPTR

: CN4,
CN5,
CN6,
CN7/

<CEXP> •CNl~ I 1 EH

<CEXP> "'CN2• / I l:R

<CEXP> •CN3""' I, t.:R

<CEXP> ""CN4• /,ER

;r! (,! <ll-:XP> ;t) ;t ,;. 't. <t:XP>

;r! (,! <Il:;XP> .t)t 'F, ,. <l:XP>

<CEXP> ·CN7"' /,l:R

,,.FX- <EXT> l,ER

-EX- <f:XT> / 1 ER

-.sx- <EXT> l,EH

..,CM5"" /,ER

·CN6 ... I ,ER

.. CHEXl• <EXP> .. CHEX2!!! <CEXP> "'CHEX3 ..

-SU8Xl .. <EXP> .. SUBX2r.: <Cf:XP> ·SUBX3 ...

,ER ,ER ,ER

,ER ,ER ,ER

/,ER ,ER

<CEXP> .-suux4-

<EXT> .. -EXT1 .. <F.Xf-l> .. EXT2· <CEXP> -EXT3• <CEXP> .. EXT4"' I, f::n

<REST> .. ;r!J;r! ,,STATEME /•F.R

<ER> .. [ER<N>J ,,SEMLODP I

<;SEML,OOP> .. <•ANY> • •,STA TEME I ,

END

,ER

• l::

,ER • I:

LITTLE-40-11

SEMANTIC PROCESSING

The semantic processor translates the polish I, which is

highly language dependent, into a standard 'polish II' string

of lower semantic level. Two types of transformation are

performed during this translation:

1. The declaratory statements of MIDL are processed,

and various symbol attributes are entered in a symbol table.

Some are used only within the semantic processor, while others,

such as size,are passed onto the code generator.

2. Generic operations such as plus are mapped into

primitive operations such as integer and real addition, and

into calls to the run time library. Along with this, type

checking is performed.

The semantic processor maintains a stack which contains

symbol table pointers for variables and type descriptors for

expression values. Items are read one at a time from the

polish I string. If an item is terminal it placed on the

stack. Otherwise an appropriate semantic routine is called

which initially pops the stacJc, then emits code, and

pushes a result indicator back onto the stack.

MIDL requires that we collect various types of initialization

code as declarations are processed, and then later emit this code

in single blocks. We therefore write c9de fragments to four files:

1. 'Polish II' is the main output le. Whenever the string

< * NAME> READ

appears in polish II, the code generator will read

a record of input from the named file.

2. 'INIT' contains code executed the first time each

routine is entered.

3. 'REC' contains code executed each time a recursive

routine is entered.

LITTLE-40-12

4. 'MIDLAST' is an initialization routine called by

the system, which allocates stack space for various blocks.

Occasionally we must reorder smaller pieces of code. We

do this by emitting a special space-holder node HEREIS. We

can later backspace to a HEREIS and replace it with a

section of code

The symbol table, symtab, is created by the parser and

passed to the semantic processor and code generator. It contains

the following fields,which must be used identically by all

phases and languages:

NAME POINTER:

NCHARS:

PARMNO:

SIZE:

DIMS:

VBEG:

SCOPE:

ADDR:

MODE:

Pointer to a names array

Number of characters

Parameter number

Size

Dimension

Pointer to value table for constants

Namescope

Machine address

One of:bits, real, subr, label

nameset or special.

In addition its entries all contain fields of roughly 30 bits

which may be used differently for ea.ch pass and language. For

the MIDL semantic processor these fields are:

RECF:

COMPFLAG:

OFFSET:

TYP:

Flags recursive variables

Flags component names

Offset in stack

Pointer to auxilliary table typtab.

STP: Pointer to auxilliary table structab.

TYPTAB is a hash table for type descriptions consisting of the

following fields:

TYPCL:

SNAM:

ARGSZ:

General type class

Type name for map, PTR and name types

Argument size for maps.

LIT'l'LE-40-13

PTRDIMS: Flags dimensigned rointers.

STRUCTAB contains a header entry for each user defined type,

giving the following information:

NCOMP:

LTLSTR:

ISHDR:

No. of components

Flags type all of whose components

are of 'LITTLE' types.
Flags type stored in type-a block

Plus the following for each component:

COMPOFFS: Offset in structure

COMPFBP:

COMPFL:

COMPNAM:

COMPTYP:

Polish I Grammar for MIDL

Position in word

Size of component

Name (symtab pointer)

Type (typtab pointer)

Immediately below we give grammar for polish I string

read in by the semantic processor, together with algorithms for

the major semantic routines. The symbol '*' in the grammar

represents a repetition count written on the string by the

<clause* N> operation of the parser.

Header Statements

<STATEMENT+ <HEADER>/

+ <LABEL> <UNLAB> /

+ <UNLAB>

""'"

<HEADER> + <* NAME><NAME *2-><RWORD> SUBRl /*STJBR WITH ARGUMENTS*/

+ <*NAME><Rh'ORD> SUBR2 /* SUBR WITHOUT ARGUMENTS * /

<RWORD>

<LABEL>

+ <*NAME><NAME *l><RWORD> SUBR3 /*FUNCTION*/

+ RECURS IVE /

[ALLRI]

+<*NAME> LABEL

LITTLE-4 0-14

Generators for Header Statements

SUBRl

1. Pop successive parameter names and set parmno fields

of symbol table. Check for duplicate names.

2. Call SUBR2

SUBR2

1. If this nor the first routine then

A. Make sure previous routine is closed.

B. Perform necessary I/0.

c. Reinitialize nameset access table.

2. Pop routine name and make symtab entry.

3. Emit

< * NAME> SUBR

G.nto polish II.

4. If the routine is recursive, emit standard code to

save return address, copy arguments into the stack, etc.

5. Emit

INIT READ REC READ

so that auxilliary files will be inserted.

SUBR3

1. Set FNCTSW to yes, indicating that this is a function.

2. Call SUBRl

Recursive

Set global RECURSIVEFLAG
is a recursive routine.

to yes~indicating that this

Label

This processes both user and compiler-generated labels.

1. The name at the top of the stack is checked for

conflicting uses and its mode set to Zabel.

LI'rTLE-4 0-15

2. The string

<*NAME> LABEL

is emitted.

3. Relocation of gotos is left to the code generator.

Compound statements

We maintain an auxiliary stack cosa of unclosed compound

statements. Each cosa entry is a tuple <type, testlabel,

body label, end label, elseflag>. The function getlah(o)

returns unique internal labels•

<IFS>-+ <EXP> IFT <STATEMENT* O> ELSE <STATE~..ENT * O> END

-+ <EXP> IFT <STATEMENT* O> END

IFT

ELSE

-+ <EXP> SIMPLEIFl <SIMPLE STATE~illNT> SIMPLEIF2

Genera tor for if- then statement

1. Pop type of <EXP> from stack and check that its

a bit string.

2. Generate an endlabel and create a cosa entry.

3. Emit

ENDLABEL IFNOTGO

1. Pop <TYPE, ENDLABEL, ELSEFLAG> from cosa check that type

is if-then and elseflag is no.

2. Obtain a new endlabel and emit

NEWENDLABEL goto

3. Push ENDLABEL onto the stack and call label

4. Push <IFTHEN, -, -, NEWENDLABEL, yes> onto cosa.

SIMPLIFl

1. Pop the type of <EXP> and check that it is a bit string

2. Generate endlabel

3. Emit

END LABEL IFNOTGO

LITTLE-40-16

4. Push <SIMPLEIF, -, , ENDLABEL, -> onto cosa.

SIMPLIF2

1. Pop~-, , ENDLABEL, -> from cosa

2. Push endlabel onto the stack and call LABEL.

<WHILE>-+ WHILEl <EXP> WHILE2 <STATEMENT* O> END

WHILEl

1. Generate test_label and end_label; make a -cosa- entry.

2. Push test label onto stack and call label

WHILE2

1. Pop the type of <EXP> and Gheck that it. a bit string.

2. Write

END LABEL IFNOTGO

into the polish II.

<UNTIL>-+ UNTILl

UNTILl

<EXP> UNTIL2

1. Generate test label,body label,and end label. - -
2. make a cosa entry.

3. Push testlabel onto stack and call

4. Emit

BODY LABEL GOTO

UNTIL2

1. Check the type of <EXP>

2. Emit

END LABEL IFGO

3. Push bodylabel onto stack and

<DO> + < *NAME> DOl <EXP> DO2 <EXP>

<BYPART> + <BYWORD> <EXPR> DO4 /.

+/*NO BYPART */ DOS

<BYWORD>+ DOWN

-► /* ALLRI * /

call

DO3

"LABEL

LABEL.

<BYPART>

LITTLE-40-17

DO (1)

Processing 'DO< *NAME>'

1. Pop DNAM. Check that is declared bits

2. Write it on polish II.

DO (2)

Processing 'DO<* NAME> = <EXP>'

1. Generate bodylabel, endlabel and testlabel; enter in cosa.

2. Check the type of <EXP>

3. Emit ASSIGN

4 . Emit BODY LABEL GOTO

5. Push testlabel and call LABEL

6. Emit DNAM twice (for 'dnam = dnam + ')

7. Emit HERE IS

DO3

Processing 'to <EXP>'

1. Check type of <EXP>

2. Backspace to HEREIS

DO4

Processing I Do <* NAME>= <EXP.> to <EXP> by <EXP>

1. If downto flag is set, emit INT MINUS otherwise emit INTPLUS

2. Emit ASSIGN (dnam = dnam + bypart)

3. Push bodylabel and call label

4. Emit DNAM (for dnam = limit)

5. Skip to end of polish II.

6. If downto flag is set, emit LT, else emit GT

7 . Emit END LABEL IFGO

DOS

(No 'by' part.)

1. Emit symtab index for constant 'l'

2. Go to DO4

DOWN

Set downto flag to yes.

LITTLE-40-18

<NAMESET> ➔ < *NAME> NAMESET

l\JAMESET

1. Check that name is unused so far, assign it the

next free namescope number and enter it in symtab.

2. Set curscope to the new namescope

3. Make a cosa entry

4. Generate a variable which will be the stack base

for the nameset. Enter it in 'basetab' which maps

namescopes to base variables.

<QUIT> ➔ QUIT

1. Search thru cos a for a 'do, 'while',' until' i- or 'for' entry. ,
2. Obtain END LABEL from the cosa and emit

END LABEL GOTO

<CONT> ➔ CONT

1. Search thru cosa for a 'do',·'while', 'until' or 'for' entry.

2. Emit
testlabel GOTO

<END> ➔ END

END

1. Pop cosa.

2. If popped cosa entry is a 'do','while','until' or 'for' type

then emit

test label GOTO

3. If the cosa type is any of the above or if-then, define

the endlabel by pushing it onto the stack and calling LABEL

4. If the cosa entry is a nameset type restore

CURSCOPE = LOCALSCOPE.

5. Otherwise, we have reached the end of a routine • Emit

ENDROUT

LITTLE-4 0-19

Declaratory statements

<SIZE> + <ATTRSP* O> * <STRWORD> SIZE

<ATTRSP> +<*NAME> <IEXP>

<STRWORD> -+ STACK

-+ NOSTACK

-+ [ALLRI]

<IEXP> ->- IEXPl <EXP> IEXP2

<REAL> -+ <NAMES * o> * <STRWORD>

<DcL> -+ <DCLPART * l> * <STRWORD.>

<DCLPART> -+ < * NAME> <TYPEDES>

<TYPDES> -+ <TYPEXP>

-+ < .* NAME> TNAM

<TYPEXP> -+ <IEXP> !BITS

-+ <* NAME> IPTRl

-+ <* NAME> TPTR2

-+ TPTR3

-+ !r.REAL

-+ <TYPEDES> TENTR

-+ <IEXP> <*NAME> TMAP

REAL

~

The declaratory routines create entries in typtab and

symtab. They fall into two classes: TBITS, TPTRl, etc.hash

type descriptors onto typtab and push pointers to them onto

the stack. DCL,SIZE and REAL associate type descriptors with

variables. We give special treatment to compile time expressions

(<IEXP> in the grammar), pushing their values onto the stack

instead of emitting them.

TPTR2

Below are two sample declaratory routines

This processes a qualified, undimensioned pointer.

1. Pop<* NAME> from the stack and check that is

a valid, ~urently accessable type.

LITTLE-40-20

DCL

2. Hash the type descriptor

<PTRTYPE, < *NAME>, 0 , F. >

onto typtab and push a pointer to it onto the stack.

1. Pop the iteration counter and loop through 2 and 3:

2. Pop a typtab pointer and a symtab pointer. Check

that the mode and typ fields of the corresponding

syrotab entry are undefined. Set the ze, mode,

recflag, scope and typ fields.

3. If the current scope is not local, copy the

symtab entry into GSYM which stores descriptors of

global variables.

<TYPE> ➔ - <*NAME> TYPEl <TYPEXP> COMPl ---
➔ <*NAME> TYPEl. < *NAME> INHERIT <TDESP * l> TYPE2

➔ <*NAME> TYPEl <TDESP * l> TYPE2

<TDESP> +<*NAME> <IEXP> TYPEXP

We create structab entries for each user defined type

and allocate a pointer to its run-time template which is

stored in the heap.

TYPEl

TYPE2

1. Pop the type name from the stack and check that it

has no conflicting use.

2. Declare a pointer of the same name to point to the template.

3. Create a header entry in struetab, which will contain

the number of components, etc. Set the stp field of

the structures symtab ent:i;y to point to it.

1. Make struetab entries- for individual components,

assigning them fields and offsets.

LITTLE-40-21

INHERIT

1. Pop a name from the stack and check that it is a

valid structure.

2. Copy its components. ortto struatab for the current type.

<DIMS> + < ATTRSP> <CATTRSP> * DIMS

DIMS

1. Pop pairs <NAME, DIMS> from the stack. Check

that name is a variable in the current scope

but not yet dimensioned.

2. Set its dims

<ACCESS> ·-f' <NAME * l> ACCESS

ACCESS

1. Pop repitition factor and loop over 2 and 3

2. Pop a name and check that it is a nameset.

3. Set the appropiate bit in accesstab.

<EXPECT> + <DCLPART * l> EXPECT

1. Pop each DCLPART, which consists of a name and type.

Check that the name has no conflecting uses.

2. Enter the type in symtab and set mode to 'function'.

3. Copy the symtab·entry into gsym.

<DATA> + <* NM'.i.E> <IEXP> DATAl

+ <* NAME> DATA2

<DATAELT> + <IEXP> <IEXP> DATA4

+ <IEXP> DATA5

<DATAELT * 1> DATA3

<DATAELT * l> DATA3

Data statements are represented indenticly in polish I

and polish II. However, we perform the following checks:

1. The variable being initialized must be

declared in the current scope and stored staticly.

2. If it is treated as an array, it must be

dimensioned, and the initialized elements must

not be out of bounds.

LITTLE-40-22

Simple statements

<CALL> + <*NAME> CALLl <NARG * l> * CALL2 /

<*NAME> CALL3

<ARG> + ARG <EXP> ARG2

CALLl

CALL2

CALL3

Before processing the argument list we set the

global argsw to yes; as a result code will be

generated to assign each argument which is an

expression to a temporary.

This routine processes the argument list.

1. Pop the repitition factor

2. Emit a call to rsvstk to obtain stackipace for

the argument list. This will have the form:

no. of arguments·rsvstk scall

3. Iterate over the arguments. Emit code to push a pointer fox

each dynamically stored argument onto the stack.

4. Iterate again, emitting the name each statically

stored argument and zero for each dynamically stored

argument. Finally emit PLIST to mark the names as

a parameter list.

5. Call CALL3

Generate actual call

1. Pop the routine name from the stack and check that

it is a subroutine or function.

2. Emit

ROUTNAME SCALL

LITTLE""'40-23

ARGl

This routine is called before processing each argument

or array index.

1. If ARGSW = no, return (no problem with array indices)

2. Otherwise emit HEREIS. This allows us to back up and assign

the argument to a temporary once we know it2is an expression.

ARG2

After processing an argument for index:

1. Check Argsw. If its value is no, return.

2. Check whether the last node of polish II is a marker.

If so, · then

A. Generate a temporary.

B. Backup to HEREIS and emit the name of the temporary.

C. Return to the end of the polish string and emit
ASSIGN

D. Push a symtab pointer to the temporary onto the stack.
<GO TO> ➔ <*NAME> GOTO

GOTO

1. Pop the label name from the stack.

2. If the label has not been defined set its symtab

mode to label and enter it on a list of undefined

labels.

3. Otherwise, if its mode is not 'label' issue

a diagnostic.

4 Emit

NAME GOTO

<GOBY> ➔ <EXP> GOBYl <NAMES* l> GOBY2

GOBYl

Check that the type of <EXP> is bits.

GOBY2

1. Check each label as in GOTO and write it onto polish II.

2. Copy the repitition count into polish II.

3. Emit GOBY

LITTLE-40-24

<RETURN> -+ RETURN

RETURN

This routine handles the return statement. If

the routine is non recursive we simply emit

RETURN

Otherwise we emit code which does the following:

1. Copys all arguments which are declared as bits,

real or entry back into static storage.

2. Resets the pointer to the top of the stack.

3. Calls an assembly language routine to perform

the actual return.

Expressions

<EXP> -+ <TERM> <EXPTAIL * O>

<EXPTAIL> -+ <TERM> * BINOP

<TERM> -+ <TERM> * UNOP

-+ <SPECIAL>

-+ <CONSTANT> CONST

➔ <EXP>

➔ <FACTOR>

BINOP

This routine processes all binary operators.

1. Pop the code of the operator from the stack.

2. Pop the types of the arguments. Check that they

have the same type class.

3. Using an auxiliary bit matrix 'optypes' check that

the combination of operator and operands is legal.

4. If the operands are SETL objects go to 7.

5. If the operation to be performed is arithmetic, emit

either appropriate ,REAL or INT operator node.

Otherwise, emit fhe same node as was found in polish I.

6. Compute the result type and push it on the stack

and return.

LITTLE-40-25

7. Operations on SETL types generate calls to the

UNOP

CONST

<F•ACTOR>

<ATOM>

<TAIL>

<EXT>

run time library. For most run time routines,

the operands and results are passed thru four

global variables known as registers. A series of

low level allocation routines is used- to assign and

free registers. When necessary, results of subexpressions

are copied to temporaries, and the names of the

temporaries are placed on the stack. The handling

of the run time interface is similar to that used in

the current compiler except for the lowest level operations

which write calls and assignments onto polish II.

This routine generates unary operations. Its logic

is similar to that of BINOP.

Constants are simply moved to polish II. Their type

descriptors are left on the stack.

+ FX <EXT> I
+ EX <EXT> I
+ sx <EXT> I
+ CHEXl <EXP> CHEX2 <EXP> CHEX3

+ SUBXl <EXP> SUBX2 <EXP> SUBX3 <EXP> SUBX4

+ <ATOM> ATOM

-+ <DEREF * l> DEREF <ATOM>

+ < * NAME> <EXP * l> * OFA

+ < * NAME> <EXP* l> * OFB

+ "< * NAME> INDEXl <ARG * l> INDEX2 <TAIL> COMPRl

+ < * NAME> <TAIL> COMPR2

+ < * NAME> INDEXl <ARG * l> * INDEX2

+ < * NAME>

+ <ATOM> QUAL

+ <ATOM>

+ EXl <EXP> EX2 <EXP> EX3 <EXP> EX4

LIT'rLE-40-26

Factors may appear in either dexter or sinisterrositions.

We always begin by generating code for the dexter form. For

sinister assignments the routine ASSIGNl executes a rather

trivial backup to modify the code.

INDEXl

This routine

argument.

called before processing the first

1. Check the mode of name on top of stack.

2. If it is a component, set cexp = yes, so only that

integer expressions will be accepted.

3. If it is a function, set argsw = yes.

4. Otherwise its a variable. If its of type setlobj,

set setlindex = yes. Otherwise,

issue a diagnostic.

is undimensioned,

INDEX2

1.

2.

This is the generator for M{I ..•).

If cexp is set, we are indexing a component. Check

that there is only a single index and return.

If argsw is set, this is a function call. We treat

it as a subroutine call with an extra argument in

which the result is returned. This makes it necessary

to obtain a temporary, push it onto the stack and call

CALL2. We then emit the temporary onto the polish II

and push its type onto the ~tack.

3. If setlindex = no, we are indexing an array. Check

that there is only one argument and that it is a

bit string. Set indextodo ~ yes to indicate that we

must perform an index operation later. We delay the

index operation since in the source expression

A B {I)

we must add I to the stack offset of Ba1d the component

offset of A before indexing.

LITTLE-40-27

COMPRl AND COMPR2

These routines process component extractions. We concentrate

on COMPR2. which handles simple components.

DEREF

ATOM

1. Pop P and COMPONENT NAME from the stack. If P

is a typetab pointer, set TP = P and go to 5.

2. Otherwise set TP to the type of P. If TP is a

pointer obtain value by emitting .F.l, PS,

Heap(BASE-OFFSET_OF_P) or in polish form

BASE OFFSET OF PINT MINUS HEAP PS 1 INDEXFIELD

If the global indextodo is set then emit INTPLUS

to add the index to the value of the pointer. Go to 6

3. If TP is a name type, emit its address. and if

indextodo set emit INTPLUS. Go to 6

4. If TP is any other type emit a diagnostic.

5. TP is the result type of a previous extract. Check

that its a pointer.

6. Map TP and COMPONENT NAM_.E into a structab index.

Obtain the components offset, first bit and length.

7. Emit

OFFSET INT PLUS HEAP FIRST BIT LENGTH INDEXFIELD

This gives the equivlent of

.F. FIRST_BIT, LENGTH, HEAP(ADDR_OF STRUCTURE+ OFFSET)

8. Push the components type onto the stack.

Merely increment counter of derefeneces 'derefct'

This generator is called after all necessary component

extraction on an atom has been completed.·

LITTLE-40-28

1. Pop TP from the stack. If its a typtab pointer go to 4

2. We are processing either a simple name or index

operation with no component extracts• Check that arrays

are not used without an index and vica versa

3. If indextodo is set, index expression is on polish II.

If name is stored statically, emit

NAME INDEX

otherwise emit

ADDR OF NAME INT PLUS HEAP INDEX

4. If indextodo is not set, this is a simple variable

reference. Check that the variable has been declared. If

its type is 'SETLOBJ' leave it on the stack. Otherwise emit

its symtab pointer if the variable is stored statically and

ADDR OF NAME HEAP INDEX

if its stored in the HEAP. Set TP to the variable's type.

5.Perform deferencing repeat 5 - 8 derefot times:

6. Check that TP is a pointer type.

7. Emit

PTS l FIELD

To extract pointer

8. Emit

HEAP INDEX

9. Replace TP with type it points to

10. Push TP

LITTLE TYPE EXTRACTIONS

These operations require recording of their arguments

for consistency with oomprl and oompr2.

LITTLE-40-29

FX, EX, SX

These routines push an integer between 1 and 3

onto the stack, thereby indicating the type of the

extraction

EXl

Emit HEREIS so operands can be reordered.

EX2

Backup to HEREIS and insert another HEREIS

EX3 The polish II now looks like

HEPBIS LENGTH-EXPRESSION ORIGIN-EXPRESSION

backup to HEREIS and insert the third expression.

EX4 Restore to the end of the polish II string. Pop

the stack and emit the appropriate extraction operator.

ASSIGNMENTS

<ASSIGNMENT>+ <FACTOR> ASNl <EXP> ASN2

<ASSIGN> + . <FACTOR> ASSIGNl <EXP> ASSIGN2

ASSIGNl

We have just emitted the dexter form of a factor.

We remove the last operation of polish II, which was

INDEX, FIELD, etc. and use it to set the global ASNOP

indicating the assignment type.

1. If the top item on the stack is the name of a variable,

this is a simple SETL assignment. Emit the stack

address of the variable and set ASNOP· = SINDEX.

Push the type SETLOBJ onto the stack. Return.

2. Remove the last node LN from polish II.

3. If LN is a name this is a simple assignment. Put

it back on polish II a.nd set AS NOP = ASSIGN

LITTLE-40-,. 30

4. If LN is SCALL then <FACTOR> a SETL 'OF' operator.

Remove another node to determine which dexter routine

was being called, and set ASNOP to the corresponding

sinister routine. Emit 'RESULT' (themme of a

library register)

5. Otherwise set ASNOP from LN.

ASSIGN2

1. Pop the types of source and target. Check that

they match.

2. If ASNOP is a runtime call, then emit

ASSIGN

To place the source in the library's 'RESULT'

register. Emit

ASNOP SCALL

to call the appropriate library routine

3. Otherwise emit ASNOP.

Code Generation

The polish string which reaches the code generator is

language independent. There is no way of telling whether it

was created by a LITTLE, MIDL or SETL compiler. The operations

contained in polish II are similar to those in the LITTLE VOA.

Many will be converted to single machine instructions. Some

will be expanded into a series of instructions; others will

generate offline calls.

If any optimization is to be performed it will be desireabl8

to be able to identify the output of each operation. This is

contrary to the spirit of polish notation, which has no concept

of temporaries or redundant expressions. Thus it will probably

be necessary to convert the string:to some other form. In

some cases, this will mean using quadruples. For basic block

optimizations,it is possible ho use a modified polish form

which contains temporaries for operations.

LITTLE-40-31

For example, the sequence

A = B * C + D

normally written

A BC*D+=

could be written

AB~ Tl* Tl D T2 + T2 =

where . Tl & T2 hold the results for B * C and B * c + D

respectively. In any case this nonstandard representation

should be confined to the code generator phase where it is

invisible to the general user.

LITTLE-40-32

COPE>

ROUTINE>

HEADER>

l G R A M M A R

THE POLISH iI GRAMMAR IS 1LANGUAGE INDE~ENDENTt, IT
WILL BE THE SArE FOR ALL LANGUAGES USING T~IS COMPIL~R

SCHEME,

.. <HEADEH> <lNSTRUCTION•O> •ENDROUT•

➔ <•NAME> ·•SUBR~
.. <vrNAt1E> ,,.FNCT ..

/* HEADER roR SUBROUTINE
I* HEADER FOR FUNCTION

INSTRUCTION> .. <EXP> <EXP> cBINOP> I* BINARY OPE~ATORS
I* UNARY OPERATORS

~INOP>

➔ <EXP> <Ut.,OP>
.. <EXP> .. lfGU.,
.. <EXP> •IFNUTGO•
.. <•NAME> •GUTo­

I* CONDITIONAL BRANCHES

➔ <EXP> <NAM~S•l> ~G08Y• I•
.. <NAME•l> ·PLIST- I•

I* UNCONDITIO~AL BRANCH
GOf1Y
FORM PARAM=TER LlST

I• SUBROUTINE CALL .. <•NAME> .. sc;ALL­
.. <itrNA11E> •Fl:ALL•
.. -RETURN.,.
.. <EXP> •FRcTURN ..
.. <ASSIGNEI\T>
• <+NAME> •LABEL­
.. <DATA>
.. <IO>
➔ <MISC>
.. <•NAME> •R~AD•

.. -INTPLUS,,.

.. -INTMINUS"'

.+ .-JNTMULT•

.. "'INTDIV ..

.... INTGT•

.... tNTLT ..

.. -INTGE•

.. -tNTLE-
➔ -OR-
.... EXOR-
.. -AND•
➔ -REALPI..US ..

I• FUNCTION CALL
I* RETURN (NO~•RECURSIVE
/* FUNCTION R~TURN

I* LAB~l DErl~ITION
I• DATA STATE1ENT
I* IO LEFT UNDEFINED

I* READ INPUT FROM AUXILIARY FIL

I* INTEGER ARITHMETIC OPERATIONS

/* INTEGER RELATIONAL OP~RATJONS

I* LOGICAL OP:RATIONS

I• REAL ARITH1ETIC OPERATORS

:UNOP>

LITTLE-40-33

,
➔ ..
➔

,..REALM l Nl,iS ..
- R E A L M U i.:r ..
•REALDIV~
-REALGT-
.. REALLT"'
.. REALGE:-
.. REALLI:::"'

•NB"'
.. fB-
... NQT-.
.. UNMINUS•

I• REAL REALATJONAL OPERATORS

I* NAM::(EXP1)

,. <EXP1><EXP2><EXP3> •fIELt- I* .F. EX~3,EXP2,EXP1

• <EXP1><•~A~E><EXP2><EXP3> "'INDEX~IELD-
/• ,F. E.XP3,EXP2,NAHE(EXP1) •/

➔ < E X P 1 > < EX P 2 > < E X P 3 > ., E F I El, D ..
I* ,[, EXP3,EXP2,EXP1 •I

.. <EXP1><•~AME><EXP2><~XP3> rGFIELOX•
I• ,f, EXP3,EXP2,NAHE(EXP1) •I

.. <EXP1><EXP2>cEXP3> ~sFIE~O-
/• ,S, EXP3,F.XP2,EXP1 •I

,. EXP1><•NAMc><EXP2><f.XP3> •SPIELDX-
/• ,S, EXP3,EXP2,NAMECEXP3) •I

:ASSIGNMENT> ➔ <•NAHE><~XP> •ASSJGN~
/• -SIMPLE• ASSI3NMENT

• <EXP1><•~AME><EXP2> ~SlNDEX- I• NAME(EXP1) =EXP2

,. <EXP1><EXP2><EXP3><~XP4> ~sr1ELD-
/• ,F, EXP3,EXP2,EXP1 = -EXP4-

,. <EXP1><EXP2>cEXP3><EXP4> -SEFlELD•
I• ,E, EXP3,EXP2,EXP1 = •EXP4-

~ <EXP1><EXP2>cEXP3><EXP> •SSFIELD-
/• .s. FXP3,EXP2,EXP1 = -EXP4-

LITTLE-40-34

/• ,f.EXP3,EXP2,~AME(EXP1) = EXP4•/

➔ <EXP1><•~AME><EXP2><EXP3><EXP4> •SEI~DEXFIELD•
I* ,E,EXP3,EXP2,~AMECEXP1) = EXP4•/

➔ <EXP1><•~AME><EXP2><~XP3><EXP4> -SSI~DEXFIELD•
I* , S , I: X P 3 , E X P 2 , -~ Ml E (EXP l > = F. X P 4 • /

,.
I I
i

LITTLE-40-35

Applications to other languages

The scheme we have outlined is applicable to a wide variety

of languages. In particular, LITTLE is a proper subset of

MIDL and can therefore use a subset of the grammars we have given.

The SETL translator has many special problems. In particular,

it must perform substantial semantic processing, piss a set of

quadruples to the optimizer and finally convert the quadruples

to machine code. rhe current version uses BALM to perform

semantic processing and LITTLE generate code. A.t no point does

it produce the quadruples required by the optimizer. We could

adapt our MIDL scheme to SETL translation as follows: Use

the scanner parser and code generator off the shelf. Write

a new.semantic phase which will output quadruples rather than

polish II and an extra routine at the end of the optimizer

to convert the re.ordered tup.les to polish. This scheme is

somewhat ambitious, however the initial implimentation could

easily convert the tuples to macroized LITTLE. Its greatest

advantage would be eliminating the use of BALM.

